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ABSTRACT

This thesis presents new observations of the hysteresis behavior of piezoelectric stack actuators and

proposes an Input-Range Dependent Maxwell Model for more accurate hysteresis compensation.

Experimental studies show that the assumptions of the classical Maxwell model do not fully hold: the

actuator behaves differently in the initiation stage compared to the later cycles, and the parameters of the

Maxwell model are dependent on the input history. Two most prominent factors are the input range of the

most recent half loop and the local extremum input at the beginning of the current half loop. To

accommodate for these variations, two types of modified Maxwell model are presented: the Input-Range

Dependent Maxwell Model and the Local-Extremum Dependent Maxwell Model. We further propose

parameter estimation schemes for each modified model. In both models, one set of parameters is obtained

for the initiation stage and another set for later cycles, and the first Maxwell spring constant is related to

the input history - input range or local extremum, respectively. Further studies suggested that the linear

dependence of the first spring constant on the input range is much stronger than on the local extremum.

Simulations with the identified Input-Range Dependent Maxwell Model gave a maximum percentage

error of 2.71%, as compared with a percentage error of 8.29% using the classical Maxwell model. This

suggests that the model can accurately predict the response of a piezoelectric stack actuator and is

promising for hysteresis compensation in nano-positioning applications.

Thesis Supervisor: Kamal Youcef-Toumi

Title: Professor of Mechanical Engineering
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1. Introduction

Piezoelectric stack actuators, especially unipolar piezoelectric stack actuators, with their high resolution

and fast frequency response, are widely used in nanopositioning applications, such as scanning probe

microscopy (SPM). However, a major limitation to piezo actuators is their nonlinear response to an

applied electrical field. Two major forms of nonlinearity are hysteresis and drift'. If left unmodeled,

hysteresis can cause poor control performance in nano-positioning applications.

Hence, it is of great importance to develop a precise model for the hysteresis behavior of a piezoelectric

actuator. Ideally, the developed model should reflect the underlying physics and feature a simple structure

to enable straightforward implementation of the corresponding inverse in the positioning control system.

A number of studies have been published on methods of hysteresis modeling. Two prominent models are

the Preisach model2',3',4 and the Maxwell resistive capacitor model',5' 6. The Preisach model have been

rigorously researched since its introduction. The system identification methodology has been established,

and its integration into the controller has been developed3', '. However, the Preisach model has several

drawbacks: the two assumptions of this model, namely, the wiping-out assumption and the congruency

assumption, do not fully hold7 . Due to the nature of a double integration, error could build up in

constructing the model. Deriving the inverse Preisach model is performed through numerical

approximation which adds to errors and makes control implementation rather complex8 . Furthermore, the

Preisach model is a pure mathematical representation of the piezo response curve and is not based on the

underlying physics of the phenomenon.

In the Maxwell resistive capacitor model, the underlying energy consumption mechanism is represented

by Coulomb's friction. The method is very intuitive and is built upon the underlying physics related to the

orientation and activation of various dipole domains. Although the Maxwell model shows advantages in

its simplicity in parameter estimation and control implementation', it has not received the proper

attention, especially compared to the Preisach model.

In this work we aim to expand the work of Goldfarb and present a more generalized extension of the

Maxwell resistive capacitor model of hysteresis. The generalization of the model is based on our

observations regarding the relationship between the input range and frictional losses. More specifically, it

is shown that the elastic constants associated with the Maxwell elasto-slide elements in a half hysteresis

loop are dependent on both the location of the element at the beginning of the current half loop as well as

the distance traveled by the element in the most recent half loop. The phenomenon is observed to be more

prominent in the initial stages of piezo displacement for both expansion and compression. This is

potentially caused by the switching of voltage-specific dipole regions and delay in the response of piezo

6



to the change of applied voltages. Simulation of the modified Maxwell model of a piezoelectric actuator

is also investigated.

2. Hysteresis in Piezoelectric Stack Actuator

2.1 Hysteresis and Its Underlying Physics

Previous research shows that the hysteresis of piezoelectric actuators is rate-independent and exhibits

nonlocal memory'. That is, the output displacement depends on the current value and the history of the

input. A physical explanation for the phenomenon was proposed by Chen and Montgomery10 . They

proposed that as the dipole domains in the piezoceramics switch under an external electrical field, the

effective number of dipoles aligned in the electrical field direction changes. The delay between the

domain switching and the change of electrical field, and the energy loss in the switching process, may be

the primary cause of hysteresis. In addition, the number of dipoles switching directions depend on the

strength of electrical field, leading to the nonlocal memory property of hysteresis.

10

9- 2Ax

8

2-t2 --- Iniiation
1. -- Ascending

- - Descending

0 10 2 4 3 40 50 60 70
Input Voltage (V)

Figure 2-1: A characteristic hysteresis loop divided into three categories: the initiation

stage, ascending curves, and descending curves. Classical Maxwell model assumes that the

slope within a displacement of Ax in the initiation stage is the same as the slopes within a

displacement of 2Ax in the corresponding sections in later cycles.

2.2 Classical Maxwell Resistive Capacitor Model

The classical Maxwell resistive capacitor model bears the above theoretical explanation of hysteresis. If

the hysteresis curve is divided into three categories: the initiation stage between the start of input to the

7



first local maximum, the ascending curves in later cycles when the input voltage increases, and the

descending curves when the input voltage decreases, as shown in Figure 2-1, the classical Maxwell model

assumes that the slope within a displacement of Ax in the initiation stage is the same as the slopes within a

displacement of 2Ax in the corresponding sections in later cycles; under a cyclic input voltage function of

range Vin, the ascending and descending curves are symmetrical about the average displacement of both

directions under the input of Vin/2; and for a certain change between the current input and the beginning of

the current ascending or descending curve, the shape of the hysteresis loop remains the same regardless of

the input history or the current input.

2.3 New Observations of the Hysteresis Behavior

We studied the hysteresis behavior of a PI P-885.51 unipolar piezoelectric stack actuator under different

input voltage conditions, and make the following observations. Our data show that these three

assumptions of the classical Maxwell model described above do not fully hold.

11
slope 1

10 Initiation: 0.1065
Ascending: 0.1106

9 Dexscending: 0.1054 2Ax

8 Slope 2
Initiation: 0.1231

7 Ascending: 0.1339 .
E Descending: 0.1317

3

2A 2- ~~ --. Hysteresis

1 ---- Section 1
- -- Section 2

0
0 10 201 30 40 50 60 70

Input Voltage (V)

Figure 2-2: Slopes in the initiation stage and later cycles under an input of triangular wave

between 0-70V. The slopes in the initiation stage are different from corresponding sections

in the ascending and descending curves.

Firstly, hysteresis behavior varies in the three stages of the input described above. As shown in Figure 2-

2, under a triangular input, if we plot the displacement of the piezoelectric actuator versus the input

voltage, the hysteresis curve within Ax in the initiation stage has a different slope from the corresponding

sections within 2Ax in later cycles.
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Secondly, while the hysteresis behavior under a constant input range is the same within either the

ascending or descending curves, the two sets of curves are asymmetrical. To better visualize the

difference in the piezo response to input changes, we created plots by rotating the descending curves by

1800 and shifting both curves to the origin, as shown in Figure 2-3, which allows us to compare the

absolute change in displacement in response to the same absolute change in voltage. It is observed that the

beginning of the ascending curves is steeper than the beginning of the descending curves, while the end of

the ascending curves has a smaller slope than the end of the descending curves. In other words, when the

input starts decreasing from its maximum, it takes more change in voltage to achieve the same change in

displacement as when the input starts increasing from its minimum; whereas at the end of the descending

curves, as the decreasing input approaches the minimum value, the same change in voltage results in a

larger change in displacement in comparison with the end of increasing voltage.

10 _ _ _ 1 _ 1 _1 _ 1
-Ascending Curve

[- - - Descending Curve (rotated 180 degrees)

8

7

6-

5-

13

2

0
0 10 20 30 40 50 60 70

1A Input Voltagel (V)

Figure 2-3: The absolute change in displacement versus the absolute change in voltage in
the ascending and descending curves. The descending curves are rotated by 1800 and both
sets of curves are shifted to the origin.

Finally, the shape of the hysteresis loop in later cycles are not independent of the input history. On the

one hand, the local extremum at which the input voltage starts increasing or decreasing also affects the

shape of the half loop. Figure 2-4(a) and (b) compare the change in displacement when the input voltage

increases or decreases from different initial points, while the input range remains at 25V. When the

increase of input voltage starts at a smaller local minimum, the hysteresis curve is steeper, and the same

change in input voltage leads to a smaller change in displacement. Similarly, a descending curve starting

at a higher local maximum needs less change in input to achieve the same output displacement.
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2.5 - - Ascending from 5WV

0.5
CL

0
1.5.

0
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(a)

0
-Descending from 25V
-Descending from 40V

-0.5 - Descending from 75V

E -1
3

E
0 _.

5-2. /

-2.5-

-3
-25 -20 -15 -10 -5 0

AV (V)

(b)

Figure 2-4: Change in displacement in response to change in the input voltage when the

input range is 25V for (a) ascending curves with the initial inputs of OV, 15V, and 50V; (b)
descending curves when the input starts decreasing at 25V, 40V, and 75V.

On the other hand, the slopes and, therefore, the Maxwell spring constants of the current ascending or

descending curve are affected by the input range of the most recent descending or ascending curve,

respectively. We calculated the Maxwell parameters of hysteresis loops under triangular inputs of

different ranges: I OV, 15V, 20V, 25V, 30V, 35V, and 40V, with the starting points at OV for all

ascending curves and at 75V for all descending curves, as shown in Figure 2-5. The Ax in all cases were

maintained at 0.1366ptm, or 0.9% of the maximum displacement, such that 20 Maxwell elements were

activated in the ascending curves from 0-40V. The Maxwell slopes of the first three elements are shown
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in Figure 2-6(a) to (c), and the calculated Maxwell spring constants are shown in Figure 2-6(d) to (f). For

either the ascending or descending curves, the impact of the input range on the curve slopes is the most

prominent in the initial stage, as both the Maxwell slope and spring constant increases linearly with the

input range. The dependence of later Maxwell slopes spring constants is significantly weaker. For the

outlier in Figure 2-6(f), we speculate that it is because only three Maxwell elements moved in the case

and the fourth section was relatively short, thus the Maxwell slope for the fourth section was not accurate.

Since the third spring constant is the difference between the third and the fourth slopes, the spring

constant was also not representative of the actual value.

75

70- Local Maximum for
the Descending Curve

60

50

a0

Local Minimum for
the Ascending Curve

20

10 -
Input Range

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Input Condition

Figure 2-5: Input signals with different ranges of 1OV, 15V, 20V, 25V, 30V, 35V, and 40V
with the initial voltage of each cycle at OV and 75V. The input frequency was 2Hz for all

conditions.
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0

0
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10 15 20 25 30 35 40
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0.7

80.6
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(f)

Figure 2-6: Maxwell parameters of ascending curves starting at OV and descending curves

starting at 75V under different input ranges. (a)-(c): Maxwell slopes of the first three

elements; (d)-(f): Spring constants of the first three elements.
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3. Modified Maxwell Model and Identification

3.1 Modified Maxwell Model

To accommodate for the new observations, the Maxwell Model described in Goldfarb's paper' is

generalized as described in the following. As shown in the mechanical schematic in Figure 3-1, the

modified Maxwell model consists of n elasto-slide elements connected in parallel, each of the Maxwell

element analogous to a Maxwell resistive capacitor in the electrical domain. The total force, F, is

analogous to the input voltage, and the displacement, x, corresponds to the total displacement of the

piezoelectric stack actuator.

N,

k1 (F) = CiFmme + C2

N2

k2

P2 -x

N,,

kn

Figure 3-1: Schematic of a modified Maxwell model with Nelasto-slide elements in parallel.
The spring constant of the first Maxwell element is linear to the input force, which is
analogous to the input voltage in the electrical domain.

Each Maxwell element is composed of a massless block connected in series with a spring. For the eh

Maxwell element,, as shown in Figure 3-2, a normal force, N, is applied to the block, the coefficient of

static friction between the block and the surface is pi, the location of the block is Xbj, and the spring

constant is k,. The constitutive relationship of each Maxwell element can be expressed as:

fi = jiNj (1)

si= X - Xbi (2)

13



Xei = fi/ki (3)

kjxsj if |xs I| < xei
F= = (4)

I. fisgn(S) and IxsiI = Xei else

wheref is the breakaway force, x,, is the spring displacement, xe, is elongation of the spring when the

breakaway force is reached. Therefore, under an input force of F, the functions governing the Maxwell

model is given by:

F = F , (5)

where F is the output force of the ith Maxwell element.

Ni

I IXbi 1 X;

f = iNi o ix

Si

Figure 3-2: Schematic of the ih element in the Maxwell model.

3.1.1 Two Sets of Maxwell Parameters

Our first modification to the classical Maxwell model is an introduction of two separate sets of Maxwell

parameters, the breakaway forces and spring constants, for each element: in the initiation stage, {f,

k} inmiwon, and in later cycles, {f, k} ycle. This is based on our observation that the piezoelectric actuator

behaves differently between the initiation stage and the later cycles. For the initiation stage, since the

input voltage always starts from 0, the hysteresis curve for a piezoelectric actuator would always follow

the same path, thus {f, k} initiation are constants, giving

{f, k}initiation,i = {fo,i, ko,i}, i = 1,2 ... no, (6)

wherefo, j, ko,, and no are, respectively, the breakaway force and spring constant of the ith Maxwell

element, and the number of blocks moved in the initiation stage.

3.1.2 Influence of the Input History

Secondly, as shown in Figure 2-4 and Figure 2-6, the shape of the later cycles are affected by the input

history, especially the input range of the most recent half loop and the voltage at the beginning of the

14



curve. Therefore, we propose and compare two methods to account for the influence of the input history

on the hysteresis behavior.

(a) Model I: Input-Range Dependent Maxwell Model

In the first method, we select the spring constant of the first elasto-slide element to be a linear function of

the change in input in the most recent half loop. Comparing Figure 2-6(d) with (e) and (f), the effect of

the input range on Maxwell parameters is the most prominent in the beginning stages of the ascending or

descending curves, in which the spring constants increases linearly with the input range. Therefore, we

define Frange as absolute change in force in the most recent section prior to the current travel section, then

the spring constant of the first Maxwell element, k,1, can be expressed as

kc,1(Frange) = C1FRange + C2 , (7)

where C1 and C 2 are constants to be determined in the model construction. For the construction of the

model, we assume that the deformation of the spring at which the static friction is balanced, Ax, remains

the same regardless of input conditions. Therefore, the static friction coefficient of the first Maxwell

element, p, j, is also a dependent on the most recent change of force, Frange. It follows that the breakaway

force of the first block, fe, i, is also a function of Frange, giving

fc,i(Frange) = kc,1 Ax = (CiFrange + C2 )Ax, (8)

where Ax is the displacement of the first spring at which the spring force balances the breakaway force.

The parameters of the remaining Maxwell elements are constants, similar to the classical Maxwell model.

(b) Model II: Local-Extremum Dependent Maxwell Model

The second method relates the Maxwell parameters of the first elasto-slide element to the local minimum

or maximum input at the beginning of the current travel section. Define Fextre as the local extremum input

at the beginning of the current half loop, the spring constant of the first elasto-slide element can be

expressed as

kc,i(Fextre) = DiFextre + D2 , (9)

where D and D2 are constants to be determined in the model construction. Similar to the method in part

(a), we assume that Ax remains constant. Thus, the relationship between the breakaway force,f, j, and the

local extremum, Fextre, is given by

fc,i(Fextre) = kc,1 Ax = (DiFextre + D2)Ax, (10)

where Ax is the displacement of the first spring at which the spring force balances the breakaway force.

15



For either methods of accounting for the input history, the Maxwell parameters in later cycles can be

expressed as

(tfc,1 (F), kc,1 (F)} i = 1

{f, kjcycle,i = fc,j, kc,i} i = 2,3 ... nc

wherefe,, and k,, are the breakaway force and spring constant of the ith elasto-slide element in later

cycles, F is either the range or local extremum of the input, and n, is the number of blocks moved in later

cycles.

It is worth noting that no and ne are not necessarily the same. In fact, if we assume the spring

displacement, xe, (i= 1, 2, ... , min(ni, nc)), at which point the breakaway force of each block is balanced

by the spring force, remains constant for all Maxwell elements over time, then n,= n, only ifFm,,; = 1/2

Fmax, where Fmax,i is the maximum input in the initiation stage and Fmax is the absolute maximum input.

However, since Maxwell parameters in the initiation stage and later cycles are obtained separately, this

will not be a problem in model construction.

3.2 Model Identification

Methods to identify the parameters in the two types of modified Maxwell resistive capacitor model for a

piezoelectric stack actuator with a maximum input voltage of Vmax and a maximum travel of Xwa is

described as the following.

3.2.1 Experimental Setup

The experimental procedure for both types of Maxwell model is the same.

- Set up the piezoelectric stack actuator with one end fixed and the other end free to move, with a

laser interferometer pointing at the free end. A sample setup is shown in Figure 4-1.

- Excite the piezoelectric actuator with Mtriangular input voltage functions, v(t), with the same

frequency 27i/To, where To is the duration of one cycle, and ranges of OV-vi (i = 1, 2, ... , M),

where 0 < vI< V2 <...< VA < Vmax.

- Measure the displacement of the free end under each input condition with the laser

interferometer.

3.2.2 Parameters in the Initiation Stage

16



To obtain the Maxwell parameters in the initiation stage, {f, k} iniiaion, we create a v-x plot combining the

hysteresis curves in the initiation stage from all tests, with the input voltage as the vertical axis and

displacement as the horizontal axis, as shown in Figure 3-2.

80-

70

60

50

40

30

20

10

U
0 2 4 6 8 10

x (um)

v-x plots for obtaining Maxwell parameters

12

in the initiation stage.

Divide the interval between origin and maximum x to no equally-spaced segments, giving the length of

each segment Ax = [x(Vmax) - x(O)]/no. Identify the slope of each segment, so,, (i = 1, 2, ... , no), by

finding the best linear fit lines to the curve. Use the identified slopes to calculate the spring constants, ko,

(i= 1,2,..., no), and the breakaway forces,fo, (i = 1, 2, ... , no), in the initiation stage as

-1 1 1
ko, 1  0 1 1
kO,2  0 0 1

[k o,n] 0 0 0
-o 0 0

1

-- 1

1

0

1--~
1 rSO, 1 -
1 sO,2

1 sono!
1-

(12)

, 

foj 1 1 -T ko,
1

and f,2 AX 2 k O,2 1  (13

Ano - no- kO,nO_

3.2.3 Parameters in Later Cycles

(a) Input-Range Dependent Maxwell Model

(1) To find the Maxwell parameters in later cycles using the Input-Range Dependent Maxwell

Model, we create a v-x plot combining the ascending and descending curves in each test, giving a

17
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-0-60V
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- 0-50V

Figure 3-3:
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total of Mplots, as shown in Figure 3-4. The descending curves are rotated by 1800 and both the

ascending and descending curves are shifted such that their starting points align at the origin.

Range=75V
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60

_501

5;7/-40
30

20 -- Ascending
10 - - -Descending

0
0 2 4 6 8 10 12

lAxI (uM)
Range=60V
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-~50,
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20
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0
0 2 4 6 8 10 12

axAI (um)

Range=70V
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ILaxI (un)
Range=55V
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Range=65V
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0
0 2 4 6 8 10 12

1Axi (uM)

Figure 3-4: v-x plots for construction of the Input-Range Dependent Maxwell Model. Each

plot includes the ascending and descending curves in each test.

(2) Divide the interval between origin and maximum x of each plot into segments of 2Ax. Note that

the number of segments for each plot, n' (i = 1, 2... M), may be different for each plot, the largest

number being n. Identify the slope of each segment, si, (j = 1, 2... n', i = 1, 2... M), by finding

the best linear fit lines to the data from both the ascending and descending curves. Since the

spring constant of the first Maxwell element only affects the slope of the first section, all other

slopes are constant regardless of the travel range. Define the slope of the first segment as a

function of input voltage,

sc,i(Frange,i) = sij

with Frange,i = Vi

i = 1,2 ... M ,

i = 1,2 ... M ,

where vi is the range of the ith input. Therefore, the slopes of the hysteresis curve in later cycles

can be expressed as

18

(14)

(15)



Sc,(Frange)

sci = n (16)
,2j i = 1,2 ... M

n!

The spring constants in later cycles can then be calculated by

kc,1(vi)- s1 1 -1- 1(Vi)~
k 0 1 1 --- 1 1 '

0 0 0 1 1
kc,nc -0 0 0 0 1] Sc,nc.

Recall that we select the first spring constant as a linear function of the input range of the most

recent half loop, kc,1 (Frange) = CiFrange + C2 . Therefore, we can find C1 and C2 by plotting

kc,1 versus V and obtaining the best linear fit line,

kc,i(Frange) = Ko,range + CFrange, (18)

where Ko is the offset and C is the slope of the line. The breakaway forces in later cycles can then

be calculated by [ c,(Frange)] 1.T 1 kc,i(Frange)]

fc, 2 = Ax2 kc,2  (19)

cknc - nc. kc,nc

(b) Local-Extremum Dependent Maxwell Model

(1) To identify the Local-Extremum Dependent Maxwell Model, we divide the hysteresis loops in

later cycles into ascending and descending curves. Create a plot containing the ascending curves

from all tests, while keeping descending curves from each test in a separate graph, as shown in

Figure 3-5, giving a total of M+1 plots. The descending curves are rotated by 1800 and both

ascending and descending curves are shifted to the origin for better visualization.
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Figure 3-5: v-x plots for construction of the Local-Extremum Dependent Maxwell Model.

Divide the hysteresis curves in later cycles into two categories: (a) one plot combining the

ascending curves from all tests, and (b) a set of plots of descending curves from each test.

(2) Divide the interval between origin and maximum x of each plot into segments of 2Ax. Note that

the number of segments for each plot, n (i = 1, 2... M+1), may be different for each plot, the

largest number being n,. Identify the slope of each segment, sj,, (i = 1, 2.. .n, i= 1, 2... M+1), by

finding the best linear fit lines to the data from all the curves in the plot. Define the slope of the

first segment as a function of input voltage,
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Sc,(Fextre) = Siji
Fextre = 0

Fextre = Vi, i = 1,2 ... M'

where vi is the maximum input of the ith test. Therefore, the slopes of the hysteresis curve in later

cycles can be expressed as

1(Fextre)

(21)

sc,

sc 1 = n i = 1,2 ... M + 1

The spring constants in later cycles can then be calculated by

1 1
1 1
0 1

0 0
0 0

kc,l (vi)- -1
c,2k 0

kc,3  =0

0
kc,nc- -0

[sc,1(vi)]

Sc,2
1 1 ~sc,3 ,

0 1- sc,nc.

(22)

Recall that we select the first spring constant as a linear function of the local extremum at the

beginning of the current ascending or descending curve, kc,1 (Fextre) = DiFextre + D2 -

Therefore, we can find D, and D2 by plotting kc,1 versus V and obtaining the best linear fit line,

kc,1 (Fextre) = Ko,extre + Cextre Fextre , (23)

where Ko is the offset and

be calculated by

C is the slope of the line. The breakaway forces in later cycles can then

e,(Fextre) 1
fc,2

fc,nc

1 -T kc,1(Fextre)1

=AX 2 kc,2 .

nc. kc,nc

(24)

4. Experimental Study of A Piezoelectric Actuator

To validate and compare the Input-Range Dependent and the Local-Extremum Dependent Maxwell

Models, a P-885.51 piezoelectric stack actuator manufactured by Physik Instrument (PI) was used for

experimental studies by examining the simulation results from the modified Maxwell models. The

manufacturer specifications give a nominal displacement of the piezoelectric actuator is 15um under an

input of I OOV with an electrical capacitance of 1.5uF and a resonance frequency of 70kHz".
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4.1 Experimental Setup

The piezoelectric stack actuator was attached to a fixed stage on one end with the other end free to move,

as shown in Figure 4-1. The laser interferometer (SIOS MeBtechnik GmbH SP-S 120 with a working

distance of 50mm) pointed at a piece of aluminum foil attached to the free end such that its high

reflectivity could ensure precise measurements of the displacement. The displacement of the free end was

measured at a sampling rate of 5000Hz. The actuator was excited with a set of triangular voltage

functions, as shown in Figure 4-2, with the input ranging from 0-10V, 0-15V, ... 0-75V, and 75-65V, 75-

60V, ... 75-5V, giving 4 sets of data for each of the input range of 10V, 15V, ... 75V. The input

frequency was 2Hz with 10 cycles per input voltage. The experiment under each input condition was

repeated 3 times.

The data from all input conditions were used for the construction of the two types of modified Maxwell

model using the methods described above. The data under the input of 0-65V were compared with the

simulation results from the obtained parameters in order to validate and evaluate the models.

Figure 4-1: Experimental setup. The piezoelectric actuator was fixed on one end with the

other end free to move. A laser interferometer pointed at a piece of aluminum foil attached

at the free end to measure the displacement.
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Figure 4-2: Input functions for model construction. The input ranges varied from I OV to
75V, with the initial input point at OV or 75V. Each test consisted of 10 cycles of the same
input condition and was repeated 3 times in the experiment.

4.2 Model Construction and Results

For each type of modified Maxwell model, the model parameters were obtained with the methods

described above with the numbers of elements in the initiation stages, no = 40, with corresponding Ax =

0.2947pm, or 1.96% of the nominal maximum travel. The spring constants are listed in Appendix A and

B. Note that the Maxwell parameters in the initiation stage as well as all but the first element in later

cycles are the same for both models.

To validate the influence of the input history on the hysteresis behavior, we compare the Maxwell

parameters of the first elasto-slide element obtained through the Input-Range Dependent Maxwell Model

and the Local-Extremum Dependent Maxwell Model, shown in Figure 4-3(a) and (b). Relating the first

spring constant to the input range of the most recent half loop, we got the function kc,(Frange) =

7.465 X 10- 3 Frange - 0.3578, and the r-square between the linear fit and the experimental data is

0.7716, whereas the dependence of the first spring constant on the local extremum at the beginning of the

current half loop gives kc,i(Fextre) = 9.906 x 10-4Fextre - 0.08757, with an r-square of 0.02972.

With a much higher r-square value, the linear dependence of kcl on the input range of the most recent

half loop, Frange, is much stronger than the linear dependence on the local extremum, Fextre. Therefore,

the Input-Range Dependent Maxwell Model is a promising choice of the modified Maxwell model and

was applied in simulation for validation in the following.
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Figure 4-3: Spring constants of the first elasto-slide element and their dependence on the
input history. (a) Applying the Input-Range Dependent Maxwell Model, the first spring
constant is a function of the input range of the most recent half loop, k, 1 (Frange) = 7.465 X
10- 3 Frange - 0.3578, and the r-square of the linear fit is 0.7716. (b) Applying the Local

Extremum Dependent Maxwell Model, the first spring constant is given by k, 1 (Fextre) =
9.526 X 10-4Fextre - 0.08523, with an r-square of 0.02972.

4.3 Simulation Results

Since the initial sections of the hysteresis curve show a much stronger dependence on the input range, the

simulations in the following sections were constructed with the Input-Range Dependent Maxwell Model.

Maintaining the same Ax = 0.2947pm as in the model construction, we constructed simulations of the

actuator displacements in response to triangular inputs of 0-65V, as shown in Figure X, with the
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parameters obtained through the Input-Range Dependent Maxwell Model. The comparison between

simulation results and the experimental data, the absolute error, and the percentage error are shown in

Figure 4-5(a)-(d). The largest absolute error is 0.25ptm, and the largest percentage error, which is defined

as the ratio between the absolute error and the maximum travel under the input, is 2.7 1%. Both the largest

percentage error occurred at the input voltage of 37.7V, when the actual displacement of the piezoelectric

actuator was 6.28ptm.

4.4 Comparison with the Classical Maxwell Model

To validate that the Input-Range Dependent Maxwell Model indeed improves the accuracy of hysteresis

modeling, a classical Maxwell model was constructed and the simulation results were compared. The

classical Maxwell model with 40 elasto-slide elements was identified from the hysteresis response under

the triangular input of 0-75V. The Maxwell parameters, as listed in Appendix C, were obtained with data

from both the initiation stage and later cycles, assuming that they remain constant through time.

With the identified classical Maxwell mode, a simulation of the hysteresis response under a triangular

input of 0-65V was constructed. The simulation results and errors are shown in Figure 4-5(e)-(h).

Comparing the simulation results with the modified model, or Figure 4-4(a) and (e), it is obvious that

simulation with the Input-Range Dependent Maxwell Model follows the actual hysteresis loop more

accurately. The maximum absolute error using the classical Maxwell model is 0.77pm and a maximum

percentage error is 8.29%, as compared with 0.25im and 2.71% using the modified Maxwell model.
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Figure 4-4: The triangular input of 0-65V at 2Hz used for model validation.
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Figure 4-5: Simulation results of hysteresis loop, displacement over time, absolute error, and
percentage error under a triangular input of 0-65V at a frequency of 2Hz using (a)-(d): the
Input-Range Dependent Maxwell Model, and (e)-(h): the classical Maxwell model. Both
models were constructed with 40 elasto-slide elements.

Reducing the percentage simulation error by 67% from 8.29% to 2.7 1%, the Input-Range Dependent

Maxwell Model is indeed more accurate than the classical model in modeling hysteresis behavior of the

piezoelectric actuator, and, therefore, is more ideal for hysteresis compensation in nano-positioning

applications.

5. Conclusions

New observations of the hysteresis behavior of piezoelectric stack actuators suggest that the actuator

behaves differently between the initiation stage and later cycles, and the hysteresis loop in later cycles is

affected by the input history, specifically the input range of the most recent half loop and the local

extremum input at the beginning of the current half cycle. We propose two types of modified Maxwell

model to relieve the limits of the classical Maxwell model and account for the new observations. Further

investigation of these two modified models suggests that the shape of the initial portion of a half loop has

a much stronger linear dependence on the input range than on the local extremum. By obtaining two sets

of parameters for the initiation stage and later cycles of the hysteresis behavior of piezoelectric stack

actuators, and selecting the spring constant of the first Maxwell elasto-slide element as a linear function

of the input range of the most recent half loop, the Input-Range Dependent Maxwell Model provides an

accurate model for simulating the displacement response of a piezoelectric actuator to input voltages. An

inverse of the modified model can be easily obtained for nano-positioning applications. Future work
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should include exploring a simple method to account for the effect of both the input range and the local

extremum, as well as investigating the influence of travel direction on the hysteresis behavior.
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Appendices

Appendix A: Input-Range Dependent Maxwell Model - Parameters in

the Initiation Stage

Spring Spring
Maxwell Constant Breakaway Maxwell Constant Breakaway

Element No. (V/pm) Force (V) Element No. (V/pm) Force (V)

1 0.6775 0.1997 21 0.0207 0.1281

2 0.7979 0.4703 22 0.2673 1.7330

3 0.559 0.4942 23 -0.0807 -0.5470

4 0.4258 0.5019 24 -0.3461 -2.4479

5 0.1909 0.2813 25 0.0755 0.5562

6 0.1529 0.2704 26 0.1876 1.4374

7 0.1104 0.2277 27 0.1591 1.2659

8 -0.0689 -0.1624 28 0.2395 1.9763

9 0.1312 0.3480 29 -0.091 -0.7777

10 0.1518 0.4474 30 -0.065 -0.5747

11 0.4707 1.5259 31 -0.0706 -0.6450

12 0.1381 0.4884 32 -0.196 -1.8484

13 0.1177 0.4509 33 0.07 0.6808

14 0.1752 0.7228 34 0.2916 2.9218

15 -0.2121 -0.9376 35 0.1027 1.0593

16 -0.1538 -0.7252 36 -0.1082 -1.1479

17 0.0953 0.4774 37 0.0593 0.6466

18 0.1328 0.7045 38 -0.0687 -0.7693

19 0.2242 1.2554 39 -0.2964 -3.4066

20 0.1453 0.8564 40 6.1268 72.2227
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Appendix B: Input-Range Dependent Maxwell Model - Parameters in

Later Cycles

Maxwell Spring Constant (V/ pm) Breakaway
Element No. Force (V)

Input-Range Dependent

I Maxwell Model* kc,1 (Franne) fc, (Frange)
Local-Extremum Dependent

Maxwell Model** kc,1 (Fextre) fc, (Fextre)

2 0.7053 0.4157

3 0.5323 0.4706

4 0.4077 0.4806

5 0.3362 0.4954

6 0.2647 0.4680

7 0.2355 0.4858

8 0.1922 0.4531

9 0.1792 0.4753

10 0.1325 0.3905

11 0.1170 0.3793

12 0.0958 0.3388

13 0.1068 0.4092

14 0.0440 0.1815

15 0.0459 0.2029

16 0.0753 0.3551

17 0.0380 0.1904

18 2.3520 12.4764

19 4.0409 22.6262

*Input-Range Dependent Maxwell Model:

kc,i(Frange) = 7.465 X 10- 3 Frange - 0.3578

fc,i(Frange) 2.200 X 10- 3 Frange - 0.1054

**Local -Extremum Dependent Maxwell Model:

kc,i(Fextre) = 9.526 X 10-4Fextre - 0.08523

fc,1(Fextre) = 2.807 X 10~ 4 Fextre - 0.02512
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Appendix C: Classical Maxwell Model Parameters

Spring Spring
Maxwell Constant Breakaway Maxwell Constant Breakaway

Element No. (V/[m) Force (V) Element No. (V/pm) Force (V)

1 1.3911 0.3823 21 0.1588 0.9164

2 0.6169 0.3390 22 0.3665 2.2157

3 0.4905 0.4044 23 -0.1828 -1.1554

4 0.4142 0.4553 24 -0.2071 -1.3659

5 0.2836 0.3897 25 0.2208 1.5169

6 0.2311 0.3810 26 0.0921 0.6580

7 0.1927 0.3707 27 -0.0656 -0.4867

8 0.2591 0.5696 28 0.3067 2.3599

9 0.1852 0.4580 29 0.064 0.5100

10 0.0897 0.2465 30 -0.285 -2.3495

11 0.1573 0.4755 31 -0.1419 -1.2088

12 0.1842 0.6074 32 0.0255 0.2242

13 0.0871 0.3112 33 0.3002 2.7223

14 0.0771 0.2966 34 0.183 1.7098

15 0.0938 0.3866 35 -0.2391 -2.2997

16 0.011 0.0484 36 -0.0591 -0.5847

17 0.0408 0.1906 37 0.1432 1.4560

18 -0.0271 -0.1340 38 -0.2757 -2.8790

19 0.0854 0.4459 39 -0.0761 -0.8156

20 -0.69 -3.7922 40 6.2385 68.5736
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Appendix D: Matlab Code for Obtaining Data
function [experimentsetup,time,V,Disp]=Readdata Disp(filename,gain,sense)

texperimentsetup = the setup of the experiment, indicated in the file name

Ctime = time stamp

= input voltage as a function of time
,Disp = displacement as a function of time
%gain = gain of the amplifier
Cfile name = the name of the .lvm file, including ".lvm" in the name

%sense = sensitivity of the laser interferometer

"first get the set up by truncating .lvm from the file name

experimentsetup=strtok(filename,'.');

ethis step reads .lvm file and put all data with colunm names into
"data.Segmentl"
%Data are stored in "data.Segmentl.data"
data=lvm import(filename,O);

%The first column is time
time=data.Segmentl.data(:,1);

bThe second column is the voltage input before going through amplifier

%The default output of the amplifier is 75V
%To get the voltage applied to the piezo, the second column needs to be

%multiplied by the amplifier gain, and add 75V

V=data.Segmentl.data(:,2)*gain+75;

VThe third column is the voltage measure by the laser interferometer

Vout=data.Segmentl.data(:,3);

%Now convert output voltage into positive values and start at 0
Vout=-(Vout-Vout(1));
Vout=Vout-min(Vout);

Itranslate output voltage to displacement, ratio unit is um/V

switch sense
case 0

ratio=0.24;
case 1

ratio=0.97;
case 2

ratio=3.87;
case 3

ratio=15.48;
case 4

ratio=61.9;
case 5

ratio=247.61;
case 6

ratio=990.44;
end
Disp=Vout*ratio;
end
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Appendix E: Matlab Code for Dividing Hysteresis Loop into Sections
function
[Vp2p,Disp p2p,V1,Displ,Vup,Dispup,Vdown,Dispdown,cycle]=directional2(file

name,gain,sense)
%V_p2p and Disp p2p includes all the sections

%Vl and Displ are voltage and displacement in the initiation stage

%Vup and Dispup are voltage and displacement in the ascending curves

%Vdown and Disp down are voltage and displacement in the descening curves

%% The first step is to read data from the file

[setup,time,V,Disp]=ReaddataDisp(filename, gain, sense);

%% Now find the number of peaks and the peaks' locations

%To find peaks of input, check the sign of

% (Vin(i)-Vin(i-1))*(Vin(i)-Vin(i+l)), if sign=+, then i is a local peak

%Notice that the first and last input are also local peaks

%find number of data points
n=length(V);

%the first peak is the first input

cycle number=1;
peak index(1)=l;
V_peak(l)=V(1);
Disppeak(l)=Disp(l);

%now check all data except for the last one

for i=2:n-1
if -l<sign((V(i)-V(i-1))*(V(i)-V(i+1)));

cycleInumber=cycle number+l;
peak index(cyclenumber)=i;

end
end

%the last peak is the last input
peak number=cycle number+1;
peak index(peak number)=n;

%% Now find each peak to peak sections of Vin and Vout

%the first index of (i)th cell is the (i)th peak

%the last index of (i)th cell is the (i+l)th peak

Vup={};
Disp up={};
Vdown={};

Disp down={};
up=O;
down=O;
for i=l:cycle number

V p2p{i}=V(peakindex(i):peak index(i+l));
Disp p2p{i}=Disp(peak index(i):peak index(i+l));

if i==1
Vl=V p2p{l};
Displ=Dispp2p{l};

else if Vp2p{i}(1)<V-p2p{i}(end)
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up=up+1;
Vup{up}=V p2p{i};
Dispup{up}=Disp-p2p{i};

else
down=down+1;
Vdown{down}=V p2p{i};
Disp-down{down}=Dispp2p{i};

end
end

end

Output how many forward and backward curves
cycle=[cycle number,up,down];

end
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Appendix F: Matlab Code for Identifying Slopes of Sections
function [setup,dx,s]=Maxwellconstmultiinput(filename,springN, gain,
sense)
%s is the cells containing of slopes from all sections
%dx is the displacement of each section
%file name is the data gathered in LabView
%spring N is the number of springs used to construct the model

%gain is the gain of amplifier
%sense is the sensitivity of the laser interferometer

%% The first step is to read data from the file
[setup,time,Vraw,Disp raw]=ReaddataDisp(file name, gain,sense);
[V p2p,Disp p2p,V1, Displ, V up, Disp up, V down,
Dispdown,cycle]=directional2(filename,gain,sense);

cycle number=cycle(1);
up number=cycle(2);
downnumber=cycle(3);
%% second, define the each sub-sections used to construct model
dx=range(Disp raw)/spring N;
x=cell(l,cyclenumber); %the segment points for each curve
N=zeros(cyclenumber,l); %number of springs for each curve

%define the first set to be the initiation stage, the 2~upnumber+l sets to

%be the ascending stages, and the rest to be the descending stages.
Disp=cell(1,cycle number);
V=cell(1,cycle number);
Disp{1}=Displ;
V{1}=Vl;
x{l}=min(Disp{l}):dx:max(Disp{1});
N(1)=length(x{l})-isinteger(range(Disp{l})/dx);

for i=2:upnumber+l
Disp{i}=Disp up{i-1};
V{i}=Vup{i-1};
x{i}=min(Disp{i}):2*dx:max(Disp{i});
N(i)=length(x{i})-isinteger(range(Disp{i})/(2*dx));

end
for i=up-number+2:cyclenumber

Disp{i}=Dispdown{i-upnumber-1};
V{i}=V down{i-up number-1};
x{i}=max(Disp{i}):-2*dx:min(Disp{i});
N(i)=length(x{i})-isinteger(range(Disp{i})/(2*dx));

end

Now find the slope for each section
s=cell(l,cyclenumber); %s includes slopes for all the sections

for i=l:cycle number
'first cut each curve into sections
j=1;
point=length(Disp{i});
x model=cell(1,N(i));
F model=cell(l,N(i));

36



for m=l:point
if i<=upnumber+1&&j<N(i) ethe first curve and all the forward curves

j=j+(Disp{i}(m)>x{i} (j+1));

elseif j<N(i) %downward curves
j=j+(Disp{i} (m)<x{i} (j+1)

end

x_model{j}=[x-model{j};Disp{i}(m)];
F model{j}=[F-model{j};V{i}(m)];

end

s{i}=zeros(N(i),1);

for j=1:N(i)

p=polyfit(xmodel{j},F model{j},1);

s{i}(j)=p(1);
end

end

end
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Appendix G: Matlab Code for Identifying Spring Constants under
Different Input Conditions
function [k,f,savg,N]=Minorloop k(s,dx,repeat,rangenumber)
%k is a cell of spring constants for each range
%f is a cell of breakaway forces
%s avg is the average slope of each segment
%N is the number of elements
%s is the slope of all sections
%dx is the displacement of one segment
%rangenumber is the number of input ranges

%% find average slopes
sectionnumber=2*rangenumber+l;
s_avg=cell(l,sectionnumber);

s_avg{l}=s{l};
for i=2:sectionnumber

s sum=0;
for j=2:repeat-1

m=(i-2)*10+j;
delement=length(ssum)-length(s{m});
if ismatrix(ssum) && delement<O

s_sum=[s_sum;s{m}(end+delement+1:end)];
elseif delement>O

s{m}=[s{m};ssum(end-delement+l:end)];
end
S sum=s sum+s{m};

end
s_avg{i}=ssum/(repeat-2);

end

%% find k and f
N=zeros(sectionnumber,1);
k=cell(1,section number);
f=cell(1,sectionnumber);

for i=l:section number
N(i)=length(savg{i});

end
N_max=max(N);

for i=l:section number
if N(i)==NmaxII N(i)==l

A=triu(ones(N(i)));
k{i}=A\s avg{i};
f{i}=k{i}*i*dx;

elseif N(i)>=N max-2 11 N(i)<=3
A=triu(ones(N(i)));
k{i}=A\savg{i};
k{i}=k{i}(l:end-1); %ignore the last one since it could be the sum of

all other springs
f{i}=k{i}*i*dx;

elseif N(i)>=4
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A=triu (ones (N (i)));

k{i}=A\s avg{i};
k{i}=k{i}(l:end-2); -ignore the last two since they could be the sum

of all other springs

f{i}=k{i}*i*dx;

end

end

end
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Appendix H: Matlab Code for Finding Relationships between Spring
Constants and the Input History and Creating Plots

file={'5-75-5 Step5 sense3 test 1.lvm','5-75-5 Step5 sense3 test 2.lvm','5-

75-5 Step5 sense3 test 3.lvm'};

test number=3;

sense=3;
gain=7.5;
repeat=10;
stepup-number=15;

range number=29;

sectionnumber=2*rangenumber+1;
Vstart 75=zeros(sectionnumber,2);

Vstart_75(:,2)=[ones(l+range number,l);-1*ones(range-number,1)];

Vstart_75(:,1)=[zeros(stepupnumber+1,1);[70:-

5:5]';[5:5:75]';75*ones(stepup-number-1,1));

V raw=cell(l,testnumber);

Disp raw=cell(l,testnumber);

setup=cell(1,test number);

s sec=cell(1,testnumber);

k=cell(l,testnumber);

f=cell(1,testnumber);

s=cell(1,testnumber);

N=zeros(sectionnumber,testnumber);

k_avg=cell(1,sectionnumber);
s_avg=cell(1,section number);

f_avg=cell(1,sectionnumber);

Disp-range=zeros(testnumber,1);

springN=zeros(testnumber,1);

%% Make sure all dx are the same for all tests

spring N(1)=40;

for i=1:testnumber
[setup{i},time,Vrawli},Dispraw{i}]=Read dataDisp(file{i},gain,sense);

Disp range(i)=range(Disp-raw{i});

end
dx=Disp range (1)/springN(l);

spring_N(2:end)=Disp-range(2:end)/dx;

%% find the parameters for each test

for i=l:test number

[setup{i},dx,ssec{i}]=Maxwellconstmultiinput(file{i},springN(i),

gain, sense);

for j=152:582
s sec{i}{j-l}=ssec{i}{j};

end
[k{i},f{i},s{i},N(:,i)]=Minor loopk(ssec{i},dx,repeat,range-number);

end

%2 Use savg to calculate k

for i=1:3
s new{i}={s{i}{

3 :1 6} s{i}{1
8 :3 0} s{i}{32:45} sfi}{47:59}};

end
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s avg=zeros(19:1);
s sum=zeros(19,1);
s_number=zeros(19,1);

for i=1:19
for j=1:3

for p=l: 5 4

if length(snew{j}{p})>i Illength(snew{j}{p})==19
s_sum(i)=ssum(i)+snew{j}{p}(i);
s_number(i)=snumber(i)+1;

end
end

end
s avg(i,1)=s sum(i)/s number(i);

end
A=triu(ones(19));
k_avg=A\savg;

%% Find the spring constant function k=AV(range)+B
kl=zeros (54,1);
for i=1:54

kl(i)=(k{1}{i}(1)+k{2}{i}(1)+k{3}{i}(1))/3;
end
Vrange=[[10:5:75]';[10:5:70]';[10:5:75]'; [10:5:70]'1;
[Vrangesort,Vorder]=sort(Vrange);
k1_sortrange=kl(Vorder);
p=polyfit(Vrange sort,klsort range,1);
A_range=p(1)
B_range=p(2)

figure
plot(Vrangesort,klsortrange,'o', [-4 80], [Arange*(-4)+B range

A_range*80+Brange]);
xlabel('Input Range (V)','fontsize',14)
ylabel('Spring Constant (V/um)','fontsize',14)
xlim([0 80])
ylim([-0.65 0.35])
legend('kl: Experiment','ki: Linear fit','location','northwest')

% Find the spring constant function k=AV(extremum)+B
Vextre=[zeros(14,1);[65:-5:5]';[10:5:75]';75*ones(13,l)];
[Vextresort,Vorder]=sort(Vextre);
k1_sort extre=kl(Vorder);

p=polyfit(Vextresort,kl sort extre,1);
A_extre=p(1)
B extre=p(2)

figure
plot(Vextresort,klsortextre,'o', [-4 80]

A_extre*80+Bextre]);

xlabel('Local Extremum (V) 'fontsize',14)

ylabel('Spring Constant (V/um)', 'fontsize'

xlim([-4 80])
ylim([-0.65 0.35])
legend('kl: Experiment', 'kl: Linear fit','

,[A extre*(-4)+Bextre

,14)

location', 'northwest')
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Appendix I: Matlab Code for Simulation with Input-Range Dependent
Maxwell Model
function [Vmodel,
D model]=Maxwellsimulaterange(dx,
V_model=Vin;
Vrange=range(Vin);
k_avg(l)=Arange*Vrange+Brange;
xl=dx*[i:length(kini)]';
x cycle=2*dx*[l:length(k avg)]';
Al=triu(ones(length(kini)));
sl=Al*k ini;
A_cycle triu (ones (length (kavg)));

s_cycle=A-cycle*kavg;

k ini,k avg,A_range,B range, Vin)

%% Divide Vin into sections

%To find peaks of input, check the sign of

%(Vin(i)-Vin(i-1))*(Vin(i)-Vin(i+)), if sign=+, then i is a local peak

%Notice that the first and last input are also local peaks

%find number of data points

n_point=length (Vin);

%the first peak is the first input

peak number=1;

peak index(l)=l;
Vin peak(l)=Vin(i);

%now check all data except for the last one

for i=2:length(Vin)-l
if -i<sign((Vin(i)-Vin(i-1))*(Vin(i)-Vin(i+l)));

peak number=peaknumber+1;
peak index (peaknumber)=i;
Vinpeak(peaknumber)=Vin(i);

end
end

%the last peak is the last input

peak number=peak number+i;
peak index(peaknumber)=n-point;
Vinpeak (peak_number)=Vin(n-point);

%number of cycles is peak number-1

cycle number=peaknumber-1;

%% First simulate the initiation section

% Calculate the total force at which a block moves

Ni=length(k ini); %total number of blocks

Fl=zeros (Ni, 1);
Fl (1)=xi (1) *si (1);
for i=2:Nl

Fl(i)=Fl(i-1)+sl(i)*(x (i)-x (i-1)

end
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,now find how many blocks move

blockindexl=find(Fl-(Vinpeak(2)-Vinpeak(l))>0,1); cthe 1st block that
doens't move
if isempty(block indexl)

block indexl=N1; if all blocks move, treat the last part as linear

sprintf('Error: Exceeds model range');

end

if block indexl==1 %no block moves
D_model=Vin/sl(1);
return iwhen no block moves, the function stops here

else

for i=l:block indexl-1
breakptl(i)=find(Vin-Fl(i)>0,1);

end

D-model(l:breakptl(1))=Vin(l:breakptl(1))/sl(l);

if block indexl>=3
for i=2:block indexl-1

D_model(breakptl(i-l)+1:breakptl(i))=D_model(breakptl(i-

1))+(Vin(breakptl(i-1)+l:breakptl(i))-Vin(breakptl(i-1)))/sl(i,l);
end

end

D model(breakptl(end)+l:peak index(2))=D model(breakptl(end))+(Vin(breakptl(e

nd)+l:peak-index(2))-Vin(breakptl(end)))/sl(blockindexl,1);
end

D_model=Dmodel';

%% Now simulate other cycles

We need to treat the forward and backward sections differently

first calculate how much change in input force will make a block move

notice that x is the same for both directions

N-cycle=length(kavg);
F_cycle=zeros(Ncycle,1);
F_cycle(l)=xcycle(1)*scycle(l);

for i=2:Ncycle
F_cycle(i)=F-cycle(i-1)+scycle(i)*2*dx;

end

Then we find how many blocks move in each section and find Vout

if cyclenumber>1
for cycle=2:cyclenumber

points=peak-index(cycle)+l:peakindex(cycle+l); %,index of the points

in this section

dVin=Vin(points)-Vin(peak index(cycle));

"ascending sections

if mod(cycle,2)==l
find how many blocks move

indexup=find(Fcycle-max(dVin)>0,1); the 1st block that doens't

move

if isempty(indexup)
indexup=N cycle; eif all blocks move, treat the last part

as linear
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sprintf('Error: Exceeds model range');

end

%now we can simulate the displacement

if indexup==1 %no block moves
D_model(points)=dVin/scycle(l)+Dmodel(points(1)-1);

else
for i=l:indexup-1

breakup(i)=find(dVin-Fcycle(i)>0,1)+peakindex(cycle);
if isempty(nonzeros(dVin-Fcycle(i+1)>O))

break
end

end
lastblock=i; %the last block to move

%Divide the section into 3 subsections, first block, other

%blocks, and after the last moving block

D_model(points(1):breakup(1))=Dmodel(points(1)-

1)+dVin(1:(breakup(1)-points(1)+1))/scycle(1);
if indexup>=3

for i=2:lastblock
D_model(breakup(i-l)+1:breakup(i))=Dmodel(breakup(i-

1))+(Vin(breakup(i-1)+1:breakup(i))-Vin(breakup(i-1)))/s-cycle(i);
end

end

D_model(breakup(end)+1:points(end))=D model(breakup(end))+(Vin(breakup(end)+1

:points(end))-Vin(breakup(end)))/scycle(lastblock);

end

%descending sections

else

%find how many blocks move
indexdown=find(Fcycle-max(abs((dVin)))>0,1); %the 1st block that

doens't move
if isempty(indexdown)

indexdown=N cycle; %if all blocks move, treat the last

part as linear

sprintf('Error: Exceeds model range');

end

%now we can simulate the displacement

if indexdown==1 %no block moves
D_model(points)=dVin/scycle(l)+Dmodel(points(1)-1);

else
for i=l:indexdown-1

breakdown(i)=find(abs(dVin)-
F cycle(i)>0, 1)+peak-index(cycle);

if isempty(nonzeros(abs(dVin)-Fcycle(i+l)>O))
break

end
end
lastblock=i; ,the last block to move

%Divide the section into 3 subsections, first block, other

%blocks, and after the last moving bl
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D_model(points(1):breakdown(l))=Dmodel(points(1)-
1)+dVin(1:(breakdown(l)-points(1)+l))/scycle(1);

if indexdown>=3
for i=2:lastblock

D_model(breakdown(i-

1)+l:breakdown(i))=Dmodel(breakdown(i-1))+(Vin(breakdown(i-
1)+1:breakdown(i))-Vin(breakdown(i-1)))/scycle(i);

end
end

D_model(breakdown(end)+1:points(end))=Dmodel(breakdown(end))+(Vin(breakdown(
end)+l:points(end))-Vin(breakdown(end)))/s-cycle(lastblock);

end
end

end
end
end
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Appendix J: Matlab Code for Construction of the Classical Maxwell
Model
function
[experimentsetup,s,x,k,F]=Maxwellconstruct(filename,spring_N,gain,sense)
%experiment setup includes min and max Vin, frequency of Vin & cycle number
%peak index is the index of peaks
%s is the column vector of slopes
%x is the column vector of Disp locations where one spring gives up

%k is the column vector of stiffness of each spring

%F is the column vector of the breakout force of each spring

%file name is the data gathered in LabView
%spring N is the number of springs used to construct the model

%gain is the gain of amplifier
%sense is the sensitivity of the laser interferometer

%% The first step is to read data from the file
[experimentsetup,time,Vin,Disp]=Read dataDisp(file name, gain,sense);

%% Now find the number of peaks and the peaks' locations

%To find peaks of input, check the sign of

%(Vin(i)-Vin(i-1))*(Vin(i)-Vin(i+l)), if sign=+, then i is a local peak

%Notice that the first and last input are also local peaks

%find number of data points
n=length(Vin);
%the first peak is the first input
peak number=l;
peak index(l)=l;
Vin-peak(l)=Vin(l);
Disp peak(1)=Disp(1);
%now check all data except for the last one
for i=2:length(Vin)-1

if -l<sign((Vin(i)-Vin(i-1))*(Vin(i)-Vin(i+1)));
peak number=peaknumber+l;
peak index(peaknumber)=i;
Vinpeak(peaknumber)=Vin(i);
Disppeak(peaknumber)=Disp(i);

end
end
%the last peak is the last input
peak number=peaknumber+l;
peak index(peaknumber)=n;
Vinpeak(peaknumber)=Vin(n);
Disppeak(peaknumber)=Disp(n);

%% Now create cells arrays of Vin and Vout

%The dimension of the cell arrays is (spring number N) by (peak number-1)

%such that each row contains the period between two peaks
%and the (i)th cell in a row corresponds to the (i)th section used in the

,model
Maxwellforce=cell([peaknumber-l,springN]);
Maxwell disp=cell([peak number-1, springN]);
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%first, find each peak to peak sections of Vin and Vout

%the first index of (i)th cell is the (i)th peak
sthe last index of (i)th cell is the (i+l)th peak

for i=l:peaknumber-1

Vinpkpk{i}=Vin(peak_index(i):peakindex(i+l));
Voutpkpk{i}=Disp(peak index(i):peak index(i+l));

end

-0 second, define the each sub-sections used to construct model

Voutrange=max(Disp)-min(Disp);

sectionlength=Vout range/springN; %find the length of each section

section limit=min(Disp):sectionlength:max(Disp);

'the Vout location where each spring gives up is the same as section limit

x=sectionlimit(2:end)';

now divide each section according to the section limits

%the first pk-pk will be divided into N sections, with Disp divided

%according to the section limits

Ythe rest pk-pk sections will be divided into sub sections whose section

%lengths are 2*section length

the first pk-pk needs to be divided into N sections

%if Vout(i)>=section limit(j) and Vout(i)<section limit(j)+l, then Vout(i)

%belongs to the jth cell of the first row of Maxwellout, and the

%corresponding Vin belongs to the jth cell of the first row of Maxwell-in

j=1;
for i=l:length(Voutpkpk{1})

if (VoutpkTpk{l}(i)-section limit(j)>O)&&(Voutpkpk{l}(i)-

section limit(j+l)>O)

j=j+1;
end
Maxwell disp{l,j}=[Maxwell disp{l,j} Vout_pk_pk{l}(i)];

Maxwellforce{l,j}=[Maxwellforce{l,j} Vin_pk_pk{l}(i)];

end

% Now divide the rest pk-pk sections

%for even pk-pk sections, the direction of Vin and Vout is the reverse of

%the first section, therefore the first cell corresponds to the last

isection limit

'for odd pk-pk sections, the direction of Vin and Vout is the same as the

cfirst section, therefore the first cell corresponds to the first

%sectionlimit

for i=2:peak number-1
input number=length(Voutpkpk{i}); :find how many input points

are in this section

j=1;

if mod(i,2)==O
-for even pk-pk sections, compare the kth point of Voot_pkpk{i}
twith section limits in the reverse order

,i.e. if the kth point falls between section limit(end) and

section limit(end-2), it goes to the 1st cell in the ith row

for k=l:input number
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if ((Voutpkpk{i} (1)-
Voutpk pk{i}(k))>2*j*sectionlength)&&((Voutpkpk{i}(1)-
Voutpkpk{i}(k))<=2*(j+l)*sectionlength)

j=j+1;
end
Maxwelldisp{i,j}=[Maxwelldisp{i,j} Vout pk pk{i}(k)];

Maxwell force{i,j}=[Maxwell force{i,j} Vinpk pk{i}(k)];

end
else

%for odd pkk-pk sections, compare the kth point of Vout pkpk{i}

%with section limits in the same order

for k=l:inputnumber
if ((Voutpkpk{i}(k)-

Voutpkpk{i}(l))>2*j*sectionlength)&&((Voutpkpk{i}(k)-
Voutpkpk{i}(l))<=2*(j+l)*sectionlength)

j =j +1;
end
Maxwelldisp{i,j}=[Maxwelldisp{i,j} Voutpkpk{i}(k)];

Maxwell_force{i,j}=[Maxwell_force{i,j} Vinpkpk{i}(k)];

end
end

end

%% now we need to find the slope of each cell

%create a matrix of slopes such that slope(i,j) is the slope corresponding

%to the jth cell of ith spring
%if the cell is empty, then no slope is added to the vector

slope=zeros(spring N,peak number-1);

for i=l:spring N
for j=l:peaknumber-1

if isempty(Maxwell force{j,i})=l
p=polyfit(Maxwelldisp{j,i},Maxwell force{j,i},l);

slope(i,j)=p(1);
end

end
end

%% now we need to find the matrix k for springs

%first find the slope for the ith section such that the mean square root

%error is the smallest for slope(:,i)

%therefore, the slope s(i) would be then mean of nonzero slope(:,i)

s=[];
for i=l:spring N

s(i) =mean(nonzeros(slope (i,:)));
end

S=A*K where A is a upper matrix of ones

A=triu(ones(springN));
s=s';
k=A\s;
%% now we need to fine the breakout forces F

F=diag(k)*x;

end
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Appendix K: Matlab Code for Simulation with the Classical Maxwell
Model
function [modelcheck, Vin model, Dispmodel]=Maxwellsimulate(F, s, k, x,
gain, Vin, spring N)
%springcheck outputs if enough springs are used to generate the model

%Vin model is the same as Vin, aka Maxwell force, used to create the model

%Vout model is the simulated Vout, indicating displacement

%s is the slope of each section
%F is the column vector of breakout forces

%k is the column vector of Maxwell stiffnesses
'x is the column vector of Vin where a spring gives up

%spring N is number of spring used in the model

Vin model=Vin;

%% First find how many springs give up

%First I find the total force of each breaking point

Ftotal(1)=sum(k)*x(1);

for i=2:spring N
Ftotal(i)=Ftotal(i-l)+sum(k(i:end))* (x(i)-x(i-1));

end

Ftotal=Ftotal';

%now I compare Vin with Ftotal and find the last spring to give up

spring index=find(Ftotal-max(Vin)>0,1);

%% Before simulating the hysteresis, we check if the model is sufficient for

modeling Vin

%lst case: Vin max is smaller than the first Ftotal

%in this case, no spring breaks

if springindex==1
modelcase=1;
%2nd case: more than one block move

else if spring index<=springN
modelcase=2;
%finally, Vin max is bigger than Ftotal max.

%in this case, all spring break in the end.

else if isempty(springindex)==l
modelcase=3;

spring index=springN;

end

end
end

end

Now we find how many peaks, aka cycles, are in the input

sTo find peaks of input, check the sign of

% (Vin(i)-Vin(i-1))*(Vin(i)-Vin(i+l)), if sign=+, then i is a local peak

4Notice that the first and last input are also local peaks

"find number of data points

n=length(Vin);

the first peak is the first input
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peaknumber=l;
peak index(1)=1;
Vinpeak(l)=Vin(l);

%now check all data except for the last one

for i=2:length(Vin)-1
if -l<sign((Vin(i)-Vin(i-1))*(Vin(i)-Vin(i+l)));

peak number=peaknumber+1;
peak index(peaknumber)=i;
Vinpeak(peaknumber)=Vin(i);

end
end

%the last peak is the last input
peak number=peak_number+i;
peak index(peaknumber)=n;
Vinpeak(peaknumber)=Vin(n);

%number of cycles is peak number-1
cycle number=peaknumber-1;

%% Now we find the Vout associated with each model case

%note that f=kx, therefore x=f/k for each spring

switch modelcase
case 1 %no spring breaks

Disp-model=Vin/s(1);

case {2,3} %some or all springs break

%in the first cycle, it takes Ftotal for each spring to break

cycle=1;

for i=l:spring index-1
breakpoint(i)=find(Vin-Ftotal(i)>0,1);

end
%note: in the case where all springs break according to the model,

%we treat it as if the last spring doesnt break till the end

Disp-model(:breakpoint(i))=Vin(1:breakpoint(l))/s(1);

for i=2:springindex-1
Dispmodel(breakpoint(i-

1)+i:breakpoint(i))=Disp model(breakpoint(i-1))+(Vin(breakpoint(i-
1)+i:breakpoint(i))-Vin(breakpoint(i-1)))/s(i);

end

Disp model(breakpoint(end)+i:peak index(2))=Disp model(breakpoint(end))+(Vin(

breakpoint(end)+1:peak_index(2))-Vin(breakpoint(end)))/s(springindex);

%after the first cycle, it takes 2*F for each spring to break

%and the first spring to break is always the first spring

if cycle_number>i
breakpoint=0;
for cycle=2:cyclenumber

%the direction of input matters in determining Vout

%therefore we need to check the direction of input.
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points=peak index(cycle)+l:peakindex(cycle+l);
deltaVin=Vin(points)-Vin(peakindex(cycle));

%an odd cycle's direction is the same as the first cycle

if mod(cycle,2)==l
for i=l:spring index-1

breakpoint(i)=find(deltaVin-
2*Ftotal(i)>0,1)+peakindex(cycle);

if isempty(nonzeros(deltaVin-2*Ftotal(i+l)>0))

break

end
end

2*Ftotal(i)>0,1)

,an even cycle's direction is the opposite of the first

else

for i=l:spring index-1

breakpoint(i)=find(abs(deltaVin)-

+peakindex(cycle);
if isempty(nonzeros(abs(deltaVin)-2*Ftotal(i+l)>0))

break

end

end
end
spring last=i;

1)+deltaVin(l:

1)+1:breakpoint

1)+1:breakpoint

%the last spring to give up

%now that we have the breakpoints, we can calculate Vout

Disp model(points(1):breakpoint(l))=Disp model(points(1)-

(breakpoint(1)-points(1)+1))/s(1);

for i=2:spring last

Disp model (breakpoint(i-
(i))=Disp model(breakpoint(i-1))+(Vin(breakpoint(i-

(i))-Vin(breakpoint(i-1)))/s(i);

end

Dispmodel(breakpoint(end)+l:points(end))=Disp model(breakpoint(end))+(Vin(br

eakpoint(end)+1:points(end))-Vin(breakpoint(end)))/s(spring last+l);

end
end
Disp-model=Disp-model';

end
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