
Wheel Design Optimization for Locomotion in

Granular Beds using Resistive Force Theory

by

James Slonaker

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Mechanical Engineering

Q LC-) U)

CLLJ D

co~

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

Massachusetts Institute of Technology 2015. All rights reserved.

Author
Signature redacted
i-I Department of Mechanical Engineering

May 8, 2015
Z, A,

Signature redacted
C ertified by

Ken Kamrin
Assistant Professor of Mechanical Engineering

Thesis Supervisor

Signature redacted
A ccepted by ...

Anette Hosoi

Associate Professor of Mechanical Engineering
Undergraduate Officer

I

77 Massachusetts Avenue
Cambridge, MA 02139
http://Iibraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to

provide you with the best copy available.

Thank you.

The images contained in this document are of the
best quality available.

MITLibraries

2.

Wheel Design Optimization for Locomotion in Granular Beds

using Resistive Force Theory

by

James Slonaker

Submitted to the Department of Mechanical Engineering
on May 8, 2015, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Mechanical Engineering

Abstract

The application of Resistive Force Theory to further understand the dynamics of
wheeled locomotion through granular materials was explored. Resistive Force Theory
is a new terradynamic model that simplifies the calculation of the forces applied to
bodies moving through granular media because it utilizes linear superposition and is
easily scalable to any material of interest. First, a MATLAB simulation was created
to test different wheel designs rotating through sand. The designs tested include a
four-spoke design, consisting of four treads that have a hinge halfway down their
length set to a specific angle, and a "superball" design, consisting of different solid
shapes defined by the "superball" equation. The average velocity and power were
found for each case to find an optimal design. It was found that four-spoke designs
with an angle 6 < 1800 were optimal as they reached the highest velocities, while
requiring the least power.

Next, dimensional analysis was performed to find a global scaling relationship for
the RFT wheel designs. Scaling laws for the power and velocity were found that allow
different wheel designs and conditions to be simulated with an entirely new system.
Using the simulation, it was found that the scaling law for a tire rotating on Mars
could be tested on Earth up to a high degree of accuracy. Physical experiments, using
3D printed wheels and a sand testing bed, were carried out to further validate the
scaling relationship. Both four-spoke and "superball" designs were tested and seem
to show the general scaling trend expected.

Thesis Supervisor: Ken Kamrin
Title: Assistant Professor of Mechanical Engineering

3

4

Acknowledgments

I would like to thank several people who helped me along this journey to complete

my undergraduate education and specifically this research. First and foremost, I

would like to thank Professor Kamrin who has not only helped guide the direction

of this research, but has also served as a invaluable mentor to me. His advice on

graduate school, career directions, and life in general have been a great source of

insight, especially while navigating this intense education. I am extremely glad that he

choose to ask me to work with him after only interacting with me through classwork.

I can safely say that this decision has altered my life trajectory for the better.

I would also like to thank Carrington Motley and Carmine Senatore, who were

both great sources of help in the lab. Without their work and expertise, none of

the experimental results could have been achieved. A special thanks to Carmine for

building the entire experimental rig that we used. In addition, I would like to thank

Professor Iagnemma for providing the lab space in which we were able to perform all of

our experiments. Having a dedicated lab definitely aided our ability to test. Finally,

I would like to thank Sachith Dunatunga, whose knowledge of remote computing

proved extremely useful while I was studying in Italy, and Amy Guyomard who laid

the groundwork for the MATLAB simulations.

5

6

Contents

1 Introduction 13

1.1 Resistive Force Theory (RFT) . 14

1.1.1 Early Terramechanical Models 14

1.1.2 Stress Plots . 14

1.1.3 RFT Scalability . 16

1.1.4 Applying RFT . 18

1.2 MATLAB Simulation . 19

1.2.1 Stress Plot Expansion . 19

1.2.2 Simulation Inputs and Initialization 20

1.2.3 Integration of Equations of Motion 21

1.2.4 Average Velocity and Power 23

2 Simulation Applications 25

2.1 Four-Spoke .. 25

2.1.1 Initial Optimization . 26

2.1.2 Changing Length . 28

2.1.3 Changing Mass . 33

2.1.4 Optimal Design . 35

2.2 Superballs . 37

2.2.1 Shape Optimization . 39

2.3 Global Scaling Relations . 41

2.3.1 Dimensional Analysis . 41

2.3.2 Defining (Using Plasticity . 43

7

2.3.3 Functional Scaling Law

2.3.4 Non-Intuitiveness of Scaling Law

2.3.5 Simulation Verification......

2.3.6 Time Based Scaling Law.....

2.4 Triangle

2.4.1 Mathematical Derivation

2.4.2 Simulation Testing.........

2.4.3 Rotating Optimum

2.5 Further Exploration

3 Experimental Validation

3.1 Experimental Setup

3.2 Cylindrical Wheels

3.2.1 Experimental Results

3.3 4-Bar Wheels

3.3.1 Experimental Results

3.4 Further Experimentation

A Simulation Code

A.1 Four-Spoke Animation Code

A.2 Four-Spoke Function (FunctionVODEFourBar)

A.3 "Superball" Animation Code

A.4 "Superball" Function (FunctionVODEShapesShadow)

8

44

45

45

46

. 48

. 48

. 50

. 5 2

. 5 5

57

. 57

. 58

. 59

. 60

. 62

. 65

67

67

76

79

88

List of Figures

1-1 Forces in the x and z direction measured for different 0 and Y.[1].

1-2 Stress per unit depth plots in the x and z direction.[11

1-3 Scalable stress per unit depth plots.

1-4 "C" shaped leg with linear segments marked darker.[1]

1-5 Extended stress per unit depth plots.

1-6 Linear interpolation of point where vz = 0.

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

2-13

2-14

2-15

2-16

General four-spoke design.

Velocity and Power contour plots.

Velocity and Power contour.

Velocity and Power contour plots for varying lengths. .

Contour plots for varying lengths.

Velocity and Power contour plots for varying masses. .

Contour plots for varying masses.

Maximum velocity and power tire designs.

"Superball" shapes for different x values.

"Superball" Velocity contour plot.

"Superball" Power contour plot.

"Superball" Velocity and Power contour plot.

Arbitrarily shaped wheel design.

Position scaling. .

Velocity scaling. .

Horizontally pulled curve.

9

15

16

17

18

20

23

25

. . . . 27

. . . . 28

. . . . 30

. . . . 32

. . . . 34

. . . . 35

36

. . . . 38

. . . . 39

. . . . 40

. . . . 41

. . . . 42

. . . . 47

. . . . 48

. . . . 49

2-17

2-18

2-19

2-20

2-21

2-22

2-23

2-24

3-1

3-2

3-3

3-4

3-5

3-6 Power measurements.

10

Optimal curve.

"Triangle" tread design pulled horizontally.....

Force (F) and torque (T) plot.

Force to torque ratio (F/T).

"Triangle" wheel design.

"Triangle" wheel velocity contour plot.

"Triangle" wheel power contour plot.

"Triangle" wheel velocity and power contour plot.

Cylindrical wheels.

Velocity measurements.

Power measurements.

Four-spoke wheels.

Velocity measurements.

. 50

. 51

. 51

. 52

. 53

. 53

. 54

. 55

. 59

. 59

. 60

. 61

. 64

. 6 5

List of Tables

1.1 Generic Coefficients .

Effect of Length on Maximum Angle

Effect of Mass on Maximum Angle

Simulation Inputs

Simulation Outputs

Cylindrical Wheel Inputs . .

Four-Spoke Wheel Inputs.

Four-Spoke Masses.....

Four-Spoke Drawbar Forces

Small Wheel Results

Large Wheel Results

11

. 17

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

31

34

46

46

. 5 8

. 6 1

. 6 2

. 6 2

. 6 2

. 6 3

12

Chapter 1

Introduction

The engineering principles of Solid and Fluid Mechanics have been developed over

years, such that the interaction of bodies with a solid or fluid can be explained, pre-

dicted, and optimized. When an object comes into contact with a solid, the resultant

forces can be solved for with knowledge of the material properties and dynamics of

the object. Similarly, when a body moves through a fluid, such as a plane moving

in air or a submarine moving through water, the lift, drag, and thrust forces can be

solved for.

In contrast, modeling bodies as they interact with granular media, such as sand,

dirt, and gravel, is a relatively young field. The dynamics of granular materials, which

flow once the yield stress is exceeded, is more complicated as they exhibit both solid

and fluid properties.[1J The variety of the particle shapes, sizes, and densities makes

it difficult to model as each particle interacts with each other through dissipative

contact forces. Models, such as granular plasticity, do exist for granular flows, but

simulating interactions between bodies and granular media is usually very compu-

tationally intensive. Processes, such as the Discrete Element Method (DEM), often

require each individual particle to be tracked and accounted for, which can make it

very difficult to simulate complex situations.

In 2013, Chen Li et al. proposed a new "terradynamic" model to explain the inter-

action of bodies with non-cohesive granular materials called Resistive Force Theory. [11

This theory, originally developed to model animal legged locomotion, is not very com-

13

putationally demanding, but has been validated by numerous experiments.[1] Under

the right conditions, Resistive Force Theory can be used for quick and detailed anal-

ysis of the interactions that bodies moving through granular media experience. This

thesis seeks to expand the application of Resistive Force Theory to examine its use

in predicting and optimizing the wheel design of vehicles moving through granular

media.

Section 1.1 explains the background and formulation of Resistive Force Theory.

Section 1.2 expands upon this foundation by describing the simulation created in

MATLAB to apply RFT to wheeled locomotion. Chapter 2 focuses on the opti-

mization routines and scientific principles that were explored through the simulation.

Chapter 3 discusses the validation of these ideas, through physical experiments and

their results.

1.1 Resistive Force Theory (RFT)

1.1.1 Early Terramechanical Models

Before Resistive Force Theory, two types of terramechanical models were used to

simulate locomotion through granular media. The first approximated the object's

interaction with the media as a horizontal flat plate.[1] The second assumed that the

resistive forces experienced by the object were purely a function of the object's depth

and area.[1] Both of these models, though, neglected that the resistive forces also

depended on the objects orientation and velocity direction.[11 Therefore, these early

models were not able to accurately represent the resistive force profile.

1.1.2 Stress Plots

To improve upon earlier methods, Chen Li et al. first assumed that the net forces

on an object could be well approximated by linear superposition of the resistive forces

on infinitesimally small segments.[11 This assumption was corroborated by earlier

experiments that they had performed.[1] To utilize this linear superposition property,

14

they first needed to create the stress profile of a flat plate moving through sand in

different directions and orientations. To do this, they measured the lift (F2) and drag

(F) forces on a plate at different angles of attack (3) and angles of intrusion (y) as

shown in Figure 1-1.[11

Figure 1-1: Forces in the x and z direction measured for different 3 and y.[11

Varying the angle

the angle of intrusion

forces were measured,

the plate, as shown in

of attack changed the orientation of the plate, while varying

changed the direction of the velocity of the plate. Once the

the stress could be found by dividing the force by the area of

equation 1.1.

U-2,x = f''
A

(1.1)

Finally, since the resistive forces were proportional to the depth of the intruding

object, the stresses were modeled per unit depth. The resistive forces depend on

the depth because the frictional forces between the granular particles scale with the

"hydrostatic-like" pressure.[1] Therefore, the stress was modeled as shown in equation

1.2.

-2,x(Iz|, ,Y) = I azx(/ , Y)zI if z < 0.

0, if z > 0.
(1.2)

After all the measurements were performed, the resistive stress plots could be

15

constructed as shown in Figure 1-2.

a. (N/cmn)

P30

-I2 -W/20

7

Figure 1-2: Stress per unit depth plots in the x and z direction.[1]

1.1.3 RFT Scalability

Chen Li et al. repeated the flat plate intrusion test with different non-cohesive

granular materials and found that the general patterns were very similar, even though

the magnitudes differed.[1J Thus, they performed a discrete Fourier transform of the

stress profiles to obtain scalable fitting functions, which are shown as equations 1.3

and 1.4.[11

afit(/,) = 1[Amcos2w(MO+ + Bmsin27r(3+ 2)]
m=-1 n=O

afit(#,) = 1 O+Cm+cos22(+ 7) + Dm,nsin2l(+)

m=-1 n=O

(1.3)

(1.4)

The fitting functions have generic coefficients, which can be multiplied by a scaling

factor (() to reflect individual materials. The generic coefficients are shown in Table

1.1.

16

Iaz
0.3

iri2
.o (N/cm3)

0 130

0.1

0

0

7
zf2 Iqz

a,

9

1 4 1-0.1

W, P (XX

Table 1.1: Generic Coefficients

Generic Coefficient Value
Ao,o 0.206
A1,o 0.169
B1,1 0.212
B0 ,1 0.358

B-1,1 0.055
C1,1 -0.124
CO,1 0.253

C-1,1 0.007
D1,o 0.088

the generic scalable

1-3.

0

Y

functions, the stress per unit depth plots are recreated

en"k (N/cm 3)
/2

0'

-j/2

-X/2

taxM /2

0 j0

0

Y

""a x $

/20

ii/2 %

Figure 1-3: Scalable stress per unit depth plots.

This scalable stress profile is extremely useful, as it allows the entire stress profile

of a new granular material to be inferred from a single measurement. Chen Li et

al. observed that the ratio of the maximum vertical stress from the experimental

and fitted data was nearly constant for all materials.[1] The ratio of maximum ver-

tical stresses, which occurs when a plate is oriented horizontally and moved straight

downward, can be approximated as x as shown in equation 1.5.

17

Using

in Figure

I

X = az(0, lr/2)/af{"(0, 7r/2) - 1.26 0.14

Therefore, to find the scaling factor (() for a particular material and thereby the

entire stress profile, one only has to measure the stress when the plate is oriented

horizontally (3 = 0) and moved straight downward (-y =7r/2) as shown in equation

1.6.[1}

c a2(0,7r/2)/X ~ 0.8az(0, 7r/2) (1.6)

Once the scaling factor, and therefore the entire resistive force profile, is deter-

mined, it can be used to predict the forces experienced by objects interacting with

the particular granular material.

1.1.4 Applying RFT

Using the scaled stress plots, the resistive forces acting on an intruding body

can be approximated by applying the linear superposition principle. For instance,

to estimate the resistive force on the actuating leg shown in Figure 1-4, one can

discretize the object into small linear segments that have specific angles of attack,

angles of intrusion, depths, and areas and use the stress plot to calculate the force

on each segment.[1] The total resistive force on the object is then the sum of the

individual forces on each smaller segment.

.0d &vae

Figure 1-4: "C" shaped leg with linear segments marked darker.[1f

To ensure that the linear superposition assumption holds, Chen Li et al. compared

the measured forces on an actual "C" shaped body to the integration of the RFT

18

(1.5)

predictive forces on the same body as shown in equation 1.7.[1]

Fc az,x(03,YS)IzjdA, (1.7)

They found the results were a large improvement over the earlier terramechanical

models and therefore supported their assumptions about RFT.

1.2 MATLAB Simulation

A MATLAB simulation was created to expand the RFT theory, proposed by Chen

Li et al., to apply it to wheeled vehicular locomotion. A few different tire designs

were simulated, so this section will only provide an overview of the general principles

used. The entire code is available in Appendix A for complete analysis.

1.2.1 Stress Plot Expansion

The first step to applying the RFT framework is to expand the general stress

plots. The plots produced in Figure 1-3 only display values for -7r/2 < 3 7r/2

and -7r/2 < y 7r/2. This is the full range of 3, however the full range of -y

extends from -7r/2 < 'y < 37r/2. Therefore, the plots had to be extended. Using

logical symmetrical arguments, for instance that the az (-7r/4, -7r/4) = a,(7r/4, 57r/4)

and a.,(-7r/4, -7r/4) = -a,(7r/4,57r/4), it was discovered that the original scalable

equations presented in 1.3 and 1.4 were valid over the full range of -y. Thus, the stress

plots were reproduced to reflect the full range as shown in Figure 1-5.

19

AlphaZ [N/m3] X AlphaX [N/mai X l

-1 0 1 2 3 4 1 0 1 2 3 4
Gamma [radi Gamma rradl

Figure 1-5: Extended stress pcr unit depth plots.

1.2.2 Simulation Inputs and Initialization

With the full RFT framework available, the simulation could now be created. The

first step in the simulation is to define the inputs and constants necessary. In the

MATLAB simulation the wheel is assumed to be rotating alone, i.e. with no attached

vehicle, at a fixed rotation rate and with a fixed mass. Therefore, the required

inputs include the tire mass, fixed rotation speed, initial position and velocity of the

wheel, and the gravitational acceleration. Details about the tire design including

a characteristic length, the width of the wheel in the plane, and the wheel design

parameter (discussed in Chapter 2) are also required. Finally, the sealing factor for

the particular granular material and the number of discretized segments are needed.

One other input that was later added is the drawback force, which provides a constant

force in the x-direction that helps to simulate the tire moving up or down an incline,

as it essentially "tilts" the gravity field. With the required inputs, the first step in

the simulation is to initialize the design. Based on the wheel design parameters, the

starting Cartesian coordinates of the midpoints of each discretized segment are found.

Next, the initial fi angle values are calculated for each segment.

20

1.2.3 Integration of Equations of Motion

To simulate the actual rotation and locomotion of the wheel, the equations of

motion are integrated using the ode45 solver in MATLAB. The integrated function

is built of the form of equation 1.8, where the initial conditions, along with the

initialization parameters (IP), are input and the output is of the form of the derivative

of the initial conditions.

x ,IP) (1.8)

vz z

Power Energy

Within the actual function, the inputs are used to create a 7 column index matrix.

The first column consists purely of the number assigned to each individual segment.

The second and third column correspond to the new x and z coordinates of the rotated

tire after some time-step (t). These coordinates are found using the rotation matrix,

where the angle the tire is rotated is equal to the fixed rotation rate (w) multiplied by

the time-step. This is shown in equation 1.9, where the i subscript denotes it is after

the time-step, while the o subscript denotes it is before the time-step. The values

without any subscript reflect the position of the axle, or wheel center, rather than

the segment midpoint.

Xi]] cos(wt) + sin(wt) 1 0 (1.9)

Zi Z - sin(wt) + cos(wt) ZO

Columns 4 and 5 correspond to the velocities in the x and z direction of the

segments after the time-step. These are solved for by calculating and adding the tan-

gential velocity that the fixed rotation of the wheel provides, as shown in equations

1.10 and 1.11.

21

vX,4 = W(zi - Z) + vX (1.10)

V2,4 = -W(Xi - x) + v2 (1.11)

Column 6 corresponds to the new 3 values, which are calculated by adding the

rotation of the tire (wt) to the original value. Some manipulation is required to keep

the # values in the range of -- F/2 < 3 7r/2 as shown in equation 1.12.

{' + wt if 0 + wt < 7/2. (1.12)

3 +wt - w if 30 +wt > 7/2.

Finally, column 7 corresponds to the new -y values which are calculated by taking

the arctangent of the velocity in the z direction over the velocity in the x direction.

Similar to the 0 calculation, the code is set up to ensure that the -y stays in the range

-7/2 < -y 37r/2 as shown in equation 1.13.

arctan(-"+) if VX i < 0.
74 = (1.13)

arctan() + if VpX > 0.

Using this index of values, the function then calculates the stress per unit depth

acting on each segment by plugging in the angles of attack and intrusion into the

scalable RFT formula from equations 1.3 and 1.4. Next, this stress per unit depth in

the x and z direction is converted to the forces in each direction using the segment

length (L) and the tire width (W), as shown in equations 1.14 and 1.15. The code

also ensures that the force is set to zero if the z-position of the segment is above the

surface of the granular material as there is no resistive force in that case.

f, = -azLWzi (1.14)

fX = -axLWzi (1.15)

Using the position vector of the midpoint of each segment and crossing it with the

22

forces obtained, gives the torque that acts on each segment. The total torque and

forces in both directions acting on the entire wheel can then be found by summing

the individual elements acting on each segment. Finally, the outputs are solved for

as shown in equation 1.16, where DB is the drawback force, m is the tire mass, T is

the total torque, and all other parameters are defined above.

ax Fx,tot-DB

Fz,tot-mg

V = VX (1.16)

vz vz

Power WT

1.2.4 Average Velocity and Power

Once the function is integrated by the ode45 solver over the simulation duration,

an array of velocities (v, vIZ), positions (x, z), and energies dissipated (E) at each

time-step (t) is output. With these outputs, the average velocity in the x-direction

(vxavg) and the average power expended (Pavg) can be calculated. As the wheel

translates, it eventually reaches a steady state, where it oscillates with a constant

period and amplitude. Using this property, the time-steps where the velocity in the z

direction (v,) change from negative to positive are found. These represent instances

where a new period of oscillation is beginning. These time-steps are not right at the

point when v2 = 0, though, so the values at that point need to be linearly interpolated,

as shown in Figure 1-6.

VX=0

(ti, V)

Figure 1-6: Linear interpolation of point where vz = 0.

23

To do so, first the local slope (m,) between the points (ti, v,) and (ti 1 , vz,i+1)

is calculated. This is done as shown in equation 1.17.

m
2

Vz =-z~~ - Vzi (1.17)
ti+1 - ti

This process is repeated to find the local slope between the same two points for

the (t, x) plot, mx, and (t, E) plot, mE, as well. Using these slopes, the time, to, at

the point where v, = 0 is found as shown in equation 1.18.

to = vi (1.18)

Next, the x-position, x0 , and the energy dissipated, Eo, at that instance can be

interpolated as shown in equations 1.19 and 1.20.

Xo = m * (to - ti) + xi (1.19)

Eo = mE * (to -ti)+E (1.20)

Using these interpolated values at each instance where vz = 0, Vx,atg and Pavg

can be calculated. The averages are calculated over arbitrarily chosen steady state

period numbers, shown here as u and v, that are high enough to ensure the wheel has

reached steady state, as shown in equations 1.21 and 1.22.

Vx,azyg - - (1.21)
tov - toU

Pavg - EoV -E , (1.22)
tov - tou

24

Chapter 2

Simulation Applications

Using the basic simulation framework described in Chapter 1, different wheel

shapes and designs could be simulated. As mentioned, the designs must be such that

they have a single wheel design parameter. The various designs used in this research

will be discussed in the sections below.

2.1 Four-Spoke

The first wheel design simulated was a simple four-spoke one, where each spoke

is assumed to have a hinge halfway down its length. The hinge can be bent at any

angle 0, as shown in Figure 2-1.

Figure 2-1: General four-spoke design.

The dimensionless wheel design parameter in this design is the spoke bend angle

25

0. The characteristic input length is defined as half the total spoke length, or the

distance from the axle to the bend. Using this design, various angles, lengths, masses,

and rotation speeds were simulated to attempt to find an optimal and least optimal

angle.

2.1.1 Initial Optimization

The initial optimization routine involved simulating over a range of angles (0)

and rotational velocities (w), while keeping the tread length, mass, and other inputs

constant. Using MATLAB's parallel computation ability, the Vx,avg and Pavg were

calculated for every wheel in this design space. With this data, average power and

velocity contour plots could be constructed. The first simulation tested over the range

of angles from 450 < 0 < 315' and rotational velocities from 3 < W K 7.5 radians

per second. In reality, RFT is only expected to be accurate over the range of angles

90' < 0 K 2700 because as the two bars approach 0' or 360', RFT will assume that

the force on the bar is double, when in reality the two bars are in essence becoming a

single one. Therefore, RFT is not expected to be valid for acute angles, however the

range was extended for instructive purposes.

For this simulation, the length was set to 0.25 meters, the mass to 68 kilograms,

and there was assumed to be no drawback force. The contour plots for the x-direction

velocity and power are shown in Figure 2-2. The black stars marked on the contour

plots represent the angles at which the velocity and power are maximized for each

rotational speed. Conversely, the red stars represent the angles at which the velocity

and power are minimized.

26

Velocity [m/s] Power [W)

7 7 000

2
2500

2000

3 5
EE
0 1C0

44 100

30.5 3 soo
1 2 3 4 5 1 2 3 4 5

Theta [rad] Theta [rad]

(a) Vx,avg Contour (b) Pavg Contour

Figure 2-2: Velocity and Power contour plots.

It was found that designs with an angle less than 180' were able to generate

the highest velocity. Conversely, designs with an angle greater than 1800 required

the most power. To determine the optimal angle that minimizes power for a given

velocity vx, both contours are plotted. The optima, defined as the points in which

the gradients of the contour plots are parallel, occur at local tangency points of the

contour plots. These were found in the code by taking the cross product of the

gradients of each plot. Whenever the cross product was below a certain threshold

(close to zero), it was approximated as a point of tangency and a point (shown as a

blue dot) was plotted. This is shown in Figure 2-3.

27

Contours

2.4
7-

65

E
1.2

4. - -I--

4

3.5 - - .-.. -. -..
x 0.6

1 1.5 2 25 3 3.5 4 4.5 5

Theta [rad]

Figure 2-3: Velocity and Power contour.

The optima occur around 860, which is not within the ideal range of RFT usage.

This plot is still very useful, though, as one can follow a given velocity contour and

manually find at which angle the power is minimized.

2.1.2 Changing Length

After the initial optimization, further exploration was performed to determine if

changing the tread length had any effect on the optimal wheel design. Using the

same range of angles and rotational velocities, the simulation was performed again

for different lengths varying from 0.25m to 1m. The mass (68kg) and all other inputs

remained constant. The velocity and power contour plots for each case are shown in

Figure 2-4.

28

Velocity [m/s] o

7.

6-

5

E
0

4-

3-9

7-

S6-

5

E
0

4-

3.

7

6

5

4

E3
0

2

1

7-

2

6-

1.5
5 .

E1 4
4.

0.5

2.5

2

1.5

1

2 3 4 5
Theta [rad]

(c) Length:-0.35m
Velocity [m/si

I

1 2 3 4 5
Theta [rad]

(e) Length=0.51n

3-

7.

%6,

5.

E
0

4

3-

1 2 3 4

Theta (radi

(b) Length=0.25n

Power [W}

5

2 3 4
Theta [rad]

(d) Length=0.35m

Power [W)

7

6

:~5

u4

E3
0

2

1
2 3 4 5

Theta [rad]

(f) Length=0.5m

29

2 3 4 5
Theta [rad]

(a) Length=0.251n
Velocity [m/si

3000

2500

2000

1500

1000

500

5000

4000

3000

2000

1000

10000

8000

6000

4000

20

Power [W}

Velocity [m/s] Power [W) x 104

1 2 3 4 5
Theta [rad]

(g) Length-0.651n
Velocity [M/s]

I 7-

5,

E
0

3-

9

8

1 2 3 4 5
Theta [rad]

(h) Length-0.65m

Power [W)

7-

5-

v -

E.
0

4-

3-

1 2 3 4 5
Theta [rad]

(i) Length=0.75mn
Velocity [mis]

I 12

10

6

4

7-

ev

5-

E
0

4-

3-

2 3 4 5
Theta [rad]

(j) Length=z0.75m

Power [W}.

1 2 3 4 5
Theta [rad]

(1) Length-1.00m

Figure 2-4: Velocity and Power contour plots for varying lengths.

30

-6

Iv5-

E
0

4-

3-

I21.5

0.5

7

04

6

v 5.
El
0

4-

3-

I:5

2

1.5

1

0.5

4
7

6

5

4

2

7-

6-

5-E

01

4-

3-
2 3 4 5

Theta [rad]

(k) Length=1.00n

The average of the angles that produced the maximum, within the

validity, are taken for each case. The results are shown in Table 2.1.

Table 2.1: Effect of Length on Maximum Angle

Length Maximum Velocity Maximum Power
0.25m 158.910 224.570

0.35m 158.480 219.130
0.5m 161.250 233.750
0.65m 160.220 237.170
0.75m 162.390 237.610
1.00m 163.700 237.610

Overall 160.830 231.640

range of RFT

Increasing the length seems to slightly increase the angle that produces the max-

imum velocity and power, however it is clear the designs with 6 < 1800 produce the

highest velocity and designs with 0 > 1800 require the highest power. The contour

plots for all cases are plotted together in Figure 2-5.

31

Contours

7--

6-1-

5- --
0

4.5

4 -

3.5-

3
1 1.5 2 25 3 3.5 4 4.5 5

Theta [rad]

(a) Length=0.25m
Contours

7--

65 -

45 -

4 -

3.5L-

3

7-

115

6-

5.5 -

4-

1 1.5 2 25 3 3.5
Theta [rad]

4 4.5 5

(c) Length=0.5m
Contours

1 15 2 25 3 3.5 4 45 5
Theta (rad]

(e) Length=0.75m

24

22

2

1.8

1.6

14

2

46

Contours

7

S- 5
4.5 -

4--

3-
1.15 2 25 3 3.5 4 4.6 5

Theta [rad)

(b) Length=0.35m

4.5

5

45.5

55

~ 5

4,5-

4-

3.5-

7

Contours

-'

-I

-/

1 1.5 2 25 3 3.5
Theta (rad]

3.5

PS

2

1.5

5

4.

4 4.5 5

(d) Length=0.65m
Contours

- --

1.5 2 25 3 3.5

Theta [rad]

4 45 5

(f) Length=zz1.00m

Figure 2-5: Contour plots for varying lengths.

32

3

1

7

as

5.5-

4.5

4-

2.1.3 Changing Mass

The same type of experiment was performed to determine the effect of changing

the mass. In this case, the same angle and rotational velocity ranges were used, while

the length was kept constant at 0.5m. The mass was varied from 68kg to 200kg.

Again, the velocity and power contour plots are shown in Figure 2-6.

Velocity [m/si
ruv Lii

7-

W6.

5,
E
0

4

3

7.

-6

(5U

E
0

4

3

2 3 4 5
Theta [radi

(a) Mass=68kg
Velocity [m/si

I5

4

I

1 2 3 4
Theta [rad]

(c) Mass=100kg

3

2

7-

36 -

5-
E
0

4-

1

10000

8000

6000

4000

2000

2 3 4 5
Theta [rad]

(b) Mass=68kg

Power [W

7-

5

E0
4.

3-

5

12000

10000

8000

6000

4000

2000

1 2 3 4 5
Theta [rad]

(d) Mass=-100kg

33

UOwerI LW

Velocity Im/sJ
Power [W}

I 7-

6

5-

E
0

4-

3-

1 2 3 4 5
Theta [rad]

(e) Mass=150kg
Velocity [m/s]

I 7.

-6

5

E0
4

3
1 2 3 4 5

Theta [rad]

(g) Mass-200kg

1 2 3 4 5
Theta [rad]

(f) Mass=150kg

Power [W)

1 2 3 4 5
Theta [rad]

(h) Mass-200

Figure 2-6: Velocity and Power contour plots for varying masses.

The average of the angles that produced the maximum for each case are shown in

Table 2.2.

Table 2.2: Effect of Mass on Maximum Angle

Mass Maximum Velocity Maximum Power

68kg 160.870 2350

100kg 158.48o 221.740

150kg 157.170 219.130
200kg 157.390 223.260

Overall 158.480 224.780

34

7.

6,

5

E
0

4

I 16000

14000

12000

10000

8000

6000

4000

2000

E
4-

3

x 104

0.5

1

Changing the mass does not appear to drastically change the maximum angle. It

also seems to confirm the idea that designs with 0 < 1800 achieve greater velocities

and designs with 9 > 1800 require the highest powers. The contour plots for all cases

are again plotted together in Figure 2-7.

Contours

--15 2 2 3 3. 4 4. 5

1 t5 25 3 .3 4 4. 5
Theta [rad)

(a) Mass=68kg
Contours

-

- 5 2 2 . 45 5- <~.1
1 15 2 2 3 3. 4 4. .5

Theta [rad]

(c) Mass=150kg

55

5

4.5

4

3.5

3

25

15

Contours

65

0

4--

3.5

1 1.5 2 25 34&5 5 5
Theta [radi

(b) Mass=100kg
Contours

65 6

55

45,-

4.5

3
1 1.5 2 25 3 3.5 4 4,5 5

Theta (rad]

(d) Mass=200kg

5

4,5

4

3.5

3

2.5

Figure 2-7: Contour plots for varying masses.

2.1.4 Optimal Design

In the design space for which RFT is expected to be physically valid, 900 < <

2700, it is clear from the simulations that regardless of length, mass, or rotational

velocity, the optimal design occurs when 9 < 1800. These wheels are able to generate

35

7-

5.5

0 -

4.

4-

3.5

7-

&5-

5

4.5-

4-

3.5-.

5

3.5

.

25

2

1.5

5

"L5

4

3.5

1'5

t

I

higher velocities while expending less power for given rotational velocities. Conversely,

designs with 9 > 1800 produce lower velocities and require higher power. The wheel

design that produces the maximum velocity is at approximately 9 = 1600, while the

design that requires the maximum power is at approximately 0 = 2300. Both of these

designs, assumed to be rotating clockwise, are shown in Figure 2-8.

-PNNNNN-00 \ *4

(a) Max Velocity 0 = 160' (b) Max Power 0 = 230'

Figure 2-8: Maximum velocity and power tire designs.

There are several proposed reasonings for this effect. Chen Li et al. tested with

"C" leg designs, like that seen in Figure 1-4, as well as ones that rotated the other

direction and "clawed" into the sand.[1] What they found is that the "claw" design

was much less efficient because it not only reached greater depth into the sand, which

caused higher resistive forces as the forces are proportional to depth, but also because

it reached higher stress regions of the RFT plot.[1] The four-spoke design with 0 >

180' is believed to produce a similar effect, as it claws into the sand and expends

more power overcoming higher resistive forces, so it is not able to reach as high a

velocity.

Conversely, wheels with 0 < 1800 drive more efficiently. This effect is believed

to be due to the fact that these designs better distribute forces, which reduces the

magnitude of stresses that act on them. This is very similar to the practice of reducing

the air in one's tire when driving a car on the beach. By increasing the flexibility

36

of one's tire, the forces can be better distributed to reduce the peak stress. These

designs, and likewise a deflated tire, do not reach as large depths because of this better

force distribution, which allows them to face smaller resistive forces. Therefore, they

require less power to overcome these forces and can reach higher velocities.

2.2 Superballs

Expanding upon the simple four-spoke design, the next wheel geometry tested in

the simulation were "superballs." The shape of the "superball" wheels are defined by

the shape parameter x, as shown in equation 2.1.

I2X + |2X =1 (2.1)

When x = 1, the equation becomes that of a circle with radius R. As x decreases

to 0.5, the shape becomes a square. As it decreases more, the sides of the square

become concave. Conversely, when X -+ oo the shape approaches that of a square

again. The actual wheels are the "superball" shapes with a fixed width into the plane.

A plot with the shapes of different X values plotted is shown in Figure 2-9.

37

.02-

0-

-i

Superballs a

-05 0 0.

-"x=O.3

x=0.7
xc=l

sr=1.5x=200 01

Figure 2-9: "Superball" shapes for different x values.

The characteristic input length for this tire design is the effective radius R, used

in equation 2.1. With this input geometry, a similar process as that used for the

four-spoke design could be used. Other than replacing the angle 0 with the shape

parameter x and replacing the tread length L with the effective radius R, one more

step was needed to utilize the simulation.

Unlike the four-spoke design, where resistive forces from the granular media could

act on both sides of the tread, the superball shapes are assumed to be filled in solid

wheels. Therefore, the simulation needed to be altered slightly so that resistive forces

act only on the outside of the wheel, and not within it. This was achieved by cal-

culating the outward normal vector of each discretized segment of the wheel shape.

Within the integrated function, the dot product of the outward normal vector and

the velocity vector was taken at each time-step. If that dot product was negative,

meaning the outward normal vector was in the direction opposite that of motion,

then any resistive force on that segment was assumed to be zero. Essentially, this

38

-~~~~ --- .. ----- -- --.- --

assumed that any surface that was moving away from the sand, rather than pushing

into it, does not generate any resistive forces.

2.2.1 Shape Optimization

Similar to the four spoke design, a range of rotational velocities (w) and shape

parameters (x) were simulated to find the average velocity and power. The rotational

velocities were tested over the range of 3 < w < 7.5 radians per second, while the

shape parameters were tested over the range from 0.3 < X < 3. The results are shown

in Figures 2-10 and 2-11.

Velocity [mis]

7-

6.5-

6-

5.
E
0

4.5.

4.

3.5

3-
0.5 1 1.5 2 2.5

x

Figure 2-10: "'Superball" Velocity contour plot.

6.5

6

5.5

5

4.5

4

3.5

P.5

2

39

Power [WI

1800
7.+

6.5 1600

6 1400

05.5
200

5-

6000
4a.

4 0

3.5 60

3
0.5 1 1.5 2 2.5

Figure 2-11: "Superball" Power contour plot.

The simulation indicates, that at high rotational speeds the minimum velocity

occurs when x = 1.1, while the maximum power occurs when x = 0.7. Conversely, at

low rotational speeds, the minimum velocity occurs when x = 0.3 and the maximum

power occurs at y = 0.9. Further analysis is required to determine why these optima

occur where they do, however it is clear that unlike the four spoke design, the optima

do seem to change as the rotational velocity changes. Both contours are shown in

Figure 2-12.

40

Contours

7 -. .5

65-

.5.56-
a-5

E
0 -

.5

2.5

3.5-
25

0.5 1 1.5 2 2.5
x

Figure 2-12: "Superball" Velocity and Power contour plot.

2.3 Global Scaling Relations

Building upon these previous simulation results, we believed that the simplicity

of RFT might allow for the derivation of global scaling laws. Finding ways to model

both the velocity (V,) and power (P) of a wheel design by testing with a completely

different one could be incredibly useful in future terradynamic applications.

2.3.1 Dimensional Analysis

First, to perform dimensional analysis of the system the inputs have to be defined.

Rather than using any specific shape design, an arbitrarily shaped wheel, such as that

shown in Figure 2-13, is used.

41

Figure 2-13: Arbitrarily shaped wheel design.

The wheel boundary is defined by the polar set r = Lf(0), where L is the char-

acteristic wheel length and f the function which gives the wheel design parameter.

The wheel is assumed to have a mass m and rotate at some constant rotational ve-

locity w. The wheel has an out of plane thickness defined by D and is acted upon by

a gravitational acceleration g. There is assumed to be a horizontal drawback force

Fdrau, acting on the axle. Finally, the type of granular material the wheel is moving

through is defined by the RFT scaling constant (. Due to the nature of RFT, the

dependence on (and D arises from the product (D, which can be simplified into a

single variable. Using these inputs, the average horizontal velocity and power can be

written as functions O, and V'p as shown in equations 2.2 and 2.3.

Vag = ,'(w, L, f, m, g, Fdra., (D) (2.2)

Pavg = 4'(w, L, f, m, g, Fdraw, CD) (2.3)

Next, non-dimensional groups can be written using L, m, and w as the character-

istic length, mass, and time units. The groups are defined in equations 2.4, 2.5, and

2.6.

_

= 2

(2.4)
Lw2

42

Fdraw - mg (2.5)

D =DL 2

(2.6)
mg

This leads to the global scaling forms shown in equations 2.7 and 2.8.

g mg (DL 2
Vavg = Lw ,(f, g ,) (2.7)

Lw 2 Fdraw mg

2W3 g mg)DL 2

Pavg m235(,) (2.8)
Lw 2 ' Fdraw mg

2.3.2 Defining (Using Plasticity

The scaling constant (could be further expanded, though, using Plasticity theory.

Within Plasticity, it is understood that the only external properties that affect the

force of a body intruding into a granular material is the density of the sand p, the

gravitational acceleration g, the coefficient of friction of the sand P, and the coeffi-

cient of sand material interface . Therefore, the RFT scaling constant (could be

rewritten in these terms. Using dimensional analysis, the relation shown in equation

2.9 was derived.

pg (p, P.) (2.9)

Therefore, the global scaling relations can be rewritten as shown in equations 2.10

and 2.11.

v =LW (f, , , P(w)DL2 (2.10)
LU2 Fdraw

2 ag mg Pl(I p, pU)D L 2

Pavg = mL w 3 9(f, , g Fdra ,) (2.11)
w O lLW21 Fdraw 5 M

43

2.3.3 Functional Scaling Law

Using the scaling relations defined in equations 2.10 and 2.11 a functional scaling

law can be found. First, to reduce the complexity of the law, the shape and type

of sand are assumed to be constant. This means the wheel shape parameter (f)

and the sand type ((p, p.) and p) remain constant, resulting in a three degree of

freedom system. We therefore introduce three scaling factors A, B, and C as defined

in equation 2.12.

=Ag, I = BL, fn = Cm (2.12)

Utilizing the global scaling relations, we can solve for the scale factors for the

other non-constant inputs as shown in equation 2.13.

A

V
7A

C

0 = -- w, Fraw = CAFrawD) = D (2.13)
() B' B2

Inputting these scale factors back into the global scaling relations, we can derive

the functional scaling laws as shown in equations 2.14 and 2.15.

Vavg(W , L, f, m, g, Fdraw, (A, p), D, p)

1 A C (2.14)
vavg(wBL, f,Cm, Ag, CAFraw, i , G), -D, p)

A B B B 2

Pavg (w, L, f, m, g, Fraw, (p, w), D, p)

1 A (2.15)
C ~Pavg(-w, BL, f, Cm, Ag, CAFdraw, (, [Lu,), iD, p)

C A/ VA_ B B2

This means for instance, to test how a wheel design would behave on Mars, one

could test a different design on Earth as long as the scaling law is fulfilled. So, to sim-

ulate changes in the gravitational acceleration, one needs only to change accordingly

the other inputs w, L, m, Fdraw, and D.

44

2.3.4 Non-Intuitiveness of Scaling Law

As a first check of the scaling laws derived in equations 2.14 and 2.15, the case

where a cylindrical wheel is rolling without slipping on a solid surface ((-+ 00) can

be used. In this case, one would expect the velocity of both cases to scale purely with

the length over the time scale. Therefore, multiplying the length BL by the rotational

velocity Aw gives an expected scaling of v/iAi, which is what is found. The power,

in the rolling without slipping case, would be 0 for both tires, so the scaling law again

holds.

Similarly, in the case of a non-round wheel rolling without slipping on a solid

surface, one would expect that the velocity would scale the same as the cylindrical

wheel. The power, though, would be expected to scale with the torque, defined as the

length BL multiplied by the mass Cm and gravity Ag, multiplied by the rotational

velocity Ww. Therefore, the expected power scaling would be CAv/{H, which is

exactly what is found.

Although these scaling relations are valid in both these cases, they are not intu-

itive. For instance, one would expect the velocity to scale with w and L, but it is

not expected that changing the mass, gravity, and thickness of the wheel would have

any effect. This relationship between the mass m and the thickness D is especially

interesting, because it seems to come directly from RFT. This scaling could not be

found using only Plasticity.

2.3.5 Simulation Verification

This scaling law was tested within the simulation. Using the four-spoke design,

one wheel was assumed to be on mars, with the other on Earth. All three scaling

factors A,B, and C were varied. In this case, A = 2.644, B = 5, and C = 8. The

inputs for both tests are shown in Table 2.3.

45

Table 2.3: Simulation Inputs

Input Mars Wheel Input Earth Wheel

w 250/sec Tw 18.180/sec

L 0.1m BL 0.5m

f 1500 f 1500
m 50kg Cm 400kg

g 3.71m/s2 Ag 9.81m/s 2

Fdraw 0.5N CAFraw 10.58N

(pp,,) 0.2626 ((ft, yW) 0.2626
D 0.2m -D 0.064m

p 1 p 1

The velocity and power results for each test, along with the expected velocity and

power is shown in Table 2.4.

Table 2.4: Simulation Outputs

Mars Output Mars Wheel Earth Output Expected Earth Output Earth Wheel

VX 0.07331m/s vFAB, 0.26655m/s 0.26655m/s
P 7.91W C Av AZBP 608.59W 608.64W

The results match exactly what the scaling law would predict up to three signifi-

cant figures for the power and up to five significant figures for the velocity.

2.3.6 Time Based Scaling Law

This scaling effect can not only be applied to the average output velocity and

power, but it can also be used to find a parameter at any instant of time. This

means, with the velocity, position, and time at every step of two scalable designs,

one can alter the time and multiply by a scaling factor to replicate the entire time

dependent trajectory. From the dimensional analysis, we know that the time scales

with the rotational velocity w, such that the same scale factor applied to W can be

applied to the time t. This effect is the same for the position, which is dimensionally

similar to the length L and scales as such. The velocity as well scales with the length

46

component divided by the time. Therefore, the position and velocity trajectories can

be written as shown in equations 2.16 and 2.17, where the two wheels are defined by

the subscripts m and e, which refers to the Mars and Earth scaling example in the

previous section.

Xm(tm) = 1e(A (2.16)

1 A
VM(tm) B=Ve -te) (2.17)

NAB B

Using the same data that was used for the scaling of the Mars and Earth wheel, the

position and velocity over time were plotted. Then, using the time based scaling, the

Earth's wheel position and velocity trajectories were scaled to match the Mars'. The

position and velocity in the z-direction are shown in Figures 2-14 and 2-15, however

the x-direction has the same effect.

Position
0.7-

Mars
Earth

. . -. .Scaled Earth

5 0.4 - - .. -. --. -. -.- .-

0.$ -

0
0 10 20 30 40 50 60

Time [sec]

Figure 2-14: Position scaling.

47

Velocity

Mars
Earth

..2 ..--. -... -- -.-----..--.

0.15 Scaled Earth

E0.15

2~ 0

-0.1

-0.15-T
0 10 20 30 40 50 60

Time [sI

Figure 2-15: Velocity scaling.

As can be seen from the plots, the scaled trajectories match almost exactly the

other wheels output, validating the time based scaling law.

2.4 Triangle

2.4.1 Mathematical Derivation

Another experiment that was performed was to determine what the optimal curve

O(z), with height H, would be if it were to be completely submerged in a granular

material and pulled horizontally, as shown in Figure 2-16.

48

Z

H !J(z)

Figure 2-16: Horizontally pulled curve.

To optimal was defined as the curve that was able to minimize the torque, around

the top "axle", acting on it while subject to the resistive force of the sand in the

x-direction. Since this curve is pulled horizontally, the angle of intrusion is defined as

7 = 0. Therefore, the force and torque acting on the curve are as defined in equations

2.18 and 2.19, where z is the depth and all other variables are defined above.

F;= j a (,3)Dzdz (2.18)

SH

T = (ax(3)DZ2 dz (2.19)

To find the angle of attack #, equation 2.20 is used.

d b
=r - arctan -P (2.20)

dz

Then, plugging the equation for f into the RFT force plots, variational calculus

can be used to derive what the optimal curve is. The Euler-Lagrange equation was

calculated, as shown in equation 2.21, where F = M - AFx.

d F d dF
dz F- ') = 0 (2.21)dZI d Z d@'I

49

This was a very complex equation, so Mathematica was utilized to solve for the

curve O(z). Additionally, several assumptions had to be made. The optimal curve

found is shown in Figure 2-17.

0.15

0.10

1.2 1.4 1.6 1.8 2.0

Figure 2-17: Optimal curve.

The result found was unexpected as the curve was not perfectly flat, but rather

had some width to it (about 15% of the height). Additionally, the vertex of the curve

did not occur at half the height, but rather slightly above the midpoint of the height

(around 40% of the height).

2.4.2 Simulation Testing

To further validate this result, a simple triangle design was tested in the simula-

tion. The design consisted of a single tread, essentially two bars that met at a certain

point, submerged into the granular material and pulled horizontally. This shape is

shown in Figure 2-18.

50

-Width-

Velocity Depth

Height

Figure 2-18: "Triangle" tread design pulled horizontally.

The depth was varied from 0.01 to 0.99 of the height. For each design, the total

force in the x-direction (F1) acting on the three bars and the total torque (T), defined

as the sum of the force in the x direction on each discretized segment of the tread

multiplied by the tread's z-position relative to the top of the design, was calculated.

Afterwards, the total force (F_), torque (T), and force to torque ratio (F1 /r) was

plotted against the depth. The results are shown in Figures 2-19 and 2-20.

Horizontal Pull

.Force

=1-Torque0.15 - -

0
0 0.2 0.4 0.6 0.8 1

Depth [m]

Figure 2-19: Force (F) and torque (T) plot.

51

Force to Torque Ratio

0 0.2 0.4 0.6 0.8 1
Depth [in]

Figure 2-20: Force to torque ratio (F,/T).

As you can see, the optimal is again at a point above the center of depth = 0.5.

The true optimum occurs at depth =0.3. At that point, the force to torque ratio is

maximized. This confirmed the mathematical work done in Mathematica.

2.4.3 Rotating Optimum

Expanding upon the simple horizontally pulled triangle, a new wheel design was

utilized. This new "triangle" wheel was essentially four of the simple triangle designs

put together as treads and rotated. The treads again consist of two bars that attach

at an angle. The depth of the point at which the two bars meet is varied, while the

width and height is kept constant. This four-spoke design, shown in Figure 2-21, was

chosen to ensure that the spokes do not interfere with the resistive force that the next

spoke incurs as it enters the granular material.

52

Depth

Height

Width

Figure 2-21: "Triangle" wheel design.

The velocity and power contour plots produced are shown in Figures 2-22 and

2-23.

7.5-

7-

6.5 -

6-

.i 5.5 -

5
E
0

4.5-

4-

3.5-

3-

Velocity [m/s]

a

5.5

5

4.5

4

15

3.53

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Depth [m]

Figure 2-22: "Triangle" wheel velocity contour plot.

53

Power [W] 4

7
10

6.5

5. 5

4.5 4

4

3.52

3
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Depth [m]

Figure 2-23: "Triangle" wheel power contour plot.

The results show that the velocity is minimized at a depth of 0.35m, while the

power is maximized at about 0.4m. Therefore, designs with a depth slightly above

the midpoint are actually the least optimal, as they travel the slowest and require

the most power. Some proposed reasonings for this effect is that when the tire is

rotating, only a portion of the tread is actually submerged in the sand. Therefore

the experiment with the single triangle fully submerged may not be an accurate

representation. Further analysis is required to determine whether this result will

change as the mass of the tire varies or whether it is a global result. Both plots are

graphed in Figure 2-24.

54

Contours

7.5- ---.-.-

.5

6..5

5

44.5

0
.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Depth

Figure 2-24: "Triangle" wheel velocity and power contour plot.

2.5 Further Exploration

Expanding upon these simulation results, more complex wheel designs will be

tested. For instance, a combination of the four-spoke and "superball" designs, essen-

tially solid wheels with treads protruding out, can be simulated. Additionally, higher

tread numbers can be used. Further analysis on more complex designs, with greater

than one degree of freedom also present an interesting challenge. Alternatively, an-

other design space that requires further research is the effect of tank treads, rather

than rotating wheels. With tank treads, the segments move horizontally through the

sand, which may provide a unique perspective on the optimal way to move through

granular media.

Other than new wheel designs, their is also further work to be done on the effect

of greater discretization. For instance, studying whether the simulation results be-

come more accurate as the segments are made smaller and smaller. Similarly, further

research needs to be done on different methods to find the optimal designs quickly.

55

Perhaps, nonlinear optimization routines can be used, which can allow for the opti-

mal design to be found at any instant. This can be extremely useful, especially for

potential "smart" tires, which are further described in the next chapter.

56

Chapter 3

Experimental Validation

To further validate the scaling relationships derived in section 2.3.3, physical ex-

periments were performed.

3.1 Experimental Setup

The experimental set up used was the sand test bed in Professor Karl Jagnemma's

Robotic Mobility Laboratory. The test apparatus consisted of a motor driven wheel,

which was attached to a torque sensor and load cell. The load cell was used to

measure the effective mass of the whole assembly on the sand and was attached to

the central platform. The central platform had bearings that connected it to vertical

rods, which were attached to the top platform. The rod-bearing system allowed the

tire to move in the vertical direction, while the entire system was actuated horizontally

through another horizontal rod-bearing system that was attached to the stationary

structure. To reduce the system weight a 15 pound spring was connected from the

central platform to the top platform.

Connected to the central platform were displacement and velocity sensors for both

the x and z directions. The top platform had a connect for a rope-pulley system,

which allowed masses to be used as drawback forces. The wheels were designed in

SolidWorks and printed in Polylactide (PLA) plastic using a MakerBot 3D printer.

The wheels were tested in Quikrete sand. The entire system was controlled through

57

a LabView program.

3.2 Cylindrical Wheels

The first set of wheels tested were two scaled cylindrical wheels, which were lined

with sand paper for traction. The wheels were defined by the "superball" equation

with the wheel design parameter X = 1. For this experiment, the scaling constants

of A = 1, B = 1.55, and C = 2.4 were used due to experimental constraints. The

mass and drawbar forces were varied over the scaled space to populate a range of

velocity and power values. The small wheel was tested under vertical loads of 41,

54, and 66.67N and drawbar forces ranging from -30N to 12N. The large wheel was

tested under vertical loads of 100, 130, and 160N and drawbar forces ranging from

-50N to 30N (In this case drawback force is defined as positive when it is pulling in

the direction opposite that the tire is moving in). The rest of the inputs, and the

appropriate scale values, are shown in Table 3.1.

Table 3.1: Cylindrical Wheel Inputs

Small Wheel Scale Small Wheel Large Wheel Scale Large Wheel

S30 /sec W 24.10/sec

R 8.08 cm BL 12.5 cm
f X= 1 f X=I
g 9.81m/s 2 Ag 9.8lm/s 2

D 15 cm _ _ D 15 cm

The two wheels tested are shown in Figure 3-1.

58

Figure 3-1: Cylindrical wheels.

3.2.1 Experimental Results

Using the sensor outputs, the average velocity and power were measured for each

test. The results, along with RFT prediction lines, are shown in Figures 3-2 and 3-3.

Velocity

A

-A

- - ..
AN

0 10 20 30 40 50 60 70 80

Small Wheel Velocity [mm/sl

Figure 3-2: Velocity measurements.

-RFT Law

I Fz= 100/41.7 N

A Fz = 120154.1 N

N Fz = 160166.6 N

59

120

100

E
80

0

60

40

20

0

Power

6

5'-

-RFT Law

S3' Uz = 10041.7 N

2 2' -. A Fz = 120/54.1 N

* Fz =160/66.6 N

0.5 1 1.5

Small Wheel Power [W]

Figure 3-3: Power measurements.

The results seem to indicate the RFT trend prediction, however all of the measured

velocities were a little high and the powers were a little low. There are a few proposed

reasons for these discrepancies. First, the exact drawbar forces were not always

achieved and were in fact always slightly below the intended value. Second, there

was measurable friction between the bearings and vertical rods, which affected the

downward force the wheel exerted on the sand. Essentially, the mass was not always

constant as a result of the friction. Finally, it was later realized that the while the

spring did remove downward force, it did not change the inertial mass. This means

the scaled masses were all slightly off, which again introduced some error into the

experiment.

3.3 4-Bar Wheels

To further validate the RFT scaling predictions, four-spoke wheels were printed

and tested. The four spoke design was expected to better follow the RFT trend, as

it better simulated the conditions under which RFT was based. That is its design

closely mirrors the flat plate intrusion tests done to originally produce the RFT stress

plots. The two wheels used are shown in Figure 3-4.

60

Figure 3-4: Four-spoke wheels.

The scaling constants of A = 1, B = 1.2, and C = 1.44 were used for the

experiments. The various inputs for the two tests are shown below in Table 3.2.

Table 3.2: Four-Spoke Wheel Inputs

Small Wheel Scale Small Wheel Large Wheel Scale Large Wheel

w 29.6/sec AW 27.0/sec

L 7.08 cm BL 8.50 cm

f 6 = 150' f 6 = 150'

g 9.81m/s 2 Ag 9.81m/s2

D 7cm uD 7 cm

Again, the mass and drawbar forces were varied to populate a range of power

and velocity values. For each tire, three different masses, shown in Table 3.3, and

five different drawbar forces, shown in Table 3.4, were used. For every combination

of mass and drawbar force, five tests were run. To find the velocity and power, the

average of the five tests were taken.

61

Table 3.3: Four-Spoke Masses

Small Wheel (m) Large Wheel (Cm)
48.61N 70N
54.16N 78N
59.72N 86N

Table 3.4: Four-Spoke Drawbar Forces

Small Wheel (Fdraw) Large Wheel (CAFda,.)

-4.391bs -6.321bs
-1.741bs -2.5lbs

Olbs Olbs
1.741bs 2.5lbs
4.391bs 6.321bs

3.3.1 Experimental Results

The results of the tests are shown in Tables 3.5 and 3.6.

Table 3.5: Small Wheel Results

Mass Fdraw Average Velocity Average Power
48.61 N -4.39 lbs 82.72 1.97 mm/s 0.99 0.09 W
48.61 N -1.74 lbs 67.30 1.47 mm/s 1.35 0.05 W
48.61 N 0 lbs 53.70 + 1.50 mm/s 2.22 0.14 W
48.61 N 1.74 lbs 33.58 2.96 mm/s 2.84 0.06 W
48.61 N 4.39 lbs 17.38 4.55 mm/s 3.39 0.23 W
54.16 N -4.39 lbs 81.23 5.45 mm/s 1.07 t 0.14 W
54.16 N -1.74 lbs 64.40 3.06 mm/s 2.08 i 0.37 W
54.16 N 0 lbs 50.01 1.35 mm/s 2.58 0.12 W
54.16 N 1.74 lbs 36.54 4.50 mm/s 3.11 0.18 W
54.16 N 4.39 lbs 24.21 i 8.42 mm/s 3.26 0.50 W
59.72 N -4.39 lbs 80.48 2.79 mm/s 1.29 0.35 W
59.72 N -1.74 lbs 64.11 2.28 mm/s 2.23 0.22 W
59.72 N 0 lbs 51.14 0.59 mm/s 2.82 0.28 W
59.72 N 1.74 lbs 37.13 4.69 mm/s 3.51 0.34 W
59.72 N 4.39 lbs 21.16 2.90 mm/s 3.94 0.26 W

62

Table 3.6: Large Wheel Results

Mass Fdaw Average Velocity Average Power
70 N -6.32 lbs 90.46 1.00 mm/s 1.82 t 0.17 W
70 N -2.50 lbs 76.29 5.87 mm/s 2.66 0.05 W
70 N 0 lbs 61.04 2.16 mm/s 3.44 0.10 W
70 N 2.50 lbs 51.17 3.32 mm/s 4.52 t 0.10 W
70 N 6.32 lbs 26.55 7.61 mm/s 5.18 0.23 W
78 N -6.32 lbs 91.37 1.90 mm/s 2.00 t 0.18 W
78 N -2.50 lbs 75.09 4.52 mm/s 2.82 0.16 W
78 N 0 lbs 60.58 1.82 mm/s 3.69 0.33 W
78 N 2.50 lbs 47.99 1.97 mm/s 4.99 0.27 W
78 N 6.32 lbs 32.94 11.60 mm/s 5.58 + 0.14 W
86 N -6.32 lbs 88.52 2.63 mm/s 2.18 0.27 W
86 N -2.50 lbs 78.51 i 3.24 mm/s 2.38 0.40 W
86 N 0 lbs 68.91 t 4.34 mm/s 3.54 0.32 W
86 N 2.50 lbs 49.34 3.17 mm/s 4.76 0.22 W
86 N 6.32 lbs 33.34 2.51 mm/s 5.46 0.28 W

These results are also plotted in Figures 3-5 and 3-6, with the RFT prediction line

displayed.

63

100-

0-
80 -

E

&--A

>1

LO

70-

60.

50

40-

30-

Velocity

a-RFT Law (VLT 1.44v ~Vsj)2
Experimental Data

-+ -

-.. -. -

..-.

0

20 40 60 80 100
Small Tire Velocity [mm/sl

Figure 3-5: Velocity measurements.

The results indicate that the tires do seem to be following the RFT predicted

scaling trend fairly well. There are still some sources of error, though, which can be

reflected in the fact that the measured velocities tend be be above the RFT predicted

line, exactly as the cylindrical wheel test experienced. This error could be due to two

potential issues as discussed above. First, the friction in the bearings made it difficult

to achieve exactly the intended mass, as there were fluctuations on the downward force

the wheel exerted onto the sand. Second, the spring again was not accounted for in

these tests, so the inertial mass was not exactly that shown in the scaling laws.

64

7-

6-

z-

.0

CL -

3) -

2-

0-
0

Power

-wRFT LawV (VLT V-VT

Exp rimiental Datar

2 3 4 5

Small Tire Power [N]

Figure 3-6: Power measurements.

3.4 Further Experimentation

Expanding upon these results, the next set of experiments that are currently being

run are to test the scaling law with a different four spoke tire design that does not

vary mass. In this test, the effect of the spring altering the inertial mass is removed.

Ideally, this will provide a better analysis of the true nature of the RFT derived

scaling relationship. After those tests, different four-bar designs will be tested to

confirm the simulation results. It was shown in Chapter 2 that four spoke wheel

designs with 0 = 1600 were able to generate the highest velocities, while designs with

0 = 230' required the most power. Confirmation of these results, though, requires

65

further experimental verification by testing different wheels with every input held

constant except for a changing angle 0.

Ultimately, the goal is to create a "smart" tire that is able to deform or actuate to

the optimal shape for whatever condition it is in. This will require further simulation

and experimentation to determine what the best shape is for any condition. Once a

range of design conditions is met, work can be started on the design of the "smart"

wheel. For instance, the four-spoke design can utilize a hinge and spring system to

actively actuate and change the angle while in motion. For the "superballs", one can

imagine using an air pressurized system to inflate or deflate membranes into different

defined shapes as the wheel is moving.

66

Appendix A

Simulation Code

A.1 Four-Spoke Animation Code

1 %% Simulation of 4-spoke tire

2 % x is defined as positive to the right

3 % z is defined as positive upwards

4

5 %% Clear Ever-ything

6 commandwindow

7 close all

8 clear all

9 clf

10 clc

ii format long

12

13 %% Inputs

14 theta=150*pi/180; % [radians]

15 TreadWidth = 0.07; % [m], in plane

16 TreadLength=0.085; % [i]

17 TireAxleInitCoord = [0,0]; %fx,z], [m]

18 omega=27*pi/180; % [rad/s

19 initvelocity = [0,0]; %-[vx, vz], fin/s

20 Fspring=6.80389; %Spring force [kg]

67

21 TireMass = (70/9.81); % [kg]

22 duration = 25;% [sec], length of simulation

23 savepics=0; %make 1 to create pics, and 0 for no piCs

24 anim=l; %I there is an animation, and 0 for no animation

25 fps=30; % Animation frames per second

26 dbforce=0;% Drawback Force [N]

27 g = 9.81; % [m/s2], gravitational acceleration

28 scaleFactor = 2.576*(g/9.81);

29 elbows=i;

30 NumTreads = 4;

31

32 %% Set Constants

33 NumSegs = 45*(elbows+l);

34 NumPieces=NumSegs*NumTreads;

35 SegLength = (TreadLength*(elbows+l))/NumSegs; % [m]

36 OrderMag = 10^6;

37

38 AGO = 0.206*OrderMag;

39 A10 = 0.169*OrderMag;

40 Bli = 0.212*OrderMag;

41 B01 = 0.358*OrderMag;

42 Bmll = 0.055*OrderMag;

43 Cli = -0.124*OrderMag;

44 C01 = 0.253*OrderMag;

45 Cmll = 0.007*OrderMag;

46 D10 = 0.088*OrderMag;

47

48 %% Intitiaization

49 ForceXs=[];

5o ForceZs=[];

51 XPos=[];

52 ZPos= [];

53 j=l:2:2*(NumSegs/(elbows+l));

54 i=i;

s startingx=zeros((NumSegs/(elbows+l)),i);

56 startingz=zeros((NumSegs/(elbows+l)),i);

68

for i=l:(NumSegs/(elbows+1));

startingx (i) =(j (i) / (2* ((NumSegs) / (elbows+1))))*TreadLength;

end

xposadd=TreadLength;

zposadd=O;

startingxl=[];

startingzl=[];

for j=l:elbows

startingxl(((j-1)*(NumSegs/(elbows+1)))+1:(j*(NumSegs/(elbows+1))),1)=.

((startingx.*cos(j*(pi-theta)))+xposadd);

startingzl(((j-1)*(NumSegs/(elbows+1)))+1:(j*(NumSegs/(elbows+1))),1)=.

(startingx.*sin(j*(pi-theta)))+zposadd;

xposadd=xposadd+(TreadLength*cos(j*(pi-theta)));

zposadd=zposadd+(TreadLength*sin(j*(pi-theta)));

end

startingz=[startingz; startingzll;

startingx= [startingx; startingxll;

betainit=zeros(NumSegs,1);

for jr=1:1:NumSegs/2;

betainit(jr)=O;

betainit ((NumSegs/2) +jr) =-atan (startingz (end)/.

(startingx(end)-TreadLength));

end

initialtread=zeros (NumPieces, 3);

j=1;

for j=O:NumTreads-1;

initialtread((1+j*NumSegs):(NumSegs+j*NumSegs),1)=...

(cos(j*2*pi/NumTreads).*...

(startingx)+(sin(j*2*pi/NumTreads).*(startingz)));

initialtread((1+j*NumSegs):(NumSegs+j*NumSegs),2)=...

(-sin(j*2*pi/NumTreads).*...

(startingx)+(cos(j*2*pi/NumTreads).*(startingz)));

origx (j+1) = (cos (j*2*pi/NumTreads) * (TreadLength)) +TireAxleInitCoord (1);

origz (j+1) = (-sin (j*2*pi/NumTreads) * (TreadLength)) +TireAxleInitCoord(2);

initialtread((j*NumSegs+1): ((j+1)*NumSegs),3)=((betainit+(j*pi/2)).*..

((betainit+(j*pi/2))<=pi/2))+...

69

(((betainit+(j*pi/2))-pi).*((betainit+(j*pi/2))>pi/2));

end

xs=(origx-TireAxleInitCoord(1))';

zs=(origz-TireAxleInitCoord(2))';

1o %%Key

11 % Startingx and startingz are midpts of segment on one

102 % initialtread is midpts of segments

103 % origx and origz are 4 elbow locations

104 % xs and zs are origx and origz minus the location of

105 % position

tread

the axle initial

allx=[];

allz=[];

allvx=[1;

allvz=[];

newx=[];

newz=[];

%% Function

Vo = zeros(1,5);

Vo(1) = initvelocity(1); % initial velocity

Vo(2) = initvelocity(2); % initial velocity

Vo(3) = TireAxleInitCoord(1); % initial axle

Vo(4) = TireAxleInitCoord(2); % initial axle

Vo(5) = 0; % initial dissipated Power

in x-dir

in z-dir

position in x

position in z

122 options = odeset('RelTol',le-4, 'AbsTol',le-7);

123 odefix = @(t, V) FunctionVODEFourBar(t, V, TireMass, TreadWidth, SegLength,

124 omega, NumPieces, NumTreads, OrderMag, scaleFactor,...

125 initialtread, g, dbforce, Fspring);

126 [TOUT,VOUT] = ode45(odefix, [0 duration],Vo,options);

127

128 %% Average Power and Velocity measurements

70

93

94

95

96

97

98

99

106

107

108

109

110

1il

112

113

114

115

116

117

118

119

120

121

129 pdpos=find((diff(sign(VOUT(:,2))))==2);

130

131 startavg=3;

132 endavg=6;

133

134 mz1l=(VOUT(pdpos(endavg)+1,2)-VOUT(pdpos(endavg),2))/ ...

135 (TOUT(pdpos(endavg)+1)...

136 -TOUT(pdpos(endavg))); %slope of (t, z)

137 tOl=((1/mzl)*-VOUT(pdpos(endavg),2))+TOUT(pdpos(endavg));

138 mvl=(VOUT(pdpos(endavg)+1,3)-VOUT(pdpos(endavg),3))/ ...

139 (TOUT(pdpos(endavg)+1)...

140 -TOUT(pdpos(endavg))); %slope of (t,vx)

141 mpl=(VOUT(pdpos(endavg)+1,5)-VOUT(pdpos(endavg),5))/ ...

142 (TOUT(pdpos(endavg)+1)...

143 -TOUT(pdpos(endavg))); %slope of (t,pow)

i vxfixl=(mvl*(tOl-TOUT(pdpos(endavg))))+VOUT(pdpos(endavg),3);

145 powfixl=(mpl*(tOl-TOUT(pdpos(endavg))))+VOUT(pdpos(endavg),5);

146

147 mz2=(VOUT(pdpos(startavg)+1,2)-VOUT(pdpos(startavg),2))/...

148 (TOUT(pdpos(startavg)+1)...

149 -TOUT(pdpos(startavg))); %slope of (t,z)

iso t02=((1/mz2)*-VOUT(pdpos(startavg),2))+TOUT(pdpos(startavg));

151 mv2=(VOUT(pdpos(startavg)+1,3)-VOUT(pdpos(startavg),3))/...

152 (TOUT(pdpos(startavg)+1)...

153 -TOUT(pdpos(startavg))); %slope of (t,vx)

154 mp2=(VOUT(pdpos(startavg)+1,5)-VOUT(pdpos(startavg),5))/...

155 (TOUT(pdpos(startavg)+1)...

156 -TOUT(pdpos(startavg))); %slope of (t,pow)

157 vxfix2=(mv2*(t02-TOUT(pdpos(startavg))))+VOUT(pdpos(startavg),3);

158 powfix2=(mp2*(t02-TOUT(pdpos(startavg))))+VOUT(pdpos(startavg),5);

159

160 vxavg=(vxfixl-vxfix2)/(tOl-t02) % [mr/s]

161 Power=(powfixl-powfix2)/(tOl-t02) % [WI

162

163 %% Animation Initialization

164 u=find(diff(sign(diff(mod((TOUT),1/fps))))==2);

71

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

72

TOUTfps=TOUT (u);

VOUT=VOUT (u,:);

Torque=[];

kd=1;

for k=1:1:length(TOUTfps)

index = zeros(NumPieces,7); %Local number, x,z,vx,vz,Beta,gamma

index(:,l) = [1:NumPieces];

jr=1;

V(1)=VOUT(k,1)

V(2)=VOUT(k,2)

V(3)=VOUT(k,3);

V(4)=VOUT(k,4)

t=TOUTfps(k);

timetot (kd) =t;

for jr=l:NumPieces;

index(jr,2)=V(3)+((cos(omega*t)*(initialtread(jr,l)))+...

(sin(omega*t)*...

(initialtread(jr,2))));

%New X position using rotation matrix

index(jr,3)=V(4)+((-sin(omega*t)*(initialtread(jr,1)))+...

(cos(omega*t)*...

(initialtread(jr,2))));

%New Z position usina rotation matrix

index(jr,4)=V(1)+(omega*(index(jr,3)-V(4)));

%New velocity in x-dir

index(jr,5)=V(2)+(-omega*(index(jr,2)-V(3)));

%New velocity in z-dir

index(jr,6)=((initialtread(jr,3)+(omega*t))*((initialtread(jr,3)+...

(omega*t))<=pi/2))+...

(((initialtread(jr, 3) + (omega*t) -pi))*((initialtread(jr,3)+.

(omega*t))>pi/2)); %beta,

index(jr,7)=((atan(index(jr,5)/index(jr,4))*(index(jr,4)<0))+.

201 ((atan(index(jr,5)/index(jr,4))+pi)*(index(jr,4)>=O))); %gamma

202 end

203

204 AOO = 0.206*OrderMag;

205 A10 = 0.169*OrderMag;

206 B11 = 0.212*OrderMag;

207 B01 = 0.358*OrderMag;

208 Bmll = 0.055*OrderMag;

209 Cli = -0.124*OrderMag;

210 C01 = 0.253*OrderMag;

211 Cm11 = 0.007*OrderMag;

212 D10 = 0.088*OrderMag;

213

214 jr=l;

215 ForceX=zeros(l,NumPieces);

216 ForceZ=zeros(1,NumPieces);

217 torque=zeros(l,NumPieces);

218 for jr=l:NumPieces;

219 B=index(jr,6);

220 G=index(jr,7);

221

222 alphaX = scaleFactor*(Cmll*cos(-2*B+G) + C01*cos(G) +...

223 Cll*cos(2*B+G) + DlO*sin(2*B));

224 alphaZ = scaleFactor*(AlO*cos(2*B) + AOO + Bmll*sin((-2*B)+G) +.

225 B01*sin(G) + Bll*sin((2*B)+G));

226

227 if index(jr,3)<=O;

228 ForceX(jr) = alphaX*SegLength*TreadWidth*-index(jr,3);

229 ForceZ(jr) = alphaZ*SegLength*TreadWidth*-index(jr,3);

230 else

231 ForceX(jr) = 0;

232 ForceZ(jr) = 0;

233 end

234 posvec=[index(jr,2)-V(3);index(jr,3)-V(4);0];

235 forcevec=[ForceX(jr);ForceZ(jr);O];

236 torquecross=cross(posvec, forcevec);

73

237 torque(jr)=torquecross(3);

238

239 end

240

241

242 Torquet=sum(torque); %positive is z axis out of screen/page

243 Torque=[Torque Torquet];

244 ForceXs=[ForceXs ForceX];

245 ForceZs=[ForceZs ForceZ];

246 ForceXTot=sum(ForceX);

247 ForceZTot=sum(ForceZ);

248

249 allx=[allx; index(:,2)]; %x positions of each tread

250 allz=[allz; index(:,3)]; %z positions of each tread

251 allvx=[allvx; index(:,4)]; %vx of each tread

252 allvz=[allvz; index(:,5)]; %vz of each tread

253 newx=[newx (((cos(omega*t).*xs)+(sin(omega*t).*zs))+...

254 V(3))]; %New X -osition of elbows usino rotation matrix

255 newz=[newz (((-sin(omega*t).*xs)+(cos(omega*t).*zs))+...

256 V(4))]; %New Z oosition of elbows using rotation matrix

257 kd=kd+l;

258 end

259

260 if anim==1;

261 allvx=allvx*10^-(0.5); %scale vectors yourself

262 allvz=allvz*10^-(0.5); %scale vectors yourself

263 ForceXs=ForceXs*10^-2; %scale vectors yourself

264 ForceZs=ForceZs*10^-2; %scale vectors yourself

265

266 % Animation of Tire

267 allx2=allx';

268 allz2=allz'

269 j=1;

270 k=1;

271 kk=sprintf('%.4d', k);

272 while j<=(length(timetot));

74

273 plot([newx(2,j)-0.25,newx(2,j)+0.5],[0,0],'y') %plot sand level

274 axis([newx(2,j)-0.25,newx(2,j)+0.5,-0.25,0.5]) %set axis

275 axis equal

276 if NumTreads==4

277 figure(1)

278 hold on

279 set(gca,'FontSize',18)

280 xlabel('X')

281 ylabel('Z')

282 rectangle('Position', [newx(2, j)-0.75,-0.5,1.25,0.51,...

283 'FaceColor',.

284 'y','edgecolor','y') %sand base

285 legend(num2str(timetot(j)),'FontSize',16)

286 %Time in upper corner

287 plot([newx(1,j),newx(3,j)],[newz(1,j),newz(3,j)],...

288 [newx(2,j),...

289 newx(4,j)],[newz(2,j),newz(4,j)],'k') %plot tire

290 quiver(allx(1+(j-1)*NumPieces:NumPieces+(j-1)*...

291 NumPieces),...

292 allz(1+(j-1)*NumPieces:NumPieces+(j-1)*NumPieces),...

293 allvx(1+(j-1)*NumPieces:NumPieces+(j-1)*NumPieces),...

294 allvz(1+(j-1)*NumPieces:NumPieces+(j-1)*NumPieces),O,'r')

295 %plot velocity vectors

296 quiver(allx2(1+(j-1)*NumPieces:NumPieces+(j-1)*NumPieces),...

297 allz2(1+(j-1)*NumPieces:NumPieces+(j-)*NumPieces),...

298 ForceXs(1+(j-1)*...

299 NumPieces:NumPieces+(j-1)*NumPieces),ForceZs(1+(j-1)*...

300 NumPieces:NumPieces+(j-1)*NumPieces),0,'b') %plot force vector3

301 if savepics==1;

302 hand = figure(1);

303 i k < 10

304 numstr = ['0000',num2str(k)];

305 elseif k < 100

306 numstr = ['000',num2str(k)];

307 elseif k < 1000

308 numstr = ['00',num2str(k)];

75

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

end

end

A.2 Four-Spoke Function (FunctionVODEFourBar)

i function [Vdot] = FunctionVODEFourBar(

2 TreadWidth, SegLength, omega, NumPieces,

3 OrderMag, scaleFactor, initialtread, g,

4 % This is the function is used by ode45

5 index = zeros(NumPieces,7);

6 %Local number, x, z, vx, vz, Beta, gamma

7 index(:,1) = [1:NumPieces];

8 jr=1;

t,V,TireMass,...

NumTreads,...

dbforce, Fspring

function

for jr=l:NumPieces;

index(jr,2)=V(3)+((cos(omega*t)*(initialtread(jr,1)))+...

(sin (omega*t) * (initialtread (jr, 2))));

%New X position using rotation matrix

index (jr, 3)=V(4)+ ((-sin (omega*t) * (initialtread(jr, 1)))+...

(cos (omega*t) * (initialtread (jr, 2))));

%New Z position using rotation matrix

76

elseif k < 10000

numstr = ['0',num2str(k)];

else

numstr = num2str (k);

end

saveas(hand, [' f_' numstr], 'jpg')

k=k+1;

kk=sprintf('%.4d', k);

end

hold off

end

drawnow;

j=j+1;

10

11

12

13

14

15

16

17 index(jr,4)=V(1)+(omega*(index(jr,3)-V(4)));

18 %New velocity in x-dir

19 index(jr,5)=V(2)+(-omega*(index(jr,2)-V(3)));

20 %New velocity in z-dir

21 index(jr,6)=((initialtread(jr,3)+(omega*t))*...

22 ((initialtread(jr,3)+(omega*t))<=pi/2))+...

23 (((initialtread(jr,3)+(omega*t)-pi))*...

24 ((initialtread(jr,3)+(omega*t))>pi/2)); %beta,

25 index(jr,7)=((atan(index(jr,5)/index(jr,4))*...

26 (index(jr,4)<0))+((atan(index(jr,5)/index(jr,4))+...

27 pi)*(index(jr,4)>=0))); %garma

28 end

29

30 AOO = 0.206*OrderMag;

31 A10 = 0.169*OrderMag;

32 Bli = 0.212*OrderMag;

3 B01 = 0.358*OrderMag;

34 Bmll = 0.055*OrderMag;

35 Cl1 = -0.124*OrderMag;

36 C01 = 0.253*OrderMag;

37 Cmll = 0.007*OrderMag;

38 D10 = 0.088*OrderMag;

39

40 jr=l;

41 ForceX=zeros(l,NumPieces);

42 ForceZ=zeros(l,NumPieces);

43 torque=zeros(l,NumPieces);

4 for jr=l:NumPieces;

45 B=index(jr,6);

46 G=index(jr,7);

47

48 alphaX = scaleFactor*(Cmll*cos(-2*B+G) +...

49 C01*cos(G) + C11*cos(2*B+G) +...

50 DlO*sin(2*B));

51 alphaZ = scaleFactor*(A1O*cos(2*B) + AOO +...

52 Bmll*sin((-2*B)+G) + B01*sin(G) +...

77

53 B11*sin((2*B)+G));

54

55 if index(jr,3)<=O;

56 ForceX(jr) = alphaX*SegLength*...

57 TreadWidth*-index(jr,3);

58 ForceZ(jr) = alphaZ*SegLength*...

59 TreadWidth*-index(jr,3);

60 else

61 ForceX(jr) = 0;

62 ForceZ(jr) = 0;

63 end

64 posvec=[index(jr,2)-V(3);index(jr,3)-V(4);0];

65 forcevec=[ForceX(jr);ForceZ(jr);0];

66 torquecross=cross(posvec, forcevec);

67 torque(jr)=torquecross(3);

68

69 end

70

71 max(ForceX);

72 Torquetotal=sum(torque);

73 ForceXTot=sum(ForceX);

74 ForceZTot=sum(ForceZ);

75 Vdot = zeros(4,1);

76 Vdot(l) = (ForceXTot-dbforce)/TireMass;

77 %Accel in x-direction

78 Vdot(2) = (ForceZTot-(TireMass*g)+...

79 (Fspring*g))/TireMass;

80 %AcceL in z-direction +(15* 4 .448)+(6.80389*g)

81 Vdot(3) = V(1); %Velocity in x-dir

82 Vdot(4) = V(2); %Velocity in z-dir

83 Vdot(5) = omega*Torquetotal;

84 %Derivitive or Energy dissipated

85

86 end

78

A.3 "Superball" Animation Code

i %% Simulation of superbail w1ee1

2 % x is defined as positive to the right

3 % z is defined as positive upwards

4

5 -% Clear Everything

6 commandwindow

7 clear all

8 close all

9 cif

10 clC

11 format long

12

13 %% Inputs

14 g = 9.81; %[m/s^2], gravitational acceleration

15 TireAxleInitCoord = [0,01; %[x,z]

16 TreadWidth = 0.15*10^2; % [m], in plane

17 NumSegs = 4;

18 p=1; % chi wheel shape parameter

19 omega=30*pi/180; % [rad/s], positive in clockwise direction

20 initvelocity = [0,0]; %[vx, vz] %[m/s]

21 rad=(l)^(2*p); %radius to 2p

22 TireMass =1000;% [kg], mass of wheel

23 duration = 2; %[sec] length of simulation

24 dbforce=0; %Drawback force [N]

25 OrderMag = 10^6;

26 scaleFactor = 2.576;

27

28 AOO = 0.206*OrderMag;

29 A10 = 0.169*OrderMag;

3o B11 = 0.212*OrderMag;

31 B01 = 0.358*OrderMag;

32 Bm11 = 0.055*OrderMag;

79

33 Cl = -0.124*OrderMag;

34 C01 = 0.253*OrderMag;

35 Cmii = 0.007*OrderMag;

36 D10 = 0.088*OrderMag;

37

38 %% Initialization

39 theta=linspace(O,pi,NumSegs);

40 theta=sort(theta);

41

42 initialtread=[];

43 midpts=[];

44 grad=[];

45 MS=[];

46 points=[];

47 rho=(rad./((abs(sin(theta)).^(2*p))+(abs(cos(theta))....

48 ^(2*p)))).^(1/(2*p));

49 xl=rho.*cos(theta);

so yl=rho.*sin(theta);

51 xsfix=fliplr(x);

52 xsfix=xsfix(2:end);

53 x=[xi xsfix];

54 ysfix=fliplr(yl);

55 ysfix=ysfix(2:end);

56 y=[yi -ysfix];

57 points(:,1)=x;

58 points(:,2)=y;

59 initialtread=(points(1:end-1,:)+points(2:end,:))/2;

60 for jz=i:(length(initialtread)-1);

61 midpts(jz,i)=(initialtread(jz,l)+initialtread(jz+1,1))/2;

62 midpts(jz,2)=(initialtread(jz,2)+initialtread(jz+1,2))/2;

63 ms(jz)=(initialtread(jz+1,2)-initialtread(jz,2))/ ...

64 (initialtread(jz+1,1)-initialtread(jz,));

65 end

66 midpts(end+1,1)=(initialtread(end,)+initialtread(,l))/2;

67 midpts(end,2)=(initialtread(end,2)+initialtread(1,2))/2;

68 ms(end+l)=(initialtread(1,2)-initialtread(end,2))/...

80

69 (initialtread(1,1)-initialtread(end,l));

70 for jx=l:length(midpts);

71 if (ms(jx)==Inf)

72 grad(jx, :)=[1,0];

73 elseif (ms(jx)==-Inf)

74 grad(jx, :)=[-1,0];

75 else

76 if midpts(jx,2)>=O

77 a=[1;ms(jx)];

78 aperp=[0,-1;1,0]*a;

79 grad(jx,:)=[aperp(l),aperp(2)];

80 else

81 a=[l;ms (jx)];

82 aperp=[0,1;-1,0]*a;

83 grad(jx,:)=[aperp(1),aperp(2)];

84 end

85 end

86 grad(jx,:)=[grad(jx,1)/sqrt((grad(jx,1)^2)+...

87 (grad(jx,2)^2)),grad(jx,2)/sqrt((grad(jx,l)^2) ..

88 +(grad(jx,2)^2))];

89 end

90 SegLengths=((points(2:end,1)-points(1:end-1,1)) .^2+.

91 (points (2: end, 2) -points (1: end-1, 2)).^2) .^0. 5;

92 vec2=[-l;0];

93 for jvv=1:1:length(midpts);

94 vecl=[midpts(jvv,l)-initialtread(jvv,1);...

95 midpts(jvv,2)-initialtread(jvv,2)];

96 midpts(jvv,3)=((pi-acos(dot(vecl,vec2)/...

97 (sqrt((vecl(l)^2)+(vecl(2)^2))*sqrt((vec2(1)^2)+...

98 (vec2(2)^2)))))*(vecl(1)>=O&&veCl(2)<=O))+...

99 ((acos(dot(vecl,vec2)/(sqrt((vecl(l)^2)+...

100 (vecl(2)^2))*sqrt((vec2(l)^2)+(vec2(2)^2)))))*...

101 (vecl(l)<O&&vecl(2)>=D))+((-acos(dot(vecl,vec2)/...

102 (sqrt((vecl(1)^2)+(vecl(2)^2))*sqrt((vec2(1)^2)+.

103 (vec2(2)^2)))))*(vecl(1)<O&&vecl(2)<O))+...

104 (((acos(dot(vecl,vec2)/(sqrt((vecl(1)A2)+...

81

(veci(2)^2))*sqrt((vec2(1)^2)+(vec2(2) A2)))))-pi) *..

(vec1(1)>=0&&vec1(2)>0));

end

xs=initialtread(:,1);

zs=initialtread(:,2);

% % 1 u n ct-i o

Vo = zeros(1,5);

Vo(1) = init_velocity(1); % initial velocity

Vo(2) = init_velocity(2); % initial velocity

Vo(3) = TireAxleInitCoord(1); % initial axle

Vo(4) = TireAxleInitCoord(2); % initial axle

Vo(5) = 0; % initial dissipated Power

odefix = @(t, V) FunctionVODEShapesShadow(t,

TireMass, TreadWidth, omega, OrderMag,...

scaleFactor, midpts, g, SegLengths, grad);

[TOUT,VOUT] = ode45(odefix, [0 duration],Vo);

in x-dir

in z-dir

position in x

position in z

V, ...

pdpos=find((diff(sign(VOUT(:,2))))==2);

mzl=(VOUT(pdpos(24)+1,2)-VOUT(pdpos(24),2))/...

(TOUT(pdpos(24)+1)-TOUT(pdpos(24))); %slope of (t,z)

tOl=((l/mzl)*-VOUT(pdpos(24),2))+TOUT(pdpos(24));

mvl=(VOUT(pdpos(24)+1,3)-VOUT(pdpos(24),3))/...

(TOUT(pdpos(24)+1)-TOUT(pdpos(24))); %slope of (t,vx)

mpl=(VOUT(pdpos(24)+1,5)-VOUT(pdpos(24),5))/...

(TOUT(pdpos(24)+1)-TOUT(pdpos(24))); %slope of (t,pow)

vxfixl=(mvl*(tOl-TOUT(pdpos(24))))+VOUT(pdpos(24),3);

powfixl=(mpl*(tOl-TOUT(pdpos(24))))+VOUT(pdpos(24),5);

mz2=(VOUT(pdpos(4)+1,2)-VOUT(pdpos(4),2))/...

(TOUT(pdpos(4)+l)-TOUT(pdpos(4))); %slope of (t,z)

t02=((l/mz2)*-VOUT(pdpos(4),2))+TOUT(pdpos(4));

mv2=(VOUT(pdpos(4)+1,3)-VOUT(pdpos(4),3))/...

(TOUT(pdpos(4)+l)-TOUT(pdpos(4))); %slope of (t,vx)

82

141 mp2=(VOUT(pdpos(4)+1,5)-VOUT(pdpos(4),5))/...

142 (TOUT(pdpos(4)+1)-TOUT(pdpos(4))); %slope of (t,pow)

143 vxfix2=(mv2*(t02-TOUT(pdpos(4))))+VOUT(pdpos(4),3);

144 powfix2=(mp2*(tO2-TOUT(pdpos(4))))+VOUT(pdpos(4),5);

145

146 vxavg=(vxfixl-vxfix2)/(tOl-t02) % rm/sl

147 Power=(powfixl-powfix2)/(tO1-tO2) % [WI

148

149 %% Animation initialization

iso ForceXs=[];

151 ForceZs=[];

152 Torque=[];

153 allx= [I;

154 allz=[];

155 allvx=H;

15c. allvz=[];

157 newx=[];

158 newz= [] ;

159 initialtread=midpts;

160 for k=l:length(TOUT)

161 V(1)=VOUT(k,1);

162 V(2)=VOUT(k,2);

163 V(3)=VOUT(k,3);

164 V(4)=VOUT(k,4);

165 t=TOUT(k);

166 [dim dims]=size(initialtread);

167 index = zeros(dim,9);

168 %Local number, x,z,vx,vz,Beta,gramma

169 index(:,1) = [1:diml;

170 jr=1;

171

172 for jr=l:dim;

173 index(jr,2)=V(3)+((cos(omega*t)*...

174 (initialtread(jr,1)))+(sin(omega*t)*...

175 (initialtread(jr,2))));

176 %New X position using rotation matrix

83

177 index(jr,3)=V(4)+((-sin(omega*t)*...

178 (initialtread (jr,1)))+(cos(onega*t)*..

179 (initialtread(jr,2))));

180 %New Z position using rotation matrix

181 index(jr,4)=V(1)+(omega*(index(jr,3)-V(4)));

182 %New velocity in x-dir

183 index(jr,5)=V(2)+(-omega*(index(jr,2)-V(3)));

184 %New velocity in z-dir

185 index(jr,6)=((initialtread(jr,3)+...

186 (omega*t))*((initialtread(jr,3)+...

187 (omega*t))<=pi/2))+(((initialtread(jr,3)...

188 +(omega*t)-pi))*((initialtread(jr,3)+...

189 (omega*t))>pi/2)); %beta,

190 index(jr,7)=((atan(index(jr,5)/index(jr,4))*...

191 (index(jr,4)<O))+((atan(index(jr,5)/index(jr,4))+...

192 pi)*(index(jr,4)>=O))); %gamma

193 gradrot=[cos(omega*t), sin(ornega*t);...

194 -sin(omega*t) cos(omega*t)]*[grad(jr,l);grad(jr,2)];

195 index(jr,8)=gradrot(1);

196 index(jr,9)=gradrot(2);

197 end

198

199 AOO = 0.206*OrderMag;

200 A10 = 0.169*OrderMag;

201 B11 = 0.212*OrderMag;

202 B01 = 0.358*OrderMag;

203 Bm1l = 0.055*OrderMag;

204 C11 = -0.124*OrderMag;

205 C01 = 0.253*OrderMag;

206 Cm11 = 0.007*OrderMag;

207 D10 = 0.088*OrderMag;

208

209 jr=l;

210 ForceX=zeros(1,dim);

211 ForceZ=zeros (1,dim);

212 torque=zeros(l,dim);

84

213 for jr=l:dim;

214 velocs=index(jr,4:5);

215 B=index (jr, 6) ;

216 G=index (jr, 7) ;

217 grads=index(jr,8:9);

218 coeff=1;

219 alphaX = coeff*scaleFactor*(Cmll*cos(-2*B+G) ...

220 + C01*cos(G) + Cll*cos(2*B+G) + D1O*sin(2*B));

221 alphaZ = coeff*scaleFactor* (A1O*cos (2*B) ...

222 + AOO + Bmll*sin((-2*B)+G) + B01*sin(G) ...

223 + Bll*sin((2*B)+G));

224 if index(jr,3)<=O;

225 ForceX(jr) = (dot([grads(l);grads(2)],...

226 [velocs (1) ;velocs(2)])>O)*alphaX*SegLengths(jr)*..

227 TreadWidth*-index (jr, 3);

228 ForceZ(jr) = (dot([grads(1);grads(2)],...

229 [velocs(l);velocs(2)])>O)*alphaZ* ...

230 SegLengths (jr) *TreadWidth*-index(jr, 3);

231 else

232 ForceX(jr) = 0;

233 ForceZ(jr) = 0;

234 end

235 posvec=[index(jr,2)-V(3);index(jr,3)-V(4);0];

236 forcevec=[ForceX(jr);ForceZ(jr);O];

237 torquecross=cross (posvec, forcevec);

238 torque(jr)=torquecross(3);

239

240 end

241

242 Torquetotal=sum(torque);

243 Torque=[Torque Torquetotal];

244 ForceXs=[ForceXs ForceX];

245 ForceZs=[ForceZs ForceZ];

246

247 ForceXTot=sum(ForceX);

248 ForceZTot=sum (ForceZ) ;

85

249

250 allx=[allx; index(:,2)];

251 allz=[allz; index(:,3)];

252 allvx=[allvx; index(:,4)];

253 allvz=[allvz; index(:,5)];

254 newxs=(((cos(omega*t).*xs)...

255 +(sin(omega*t).*zs))+V(3));

256 newxs(end+l)=(((cos(omega*t)*...

257 xs(l))+(sin(omega*t)*zs(l)))+V(3));

258 newx=[newx newxs];

259

260 newzs=(((-sin(omega*t).*xs)+...

261 (cos(omega*t).*zs))+V(4));

262 newzs(end+l)=(((-sin(omega*t)*xs(1))+...

263 (cos(omega*t)*zs(l)))+V(4));

264 newz=[newz newzs];

265 end

266

267 %% Animation

268

269 allvx=allvx*10^-l;

27o allvz=allvz*10^-l;

271 ForceXs=ForceXs*10^-4;

272 ForceZs=ForceZs*10^-4;

273

274 allx2=allx';

275 allz2=allz';

276 j=1;

277 k=1;

278 kk=sprintf('%.4d', k);

279 NumPieces=(NumSegs*2)-2;

280 while j<=(length(TOUT))

281 axis([newx(2, j)-0.5,newx(2, j)+0.5,-0.5,1])

282 axis equal

283

284 figure(1)

86

285 hold on

286 rectangle('Position',[newx(2,j)-0.5,-0.5,6,0.51,...

287 'FaceColcr','y', 'edqecolor', '')

288 legend(num2str(TOUT(j)))

289 plot(newx((((j-l)*(NumPieces+1))+l):...

290 (j*(NumPieces+l))),newz((((j-l)*...

291 (NumPieces+1))+1):(j*(NumPieces+1))),'k-')

292 quiver(allx(1+(j-l)*NumPieces:NumPieces+...

293 (j-l)*NumPieces),allz(l+(j-l)*NumPieces:NumPieces+...

294 (j-1)*NumPieces),allvx(1+(j-1)*NumPieces:NumPieces+...

295 (j-1)*NumPieces),allvz(l+(j-l)*NumPieces:NumPieces+.

296 (j-1)*NumPieces),0,'r')

297 quiver(allx2(1+(j-l)*NumPieces:NumPieces+(j-l)*...

298 NumPieces),allz2(1+(j-1)*NumPieces:NumPieces+...

299 (j-l)*NumPieces),ForceXs(1+(j-1)*NumPieces:...

300 NumPieces+(j-1)*NumPieces),ForceZs(1+(j-l)*...

301 NumPieces:NumPieces+(j-1)*NumPieces),0,'b')

302

303 hand = figure(l);

304 if k < 10

305 numstr = ['0000',num2str(k)];

306 elseif k < 100

307 numstr = ['0001,num2str(k)];

308 elseif k < 1000

309 numstr = ['00',num2str(k)];

310 elseif k < 10000

311 numstr = ['0',num2str(k)];

312 else

313 numstr = num2str(k);

314 end

315 saveas(hand, ['f_' numstr],'jpg')

316 k=k+l;

317 kk=sprintf('%.4d', k);

318 hold off

319

320 drawnow;

87

321 j=j+4;

322

323 end

A.4 "Superball" Function (FunctionVODEShapesShadow)

1 function [Vdot] = FunctionVODEShapesShadow(t,...

2 V,TireMass, TreadWidth, omega, OrderMag,...

3 scaleFactor, initialtread, g, SegLengths, grad, dbforce

4 % This is the function is used by ode45 function

5 [dim dims]=size(initialtread);

6 index = zeros(dim,9);

7 %Locai number, x,z,vx,vz,Beta,gamma

8 index(:,l) = [l:dim];

9 jr=1;

10

11 for jr=l:dim;

12 index(jr,2)=V(3)+((cos(omega*t)*...

13 (initialtread(jr,l)))+(sin(omega*t)*...

14 (initialtread(jr,2))));

15 %New X position using rotation matrix

16 index(jr,3)=V(4)+((-sin(omega*t)*...

17 (initialtread(jr,l)))+(cos(omega*t)*...

18 (initialtread(jr,2))));

19 %New Z position using rotation matrix

20 index(jr,4)=V(1)+(omega*...

21 (index(jr,3)-V(4)));

22 %New velocity in x-dir

23 index(jr,5)=V(2)+(-omega*...

24 (index(jr,2)-V(3)));

25 %New velocity in z-dir

26 index(jr,6)=((initialtread(jr,3)+...

27 (omega*t))*((initialtread(jr,3)+(omega*t))<=pi/2))

28 +(((initialtread(jr,3)+(omega*t)-pi))*...

88

29 ((initialtread(jr,3)+(omega*t))>pi/2)); %beta,

30 index(jr,7)=((atan(index(jr,5)/index(jr,4))*...

31 (index(jr,4)<0))+((atan(index(jr,5)/index(jr,4))...

32 +pi)*(index(jr,4)>=0))); %gamma

33 gradrot=[cos(omega*t), sin(omega*t);...

34 -sin(omega*t) cos(omega*t)]*[grad(jr,1);grad(jr,2)];

35 index(jr,8)=gradrot(1);

36 index(jr,9)=gradrot(2);

37 end

38 AOO = 0.206*OrderMag;

39 A10 = 0.169*OrderMag;

4o Bli = 0.212*OrderMag;

41 B01 = 0.358*OrderMag;

42 Bmll = 0.055*OrderMag;

43 Cli = -0.124*OrderMag;

44 C01 = 0.253*OrderMag;

45 Cmli = 0.007*OrderMag;

46 D10 = 0.088*OrderMag;

47

48 jr=i;

49 ForceX=zeros (1, dim);

5o ForceZ=zeros(i,dim);

51 torque=zeros(1,dim);

52 for jr=i:dim;

53 velocs=index(jr,4:5);

54 B=index(jr,6);

55 G=index(jr,7);

56 grads=index(jr,8:9);

57 coeff=i;

58 alphaX = coeff*scaleFactor*(Cmil*...

59 cos(-2*B+G) + C01*cos(G) + C11*...

60 cos(2*B+G) + D1O*sin(2*B));

61 alphaZ = coeff*scaleFactor*(AiO*...

62 cos(2*B) + AQO + Bmil*sin((-2*B)+G) ...

63 + B01*sin(G) + Bii*sin((2*B)+G));

64 if index(jr,3)<=O;

89

65 ForceX(jr) = (dot([grads(1);grads(2)],...

66 [velocs(1);velocs(2)])>O)*alphaX*...

67 SegLengths(jr)*TreadWidth*-index(jr,3);

68 ForceZ(jr) = (dot([grads(1);grads(2)],...

69 [velocs(1);velocs(2)])>O)*alphaZ*...

70 SegLengths(jr)*TreadWidth*-index(jr,3);

71 else

72 ForceX(jr) = 0;

73 ForceZ(jr) = 0;

74 end

75 posvec=[index(jr,2)-V(3);index(jr,3)-V(4);0];

76 forcevec=[ForceX(jr);ForceZ(jr);0];

77 torquecross=cross(posvec, forcevec);

78 torque(jr)=torquecross(3);

79 end

80

81 Torquetotal=sum(torque);

82 ForceXTot=sum(ForceX);

83 ForceZTot=sum(ForceZ);

84 Vdot = zeros (4,1);

85 Vdot(1) = (ForceXTot-dbforce)/TireMass;

86 %AcceI in x-direction

87 Vdot(2) = (ForceZTot-(TireMass*g))/TireMass;

88 %Accel in z-direction

89 Vdot(3) = V(1); %Velocitv in x--dir

90 Vdot(4) = V(2); %Velocity in z-dir

91 Vdot(5) = omega*Torquetotal;

92 % Derivitive of Energy dissipated

93

94 end

90

Bibliography

[1] Li, C., T. Zhang, and D. I. Goldman. "A Terradynamics of Legged Locomotion

on Granular Media." Science 339.6126 (2013): 1408-412. Web.

91

