
Materials Physics for Thermoelectric and Related Energetic
Applications SACHES

By MA

Shuang Tang

S. M., Materials Science and Engineering (2012)
Massachusetts Institute of Technology

B. S., Physics (2009)
Fudan University, Shanghai, China

Submitted to the Department of Materials Science and Engineering
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Materials Science and Engineering

at the
Massachusetts Institute of Technology

June 2015

0 2015 Massachusetts Institute of Technology
All rights reserved

Signature redacted
Signature of Author............ .............................................

Department of Materials Science and Engineering

Signature redacted
Certified by.....................

Mildred S. Dresselhaus
Institute Professor

Signature redactedrhesis Advisor

A ccepted by .................. ................ . . . .. .........................
Donald Sadoway

Chairman, De ent Committee Graduate Students

1

3SACHUSETTSq INqTITI TE
OF 1"ECHNOLOLGY

JUN 17 2015

LIBRARIES

-.1% A



2



Materials Physics for Thermoelectric and Related Energetic
Applications

By

Shuang Tang

Submitted to the Department of Materials Science and Engineering
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Materials Science and Engineering

Abstract

Thermoelectrics study the direct inter-conversion between heat flow and electrical power, which

has a wide range of applications including power generation and refrigeration. The performance

of thermoelectricity generation and the refrigeration is characterized by a dimensionless number

called the Figure-of-Merit (ZT), defined as ZT = c-S 2 T / w, where a is the electrical

conductivity, K is the thermal conductivity, S is the Seebeck coefficient, and T is the absolute

temperature. Before 1993, the upper-limit of ZT was barely 1. After the efforts of more than

twenty years, the upper-limit of ZT has been pushed up to ~2. However, for the thermoelectric

technology to be commercially attractive, the value of ZT and the cost of production have to be

further improved.

Most of the ZT enhancing strategies that have been proposed since 1993 involve the

changing and the controlling of the dimension of materials systems, the scattering mechanism(s)

of carriers, the shape of the electronic band structure and the density of states, and the magnitude

of the band gap. As further research is carried out, it is found that these strategies do not always

work to enhance ZT. Even for a working materials system, the improvement margin of increasing

ZT can be small. The balancing between a and S 2 / K has significantly limited the

improvement margin for our ZT enhancing goal. Therefore, we have two problems to explore:

(1) how can we deal with the strong correlation between 0 and S2 / K , when trying to enhance

ZT, and (2) how can we make the above mentioned strategies more convergent as we change the

dimension of materials systems, the scattering mechanism(s) of carriers, the shape of electronic

band structure, and the magnitude of the band gap?
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This thesis aims to explore the solutions to these two major problems at the research

frontier of thermoelectric ZT enhancement. The first problem is discussed by providing a new

framework of pseudo-ZTs, where the electronic contribution (zte) and the lattice contribution (ztL)

to the overall ZT can be treated in a relatively separate manner. The second problem is discussed

under this new framework of pseudo-ZTs, through four subsections: (i) scattering and system

dimension; (ii) band structure; (iii) density of states; (iv) band gap.

The one-to-one correspondence relation between the carrier scattering mechanism(s) and

the maximum Seebeck coefficient is further studied. A new tool for scattering mechanism(s)

inference and for the Seebeck coefficient enhancement is provided. For the band structure and

the band gap part, advanced band engineering methods are provided to study nanostructured

narrow-gap materials, the Dirac cone materials, and the anisotropic materials, which are

historically found to be good thermoelectric materials.

To further demonstrate the newly developed theories, this thesis has also illustrated the

application of these models in some specific materials systems, including the graphene system,

the transition metal dichalcogenides monolayer materials systems, the Bi1 -xSbx alloys system, the

In1.xGaxN alloys system, and the (BiiySby) 2(S1_xTex)3 alloys system.

Thesis Supervisor: Mildred S. Dresselhaus

Title: Institute Professor of Electrical Engineering and Physics
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Chapter 1

Introduction

The energy crisis is an urgent issue on a global scope, economically, politically,

environmentally, and scientifically. The essence of the energy issue is how to sustainably power

our planet at the present and in the future, without introduction further severe damage to the

natural environment and human society. The human society has been powered by the fossil

energy from ancient time, including coal, natural gas, and oil. Even up to now, the contemporary

industry still relies 86.4% on fossil energy. On the one hand, the fossil deposit will be run out

sooner or later. On the other hand, the combustion of fossil fuels is releasing 34,000,000,000

tonnes of carbon dioxides [1], among other harmful gas pollutants, per year, causing irreversible

environmental changes. Since it now seems impossible to stop consuming fossil fuels, thereby

shutting down the 86.4% of the industry [2] and putting the human society back into darkness, an

efficient approach is needed to enhance the energy usage efficiency that is compatible with both

traditional and new energy generation approaches. Thermoelectrics is one of the most promising

technologies that can keep in such a task [3-6].

Thermoelectrics is the subject that studies the inter-conversion between heat flow and

electricity, which involves two aspects: power generation and refrigeration/cooling [7, 8]. When

a thermoelectric system is exposed to a temperature gradient, a built-in voltage will be

established between the hot side and the cold side, which results in usable electric power

generation when connected to an external circuit. Oppositely, if a thermoelectric system is

connected to an external power supply, heat flow will be generated by consuming the electricity

energy, which results in refrigeration/cooling.
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In traditional heat engine systems, about 70% of the energy is lost as waste heat to the

environment on average. An estimated 1500-3000 trillion BTU/year of waste heat from

industrial processes remain unrecovered in the United States [9]. In recent years, thermoelectric

power generation has had renewed interest to partially convert this waste heat into electricity.

Thermoelectric power generators have been developed to produce electricity from the waste heat

in car exhaust gas [10], or from solar-radiation [9] heat as a cheap alternative to solar cells.

Thermoelectric technology can be implemented for almost all thermal processes, such as

combustion furnaces [10], vehicle and air craft engines [9], thermal fluids [11], nuclear reactors

[12], and various sorts of factories [13], which will all play an important role in waste heat

recovery. Under some special circumstances, high-temperature thermoelectric power generators

provide an effective choice, e.g. for the nuclear reactors in space craft and in deep ocean

submarines [12].

Thermoelectric refrigeration and cooling use solid state materials as media. With many

attractive features such as low noise, compact size, easy installation and transport, low cost and

low pollution, thermoelectric cooling become one of the most suitable approaches for electronic

cooling, laser cooling, medical cooling, and temperature controlled clothing. Products for

portable cooling in niche markets have already been put into commercial use, including USB

beer/cola coolers, car-seat coolers [14, 15], and polymerase chain reaction instruments for DNA

pieces amplification [16].

1.1 Thermoelectrics

To make a closed circuit, a thermoelectric device must have at least two legs, which are formed

by P-type and N-type thermoelectric materials, respectively, as shown in Figure (1.1 a). In the

thermoelectric power generation device, the charge carriers at the hot side tend to have higher

kinetic energy than the charge carriers at the cold side, which results in a net carrier flow. This

15



charge flow will be balanced by the built-in voltage [17]. The magnitude of the built-in voltage is

proportional to the temperature gradient, as shown in Equation (1.1),

AV = SAT (1.1)

where S is called the Seebeck coefficient, named after the Baltic German physicist Thomas

Johann Seebeck. Macroscopically, the Seebeck coefficient means the induced thermoelectric

voltage per unit temperature difference, which is also called the thermopower. Microscopically,

the Seebeck coefficient means the entropy carried per unit charge during the transport process,

which will be further explained by the Boltzmann Equations in Chapter 2.

TE heat pump TE generator

+F

Figure 1.1: Scheme of (a) a thermoelectric power generation device and (b) a thermoelectric

cooling device. The electrons and holes are indicated by the negative charge and positive charge

signs. The arrow indicates the direction of current flow within the circuit. The P-type leg and the

N-type leg are indicated and marked out in such P-N junction structures.

16

VAf--



A thermoelectric cooling device also needs at least two legs for P-type and N-type

thermoelectric materials, as shown in Figure (1.1 b). This P-Njunction will work as a heat sink

to perform the heat pumping task. The heat pumping rate is proportional to the electrical current

flowing in the junction, as shown in Equation (1.2),

r = (vJ - 1 N ),current (1.2)

where r is the heat pumped per unit time, 'current is the electrical current, and UP and H N are

the Peltier coefficients for the P-type and N-type legs, respectively, named after the French

physicist Jean Charles Athanase Peltier. This phenomenon is called the Peltier effect. The Peltier

effect can be seen as the reverse counterpart of the Seebeck effect. Thus, the Seebeck coefficient

and the Peltier coefficient for a specific material can be related by Equation (1.3).

11= TS (1.3)

Further, the Seebeck coefficient of this specific material can usually vary as a function of

temperature, which is called the Thomson effect.

1.2 Figure of Merit

The performance of a thermoelectric device, or of a specific thermoelectric material is

characterized by a dimensionless number named the Figure-of-Merit (ZT), as defined in Equation

(1.4) [17],

ZT = .(1.4)
K
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where C is the electrical conductivity, K is the thermal conductivity, S is the Seebeck

coefficient, and T is the absolute temperature. This definition could be understood intuitively. To

have the thermoelectric device work more efficiently, we will prefer it to conduct more

electricity, and to induce larger voltage, while to conduct less heat to keep the temperature

gradient and thermal potential. The relation between the ZT and the power generation efficiency

( ) of a thermoelectric system is shown in Equation (1.5),

-T= -TCOld [+ZT-1 (1.5)
THot ,1+ ZT+ TCoId

THot

where To, and Told stand for the hot-side and cold-side temperatures, respectively. Further,

(-S 2 characterizes the power density per unit time of this energy conversion device, and is,

therefore, called the power factor.

1.3 Scope and Organization of this Thesis

This thesis is organized in the way of providing solutions to the two major problems in the

frontier research of thermoelectric ZT enhancement: (1) How can we conquer the strong

correlation between electrical conductivity ( a), thermal conductivity (K) and the Seebeck

coefficient (S )? (2) Why have the strategies previously used by researchers regarding changing

the system dimensions, the carrier scattering mechanism(s), the electronic band structure, the

electronic density of states, and the energy band gap, sometimes worked but sometimes they do

not work?

The first problem is discussed in this thesis work by providing a new framework of

pseudo-ZTs, where the electronic contribution and the lattice contribution to ZT can be treated in

a relatively separate manner. The second problem is discussed under this new framework of

18



pseudo-ZTs, through four subsections: (i) scattering and system dimension; (ii) band structure;

(iii) density of states; (iv) band gap.

The carrier scattering mechanism(s) is (are) further studied. A new tool for scattering

mechanism(s) inference and for the Seebeck coefficient enhancement is provided. For the band

structure and the band gap part, an advanced band engineering method is provided to study

nanostructured narrow-gap materials, the Dirac cone materials, and the anisotropic materials,

which are historically found to be good thermoelectric materials. Discussions and future

suggestions are provided in the final chapter.
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Chapter 2

New Framework for Thermoelectric

Theory

The bottle-neck for thermoelectric applications, both power generation and cooling, is to enhance

the energy conversion efficiency, i.e. to enhance ZT. Tremendous efforts have been made since

the Hicks-Dresselhaus model was proposed in 1993 [18], and these efforts have pushed the upper

limit of ZT from ~1 to ~2. However, to realize large scale commercial use of thermoelectric

technology, the cost and efficiency of thermoelectric materials need to be further improved

significantly. To fulfill this task, a new framework for thermoelectric theory is provided in this

chapter. This new framework of theory decomposes ZT into two pseudo-ZTs, where one pseudo-

ZT measures the electronic contribution and the other scales the lattice contribution. By using

this framework, deeper physics can be revealed, which gives important guidance for a more

convergent way to develop materials science and engineering strategies to enhance ZT.

2.1 History of ZT Enhancement

This Chapter is reprinted/adapted from the published work: a S. Tang and M. Dresselhaus,
"Anisotropic transport for parabolic, non-parabolic, and linear bands of different dimensions",
Applied Physics Letters, 105, 033907 (2014). b. S. Tang and M. Dresselhaus, "Building the
Principle of Thermoelectric ZT Enhancement", arXiv, 1406.1842, (2014).
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Before the 1990s, the ZT of major thermoelectric materials was barely up to 1, as shown in

Figure (2.1 a) [10].

(a) i Bi2 % SlO (b) Na0 5Pb,,SbTe*

SNano-lSbTe bTeiPbS
0.8 ~PbTe "bTT

0.8 15b i T

BiSb t7 PbSbT

0.6.'-

0.4 81SbT*
(.. -. - n-SI~e

Nano p-SIG9

0.2 T
Room temperature

o 200 400 00 8 1000 1200 0  200 400 600 00 1000
Temperature (K) Temperature (C)

Figure 2.1: The achievement of highest ZT values of typical good thermoelectric materials up to

1993 (a) [10] and now (b) [19].

In 1993, Hicks and Dresselhaus proposed that by employing nanoscience and nanotechnology, it

might be promising to have ZT much above 1 in low-dimensional materials systems, such as

quantum wells and nanowires [18, 20]. Following this clue, researchers have made significant

efforts to increase ZT. Mahan and Sofo pointed out that a sharp change in density of states near

the Fermi energy may lead to a large Seebeck coefficient and an enhanced ZT [21]. Super-lattice

structures and nanocomposite structures have also been used to further increase the Seebeck

coefficient and to reduce the lattice thermal conductivity [22]. Heremans et al. managed to obtain

high ZT values with PbTe materials by introducing resonant states into the band gap [23]. Later,

Parker et al. suggested another approach using heavy doping to create a pipe-shaped Fermi

surface for ZT enhancement [24]. Most of the ZT enhancing strategies that have been proposed

since 1993 involve the changing and the controlling of the dimension of materials systems [18,

20], the scattering mechanism(s) of carriers [23], the shape of the electronic band structure [24]
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and the density of states [21], and the band gap, which have pushed the upper limit of ZT to ~2,

as shown in Figure (2.1 b).

2.2 Theory Basics for Modeling ZT

As shown in Equation (1.4), ZT can be calculated from all the transport properties, including the

electrical conductivity (u-), the thermal conductivity (K ) and the Seebeck coefficient (S).

Since thermoelectric systems are mostly used under low field conditions, the Boltzmann

Transport Equations are widely used to model all these aforementioned transport properties. In

this section, we review some of the most important theoretic basic concepts for describing such

transport properties.

2.2.1 Band Structure

In solid state semiconducting materials, the energy (E) of allowed quantum states for electrons

are functions of the lattice momentum (k). The dispersion relation E(k) controls the band

structure [25]. Usually, the band structure is discussed within the first Brillouin zone, i.e. the first

Wigner-Seitz cell in the reciprocal space. At absolute zero temperature (T = 0), all the electrons

will be frozen within the valence band. The fully filled valence band will not contribute to the

electronic transport. At a finite temperature above T = 0, a certain portion of the electrons at the

top of the valence band will be thermally excited to the bottom of the conduction band, which

leads to charge vacancies at the top of the valence band. A charge vacancy effectively possesses

a positive charge within the background of the "electron sea", and is called a "hole". There is a

forbidden energy range between the valence band and the conduction band, where no electrons

or holes are allowed. This forbidden energy range is called the band gap. Only the carriers near

the band gap, i.e. electrons at the bottom of the conduction band and holes at the top of the

valence band contribute to the transport phenomena. The bottom of the conduction band and the

top of valence band are called the band edges.
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2.2.2 Effective Mass Theorem

In solid state physics, if we use Yn (rt) to denote the nth wavefunction of electrons, where r

is the coordinate of electrons in the real space and t is the real time, and we use VI/A (r) to

denote the single color wavefunction [25]. In general, we have

Yn(r, t)= f#(r,k, t k (r)d3k , (2.1)

where #(r,k,t) is the weight distribution of each singe color wavefunction in this wave-packet

of electrons. However, if the electrons in solid state crystals are delocalized, i.e., the wavelength

of electrons is much larger than the interatomic distance, the wave-packet of electron will be

localized in the reciprocal space such that

T n(r,t) = [f (rlk~t)d3 k] V/O()

= (Dn(r,t)qlk (r), (2.2)

where Vf, 1 k (r) is the single color wavefunction at the average position ko in the reciprocal

space, and

n (r,t)= [# z(rkt)d3k I (2.3)

is the envelope function for this wave-packet. Hence, the Schr6dinger Equation can be

effectively written as,
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[E, (ko -iV,)+ V,(r)] ,(r,t) =ih " , (r, , (2.4)at

where E, is the energy for the nth band. Equation (2.4) is the basic equation of Effective Mass

Theory, which has many useful derivatives. An important one will be the E(k) relation of

parabolically dispersed carriers at the bottom of the conduction band or at the top of the valence

band, as shown in Equation (2.5),

h(k -ke h2(k, -kedg) 2(k -k
E(k)= * + * + 2 . (2.5)

2m1  2m2  2m 3

where k,, k, and k, are the three components of k , while kedge, , k edgey and kedge are the

three components of the k value of the band edge (kedge), and m*, m2 , 3* are the

corresponding principal effective masses.

2.2.3 Boltzmann Transport Equation and the Relaxation Time Approximation

The Boltzmann Transport Equation deals with the transport of an ensemble of carriers [25]. The

Occupancy Distribution Function f (r,k,t) is used to describe this ensemble, which means the

occupancy probability of a quantum state at position r, lattice momentum k and time t . If we

assume that the total number of carriers is conserved within a system, we have

+ F V~f + VE -Vrf = -scattering (2.6)
at eat

where F ,, is the external force exerted on the carriers.
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If the external electrical field is low and the scattering processes for the carriers are

elastic, the scattering term on the right-side of Equation (2.6) can be described by an energy (E)

dependent relaxation time function T (E),

af f - f0
at scattering - , (at r (E)

A exp E - f + 1
kB T ,

(2.7)

(2.8)

is the Fermi-Dirac distribution function, E1 is the Fermi energy and kB is the Boltzmann

constant.

The transport properties can then be calculated using the Occupancy Distribution

Function f (r,k, t). The charge current density can be given by

iCharge (rt) = -e f (r,k,,t)VE(k)d3k,

while the heat current density can be given by

JHeat (rt) = f (r,k,t)(E - E, )V,E(k)d'k.

(2.9)

(2.10)

Furthermore, at a steady state condition, af / at = 0 is satisfied, so we have

Charge (r,t) = JCharge and jHeat (r~t) = JHeat. By solving Equations (2.6), (2.7), (2.9) and
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(2.10), we can get expressions for the electrical conductivity ( a), the Seebeck coefficient (S),

and the electronic contribution to the thermal conductivity ( Ke),

(T= e 2I _j,

S= k []

e [1=0]

K , = T k [ 

-] [1=0]

(2.11)

(2.12)

(2.13)

where

I[/] =~ 2L E(E)( F )'dE
aE kBT

(2.14)

and

0(E) = 1(E - E(k'))r (E)vv.

Here the energy dependent function .(E) is called the Transport Distribution Function. For a

general electron or hole pocket, the energy dependence of the Transport Distribution Function

near the band edge can be written as,

E =7

E) O kB T )
(2.16)

where
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O = g, -a 
(1

in which g, is the electronic geometrical factor, and a7 is the normalization factor. For

calculation, we illustrate the use of the above formalism in a 3-dimensional (3D) parabolically

dispersed band valley, which is described by Equation (2.5), for clarification. The density of

states for such a band edge is

* * * 1

D(E) I 2M 3 E2
. 'fJ2h,'

and the Scattering Relaxation Time Function is

(2.19)

where the coefficient ro depends on the scatting strength and the exponent j depends on the

energy dependence of the specific scattering mechanism(s). Therefore, the Transport Distribution

Function can be written as,

(2.18)

( (1 2 Om 2 E '

m, 3 h3 (kT)'

where the subscript i (=1, 2, or 3) is the indicator for the three different principal transport

directions. In this case, the parameters in Equations (2.16) and (2.17) are related to

gm =m5)

(2.20)

(2.21)
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-sro (m* 63*
a,, = ,

32 z (kBTY'

3.
71= - -.

2

2.2.4 Multi-Channel Transport

In the case where the transport of the whole system has contributions from more than one

channel, the overall transport can be calculated by [17, 25],

and
S = ,

and

A = Z Kt + TX (S - S .
i it j 0i + aj

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

The second term on the right side of Equation (2.26) can increase the thermal conductivity

greatly, especially for narrow-gap materials, and is responsible for the so-called bipolar effect.
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2.3 Problems with ZT Enhancement

As mentioned before, there is still a distance for thermoelectric technology to become

commercially used regarding its energy conversion efficiency. As further research is carried out,

it is found that the above mentioned strategies do not always work to enhance ZT. Even for a

working materials system, the improvement margin of increasing ZT can be small. This can be

explained from the definition of ZT in Equation (1.4). To enhance ZT by controlling the

electrical conductivity (0), thermal conductivity ( K ) and Seebeck coefficient ( S ) occurs with

extreme difficulty. For one thing, the electrical conductivity ( Cr) is positively correlated with the

thermal conductivity ( K ), where the electronic contribution to the thermal conductivity ( Ke ) can

be approximated by the Wiedemann-Franz law as shown in Equation (2.1), where L is called

the Lorentz Number. The Lorentz Number for a simple metal can be approximated by a free

electron gas model as,

L - ,I2 = 2.44 x10- WQK ,

where e is the elementary charge. For another thing, the electrical conductivity (aT) and the

Seebeck coefficient (S) are usually negatively correlated as shown in Figure (2.2) [26].
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Figure 2.2: The negative correlations of the electrical conductivity and the Seebeck coefficient

for a general materials system with different carrier concentrations [26].

Therefore, we can see that most of these ZT enhancing strategies now in use are balancing

strategies between CT and S2 / K . This can be understood by simple illustrations of the extreme

cases. For example, a typical metal will have large electrical conductivity ( a ), but will usually

be compensated by the large thermal conductivity (K ) and the small Seebeck coefficient (S).

As a second example, a conventional insulating plastic material will have a large Seebeck

coefficient (S ) and a small thermal conductivity, which will, however, be compensated by a

very small electrical conductivity (CF). These two examples show that the balancing strategies

are like playing a "seesaw balancing" game, and this is why the balancing game significantly

limits the improvement margin for our ZT enhancing goal.

The above discussion identifies two problems that are crucial for the field of

thermoelectrics: (1) how can we deal with the strong correlation between CT and S2 / K, when
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trying to enhance ZT, and (2) how can we make the above mentioned strategies more convergent

as we change the dimension of materials systems, the scattering mechanism(s) of carriers, the

shape of electronic band structure, and the magnitude of the band gap?

2.4 Solving the Problems by Proposing

Pseudo-ZTs

My proposal for tackling this transport "balancing" problem as posed in Section 2.3 is to

reformulate the definition of ZT into pseudo-ZTs as in Equation (2.27), where the strong

correlations within the form of the multiplications in Equation (1.4) can be effectively avoided.

The framework of the pseudo-ZTs is structured as [27],

1 1 1
= - + C - (2.27)

ZT zte ZtL

where

1
zt =j ~~](2.28)

ZtL = ] (2.29)

and
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Here

bulk

C=K 1
T (ge/ g) kB2

jr0 ) exp(x) .'rx E E rd
x=(, E,E )IkT (I+eXp x)) kBT

(2.30)

(2.31)

and

CL = L * bulk (2.32)

where Em is the electron or hole carrier energy at the band edge. /=0, 1 or 2. KL is the lattice

thermal conductivity for a specific material, Kbulk is the lattice thermal conductivity for the

corresponding bulk material, and gL is the lattice geometrical factor, as an example, for a 3D

bulk crystal material, gL = 1, while g, and a are as defined in Equation (2.16)-(2.23).

In Equation (2.27)-(2.32), we see that the pseudo-ZT term Zte only measures the

electronic influence to the total ZT, while the pseudo-ZT term ztL only scales the lattice

influence to the total ZT. We see further that the lattice influence is calibrated by the

geometrically normalized lattice thermal conductivity C, which is proportional to the bulk

crystal lattice thermal conductivity and inversely proportional to the absolute temperature, i.e.

bulk

C 0C -L
T

(2.33)

Under the framework of Equation (2.27), the multiplication relation between the three transport

properties in Equation (1.4) is changed to the addition relation of two transport related terms.

This step largely relaxes the correlation between terms that we need to consider in our more
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convergent approach toward optimizing the total ZT. This will be seen clearly in the following

sections, where deeper physics can be revealed relative to our goal of thermoelectric ZT

enhancement.

2.5 How Scattering and Dimension Affect ZT

Many efforts have been made to enhance ZT by changing the carrier scattering mechanism(s) or

changing the dimension of materials systems, e.g. by synthesizing a specific material into two-

dimensional thin films or one-dimensional nanowires. While the improvement of ZT has been

achieved in some materials systems, it is puzzling that the methods of changing the scattering

mechanism(s) or the efforts of lowering the dimensionality do not always work for all systems.

In some materials systems, low-dimensional materials even have lower ZT than their bulk

materials counterparts. We here try to answer how to deal with this puzzle and we then propose a

divide-and-conquer strategy on how to enhance ZT by controlling the carrier scattering

mechanism(s) or changing the dimension of materials systems [27].

In Figure (2.3), it is shown how the two pseudo-ZTs change with the carrier concentration

for systems of different dimensions.
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Figure 2.3: Illustration of how changing the dimension of a materials system can change the two

pseudo-ZTs, zte and ZtL, in opposite directions. The red curve represents a three-dimensional

parabolic band valley, and the green curve represents a two-dimensional parabolic band valley.

To make a fair comparison, it is assumed that this three-dimensional band valley and this two-

dimensional band valley have the same effective mass, and the same constant carrier scattering

relaxation time along the different directions. For the zte part, the lower dimension system has a

higher pseudo-ZT; for the ZtL part, the lower dimension system has a lower pseudo-ZT.

Therefore, changing the dimension of a materials system, e.g. by making the materials into nano-

form, will change Zte and ZtL in opposite directions. This also tells us that for low carrier

concentrations, it may be an advantage to use low dimensional materials rather than 3D bulk

materials, while for the high carrier concentrations as defined in this thesis, 3D bulk materials are

more promising for thermoelectrics. With this introduction, we now develop these ideas further.

For the purpose of illustration, a three-dimensional (red curve) parabolic band system and

a two-dimensional (green curve) parabolic band system are chosen, where the constant relaxation

time scattering is dominant in both cases. It is clear that while the low-dimensional system has

higher zt, than the three-dimensional system, as shown in Figure (2.3 a), it also has lower ztL

compared to the bulk case, as shown in Figure (2.3 b). I have calculated the cases of other
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scattering mechanism(s) and dimensions, which all show that the changing of dimension of a

materials system will change the two pseudo-ZTs in opposite directions.

I further calculated the influence of changing the scattering mechanism(s) on the two

pseudo-ZTs, as shown in Figure (2.4). For the purpose of illustration, we here show a three-

dimensional parabolic band system where the acoustic phonon

(a) (b)

Charged impurity Charged Impurity
-C- 

Ch rgdgepudt

Scattering j---1.5 Scattering j=-1.5

Acoustic Phonon Acoustic Phonon
Scatteringj=0.5 Scatteringj=0.5

00--10 -5 0 5 10 -10 -5 0 5 10

( E- -Ecd' ,)Ikj ( E' -Eeg,)1kB T

Figure 2.4: Illustration of how changing the carrier scattering mechanism(s) of a transport

system can change the two pseudo-ZTs, zt, and ZtL, in opposite directions. The black curve

represents a case where the charged impurity scattering mechanism is dominant, and the purple

curve represents a case where the acoustic phonon scattering mechanism is dominant. To make a

fair comparison, it is assumed that both of these two system have a three-dimensional parabolic

band valley. For the zte part, the acoustic phonon scattering with lower scattering order

(j = -0.5) has higher pseudo-ZT; for the ZtL part, the charged impurity scattering with higher

scattering order ( j= 1.5) has lower pseudo-ZT. Therefore, changing the scattering

mechanism(s) of a transport system, e.g. by adding foreign ionized impurities, will also change

Zte and ztL, in opposite directions.

scattering is dominant (purple curve), and another three-dimensional parabolic band system

where the ionized impurity scattering is dominant (black curve). We still see clearly that while
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the acoustic phonon scattering system has higher Zte than the ionized impurity scattering

system, as shown in Figure (2.4 a), it also has lower ZtL compared to the ionized impurity

scattering, as shown in Figure (2.4 b). We have calculated the cases of other scattering

mechanism(s) and dimensions, which all show that the changing of scattering mechanism(s) of

carriers will also change the two pseudo-ZTs in opposite directions.

Figure (2.3) and (2.4) have answered the question why the methods of changing

dimension or scattering to enhance ZT sometimes work, but sometimes do not work: they change

zt, and ZtL in opposite directions. Therefore, we accordingly propose a divide-and-conquer

strategy, instead of a blind trial strategy. Before we consider changing the dimension of

scattering, we should first examine the geometrically normalized lattice thermal conductivity

C oc KIi" / T. If C is small, the total ZT is dominated by zte according to Equation (2.27). In

this case, we should try to increase the scattering order (j) in Equation (2.19) by e.g. adding

charged impurities, and we should also try to decrease the dimension of the materials system by

utilizing nanostructured materials, e.g. thin films, nanowires, etc. If C is large, the total ZT is

dominated by ZtL according to Equation (2.27). In this case, we should try to decrease the

scattering order (j) by e.g. reducing the concentration of charged impurities, and we should

keep the materials system in bulk form. If C is moderate, zt( and ZtL will be comparable to

each other. Accordingly we suggest that the strategies regarding changing scattering

mechanism(s) or changing materials system dimension will not improve ZT in a notable way,

due to the balancing of loss and gain between Zte and ZtL. The relation between scattering

mechanism(s) and thermoelectric behaviors will be further discussed in Chapter 3.

2.6 How Band Asymmetry Affects ZT
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It will be helpful to study what are the common properties of the band structures for the

traditional good thermoelectric materials, e.g. bismuth antimony, lead telluride, and bismuth

selenide. These materials are always related to narrow-band-gap semiconductors, Dirac cone

materials, and topological insulators. Further, we see that these materials usually have better P-

type thermoelectric behavior than N-type. Based on the aforementioned phenomena, we make a

conjecture that the good thermoelectric performance, especially for the P-type cases, originates

from the large asymmetry of the carrier effective masses between electrons and holes. To verify

this conjecture, we now examine how this band asymmetry ratio affects the pseudo-ZTs of zte

and ztL for such systems. We define the band asymmetry ratio as the ratio between the radii of

curvature for the electron dispersion and the hole dispersion, i.e.

#= / 1 (2.34)
(02E '82E_

2 Electrons J Holes

which in the case of parabolic bands can be simplified to be the ratio of the effective masses, i.e.

m *~etrn
$ = Eectrons .(2.35)

m IHoles

Without loss of generality we assume a system at temperature T to have a band gap of

Eg = k.T. We also assume that the scattering mechanism(s) for the electrons and the holes are

the same, so that the comparison can be focused on the band asymmetry. The pseudo -ZTs are

calculated as a function of band asymmetry

ratio ,6, as shown in Figure (2.5) [27, 28].
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Figure 2.5: Illustration of how an increase of band asymmetry ratio 8 between the conduction

band and the valence band can increase the two pseudo-ZTs, zt, and ZtL , in the same direction.

The black curve represents a case where the charged impurity scattering mechanism is dominant,

and the purple curve represents a case where the acoustic phonon scattering mechanism is

dominant. To make a fair comparison, it is assumed that both of these two systems have a three-

dimensional parabolic band valley. Unlike the change of scattering mechanism(s) or the change

of the system dimension, the increase of band asymmetry ratio 8 will increase both zt, and

ZtL together, regardless of the scattering mechanism(s) or the system dimension.

We see that unlike the case of the system dimension in Figure (2.3) or the scattering

mechanism(s) in Figure (2.4), the band asymmetry ratio 8 in Figure (2.5) changes both the zt,

and ZtL in the same direction. The three-dimensional systems that have parabolic bands and

charged impurity scattering (black curve), or acoustic phonon scattering (red curve) are shown

here. The cases of other scattering mechanism(s) and system dimensions have also been

calculated, which have shown the same tendency. This tells us that although, changing the
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scattering or dimension may even sometimes result in reduced ZT, choosing large band

asymmetry materials may always enhance the maximum values of ZT.

This is consistent not only with the good thermoelectric performance of narrow-band-gap

semiconductors, Dirac cone and topological insulator related materials, where the electron

carriers are effectively much lighter than the heavy hole carriers, but also with the

nanocomposite approach, where the induced network of nanoscale grain boundaries forms a

screening system for the holes, and effectively making the band asymmetry ratio 8 larger.

2.7 How Band Gap Affects ZT

As mentioned above, the traditional well behaved thermoelectric materials are mainly narrow-

band-gap semiconductors or semimetals. This naturally raises a question for us: how about wide-

band-gap materials? The traditional viewpoint has been that wide-band-gap materials have small

carrier concentrations, and therefore have poor thermoelectric performance. However, from

Figure (2.2) we can see that, good thermoelectric performance does not necessarily depend on

large carrier concentrations. Actually, a large carrier concentration may only imply a large

electrical conductivity ( U) in Equation (1.4), but as we explained in the previous sections, the

large electrical conductivity (a) is always accompanied by a reduced Seebeck coefficient (S)

and an increased thermal conductivity ( ic ) as shown in Figure (2.1), which reduces the

thermoelectric ZT as a whole.

In order to have a birds-eye picture of how the band gap affects the whole thermoelectric

ZT, I calculated the pseudo-ZTs versus band gap relation as shown in Figure (2.6).
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Figure 2.6: Illustration of how an increase in the band gap between the conduction band and the

valence band can increase the two pseudo-ZTs, zt, and ZtL, in the same direction. The black

curve represents a case where the charged impurity scattering mechanism is dominant, and the

purple curve represents a case where the acoustic phonon scattering mechanism is dominant. To

make a fair comparison, it is assumed that both of these two systems have a three-dimensional

parabolic band valley. Unlike the change of the scattering mechanism(s) or the change of system

dimensions, an increase of the band gap will increase both zt, and ztL together, regardless of

the scattering mechanism(s) or the system dimensions, as mentioned in the text.

The three-dimensional systems of parabolic bands with charged impurity scattering (black

curve), and with acoustic phonon scattering (red curve) are shown in Figure 2.6. The cases of

other scattering mechanism(s) and system dimensions have also been calculated, and they also

have shown the same tendency. We see that the band gap will increase both zt, and ZtL I

although the tendency of increase is stronger in zt, than in ZtL. Different from the traditional
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view, we see that a wide band gap is not necessarily harmful for enhancing the thermoelectric

ZT.

The real problem for utilizing wide band gap materials for thermoelectric applications is

how to control the Fermi level by doping. I suggest for future research directions to use

nanostructures and amorphous structures for increasing the thermal stability of dopings. Further,

the typical large lattice thermal conductivity of wide-band-gap semiconductors is also a large

concern. This concern can also be reduced by the nanostructure approach e.g. nanocomposites

structures, polycrystalline structures and amorphous structures, which can largely reduce the

mean free path of phonons.

2.8 Demonstration in Specific Materials

In the previous sections, I have provided the general mathematical descriptions to show how the

framework of pseudo-ZTs can be used to see the new physics of ZT enhancement. In this section,

we illustrate this method of pseudo-ZT in some specific systems.

2.8.1 Demonstration in Metal Dichalcogenide Monolayer Materials Systems

We first demonstrate the pseudo-ZT framework in metal dichalcogenide monolayer systems.

This class of materials system is currently attracting intensive research attention. Because of the

single-layer structure, the Fermi level of a metal dichalcogenide monolayer can be changed not

only by doping, but also by adatoms absorption [29] and gating voltage [30], which gives us

more opportunities to study the largest possible ZT. This class of materials system might not be

the best thermoelectric materials, but as long as our purpose here is to demonstrate the idea that

using the framework of pseudo-ZTs, the trend of ZT changes can be seen more clearly than using

the traditional transport properties, the metal dichalcogenide monolayer materials system is a

good example [29-41].
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Figure 2.7: The demonstration of how changing the scattering orderj will change zte and ZtL in
different directions. This demonstration is calculated based on the properties of MoTe2
monolayers at a temperature of 1000 IC [29-41]. The blue curves stand for the pseudo-ZTs when

the scattering order (j) in the relaxation time function r = r (E/kBT)j is 0. The red curves

stand for the case where the scattering order (j) is 1.5. We see that at different values of Fermi
level, whenj increases, the Zte value decreases, and the ZtL value increases. This is consistent with
the predictions we have in the general physical model discussed in Section 2.5.
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Figure 2.8: The demonstration of how the band gap increases both of the pseudo-ZTs. The

dashed lines are the calculated pseudo-ZTs for the metal dichalcogenide monolayer materials

with different values of band gap: zte (violet) and ztL (light blue) [29-41]. We see that unlike the

changing of scattering order shown in Figure 2.7, choosing larger band gap within the same

class of materials is increasing both zte and ztL. This leads to the increase of the overall ZT, which

is calculated and marked by the dots with different colors. This trend would not be clearly seen if

we calculate the traditional transport properties of the electrical conductivity, the Seebeck

coefficient and the thermal conductivity.

We see from Figure 2.7 that the change of scattering orderj will change the two pseudo-

ZTs in different directions, which is consistent with the mathematical discussion in Section 2.5.

We also see from Figure 2.8 how pseudo-ZTs and ZT
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changes when we choose the metal dichalcogenides monolayer materials with different values

of band gap. Both zt' and ztL increase when the mononlayer material with larger value of band

gap is chosen, and therefore, larger values of ZT can be achieved. This is consistent with the

mathematical prediction we discussed in Section 2.7.

2.8.2 Demonstration in Traditional Semiconducting Alloy Materials Systems

Here we also demonstrate the use of the pseudo-ZT framework in traditional semiconducting

alloys, including (Bi1 ySby)2(S -xTex) 3 film materials [42, 43], and InixGaxN bulk materials [44-

47]. Both of these materials systems are traditional studied, so the various parameters can be

extracted from the literatures, which is very helpful for our demonstration purpose.
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Figure 2.9: The ZT values of (Bii-ySby)2(S1.xTex) 3 film materials [42, 43]. The stoichiometry and

film thickness are changed to tune the band gap of the alloy materials. The max values of ZT

near the band edge increases with band gap, as predicted by the model we discussed in Section

2.7.
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Chapter 3

New Scattering Inference and Seebeck

Coefficient Enhancement

In a materials system, the transport of energy, entropy and electricity are made through the

carriers, i.e. electrons and holes. The carriers are scattered by various scattering centers during

the transport process, as shown in Figure 3.1. The different carrier scattering mechanisms

ultimately determine the transport and thermoelectric performance. Therefore, it is very

important to have an inference tool to examine the specific scattering mechanism(s) within a

specific semiconducting system that we are interested in.

This Chapter is reprinted/adapted from the published work: a S. Tang and M. Dresselhaus,
"Anisotropic transport for parabolic, non-parabolic, and linear bands of different dimensions",
Applied Physics Letters, 105, 033907 (2014). . S. Tang and M. Dresselhaus, "New Method to
Detect the Transport Scattering Mechanisms of Graphene Carriers", arXiv, 1410.4907, (2014).
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decrease the system dimension, e.g. by introducing more charged impurity scattering centers and

utilizing nanostructures. However, if the value of Kc"lk / T is large, and the total ZT is

dominated by ztL, then we should try to decrease the scattering order and increase the system

dimension, e.g. by reducing the concentration of foreign impurities and keeping the materials in

the bulk form. If KL"1 / T is moderate, we should anticipate that the strategies of changing

materials system dimension or scattering mechanism(s) will not significantly help in enhancing

the total ZT.

The influence of band asymmetry on the total ZT is also clearly shown under this new

framework of pseudo-ZTs. We have seen that increasing the band asymmetry will increase both

zte and ztL. This explains why the traditional well-behaved thermoelectric materials are mostly

related to narrow-band-gap semiconductors, and Dirac cone or topological insulator related

materials. This is because such materials typically have light electrons and heavy holes which

results in a large band asymmetry ratio.

Further, the influence of the magnitude of the band gap to the total ZT is here investigated

from a birds-eye picture. In contrast to the traditional low expectation on wide-band-gap

materials, we found that a wide-band-gap is not necessarily harmful to enhancing ZT. In such

cases, increasing the band gap will increase both zte and ztL , though the increase in ztL will be

smaller than the increase in zte, and few detailed studies of this case have yet been carried out.

In this way, new research opportunities have been identified and are likely to have some impact

on how thermoelectric materials are optimized in the future.

The use of the framework of pseudo-ZTto see the new physics of enhancing ZT is

demonstrated in some specific materials systems, including the various metal dichalcogenide

monolayer materials, the (Bi1 ySby) 2 (S i-xTex) 3 film alloy materials and the InixGaxN bulk alloy

materials.
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than the correlations between the electrical conductivity, the thermal conductivity and the

Seebeck coefficient, but the correlations is not totally avoid. For example, the geometrically

normalized lattice thermal conductivity C, as we defined in Equation (2.30), will be positively

correlated with the band-gap. This is due to the fact that wide gap materials usually have large

inter-atomic distances, which leads to small spring constants under the first order approximation.

The small inter-atomic spring constants will then lead to small values of sound velocity, and

result in large values of lattice thermal conductivities that will jeopardize the overall ZT.

2.10 Chapter Summary

In this chapter, I reformulated the expression for ZT into Equation (2.27), so that we only need to

deal with two pseudo-ZTs, zte and ZtL, which are much less correlated with one another. This

was done in order to avoid tackling with the multiplication relation between the electrical

conductivity (a), the thermal conductivity ( K ) and the Seebeck coefficient (S ) in the

expression of thermoelectric ZT defmed in Equation (1.4). The defmition of ZT in Equation (1.4)

is a natural way to understand what ZT is, but not an easy way to understand how to enhance ZT.

In contrary, the reformulation of ZT in Equation (2.27) is not a natural way to understand what

ZT really means, but is a much easier way to understand how to enhance ZT, where Zte only

measures the electronic influence, and ztL only scales the lattice influence.

Under this new framework of pseudo-ZTs, we are able to answer the puzzle of why the

strategies of changing carrier scattering mechanism(s) and making materials into a nano-form do

not always work. It is because the changing of carrier scattering mechanism(s) and materials

system dimension will change the two pseudo-ZTs, Zte and Zt,, in opposite directions.

Therefore, I developed a divide-and-conquer strategy. Before we start trying any approaches

regarding the change of scattering or dimension, we need to first look at the geometrically

normalized lattice thermal conductivity C defined in Equation (2.3), i.e. look at the bulk crystal

Bulk , of u
lattice conductivity KCL and the working temperature T. If the value of L"k/ T is small, the

total ZT is dominated by Zt,. In this case, we should try to increase the scattering order and to
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Figure 2.10: The ZTvalues of Ini-xGaxN bulk materials [44-47]. When the gallium composition

is changed from 0-0.1 to tune the band gap of the alloy materials, ZT increases with band gap, as

predicted by the model we discussed in Section 2.7.

From Figures 2.9 (a) and (b), we see that when we increase the band gap of the (Bi1 ySby)

2 (S1 -xTex)3 film materials, the electrical conductivity and electronic thermal conductivity

decreases, while the Seebeck coefficient increases, which is just the "balancing game" again.

This "balancing game" makes it difficult to see how the increase of band gap will benefit ZT.

However, if we look at Figure 2.9 (c), we will see that both of the pseudo-ZTs increases with the

band gap, which implies that the overall ZT will increase when we increase the band gap. Such a

trend of increasing ZT is shown in Figure 2.9 (d). Therefore, Figure 2.9 has demonstrated that the

framework of pseudo-ZTs can provide us with a more convenient way to discuss how to enhance

ZT. The similar results are shown in Figure 2.10 as well for the InixGaxN bulk materials, where

we see that the overall ZT increases with the band gap when the gallium composition is changed

slightly to tune the band gap.

2.9 Discussions

We have developed the framework of pseudo-ZTs for the purpose of selecting and improving

thermoelectric materials candidates more efficiently. Suppose we have a pool of materials

candidates for potential thermoelectric applications. Before this new framework, if we want to

know which materials candidates are the most promising ones for thermoelectric applications,

we have to calculate the electrical conductivities, the thermal conductivities and the Seebeck

coefficients for all these materials candidates, to obtain their ZT values. However, using this new

tool, we can just focus on the ones with high band asymmetry ratio and large band-gap-to-

temperature ratio, based on the results in Section 2.6-2.8. Then we can use the divide-and-

conquer strategy we developed in Section 2.5 to select out the most promising ones. Then we can

focus on only study these most promising materials candidates. This will save us a lot of time on

calculations and experiments. However, there are still some limits of this pseudo-ZT framework,

too. As we discussed in Section 2.4, the correlation between the two pseudo -ZTs is much less
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Scatterings in Transport Processes

Scattering Carrier
Center

Carriers of Charges: Electrical Conductivity (a)
Carriers of Heat: Thermal Conductivity (K)
Carriers of Entropy: Seebeck Coefficient (S)

Figure 3.1: The Scheme of how the carriers of charge, heat and entropy are scattered by various

scattering centers in a materials system. The scattering process is usually energy sensitive. The

carriers with higher energy tends to be less scattered. The less scattering the carriers encounter,

the more transport will occur. As the carriers carry electrical charge, heat and entropy, which

leads to the macroscopic transport phenomena of electrical conductivity, thermal conductivity,

and the Seebeck coefficient, respectively.

3.1 Introduction to Scattering Mechanism(s)

There are many different scattering mechanism(s) in different materials systems under different

temperature conditions. Generally, a specific scattering mechanism at a certain temperature can

be described by the carrier energy dependent scattering relaxation function [17, 25, 48],

T = TO , (3.1)
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where T is the relaxation time that is deduced by inversing the ensemble scattering rate (r).

Here rc is the scattering time coefficient, and its inverse ( T- denotes the scattering strength,

which varies with materials system and temperature. E is the energy of carriers, where we have

calibrated the energy at each band edge to be 0. j is the scattering order, which determines how

sensitive the scattering time is to energy. In most cases, the carriers with higher energy E get

scattered less, and thus, are transported more. The scattering order j is determined by the

specific scattering mechanism(s), as discussed below.

3.1.1 Acoustic Phonon Scattering

When acoustic phonons are propagating in the lattice, the vibrations will cause the atoms to

deviate from their original balancing points, which then lead to local lattice potential

deformation. A lattice potential deformation is a deviation from the perfect periodicity for the

electrons, and will effectively scatter the Bloch electrons, which is called the acoustic phonon

scattering. We know that transverse phonons do not induce volume changes, so only longitudinal

branches of acoustic phonons will scatter electrons. Under the small perturbation assumption, it

is expected that the volume due to longitudinal acoustic change is proportional to the divergence

of the displacement of these phonons, i.e. [48]

AVAc =DAcV -i, (3.2)

where A Vc is the volume change caused by the acoustic phonon, "i is the displacement of the

phonon, and D AC is called the acoustic deformation potential. The scattering rate function under

a specific acoustic deformation potential DAC can be written as,

1 CDckT
= CE) C D (E), (3.3)

-r(E) pv'h
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where p is the mass density of the lattice, vs is the sound velocity, and D(E) is the density of

electronic states as a function of the carrier energy E.

3.1.2 Non-Polar Optical Phonon Scattering

Besides the acoustic phonons, where each unit cell moves as a whole, optical phonons can also

scatter electrons, where each single atom in a unit cell can move at a given time in a different

phase. Therefore, under the perturbation theory, the volume change should be directly

proportional to the displacement of the phonon, rather than to the divergence of the displacement

of the phonon, i.e. [49]

AVo, = DoV -i, (3.4)

where A Vo, is the volume change caused by the optical phonon, 1i is the displacement of the

phonon, and DO, is called the optical deformation potential. Under high temperature conditions,

the scattering rate function for non-polar optical phonon scattering can be given by,

1 2 E0 D(E), (3.5)
r(E) pa hw,

where a is the lattice constant and wp is the optical phonon frequency under the Einstein

model.

3.1.3 Polar Optical Phonon Scattering

If the bonds between atoms within a unit cell are ionic, the longitudinal optical phonons will be

polarized. The carrier scattering induced by this type of phonon is called the polar optical phonon

scattering, which is the dominant scattering mechanism at high temperature in some ionic
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semiconductors, like GaAs and InSb. The scattering rate function for polar optical phonon

scattering is given by [49],

1 2kBTe2

- 2 (E - ~o (3.6)
T(E) Iv

where e. is the dielectric constant at frequency C), and v is the carrier velocity.

3.1.4 Charged Impurity Scattering

If the carriers are scattered by the charged impurities, the carrier scattering time function can be

given by [50],

1 (
-(E 8hk4 1.

4 rZe2

E

2

NDD(E), (3.7)

where k is the lattice momentum, Z is the number of charge units per impurity center, C is the

static permeability and ND is the concentration of charged impurities.

3.1.5 Piezoelectric Scattering

For piezoelectric scattering, the scattering rate function is given by [51],

1

T(E)

-ThkBT

=2-
Opm

(3.8)
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where v, is a directionally averaged sound velocity, e14 is the piezoelectric constant, e is the

elementary charge, and co is the vacuum dielectric constant [51].

3.2 Previous Scattering Inference Methods

One scattering mechanism(s) inference method popularly used is the electrical conductivity

fitting method. The electrical conductivity (ur) and carrier concentration (N) are measured, and

thereafter the average scattering time is estimated through [25]

*

_ muo
Ne= 2 ,(3.9)

where m* is the effective mass of the major carrier. This method is widely used because it is

easy to understand and simple to carry out. However, this method only gives us an estimate of

the average value of scattering time T , but no information about the carrier energy dependence

of the scattering time is given. Further, this method assumes that there is only one kind of carrier

with an effective mass m* that is contributing to the transport, which is not a typical case for

most thermoelectric materials systems.

Another popularly used scattering time measurement is photon-carrier scattering

measurement, for which we would shine laser beam onto a materials sample and we would

measure the scattering time of carriers scattered by photons [52]. This method is a direct

measurement of the scattering time, but it only measures the photon-carrier scattering time. Since

the scattering rate function and its energy dependence can differ from mechanism to mechanism

significantly. This method can therefore barely be used as a scattering mechanism inference tool.
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3.3 Relating the Seebeck Coefficient to

Scattering

I have found that the scattering order j in Equation (3.1) forms a one-to-one correspondence

with the maximum value of the Seebeck coefficient for a specific electronic band structure. For

example, without loss of generality, let us now consider a three-dimensional system where the

effective mass of holes is, for example, 5 times larger than the effective mass of electrons. Let us

further assume that the band gap is E = 10kBT. The maximum values of the Seebeck

coefficient for both N-type and P-type doping with different scattering mechanisms (different

scattering orders) are shown in Figure 3.2 [53].
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Figure 3.2: How the maximum values of the Seebeck coefficient, for both P-type and N-type

materials, change in an almost linear manner with the scattering order j. Without loss of

generality, here we illustrate a three-dimensional two-band system where the effective mass of

holes is 5 times larger than the effective mass of electrons. The band gap is assumed to be
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Eg = 10kB T. Other materials systems have the similar relation between the maximum Seebeck

coefficient and scattering order j.

It is clearly seen that though the Seebeck coefficient is determined by many factors, the

maximum value of Seebeck coefficient is only a function ofthe scattering order j, which is

almost a linear relation, when the band structure is given.

To prove this mathematically, we can examine this using the Boltzmann Equation. From Eq.

(2.12) and (2.16) we know that the Seebeck coefficient for a single band valley is,

1( E )25+jC dE

S(Ef 1 0 kBT aE Ef

eT ) f (kE )1.5+j (- f dE
0 kBT aE E

-Ef (3.10)

In order to obtain the relation between the Seebeck coefficient S and the scattering order j, we

first make a hypothesis that j for a specific band valley can be tuned artificially through certain

ways, so we can take the derivative as,

JS (Ef 1

eT

E

(j+1)-j
C0

f) dEJE
OE Ef 0

C-0

j-.5

E)Ef

aEa ) Ef

dE

dE) 2

(3.11)

It is not difficult to see that at the maximum value of the Seebeck coefficient
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3S(Ef)

9E,

and

fE j+25

0

af
BE) Ef

(f
0

dEJ E j
0

af 
EaE)

dE

- 1,

dE) 2

so

SSmax (E,) 1

g j eT

Thus, we can see that the maximum Seebeck coefficient have a linear relation of j,

Smax eT+ Sa-j=O (3.15)
eT m

Therefore, we have proved both physically and mathematically that the maximum values of

Seebeck coefficient and the scattering order has a linear relation, and form a one-to-one

correspondence.

3.4 New Scattering Inference Method
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To infer a scattering mechanism based on Equation (3.1), there are two parameters that we need

to know: the scattering strength 1 / Tr and the scattering order j. Since we discovered in Section

3.3 that the scattering order can be inferred from the maximum values of Seebeck coefficient,

and we also know that the scattering strength can be interpreted from the electrical conductivity

measurement, these will provide us with a new scattering mechanism inference method.

First, we measure the maximum values of the Seebeck coefficient along with the electrical

conductivity. Second, we use the measured data to extract the scattering strength 1 / r and

scattering order j, which we can then recover the scattering time function as in Equation (3.1).

Finally, since the scattering time function is determined by the specific scattering mechanism(s)

as discussed in Section 3.1, the scattering mechanism(s) can be revealed. The whole procedure

is shown in Figure 3.3 [53].

Scattering Mechanism(s)

A

Figure 3.3: Scheme of the newly proposed method of scattering mechanism(s) inference.
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3.5 Application in Graphene

In reality, the band structures of typical thermoelectric materials are very complicated, so it is

reasonable to first test this new methodology on a materials system with a simple band structure,

which is also easy in carrying out the electrical conductivity and the Seebeck coefficient

measurements.

One suitable materials system for such an example is graphene. Graphene is a single layer of

carbon atoms as shown in Figure 3.4. Therefore, the electronic band structure of graphene is also

two-dimensional. Near the Fermi level, the bottom of the conduction band and the top of the

valence band touch each other at the K point and the K' points in the first Brillouin zone. The

energy band form two isotropic linearly dispersed bands, i.e. Dirac cones, as shown in Figure

3.4[54, 55].

(a)

Figure 3.4: Scheme of the atomic structure

graphene, a single layer of carbon atoms.

(b)

>-

/

Lattice Momentum (k)

(left) and the electronic band structure (right) of

The values of the maximum Seebeck coefficient at different temperatures for graphene have

been measured by Zuev et al. [56] through a gated thermoelectric device by changing the Fermi

level, and these results are summarized in Table 3.1.
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Table 3.1: Measured Maximum Seebeck Coefficient for the Dirac Cone Carriers in Graphene

[56]

Temperature (K) 300 150 80 40

Experimental Maximum P- 92.52 57.94 33.64 14.95

type Seebeck coefficient

(pV/K)

Experimental Maximum -59.81 -39.25 -24.30 -10.28

N-type Seebeck coefficient

(gV/K)

Based on the data in Table 3.1, we are able to extract the scattering order j and the scattering

~Electron /IPl
time asymmetry ratio between the electrons and the holes ron Hole at different

temperatures, as shown in Figure 3.5 [53].
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Figure 3.5: The results of the scattering orderj for graphene carriers, and the scattering time
raio lectron / Hole

asymmetry ratio 0 /eero as a function of temperature. The experimental measurement has

been carried out by Zuev et al. [56] on a graphene sample sitting on a silicon dioxide substrate. It

can be seen that as the temperature increases from the cryogenic range to the room temperature

range, the scattering order (red curve) increases from - -1 to -0, and the scattering time

asymmetry ratio (red curve) increases from 1 to ~2.

We see that the scattering order j changes significantly with temperature, which implies that the

carrier scattering mechanism is very temperature sensitive. At the low temperature end,

j -> -1, which implies that r1 oc D(E). This means that in the cryogenic temperature range

the scattering due to acoustic phonons and the scattering due to the roughness of the surface are

the dominant scattering mechanisms for the carriers. When temperature increases, j -> 0,

which implies that the ripple scattering of the surface and the charged center scattering become

as important as the acoustic phonon scattering at room temperature. Another important trend we

see from Figure 3.5 is that the asymmetry ratio of scattering strength r n " increases

with temperature, and the conduction band and the valence band are close to symmetric at a

cryogenic temperature as low as 40 K. These results are summarized in Table 3.2.

Table 3.2: Graphene Carrier Scattering Properties at Low and Room Temperature
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To further verify this model, I calculated the electrical conductivity and compared it with

experimental measured values, as shown in Figure 3.6 [53, 56].

1.5 15

Room Temperature
- Cal. a in this thesis
O Exp. a by Zuev. et al - 10

L
I-Cal. K in this thesis

0.5-O 5

0
-40 -30 -20 -10 0 10 20 30 48

Gate Voltage (V)

Figure 3.6: The calculated electrical conductivity (blue solid line) for graphene associated with

two isotropic Dirac cones at 300 K is compared with the experimental measured values (red

circles), which exhibit very good consistency. The associated electronic thermal conductivity is

also calculated (green dashed line), and is consistent with the empirical estimation [57].
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The calculated electrical conductivity (blue solid line) based on this model and the

experimentally measured electrical conductivity (red circles) are compared for the room

temperature experimental conditions. The consistency of the calculated data and measured data

has been shown in Figure 3.6. Further, the electronic contribution to the thermal conductivity of

graphene (green dashed line) is also calculated.

3.6 Seebeck Coefficient Enhancement

From the results in Section 3.3 and 3.4, we can see that though the Seebeck coefficient is related

to the scattering strength, carrier concentration, and other conditions at a certain temperature, the

possible maximum values of the Seebeck coefficient for both N-type and P-type materials are

mainly decided by the scattering order, and hence the scattering mechanism(s), for a given

electronic band structure. This has adjusted our thoughts on how to enhance the power density of

a thermoelectric materials system by maximizing the Seebeck coefficient, i.e. by changing into

higher order scattering mechanism(s). For example, we expect to see an enhanced maximum

Seebeck coefficient by introducing more charged scattering centers to an acoustic phonon

scattering dominated system, or by reducing neutral impurity scattering centers to avoid such low

order scattering mechanism.

3.7 Demonstration in Other Materials

Systems

Besides the graphene system, the metal dichalcogenide monolayer materials system is another

class of materials that are interesting to researchers currently. The similar experiments carried

out on the graphene system can be carried in the metal dichalcogenide monolayer materials

systems as well, including the gate voltage [29], the surface functionalization [30], and the

adatoms absorption[31-41].
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From Figure 3.7 we see that the maximum values Seebeck coefficient still changes with

the scattering orderj in the various metal dichalcoginide monolayer materials systems [29-41].

This is consistent with the mathematical predictions we made for a general electronic band in

Equations (3.11)-(3.14). This one-to-one correspondence relation between the maximum

Seebeck coefficient and the scattering order can be used as a diagnostic tool for carrier scattering

mechanism(s).
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Scattering Order /

Figure 3.7: How the maximum values of the Seebeck coefficient changes in an almost linear

manner with the scattering order j in the various metal dichalcoginide monolayer materials

systems [29-41].
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3.8 Chapter Summary

In this chapter, it is found that when the electronic band structure is given, the maximum

Seebeck coefficient for a materials system, both P-type and N-type, forms a one-to-one

correspondence with the scattering order, described by Equation (3.1). This result has provided

us with a scattering mechanism inference tool, as well as a Seebeck coefficient enhancement

strategy. This new method is tested and verified in graphene, which is a system with a simple

linearly dispersed band structure. The mathematically predicted results in Section 3.3-3.5 are

also demonstrated in the metal dichalcoginide monolayer materials systems as well. Therefore, it

is significantly promising that this method will also work for more complicated thermoelectric

materials systems.
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Chapter 4

New Model for Nano-Narrow-Gap

Materials

Narrow-gap materials refer to semiconducting materials with a band gap Eg that is comparable

to the range of its operation temperature T, i.e. E, ~ kBT. Most of the traditional good-

performance thermoelectric materials fall into this materials class, e.g. bismuth antimony alloys

( Bi1 _,Sb,), lead telluride (PbTe), bismuth telluride ( Bi2 Te3 ), bismuth selenide (Bi 2S e3 ), and

lead selenide (PbSe) [17].

4.1 Introduction to Nano-Narrow-Gap

Materials

Besides the application in thermoelectric power generation and refrigeration, especially for low

temperature cooling, narrow-gap materials are also widely used for infrared photonic devices,

This Chapter is reprinted/adapted from the published work: a. S. Tang and M. Dresselhaus,
"Phase diagrams of BiSb thin films with different growth orientations", Physical Review B, 86,
075436 (2012). b- S. Tang and M. Dresselhaus, "Electronic phases, band gaps, and band overlaps
of bismuth antimony nanowires", Physical Review B, 89, 045424 (2014).
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terahertz electronics and photon absorbers [58-60]. By introducing nanoscience and

nanotechnology, we have more parameters available for controlling the electronic and photonic

properties in nanostructured narrow-gap materials, including thin films, nanowires, nanoedges,

and nano-composites.

The modeling of the electronic band structure for nano-narrow gap materials has been always

a challenge. On the one hand, in a narrow gap system, the conduction band and the valence band

are strongly coupled to each other; on the other hand, in a nanoscale confined system, the band

gap will be changed due to the quantum confinement effect, which is determined by the band gap

and the band shape near the band-edges. Thus, in such a nanoscale narrow-gap system, the band

gap, the dispersion, the carrier effective mass and the quantum confinement effect are

intertwined. Though the effective mass theorem and the k -p theory can give a simple

estimation of the band structure, the accuracy of the effective mass and band gap determination

is usually not sufficiently accurate. For accurate results, first principles calculations can be

carried out, which, however, require very large memory and computational power when it comes

to nanoscale alloy systems that need to contain hundreds or thousands of atoms within each unit

cell. Thus, a new approach that is more accurate than the effective mass theorem and more

efficient than the first principle calculations needs to be developed.

4.2 New Method to Model the Band Structure

In this thesis, I mainly studied the nanomaterials of bismuth antimony ( Bi,_,Sbx) alloys, which

is a very important materials system for low temperature thermoelectric applications. We will

illustrate here a new method to model the band structure of nano-narrow-gap materials in

nanostructured Bil _Sb( alloys.
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We recall that Bi _,Sbx alloys have a rhombohedral lattice structure with two atoms in each

unit cell, where the trigonal axis with C3 symmetry, the binary axis with C2 symmetry, and the

bi-sectrix axis with C, symmetry that is perpendicular to the trigonal-binary plane, form a

natural Cartesian coordinate system. The bisectrix axis and the trigonal axis form a mirror plane

that bisects the whole rhombohedral lattice, as shown in Figure 4.1 (a) [58-61].

(a) Trigonal

Binary Bisectrix

(b) Trigonal

((3_

4P Bisectrix
Binary

Figure 4.1: Structure of Bij_ Sb . (a) shows the rhombohedral lattice structure of bulk bismuth,

bulk antimony and their alloys Bi _ SbX. There are two atoms in each unit cell. The C

symmetry trigonal axis, the C2 symmetry binary axis and the C, symmetry bisectrix axis form a

Cartesian coordinate system in three-dimensional space. The trigonal-bisectrix plane forms a
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mirror symmetry plane. (b) shows different carrier-pockets in the first Brillouin zone of bulk

Bi11_SbX .

In the first Brillouin zone of bulk Bi 1 xSb , there are one T point, three degenerate L points

(labeled as L), i=1,2,3) and six degenerate H points (labeled as H( , i'=1,2...6), as shown in

Figure 4.1(b). The bottom of the conduction band is located at the three L points. The top of the

valence band can be located at the T point, the three L points or the six H points, depending
on the antimony composition x. Figure 4.2 shows how the band-edges for different carrier-

pockets change with antimony composition x in bulk BijxSbx alloys, which leads to different

phases: a semi-metal phase, an indirect-semiconductor phase and a direct-semiconductor phase.
In the cryogenic temperature range below 77 K, the electronic band structure does not change
notably with temperature.

0 SM DSC ISC SM
20AO
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S-60-
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Antimony Composition x
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4

) +H H 2), H (5) l, j

Figure 4.2: Band-edge energies at different carrier-pockets vs. antimony composition x for bulk

Bi - Sb . The semi-metal (SM) phase regions, the indirect-semiconductor (ISC) phase regions
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and the direct semiconductor (DSC) phase region are labeled. The symbols for the various bands

are indicated by the colors and symbols in the bar below the plot [58-62].

In a nanosystem, e.g. a thin film system, there is an electron carrier-pocket as well as a hole

carrier-pocket at each of the LN') points. The LW -point conduction band-edge and valence band-

edge energies are close to one another, and therefore these bands are strongly coupled to each

other, so that the dispersion relations are non-parabolic or perhaps even linear if Dirac cones are

formed. The normal-to-the-film components of the inverse-effective-mass tensor a LFim] and the

L -point band gap E[L depend on the film thickness, and a L and EL a
-on [ffilm] ' 4Film,,] g[Film]ar

mutually coupled terms, which are both unknown. To calculate the LW -point band-edge shift,

we start from the traditional k -p model [63, 64]

p -L-p=E(k) 1+ E (4.1)
EL

where a L is the L -point inverse-effective-mass-tensor. Generally, the relation between aL and

E L around an L point is described as [65, 66]
g

L 2 V2 klI 122
aL 2 2E(k)= I i p 2, (4.2)

under the k -p regime, where I is the identity matrix and mi is the free electron mass. Further,

under first order perturbation, the relation between the inverse-effective mass tensor and the band

gap, has been shown to be [65-68]

E[Bulk (Bi) r ( (
CE [Film ] ( BilSblx - EL g[ (Bi - [Bulk] (Bi)--I + , (4.3)

g[Film] BSb, ) ( ) mo
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both theoretically and experimentally in previous literature. Lastly, the band gap change due to
the quantum confinement is usually described by the square well model [25],

/2/2 L
AEL aitFilmI

1
(4.4)

We now iterate Equation (4.1)-(4.4) dynamically, and use the band gap and effective mass of

bulk bismuth as the initial conditions, to get the ultimate converged results for Bi _rSbx films,

The detailed flow chart for this dynamical-iteration model is shown in Figure 4.3 [69-71].

0

Band Adjustmnt

Figure 4.3: Scheme of the flow chart of how the band structure of nano- Bi,_,Sbx is calculated

through dynamically adjusting the band gap, band shape and quantum confinement. Here the

effective mass tensor M is the inverse of the aforementioned aL

4.3 Bii..xSbx Thin Films
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The electronic band structure properties of Bii xSbx thin films are studied under the newly

developed model. Due to the anisotropy of Bii -Sbx thin films, the growth orientation has a

remarkably strong influence on the symmetry properties of the various carrier pockets that will

be created in these thin films and the electronic band structure, which will in turn affect the band

structure. The symmetry properties of the carrier pockets and their influence on the band

structure are illustrated in Figure 4.4, for three typical growth orientations [69, 71].
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Figure 4.4: Schemes of the symmetry properties of the T-point (red), L-point (blue) and H-point

(green) carrier pocket projections onto the film plane for Bii-,Sb, thin films for the (a) trigonal,

(b) bisectrix and (c) binary growth orientations. How such symmetry properties affect the

relation of band-edge energy as a function of Sb composition is illustrated for 100 nm thick Bi1 -

xSbx thin films of (d) trigonal, (e) bisectrix and (f) binary growth orientations.

Figures 4.4 (a)-(c) show the carrier pockets of Bii-xSbx thin films obtained by projecting the T

point, the three L points and the six H points onto the film plane for different growth

orientations. These figures, as illustrated in Fig. 4.4 (d)-(f), also show the symmetry properties

of these projected carrier pockets, where the 100 nm thick films are chosen as examples.

The case of the thin films oriented along the trigonal axis is shown in Figures 4.4(a) and (d),

where the C3 symmetry of the three L-point carrier-pocket projections is retained, and where the

C6 symmetry and the inversion symmetry of the six H-point carrier-pocket projections are also

retained. Thus, the bottom (top) of the conduction (valence) band is degenerate in energy at LO),

L(2>, and L', and so is the top of the valence band at " 1), Y2), If(3), Y 4), f 5 ), and Y6).

The case of the thin films oriented along the bisectrix axis is shown in Figures 4.4 (b) and (e).

The L(2)-, the t-2)_, and the I]('- point projections all have mirror symmetry with respect to the

L(3 )-, the Y'-, and the Y6)- point projections, respectively. The inversion symmetry of the H

points is still retained in Figures 4.4 (b) and (e). Figure 4.4 (e) shows that the bottom (top) of the

conduction (valence) band at the L 2 _-point and the L(3)-point projections are degenerate in

energy, but are higher (lower) in energy than the L-point projection. The inversion symmetry

ensures that the HOi point is still degenerate in energy with respect to the Ji -3) points (i'= 1, 2,

or 3).

The case of the binary oriented thin film is shown in Figure 4.4 (c) and (f). The L 2 _-point

projection and the L 3)-point projection overlap, and are different from the L 1 -point projection.

The inversion symmetry of the H points is still retained. Meanwhile, the Y2)- (Y 4)-) point

carrier-pocket projections and the I')- ([ ) point carrier-pocket projections overlap with each
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other and are different from the I')- (96)-) point carrier-pocket projections. The inversion

symmetry ensures that the IT") point is degenerate in energy with the I"') point (i'= 1, 2, or 3).

The electronic phase diagram as a function of film thickness / and of antimony composition x

for the Bii-xSbx thin-film system grown normal to the trigonal, bisectrix and binary axes are

shown in Figure 4.5 (a), (b) and (c), respectively.
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Figure 4.5: Phase diagrams for the Bii--,Sb thin-film systems grown normal to (a) the trigonal

axis, (b) the bisectrix axis, and (c) the binary axis, as a function of antimony composition x and

film thickness 1. The band gap/overlap map shown in (d), (e), and (f), are corresponding to (a),

(b), and (c), respectively. A positive value stands for a band gap, a negative value stands for a

band overlap, and a zero value stands for a gapless state [69, 71].

Region I and Region 5 are the semimetal phases, Region 2 and Region 4 are the indirect-gap

semiconductor phases, and Region 3 is the direct-gap semiconductor phase. The top of the

valence band is located at the T point for Region 1 and for Region 2, at the H points for Region 4

and Region 5, and at the L points for Region 3. The overall band-gap (positive) or band overlap

(negative) as a function of film thickness and Sb composition is shown in Figure 4.5 (d)-(f).

These results for the maps of the electronic phases, and the band gap/overlap magnitudes have

provided the guidance for the synthesis of interesting Bii-xSbx thin films. The differences

between the model and the experiments are of urgent interest. Based on the progress of the

understanding of this class of materials, future research should be focused on how to engineer

Bii-xSbx thin films for specific functional applications. For cryogenic thermoelectrics, the

controllability of the mini-band-gap at the L point and of the quasi-Dirac cones can provide new

thoughts about how to increase the Seebeck coefficient, while maintaining the ultra-high

mobility of the Dirac carriers or quasi-Dirac carriers in the Bii-xSbx system, which could give a

remarkable increase to both the overall performance of thermoelectric generators and their super-

cooling in the cryogenic range. Furthermore, the thirteen carrier pockets can be arranged in much

more ways in thin films Bii-xSbx than in bulk Bil-xSbx, so that the carrier concentration can be

engineered with more flexibility.

4.4 BiixSbx Nanowires

The electronic band structure properties of Bii-xSbx nanowires are also studied under the newly

developed model [70, 71]. Figure 4.6 illustrates the electronic phase diagrams and band
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gap/overlap of Bi1 xSbx nanowires with d=100 nm, as a function of growth orientation and

stoichiometry. The illustrations are made for the growth orientation within the binary plane, the

trigonal plane and the bisectrix plane, in Figure 4.6 (a), (b) and (c), respectively. The semimetal

(SM) phase regions, indirect semiconductor (ISC) phase regions and the direct semiconductor

(DSC) phase regions are marked for each orientation. The Sb composition x is denoted by the

radius of the circles in Figure 4.6. With a 100 nm wire width, it can be seen that the electronic

phase starts from a semimetal, where the top of the valence band edge is located at the T point, at

x=0. As the Sb composition increases, phase changes occur. Explicitly, the electronic phase

changes from a semimetal to an indirect semiconductor with the top of the valence band edge

located at the T point, too. At around x=O.15, the top of the valence band edge become located at

an L point, and the electronic phase becomes a direct semiconductor. For yet higher Sb

concentration x, the top of the valence band edge is shifted to an H point, and the band gap of the

semiconductor phase becomes indirect again. When x is further increased, the electronic phase

finally is changed back to a semimetal, only with the top of the valence band edge located at an

H point.

This is seen more clearly in the maps of the band gap/overlap as a function of growth

orientation and Sb composition, in the corresponding subfigures below, i.e. in Figure 4.6 (d), (e)

and (f), for the binary plane, the trigonal plane and the bisectrix plane, respectively. A negative

value stands for a band overlap, while a positive value stands for a band gap. A zero value

denotes the gapless state. At Sb composition x=0, the band overlap exhibits a negative value

corresponding to the semimetal phase. As x is increased, the magnitude of the band overlap starts

to decrease, and then becomes zero, beyond which the band overlap disappears and the nanowire

exhibits a band gap with a positive value, and the band gap increases with increasing Sb

composition x. At around x=0.15, the band gap starts to decrease with increasing Sb composition

x, until the band gap reaches zero. At yet a higher Sb composition x, a band overlap with a

negative value appears again, indicating the onset of a semimetallic phase at the relatively Sb

rich side of the phase diagram.
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The anisotropic properties of bulk bismuth antimony phases are reflected in the symmetry

properties of the electronic phase diagrams and the band gap/overlap diagrams, when the growth

orientation lies in different crystallographic planes, or normal to different crystallographic

directions. The diagrams of Figure 4.6 (a), (b) and (c) have similar profiles, but are actually

different in their detailed shapes at each phase boundary, if they are examined more closely. The

binary crystalline plane has inversion symmetry but not mirror symmetry. The inversion

symmetry is reflected in Figure 4.6 (a) and (d). However, at this specific wire width (100 nm),

the contrast associated with the anisotropy is not strong, and the non-existence of mirror

symmetry is not obvious. We discuss below how quantum confinement helps to enhance the

contrast of the anisotropy in the electronic phase diagrams and the band gap/overlap diagrams,

and also how quantum confinement causes the mirror symmetry to disappear for the diagrams

associated with the binary crystalline plane. When all six H-point hole-pockets, all six L-point

half-hole-pockets and all six L-point half-electron-pockets are projected onto the trigoanl plane, a

six-fold symmetry is formed, which is a higher symmetry than the three-fold symmetry of the

trigonal axis in the bulk materials. This is reflected in the electronic phase diagram of Figure 4.6

(b), and in the band gap/overlap phase diagram of Figure 4.6 (e). In Figure 4.6 (b), the shape of

each phase boundary is actually a mixture of a circle and hexagon. To see this, it requires a very

careful reading of the diagram, and it might be not obvious. However, this circle and hexagon are

much more clear in the band gap/overlap diagram in Figure 4.6 (e), where the shapes of six-petal

flowers can best be seen at the edge of the inner yellow DSC (direct semiconductor phase)

region. The diagrams of the bisectrix crystalline plane have both mirror symmetry about the

binary axis, and mirror symmetry about the trigonal axis, which are accompanied by inversion

symmetry. These symmetry properties are seen in Figure 4.6 (c), and are more obviously seen in

Figure 4.6 (f).
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Figure 4.6: The electronic phase diagrams (a)-(c), and the band gap/overlap diagrams (d)-(f) of

Bii.xSbx nanowires of 100 nm wire width, as shown for various wire growth orientations and Sb

compositions x. The illustrations are made for the binary (a) and (d), trigonal (b) and (e), as well

as and bisectrix (c) and () crystalline planes. In each diagram, the direction stands for growth

orientation, and the length of radius for a point stands for the Sb composition x, which lines up

with the origin of each circularly shaped diagram, so that the binary direction in (a) for example

denotes the direction normal to the trigonal and bisectrix directions shown for the square sample

faces. At the origin, the value ofx is 0, and at the outmost point, the value of x is 0.30, as scaled

in the legend. The regions with the semimetal phase (SM), indirect semiconductor phase (ISC)

and direct semiconductor phase (DSC) are marked out in (a)-(c) and in the legend. In the legend

of the phase regions, the top of the valence band edge is located at the T point for the upper

regions of the semimetal (Region 1) and indirect semiconductor phases (Region 2), and is

located at the H points for the lower regions of the indirect semiconductor phase (Region 4) and

semimetal phase (Region 5). Both the top of the valence band edge and the bottom of the

conduction band edge are located at the L points for the direct semiconductor phase (Region 3).
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In the diagrams of the band gap/overlap, a positive value stands for a band gap, while a negative

value stands for a band overlap. A zero value stands for a gapless state [70, 71].

Now we illustrate the electronic phase diagrams and band gap/overlap diagrams of Bii-

xSbx nanowires with a much stronger quantum confinement effect, occurring in nanowires with a

small width, explicitly for a nanowire with a width of 10 nm. The small width nanowires show

more clearly how the quantum confinement effect influences the symmetry properties and the

electronic phases of the nanowires comparatively. The electronic phase diagrams and band

gap/overlap of Bi1~xSbx nanowires with d=10 nm, as a function of growth orientation and

stoichiometry, are illustrated in Figure 4.7. The changes in the electronic phase diagrams are

more obvious in Figure 4.7 than in Figure 4.6. First, the direct semiconductor phase regions have

disappeared in all of the three cases (a), (b) and (c). The semimetal phase region (dark blue),

where the top of the valence band edge is located at the T point, has significantly shrunk to a tiny

size in both Figure 4.7 (a) and (c), and has disappeared in Figure 4.7 (b). The semimetal phase

region where the top of the valence band edge is located at an H point (light blue) has shrunk as

well, in all the three cases, but still is present. The dominant phase regions become the indirect

semiconductor phases, which have both expanded remarkably in Figure 4.7 (a), (b) and (c). Such

information is very important for the design of electronic devices using Bit-xSbx nanowires. The

much stronger quantum confinement effect in 10 nm wide nanowires makes the contrast for the

anisotropy of all the diagrams much more obvious. The existence of inversion symmetry and the

absence of mirror symmetry is shown clearly in Figure 4.7 (a) and (d). In Fig. 3 (b), it is clearer

that the shapes of the boundaries of the electronic phase regions are mixtures of a circle and a

hexagon, and is more hexagonal than in Figure 4.6 (b). The outlines of six-petal flowers in

Figure 4.7 (e) are also much easier to observe than in Figure 4.7 (e). Furthermore, the mirror

symmetry about the binary axis, the mirror symmetry about the trigonal axis, and the associated

inversion symmetry of the orientation-stoichiometry phase diagram of the trigonal-binary

crystallographic plane normal to the bisectrix is further clarified in Figure 4.7 (c) and (f).
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Figure 4.7: The electronic phase diagrams (a)-(c), and the band gap/overlap diagrams (d)-(f) of

Bi1 -,Sbx nanowires of 10 nm wire width, as a function of wire growth orientation and Sb

composition x. All the notations and legends are the same as those defined in Figure 4.6.

The above discussions show that Bii.xSbx nanowires of larger wire width show a much

richer variation of electronic phases, but the contrast of anisotropy for different growth

orientation is less obvious, while for the Bii-xSbx nanowires of larger wire width, the richness of

the variation of electronic phases is reduced, but the contrast of the anisotropy for different

growth orientations is much enhanced. In order to show how the electronic and symmetry

properties change with wire width and growth orientation, I have calculated the band gap/overlap

diagrams as a function of wire width and growth orientation for both a small value of Sb

composition of (x=0.05) and medium value of Sb composition (x=0.13), as shown in Figure 4.8.
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The case of larger values of Sb compositions turn out to be similar with the case of small values,

only the location of the top of the valence band edges for the semimetal phases and for the

indirect semiconductor phases are at the H points for the median value of x--O. 13, instead of at

the T point which applies to (x=0.05). In order to make the values of band gap/overlap

comparable in one plot, we choose to use a logarithm scale, and in order to avoid the divergent

values of the band shift when the wire width gets close to 0, we choose to ignore the cases where

the wire width is smaller than 100.53 nm.

Trigonal
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(d) (e)

T rig o n a lB

(c)

(f)

Wire Width (nm) Overall Band Gap/Overlap (meV)
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Figure 4.8: The band gap/overlap diagrams of Bi1 xSbx nanowires of small Sb composition

(x=0.05) (a)-(c) and medium Sb composition (x=O.13) (d)-(f), as a function of wire growth

orientation and wire width. All the notations and legends are the same as those defined in Figure

4.6 (d)-(f), except that the length of the radius in Figure 4.8 stands for the wire width scaled

lograrithmically, which lines up with the origin of each circularly shaped diagram.
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Figure 4.9: The electronic phase diagrams of Bi-xSbx nanowires of small Sb composition

(x=0.05) (a)-(c) and medium Sb composition (x=O.13) (d)-(f), as a function of wire growth

orientation and wire width. All the notations and legends are the same with those defined in

Figure 4.6 (a)-(c), except for that the length of the radius in Figure 4.8 stands for the wire width

scaled lograrithmically.

For the small Sb composition (x=0.05) cases in Figure 4.8 (a), (b) and (c), we see that there

are mainly three regimes for each diagram: the inner semimetal regime when the wire width is

small, the semiconductor regime when wire width is medium, and the outer semimetal regime

when wire width is large. The outer semimetal regime is easy to understand, because the bulk

bismuth antimony material at this Sb composition is in the semimetal phase region, with the top

of the valence band edge located at the Tpoint, as shown in Fig. 4.2. The quantum confinement

effect has induced an increase of the direct band gap region around the L points, and leads to a

semiconductor phase at the medium wire width regime. That is also why the band overlap

increases and saturates at a certain value with increasing wire width.
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However, the mechanism governing the inner semimetal regime is different. In our model,

the components of the inverse-effective-mass tensor and the direct band gap at an L point are

negatively correlated. When the width of a nanowire is large, the non-trivial quantum

confinement effect of an L point is shifting a band edge appears more quickly as the width

decreases than does the trivial quantum confinement effect near an H or a T point. However,

when the width of a nanowire is very small, the direct band gap at an L point is large enough to

induce a significant reduction of the inter-band coupling, which changes the non-parabolic

dispersions at the L point into parabolic dispersions with larger mass components. For this

situation, the valence band edges at the T point and at the H points may, in contrast, have a larger

quantum confinement effect. For the medium Sb composition (x=O.13) cases in Figure 4.8 (d),

(e) and (f), except for a small area near the center, where the wire width is very small, each band

gap/overlap diagram has a positive value, and increases and saturates to a certain value with

increasing wire width. This is also because the bulk bismuth-antimony material with this Sb

composition is in the indirect semiconductor phase region, as shown in Figure 4.2 (c). The

corresponding phase diagrams as a function of wire width and growth orientation, for the small

and medium Sb composition cases (x=0.05 and x-O.13) are shown in Figure 4.9, which further

solidifies the analysis above.

4.5 Comparison between Theory and

Experiments

We here compare the theoretically predicted band gap values with the experimental results by

Morelli et al [72] with molecular beam epitaxy Bi1 xSbx thin films, as shown in Figure 4.10.
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Figure 4.10: The values of band gap of single crystal Bi -xSbx thin films (with 1000 nm

thickness) are compared between the experimental data by Morelli et.al [72] and the theoretical

predictions in this thesis.

It is seen that for Bii-xSbx thin films (1000 nm thickness) with different values of Sb

composition, the experimental results are consistent with the theoretical predictions with the

model developed in this chapter. As the band gap of single crystal Bii-xSbx thin films are barely

measured, more experimental data might be needed to further verify the model.

4.6 Chapter Summary

This chapter has discussed the challenge in modeling the band structure of nanostructured

narrow-band-gap materials. A dynamic iterative method is developed, which is more accurate

than the use of effective mass theorem and the k -p theory, and is also more time efficient than
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the first principle calculations. The applications of this newly developed method are here

illustrated in bismuth antimony thin films and nanowires.
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Chapter 5

Construction of Various Dirac Cone

Materials

Dirac cone materials have recently attracted considerable attention. In an electronic band

structure, if the dispersion relation E (k) can be described by a linear function as

E(k) = v -hk, where V is the velocity, and k is the lattice momentum, the point where

E ->0 is called a Dirac point. A Dirac cone is a two-dimensional (2D) Dirac point. Dirac

cone materials are interesting in electronic device design, quantum electrodynamics and desktop

relativistic particle experiments. A single-, bi- or tri-Dirac cone system has one, two or three

different Dirac cones degenerate in E(k) in the first Brillouin zone, e.g. graphene is a bi-Dirac-

cone system; the HgTe quantum well structure and the surface of topological insulator can be

single-Dirac-cone systems. In this present work, we have investigated the Bi _,Sbx thin film

system, and found that it could be a very promising candidate for synthesizing different kinds of

Dirac-cone materials.

5.1 Introduction to Dirac Cone Materials

This Chapter is reprinted/adapted from the published work: a. S. Tang and M. Dresselhaus,
"Constructing Anisotropic Single-Dirac-Cones in BiSb Thin Films", Nano Letters, 12, 2021
(2012). b. S. Tang and M. Dresselhaus, "Constructing a large variety of Dirac-cone materials in
the BiSb thin film system", Nanoscale, 4, 7786(2012). ' S. Tang and M. Dresselhaus,
"Electronic Properties of Nano-Structured Bismuth-Antimony Materials", Journal of Materials
Chemistry C, 2, 4710 (2014).
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A few examples of single-Dirac-cones have been reported recently. Isotropic single-Dirac-cones

have been observed in the surface states of bulk topological insulators [73] and HgTe quantum

wells [74]. However, properties such as the anisotropy of these single-Dirac-cones are fixed and

difficult to vary. Since Dirac-cone materials are considered as promising materials for the next

generation of the electronic industry, constructing Dirac-cone-materials which are controllable in

both anisotropy and fermion group velocity is very important, especially when various Dirac-

cone materials can be constructed out of the same material. For this goal, we have investigated

the Bi _,Sbx thin film system, and found that it could be a very promising candidate for

synthesizing different kinds of Dirac-cone materials.

In this chapter, we show how to obtain single-, bi- and tri-Dirac-cone Bi_,-Sb_ thin films,

and how to construct Dirac cones with different degrees of anisotropy. We also point out the

possibility of constructing semi-Dirac cones in Bi_,-Sbx thin films, where the E(k) is

parabolically dispersed along one direction and linearly dispersed along the other direction.

5.2 Construction of Various Types of Dirac

Cone Materials

5.2.1 Construction of Dirac Cone Materials with Different Numbers of

Scattering Valleys

If there is (are) one, two, or three Dirac cone(s) in the first Brillouin zone, we call the system a

single-, bi-, or tri-Dirac cone material. We propose that single-, bi- and tri-Dirac-cone materials

can be constructed from Bi _,Sbx thin films, by choosing proper synthesis conditions to control

the relative symmetries of the three L points, as shown in Figure 5.1 [75].
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Figure 5.1: An illustration of (a) single-, (b) bi- and (c) tri-Dirac-cone Bi,_,Sb, thin films

grown along the (a) bisectrix, (b) binary and (c) trigonal axes, respectively. For the cross-

sectional view of each cone, k j is chosen such that Vk E(k,) has its minimum along that

direction of k . The illustration is based on the example of Bi,_Sb, thin films with / = 100

nm, x = 0.04, P = 1 atm and T '77 K, under which the L points of bulk Bi _,Sbx have a zero-

gap. The scenario is similar for other conditions. In (a), a single-Dirac-cone is formed at the L)

point, while the L2 - and L) - point bandgaps are opened up. In (b), two degenerate quasi-

Dirac cones are formed at the L(2) and L points, while the LM -point band-gap is much larger,

which leads to a bi-quasi-Dirac-cone material. The band-gap at the L and L(') points can be

less than 1 meV if a sample of 1 = 200 nm is chosen, which leads to exact Dirac cones. In (c), the
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L(' -, L() - and L(') -point band-gaps are all the same, and the three quasi-Dirac cones are

degenerate in energy.

5.2.2 Construction of Dirac Cone with Different Anisotropic Degree

To characterize the anisotropy of a single Dirac cone, we define an anisotropy coefficient

Y = Vm ,T=Vmivm

where vmax and vmi are the maximum and minimum in-film carrier group velocities for a

Dirac cone that are defined as

v(k,,)= _V E(k).

Dirac cone with different anisotropic degree can also be constructed in the Bi _,Sb thin films

system by choosing proper synthesis conditions, as illustrated in Figure 5.2 [76].

= 2 y=ii

k(Tim1

Energy (meV)

500

0

-500

BiO 96Sbo 04 Bisectrix Oriented Growth
Film Thickness = 300 nm

AMM 1 j k j nj W ')jj

Bi0 6 6Sbo 0 [6061] Oriented Growth
Film Thickness = 300 mi
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Figure 5.2: Example of Dirac cones at the L point with different anisotropy degree when proper

synthesis conditions are chosen, respectively.

5.2.3 Control the Mini-Gap of Quasi-Dirac Cone

When a mini-band-gap is opened up in a Dirac cone for tuning the transport properties, it is

called a quasi-Dirac cone. Quasi-Dirac cones are very important for low-temperature

thermoelectrics. Quasi-Dirac cones can also be constructed based on the Bi_Sbx thin films

system, by controlling the synthesis conditions, as illustrated in Figure 5.3 [75].

5 10mW -
Mini-Gap E (meV)

20_

15

10

0
0.1

46 0.05
400

200
0 0

Bisectrix Oriented Thin Film
Mini-Gap vs. Alloy Composition & Film Thickness

Figure 5.3: The L -point mini-gap vs. film thickness 1 and Sb composition x for the

Bi,_.Sb, thin films grown along the bisectrix axis.
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5.2.4 Constructing Semi-Dirac Cones

If a Dirac cone is relativistically (linearly) dispersed along one direction and classically

(parabolically) dispersed along its perpendicular direction, this Dirac cone is called a semi-Dirac

cone. In the Bi _,Sb thin films system, if we carefully choose the film synthesis condition,

semi-Dirac cones can also be constructed as illustrated in Figure 5.4 [75].

8
Relativistic

7

Classical
6

-0.1 -0.05 0 0.05 0.1

Lattice Momentum (nm')

Bio.gSbo., Thickness=100 nm, Oriented 400 to the trigonal

Figure 5.4: Example of a semi-Dirac cone in the Bi_ Sb_ thin film system (x=0.10 and 1=100

nm). It can be seen that around the L1) point, the fermions are linearly dispersed along the vmax

direction, and parabolically dispersed along the vmin direction.

5.3 Chapter Summary

In this chapter, the construction of various kinds of Dirac cone materials were discussed based on

the Bi _xSbx thin films materials system, including Dirac cone materials with different numbers

of scattering valleys, Dirac cones with different degrees of anisotropy, quasi-Dirac cones with

controllable mini-band-gaps and semi-Dirac cones.
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Chapter 6

Anisotropic Transport for Parabolic,

Non-Parabolic and Linear Bands of

Different Dimensions

Anisotropic thermoelectrics is a very interesting topic among recent researchers. The transport

distribution function plays the central role on modeling the anisotropic thermoelectrics. The

methodology of numerical integrations is used in previous literature on anisotropic transport,

which does not capture the sharp change of transport distribution function and density of states at

the band edges that we will show later in this chapter. However, the sharp change of transport

distribution function and density of states at band edges are very important in enhancing the

thermoelectric performance. Thus, an analytical methodology that is robust on modeling the

sharp change of transport distribution function and density of states at a band edges is needed. To

our best knowledge, there has not been a paper giving the systematic study on the analytical

models of anisotropic transport distribution function for different kinds of band valleys in

different dimensions under different assumptions. Therefore, the main focus of this chapter is to

develop such a robust analytical methodology on modeling the anisotropic transport distribution

function. So the main content in this chapter will be 1) a systematic method is developed to

model the anisotropic transport distribution function, for 3D, 2D and 1 D systems, in parabolic,

non-parabolic and linear dispersion relations, under both the relaxation time approximation and

the mean free path approximation; 2) it is found that the Onsage's relation of transport can be

This Chapter is reprinted/adapted from the published work: a. S. Tang and M. Dresselhaus,
"Anisotropic transport for parabolic, non-parabolic, and linear bands of different dimensions",
Applied Physics Letters, 105, 033907 (2014).
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violated under certain conditions; 3) the newly developed methodology is compared with the

traditional used numerical methodology.

As a matter of fact, most good thermoelectric materials are electronically anisotropic, such as

Bi2Te3 and BiixSbx. Even isotropic thermoelectric/electronic materials, such as SiixGex, PbTe,

PbS, also have anisotropic carrier-pockets. Thus, to calculate the electronic transport quantities

associated anisotropic carrier-pockets in a simple physical way is very important for the research

of optimizing thermoelectric/electronic performance. Good efforts have been made using

numerical integrations for specific materials systems. However, the thermoelectric/electronic

optimization problem requires closed-formed and physical expression of these transport

quantities, such that the materials-searching and the conditions-optimization can be carried out

among the huge number of material candidates and the various parameters, such as temperature

T and Fermi level Ef.

6.1 Basics of Anisotropic Transport

We recall that under the relaxation time approximation of anisotropic Boltzmann equation,

= e _ , (6.1)

S = , (6.2)
e 1[=0]

Ice = K - ISIS (6.3)

and

KO = T- kB2 1=2], (6.4)
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where

afo E - EfI] = )(E) dE (6.5)
aE kBT

and

E(E)= o(E - E)v 02Tv (6.6)
k

is the transport distribution tensor, and V, T and fo are the carrier group velocity, the relaxation

time tensor and the Fermi distribution, respectively. It is clear that the transport distribution

tensor E(E) plays the central role in determining all these electronic transport quantities.

However, the complex calculations of inner- and outer-product between different ranks of

tensors have always been misunderstood and improperly assumed in literatures that make

numerical calculations of the transport distribution tensor for anisotropic systems.

Scheidenmatel et al. [77], Lee et al. [78], and Yavorsky et al. [79], have calculated the

anisotropic transport distribution tensor with numerical integrations based on first-principle

results for the specific material of intrinsic bulk Bi2Te 3 without doping, by assuming that the

relaxation time is a constant, which has given important references for this bulk material of

intrinsic bulk Bi2Te3. However, these numerical methodologies take heavy computations, and is

not easy for implement in the materials-searching and the conditions-optimization problems of

thermoelectric/electronics. Teramoto et al. [80, 81] have numerically calculated the anisotropic

transport tensor in bulk Bi and bulk Bii-xSbx. However, a strong assumption is assumed that

v 0 TV = Tv 0 v, without further validation. Bies et al. [82] have made a remarkable progress

on giving a relatively simpler expression for 3D and 2D parabolic bands with the dispersion in

the form of E(k) = (h 2 /2)k T M-k, assuming that T(k) = ro[E(k)]&, where ro is a scalar

function of E, and I/ is a dimensionless constant matrix. However, cases for the non-parabolic

bands that happens at the L points of Bi, Bii1 xSbx, PbTe, PbSe, and PbS, and at the bottom of
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conduction band of Be2Te3, and Sii-xGex, and cases for linear bands that happens at the K point

of graphene, the L point of certain Bii-xSbx, are not discussed. All these previous achievement

are suitable for study the electronic transport of a certain material, but not suitable for the

materials-searching and the conditions-optimization problems of thermoelectric/electronics.

In this chapter, I have derived the analytical form of anisotropic transport distribution tensor

for a parabolic band in a three-dimensional materials system under the condition that the

relaxation time tensor is only a function of energy at a certain temperature, i.e. T(k) = -r(E)T,

where T is a constant tensor. I have found that the transport distribution tensor can be

asymmetrical, i.e. exhibiting a deviation from the Onsager relation, which is usually not

considered in previous literatures on modeling electronic transport. I have then developed the

analytical form of anisotropic transport distribution tensor for a linear band, as well as a non-

parabolic band of a more general form beyond the Lax model E+ E2 /E = (b2 /2)kTM-k
g

[83], where E9 is the direct band gap. Then, I have generalized the results to two- and one-

dimensional materials systems. Furthermore, I have derived the anisotropic distribution tensor

under the condition that the relaxation time tensor is a function of not only energy, but also

carrier velocity. Finally, I have done a comparison between the numerical method used in

previous literatures and our analytical results reported in this chapter.

6.2 Anisotropic Transport for Three-

Dimensional Parabolic Bands

For clarification of the problem, we will discuss the transport distribution tensor in the Cartesian

coordinates system that coincide with the principal axes of the effective-mass tensor, e.g. for a

parabolic band E(k) = (h 2 / 2)kTM-'k, where k is the lattice momentum measured from the

bottom/top of the conduction/valence band, and M has no off-diagonal components. E(E)
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expressed in other coordinates systems can be easily obtained by rotation matrixes. For an

isotropic parabolic band, the dispersion reduces to E(k) =(h2 /2m)k 2 , where

k= +k + k2. By symmetry, we know that E(E) can only take the form of

E(E)= EO(E)71, where O(E) is a scalar function of E, and / is the unitary matrix.

Hence, we know

v2

E(E)= ((E - Ek) o (E)[
k

2
V2 I

2
V3)

(6.7)

By symmetry, we have

O (E) = Ej (E)=

2 2 2 2where v =v, + v2 +v3 , i=1,2 or

-3 (E -E ge(E)V2
3 k

2E
= D(E)ro(E),

3m

3, and D(E) = I 5(E - Ek) is the density of
k

(6.8)

is (1/4 ;T2)(2m //2)3"E"' for a 3D isotropic parabolic band. Thus, we have

F0(E) = (212 /3T&)m' 2E ro (E). (6.9)

For a general anisotropic parabolic dispersion expressed in the principal-axes coordinates,

E(k) = (h /2)(k 2 / m +k /m 2 + k /m 3), the transport distribution tensor is

E(E) = I (5(E - Ek)v 0 TV , which is generally not equal to Id(E - E)rV 0 v, i.e.
k k

V. 7-,v, # V Cy,v1 for i j in an anisotropic case. Thus, to get the transport distribution

tensor, we need to calculate each 1 5(E - Ek )vvjrpq , which we define as opq(E), where
k
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we have (F) = O (). ®,,(E) can then be treated as the mean value of vjvj pq at

the constant energy surface of E, multiplied by the density of states at E, i.e.

Oyp,(E = zq(viv1) D(E). According to vi = h-'OE / Ok = hk, / m ,, we have

Kvivj)E __ )2/mm)(kik1 ) =S 2E /3m,. Thus, Opq(E)= oi, 2rpD(E)E/3m and

6i(E)= (2E/3m,)D(E)11 .

Hence, we have found that if the relaxation time tensor r does not diagonalize in the same

coordinates as the dispersion relation E(k) does, the off-diagonal components of the transport

distribution tensor E(E) will not be cancelled out, i.e. E, (E) = (2E /3m)D(E)fl , which is

an advanced explanation for the assumptions used in Ref. [82]. We also see that even if the

relaxation time tensor T is a symmetric tensor, the transport distribution tensor H is not

necessarily symmetric, if T does not diagonalizes in the same coordinates system as E(k), i.e.

S..j(E) = (2E/3m,)D(E)1 , is generally not equal to = (E)=(2E/3m 1 )D(E)r (i# j).

This possible deviation from the Onsager relation has not been considered in previous literatures

on anisotropic electronic transport, which simply assumed that if T is symmetrical, E is

naturally symmetrical. Our finding of possible deviation from Onsager's relation here is

consistent with the work done by Truesdell [84] and Bies [82] through different approaches.

6.3 Anisotropic Transport for Low-

Dimensional Parabolic Bands

For low-dimensional system, the transport distribution tensor can be derived in the similar way.

For a 2D isotropic parabolic band, the transport distribution can be obtained by the same
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symmetry argument we did above for 3D case, except that I J(E - E[ 2 D] )o,[ 2 D](E)[2 D
k[2D]

should be divided by 2 instead of 3. Thus, we have

1
- [2D],i (E)= - (E - Ek

2
k[

2 D]

)o,[ 2 D](E)v2D] =(E /m)D 2D](E)-,[2D](E).

(6.10)

For a 2D anisotropic parabolic band, we have 6 ([2 D 1jE)= [2D]j(E), where

(6.11)0
[2D],ijpq (E) = 4(E - Ek[ 2 D )V2D],j2D,j[2D],pq '

0[2D],ijpq(E) can also then be treated as the mean value of V[2D]iV[2)]IT[2 Dpq at the constant

energy circle of E, multiplied by the density of states at E, in the 2D system, i.e.

[2D],ijpq(E) =

(v[2

r[2D],pq (v[2D],iV[2D,j )E [2D] (E). Then we have

DIliVI2D],j)E I/ )k[ 2D]k [ 2 D],j = 1 E/m,.

Thus, O[ 2 D],jpq(E)= i5oi[ 2 DtpqD 2 D(E)E/mI and =,(E)=(E/m)D[2 D](E)[ 2DI/,i

For the 1 D parabolic band, we simply have,

1ID](E) = (2E/m)ID](E)rOjID](E). (6.13)

0,[2D](E)

(6.12)
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6.4 Anisotropic Transport for Non-Parabolic

Bands

To describe a non-parabolic band, the Lax model, i.e. E + E2 /Eg = (h 2 /2)kTMI-'k [63], is

often used, e.g. the L-point band edges of bismuth and bismuth antimony. Instead of talking

about this specific form of non-parabolic band, we discuss a general form of non-parabolic band

defined as,

= ~cvEN _(/_2 T M'-
N=O

where c N are constants. In the principal-axes coordinates of E(k), we have

= cNEN _ /2)(k2 /m, k M 2  3 )
N=O

The transport distribution tensor can still be calculated as

i;(E)= ry1 (v v )E D(E),

except that

(VIV )E D(E) = (vvl)E(E) D(E)
dE

and
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I W/ dZ hk dE
/ -/ = -' / .

liak dE m1 dEi

Thus, we have

v5 2E dE
(\vlj) D(E)=j D(E ) /-.

E3mi dE

and

Srj 1 m,,2 D(E)
I Mmi,

dEi

dE

2E
r . -

'f 3m,

dE
D(E)/-.

dEi

For a 2D non-parabolic band, where

= C2D],NEN
N=A

__ / 2)(k[ D],J / 1 + [2D], 2 2 ),

we have

E
(V[2DV[2D],j )E D[2 D] (E) = ij -D[ 2 D] (E)

and

2 (E)=
Z ~dE

r2D],ji - Dj2D]( ) .d
mi dE

(6.21)

For a ID non-parabolic band, where -= C[ID],N 2 D] /M), we have
N=O
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dE
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2E d
[ID](E) = _D[ (E5 I(E)/ .

mi dE

The linear band case, e.g. the possible Dirac point in bismuth antimony, is included in our

defimed general form of non-parabolic dispersion, if we take cN - C 262,N) ,ie.

E=(h / 2c2 )k 2/m +k /m2 +k /m 3

1 2

" 67c~h3v v2v3

where vi =I/ Vc.mi and m is a parameter defined in Equation (6.15), which does not mean

mass anymore in the linear dispersion.

For 2D Dirac cones, we have

E =(h / 2c|2D, 2D) m1+kk2 M2

1[2Dbj (E)

(6.25)

2

4 12V1 2 D,,IV [2D],2

where V2D], =1/ 2 c 2 D]mi . The dispersion relation reduces to

(6.26)

E = tk / i2mcnD

isotropic Dirac cones, e. g. in graphene and topological insulators, where the carrier group

velocity is v= 1/ 2mc[2 D],2 and the transport distribution tensor is
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= 2 D](E) = (E /4;h 2 )tI 2D]. Following the similar argument, we can obtain the transport

distribution for a 1 D system as

EIlD](E)= ViD]ThD] /chf. (6.27)

6.5 Anisotropic Transport under Mean Free

Path Regime

All the above discussions are valid for cases where T is only a function of energy E, and not a

function of velocity v. For some systems where semi-empirical constant mean free path

approximation is preferred, especially in low-dimensional systems with ballistic scatterings [18,

20, 85, 86]. Thus, we will start from the low-dimensional systems. For an ID system, the

transport distribution is

[lD](E) i5(E - Ek [)DJ ®[lD](E)(v[D] /IV[lD]I), (6.28)
k[ID]

where we assumed that the mean free path X[1D] is only a function of E at a specific temperature.

Everything reduces to scalar in a 1 D system, i.e.

E(E) I (E - Ek)1v1(E) = 2(E)2E /mD[D](E). (6.29)
k

For a 2D system, the 2D transport distribution tensor is

T2D](E) o5(E - E )k2D [2D] 2 D] [2D] [2D] (30)
k[2D]
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Thus, we want to calculate each ( 5(E - E[ 2 D] )v[2D],iV[2D],j (2
2D],pq / [2D], [2D],2

k[ 2D]

By calculation, we have found that

(E - E [2D [2D],iV[2D],i 2 2D],pq2
k[2D] V[ 2 D],I [2D],2

rn
m- EK( 1- i)-rM

rn1
-EE( 1 n)

M

mi - m i

(6.31)

D[2D](E)

o5(E - Ek [2D 2D],iv[2D],j 2 +2D],pq = 0 (i
k[ 2D] V[ 2 D], [2 D], 2

where EK and EE are the first type and second type elliptical integrations. Thus, we have

(1- m )-Mn.
m i

-EE( 1 -M)
M

rn-rn

For 3D system, we have E(E) = I3(E - Ek )v 0 (v/Iv), this is used for systems
k

such as Bi2Te3 and Sb2Te3 [79]. We need to calculate,

5(E-E )vv 2 pq

k V 2+V2
Apq K 12 I E

VV 2 2E

= >[2D],pq
m-

and

(6.32)

E[2D],ij (E)

.- EK
4,1 '

= 2 2D],ji D 2 D](E). (6.33)

D(E). (6.34)
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By calculations, we have,

SV+V2+V2)

where we defined

sin2 Ocos2 (9

(9 sin 0 sin p
+

sin 2 OCOS2 (

sin2 Ocos 2 
qp sin2 0 sin2 1)

NI m 2

+ cos2 o

M3 )E

+
cos 2 0

which turns out to have non-elementary functions in the analytical form. Putting Equation (6.35)

into Equation (6.34) we have

,(E - E,) 2 5A NiD(E),2P E 2 2 2 
+v pq

VVI2+ V 3

(6.37)

which gives

(E)= A 2 D(E).
i

(6.38)

6.6 Applications to Different Materials
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Up to now we have considered most of the situations for anisotropic transport distribution tensor,

including parabolic, non-parabolic and linear dispersions, including three-, two- and one-

dimensional systems, and also including relaxation time approximation and mean free path

approximation in the present work. We now compare the numerical method used in previous

literature and the analytical method we have developed here in this chapter in some specific

materials. The numerical method basically uses a normalized quasi-delta function a - 4'(E / a)

to mimic the delta function in Equation (6.6) [87-89]. c-f'8(E / a-) is a smeared convolution of

3(E) and a is the smearing, i.e. J /(E /a-)dE = 1 and lim u-'a(E /o) = o(E).

Usually, the Gaussian smearing function C-'(E /) = (1/ vi2 -)exp(-E2 /20. 2 ) is

chosen for its simplicity and special integral properties, and the smearing is set to be equal to the

thermal smearing of - = kBT. A grid of points in the k-space are sampled. Thus, the density of

states and the transport distribution tensor can be approximated as [87-89],

D(E)= c-- 1 L[(E - Ek)/]o- (6.39)
kE{Sampled Grid}

and

O(E)= a'S[(E - Ek)/ o]v Tv (6.40)
ke{Sampled Grid}

We consider the situation under relaxation time approximation. For the case of a 3D anisotropic

parabolic band valley, we illustrate the T-point valence band valley of bulk bismuth [90], as

shown in Figure 6.1.
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Figure 6.1: Comparison between the density of states (black), principal components of transport

distribution tensor (blue and red), calculated from the analytical method developed in this

chapter (solid lines) and the numerical method used in previous literatures (dots). The valence

band valley at the T point of bulk bismuth is illustrated as an example. The principal effective

masses used for calculations are mI=m2=0.05 9 me and m3=0.634me [90], where me is the free

electron mass. The components of transport distribution tensor are normalized by corresponding

components of the relaxation time tensor for generality. In the numerical integration, the

Gaussian form of f'~'(E /O) = (1/I2~,2 a)exp(-E2 /202) [87-89] is used to be the quasi-

delta function, and the smearing is set to be kBT, where T=100 K. The sampled k-space grid is

evenly distributed in the k-space, and set to have a density of (2.5 x 106)3 /m-3 .

We see that for both density of states and the components of transport distribution tensor, the

results from our analytical method are consistent with the results from numerical methods used

by previous literatures. Furthermore, the numerical method become less trustable when it is close

to a band-edge, because the density of states and the transport distribution are broadened by the

smeared quasi-delta function, which can barely capture the sudden change of density of states or
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transport distribution at the band edge. However, the discontinuity of density of states and

transport distribution at band edges is very essential for thermoelectrics and electronics [21].

Thus, we propose that we should use the analytical method as much as possible to increase the

accuracy of thermoelectric modeling. For the case of a 3D anisotropic non-parabolic band valley

and linear band valley, we illustrate the L-point electron valley of bulk PbTe [91] and the Dirac

point of bulk BiO.96Sbo.04 [76], respectively, as shown in Figure 6.2 (a) and (b).
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Figure 6.2: Density of states and principal components of transport distribution tensor of (a) the

non-parabolic conduction band valley at the L point of bulk PbTe, and (b) the Dirac point in bulk

Bio.96Sbo.o4 . (a) The principal effective masses used for calculations are mI=m2=0.0 6 me and

m3=0.505me [91], and the non-parabolic form E + E2 /E = F is used, where Eg=1 89 .7 meV

[91]. (b) The principal group velocities used for calculations are vi= 1.63 x 106 m/s, V2=

1.18 x106 m/s and v3= 1.09 x 105 m/s [76].

For 2D materials, we illustrate the 2D parabolic conduction band valley at the K point of

MoS2 [92], as shown in Figure 6.3 (a). Researchers have studied anisotropic Dirac cones in

graphene superlattice and in Bii .Sbx thin films. We illustrate the anisotropic Dirac cone in

graphene supperlattice studied in Ref. [93, 94], and the anisotropic Dirac cone in bisectrix

oriented Bio.9 6Sbo.04 thin film studied in Ref. [75, 76], as shown in Figure 6.3 (b) and (c),

respectively.
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Figure 6.3: Density of states and principal components of transport distribution tensor for two-

dimensional systems. (a) The parabolic conduction band valley at the K point of MoS 2 [92]. (b)

The anisotropic Dirac cone in graphene supperlattice [93, 94]. (c) The anisotropic Dirac cone in

bisectrix oriented Bio.96Sbo.04 thin films [75, 76].
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Lastly, we illustrate the single valley in carbon nanoribbon for 1 D systems. For a

semiconducting carbon nanoribbon, the band edge is parabolic with an effective mass. We

illustrate the metallic armchar carbon nanoribbon with a width of 6.02 nm and Dirac fermion

group velocity of 8 x105 m/s [95, 96], as shown in Figure 6.4 (a), where the ID density of states

and the 1 D transport distribution function remains a constant when the carrier energy is greater

than zero. For a semiconducting carbon nanoribbon, there might form a ID linear dispersion

relation at the band edge, e.g. a metallic armchair nanoribbon with a width of 21 nm, a band gap

of 0.65 eV and an effective mass of 0.05me [95, 97], as show in Figure 6.4(b). We noticed that

for the semiconducting carbon nanoribbon, though the density of states diverges at the band

edge, the transport distribution converges to 0, which is why the electrical conductivity is still

finite.
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Figure 6.4 Density of states and principal components of transport distribution tensor for one-

dimensional systems. (a) Metallic armchair carbon nanoribbon with a width of 6.02 nm and

Dirac fermion group velocity of 8 X 05 m/s [95, 96]. (b) Semiconducting armchair nanoribbon

with a width of 21 nmn, a band gap of 0.65 eV and an effective mass of 0.05m, [95, 97].

6.7 Chapter Summary

In conclusion, we have derived the analytical forms of anisotropic transport distribution tensor

for parabolic, non-parabo lic, and linear valleys, in 3 D, 2D and I D materials systems, under both

the relaxation time approximation and the mean free path approximation. We have found that

the Onsager relation for electronic transport can be deviated, if the relaxation time tensor does

not diagonalize in the same coordinates frame which diagonalizes the effective mass tensor. We

then calculated the transport distribution function for some band valleys of several interesting

materials systems, including the T-point hole valley of bulk bismuth, the L-point electron valley

of bulk PbTe, the anisotropic Dirac point in bulk BiO.96Sbo.04, the K point electron valley of
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MoS2, the anisotropic Dirac cones in graphene superlattice and Bi.xSbx thin films, and also the

single valley in semiconducting and metallic carbon nanoribbons [28].
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Chapter 7

Suggestions for Future Directions

There are several directions opened for future research interests based on the work described in

this thesis.

For high temperature waste heat recovery applications, this thesis has discussed the new

direction of thermo electrical power generation. Traditional thoughts have been concentrated on

pursuing high thermoelectric ZT in narrow-gap materials, while here we see that wide-gap

materials can also be promising. First, through the pseudo-ZT framework of thermoelectrics

proposed here, we can see cases where the band gap will increase the maximum zte and

maximum ZtL at the same time. Second, in wide-gap materials the Seebeck coefficient is usually

larger than that for narrow-gap materials, because the positive entropy carried by the holes and

the negative entropy carried by the electrons do not cancel each other in a notable way. This is

especially important for high temperature waste heat recovery, because the power density is a

very crucial parameter in engineering practice for thermoelectricity generating devices to be

compatible with industrial thermal processes. The challenge of thermoelectrics of wide gap

materials lies in: 1) how to change the Fermi level through doping and 2) how to reduce the

lattice thermal conductivity. The proposed approaches will be using nanostructures, amorphous

structures and polycrystals to build up a network of amorphous grain boundaries, which can

scatter the phonons effectively without jeopardizing the electronic transport notably.

For low temperature thermoelectric cooling, this thesis has suggested the approach of

trying to find materials with higher asymmetry for carrier scatterings between electrons and

holes. Meanwhile, a divide-and-conquer strategy is proposed to change the scattering

mechanism(s) and the materials dimensions based on the magnitude of the geometrically

normalized lattice thermal conductivity. This thesis has also provided a tool to infer the specific
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scattering mechanism(s) within a certain materials system, as well as a method on how to

increase the possible maximum Seebeck coefficient by changing the carrier scattering order. The

most relatively efficient thermoelectric cooling materials that have been found so far are narrow-

gap materials. Based on the new model for nanostructured narrow-gap materials provided by this

thesis, the materials search and design task will be accelerated. In future research, detailed first

principle calculations can be carried out to study the band structures and the carrier scattering

mechanism(s), in order to search for high performance thermoelectric cooling materials.

With the miniaturization trend of electronic devices, conventional research based on

classical physics is no longer suitable and advanced quantum mechanics must be employed.

Along this line, relativistic-effect devices provide feasible approach to largely advance a wide

range of applications in information technology and energy fields, aiming ultra-high running

speed and frequency, and ultra-low energy consumption. Such devices can be based on

materials where the carriers' energy-momentum relation is not classic, but relativistic. This

materials class includes graphene, topological insulators, and certain Bii-xSbx, which exhibit

linear energy-momentum relations (Dirac cones) and lead to massless carriers. This materials

class also includes phosphorene, MoS2, and WS2, where the carriers have non-zero masses.

An interesting future direction will be the study of novel transport phenomena based on

such relativistic-effect materials for the next IT revolution. This thesis provided both the

systematic method of constructing various conventional and unconventional anisotropic Dirac

cones, and the method of detecting Dirac carrier scattering mechanisms by the maximum values

of the Seebeck coefficient. It will be interesting to study the quantum transport of massive

relativistic particles using MoS2, WS2 and phosphorene, and massless relativistic particles using

graphene, topological insulators and Bii-xSbx. Such novel quantum transport studies of energy,

entropy and charge may pave the way for the next-generation energetic, electronic and photonic

devices. Further, the traditional study of relativistic particles is mainly limited to isotropic Dirac

cones. The work on anisotropic Dirac cones, anisotropic transport and quantum effect in this

thesis enables the future study of highly anisotropic novel transport to potentially attract

significant attention. In addition, the transition of charge, energy, mass and entropy from the

photon-like to the golf-ball-like regime is attractive for developing novel devices.
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