
Utility-based Map Reduction for Ground

and Flight Vehicle Navigation
by

Theodore J. Steiner III
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015
@Theodore J. Steiner III, MMXV. All rights reserved.

The author hereby grants to MIT and The Charles Stark Draper Laboratory, Inc.

permission to reproduce and to distribute publicly paper and electronic

Author

Certifie

CD LC C/)

Z Cr) C
co~ C\ 0L) co

0L -5 _

copies of this thesis document in whole or in any part.

Signature redacted
........../- - ---

I fartment of Aeronautics and Astronautics
May 21, 2015

Signature redacted.
d b y

Jeffrey A. Hoffman
Professor of the Practice of Aerospace Engineering

A A, A. Thesis Supervisor

Certified by.

Certified by.

Certified by.

Accepted by

Signature redacted -
John J. Leonard

Samuel C. Collins Professor of Mechanical and Ocean Engineering
Thesis Supervisor

Signature redacted
....

Dr. Paul A. DeBitetto
Principal Member of the Technical Staff, Draper Laboratory

Signature redacted
Dr. Babak E. Cohanim

Signature red acted--Chief Scientist, MORSE Corp
T.......................

Paulo C. Lozano
Associate Professor of Aeronautics and Astronautics

Chair, Graduate Program Committee

2

Utility-based Map Reduction for Ground

and Flight Vehicle Navigation

by

Theodore J. Steiner III

Submitted to the Department of Aeronautics and Astronautics
on May 21, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

Abstract

Maps used for navigation often include a database of location descriptions for place-
recognition (to enable localization or loop-closing), which permits bounded-error nav-
igation performance. A standard localization system must describe the entire oper-
ational environment in its place-recognition database. A standard pose-graph-based
simultaneous localization and mapping (SLAM) system adds a new place-recognition
database entry for every new vehicle pose, which grows linearly and unbounded in
time and thus becomes unsustainable.

To address these issues, this thesis proposes a new map-reduction approach that pre-
constructs a fixed-size place-recognition database amenable to the limited storage
and processing resources of the vehicle by exploiting the high-level structure of the
environment and vehicle motion. In particular, the thesis introduces the concept of
location utility - which encapsulates the visitation probability of a location and its
spatial distribution relative to nearby locations in the database - as a measure of
the value of potential localization or loop-closure events to occur at that location.
While finding the optimal reduced location database is NP-hard, an efficient greedy
algorithm is developed to sort all the locations in a map based on their relative utility
without access to sensor measurements or the vehicle trajectory. This enables pre-
determination of a generic, limited-size place-recognition database containing the N
best locations in the environment.

A street-map simulator using city-map data and a terrain relative navigation simu-
lator using terrestrial rocket flight data are used to validate the approach and show
that an accurate map and trajectory reconstruction (pose-graph) can be attained
even when using a place-recognition database with only 1% of the entries of the
corresponding full database.

3

Thesis Supervisor: Jeffrey A. Hoffman
Title: Professor of the Practice of Aerospace Engineering

Thesis Supervisor: John J. Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering

4

Acknowledgments

I feel very privileged to have received such wonderful support and guidance from

so many great advisors and mentors throughout the course of my graduate educa-

tion at MIT and Draper Laboratory. Despite my projects changing several times

throughout my graduate career, my advisor, Professor Hoffman, and his support

has been the one constant factor in my academic life. His advice and guidance

helped me navigate and overcome several project cancellations that threatened my

research progress. I was also fortunate to have Professor Leonard offer to serve as

a co-advisor partway into my doctoral studies, which gave my research additional

depth and stability. It was truly an honor to be co-advised by such highly-regarded

professors. I was also very lucky to be a member of two of the most distinguished re-

search groups worldwide in their respective fields while at MIT, the AeroAstro Space

Systems Lab and CSAIL Marine Robotics Group. The numerous colleagues I have

worked with in these two groups are too many to name, but I'd especially like to

thank Padraig Corcoran, Paul Huang, Liam Paull, and Matt Graham for their help

with my thesis-related publications.

I had the honor of receiving a Draper Laboratory Fellowship for all five years of my

graduate studies and the mentorship associated with it. My supervisor at Draper,

Scott Rasmussen, repeatedly went above and beyond by helping me with my research,

teaching me the value of technical foresight during the development process, and

providing me with new opportunities, even occasionally infiltrating various projects

at Draper to help me get my foot in the door. I also benefitted immensely from

the mentorship of Tye Brady, Bobby Cohanim, Paul DeBitetto, Pete Lommel, Rich

Madison, Steve Paschall, Brett Streetman, and many others.

I would also like to thank the many friends I made at MIT for keeping life fun and

being there whenever I needed it, especially Farah, Connie, Andrew, and Dustin. And

most importantly, I would like to thank my loving girlfriend, brother, and parents for

their support and encouragement throughout this difficult but rewarding journey.

5

Assignment

In consideration of the research opportunity and permission to prepare this thesis by

and at the Charles Stark Draper Laboratory, Inc., the author hereby assigns copyright

of the thesis to The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts

and the Massachusetts Institute of Technology. The author hereby grants to MIT

and Draper Laboratory permission to reproduce and distribute publicly paper and

electronic copies of this thesis document in whole or in part.

6

Contents

1 Introduction 17

1.1 Navigation Databases . 18

1.1.1 Simultaneous Localization and Mapping 19

1.1.2 Pose-Graph Representation 20

1.1.3 Data Volume Challenges . 21

1.2 Exploiting Vehicle and Environment Structure 23

1.3 Research Objectives . 26

1.4 Thesis Overview . 27

2 Background & Literature Review 29

2.1 Simultaneous Localization and Mapping 30

2.1.1 Introduction to SLAM . 31

2.1.2 Online SLAM . 32

2.1.3 Full SLAM . 35

2.1.4 Graphical Formulation of SLAM 36

2.2 Visual Odometry . 37

2.3 Appearance-Based Loop-Closure Detection 40

2.3.1 Feature Matching . 41

2.3.2 Bags of Words . 43

2.3.3 Fast Appearance-Based Mapping 46

2.4 Map Reduction . 48

2.4.1 Submaps . 49

7

2.4.2

2.4.3

2.4.4

2.4.5

2.5 Path

2.5.1

2.5.2

2.5.3

Graph Sparsification

Constraint Selection

Bounded Graphs

Optimal Sensor Placement

Planning

Shortest Path

All-Pairs Shortest Paths

Path Planning with Graphical SLAM

3 Location Utility

3.1 Reducing Pose Uncertainty

3.2 Definition of Utility

3.2.1 Measurement Probability

3.2.2 Location Dispersion

3.3 Extension to Landmark Utility

3.4 Chapter Summary

4 Location Database Selection

4.1 Location Selection Problem Formulation

4.2 A Greedy Algorithm for Location Selection . . .

4.2.1 Normalization

4.2.2 Approximation Accuracy

4.2.3 Multiple Greedy Step Location Selection

4.3 Hierarchical Selection using Map Tiles

4.3.1 Approximating P(visit)

4.4 Chapter Summary

5 Street Map Navigation

5.1 Street Map Simulator

5.1.1 OpenStreetMap.jl

5.1.2 PoseGraphSimulation.jl

8

. 50

. 52

. 54

. 56

. 57

. 58

. 60

. 61

65

66

. . . 69

. . . 70

72

74

78

79

80

81

84

85

90

93

94

96

97

98

100

102

5.1.3 Quantifying Reduction Error

5.2 Navigation Database Selection

5.3 Localization Using Reduced Database

5.3.1 Comparison to Alternative Selection Methods

5.3.2 Multi-Step Greedy Approaches

5.4 Tile-based Hierarchical Location Selection

5.5 Chapter Summary

6 Terrain Relative Navigation

6.1 Related W ork

6.2 Graph-based TRN Solver

6.2.1 Graphical Representation of TRN

6.2.2 Factor Graph Optimization

6.3 Flight Simulation Framework

6.3.1 GENIE GNC System

6.3.2 TRNDI Optical Payload

6.3.3 TRN Simulator

6.4 Estimating Landmark Observation Probability .

6.5 Results of Landmark Database Selection

6.5.1 Landmark Database Evaluation Metrics

6.5.2 Comparison of Landmark Database Selection

6.6 Graph-based Solver Results

6.6.1 Comparison of Selection Methods

6.6.2 Comparison of Landmark Database Sizes . .

6.7 Chapter Summary

106

107

112

114

119

120

124

125

. 128

. 130

. 131

. 133

. 134

. 136

. 137

. 140

. 142

. 144

. 144

Approaches . . . 146

. 150

. 151

. 156

. 159

7 Conclusions & Future Work

7.1 Recommendations for Future Work

7.1.1 Online Structure Learning & Database Management.

7.1.2 Place Descriptor Learning

7.1.3 Multi-Agent Localization & Mapping

9

161

. . . . 163

. . . . 163

. . . . 164

. . . . 165

. .

7.1.4 Terrain Relative Navigation 166

Bibliography 167

10

List of Figures

1-1 Loop-closure constraints . 20

1-2 Simple pose-graph example . 21

1-3 Comparison of dense and simplified street maps 24

2-1 Bayesian graphical models of online and full SLAM 32

2-2 Pose removal through marginalization 51

2-3 Information-based pose-graph reduction 53

2-4 Reduced pose-graph 55

2-5 Dijkstra's algorithm . 59

3-1 Simple 11-node pose-graph . 68

3-2 Effect of number and dispersion of loop-closure measurements on pose

error covariance . 68

3-3 Optimal 11-node pose-graph configuration 68

3-4 Example P(visit) distribution for a street network 72

3-5 Effect of increasing the number of measurements on pose covariance . 75

3-6 Effect of increasing measurement dispersion on pose covariance 75

5-1 P(visit) distribution for Cambridge, Massachusetts 109

5-2 Maximum utility location selection results for Cambridge, Mass. . 109

5-3 Maximal utility location selection results for maps of major cities 110

5-4 Additional city results . 111

5-5 Simulated pose-graphs using full and reduced databases 113

11

5-6 Navigation performance for maximum utility and randomly selected

location databases . 115

5-7 Navigation performance for five major cities 115

5-8 Comparison of navigation performance for various location selection

cost functions . 116

5-9 Effect of varying A tuning parameter 117

5-10 Comparison of navigation performance using betweenness and degree

centrality m easures . 119

5-11 Navigation results using multi-step greedy location selection 120

5-12 Navigation results using hierarchical database selection 123

6-1 Example graphical model for terrain relative navigation 132

6-2 Draper Laboratory's GENIE GNC system in flight 135

6-3 GENIE Campaign 5 flight trajectory 135

6-4 TRNDI flight hardware . 139

6-5 Simulated TRNDI image with sample landmark observations 141

6-6 Empirically estimated terrain view coverage distribution 143

6-7 Landmark databases computed by four different landmark selection

approaches....... 148

6-8 Comparison of real-time and smoothed position estimates for three

database selection methods . 152

6-9 Comparison of estimation errors for three database selection methods 154

6-10 Comparison of 25-landmark databases 154

6-11 Comparison of real-time position estimate errors and covariances for

three database selection methods . 155

6-12 Comparison of estimation errors for three landmark database sizes . . 157

6-13 Comparison of landmark database sizes 157

6-14 Comparison of real-time position estimate errors and covariances for

thIree landmllaik database sizes1

12

List of Algorithms

1 Compute Normalized v . 83

2 Compute Normalized d . 83

3 Multi-Step Greedy Database Selection 92

13

14

List of Tables

2.1 FAB-MAP 2.0 Results from 70 km and 1,000 km Datasets

6.1 Comparison of Landmark Selection Approaches

15

47

149

16

Chapter 1

Introduction

In mobile robotics, it is almost always important to know where a robot is located and

pointing to perform even very simple tasks. Determination of the position and orien-

tation of the vehicle, referred to as its pose, has long been an active area of research,

and a variety of approaches have been proposed and successfully implemented.

At the simplest level, odometry systems provide a measurement of the relative motion

of a vehicle. The most basic odometry sensor is a wheel encoder, which counts

the revolutions of a wheel and provides an estimate of distance traveled over an

interval of time. More complex odometry systems have been developed that utilize

sensors such as cameras, accelerometers, and gyroscopes. These odometry systems

can provide the full 6-degree of freedom relative motion (position and orientation in

3D space) for generic platforms, as they only require knowledge of the sensor position

and orientation relative to the vehicle's coordinate frame, and do not require prior

knowledge of the vehicle's parameters, such as its wheel diameter.

Because odometry measurements are computed relative to the previous vehicle state,

these navigation systems suffer from error accumulation over time, called drift. This

means that odometry alone will eventually grow too inaccurate for long-duration

or persistent system navigation. To compensate for drift we must add a sensor that

provides information on the vehicle pose in some external reference frame (absolute or

17

---------

global pose), as opposed to the current pose relative to some previous pose (relative

pose), which is provided by odometry. When available, position updates from a

Global Positioning System (GPS) receiver provide convenient absolute measurements

on Earth.

When GPS signals are unavailable or unreliable, such as inside buildings or on other

planets, we need a different form of absolute position update. One way to do this

is by computing the vehicle's pose relative to a map (called localization). If a map

is unavailable ahead of time, we can construct one online using observations of our

environment (called mapping). The map can either be defined in the global coordinate

frame to directly provide absolute pose measurements or a local coordinate frame,

providing absolute pose measurements accurate up to some map-tie error or gauge

transform, which relates the map coordinate frame to the global coordinate frame.

Navigation applications that do not require global positioning typically equate the

map coordinate system with the global frame.

1.1 Navigation Databases

A navigational map can be thought of as a database associating locations in the

world with descriptive data, which we will hereafter refer to as a location database.

The location descriptor is tailored to the specific sensing modality used and must be

sufficient to be matched to vehicle sensor data in a process called data association.

In an ideal localization system, the vehicle sensor data is correlated against every

location descriptor in the database, the database provides complete coverage of the

environment, and all locations in the environment can be uniquely described. In the

case of such an ideal system, the best estimate of the vehicle's position will be that

corresponding to the strongest database match.

18

However, there are a number of challenges associated with the scalability of ideal

localization systems. The most difficult challenge is the massive volume of data

required to describe even a moderate sized environment, which becomes a burden both

to store in memory and to search through during real-time operation. Additionally, as

environments grow large, locations within them tend to become less distinct, making

it difficult to find a distinctly correct match for the vehicle position.

1.1.1 Simultaneous Localization and Mapping

A vehicle can navigate using a reduced localization database as long as it has an

odometry system capable of providing vehicle pose estimates even when the current

vehicle position cannot be matched to the localization database. This situation is fre-

quently encountered in the field of Simultaneous Localization and Mapping (SLAM),

one of the central issues of mobile, autonomous robotics [1, 2]. In its most basic form,

SLAM is the problem of a robot existing at an unknown location in an unknown

world, where the robot simultaneously estimates both its surroundings and its pose

relative to those surroundings.

Modern SLAM systems improve upon the results of pure odometry when trajectories

return to previously visited locations through a process called loop-closure, which

estimates and corrects for drift, as shown in Figure 1-1 [3]. A SLAM system builds

its location database as it explores its environment, generally adding a new location

entry for every estimated vehicle pose. To detect a loop-closure, the system must first

identify that it has returned to a previously mapped location using the same data

association techniques used for localization systems. When a loop-closure is detected,

a constraint is added to the map encoding the relationship between the current and

previous vehicle poses. The trajectory estimation can then be updated, including

this additional constraint, typically by solving a nonlinear least-squares constraint

19

satisfaction optimization. For a physical analogy, one can consider the map to be a

network of springs whose stiffnesses are proportional to the confidence of the odometry

measurements. If the SLAM system adds a loop-closure spring that further strains

the spring network, the network becomes stiffer (more certain).

(a) Before loop-closure. (b) After loop-closure.

Figure 1-1: A vehicle travels around a square box counter-clockwise, beginning in the
bottom left corner and ending in the bottom right corner, with the true trajectory
shown in black and the estimated trajectory shown in blue. In (a), the vehicle's
position estimate is the result of accumulating odometry measurements. However,
the system detected five loop-closures (red) in the final leg of the trajectory. In (b),
the optimizer has applied the loop-closure constraints, eliminating most of the drift
from the earlier trajectory estimate.

1.1.2 Pose-Graph Representation

This work focuses on a popular SLAM representation called a "pose-graph," which

represents the map and vehicle trajectory using a graph of connected poses, as shown

in Figure 1-2a. Individual poses form the vertices of the graph, and constraints

between poses form the edges. Consecutive poses are linked using odometry con-

straints, and location revisits are linked using loop-closure constraints between asso-

ciated poses. All vertices and edges in the graph have some associated uncertainty and

the goal is to reduce that uncertainty by adding sufficient constraints. The standard

pose-graph representation associates each pose with an entry in the location database.

An alternative formulation separates the vehicle poses and data association, instead

associating location database entries with "landmarks," which are modeled as sepa-

rate graph indices from the poses, as shown in Figure 1-2b.

20

gX 5 XX 8 5

X7 X6 X7 X6

(a) Standard Pose Graph (b) Pose Graph with Landmarks

Figure 1-2: Simple pose-graphs, including loop-closures (left) or landmark measure-

ments (right). Poses, xi, and landmarks, 1?, are represented as circles, odometry

constraints are blue, and loop-closure and landmark constraints are red.

In addition to being a valuable representation for SLAM problems, pose-graphs can

be used to incorporate odometry measurements into localization systems, relaxing the

requirement that the location database must describe every possible vehicle location

in the environment. Using odometry measurements also improves robustness to failed

data association, where the vehicle is unable to localize itself accurately. The pose-

graph representation is described in greater detail in Chapter 2.

1.1.3 Data Volume Challenges

One major challenge with pose-graph systems is the large data storage required for

the associated location database. In a standard localization-only system, the database

size is directly proportional to the number of locations in the environment at which the

vehicle could possibly be located, and thus is bounded for a fixed-size environment.

In order to enable data association for loop-closure detection in SLAM, observational

data is typically retained for every past pose or landmark. While compression schemes

can be used to greatly reduce the data storage required to describe a location, the total

storage required still grows linearly with the size of the environment for localization

or the total number of poses (or landmarks) for SLAM.

21

Large navigation databases can additionally cause challenges for systems without lim-

iting memory constraints. For example, a larger location database may take longer to

search within than a small database, potentially increasing processing requirements.

Location descriptions in an especially large navigation database may also become

overly similar, making them difficult to uniquely match to sensor data. Furthermore,

large-sized navigation databases are challenging to transmit over limited-bandwidth

networks, such as when sending a vehicle a map of its environment over a wireless

connection.

Recent work has shown that the quality of the constraints is more important than

the quantity, and that adding too many constraints may harm solver performance [4],

making constraint selection an important consideration in modern pose-graph local-

ization and SLAM systems. Constraint quality here refers to the information content

of the measurement, or roughly its precision and proximity to other constraints in

the pose-graph. This means that long segments of poses can be connected solely

using odometry constraints, with constraints involving the location database occur-

ring sparsely. However, in practice, such efficient pose-graph localization and SLAM

systems maintain a complete location database despite actually using this database

sparingly in order to maintain solver performance, and thus the location database is

vastly underutilized. This thesis provides a means to predict where the most valu-

able localization or loop-closure events will occur in an environment prior to vehicle

navigation. This enables vehicle navigation with an efficient, reduced-size location

database containing only the most valuable locations in the vehicle's operational en-

vironment.

22

1.2 Exploiting Vehicle and Environment Structure

When people enter new and unfamiliar environments, they often seek out a map, such

as from an information stand or a smart phone. Figure 1-3 shows a comparison of a

simplified street map and dense map of Harvard Square in Cambridge, Massachusetts

- a notoriously difficult area for first-time visitors to navigate - representing two

options readily available to a mobile device user. Notice that the simplified map

has already effectively selected the most valuable information and presented it in

a concise form, while the dense map contains a great deal of additional, irrelevant

data. Provided with only very limited information - the topology of the traversable

paths available to them and a few basic landmarks in the map - a typical human can

perform complex navigation tasks using only the simplified map of Figure 1-3a. People

can perform these tasks sufficiently well that even when presented with the detailed

satellite imagery in Figure 1-3b, many still prefer the simplified map representation,

which may better correspond to their own "mental map" of the region [5]. We say

that this simplified map is optimally constructed if any additional piece of data would

be less valuable than any existing piece of data to the user for purposes of navigation

within the mapped environment.

The following example of human navigation in an unfamiliar environment motivates

the issues that must be addressed to implement autonomous navigation with reduced-

size location databases. Consider the case of designing a printed map for tourists

visiting a city, which will display both the topology of the streets in the city and

images of local landmarks. Unfortunately, this city does not have readable street

signs conveniently at every corner, so the tourist only has the map and the set of

images available to help him navigate. Even if the tourist knows where he started

walking in the map, over time he will grow less certain of where he is, and eventually

will become lost without some other external input. However, every time he can

match his current view to a picture on the map of a landmark, he knows where he

is again. Placing too many pictures on the map means we have to make them too

23

0

00

Cof T..

(a) Street map (b) Dense map

Figure 1-3: Comparison of a simplified and dense map of Harvard Square in Cam-

bridge, Massachusetts. Despite providing less information, the simplified map repre-
sentation is still often preferred for navigation tasks.

small to be recognizable. Furthermore, if there are too many pictures, it will take the

tourist too long to look through them all. Thus we determine that we can only afford

to include ten pictures on our map. How should we select which ten pictures are the

most valuable to any tourist, even without knowing their intended routes?

There are a few factors we will want to take into consideration when selecting these

images. First, the images need to be unique and recognizable. If a tourist is able to

match his locations to an image, it should place him uniquely on the map. This is

generally a property of the specific sensing system used - in this case, the tourist's

eyes. Second, the images should be of landmarks the tourist is likely to see. For

example, a typical tourist in New York City is more likely to see Times Square than a

random alleyway, even if that alleyway happens to have some unique graffiti painted

along it. Essentially, we want our few selected images to be used by the tourist as

frequently as possible, so we place them in high traffic areas. Third, our selected

images should be well-distributed in the environment rather than tightly clustered.

While our tourist might be likely to walk through Times Square, having a second

image of a different view of or very near to that same location will provide him with

24

..

very little added value. Instead, we want to select images corresponding to locations

where the tourist is expected to be the most lost (i.e., maximally distant from his

last landmark sighting, assuming he grows increasingly uncertain of his location with

every additional step), so we should place each image as far away from the other

images as possible. In short, to assemble the most useful set of ten images for our

map, the landmarks in the images should be recognizable, in heavily trafficked areas,

and evenly distributed about the environment.

The problem of constructing a reduced-size map for autonomous vehicle navigation

is analogous to the optimal tourist map problem. A more relevant example is the

development of a global "Google Maps-like" service [6], from which a vehicle can

query a routing network and location-recognition database for a specified region.

Due to network bandwidth constraints, we want to transmit only the most valuable

locations to the vehicle, but we do not know the vehicle's intended route due to privacy

or security concerns. Another example is the preparation of a terrain database for

precision landing on Mars. Storage and processing time constraints dictate that we

can pre-load only the N most valuable terrain landmarks onto the landing vehicle,

but the true vehicle trajectory is unknown due to aerodynamic disturbances and

modeling errors. In both of these cases, a location database must be computed prior

to vehicle navigation in order to facilitate localization or loop-closure measurements

when navigating an unknown route within a region.

This thesis introduces the notion of location utility, which is a measure of a location's

informativeness based on its potential localization or loop-closure measurements, and

is defined independently of any specific vehicle trajectory. The location utility en-

capsulates the structure of the environment and the vehicle motion provided by the

knowledge of the vehicle's path planner and a model of potential paths in the envi-

ronment. The location utility is then used to select a limited-size database of location

25

descriptors from all available locations in the environment that maximizes the total

utility of the database for vehicle navigation. The contributions of this thesis show

how limited, but commonly available, prior information can be used to significantly

reduce the amount of data required for vehicle navigation.

1.3 Research Objectives

This thesis explores the case of navigating a vehicle moving in a known or partially

known environment under resource constraints that limit the number of locations

that can be stored in the vehicle's memory and correlated to sensor data. The core

problem is to determine which locations in the environment should be stored in the

vehicle's onboard location database, such that the vehicle can most accurately navi-

gate according to an optimal path planner rather than being required to divert along

suboptimal paths.

This leads us to the following research questions:

1. What properties of a map location determine the information content of a lo-

calization or loop-closure measurement?

2. How can a database of location descriptors used for vehicle pose estimation be

selected independently of the true vehicle trajectory?

3. How much map data is required to navigate within a region?

The overarching objective of this thesis is to define a metric of location value for

vehicle navigation based upon properties of the operational environment rather than

the specific vehicle trajectory, which is unobservable at the time of map database

selection. The specific research objectives are:

1. Identify the characteristics that determine the value of mapped locations in

an environment for navigation, independently of the specific vehicle trajectory.

Using these characteristics, define a metric of location utility for navigation.

26

2. Formulate map location selection as an optimization problem to allow con-

strained systems to maximally utilize their limited onboard resources.

3. Demonstrate that a vehicle can feasibly navigate accurately even when using a

greatly reduced location database.

1.4 Thesis Overview

The remainder of the thesis addresses these objectives, proceeding as follows. Chap-

ter 2 provides additional background on simultaneous localization and mapping (SLAM)

and related work on measurement selection and map reduction. Chapter 3 introduces

a novel metric for trajectory-independent location utility, applicable to both pose- and

landmark-based graphical formulations of SLAM. Chapter 4 uses this location utility

metric to formulate an optimal map database selection problem. Because the result-

ing formulation is NP-hard and thus computationally intractable, an efficient greedy

approximation algorithm is presented. Chapter 4 additionally provides a method of

further reducing computation for especially large maps or updating a portion of an

existing map by dividing the map into several "tiles."

The value of utility-based database selection is demonstrated using two applications.

Chapter 5 describes a pose-graph simulator for vehicles driving in 2D street net-

works and demonstrates navigation using maximum-utility greedy location selection

to pre-determine potential loop-closure locations. Chapter 6 applies the utility-based

location selection to 3D landmark-based terrain relative navigation for spacecraft

planetary landing, which is traditionally implemented on highly constrained hard-

ware systems. Chapter 6 additionally describes a factor-graph-based incremental

smoothing framework for terrain relative navigation, which is used to demonstrate

the utility-based landmark selection approach. Chapter 7 closes the thesis with some

conclusions and lists some open questions left for future work.

27

28

Chapter 2

Background & Literature Review

This chapter provides background relevant to the thesis and places the contributions

in the context of related work. The contributions of this thesis are applicable to ei-

ther localization or SLAM, the only difference is that in the case of SLAM, a location

prior is not included with each entry in the localization database, making the problem

more challenging. Chapter 5 presents results for the case of 2D SLAM, and Chap-

ter 6 presents results for 3D localization, but both applications rely on a pose-graph

representation, which originated in the field of SLAM, and thus the related work is

presented primarily in this context.

This chapter will first provide some background and major developments from the

field of SLAM, leading up to the now commonplace pose-graph representation of

SLAM, which formulates the problem as an optimization over the trajectory (local-

ization) or trajectory and map (SLAM). A standard pose-graph localization or SLAM

formulation utilizes two classes of constraints: odometry constraints and loop-closure

constraints. Section 2.2 provides some background on odometry systems. While the

contributions of this thesis are relevant to any odometry system, they are enhanced

by modern visual-inertial odometry algorithms, which allow a vehicle to navigate for

long distances with low error growth. Section 2.3 provides background on appearance-

29

based loop-closure detection systems, which correlate vehicle position to a location

database. While the contributions of the thesis are relevant to any loop-closure de-

tection approach, we focus on vision-based approaches, which achieve high quality

results but suffer from challenges associated with large location databases.

As discussed in the previous chapter, localization and SLAM suffer from challenges

associated with large maps. Section 2.4 details a variety of approaches proposed in the

literature for handling these challenges and places the thesis contributions in the con-

text of these approaches. The main contribution of this thesis is a method of reducing

the size of the map location database for a given environment prior to navigating by

exploiting vehicle routing structure and environment structure. Routing structure is

extracted from the environment independently of the true vehicle trajectory using

knowledge of the vehicle's routing objective function (e.g., minimizing route time).

Section 2.5 gives some general background on graph-based planning algorithms, appli-

cable to environments with network structure, as well as some background on route

planning in a pose-graph. While network environments encode a large amount of

exploitable structure, a network environment is not a requirement of the proposed

location database reduction approach. Section 3.3 extends the reduction approach to

more complex planning and guidance systems.

2.1 Simultaneous Localization and Mapping

As previously discussed at a high level in Section 1.1.1, SLAM is the problem in which

a robot simultaneously estimates both a map of its surroundings and its pose relative

to that map. Both metric and topological approaches have been taken to represent

this map of the environment [7]. Metric map representations capture the geometric

properties of the environment, typically representing the map in a globally consistent

coordinate frame [8, 9, 10], and directly enable typical robotic planning tasks, such

as route planning in metric space. Topological map representations instead treat the

environment as a network of connected places [11, 12, 13]. These representations

30

are often biologically motivated, as humans [5, 14] and animals [15, 16] typically

consider paths through the environment in terms of the intermediate locations they

will need to pass through rather than in terms of metric distances. Topological maps

thus focus more on the connectivity of the environment, as opposed to metric maps,

which aim for metrically correct reconstructions, although the representations are

often combined in various forms [17, 18, 19, 20]. The utility-based location selection

approach proposed by this thesis for location database reduction is applicable to both

metric and topological map representations. The remainder of this section will briefly

give some of the basics of SLAM and the highlights of vision-based SLAM research

over the past 30 years. An excellent general introduction to SLAM can be found in

either [1] or [2] and [21].

2.1.1 Introduction to SLAM

In the localization and SLAM problem, robot motions and sensor observations are

imperfect, containing some model or measurement uncertainty. Due to this inherent

uncertainty of its inputs, SLAM is best treated in a probabilistic framework. The

problem is here presented using the commonly accepted notation of [1].

First, we define our vehicle state, here being position and orientation (pose), as x.

Denoting time by t and the terminal time by T, we can describe the sequence of poses

as X1:T = {Xo, Xl,... XT}. An odometry measurement provides the change from one

state to the next, ut = Xt Xt-1 + eodom, with some uncertainty Eodom ~ .(0, Eodom),

where operator 0 indicates that measurement ut is in the frame of pose Xt_1. We can

describe the sequence of odometry measurements asUI:T =U {Ui, U2 , ... , UT}.

31

In a pose-graph formulation of SLAM, the map, m, consists of the previous poses in

the trajectory, x1:t_1. In a landmark formulation of SLAM, which is especially com-

mon in visual SLAM, the map, m, consists of discrete landmarks, which are typically

point locations in space. At each state, xt, the robot makes a set of measurements,

Zt, of the relative locations of poses or landmarks in m. We can describe the sequence

of sensor measurements as Z1:T = {Zi, z 2 ,. . . , ZT}.

The goal of SLAM is to estimate the posterior distribution of the vehicle locations, x,

and the map, m, given measurements, z, and odometry, u. The two main paradigms

of SLAM are the "online SLAM problem" and the "full SLAM problem" [1]. The

online problem solves for the posterior over only the current pose: P(xt, mlzipt, Ui:t),

as shown in Figure 2-1a. In the full problem, we solve for the posterior over the entire

path: P(xi:t, mlzl:t, ui:t), as shown in Figure 2-1b. The online problem is generally

implemented using an estimation filter, while the full problem is implemented using

a smoother.

(a) Online SLAM. (b) Full SLAM.

Figure 2-1: Bayesian graphical models of online and full SLAM [1].

2.1.2 Online SLAM

The origin of SLAM research dates back to the late 1980s, with introductory work

by [8, 22], who created stochastic maps of spatial relationships between objects in an

unknown world in the framework of an Extended Kalman Filter (EKF) [23]. This

approach, later referred to as EKF-SLAM, incorporated uncertain landmarks into

32

the EKF state vector to be estimated with the vehicle state. While [8, 22] used

EKF-SLAM in conjunction with beacons in uncertain locations, [24] used straight

line segments detected by a scanning laser rangefinder as landmarks, and [9] used

sonar sensors, which required more rigorous data association. During the 1990s and

early 2000s, EKF-SLAM was the dominant approach to SLAM, perhaps peaking with

the work of [10], which proved that the EKF-SLAM map converges monotonically to

a relative map with zero uncertainty. They additionally showed improved results

by initializing landmarks in a tentative list and promoting them into the EKF state

vector only after a landmark receives sufficiently high quality measurements.

Up to this point, the majority of SLAM systems had operated in a 2D (3 degrees-of-

freedom: lateral motion and heading) world using range-and-bearing measurements

(such as sonar or laser rangefinders). [25] extended this work into the realm of vision

sensors by using a stereo camera, which provide ranging information using trian-

gulation between observations from two cameras with a known separation distance.

[26, 27] later gave the first bearing-only EKF-SLAM system using a single, monocular

camera in 3D space, which they called MonoSLAM.

EKF-SLAM suffers from three fundamental and significant limitations. First, all

probability distributions in an EKF are assumed to be Gaussian, and thus all mea-

surements must be linearized. This limitation is made worse by the fact that the

EKF estimates only the current vehicle and map state, meaning measurements are

all linearized about the current best estimate, which is uncertain and therefore inaccu-

rate. Second, the EKF is inherently sensitive to failures of data association, because

any errors are marginalized into the state estimate on the next iteration (similarly

to measurement linearization errors), meaning they can no longer be corrected for.

Both of these issues can cause the solver to grow inconsistent, meaning its error co-

variance estimate does not accurately describe the true state error (i.e., the filter

grows over-confident), which can cause the filter to diverge.

33

The third limitation is that the computational complexity of an EKF grows quadrat-

ically with the length of the state vector, making the system intractable for large

environments. This issue of computational complexity growth has been partially ad-

dressed by techniques such as using submaps, which place only the most relevant

portion of the map in the state vector at any given time [28, 29]. These systems

use several decorrelated submaps to bound the complexity growth of the EKF, which

must invert the covariance matrix on every iteration. However, as the correlation be-

tween landmarks is equivalent to information gained in SLAM through loop-closures,

these decorrelation approaches are inherently suboptimal.

In the case of bearing-only measurements, most commonly found in monocular camera

SLAM, the linearization of the EKF measurement equations is particularly harsh due

to the significant nonlinearity of the perspective camera projection function. As [30]

would later show, this effect is made worse because the linearization point changes as

the landmark is more accurately estimated, violating the assumption that lineariza-

tion be about the true landmark location and making the filter inconsistent. [31]

partially got around this issue by using an inverse-depth parameterization of land-

mark locations in the state vector, which approximates a Gaussian distribution more

accurately than representing the point as three Euclidean coordinates. However, this

parameterization represents landmarks in the state vector as five values, as opposed

to the more traditional approach of using the three Euclidean coordinates, worsening

the complexity growth. Another approach to this issue is called delayed initialization,

in which features are not added to the state vector until they have received sufficiently

many measurements [26, 10].

One alternative to Kalman filtering is to use a particle filter, which approximates

the posterior probability distribution using particles rather than a Gaussian distri-

bution. A large number of randomly generated particles are propagated through the

nonlinear propagation and update equations as an alternative to linearization. The

density of the particles represents the posterior probability distribution. The key

works bringing the particle filter to SLAM were FastSLAM [32] and its follow-up

34

FastSLAM 2.0 [33], which gave two key contributions. First, FastSLAM factors the

full online SLAM posterior into a product of the path posterior and N landmark poste-

riors, which reduced the complexity growth to scale logarithmically with the number

of features, rather than quadratically. Second, because of the particle representa-

tion, FastSLAM can sample over multiple data associations, effectively testing and

maintaining many hypotheses. While FastSLAM was originally developed for 2D set-

tings using range-and-bearing measurements, [34] successfully applied this approach

to monocular visual SLAM in 3D.

Online SLAM is still an area of ongoing research, including developments such as the

Extended Information Filter [35], the Exactly Sparse Delayed-State Filter [36, 37],

and the Reduced Dimensionality EKF [38]. However, largely due to the limitations

discussed above (i.e., linearization, data association, and computational complexity),

the majority of active research is now focused on solving the full SLAM problem.

2.1.3 Full SLAM

The most significant drawback of the online SLAM approach is that new sensor infor-

mation is not used to improve or correct past results. For this reason, SLAM research

began transitioning to the full SLAM problem in the late 1990s, beginning with the

Expectation-Maximization (EM) approach of [39, 40] for topological maps and [41]

for metric maps. The EM mapping algorithm iterates two steps: an expectation step

(which computes the posterior over robot poses for a given map) and a maximization

step (which computes the map given the poses), until a local maximum likelihood

solution is found. This allows data association to be recomputed as the solution con-

verges, and also for all measurements to be relinearized according to the current best

estimate.

35

Around the same time, the computer vision community was working on two very

similar problems to the full SLAM problem. Bundle Adjustment (BA) originated

in the photogrammetry community as the problem of computing camera poses and

lens distortion using "bundles" of light rays commonly observed in sequences of im-

ages [42, 43, 44, 45, 46]. Structure from Motion (SfM), from the computer vision

community, is the problem of determining the structure of an object or scene from

multiple views [47, 48, 49, 50, 51]. While BA is focused more on optimizing the cam-

era poses and SfM is focused on optimizing the structure, these terms are now used

roughly interchangeably, as both approaches typically involve a global optimization

for both camera pose and scene structure (though the scene features may be chosen

differently).

Parallel Tracking and Mapping (PTAM) reformulated BA to enable real-time calcula-

tion of the pose of a handheld camera [52]. This was achieved by separating tracking

(localization of the camera in the map) and mapping (global bundle adjustment) into

two parallel operations. The mapping component was further accelerated by optimiz-

ing only for key frames, which allowed camera tracking to run at the full frame rate

while mapping ran only when a frame provided significant enough new information

to the map. While PTAM had difficulty scaling beyond environments the size of a

room, the idea of bundle adjusting only selected key frames became a popular tech-

nique in visual SLAM [53, 54, 55, 56]. Davison, et al, provided a detailed comparison

of filtering and keyframe bundle adjustment for visual monocular SLAM [57], which

showed that keyframe bundle adjustment outperforms the traditional EKF-SLAM

filtered approach in nearly every situation.

2.1.4 Graphical Formulation of SLAM

Graphical models have become one of the most popular map representations for the
full QT A Tp rbem du t thcir casc rof usc and fiir en1y to solrr. Ar m P

LU kJLJ. L.LVJ P.iJJL ~,i1i LJ L t I% "AJ .k.. %JL Uo U.L.I'A Uk LA) J ~JJV %. -In U,-CL.L.Lj vi "JI

a simple pose-graph with odometry, loop-closure, and landmark constraints is shown

in Figure 1-2a. In graphical SLAM formulations, the past vehicle poses form the

36

vertices in the graph, linked by constraints provided by odometry, making up a string

of connected poses called a pose-graph. Loop-closures are represented as constraints

between non-consecutive poses. In landmark-based SLAM, the landmarks are addi-

tionally additionally represented as vertices in the graph, linked to poses by obser-

vation constraints. Graphical maps were first used by [58], and were first used with

SLAM by [59]. GraphSLAM [60] gave a computationally efficient means of construct-

ing, reducing, and solving SLAM as a smoothing problem. An excellent overview of

graphical SLAM is provided in [3], and these techniques have now become widespread

[61, 56, 62, 63, 64].

The graphical formulation of SLAM conveniently divides the SLAM problem into

that of a front-end, which constructs the graph, and a back-end, which solves the

graph. For the purposes of this thesis, the front-end is concerned with generating

the odometry constraints (Section 2.2) and detecting loop closures (Section 2.3). The

back-end then solves for all of the constraints to generate a maximum likelihood tra-

jectory estimate and environment model. Several generic SLAM constraint solvers

have been developed and generally applied [65, 66, 67, 68, 69]. In particular, Incre-

mental Smoothing and Mapping 2 (iSAM2) [68], which incrementally re-orders and

solves the sparse graphical model, has been shown to be especially computationally

efficient and was selected as the back-end solver for this work.

2.2 Visual Odometry

As described above, localization and SLAM problems are well described by the pose-

graph representation, which represents the vehicle and map state as variable nodes

and relations between them as factor nodes and edges. Odometry measurements

generally provide full-rank constraints between pose nodes in the graph, meaning all

degrees of freedom of the poses are constrained. For example, in the 2D case, in which

each pose has 3 degrees of freedom, a full-rank odometry measurement constrains both

position degrees of freedom (x and y coordinates) and the vehicle heading, 0. The

37

presence of full-rank constraints between all consecutive poses additionally guarantees

"connectedness" of the graph, meaning all degrees of freedom are constrained and the

graph can be solved even if no loop-closures are detected. With a high-quality modern

odometry system, the vehicle can navigate on the order of kilometers using odometry

measurements alone while achieving a suitably low pose error to perform basic routing

capabilities [70, 30]. For purposes of background for this thesis, we focus on vision-

based odometry systems due to the high quality of recent results, which motivate and

enable the contributions of this thesis.

Visual odometry (VO) systems, which estimate the motion of a vehicle using only

the input of cameras rigidly attached to it, provide perhaps the best trade between

low-cost and high-accuracy odometry estimates of modern, readily available odometry

approaches with general applicability. While there are many different VO approaches,

the focus is on computing the change in position at the most recent frame. Part of the

attraction of VO systems is that they are platform independent, as no knowledge of

or integration with the vehicle hardware is required beyond the static transformation

between the camera and vehicle coordinate systems (which can be estimated online).

Scaramuzza and Fraundorfer give an excellent overview of VO and it's major devel-

opments over the past 30 years in their tutorial article [71]. Modern VO systems are

very accurate over short durations and smooth, slow motion (typically between 0.1

and 2% relative error at each frame) and are often combined with an IMU to help

handle brief periods of rapid motion [72, 73, 30, 74].

Nister, Naroditsky, and Bergen presented the first real-time implementation of a

visual odometry system with robust outlier detection in a calibrated framework [75].

This was achieved by computing frame-to-frame motion estimates using the 5-point

relative pose algorithm [76, 77], eliminating outlier features using Random Sample

Consensus (RANSAC) [78], and performing a bundle adjustment refinement on the

38

most recent frames. A large number of subsequent VO developments have been

presented [79, 80, 81, 82], leading to reliable systems that can provide high accuracy

over long durations, such as 0.1% error on 10 km of rough terrain by [70] or 0.3%

error on 21 km of city streets [30].

The current state of the art in visual-inertial odometry is the Multi-State Constraint

Kalman Filter version 2.0 (MSCKF 2.0) [30]. The MSCKF is a reformulation of

the EKF commonly used for visual odometry and online SLAM such that features

are tracked while they remain within the camera field of view and then a single

update to the filter state is made when the feature exits the field of view. This

requires keeping a sliding window of poses in the filter rather than a single state,

but the result is a linearized filter whose observability properties match those of the

underlying nonlinear model. Unlike the SLAM formulation of the EKF, the MSCKF

is a consistent estimator, which means that the estimation errors are zero-mean and

the estimation error covariance is greater than or equal to the true error covariance

(i.e., the estimator is not overconfident).

As discussed in Section 2.1.4, consecutive poses in a pose-graph are linked using odom-

etry constraints with their associated covariances. The SLAM system then uses the

additional information gained from loop-closure measurements to further constrain

the system and mitigate the effects of odometry drift. It intuitively follows, and as

is discussed in Chapter 3, that the more accurate an odometry system is, the fewer

additional constraints in the form of loop-closures and localization measurements are

required to keep the state error covariance acceptably low for navigation or other vehi-

cle tasks. Modern visual odometry systems, such as the MSCKF 2.0, are particularly

valuable for a SLAM system because they are not only precise and low-drift, but

also have unbiased, Gaussian covariance estimates. Using high-accuracy odometry

measurements can significantly reduce the importance and value of having frequent

39

localization or loop-closure constraints for localization or SLAM, respectively. This

enables a significant reduction in the size of the localization database, as described

in this thesis, which results in increased computational efficiency and reduction in

storage requirements.

2.3 Appearance-Based Loop-Closure Detection

As discussed in Section 2.1.4, the graphical formulation of SLAM contains two types

of constraints between poses: odometry constraints and loop-closure constraints.

Odometry constraints are relative pose measurements between consecutive poses,

while loop-closure constraints are relative pose measurements between non-consec-

utive poses. Whereas Section 2.2 detailed the generation of odometry constraints in

a vehicle-agnostic manner from visual and inertial sensors, this section focuses on

detecting loop-closures and generating the associated constraints.

The background material presented here focuses on methods operating in the space

of visual appearances, whose associated localization and SLAM techniques are com-

monly referred to as "appearance-based localization" and "appearance-based SLAM,"

respectively. While any loop-closure method should be compatible with the thesis con-

tributions, appearance-based techniques are here used to illustrate the general process

of detecting loop-closures and generating constraints because they have received sig-

nificant attention in the literature, have been applied to large-scale problems, and tend

to be especially data-intensive. Appearance-based techniques are a popular approach

in the literature because they use inexpensive cameras as sensors and require no ex-

ternal infrastructure. However, they tend to be data and processing intensive, and as

such suffer from a variety of scalability issues. To combat these challenges, a variety

of approaches have been introduced to reduce or compress their associated databases,

which are described in this section. This thesis introduces a new approach to reduc-

ing the storage and processing requirements of loop-closure detection systems, which

limits the location database to only the most valuable entries for navigation.

40

Appearance-based loop-closure techniques apply nearly equivalently to localization

as to SLAM. The key difference being that the database of stored locations is pre-

determined for a localization system, while SLAM systems start from either no or par-

tial prior information to generate, refine, or update the database online, either from

scratch or partial information. The contributions of this thesis apply to both local-

ization systems and SLAM systems starting from partial information. The measure-

ments and detection systems for computing "map-relative localization constraints"

or "loop-closure constraints" are effectively equivalent, and these terms are used in-

terchangeably in this thesis.

2.3.1 Feature Matching

The simplest means of generating appearance-based loop-closure constraints is by

directly matching visual features between images. To do this, unique points in images

are detected using a feature detector and then described using a feature descriptor.

Popular visual feature detectors and descriptors include Harris corners [83], the Scale-

Invariant Feature Transform (SIFT) [84], Speeded-Up Robust Features (SURF) [85],

or Features From Accelerated Segment Test (FAST) [86], which have inspired many

follow-on detectors providing various incremental improvements, such as FREAK

[87], BRISK [88], ASIFT [89], Gauge-SURF [90], and KAZE [91]. For example, the

venerable SIFT descriptor computes a 4 x 4 grid around the feature and computes the

strength of the image gradient in eight orientations, which results in feature vectors

with 128 dimensions.

In the case of landmark SLAM, individual features are added into the pose-graph

directly as variables, and subsequent matches of a particular feature each generate

a new constraint in the graph. In order to limit the total number of constraints

that need to be solved, reduce the size of both the pose-graph and location database,

and take advantage of a variety of data compression techniques, large-scale systems

41

tend to favor adding only full-rank loop-closure constraints to the graph. While both

approaches are equally valid and applicable to the thesis contributions, the remainder

of this section will discuss the latter case of detecting and generating these pose-pose

loop-closure measurements.

Once features have been detected and described in all images, they are compared

against one another to detect potential loop-closures. If two poses have sufficiently

many feature matches (and typically sufficiently few to other poses, as well), they are

considered to be viewing the same location and a new constraint can be generated.

A number of groups have used this form of matching, perhaps most notably [92, 93]

for bundle adjustment of unordered sets of images to reconstruct common tourist

attractions and the city of Rome [94].

The most common way to generate the pose constraint is through local structure

reconstruction using bundle adjustment. First, the feature correspondences are used

to compute the fundamental matrix, F (or bifocal tensor), which is a 3 x 3 matrix that

relates homogeneous point correspondences between two images, x and x', according

to the relationship x'TFx = 0 [95]. A number of numerical methods to compute this

relationship can be used, such as the 5-point method [76, 77] or 8-point method [96].

Methods such as RANdom SAmple Consensus (RANSAC) [78] are often used to

remove any point correspondences that are not consistent with the required epipolar

camera geometry, which can filter out transient objects in a scene such as cars.

The relative pose between the two camera views can then be computed from the

fundamental matrix, up to a translational scaling factor. The relative pose is used to

triangulate the approximate 3D location of the points in space, and this information

is used to seed a maximum likelihood bundle adjustment estimation [95]. The result

of this bundle adjustment is a relative pose constraint that can be added to the pose-

graph. In the case of monocular SLAM, in which the constraint can only be solved up

to a scaling factor, additional frames can be added to the bundle adjustment to take

advantage of the potentially-known scale of existing odometry measurements.

42

2.3.2 Bags of Words

The number of pairwise feature descriptor-based matches required to detect a loop-

closure measurement grows quadratically in the number of images, quickly becoming

intractable for real-time usage. A number of faster alternatives to pairwise matching

have been proposed, including multi-round matching schemes [94] and tree-based

indexing [97].

One particularly common method of speeding up these comparisons is to use the

bag-of-words representation, which enables a visual analogy to textual document re-

trieval approaches used by web search engines [98]. Text retrieval systems first parse

documents into words, represent these words by their stems (e.g., 'search' rather than

'searching'), and assign each word a unique identifier. Each document can then be rep-

resented by a vector of word frequencies and a vector of word weights. The standard

weighting method is called "term frequency-inverse document frequency" (tf-idf) [99].

If the vocabulary contains k total words, each document is represented by a vector of

weighted word frequencies Vd = (ti, ... , ti, ... , tk)T with weights computed as:

nid Ntj = -log (2.1)
nd ni

where N is the total number of documents, nid is the number occurrences of word i

in document d, nd is the total number of words in document d, and ni is the total

number of occurrences of word i in the entire collection of documents [100]. The

tf-idf weighting is the product of the word frequency, which values repetitive words

in a particular document, and the inverse document frequency, which devalues words

appearing frequently in the document collection, making it an effective measure of

information content in the context of document search. This process must be carried

out prior to any searches being conducted, as both the dictionary of all possible

43

word stems and their occurrences must be pre-computed using the full collection of

documents. The vectors representing the documents can then be organized using an

inverted index, which maps each word to a list of documents it appears in, enabling

fast document look-up [101].

Sivic and Zisserman [100] applied these concepts from document search to visual

image search. Feature descriptors detected in images are used in place of textual

words, using a vector quantization scheme to find the "feature" stem. An image can

then be represented using a vector of visual word occurrences and a weighting vector,

which is called bag-of-words representation. This has the effect of compressing the

image down to a vector of visual words weighted by their information content in

the context of image matching. The use of an inverted index effectively means that

image matches are largely pre-computed, greatly speeding up visual search for image

matching and object detection. Visual bag-of-words-based object matching has been

successfully applied to various generic recognition problems, such as finding multiple

movie frames containing a specific object [102] and visual search using a camera

phone [103].

The combination of the information-weighted words with the inverted index makes

the bag-of-words representation both robust and computationally efficient, making it

well suited for application to appearance-based loop-closure detection. [102] applied

bag-of-words matching to loop-detection for SLAM, and showed that better retrieval

quality is obtained by increasing the vocabulary size. In order to speed up perfor-

mance when using a large vocabulary, they used hierarchically defined visual words

that formed a vocabulary tree, allowing more efficient word lookup using a decision

tree. They also quantized the space of all possible visual words (using SIFT descrip-

tors), so that once the vocabulary has been learned offline, new images can be inserted

into the database on-the-fly rather than requiring an a priori learning process. [104]

learned the vocabulary incrementally during operation by maintaining a separate

"young word" database containing candidate words for addition to the main vocab-

ulary, showing performance nearly equivalent to vocabularies learned offline. [105]

44

introduced "dynamic bag-of-words," which finds local sets of observed landmarks at

query time rather than beforehand by utilizing co-visibility (features that are ob-

served together). [106] showed improved bag-of-words reliability by grouping nearby

images into "islands" to prevent nearby images from competing with one another.

[107] showed a comprehensive appearance-based SLAM system using bag-of-words for

place recognition. Recent work has focused on extending bag-of-words approaches to

recognize places whose appearances change over time [108]. For example, Churchill

and Newman represent each location in the environment as a set of "experiences,"

which can represent distinct weather or lighting conditions [109, 110, 111].

Bag-of-words matching originated in the visual object detection and recognition com-

munity, in which the goal was to determine the classification of an object according

to some set of object categories (bikes, cars, etc.). It is well known in the computer

vision community that bag-of-words matching performance is highly correlated with

the quality of the vocabulary (and thus the weights used), which is a function of the

number of matching categories and the similarity of the sets of images used for train-

ing versus matching. Therefore, it is important to carefully select the set of images

used to learn the dictionary such that the training images sufficiently span the space

of visual variation present in the set. For example, bag-of-words matching has been

shown to work well for object recognition for objects with both visually-dissimilar

categories, such as those in the PASCAL Challenge (cars, cows, bikes, etc.) [112], and

visually-similar categories, such as species of flowers [113], so long as the training im-

ages are sufficiently representative of the dataset. This can be a challenge for SLAM

applications, which essentially treat every pose as a separate recognition category

without any designated training images for specific categories (i.e., specific vehicle

poses), and thus must use very large vocabularies. While left for future work, Sec-

tion 7.1.2 briefly describes how the location selection approach presented in this thesis

might enable better bag-of-words vocabulary learning approaches by allowing physi-

cal locations in space to be treated as recognition categories with multiple, designated

training images, which may lead to better matching performance and reliability.

45

2.3.3 Fast Appearance-Based Mapping

Fast Appearance-Based Mapping (FAB-MAP) [13] reformulated bag-of-words by us-

ing a generative model of place appearance, which allows a probability of recognition

to be computed for each previous image, rather than the tf-idf metric (2.1). Identical

but indistinctive observations (such as those of the most common scenes) are given a

comparatively lower probability of coming from the same place, reducing the effects

of perceptual aliasing (i.e., different locations appearing the same). The system learns

a generative model of the bag-of-words data, which accounts for certain combinations

of visual words tending to co-occur due to being generated by common objects. The

result is that places can be recognized even with few feature matches, while rejecting

false matches due to perceptual aliasing.

FAB-MAP 2.0 [114] extended FAB-MAP, making it scalable to very large trajectories

by defining a sparse approximation to the FAB-MAP model that allowed implemen-

tation using an inverted index. Geometric verification is performed on the top 100

most likely locations using RANSAC as an added robustness check. FAB-MAP 2.0

performed appearance-based loop-detection on trajectories up to 1,000 km long with

computation time growing linearly with distance traveled.

An open-source implementation, OpenFABMAP [115], is used by many SLAM sys-

tems, including [108, 62, 61, 116], and its frequent use as a reference for comparison

[117, 118] has established FAB-MAP as a state-of-the-art appearance-based loop-

closure detection system. However, FAB-MAP is not without drawbacks. While

FAB-MAP 2.0 did manage to close loops on a 1000 km trajectory, the results from

a 70 km trajectory were much better, as shown in Table 2.1. For example, at the

100% precision level (no false-positive loop closures), the 70 km dataset achieved a

48.5% recall, while the 1000 km dataset only achieved 3.1% recall. Recall is the

fraction of location revisits for which any loop closure was detected, and precision is

the percentage of correct loop-closures Generally loop-closure detection systems aim

to maximize recall while maintaining 100% precision, as incorrect loop-closures are

46

difficult to recover from and can prevent a pose-graph solver from finding the correct

solution. Additionally, the vocabulary in FAB-MAP must be learned offline prior to

operation, and the training data used can greatly affect recognition performance (i.e.,

generic vocabularies cannot be used).

One of the potential applications of this thesis is to reduce the appearance data

required to navigate extremely long trajectories, such as the 1000 km dataset used

to test FAB-MAP 2.0, such that they achieve similar results and data storage as a

much smaller dataset, like the 70 km trajectory, by predetermining the most valuable

locations for loop-closures to occur and ignoring all others. For example, if a location

is unlikely to be re-visited or recognized, it should not be stored in the database.

The case of making such determinations online, as would be required to improve

upon FAB-MAP's results, has been left for future work and is discussed further in

Sections 7.1.1 and 7.1.2.

Data set 70 km 1000 km

Number of Loop Closures 4,757 48,493

Extracted Features 16 GB 177 GB

Recall (100% Precision, 100k words) 48.5 3.1

Recall (99% Precision, 100k words) 73.2 8.3

Recall (99% Precision, 10k words) 52.3 2.7

Table 2.1: A comparison of FAB-MAP 2.0 results from 70 km and 1,000 km datasets
in similar environments [114]. Recall is the fraction of location revisits for which any
loop closure was detected, and precision is the percentage of correct loop-closures.
Notice that recall dropped by about an order of magnitude when the trajectory length
grew by about an order of magnitude.

47

2.4 Map Reduction

In the canonical form of graphical SLAM, a new pose node and odometry constraint

are added to the map at every time step, causing the map to grow at least linearly in

time. Additional loop-closure constraints are added whenever loop detections occur.

This means that a typical graphical map will add poses linearly and constraints at

least linearly in time.

Furthermore, to enable loop closure, the system must store sufficient data for data

association at each previous pose. For visual appearance-based loop-closure detection,

discussed in Section 2.3, even when using the efficient bag-of-words compression with

a pre-learned dictionary, this requires storing a vector of weighted visual words for

each node. As an example, if a system adds nodes at 1 Hz, uses a 10,000-word

dictionary, and stores the weighted vector of visual words as 16-bit integers, it will

generate nearly 70 MB of data per hour.

Map growth leads to several major challenges in localization and SLAM. First, the

pose-graph becomes more difficult to perform inference on as additional poses and

variables are added to the graph, increasing the dimensionality of the optimization

problem. Second, adding too many loop-closure constraints can cause the graph to

lose the sparsity exploited by computationally efficient back-end pose-graph solvers

[67, 66, 35, 36, 119]. And third, both data association and data storage become in-

creasingly difficult as data volume grows due to processing requirements and location

aliasing.

The remainder of this section provides a review of the four general approaches used

to manage map growth in SLAM. The first approach, called submapping, divides the

map into smaller portions that can be updated in real-time. Graph sparsification

approaches attempt to remove uninformative constraints and poses from the pose-

graph in the back-end solver after the graph has been constructed. Constraint selec-

tion approaches operate instead in the front-end, passing only sufficiently informative

constraints to the solver that are likely to reduce the map and trajectory covariances,

48

again requiring access to the pose-graph. The final class of map reduction approaches

includes various strategies to bound the growth of the map, such as by the explored

area or operating time. This thesis introduces a new approach for map reduction in

the form of an optimal sensor placement problem, reducing the map prior to vehicle

navigation without access to the vehicle trajectory. Section 2.4.5 provides background

on the optimal sensor placement problem, which typically places a limited number of

sensors to gather information within a region.

2.4.1 Submaps

As discussed in Section 2.1.2, EKF-SLAM has significant difficulty dealing with large

maps, as the entire map is stored in the state vector and EKFs must invert the state

covariance matrix at every time step. To enable SLAM in larger environments without

this quadratic growth in computation, techniques such as submaps and hierarchical

maps were developed [28, 29, 120]. These methods involved maintaining multiple

maps that could be swapped in or out of the state as different regions of the envi-

ronment were traversed. However, these systems are not able to take full advantage

of loop closures due to the decorrelation between the submaps required to maintain

global consistency. Similar methods were used to extend the range of bundle adjusted

visual SLAM systems through use of multiple local maps [121] or limiting bundle ad-

justment to only an active, proximal region of the map [62, 122]. Tectonic SAM [123]

applied the idea of local submaps to graphical SLAM, with local submaps being op-

timized independently in local coordinate frames before being combined into a global

map. However, while these submapping methods bound computational growth, they

do not reduce the total data storage required for data association.

In graph theory, the Connected Dominating Set (CDS) of a graph is the minimal

subset of vertices such that every vertex in the original set is either in or neighboring

a vertex in the dominating set. While determining the CDS is NP-complete, good

approximations are available in polynomial time [124]. This concept has been applied

to reduce appearance-based maps to the minimal subset of images that completely

49

cover a particular area [125, 126]. This guarantees that any new image taken within

the mapped region will overlap with at least one image existing in the map, allowing

localization on a map bounded by area. [54] used a variation of this concept, which

they called a "skeletal graph," to speed up large-scale bundle adjustment problems.

They first form and bundle adjust the skeletal graph, then use that result to initialize

the full bundle adjustment problem, enabling the famous reconstruction of the city

of Rome in one day of computation [94]. [107] applied the concept of a skeletal graph

to SLAM, retaining only a skeletal graph in areas of dense exploration by removing

nodes online to control the density of appearance-based data in the map.

2.4.2 Graph Sparsification

Pose-graph SLAM entails solving a large least-squares problem over all poses. To do

so efficiently, most solvers judiciously exploit sparsity in the problem structure [67,

66, 35, 36, 119]. This sparsity results from odometry constraints affecting only con-

secutive poses and loop-closures being occasional and limited. In some cases, such as

long-duration, multi-session systems, the graphs grow too large to solve in real-time.

To mitigate this issue, pose-graph sparsification algorithms can be used to reduce the

number of poses and constraints in a map, thus improving solver efficiency. These

algorithms work exclusively in the pose-graph solver, or "back-end."

The sparsest possible pose-graph (without any breaks) is one with no loop closure

constraints. As more loop closure constraints are added to the graph it becomes more

dense, and the system becomes more difficult to solve. Additionally, when vertices

are marginalized out (i.e., removed from the graph), additional edges appear in the

graph in their place, as shown in Figure 2-2, making the graph more dense.

To enforce sparsity, some have proposed simply removing the weakest constraints [107,

127], but this can cause the system to become biased and inconsistent. Carlevaris-

Bianco et al. [128, 129, 130, 131] consolidate densely connected regions of a pose-graph

into Generic Linear Constraints (GLCs), while Huang et al. [132] use fl-optimization

50

Xg 8 X3 24

X 1 X6 X5

(a) Original graph: 30% fill-in.

Xg 8 X3 24

22

XO 1 X6 X5

(b) Pose X7 removed: 36% fill-in.

Xg 8 X3 4

XO X1 6 X5

(c) Poses X7 and x2 removed: 47% fill-in

Figure 2-2: Pose removal through marginalization adds density to the connectivity

matrix. (a) shows a pose-graph with two poses located very near to one another. (b)

shows the effect of combining these poses, and (c) shows the effect of removing them.

Both of these graph reduction operations reduce sparsity.

to consistently remove weak edges in the graph. Sparsification approaches have been

used in conjunction with location saliency metrics [133] in order to weight the op-

timization towards retaining the database entries that are most likely to be recog-

nized [134], but do not explicitly incorporate the likelihood of revisit.

All graph sparsification approaches have involved removing or replacing constraints

after they have already been added to the graph. In contrast, the database se-

lection approach presented in this thesis does not require access to the full graph

when determining which predicted constraints to enable through a limited location

database.

51

2.4.3 Constraint Selection

Others have taken an information-theoretic approach to reducing map size and pro-

moting sparsity in the front-end [135, 136]. [120, 137] showed how SLAM could be

considered in an information theoretic framework, investigating the information en-

coded in measurements and estimates. Kretzschmar et al. [138, 139] estimated the

mutual information of laser-scan measurements with regard to an occupancy grid,

only incorporating new measurements when they were sufficiently informative. They

marginalize out old poses to bound map growth to a fixed memory size.

Information-Based Compact Pose SLAM [4] generalized these ideas to pose-graphs,

showing that by keeping only highly-informative loop-closure constraints and non-

redundant poses, the pose-graph can be solved not only faster than with dense poses

and constraints, but also more consistently. They introduced a method to compute

the information content of a constraint online in constant time, and used this to

determine whether or not to add the constraint to the graph. The result was a system

that closed few loops and operated in open-loop on odometry for long periods, as

shown in Figure 2-3. Additionally, by only adding informative odometry constraints,

the result was similar to a keyframe-based system, such as FrameSLAM [53], in which

the keyframes have equal spacing in information-space rather than Euclidean-space.

[140] approximated the robot trajectory using a sequence of straight line segments,

achieving a roughly similar odometry result to [4]. Wang et al. [141] pruned poses

using a measure based on the Kullback-Leibler divergence between a given frame and

the map in feature-based SLAM, rather than mutual information.

Kim and Eustice [133] pointed out that appearance data is only valuable if it leads to

a future loop-closure, and that the "saliency" (distinctiveness) of images corresponds

to how likely they are to be both re-detected and capable of generating a relative

constraint. To measure visual saliency, they introduced two metrics for the bag-

of-words representation of an image: global saliency (the rarity of an image) and

local saliency (the texture richness in an image, and thus registrability). Global

52

(a) Standard pose-graph. (b) Reduced pose-graph of [4].

Figure 2-3: Information-based pose-graph reduction. Constraints are only added to

the graph when they contain sufficient information content, resulting in a significant

reduction in map size.

saliency is related to the inverse document frequency (2.1), while local saliency is

defined as the normalized entropy of the bag-of-words frequency vector. They found

that images with low local or global saliency are unlikely to result in appearance-

based link hypotheses and can be safely discarded, reducing computation and storage

requirements. They then used these saliency scores to select vehicle trajectories for

environment exploration and area coverage that would result in sufficiently many

loop-closures in visually salient regions of the environment to correct for odometry

drift and maintain vehicle localization performance [142, 143].

While effective at map constraint compression, all of these approaches require access

to the sensor data and typically first compute the actual constraint before determin-

ing whether or not to incorporate it into the map. In comparison, the map reduction

approach presented in this thesis does not have access to the actual sensor measure-

ments or constraints, and instead must evaluate the value of potential constraints.

Furthermore, in order to enable future loop-closure constraints, these constraint se-

lection approaches maintain full location databases even when constraints are not

added to the graph, thus the databases still grow continuously in time.

53

2.4.4 Bounded Graphs

Rather than focusing explicitly on map sparsification, other approaches have sought

to bound map growth. As discussed above, canonical graphical SLAM systems have

maps that grow at least linearly in time. However, clearly a biological brain does not

increase in size as it explores its environment. RatSLAM [16, 144] is a SLAM algo-

rithm inspired by computational models of the hippocampus of rodents, which were

found to display many properties of a desirable robotic SLAM system. RatSLAM

uses pose cells rather than a Cartesian coordinate system, which represent experi-

ences, with each of these cells representing a place in memory with appearance-based

data. [145] extended RatSLAM to allow experience consolidation for long-term opera-

tion in dynamic environments. By overlaying a grid over RatSLAM's experience map,

they limited the system's memory to only one experience per grid location. Given

the assumption that the majority of the environment is static, this allows dynamic

experiences in various locations while the map size remains bounded by area. Be-

cause the experience map is topological rather than metric, the connections between

experiences can be simply rerouted within the grid. [145] demonstrated operation of

a robot performing mock deliveries in a working office environment continuously over

a two week period using RatSLAM.

The Reduced Pose Graph [146] applied a similar concept to metric visual SLAM,

effectively placing a grid over the world in cartesian space and enforcing that only

one pose vertex can be located in any grid cell, and bounded the number of poses (and

thus the size of the location database) by area rather than time. When a location

was revisited, constraints were added only to existing poses rather than creating new

ones, bounding the number of poses (and thus the size of the location database) by

area rather than time, as shown in Figure 2-4. Because constraints were added only

to existing poses in explored regions, sparsity was maintained and no marginalization

54

X8 X7 X6 5

X1 X X3 X4 X3 X

(a) Standard pose-graph. (b) Reduced pose-graph of [146].

Figure 2-4: Area-based pose-graph reduction for three traversals over a region, shown

in yellow (i.e., X8 e 1). Instead of adding additional poses to the graph, additional

constraints are added between existing poses.

was used to reduce the graph. The system retained multiple constraints and combined

them when consensus was reached in order to avoid incorporating bad constraints into

a combined edge, and was demonstrated in a complex, multi-floor environment on

nine hours of data.

Rather than bounding map growth in area, Real-Time Appearance-Based Mapping

(RTAB-Map) [147] bounded the map by computation required for search by using

a memory management method that limited the number of locations available for

loop-closure detection. They divided the location database into active and inactive

locations, with only the active locations being searched for loop closure, and the

inactive locations being promoted to the active set when a nearby active location was

visited. RTAB-Map can handle large-scale, long-term operation, but if a location is

not revisited sufficiently frequently it will be forever lost to long-term memory.

The Reduced Pose Graph [146] successfully bounds map growth by area and RTAB-

Map [147] bounds the computation required for map search during data association.

However, like the sparsification and constraint selection methods, these approaches

require access to the actual measurements in order to reduce the map. The reduction

approach presented in this thesis instead limits the map to the available storage size,

effectively selecting the most valuable map components that will fit within storage

constraints without requiring access to the sensor measurements or pose-graph.

55

2.4.5 Optimal Sensor Placement

In determining which locations to close loops, this thesis introduces a new optimal

sensor placement problem in the context of vehicle localization. Each database entry

can be considered a navigation beacon, and the problem becomes one of selecting the

optimal set of beacons about the environment. Optimal sensor placement generally

entails minimizing the number of sensors while maximizing coverage. The utility-

based selection approach presented in this thesis instead selects the N best sensors

given a predefined set (all traversable locations) to minimize expected trajectory

uncertainty rather than maximize coverage.

Krause et al. formulate an optimal sensor problem by placing sensors to maximize the

mutual information of sensed and unsensed locations in an environment using learned

Gaussian processes [148]. Beinhofer et al. [149] and Allen et al. [150] formulate sen-

sor placement problems to place artificial navigation landmarks and sonar beacons,

respectively, along pre-defined trajectories for localization. Vitus and Tomlin [151]

formulated an optimal sensor placement problem in which a vehicle deploys a lim-

ited set of sensor beacons in the environment to minimize its navigation estimation

error.

Optimal sensor placement problems can additionally be formulated to select minimal

sets of natural landmarks in the environment to be incorporated into the vehicle's

map. Frintrop and Jensfelt [152] used active camera gaze control to track a lim-

ited set of features selected to achieve good spatial distribution throughout the map.

Hochdorfer and Schlegel [153] selected landmarks to maximally cover the vehicle's

operational environment given bounded resources. Zhang et al. [154] instead used

an entropy metric when determining which landmarks to add to the map, consider-

ing the uncertainty reduction in the vehicle's position resulting from incorporation

of any additional landmark. Dissanayake et al. [155] and Strasdat et al. [156] in-

troduced methods to remove low-value landmarks from the map in order to improve

computational efficiency.

56

The location database selection approach presented in this thesis involves choosing a

limited-size subset of the locations in the environment prior to navigation at which

potential loop-closure measurements will be most beneficial to any trajectory through

the environment. This is distinct from other optimal sensor placement problems in

the context of vehicle localization because the specific trajectory and measurements

are unknown, and we instead must develop and rely on a probabilistic representation

of the vehicle trajectory.

2.5 Path Planning

One of the key distinguishing factors of the map reduction approach presented in

this thesis is that the reduction occurs prior to vehicle operation. This means that,

rather than having observability of the true vehicle trajectory, we must develop a

probabilistic representation of the vehicle trajectory, which will then be used to select

valuable locations in the environment. This is accomplished in part by exploiting the

structure of vehicle motion and the environment through knowledge or observation of

the vehicle's path planner, as will be described in depth in the following chapter.

The value of the map to the larger system is primarily to enable the guidance sys-

tem to select optimal, traversable paths. Therefore, it is essential that a reduced

map to be used for vehicle guidance retains the value of the map to the planning

system. However, SLAM representations have traditionally been designed without

considering path planning performance. A great wealth of graph-based algorithms

already exist from the graph theory community [157, 158], and those most applicable

to path planning on graph-based maps and the utility-based map reduction approach

are discussed here. To do so, it is important to first formally define a graph.

Definition 1. A graph is denoted by G = (V, E), where V is a finite set of vertices

and E C V x V is a set of edges.

57

For simplicity of notation, we denote the number of vertices as IVI = n and the

number of edges as JEJ = m.

Before performing graph-based path planning, it is important to first consider the

reachability of a graph. The reachability relation refers to the connectivity of two

graph vertices by edges. If a graph satisfies the reachability relation, then a path can

be computed between any of its vertices. This is an important requirement for the

algorithms for path planning on graphs given below.

Definition 2. Graph G satisfies the reachability relation if for the set of all ordered

pairs (s, t) of vertices in V there exists a sequence of vertices vO = S, v 1, v2 , ... , Vk = t

such that edge (vi_ 1, vi) is in E for all 1 < i < k.

For the specific case of pose-graphs, the graph exhibits the reachability relation as long

as the system produces an odometry constraint between all consecutive poses. This

can be guaranteed by using a fully internal odometry sensor with no risk of outages,

such as an inertial measurement unit (IMU). It is important that any reduced graph

retain this property if it will be used for graph-based path planning.

2.5.1 Shortest Path

For a graph-based map, the optimal path, p = (P1,P2,... ,Pk), between two vertices

(s, t) C V is defined as the path minimizing some cost function, also called the shortest

path. The edges can either all be equivalent, and thus the shortest path is that which

traverses the fewest edges, or weighted, such as by distances or travel times. An

example of a weighted graph is one in which the vertices are locations in the world

and the edges are the roads between them, weighted by their lengths.

58

Breadth-first search (BFS) [158] can be used to find the shortest path on a graph

with equal edge lengths in linear time, 0(m). BFS starts from vertex s and first

searches all vertices directly connected to it for the goal vertex, t. If t is not found,

the process repeats for each vertex one edge away from s. If t is again not found,

the process repeats for increasingly large numbers of edges. This is in contrast to

the depth-first search, which instead travels as far as possible from the initial vertex

whenever possible.

Graphs with non-negative edge lengths are handled by adding a length function,

f : E -+ R>O and defining the optimal path, p, as that which starts from s and

reaches t while minimizing E_ 1(ej). Dijkstra's algorithm [159] generalizes BFS

for weighted graphs with non-negative edge lengths, such as pose-graphs, in O(n2)

time. The algorithm maintains two data structures, d : V -+ R>o, the estimate of the

distance from s to all other vertices, and U C V, the set of "undetermined vertices."

Subsequent modifications to Dijkstra's algorithm have managed to reduce the time

complexity, such as through use of Fibonacci heaps to O((m + n log n) [160] and radix

heaps for integer weights to 0(m+nv/logC) [161]. An example of Dijkstra's algorithm

on a simple graph is shown in Figure 2-5.

3 7

start 3 2 5 2 3

4 2 24
3

4 3

3 6
7

Figure 2-5: Dijkstra's algorithm finds the shortest path from a selected vertex to

all other vertices in a weighted graph using breadth-first search. The distance to

each vertex is shown, and every edge traversed by the algorithm is highlighted. The

shortest path to the goal node (shown in red) is highlighted in green.

59

..

Dijkstra's algorithm was extended using heuristics to the A* search algorithm [162],

which is called a best-first search. A* search uses a knowledge-plus-heuristic cost

function of vertex x: f(x) = g(x) + h(x), in which g(x) is the known distance from s

to X, and h(x) is an estimate of the distance from x to t. The edge with the lowest

cost f(x) is searched first at every time step. As long as h(x) serves as a lower bound

for this distance (i.e., h(x) < d(x, y) + h(y) for every edge (x, y)), then A* returns

the shortest path while expanding the fewest possible vertices.

2.5.2 All-Pairs Shortest Paths

The all-pairs shortest path problem expands the single-pair shortest path problem to

every pair of vertices in the graph. The result is a matrix of all distances between

pairs of vertices, called the graph distance matrix.

The simplest approach to calculating the graph distance matrix is to iterate the

single-pair algorithms, described in Section 2.5.1, n times (for every pair of vertices).

For Dijkstra's algorithm, this raises the complexity to 0(n') (and similarly multiplies

the complexity of the other above algorithms by n). Note that Dijkstra's algorithm

computes the distance from s to all other vertices in O(n2) when not terminated after

reaching t.

The Floyd-Warshall algorithm [163] also computes the shortest paths between all

pairs of vertices in a weighted graph in O(n3), but additionally allows negative edge

weights (assuming no negative cycles). Johnson's algorithm [164] similarly computes

the shortest paths between all pairs of vertices for weighted graphs with some neg-

ative weights (but no negative cycles), but can additionally handle directed graphs.

Its worst-case performance is O(n2 log n + nm) (when implemented using Fibonacci

heaps), which outperforms the Dijkstra and Floyd-Warshall algorithms for sparse

graphs.

60

2.5.3 Path Planning with Graphical SLAM

Objective-seeking path planning algorithms require a map of the environment. When

an a priori map is unavailable, the system must generate this map online, which

will involve SLAM unless an external localization system is available and sufficient

(e.g., GPS). Typically, path planning algorithms require either a map of obstacles,

such as a building floor plan, or a map of traversable paths, such as a road map.

Traversability maps enable more efficient planning, but require an additional system

for obstacle detection. Obstacle maps enable continuous-domain trajectory plan-

ning, but the algorithms for this typically come at a higher computational cost and

employ techniques such as sampling for complexity reduction. Examples of popu-

lar sampling-based planning algorithms are probabilistic roadmaps (PRM) [165] and

rapidly-exploring random trees (RRT) [166, 167].

A number of systems have included both path planning algorithms onboard and

SLAM, though most early systems used algorithms and representations designed

somewhat in isolation. Examples of such vehicles include autonomous cars from

the DARPA Grand Challenge [168, 169], Autonomous Underwater Vehicles (AUVs)

[170], and Unmanned Aerial Vehicles (UAVs) [171, 172, 173]. However, self-driving

cars require huge computational resources, and systems used onboard small quadro-

tors have been limited largely to downscoped algorithms such as waypoint guidance

[172] or off-vehicle map processing [173]. As opposed to objective-based path plan-

ning, similar algorithms have also been employed to plan exploration trajectories that

maximize mapping coverage of an environment. For example, AUVs have successfully

employed PRM and RRT for complete-coverage ship-hull inspection [174].

In an attempt to make path planning algorithms scale better to large environments,

[17] introduced a hybrid metric-topological map. This SLAM representation was

developed specifically for efficient large-scale path planning and used a hierarchical

map structure, similar to those described in Section 2.4.1, with detailed local metric

submaps and a global topological map of connectivity. [17] argued that topolog-

61

ical connections with approximate metric information were sufficient for planning

over large spaces. They used Dijkstra's algorithm to compute the shortest path to

the goal through the topological graph and constructed occupancy grids within each

of the submaps the trajectory would cross. They then used these occupancy grids

for sampling-based path planning for obstacle avoidance in continuous space, using

the topological vertices effectively as waypoints. [175] applied a similar approach to

navigating a vehicle in a crowded and dynamic city environment, planning global

trajectories using a topological representation and rendering detailed maps only lo-

cally. Their results agreed with those of [17], finding that their planned trajectories

were about 10% longer than optimal but were computed several orders of magnitude

faster than when using a single metric map. They additionally used a mid-level rep-

resentation based on the pose-graph vertices to compute waypoints using Dijkstra's

algorithm, which are sent to the low-level planner. [176] extended [17] by caching the

local maps for greater efficiency in multi-agent scenarios.

A vehicle navigating using SLAM will almost always have uncertainty in both the

map and the position, and often this uncertainty is significant. [177] introduced

belief roadmaps (BRM), which extended PRMs to belief space, or the space of prob-

abilistic position estimates. They showed improved vehicle motion performance by

incorporating the predicted uncertainty of future position estimates into path plan-

ning, and demonstrated this on a quadrotor using a laser range-finder [178]. [179, 180]

claimed that because feature-based SLAM produces a sparse map, it cannot be used

directly for path planning because very little obstacle information is available. How-

ever, they showed that a pose-graph can be used directly as a BRM because odometry

constraints represent traversability and the information content of measurements at

pose nodes represent the information available in the environment. They then gave

a method to determine an optimal navigation strategy to reach a goal location by

searching the pose graph for paths with low accumulated pose uncertainty. [181] ex-

tended this work by inc rpiorating active exploration to balance between map building

and revisiting known locations. This system guided the vehicle to maximize coverage

while minimizing both localization and mapping uncertainties. [182] similarly found

62

minimum uncertainty trajectories on generic pose-graphs, but introduced a reduced

graph representation called a decision graph to simplify path planning using Dijk-

stra's algorithm. The decision graph retains only the start and goal vertices and

the vertices of the pose graph with degree greater than two, as only these locations

involve decision making.

The majority of path planning algorithms applied to SLAM have focused on maxi-

mizing map coverage [183], often treating environment exploration as a form of the

"traveling salesman" problem, or operating within existing maps [171]. However, in

many situations in operational robotics, the vehicle is solely trying to reach a goal.

Assuming all mapped regions are reachable, exploration is only necessary when the

goal lies in an unexplored region of the map. A highly risk-averse vehicle sees no

value in unnecessary environment mapping. An example of an algorithm designed

to minimize localization uncertainty during exploration is the Network of Reusable

Paths [184, 185], which selected vehicle trajectories such that vehicle remained on

previously traversed paths whenever possible. When the goal location lied outside of

the network of paths, an exploration path was planned to minimize the expected local-

ization error of the vehicle at the goal. However, the Network of Reusable Paths was

formulated only to minimize localization error at the goal, rather than to maximize

the information content of a map.

63

64

Chapter 3

Location Utility

Localization and SLAM systems seek to minimize the error of a vehicle trajectory

estimate (and map estimates, in the case of SLAM) using measurements provided

by navigation sensors. For purposes of this chapter, we will assume that this mea-

surement set contains some form of odometry and loop-closure measurements in a

pose-graph formulation (see Section 2.1.4) and all consecutive poses are connected by

full-rank odometry measurements (see Section 2.2). However, the loop-closure mea-

surements discussed in this chapter could be replaced by an absolute or map-relative

measurement, such as from a GPS receiver or correlation to an existing map.

Our goal is to identify the most useful locations in a map for loop-closure or ab-

solute measurements to occur, given some basic prior information about the map

and expected trajectory. This goal is more rigorously defined in Section 3.1, which

motivates the development of a metric of location utility to facilitate selecting loca-

tions according to their value for potential loop-closure measurements in Chapter 4.

Section 3.2 introduces the location utility metric for the case of a planar network of

traversable paths with full-rank measurements. Section 3.3 then extends the defini-

tion to cases with unrestricted 6-degree-of-freedom motion and low-rank projective

landmark measurements.

65

3.1 Reducing Pose Uncertainty

The goal of vehicle localization is to determine the vehicle's pose as accurately as

possible. Assuming that all measurements are accurate and their uncertainty is well-

modeled, this goal is achieved in practice by minimizing the vehicle pose error uncer-

tainty, which determines the precision of the solution. It is well known that the pose

error uncertainty will grow unbounded in time when using solely odometry measure-

ments and can only be reduced by incorporating either an absolute or loop-closure

constraint. These uncertainties are represented as covariances when the posterior

of the vehicle poses is represented using a multi-variate Gaussian distribution, as is

common in the literature [3, 67, 66]. The primary goal of a navigational localization

or SLAM system is therefore to gather and apply absolute or loop-closure constraints

to minimize the vehicle pose error covariances of the trajectory.

The trajectory uncertainty can be quantified by the average pose position uncertainty,

E, of all N poses in the trajectory:

Upos Tr(QOS) (3.la)

N

Z Pos=n (3. 1b)
n=1

where QpO, is the marginal position error covariance matrix of a pose, Tr is the

matrix trace operator, and po2 s is the uncertainty of an individual pose. A marginal

covariance represents the uncertainties between a subset of variables (e.g., the x and

y positions of a particular pose) as opposed to all variables in the problem [186]. We

neglect attitude uncertainty to avoid the unit conflict between meters and radians, but

a metric of average pose attitude uncertainty could be similarly defined, if desired.

Position and heading uncertainty are correlated in cases in which all consecutive

poses are connected with full-rank odometry constraints, as we assume in this chapter,

making it sufficient for the purposes of our analysis to quantify trajectory uncertainty

using solely the pose position uncertainty.

66

The pose error covariance in a pose-graph based localization or SLAM system is

ultimately a function of the following three factors:

1. the number of loop-closure measurements,

2. the distribution of loop-closure measurements, and

3. the individual measurement covariances.

The configuration that minimizes the pose error covariance will have the maximum

number of maximally-distributed, maximally-confident measurements. Put more sim-

ply, we would like to have many well-distributed, precise measurements.

Figure 3-1 shows a simple 2D pose-graph of a vehicle moving one unit forward at

each time step, consisting of a string of poses, xi, connected by identical odometry

measurements. Each pose additionally has an optional full-rank prior, zi, constraining

its location and heading in absolute space, each of which represents a loop-closure

measurement to a well-estimated pose.

Figure 3-2 shows the error covariances of this pose-graph, given various combina-

tions of loop-closure constraints, z (i.e., these constraints are switched on or off). If

we assume that all loop-closure measurements are equally precise, the two remain-

ing sources of map covariance variation are the number and spatial distribution of

loop-closure measurements. The average pose covariance is reduced as additional

measurements are added (see Figure 3-2a), and, for a fixed number of constraints,

the average pose covariance is minimized when the constraints are maximally dis-

tributed (see Figure 3-2b). Figure 3-3 shows the optimal measurement configuration

of those evaluated in Figure 3-2, which minimizes the average pose position error by

maximizing the allowable measurements (three) and their distribution, E.

67

Z 1 Z2 23 44 5 6 Z7 38 9 10

Figure 3-1: A simple graph of eleven poses, xi, connected by odometry measurements
(blue). A measurement to the external frame, zi, is additionally available at each

pose, which constrains its location in the global coordinate frame.

2 -e=0.922 0.232
- e=0.273 0.3 - e 0.211

1.5 - e =0.182 -- =0.19

0.25 - e=0.182

0.2

0.5 0.15

4 6 8 10 0 2 4 6 8 10
Pose Pose

(a) (b)

Figure 3-2: Pose position uncertainty, 01PO, for poses in the simple trajectory shown in

Figure 3-1 with a variety of measurement configurations. Figure (a) shows the position
uncertainty when optimizing the pose-graph with one (red), two (green), and three

(blue) global-frame measurements. Figure (b) shows the position uncertainty when

optimizing the pose-graph while varying the pose associated with the third global-
frame measurement. The configuration with minimal pose error (blue) maximizes

both the number of measurements (left) and their spatial distribution (right) and is

shown in Figure 3-3. The average pose uncertainty e (3.1b) for each configuration is

provided in the legend.

0O X1 X2 X3 X4 X5 X6 ig X8 3 10

Zo 25 10

Figure 3-3: The optimal configuration of the pose graph shown in Figure 3-1 of those

evaluated in Figure 3-2. The pose position error covariance after optimizing this

pose-graph is shown in blue in Figure 3-2.

68

..

3.2 Definition of Utility

We define the utility of a location for loop-closure, or location utility, as the covari-

ance reduction over all poses in the map resulting from all predicted loop-closure

measurements that involve that location. Therefore, location utility is composed of

the following two factors:

" The probability of a location being visited and recognized for a given map, which

is equivalent to the probability of generating a loop-closure measurement.

" The covariance reduction due to loop-closing at that location, which is approxi-

mately proportional to the distance traveled since the most recent loop-closure.

These two factors correspond to the total number and spatial distribution of the

loop-closure measurements in the map. Without knowledge of the specific vehicle

trajectory these factors become independent, as will be described in Sections 3.2.1

and 3.2.2, as long as the location database is not used by the path planner. 1

Linear combination of the above two utility measures yields the total utility, u of a

database location, f, i.e.,
oE dt

ut= y + A (3.2)
Vmax dmax,t

where vi is the joint probability of a route visiting and recognizing the location (de-

scribed in Section 3.2.1), normalized by the maximum such probability for the region,

Vmax, and de is the minimum distance to another database location or the region

boundary (described in Section 3.2.2), normalized by the maximum distance to any

database location, dmax,e. A is a tunable weighting parameter used to control the

trade-off between measurement probability and dispersion. We recommend A = 1 for

general usage, and Section 4.1 will discuss situations in which this parameter might

be changed in practice. While this does form the core definition of location utility,

this definition is not necessarily complete. For example, it may make sense in some

application-specific situations to include an additional term in (3.2) to represent the

'Feedback of the location database to the path planner could be accounted for by iterating the
location selection process described in the following chapter but has been left for future work.

69

complexity of the task to be performed at that location relative to position uncertainty

(e.g., a street intersection with four streets may more challenging to navigate than

one with only three). The following subsections explain the two terms comprising the

location utility in detail.

3.2.1 Measurement Probability

Term ye in (3.2) is defined as the probability that a particular location, f, will con-

tribute a loop-closure measurement to the pose-graph. Thus ye encodes environment

and routing structure and is the joint probability that a vehicle route within the envi-

ronment passes through and recognizes the location (i.e., successfully performs data

association). Specifically, using Bayes' rule, we define vf as follows:

Ve = P(visit)P(recognize visit)= P(visit, recognize) (3.3)

P(visit) is inherently dependent on the trajectory, x = {xto, Xt1 , ... }, where xt0 is the

vehicle pose at time to. When the trajectory is directly observable, P(visit) is readily

computed:

P(visit x){ 1 (3.4)
0 otherwise

However, the true trajectory is unobservable because the location selection process

occurs prior to vehicle navigation. We therefore marginalize out this trajectory de-

pendence by integrating over all possible trajectories, X = {xI, x 2 , ...}:

P(visit) = J P(visit x)P(x) dx (3.5)

Where P(x) gives the probability of trajectory x occurring.

70

For the case of a network environment, P(visit) can be computed using a modified

form of the betweenness centrality [187] of the graph of traversable routes in the en-

vironment. Betweenness centrality measures the extent to which a node in a graph

falls on the optimal path between pairs of other nodes, and originated as a measure-

ment of influence in social networks. Thus, having a large betweenness centrality in

a transportation network indicates that many routes pass through that location. For

purposes of computing P(visit), the standard definition of betweenness centrality is

modified to additionally include the route endpoints as "central" locations, as they

provide additional opportunities for loop-closure measurements. For all routes from

location s to location t, the modified betweenness centrality is computed as the ratio

of the number of routes that traverse location , nst(f), divided by the total number

of routes in the region, nrt:

P(visit f))(3.6)
snt

These routes should be computed using the same method as the vehicle's path planner.

An example of the probability of location visit in a street network computed using

the modified betweenness centrality (3.6) is shown in Figure 3-4.

The recognition probability, P(recognizeIvisit), represents the probability that a con-

straint can actually be generated if the vehicle visits the location and activates its

sensors. If sample sensor measurements are available for all locations in the environ-

ment, the location recognition probability can be estimated from a saliency score such

as [133]. Otherwise, we assume that all locations in the environment are equivalently

recognizable: P(recognizel visit) = constant.

71

0.6

0.4

0.2

0

-0.2
Z

-0.4

-0.6

-0.8
-1 -0.5 0 0.5 1

East (km)

Figure 3-4: Street map of Island of Male (also see Figure 5-3a), whose intersections
are colored to show probability of visit (3.3), ranging from dark red (maximum) to
dark blue (minimum).

3.2.2 Location Dispersion

The actual covariance reduction resulting from a loop-closure in a map is difficult to

predict, but is approximately proportional to the distance that a vehicle has traveled

since the last loop-closure, assuming that the trajectory estimate has achieved steady

state (i.e., past poses can be considered well-estimated). This is due to the fact that

accumulated odometry error is typically proportional to the distance traveled by the

vehicle, similar to propagation error accumulation in a Kalman Filter [23]. In the case

of a known trajectory, this distance, d, is easily computed as the distance traveled

since the most recent loop-closure location, and maximizing the spatial distribution

entails evenly spacing the locations along the trajectory.

We want to achieve this same effect even when the true vehicle trajectory is unknown.

Thus, intuitively, we want to maximally distribute the loop-closure sites about the

navigable environment, or maximize their dispersion. We can estimate the disper-

sion of the loop-closure measurements by replacing the true distance from the last

loop-closure measurement, d, with its lower bound, de, which represents the shortest

72

distance a vehicle could travel from a previous loop-closure before reaching a given

location, f. Distance de can be computed using either the Euclidean or shortest path

distance from location f to either a location contained within the location database, D,

(and thus capable of generating a loop-closure constraint) or the region boundary, B:

de = min [dist(C, D), A dist(f, B)] (3.7)

where "dist" represents some distance function (e.g., Euclidean distance) and AB is

used to reduce the impact that the region boundary has on de and can be chosen

with a priori knowledge of how close the vehicle is expected to get to the boundary

and how frequently this will occur. Neglecting to include some level of boundary

repulsion (AB > 0) tends to highly value locations that lie on or near the region

boundary, which may be unlikely for the vehicle to traverse.

The dispersion of a set of locations, h, such as the location database D, is defined as

the maximum of the dispersions of the individual locations, de:

h(D) = maxdt (3.8)

f E D

This is called the "p-dispersion" function [188, 189] or "maximin" dispersion [190,

191]. This definition of the dispersion of a set of locations is convenient for location

selection, as maximizing the minimum distance between any two locations in the

set maximizes the spatial dispersion of the entire set and serves to strongly discour-

age clustering. Maximizing the sum of (3.7) for all locations, called the "remote-

psuedoforest" or "maxisum" dispersion problem, encourages clustering and is poorly

suited for greedy optimization [192], which we will use in Chapter 4 for database

selection.

73

3.3 Extension to Landmark Utility

A landmark-based navigation system seeks to minimize the error of the trajectory

estimate using full-rank odometry and low-rank landmark measurements, where land-

marks are orientationless points in space with associated appearance descriptors

stored in the navigation database. Rather than compensating for odometry drift

using full-rank loop-closure measurements, a landmark-based system instead uses

line-of-sight observations of landmarks to bound error growth. If we assume that all

landmark line-of-sight measurements are equally precise, the two factors influencing

the pose error covariance are the number and spatial distribution of the landmark

measurements. The average pose covariance for the trajectory is reduced as addi-

tional measurements are added, and, for a fixed number of constraints on a particular

pose, the average pose covariance is minimized when the constraints are maximally

distributed around the sensor field of view.

As a simple motivating example, we consider the case of a single, stationary camera at

an altitude of 100 meters pointing directly downward (along nadir). We can compute

the pose of the camera if we are given at least three measurements to pre-mapped

landmarks by using nonlinear least squares optimization to minimize the reprojection

error of the observations in the camera frame, as described in [42]. We simulate a

1024 x 1024 pixel camera with an approximately 60-degree field of view and assume

that all measurements have correct data association to the landmark database and

are equally precise. We summarize camera pose uncertainty using the determinant

of the position error covariance matrix, which represents the volume of the position

uncertainty. In Figures 3-5 and 3-6, we see that pose uncertainty is reduced both

as additional measurements are added (Figure 3-5) and as the measurements are

increasingly distributed within the image (Figure 3-6). The four-measurement case

in Figure 3-5 is identical to the case of 1024-pixel spacing in Figure 3-6.

74

0

0

12 10

C
0

0,

0

Ca

a)S0.1

5 10 15
Number of Measurements

20

Figure 3-5: Line-of-sight observations of terrain landmarks are simulated in the cam-
era view equally-spaced on the maximum-radius circle centered at the center of projec-
tion. The computed camera position uncertainty decreases as additional observations
are incorporated into the pose estimation.

0

0
0

C
0

U,

0

0

C

E

CD

0

1014

1012

10 10

108

106

104

100

0 200 400 600 800
Measurement Spacing (Pixels)

1000

Figure 3-6: Four line-of-sight observations of terrain landmarks are simulated in the
camera view in a square centered at the center of projection. The computed camera
position uncertainty decreases as the observations (and thus also the landmarks) grow
increasingly distant from one another.

75

I I I I

For the case of landmark line-of-sight measurements, ye in (3.2) is defined as the prob-

ability that a particular landmark, f, will contribute a measurement to the pose-graph

at some vehicle pose, x. Term ye still encodes environment and routing structure, but

is now the joint probability that the vehicle views and recognizes a landmark, rather

than visiting a location in space. This means that a landmark is viewable from many

vehicle poses, rather than a maximum of once throughout the course of a point-to-

point trajectory, as in (3.4). Similarly to (3.3), ye is defined using Bayes' rule as:

ye = P(view)P(recognize view) = P(view, recognize) (3.9)

The landmark recognition probability P(recognizeIview), represents the probability

that a constraint can actually be generated if the vehicle views the landmark location

and activates its sensors. The recognition probability can be estimated from sample

sensor measurements, if available. Otherwise we assume that all landmarks in the

environment are equivalently recognizable: P(recognizeIview) = constant.

Because landmarks can be viewed from multiple poses within a trajectory, the proba-

bility of viewing a landmark, P(view), must be formulated with respect to individual

poses, x, rather than trajectories (vectors of poses), x, as in (3.5). This requires the

addition of a second integral to the computation of P(visit) in (3.5) to integrate over

each trajectory in addition to the space of all trajectories, X:

P(view) = J j P(view Ix)P(x x)P(x) dx dx (3.10)

where P(x) is the probability of a particular trajectory occuring and P(xlx) is the

probability of pose x occurring within trajectory x. P(view) is computed by simu-

lating every possible trajectory and counting the number of times each landmark is

observed, weighting by the probability of each trajectory occurring. Once a trajectory

has been simulated, the probability of a pose occurring is computed as follows:

1 x E-x
P(xIx) = (3.11)

0 otherwise

76

In practice, Monte Carlo trajectory simulations can be used to sample P(X), as

demonstrated in Section 6.4.

The pose error covariance reduction resulting from a landmark measurement is ap-

proximately proportional to its 2D-space distance in the sensor field of view, d, to

the next-nearest observed landmark. In the example case used earlier of a camera

pointing perpendicularly to a planar surface, maximally distributed landmarks in 3D

world-space result in maximally distributed observations in 2D image-space. If the

camera is pointed off-nadir or the world is non-planar, the maximally distributed

observations will no longer exactly correspond to equally-spaced landmarks due to

the angular projection. However, these deviations are relatively minor as long as the

pointing angle is reasonably small.

The expected distance in the sensor field of view, de, can be approximated by the

3D-space Euclidean distance from a specified landmark's location, e, to the nearest

landmark in the database, D. Despite the true sensor pointing angle being unknown

because the landmark database must be selected prior to vehicle navigation, this

approximation holds for reasonably small pointing angles because points far apart in

space tend to also project far apart in the sensor field of view. Thus we can maximize

the spatial distribution of the landmarks in 3D-space as a proxy for maximizing

the distribution of their observations in 2D projective-space, again computing de as:

dt = min [dist(ee D), AB dist(fi, B)] (3.12)

Similarly to (3.7), we additionally consider the distance from the landmark to the

flight region boundary, B, to prevent points on the boundary from being weighted

excessively high, as they are less likely to persist in the sensor field of view, and

AB is again used to down weight the impact of the region boundary. Notice that

(3.12) ends up being identical to (3.7), as both methods are simply maximizing the

minimum distance between any landmark/location and its nearest neighbor in the

database.

77

3.4 Chapter Summary

The primary goal of localization and SLAM systems is to determine the vehicle's

trajectory as accurately as possible. As described in Section 3.1, the accuracy of

a vehicle's trajectory estimate can be quantified using the trajectory estimate's un-

certainty in the absence of specific measurements. The measurement configuration

that minimizes the trajectory estimate's uncertainty has the maximum number of

maximally-distributed, maximally-precise measurements.

Section 3.2 defined a metric of map location utility for predicted loop-closure or

localization measurements. This utility is a combination of the probability of a mea-

surement occurring at that location and the location's relative spatial dispersion with

respect to other locations at which measurements can occur. These two terms be-

come independent if the specific vehicle trajectory is unobservable, enabling location

valuation prior to vehicle operation. The measurement probability, defined in Sec-

tion 3.2.1, is the joint probability of the vehicle visiting and recognizing a location.

The location's spatial dispersion, defined in Section 3.2.2, is defined as the minimum

distance to any other measurement-enabled location.

Section 3.3 generalized this definition of location utility to accommodate low-rank

landmark line-of-sight measurements and unconstrained trajectory spaces. The re-

sulting landmark utility metric is analogous to the location utility metric for purposes

of the maximum-utility database selection methods described in Chapter 4.

78

Chapter 4

Location Database Selection

The previous chapter introduced a metric of location utility, which quantifies the value

for vehicle navigation of predicted loop-closure or localization measurements predicted

to occur at a particular location, and showed how this metric can be computed for

locations in a navigation database. This chapter discusses how to construct such a

navigation database to maximize its total utility for a given number of locations.

We first formulate the location selection problem as a nonlinear integer program

in Section 4.1, which enables all locations in an environment to be sorted by their

relative importances for vehicle navigation. Optimal location selection turns out to

be NP-hard, but Section 4.2 describes a greedy approximation algorithm for efficient

location selection with time complexity bounded by the product of the number of

unselected locations in the region and the database size. In order to further speed

up location selection for large regions, we introduce a hierarchical selection approach

in Section 4.3 that additionally enables efficient database updates when a portion of

the environment changes.

79

4.1 Location Selection Problem Formulation

We seek to select the maximum-utility set of locations to include in a limited-size

navigation database, D. The utility of a set of locations is defined as the sum of

expected measurements resulting from all locations in the set (3.3) and the dispersion

of the set (3.8). Given all possible locations in a region, L, we can formulate the

optimal database selection as a nonlinear integer program (IP) subject to the allowable

database size constraint, IDI:

.tTV h(L(t))
Find arg max -a+ A (

le Vmax hmax

subject to ETe = DI (4.1)

fi E {o, 1} Vi

where t is a vector of binary switching variables representing all possible database

locations (IfI = ILI), Vmax and hmax are normalizing constants, and A is a tunable

weighting parameter. h(L(e)) is the p-dispersion function defined for a set (3.8), and

v is a vector containing the visit probability of each location in L, as defined in (3.3)

or (3.9), which is proportional to the number of measurements predicted to occur at

each location. The problem is nonlinear because the dispersion h(L()) is a nonlinear

function of e, as shown in (3.8), and cannot be written in vector form.

Vector v and h(L(t)) must be normalized to remove the unit conflict between proba-

bility and distance, as in (3.2). The normalization constants, Vmax and hmax, are the

optimal objective values for their respective single-optimization problems:

Vmax= arg max f (4.2a)
t'

hmax= argmax h(L(th)) (4.2b)
th

subject to j e' = tT e = IDI

fvi E {0,1 }, t h,i E {, 1} Vi

80

Determination of the optimal normalization constants is NP-complete (see Section 4.2.2)

and dependent on both the environment and database size for this IP formulation,

but Section 4.2.1 provides an effective heuristic normalization approach applicable to

the greedy approximation algorithm that follows.

A is a tunable weighting parameter used to control the trade-off between the predicted

number and dispersion of the measurements. Specifically, A < 1 favors locations ex-

pected to be frequently visited and A > 1 favors locations that are evenly distributed.

In practice, A should be slightly increased if the P(visit) is especially large in a small

number of clustered regions and otherwise generally small (e.g., resulting from a

trajectory aiming for a particular goal location), and slightly decreased if P(visit)

contains many distributed but minor local maxima (e.g., sinusoidal in nature with a

low amplitude). This tradeoff decreases in significance as IDI grows large, and A = 1

is sufficient in most cases. Section 5.3.1 further discusses the effects and sensitivity

of varying A.

4.2 A Greedy Algorithm for Location Selection

Directly solving the constrained optimization problem (4.1) is an instance of IP with

binary switching variables (also called "0 1 integer programming"), which is NP-

hard [158]. The decision version of this problem, in which we are given a location

database and must determine whether a database with higher utility exists, is equiv-

alent to one of Karp's famed 21 NP-complete problems [193]. Thus, in order to make

location database sorting computationally tractable, we use a greedy approximation

algorithm that iteratively adds the remaining location with the highest utility score

to the database.

By greedily growing the database, we implicitly assume that the optimal database

of size N is included in the optimal database of size N + 1. While this assumption

does not always hold - its accuracy is discussed in Section 4.2.2 - it does lead to a

nice property. The information contained in an accurate loop-closure measurement is

81

non-negative, i.e., adding an additional constraint to the pose-graph cannot increase

the trajectory position uncertainty. We can extend this statement to say that adding

a location to the database (without removal of another location) guarantees at worst a

null-effect on pose uncertainty, because, for any possible trajectory, adding a location

to the database can never result in fewer loop-closure detections. This property

means that the utility of a greedily-selected location database is nondecreasing with

database size for any trajectory. The accuracy of the greedy assumption is discussed

in Section 4.2.2.

The greedy database growing problem is formulated as such: Given a list of all possible

locations, L, and a database of locations, D C L, find the optimal next location f:

Find arg max vt + A dt
(4.3)

subject to f E- L, f D

where A is the weighting parameter from (4.1). Vector v provides the probability of

visiting each location, computed using Algorithm 1. Vector d provides the distance

from each location to its nearest neighbor in D, computed using Algorithm 2. The

elements of both v and d are normalized to the range [0, 1] to remove the unit conflict.

A more detailed discussion of the normalization approach is provided in the following

section. Because dispersion (vector d) is undefined for IDI < 2, the database is

initialized using the location corresponding to the maximum of v.

This greedy selection approach is significantly more efficient than the combinatorially-

complex IP formulation (4.1), which runs in O((1IQ)). Algorithm 1 runs in O(ILI),

Algorithm 2 in O((ILI - ID|)IDI), and solving (4.3) in O(ILI - IDI). Thus the full

algorithm runs in O((ILI - IDI)IDI) < O(ILHIDI) for each iteration, and is especially

efficient when computing small databases (IDI << ILI). Despite location databases

typically being computed prior to vehicle navigation, the greedy algorithm is efficient

enough to run in on-demand or real-time scenarios, such as would be required for

online database management, one of the research directions suggested for future work

in Section 7.1.1.

82

Algorithm 1 Compute Normalized v

1: Inputs:

Locations L,

Location database D,
Visit probabilities VL

2: v <- zeros(IL|)

3: for x E L do

4: if x D then

5: V[x] <-- VL[x]
6: end if

7: end for

8: v - v/ max v

Algorithm 2 Compute Normalized d

1: Inputs:

Locations L,
Location database D,
Region boundary B,
Boundary repulsion weight AB

2: d <- zeros(iLI)

3: for x C L do

4: if x D then

5: dD - zeros(|D| + 1)

6: for k E D do

7: dD [k] <-- dist (x, k)
8: end for

9: dD[IDI + 1] <- AB dist(x, B)

10: d[x] <- min dD

11: end if

12: end for

13: d - d/ max d

> Euclidean distance

> Distance to region boundary B

> Normalize

83

> Normalize

4.2.1 Normalization

The two phenomena forming the core of location utility - the expected number of

loop-closure measurements and dispersion - use fundamentally different units, posing

a challenge when jointly maximizing them. P(view) is unitless and constrained to

lie within the range [0, 1], although, in practice, the maximum viewing probability

is often much lower than 1. The database dispersion, h(D), defined in (3.8), is

the maximum distance between any location and its nearest neighbor, where both

locations are contained in D, and has units of distance. Compounding the challenge,

the database dispersion h(D) decreases as the database grows in size and can have

a large range of values. For example, h(D) might be on the order of meters when

IDI = ILI but on the order of kilometers when IDI = 2 during the first greedy selection

iterations. The dispersion value will typically vary by orders of magnitude during

database selection, which makes it difficult to set the tuning parameter, A, such that

it provides a consistent effect throughout the selection process and is independent of

the database size.

The underlying goal of database selection is to achieve a balance between the expected

number of measurements and their dispersion, and to use A to manually tune this

desired balance. To ensure that the effect of A is applied consistently during database

selection and is independent of the desired database size, we re-normalize the two

objectives on every iteration prior to selecting the optimal location. The final step in

Algorithms I and 2 is dividing vectors v and d by their respective maximum values,

constraining their values to the range [0, 1]. The greedy algorithm then selects the

location, f, that maximizes the sum of v[f] + Ad[e]. For the standard case of A = 1,

the per-location utility during each selection iteration is now constrained to the range

0 < v[f] + Ad[f] < 2. Increasing A to 1.1 results in a 10% bias towards measurement

dispersion during location selection, for example.

84

This normalization approach provides several benefits. Most notably, the values of

both competing objectives are normalized to the same range, allowing direct com-

bination without a unit conflict. The algorithm selects the location with the best

trade-off between the two competing objectives at each iteration, independently of

the database size or specific environment properties. The weighting parameter, A,

intuitively and consistently weights the objectives independently of their units, the

database size, and properties of the environment, and seamlessly handles the wide

range of magnitudes through which the dispersion decreases as the database grows.

Furthermore, this normalization approach does not interfere with the selection pro-

cess. It is easy to show that greedily maximizing either objective independently would

result in the same set of locations with or without normalization, as the normaliza-

tion approach does not change the order in which the locations are selected. This

detail is a subtle requirement of the proof of the approximation accuracy of the greedy

selection approach provided in the following section.

4.2.2 Approximation Accuracy

The greedy location selection approach (4.3) provides a computationally tractable

but suboptimal approximation to the NP-hard optimal location database selection

problem (4.1). This section provides an analysis of the approximation accuracy of

greedy location selection.

The utility objective function is a summation of two independent objectives. The

first objective, v, represents the probability of visiting and recognizing a location and

corresponds directly to the number of expected loop-closure measurements resulting

from including the location in the navigation database (see Section 3.2.1). The second

objective, d, represents that location's relative spatial dispersion with respect to the

locations contained in the database (see Section 3.2.2).

85

Taken independently, maximizing only the number of expected loop-closure measure-

ments, v, is both submodular and greedy-optimal. Submodular objective functions

are particularly well-suited for greedy optimization because every future greedy se-

lection is guaranteed to increase the value of the objective equally or less than the

previous step (the diminishing returns principle) [158]. This is intuitive, as selecting

the location with the maximum weight on each iteration will clearly give the collec-

tion of locations with maximum total weight. The normalization scheme discussed in

the previous section and used in Algorithm 1 does not alter the selection order. This

objective function is sometimes called a "maxisum" objective [191], as it maximizes

the sum of the expected loop-closures.

The performance of greedily maximizing the dispersion objective, d, is more complex.

Recall from Section 3.2.2 that dispersion is defined as the maximum of the minimum

distances from each location (or landmark) in the database to any other location

in the database (3.8) and thus we are maximizing the maximum of these minimum

distances (sometimes called a "maximin" objective). This objective is classified as a

p-dispersion problem, which "choose p out of n given points such that the minimum

distance between any pair of chosen points is as large as possible" [188, 190, 191], and

its decision formulation is NP-complete (i.e., determining whether a subset of points

exists with greater dispersion than some other subset) [189]. This objective is known

in the field of operations research as the "Obnoxious Facility Placement Problem,"

where it is applied for purposes such as minimizing the market overlap between a

chain of restaurants [192] or locating undesirable facilities, such as garbage depots or

nuclear reactors [191].

The obnoxious facility placement problem is commonly solved using a greedy ap-

proach, and multiple authors have shown that the worst-case performance of the

standard greedy selection approach is twice the optimum, or 2-approximate [194,

188, 195]. Erkut, et. al [190] showed experimentally that greedy selection typically

finds a solution within 80%-90% of the true maximum, especially when n is large (I L).

In continuous space, this greedy heuristic is equivalent to the "largest empty sphere"

86

problem in computational geometry [196, 197]. The normalization scheme discussed

in the previous section and used in Algorithm 2 does not affect the order in which

locations are selected by the greedy heuristic. The analysis that follows neglects the

boundary repulsion term, AB, described in Section 3.2.2 (effectively AB = 00), which

effectively shrinks the region boundaries.

Summing the two objectives comprising location utility results in a maximin-maxisum

bi-objective optimization problem. This problem is sometimes called the "semi-

obnoxious facility placement problem" in the field of operations research, where the

motivation is generally minimizing facility cost while maximizing dispersion or cov-

erage [198]. Related formulations can present maximally valuable but minimally re-

dundant search results to users of online search engines or automatically summarize

user comments on online news articles [194].

Dasgupta, Kumar, and Ravi [194] show that greedy maximization of a p-dispersion

objective and a submodular objective (such as maximizing the expected loop-closure

measurements) results in, at worst, 1/4 th of the optimal value. The following proof

follows similar arguments to show that the greedy location selection approach (4.3) re-

sults in a database that guarantees better than 1/4 th the utility of the optimal location

database.

Theorem 1. For |D| > 1, there is a polynomial time algorithm that obtains a location

database with better than a 4-approximation to the maximum utility database.

Proof. Recall from (3.2) that database utility u(D) is a combination of two indepen-

dent functions of the locations in the database, D: the probability of visiting the

locations, v(D), and location dispersion, h(D).

u(D) = v(D) + Ah(D) (4.4a)

v(D) = 'iEDP(visiti) (4.4b)

h(D) = min dist(a, /) (4.4c)
{ci3}ES

Where S is the set of unordered pairs {a, #} where a E D and / E D.

87

We begin by running the greedy selection algorithm twice: first with v as given and

h = 0 and second with v = 0 and h as given, resulting in solution databases D, and

Dh, respectively. Let O, and Oh be the optimal databases in each case, and let 0 be

the optimal database.

The visit probability objective, v(D), is known to be greedy optimal:

v(D,) = v(O) (4.5a)

u(D,) > v(D,) (4.5b)

The utility of database D, must be greater than or equal to v(D,) alone because

h(D,) > 0 by definition.

As established independently by [194, 188, 195], the greedy maximization of the p-

dispersion objective is 2-approximate:

1
h(Dh) > -h(Oh) (4.6a)

2

u(Dh) > Ah(Dh) (4.6b)

The utility of database Dh must be greater than or equal to purely the dispersion of

the database, h(Dh), because v(Dh) > 0 by definition.

Using an averaging argument, we see that if u(D) is the larger of u(D,) and u(Dh),

then it must be greater than their average:

D = arg max u(X) (4.7a)
XE{D,,Dh}

u(Dh) + u(Dv) (4.7b)
2

88

A bi-objective optimization cannot result in a larger value of one of its objective

functions than the corresponding single-objective optimization for that objective:

v(O) > v(O) (4.8a)

h(Oh) > h(O) (4.8b)

The sum of the two single-objective results is thus greater than or equal to the bi-

objective result:

v(O,) + Ah(Oh) > v(O) + Ah(O) = u(O) (4.9)

Combining (4.5b) and (4.6b) with (4.9):

u(Dv) > v(O) (4.10a)

u(Dh) -Ah(Oh) (4.1Ob)
2

1
u(Dv) + u(Dh) v(O,) + -Ah(Oh) (4.1Oc)

2

We now get a lower bound on the approximation accuracy by combining (4.7b), (4.9),

and (4.10c):

u(D) ;> -(u(D,) + u(Dh))2
1 1

> -(v(O) + -Ah(Oh))2 2 (4.11)
> -(v(Ov) + Ah(Oh))

4
1

> -u(O)
4

D

This proof establishes that for any set of locations, the better result of greedily max-

imizing the number of loop closures or greedily maximizing the dispersion will give

better than one fourth the database utility of the true maximum. While this does

provide a helpful theoretical bound on the result, the greedy selection algorithm of

Section 4.2 is expected to perform much better than this bound, in general, for two

89

reasons. First - as the results in Chapters 5 and 6, and especially Figure 5-8, will

show - the normalized greedy selection approach out-performed either of the single-

objective results in all cases tested. Recall that the proof states that the better of

these two single-objective cases is guaranteed to have greater than 25% of the optimal

utility. Second, if in (4.6b) we replace the hard theoretical accuracy of 50% for the p-

dispersion problem with the 84% experimental lower bound computed by Erkut, et. al

[190 when selecting either 20 or 60 points from a set of 200 (and with increasing accu-

racy as the number of candidate points in their study grew), the lower bound increases

to 42% accurate for the utility-based greedy location selection approach. If a guaran-

teed error bound is required in practice, the greedy selection should be additionally

run for the two single-objective cases, and the selected database with the maximum

utility should be used, as this database will be better than a -approximation of the

optimal database.

4.2.3 Multiple Greedy Step Location Selection

A standard greedy optimization algorithm selects the most optimal next location at

each iteration, given the current location set. However, greedy algorithms can be re-

formulated to select the best location given the current selection set and the predicted

future selections that would follow. In general, the greedy algorithm will achieve a bet-

ter approximation of the true optimum when this "look-ahead" range is increased, and

increasing the look-ahead range to the full size of the desired database is equivalent

to performing a brute-force search for the global optimum if a fully recursive search is

performed. For the class of functions that can be described as submodular, meaning

every future selection is guaranteed to increase the value of the objective function

by less than the previous step (the diminishing returns principle), the accuracy of

greedily optimizing the objective provably increases with the number of look-ahead

steps [158]. While the location selection problem is not submodular, Section 5.3.2

shows experimentally that increasing the look-ahead range still achieves a better ap-

proximation of the true optimum utility database for a network environment.

90

We can get an indication of the experimental approximation accuracy of the algorithm

by comparing the result of the standard greedy database selection problem to that of

a multi-step variant. If the selection results are similar, this indicates that the single-

step greedy algorithm provides an efficient approximation of the true maximum utility

location database. Algorithm 3 provides a non-recursive multi-step implementation of

the greedy selection algorithm from (4.3), and Figure 5-11 shows a comparison of the

navigation performance achieved by single- and multi-step greedily-selected databases

for a vehicle operating in a street network. This implementation does not use full

recursion due to the associated computational load, which would be equivalent to

a brute force search, and instead makes the greedy-optimal selection at each future

iteration. That is, for each candidate location, e, we compute the next K -1 locations

that would be selected in future selection steps, Dfuture, and then compute the utility

of f for the database Dmuiti = D U Dfuture. In the single-step algorithm (K = 1),

Dfuture = 0. The normalization approach presented in Section 4.2.1 is still valid for

the multi-step greedy selection algorithm.

The recursive greedy algorithm presented in Algorithm 3 consists of three nested

loops. The outermost loop controls the size of the database, adding one location to

the database, D, on every iteration. The second loop, beginning on line 5, computes

the utility of all locations f E L given the current database. This loop begins by

forming a temporary database, Dtmp, containing all locations in D and the candidate

location f. The third loop, beginning on line 8, then greedily adds K - 1 more

locations to Dtmp. Lines 13 and 14 remove location f from Dtmp and then compute

vectors v and d. f must first be removed from Dtmp to avoid having its values in

v and d set to zero. Line 15 then computes the utility of location f and stores it

in vector u. Once the second loop has completed and the utility of each candidate

location has been computed, the location with the maximum utility is added to D in

line 18. This process repeats until the database reaches the desired size, N.

91

Algorithm 3 Multi-Step Greedy Database Selection

1: Inputs:

Locations L,
Database size N,
Greedy steps K,
Visit probabilities VL,

Region boundary B,
Weighting factor A,
Boundary weighting factor AB

> Initialize selection set2: D <- arg max VL

3: while IDI < N do

4: u +- zeros(ILI)

for f E L do

if f D then

Dtmp +- D U E > Add f to temporary database Dtmp

while IDtmp| < (ID| + K) AND IDtmpI < N do

v 4- getWeightedV(vL, L, Dtmp) > See Algorithm 1

d <- getWeightedD(L, Dtmp, B, AB) > See Algorithm 2

Dtmp <- Dmp U arg max (v[i]+ A d[i])

end while

v *- getWeightedV(vL, L, Dtmp \ f) > Exclude f from Dtmp
d <- getWeightedD(L, Dtmp \ f, B, AB)
u[(] <- v[f] + A d[C] > Utility of location f

end if

end for

D &- D U arg max u[i]
i

end while

> Add maximum utility location to database

20: Outputs:

Location database D

92

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

4.3 Hierarchical Selection using Map Tiles

While the greedy selection method described above is highly efficient, it requires that

P(visit) be computed prior to selection, such as by using the modified betweenness

centrality (3.6) in the case of a network environment. Unfortunately, determination

of P(visit) is both computationally expensive and requires knowledge of the entire

operational environment and trajectory space. For the case of navigating in a street

network, this involves running Dijkstra's algorithm to completion, starting at every

location in the map, which is O(n3) for n map locations. While this can be sped up

using random sampling to estimate P(visit), this computation eventually becomes

prohibitively expensive as the environment grows especially large in size (i.e., the

number of candidate locations). The process must also be repeated any time the

network is modified, such as due to road construction.

To overcome these limitations, we can divide the map up into a set of subregions, or

tiles, and select locations hierarchically. This is similar to how online mapping services

transmit a set of pre-rendered map tiles to users to reduce latency and bandwidth and

then combine the tiles locally on the user devices [199, 200, 201]. We first compute

the location dispersion distances and P(visit) locally from only the portion of the

region lying within the tile's boundaries. The accuracy of this local approximation

of P(visit) is discussed in Section 4.3.1. Greedy location selection is then performed

locally within the tile, generating a list of the best locations in the subregion. We next

gather the best locations from each tile to form a reduced set of candidate locations

and perform greedy location selection on this reduced set using the tile-computed

P(visit) values and recomputing the dispersion values. This process can be repeated

for as many layers as necessary.

The time complexity of greedy location selection (4.3) is O(1L D1) for each iteration,

which is the complexity of the dispersion term. Thus location selection with a large

set of candidate locations is efficient for the case of selecting a small location database,

D, or by reducing the number of candidate locations, L. To speed up the selection

93

process, we must reduce the time complexity of (4.3), which is achieved by reducing

the selection database size for each tile, DT, which in turn reduces the number of

candidate locations for greedy selection one level up in the hierarchy. We use the

observation that locally valuable locations tend to also be globally valuable to reduce

the selection database size for each tile, computing only the best m locations in each

tile, where m is determined according to:

N
m > (4.12)

T

where T is the total number of map tiles and N is the desired location database size

at the next hierarchical level. The result is a reduction of the candidate database

size for the next hierarchical level from ILI to mT, where mT << ILI if IDI << ILI.

Boundary effects in the tile-based location selection result in an underestimation

of P(visit) on tile edges due to the inability of candidate trajectories to cross tile

boundaries. Therefore, tiles should be constructed with overlapping boundaries to

help mitigate these tile boundary effects. We further recommend selecting at least

three more locations per tile than the minimum given in (4.12) in order to account

for tile boundary effects and differences in the dispersion when computed at different

hierarchical levels.

4.3.1 Approximating P(visit)

The difficulty with computing map database locations using map tiles is that the high-

level global structure is no longer fully captured. For example, a fastest-time route

confined to a maximum distance of 1 km is unlikely to involve taking a limited-access

freeway, though these are typically the roads with the highest traffic. What we need

is an approximation for P(visit) that can be computed using only local structure. In

the case of street network environments, which can be represented as a graph and

are discussed further in Chapter 5, we can coarsely approximate the betweenness

centrality (3.6) of a node using Opsahl's weighted popularity measure [202].

94

Weighted popularity is an expansion of degree centrality, Cd, which counts the number

of edges connected to a node of a graph and is a purely local computation with linear

complexity with respect to the number of graph nodes. In comparison to degree

centrality, node popularity counts only the number of edges entering the node in

a directed graph. A related graph measure, node strength, w, instead sums the

weights of the edges connected to a given node. A popularity strength can similarly

be computed by summing the weights of only the edges entering that node. Opsahl

defines weighted degree centrality, Cd,w, as a balance of both the degree centrality and

strength, controlled by a weighting parameter, a:

Cd,w Cd(-) (4.13)
Cd

Weighted popularity follows from this definition, instead only including the edges

entering the node, and represents a pseudo-likelihood that the node will be visited by

a shortest path through the graph.

In approximating the betweenness centrality using the weighted popularity for street

network environments, we are implicitly applying the assumptions that the street

network is efficiently designed and individual street speed limits are proportional to

their traffic throughput. This means that we assume a street with a fast speed limit

is traversed by more possible vehicle trajectories in an environment than a street with

a slow speed limit, and that city designers placed the fastest streets where they are

more useful. These assumptions are, of course, never completely true in practice,

but they do provide the relationship between local and global structure - one goal of

efficient transportation network design is to align the weighted betweenness centrality

and weighted popularity of nodes in the network - and thus valuable insight for

hierarchical location selection.

95

4.4 Chapter Summary

This chapter uses the location utility metric defined in Chapter 3 to construct op-

timal location or landmark databases for vehicle navigation. Section 4.1 formulated

maximum-utility location selection as a nonlinear integer program. Unfortunately,

maximum-utility location selection is NP-hard and therefore suffers from combina-

torial complexity, making the problem computationally intractable. Therefore, we

introduced a greedy approximation algorithm for computationally efficient maximum-

utility location selection in Section 4.2, which includes a novel normalization approach

(described in Section 4.2.1) to accommodate unit conflicts and user preferences, if de-

sired. Section 4.2.2 proves that this greedy approximation algorithm is theoretically

better than 25% accurate and better than 42% accurate when considering typical

performance of greedily maximizing location dispersion as reported in the literature.

The simulation results presented in Chapter 5 indicate that typical performance of

the greedy algorithm considerably exceeds these minimum-accuracy bounds.

Despite its relative efficiency, greedy location selection grows computationally expen-

sive for especially large sets of candidate locations. Section 4.3 introduces a hier-

archical location selection approach that enables greedy location selection on layers.

The vehicle's operational environment (i.e., the region encompassing all candidate

locations) is first divided into subregions. Locations are selected locally for each sub-

region, and the best locations from each subregion are then combined to form the

set of candidate locations at the next hierarchical level. Because these subregions

might not succeed at locally capturing global-level structure, Section 4.3.1 describes

how the measurement probability at each location can be locally approximated for

network environments using the weighted degree centrality metric.

96

Chapter 5

Street Map Navigation

In this chapter, we demonstrate the benefit to pose-graph SLAM when using limited-

size, maximum-utility navigation databases selected using the greedy algorithm pre-

sented in Chapter 4. An optimal location database is inherently trajectory-specific -

a truly optimal database would contain only locations traversed by the trajectory -

however, the navigation database must be generated prior to navigation when the true

trajectory is unknown. We must therefore evaluate our database reduction strategy

for many potential trajectories within an environment. Unfortunately, no existing

localization dataset has these characteristics, so we developed a new, open-source

simulator capable of generating relative-pose measurements for multiple trajectories

through a network of traversable paths, which is described in Section 5.1.

In Section 5.2, we perform maximum-utility database selection in a variety of city en-

vironments by sorting locations in the map by their predicted value for loop-closure.

We then use the vehicle simulator to generate pose-graphs of long-duration trajec-

tories using these maximum-utility navigation databases in Section 5.3 and compare

the trajectory estimation accuracy when navigating with databases selected using

various alternative location selection approaches. We extend this comparison in Sec-

tion 5.4 to hierarchically-selected location databases for a large city. Much of the

results presented in this chapter were previously published in [203].

97

5.1 Street Map Simulator

We built a brand-new routing and pose-graph simulator in Julia [204] that can sim-

ulate a taxi-like vehicle driving in a city along an optimal route through a succession

of waypoints and use the vehicle trajectory to generate a pose-graph from simulated

odometry and loop-closure measurements. This simulator is divided between two

open-source code packages developed using the Julia [204] programming language.

The OpenStreetMap. ji packagel provides mapping and routing functionality, and is

described in Section 5.1.1. The PoseGraphSimulation. ji package 2 provides func-

tionality for generating random routes through the environment and then simulating,

solving, and evaluating the associated pose-graphs, and is described in Section 5.1.2.

Section 5.1.3 describes the evaluation metrics provided by PoseGraphSimulat ion. ji,

which are used to quantify the accuracy of trajectory estimations and compare the

utility of navigation databases.

OpenStreetMap.jl uses publicly-available map data from OpenStreetMap.org to

represent the street network for a given region as a directed graph weighted by either

edge distance or travel time. The simulator generates routes through the network by

randomly selecting 50 waypoints within the network and then computing the shortest-

distance or fastest-time driving route (respecting one-way streets) through them using

Dijkstra's algorithm (described in Section 2.5.1). For fastest-time routing, we assign

reasonable speed-limits to the six most significant classes of streets that are provided

by OpenStreetMap.org (residential, freeway, etc.), ignoring paths corresponding to

driveways and parking lots. For simplicity and without loss of generality, we assume

that the streets are infinitesimally narrow.

The simulator establishes poses at every street intersection and every 20 meters along

the route, and generates simulated relative-pose odometry measurements between all

successive poses. The simulator generates a loop-closure measurement whenever the

vehicle traverses a location described by the navigation database. We limit the nav-

'Available at https://github.com/tedsteiner/OpenStreetMap.jl.git.
2 Available at https://github.com/tedsteiner/PoseGraphSimulation.jl.git.

98

igation database to contain only locations corresponding to street intersections in

order to limit the computation required for greedy location selection. Loop-closure

measurements are generated to only the pose associated with the first time the ve-

hicle traversed that location. Therefore, if the vehicle has not yet traveled through

the intersection, a measurement cannot be generated. We assume that loop-closure

detection is not directionally dependent, that loop-closures provide full-rank measure-

ments, and that loop-closures have guaranteed detection. These assumptions are not

requirements of the approach but serve to simplify and clarify the results. These lim-

itations are easily accounted for in practice by adding additional candidate locations

with specific heading angles or explicitly modeling the location detection probability,

as described in Section 3.2.1. The case of low-rank measurements is discussed in

Chapter 6.

In order to facilitate direct comparison of location selection methods, the simulator

generates a route, odometry measurements, and all possible loop-closure measure-

ments (including additive Gaussian noise) for any possible navigation database. We

can then create multiple pose-graphs for a single trajectory with identical measure-

ment noise, adding loop-closure constraints according to any desired location database

(set of map intersections). This way these pose-graphs all contain identical measure-

ment noise for every measurement they have in common, allowing their solutions to

be directly compared. The iSAM [67] and RISE [65] algorithms are then used to

assemble and solve the pose-graph SLAM problem. Due to the time required to sim-

ulate and solve thousands of pose-graphs (Figure 5-7 represents 10,000 pose-graphs,

for example), the results presented were typically computed in batch mode, falling

back to iSAM's incremental mode whenever the batch solver failed to find a solution

due to poor initial guess values.

99

5.1.1 OpenStreetMap.jl

The OpenStreetMap. ji Julia package was developed to facilitate producing driv-

ing simulations with realistic street routing and speed limits using data from Open-

StreetMap, which is an open, user-contributed repository of global map data.3 This

map data is free to use for any purpose and can be viewed online at OpenStreetMap .org.

OpenStreetMap data can be downloaded in a variety of data formats, including the

OSM XML format.

OpenStreetMap .j1 has grown in scope to become a general-purpose library providing

tools for researchers working with OpenStreetMap data and is available from the

official Julia package repository. This section provides an overview of how the package

is used to produce a driving simulation for the purposes of this thesis. However, the

package provides a variety of additional tools, including detailed map display, which

are detailed in the official package documentation online. 4 The results in this thesis

were generated using Version 0.8 of the package.

OpenStreetMap. j1 enables convenient parsing of OSM data files, as well as map

display, cropping, routing, and filtering. The standard process used to load an OSM

datafile and prepare for vehicle routing in Julia is as follows:

1. Load the OpenStreetMap.jl package into the global Julia namespace:

using OpenStreetMap

This loads all OpenStreetMap.jl types and functions into the namespace.

2. Parse the OSM XML file:

nodesLLA, highways, buildings, features = getOSMData(filename)

Where filename is the path to the OSM XML datafile. nodesLLA is a dictionary of

node ID numbers indexing their locations in latitude, longitude, altitude (LLA)

coordinates, and highways is a dictionary of highway ID numbers indexing to

highway data. The buildings and features variables are unused.

3All map data presented in this work is copyright OpenStreetMap contributors and available
under the Open Database License.

4Available online at http://openstreetmapjl.readthedocs.org.

100

3. Convert the map to East, North, Up (ENU) Cartesian coordinates:

nodes = OpenStreetMap.ENU(nodesLLA, llareference)

Where lia_reference is the point in LLA to set as the origin of the ENU frame.

4. Crop the map data to specified boundaries:

cropMap!(nodes, bounds, highways=highways)

Remove all map data outside a specified boundary region, bounds, which provides

the limits of the vehicle's operational environment. When a highway crosses the

boundary, a new node is interpolated to lie on the boundary and added to nodes

and the corresponding highway object.

5. Extract the highway classes and filter out all non-road highways: 5

roads = roadways(highways)

highways, roads = roadsOnly(highways, roads, classes)

Where classes is a list of street classifications, according to the following:

1. Motorway: limited-access divided highway (Interstate Highways in U.S.)

2. Trunk: inter-regional arterial divided highway

3. Primary: major routes not classified as "motorway" or "trunk"

4. Secondary: typically one lane each direction

5. Tertiary: minor roads for local traffic

6. Unclassified: narrow, paved public highways

6. Residential: minor roads in residential areas

7. Service: driveways, parking lots, etc.

8. Pedestrian street: pedestrians have right of way

For results presented in this thesis, routable highways are limited to classes 1-6.

6. Find all highway intersections:

inters = OpenStreetMap.findIntersections(highways)

Database locations are selected only from highway intersections for the purposes

of this thesis.

'Within the OpenStreetMap community, all paths are referred to as "highways," including side-

walks and cycleways.

101

7. Consolidate nearby highway intersections:

clusters = findHighwaySets(highways)

clustmap = findIntersectionClusters(nodes, inters, clusters, max-dist=15)

replaceHighwayNodes!(highways, clustmap)

intersections = findIntersections(highways)

Intersecting divided highways can result in four or more intersections due to

the handling of oneway streets. This process consolidates intersections within

15 meters of identically named streets for the purpose of location selection, as

they will otherwise artificially deflate each other's P(visit).

8. Create a street network object:

segments = segmentHighways(nodes, highways, intersections, roads)

network = createGraph(segments, intersections)

To simplify routing tasks, OpenStreetMap. j1 precomputes the directed graph

representation of the street network and encapsulates it in network, which con-

tains all data required to compute routes within the environment.

OpenStreetMap . j1 additionally includes functions for computing routes between spec-

ified node IDs within the street network. However, for the purposes of generating the

long routes used to simulate the pose-graphs in this thesis, these functions have been

encapsulated in the separate PoseGraphSimulation. j1 Julia package.

5.1.2 PoseGraphSimulation.jl

We developed a new Julia package, PoseGraphSimulation. jl, to quickly and eas-

ily generate pose-graphs using OpenStreetMap data. PoseGraphSimulation. jl can

additionally write a pose-graph to an iSAM-readable text file, read iSAM's output

covariance and solution files into Julia, plot the pose-graph solution (i.e., trajectory

estimate), and compute error statistics.

102

The process for generating a pose-graph with additive Gaussian random noise us-

ing the OpenStreetMap. j1 data objects described in the previous section is as fol-

lows:

1. Load the PoseGraphSimulation.jl package into the global Julia namespace:

using PoseGraphSimulation

This loads all PoseGraphSimulation.jl types and functions into the namespace.

2. Randomly select a set of routing waypoints:

waypoints = getWaypoints(network, candidates, min-dist, num)

This function recursively grows a list of num waypoints, ensuring that a route

exists between consecutive waypoints. network is the street network object com-

puted in Section 5.1.1, candidates is the list of intersection IDs (node IDs at

intersections) that can be selected as waypoints, and mindist is the minimum

Euclidean distance between consecutive waypoints.

3. Compute the route between consecutive waypoints:

routemajor, routemetric = computeRoute(network, waypoints, fastest)

routemaj or is an ordered list of intersections traversed by the route, and route-metric

is either the route time or distance. Parameter fastest determines whether

the minimum time or distance route is computed. When using fastest routes,

the road classes (stored within the network object) are used to apply average

speed limits to individual road segments. Datasets generated for this thesis

used OpenStreetMap.ji's default speeds, OpenStreetMap. SPEEDROADSURBAN, as

OpenStreetMap does not provide speed limits for all highways.

4. Interpolate the route:

route = interpolateRoute!(nodes, route-major, pose.spacing)

Add additional nodes along route-major every pose-spacing meters.

103

5. Generate truth poses:

poses = getPoses2D(nodes, route)

Produces an ordered list of poses at each node along route. Poses are composed

of x (East), y (North), and 6 (heading) values.

6. Generate odometry measurements:

odomfactors = getPoseOdometry(route, poses, odom-cov)

Returns a list of objects containing all data required to generate the associ-

ated odometry factors in iSAM, with Gaussian noise added according to the

covariance matrix, odomcov.

7. Generate loop-closure measurements:

loop-factors = getLoopFactors(route, poses, loop-locs, loop-cov)

Returns a list of objects containing all data required to generate the associ-

ated loop-closure factors in iSAM, with Gaussian noise added according to the

covariance matrix, loop-cov. For every node ID in route that is also in the un-

ordered set loop-locs (the list of locations in the navigation database, at which

loop-closures can occur), the function generates a new loop-closure measure-

ment from the associated pose in poses to the pose associated with the first

occurrence of that node ID in the route. No measurement is generated if the

specified pose is the first traversal of the location in route.

8. Write truth data to text file:

writeTruthFile(fname, poses, anchors=loop-locs, waypoints=W, flags=F)

Write truth poses to text file f name. Optional arguments can additionally write

the list of loop-closure node IDs, loop-locs, waypoint node IDs, w, and a String-

indexed dictionary of parameter flags, F, but these values are not used for pose-

graph solution evaluation.

104

9. Write pose-graph measurements to iSAM-readable text file:

makePoseGraph(loc-sets, route, poses, odom-factors, loop_factors, fnames)

Composes the pose-graphs and generates N iSAM-readable text files, where

N is the length of the input vectors locsets and fnames. This allows common

measurements to generate multiple pose-graphs to compare the effects of varying

the available loop-closure sites, which are stored in loc_sets.

The pose-graph can now be solved using iSAM's command line interface directly from

Julia. In some cases, iSAM can get "stuck" while trying to solve the pose-graph, so

the process can be called with an automatic timeout, as shown in Listing 5.1.

isam = ('$isam-path -P -U $fname-cov -W $fname-result $fname-graph')

2 proc = spawn(isam)

timedwait(()->process-exited(proc), isamtimeout)

4 if process-running(proc)

kill(proc)

6 warn("iSAM killed (timed out).")

end

Listing 5.1: Robust iSAM call with time limit

In Listing 5.1, if the solution exceeds isamtimeout seconds, it can be automatically

killed. Option P solves the pose-graph using the Powell's Dogleg method, which is

more robust than the default Gauss-Newton method, especially when the quality of

the initialization point is unknown.

Once the iSAM solver has finished running we can compute the trajectory position

estimation error and position error covariance. The process for computing these

metrics is as follows:

1. Compute the pose-graph position error:

position-rmse = posegraphError(fname-truth, fname-result)

The true and estimated poses are parsed from fname-truth and fname-result.

We first use the Kabsch algorithm [205, 206] to compute the relative transform

105

between the estimated and true pose positions and align them to eliminate the

effects of gauge freedom. We then subtract the x and y positions of the true

and estimated poses and compute the root mean squared error (RMSE) of these

position errors, position_rmse.

2. Compute the average estimation error variance of position for the trajectory:

covariances = readiSAMOutputCov(fname-cov)

epsilon = epsilonTrajectory(covariances)

Parse the block covariances for each pose from fname-cov and compute e (3.1b),

the average position estimation error uncertainty for each pose in the trajectory.

5.1.3 Quantifying Reduction Error

We use the average position error covariance for all poses in the trajectory (3.1) as a

performance metric to compare the trajectory estimation accuracy resulting from nav-

igating with various location databases. We refer to this metric as "mean trajectory

uncertainty," E. However, the accuracy of the trajectory estimate when using a limited

location database is inherently trajectory-dependent. Therefore, we simulate several

vehicle trajectories (typically either 20 or 50, depending on the dataset) and use each

of these trajectories to generate a pose-graph for each navigation database presented.

Recall that the only difference between pose-graphs simulated for a specified trajec-

tory is the presence or absence of loop-closure measurements at specific locations in

space, corresponding to the locations contained in the navigation database. Every

pose-graph generated for a given trajectory has equivalent noise for every odometry

and loop-closure measurement that they have in common.

We solve each pose-graph corresponding to a reduced navigation database, Deduced,

using iSAM and determine its corresponding mean trajectory uncertainty, Ereduced.

However, this metric is trajectory-specific and therefore cannot be aggregated with

values of Ereduced computed for different trajectories through the same street map,

which is highly desirable in order to remove trajectory-specific effects from quanti-

106

tative database comparisons. Therefore, in order to make meaningful comparisons

of pose-graph estimates between different trajectories and street maps, we normalize

each pose-graph's mean trajectory uncertainty by the mean trajectory uncertainty

achieved when using the "full" location database, Ef, , which contains all possible

loop-closure locations in the vehicle's operational environment:

Eratio = Ereduced - Efull (5.1)

We call this metric the "trajectory uncertainty ratio," Eratio. A small Eratio indicates

that a reduced navigation database provides sufficient loop-closure measurements to

achieve a mean trajectory uncertainty approaching that of the full database.

In the figures that follow in this chapter, we plot the average Eratio for many randomly-

generated routes through a street network using a common navigation database to

eliminate trajectory-specific effects. These plots show Eratio averaged over many tra-

jectories for greedily-selected navigation databases increasing in size (IDI in (4.3)). A

good location selection strategy results in Eratio decreasing as quickly as possible as

the database size increases, reaching eratio = 0 when Dreduced = DfuIl = L.

5.2 Navigation Database Selection

In this section, we generate maximum-utility navigation databases using the greedy

location selection algorithm presented in Section 4.2. Because the street map is a con-

tinuous space, we must first discretize the environment into a finite set of candidate

locations. For the case of street-network environments, we limit our set of candi-

date locations for selection to street intersections. Figure 5-1 depicts the distribution

of P(visit) for a region in Cambridge, Massachusetts, computed using the modified

betweenness centrality at each street intersection. Recall from Section 3.2.1 that lo-

cations with large P(visit) correspond to locations expected to result in the most

loop-closure measurements in a long-duration vehicle trajectory. Figure 5-2 depicts

107

the 5, 10, and 15 best loop-closure locations for a vehicle driving within this region,

computed using the greedy location sorting/selection algorithm. The greedy algo-

rithm achieves a balance between selecting locations with high P(visit) and locations

distant from others already contained in the database and the region boundary.

We additionally performed greedy location selection at a larger scale for five cities

with various regular and irregular street networks. Figures 5-3 and 5-4 show the

street maps and top 15 highest-utility locations for these cities, as well as all street

intersections in each map color-coded by their greedily-computed utility scores. The

Island of Male (Figures 5-3a and 5-3b) is especially interesting because, unlike all other

maps tested, it does not have any streets crossing the region boundary and therefore

does not display any boundary effects (the region boundary, B, is set well-outside the

figure boundaries). Seattle (Figures 5-3c and 5-3d) and San Francisco (Figures 5-4a

and 5-4b) both have grid-like street networks, which tend to result in well-dispersed

location selections due to P(visit) being consistently large along arterial roads. Lower

Manhattan (Figures 5-3e and 5-3f) has a very irregular street layout consisting mostly

of one-way streets, which results in the selected locations tending to cluster around

bottlenecks and major cross-streets. Moscow (Figures 5-4c and 5-4d) has a radial

structure centered on the Kremlin, and we see that locations selected for Moscow

tend to lie along either of the two major rings. As Figures 5-3 and 5-4 show, the

greedy location selection algorithm is applicable in a wide variety of city topologies,

and favors both major intersections and locations spatially distributed between them

for all cities tested. In all of the cities, residential areas tend to have uniformly low visit

probability distributions due to a lack of through-traffic, resulting in the speckled-blue

pattern that is especially apparent in San Francisco (Figure 5-4b).

108

0z

0.5

0

-0.5

-1 -0.5 0
East (km)

0.5 1

Figure 5-1: Normalized visit probability distribution, P(visit), for a region of Cam-

bridge, Massachusetts, computed using the modified betweenness centrality (3.6).

Locations most likely to be visited by a'fastest-time point-to-point route through the

environment are shown in dark red.

0.5

0

E

0
z

-0.5

-1 -0.5 0
East (km)

0.5 1

Figure 5-2: Best 5 (red), 10 (red + green), and 15 (red + green + blue) locations se-

lected for a minimal database for a region of Cambridge, Massachusetts. The greedy

location selection algorithm achieves a balance between locations with a high prob-

ability of being visited, as depicted in Figure 5-1, and locations that are spatially

distributed in the environment.

109

0,
ft

,

-0

- p

J+--

-1 -0.5 .0 . .5...
-1 -0.5 0 0.5 1

East (km)

(a) Island of Male

-1.5 -1 -0.5 0 0.5 1 1.5
East (km)

(c) Seattle

--

-2 -1 0

-2 -1 0 1 2
East (km)

(e) Lower Manhattan

0.6

0.4

. 0.2
E

0

-0.2
0

-0.4

-0.6

-0.8

1.5

1

0Z

0.5

0

-0.5

-1

-1.5

1.5

1

0.5E
-V
0
z -0.5

-1

-1.5

-1 -0.5 0 0.5 1
East (km)

(b) Island of Male

40

-T

-1.5 -1 -0.5 0 0.5 1 1.5
East (km)

(d) Seattle

-2 -1 0 1 2
East (km)

(f) Lower Manhattan

Figure 5-3: The best 1-5 (red), 6-10 (green), and 11-15 (blue) street intersections for
five major cities (left), and all street intersections sorted based on loop-closure utility
(right). The maximum database sizes for the maps range from 535 (Male) to 2,811
(Moscow) locations, increasing from top to bottom. In all cases, our algorithm favors
both locations on major highways and locations spatially distributed between them.
Continued in Figure 5-4.

110

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

E
- . -0

-0.8

1.5

1

0.5

0

-0.5

-1

-1.5

E

0Z

1.5

1

0.5E '

0
0
z -0.5

-1

-1.5 .4P

-F F

-~
A-- F-

2

1

0

-1

-2

-3 -2 -1 0 1 2 3
East (km)

(a) San Francisco

3

2

1

0

-2

-3

- -

-3 -2 -1 0 1
East (km)

(c) Moscow

E

-c
t
0
z

2

1

0

-1

-2

-3 -2 -1 0 1 2 3
East (km)

(b) San Francisco

E

.c
t
0z

3

2

1

0

-1

-2

-3

2 3

.IRS

-3 -2 -1 0 1 2 3
East (km)

(d) Moscow

Figure 5-4: Continuation of Figure 5-3.

111

E

0
z

E

t0z

........

I f I T . . I . I .

10-

'At 2L

- J

5.3 Localization Using Reduced Database

The accuracy of vehicle trajectory estimation using reduced-size navigation databases

is dependent on the selection model used to construct the database. We demonstrate

this by comparing vehicle trajectory estimates computed from pose-graphs resulting

from navigating with various reduced navigation databases. We begin by showing

a comparison of trajectory estimates using full and reduced navigation databases.

Section 5.3.1 then uses the trajectory uncertainty ratio metric introduced in Sec-

tion 5.1.3 to compare trajectory estimates computed using navigation databases se-

lected with several selection techniques, demonstrating the value of the maximum-

utility greedy location selection approach. Section 5.3.2 compares trajectory esti-

mates using maximum-utility navigation databases selected using single- and multi-

step greedy approaches.

Figure 5-5 shows two example pose-graph solutions for a 76.6 km trajectory through

Cambridge, Massachusetts, both containing 3,375 poses. Figure 5-5a is computed

using the full location database of all 712 street intersections (roughly equivalent

to 20% of the poses, though many locations are never actually encountered during

the trajectory), and Figure 5-5b is computed with the reduced location database

containing the 15 highest-utility locations computed in the previous section and shown

in Figure 5-2 (less than 0.5% of all poses in the trajectory).

While the smaller database gives a noisier result, the underlying network structure

is still distinctly visible, and the vehicle state knowledge is likely sufficient to carry

out basic navigational tasks if the vehicle additionally has local obstacle detection

capability and access to the street map for high-level routing in unexplored areas

of the map. In addition, by inferring path crossings as intersections, uncertainty-

cognizant, pose-graph-based path planners, such as [179, 180, 182], could be used

to plan routes within such a reduced pose-graph even without access to the street

map.

112

0.5

0

-0.5

0.5

0

-0.5

I I I

-1 -0.5 0 0.5 1
x (km)

(a)

- 1II

-1 -0.5 0
x (km)

0.5 1

(b)

Figure 5-5: Results of solving a simulated pose-graph representing driving around
Cambridge, Massachusetts for approximately 75 km using: a) a location database
containing all 712 street intersections, and b) a dramatically reduced database of
only 15 pre-selected intersections (0.5% of the full database of 3,375 poses). The

true positions of the selected database entries are shown in red, and the pose-graph
solution was rotated and translated to get the best fit to these true positions in post-

processing as it was not natively computed in absolute coordinates. Due to the high
utility of the 15 selected locations, the topology of the map is well-captured and the
graph is approximately metrically correct, as the 15 selected intersections are very

close to their true positions.

113

5.3.1 Comparison to Alternative Selection Methods

We now compare our location selection approach to four alternative methods: (i)

random selection, (ii) maximizing the number of loop-closures, (iii) maximizing the

spatial dispersion, and (iv) maximizing the weighted degree centrality.

Random Selection

Figure 5-6 compares the average trajectory uncertainty ratios, Eratio, resulting from

navigating 50 routes with maximum-utility and randomly selected databases contain-

ing up to 100 locations in Cambridge, Massachusetts (see map in Figure 5-2). The

maximum-utility greedy selection approach results in significantly better accuracy

than randomly selecting locations for the navigation database.

Figure 5-7 extends this comparison to the five additional cities whose maps are

shown in Figures 5-3 and 5-4. The maximum-utility databases constructed using

the greedy selection algorithm outperform their randomly-selected counterparts for

all cases tested. The maximum utility databases were all selected using A = 1 in

(4.3), resulting in an even balance between maximizing the number and dispersion of

loop-closure measurements in the pose-graph.

Alternative Objective Function Weighting

Recall that we define location utility (3.2) as the sum of two terms: the probability of

generating a loop-closure at that location and its dispersion from other locations in the

database. We maximize the utility of a navigation database by jointly maximizing

these two terms in the form of a bi-objective optimization (4.1), where the first

objective maximizes the number of predicted loop-closures and the second maximizes

their dispersion. The trade-off between these two objectives can be controlled using

the tuning parameter, A.

114

14
-4 -Random Selection

'G 12 - - Maximum Utility
.4-1

0 10

O 8

0

0 2 4 6 8 10 12 14
Locations Permitting Loop-Closures (%)

Figure 5-6: Coinparison of trajectory uncertainty ratios (5.1), &ratio, resulting from
using maximum-utility and randomly-selected location databases for a vehicle navi-

gating in Cambridge, Massachusetts as the database size increases. Navigating with a

complete database containing all 712 intersections results in 8 ratio = 0, and a smaller

Eratzo indicates that the database is closer to this ideal.

35

- Island of Male
0 - Seattle

25 -Lower Manhattan
0 5 - San Francisco -

~ 20 \- Moscow
4--

0

0 10 20 30 40 50
Locations Permitting Loop-Closures (-)

Figure 5-7: Comparison of trajectory uncertainty ratios when using locations selected
with the maximum utility approach (solid lines) vs. randomly (dashed lines) for a
vehicle navigating in five cities.

115

I I I I I I . I I I I I I I I I I

4

- P(visit) only
- Distance only

=3 -Utility
0

0

U)

0

C)

0 2 4 6 8 10 12 14
Locations Permitting Loop-Closures (%)

Figure 5-8: Comparison of the effects of the two objectives that form the "location

utility" on the trajectory uncertainty ratio. The green line determines location utility

using only measurement probability (v), the red line uses only dispersion (d), and

the blue line uses an equal combination of the two terms. All three databases are

initialized using the location with maximum P(visit) for IDI = 1.

Figure 5-8 shows a comparison of the trajectory uncertainty ratios achieved when nav-

igating a vehicle during long-duration trajectories in Cambridge, Massachusetts with

databases selected using different values of A. The three cases in the figure correspond

to (i) maximizing the predicted number of loop-closures (A = 0), (ii) maximizing the

dispersion of predicted loop-closures (A > 1), and (iii) the recommended even bal-

ance between the two (A = 1). Both of these objectives are independently valuable,

but our balanced combination outperforms both approaches for all database sizes

tested (1 to 100 of 725 total locations). Section 4.1 provides guidance on selecting A

according to properties of the measurement probability distribution for the vehicle's

operational environment. For street maps in general, we found the results to be fairly

insensitive to the specific value of A chosen, as long as A ~~ 1. Figure 5-9 shows that

varying A in the range of 0.8 < A < 1.2 for the Cambridge street map has very little

effect on the resulting trajectory uncertainty.

116

I , I i I I , ,

5

A= 0.8
S4- - A= 0.9-

- A= 1.00

3 -A= 1.203
4-
0

0 1 2 3 4 5 6 7
Locations Permitting Loop-Closures(%

Figure 5-9: The trajectory uncertainty ratio, 'Fratio , is generally insensitive to the

specific value of the manual tuning parameter, A, as long as A ~-_ 1.

Recall from Section 4.2.2 that the better-performing database of these two alterna-

tive objectives is guaranteed to have greater than 1/4 th the total utility of the optimal

location database for the region. The fact that the maximum-utility database consid-

erably outperformed optimizing either objective function independently gives strong

evidence that the greedy selection approach exceeds the 1/4 th-approximation bound

for this region, and similar performance was observed for other regions tested. How-

ever, a firm statement of optimality cannot be drawn, as the Eratio metric is an indirect

measure of database utility.

117

Degree Centrality

Directly evaluating P(visit) for all locations in the environment prior to location selec-

tion is computationally expensive. Section 4.3.1 suggested the use of weighted degree

centrality (4.13) as an efficient approximation of the betweenness centrality used to

compute P(visit), which represents the cumulative strength of all paths entering each

intersection (i.e., weighted popularity). In this section, we evaluate the accuracy of

this approximation.

Figure 5-10 compares the trajectory uncertainty ratio achieved when navigating a

vehicle through Moscow (the largest map tested, containing 2, 811 total intersec-

tions) with maximum-utility database locations selected using P(visit) computed with

the modified betweenness centrality versus estimating P(visit) using weighted degree

centrality. The figure additionally compares against databases selected by purely

maximizing the weighted popularity centrality of the location database and random

selection. It is clear from the figure that none of the alternatives perform as well

as the maximum utility database computed with the true P(visit) (computed using

the modified betweenness centrality). However, the next-best result, especially after

about 25 locations have been selected (0.9% of all candidate intersections), is the

utility computed using weighted degree centrality (popularity), which converges to

only about twice the Eratio of the betweenness-computed utility. Thus the compu-

tationally efficient degree centrality can serve as a viable alternative to betweenness

centrality if the betweenness centrality cannot be directly computed, such as in the

case of hierarchical location selection on tiled maps, as described in Section 4.3. Re-

sults for hierarchical selection using the weighted degree centrality are presented in

Section 5.4.

118

35
-Utility (Between)

30 Utility (Degree)
Degree Only

~25 -Random
0

co 20

15

10 -0

0 1I
0 10 20 30 40 50

Number of Loop-Closure Locations

Figure 5-10: Comparison of average pose uncertainties when navigating through
Moscow using loop-closure locations selected using the modified betweenness central-
ity (standard) or weighted degree centrality (efficient) to compute P(visit). While
the standard betweenness centrality approach results in the best location database,
weighted degree centrality provides a good approximation for larger databases.

5.3.2 Multi-Step Greedy Approaches

The standard greedy location selection algorithm selects the most optimal next loca-

tion at each iteration. However, as discussed in Section 4.2.3, it is common practice

to run greedy optimization algorithms for multiple future iterations in an attempt

to select the location with the best "future" value (i.e., when the location database

is larger). In general, the greedy algorithm will achieve a better approximation of

the true optimum when this look-ahead range is increased. Increasing the look-ahead

range to the full size of the desired database is equivalent to performing a brute-force

search for the global optimum.

Figure 5-11 shows a comparison of computing the utility using both one and five

look-ahead steps on each iteration. The figure shows that the 5-step database al-

most globally outperforms the 1-step database, as one would expect. Recall that the

the evaluation metric, Eratio, is an indirect approximation for the actual utility (the

119

3.5

3- 1 Step
' :- 5 Steps

2.5
0

LO
0
CD 1.5

<1

0.5

0
0 10 20 30 40 50

Locations Permitting Loop-Closures (-)

Figure 5-11: Comparison of average pose uncertainties when navigating through Cam-
bridge, Massachusetts using locations selected by the standard 1-step greedy algo-
rithm and a 5-step implementation. The similarity of the results indicates that the
greedy selection approach provides a good heuristic for maximum-utility database
selection.

absolute value of which is meaningless), and thus can provide only an indication of

the optimality of the greedy utility-maximization algorithm. Nonetheless, the 1-step

and 5-step solutions achieve very similar error values, which indicates that even the

1-step greedy algorithm is capturing the vast majority of the optimality of the 5-step

algorithm and thus serves as a good selection heuristic.

5.4 Tile-based Hierarchical Location Selection

Section 4.3 introduced a hierarchical method for computationally efficient location

selection for large regions that divided the region into "tiles." The best locations are

first determined for each tile, and these locations are then used to select the best

locations for the entire region. This approach could further extend over multiple

layers of tiles, if needed.

120

Figure 5-12a shows the average Eratio for 18 routes through Moscow (the largest map

tested) computed using various sizes of square tiles with 25% overlap, as well as for

the same trajectories using a globally-computed database. For each case, we first

greedily select the best m locations within each tile, where m is computed according

to (4.12). We then greedily select from these tile-computed results to form the global

location database. As Figure 5-12a shows, the quality of the location database is

highly dependent on the size of the tiles, with large tiles significantly outperform-

ing small tiles. This is because the modified betweenness centrality (3.6) effectively

neglects global-scale network structure when computed on subregions. Intuitively,

it is generally only beneficial to use limited-access freeways and other high-traffic

throughways when traveling long distances, and computing the betweenness central-

ity for sub-regions confines the computation to short routes. Nevertheless, when

sufficiently large tiles are used, such as 1 square kilometer for Moscow, we can still

select a valuable location database.

Rather than using betweenness centrality to compute P(view) for tiles, we can instead

use the weighted degree centrality, introduced in Section 4.3.1 and demonstrated in

Section 5.3.1. The weighted degree centrality provides a suitable, computationally-

efficient replacement for betweenness centrality in the greedy location selection algo-

rithm, and is computed entirely locally and independently for each intersection in the

street network. As shown in Figure 5-12b, the navigation performance of the selected

location databases is independent of the size of the map subregions used to compute

them. The difference is subtle, but after about 40 locations have been selected (1.4%

of the full database), the databases selected using degree centrality outperform even

those computed using one square kilometer tiles and betweenness centrality.

The results in Figure 5-12 show that the overall navigation utility of databases com-

puted using hierarchical selection can approach that of those computed globally for

the entire map. This enables the extension of maximum-utility database selection

to much larger regions than the global-scope greedy optimization. Further, it allows

121

efficient re-computation of the location database if a portion of the street network

changes, such as due to road construction, by only re-computing the P(view) and

location selection for the affected tiles. If the best m locations in the tile change after

the update, the global selection should then be re-computed.

122

10 20 30 40
Number of Loop-Closure Locations

50

(a) P(visit) from betweenness centrality

- Utility-Degree (Full Region)
- Utility-Degree (1 km Tiles)
- Utility-Degree (0.5 km Tiles)
- Utility-Degree (0.3 km Tiles)

- -if i

10 20 30 40
Number of Loop-Closure Locations
(b) P(visit) from degree centrality

50

Figure 5-12: Comparison of average pose uncertainties when navigating through

Moscow using location databases selected with the efficient tile-based hierarchical
approach. The best navigation performance is achieved when using large tiles and

approximating P(visit) using the modified betweenness centrality within the tile's
boundaries. However, smaller tile sizes, which result in more efficient computation,
benefit from instead using weighted degree centrality to approximate P(visit), which
is computed locally for each street intersection and is thus independent of the tile
region size.

123

35

30

25

20

15

10

5

C,,
a)

4_0

0
cc
CO

c,Z)

CD)

Utility (Full Region)
- Utility (1 km Tiles)

-Utility (0.5 km Tiles)
-Utility (0.3 km Tiles)

-

0
0

35

30

25

20

15

10

5

0

CO

0

Qi)

0
0

5.5 Chapter Summary

This chapter applied maximum-utility location selection to construct limited-size

loop-closure databases for vehicle navigation in network environments. Section 5.1

introduced a suite of open-source tools developed to route a vehicle through a street

network (OpenStreetMap. j1) and generate a pose-graph from simulated odometry

and loop-closure measurements (PoseGraphSimulat ion. ji).

Section 5.2 demonstrated maximum-utility location selection for several major cities

with varying topologies. These qualitative results showed that the maximum-utility

locations in a street network tend to be intersections that are frequently visited but

well-dispersed. Section 5.3 provided quantitative evaluations of reduced-database

performance, demonstrating that accurate trajectory estimates can be computed

even when using greatly-reduced location navigation databases. We additionally

used the vehicle simulator to aggregate the results of tens of thousands of simulated

pose-graphs of long-duration trajectories for reduced-database performance evalua-

tion, showing that maximum-utility location selection out-performed all alternative

database selection approaches tested.

Section 5.4 showed that well-performing reduced navigation databases can be se-

lected efficiently for very large regions using a tile-based hierarchical location selec-

tion approach. The measurement probability at each street intersection can addition-

ally be approximated using its weighted degree centrality (4.13) to achieve tile-size-

independent location selection results, further reducing the computational require-

ments of maximum-utility navigation database selection.

124

Chapter 6

Terrain Relative Navigation

Terrain Relative Navigation (TRN) systems provide vehicle position and orientation

updates by correlating sensor data, such as from a scanning lidar or camera, with a

pre-determined database of globally-referenced terrain during mobile vehicle opera-

tion. As Section 6.1 will discuss, TRN systems are considered essential for extrater-

restrial pinpoint landing from orbit or GPS-denied unmanned aerial vehicle (UAV)

navigation, as they provide high-precision, drift-free absolute position and attitude

(pose) measurements. This capability is similar to that provided by a GPS receiver

and a star camera but is applicable in planetary environments lacking GPS coverage

or adequate visibility for star tracking.

Similarly to the street map navigation system presented in Chapter 5, the perfor-

mance of a TRN system is dependent on the contents and quality of its onboard

terrain database. In many applications, this database must be computed prior to

flight without knowledge of the true flight trajectory, including possible atmospheric

disturbances or vehicle actuation. Ideally, the terrain database would contain a

highly-detailed model of the entire operational environment, however, autonomous

flight vehicles typically have very limited onboard storage, computational resources,

and communication bandwidth. To overcome these limitations, the terrain database

can instead consist of a collection of landmarks, which represent distinct, recogniz-

125

able terrain features. These landmarks might consist of image or elevation patches

in high-contrast areas or higher-level features, such as craters. However, the col-

lection of all possible landmarks in the environment is often still too large to store

onboard the vehicle, effectively search within during real-time operation, or transmit

over low-bandwidth communication networks.

In this chapter, we address the case of vehicles operating in 3-dimensional, pathless

environments, thus relaxing the earlier assumption from Chapter 5 that the vehicle is

operating in a 2-dimensional, network environment. Landmark-based TRN systems

typically use either a camera or lidar as the terrain sensor, which means the landmark

observations take the form of line-of-sight measurements. We use the landmark util-

ity metric from Section 3.3, which extends the location utility metric to account for

line-of-sight measurements, to determine the N best landmarks in the flight vehicle's

operational environment prior to flight and construct the optimal terrain database

for vehicle navigation. Landmark utility is defined independently of any specific tra-

jectory, instead depending on the probability that the landmark is observed given a

probabilistic representation of the predicted vehicle trajectory and the spatial distri-

bution of the landmark with respect to other landmarks in the database.

We use the limited prior information available from Monte Carlo trajectory simula-

tions and a low-fidelity model of the environment (such as from satellite imagery) to

compute our landmark measurement probability and spatial distribution vectors, and

can then use the techniques described in Chapter 4 to (approximately) maximize the

utility of the flight computer's onboard terrain database. This utility-based landmark

database selection approach significantly improves TRN performance over either ran-

domly selecting landmarks for database inclusion or evenly spacing them on a grid

for a fixed-size database, and is more efficient than manually selecting landmarks.

This selection approach is applicable to any landmark-based TRN system that uses

line-of-sight measurements (including camera- and lidar-based systems).

126

In order to demonstrate our database selection algorithm, we additionally introduce a

new, generally applicable TRN framework utilizing a factor graph representation and

an incremental smoother in Section 6.2. This TRN system does not suffer from the

linearization errors of existing filter-based approaches and allows for incorporation

of both landmark observations and opportunistic terrain-feature tracking, as well as

other potentially available sensor data, such as that of inertial measurement units

(IMUs), GPS receivers, altimeters, and star cameras. We demonstrate our TRN al-

gorithm and utility-based landmark selection in the context of the Terrain Relative

Navigation & Descent Imager (TRNDI) system [207], an optical payload designed

for Draper Laboratory's GENIE (Guidance Embedded Navigator Integration Envi-

ronment) guidance, navigation, and control (GNC) system. GENIE is capable of

emulating planetary approach and landing trajectories using a terrestrial test rocket

[208, 209, 210]. Section 6.3 provides details of the GENIE GNC system, the TRNDI

payload, and the TRNDI imagery and TRN simulators.

In the remainder of this chapter, we demonstrate landmark-based TRN using limited-

size landmark databases computed using the greedy algorithm proposed in Section 4.2.

Section 6.4 describes the computation of the landmark viewing probability, P(view)

using GENIE's Monte Carlo flight simulation data generated during safety-of-flight

tests. We have been unable to fly the TRNDI payload onboard a GENIE test flight.

Instead, we here use the most recent GENIE test flight trajectory and the TRNDI

simulators to evaluate the performance of both the utility-based landmark selection

algorithm (Section 6.5) and the graph-based TRN solver (Section 6.6). Much of the

results presented in this chapter were previously published in [211].

127

6.1 Related Work

The majority of planetary landing systems to date, including the recent Mars Sci-

ence Laboratory built by NASA's Jet Propulsion Laboratory (JPL) [2121, have used

a Doppler radar to sense vehicle range to the surface and surface-relative veloc-

ity. NASA's Autonomous Landing Hazard Avoidance Technology (ALHAT) Project,

which is currently developing terrain relative navigation and hazard avoidance capa-

bilities for use with future high-precision manned landing missions, favors a combina-

tion of a Doppler and flash lidars [213, 208]. However, both radar and lidar options

have high mass and power requirements for unmanned missions, and thus much re-

cent work has focused on development of vision-based systems to serve as potential

replacements [214, 215, 216, 217, 218]. Cuseo, et. al first described a machine vision-

based approach for "recognition of landmarks to reduce navigation errors and achieve

a more precise landing" [219]. Shortly after, Liebe described a method to use terrain

feature tracking for vehicle attitude estimation [220].

More recently, the JPL VISINAV system used a variant of an Extended Kalman Filter

(EKF) to process both visual and inertial measurements for landing navigation [221,

222, 223]. This filter, called the Multi-State Constraint Kalman Filter (MSCKF),

maintained multiple vehicle poses in its state vector in order to accommodate track-

ing opportunistic features in addition to pre-mapped landmark measurements in a

consistent manner [224, 30]. This system was successfully tested on a parachute

dropped from a sounding rocket, achieving a landing position estimation error of less

than 7 meters [225]. The European Space Agency (ESA) and its partners have de-

veloped a similar system, which was demonstrated using a robotic arm and a large,

simulated lunar surface [226].

128

Singh and Lim showed that TRN accuracy could be improved by adding the posi-

tions of tracked landmarks into the EKF state vector [227]. The landmark database

was used to provide the initialization for the landmark location rather than an abso-

lute truth position, and the landmarks were incorporated into the state vector upon

first observation, allowing their positions to be successively refined and effectively

achieving sub-pixel tracking resolution within the prior map.

Similar to the MSCKF approach, Sibley, et. al [81] use a Sliding Window Filter

(SWF) to maintain a constant-length window of poses in the estimator state. As

opposed to the MSCKF, the SWF performs bundle-adjustment within the window

to estimate an elevation map of the landing site for hazard detection during the

final stages of vehicle landing. However, the SWF does not incorporate pre-mapped

terrain information, and thus can only localize the vehicle within a local coordinate

system.

Johnson and Montgomery provide a survey of ten different vision and lidar-based TRN

approaches [228]. They subdivide these approaches into active ranging vs. passive

imaging and by absolute (global) vs. local position estimation. Absolute position

enables active guidance toward a pre-specified landing site, while local position is

capable of higher precision and is therefore more useful for hazard avoidance. They

conclude that because local precision does not involve a direct comparison to a global

reference map, these measurements cannot be used to improve absolute precision.

They further state that multiple local maps must be generated for different altitudes,

due to differing resolutions, which contributes to local position estimation error.

In the following section, we present a new TRN approach that utilizes recent devel-

opments in Bayesian factor graph-based optimal smoothing [229, 67, 68], rather than

the fixed-length or windowed filtering approaches previously used for TRN. Our ap-

proach extends upon that of [227] by incorporating landmarks into the smoother using

a location prior as both an initialization point and a measurement, which anchors the

estimator in the global coordinate frame while also allowing opportunistically tracked

features to be added into the landmark database and estimated online. Unlike the

129

MSCKF, the smoothing approach allows opportunistic feature measurements to be

immediately incorporated and utilized by the filter after only two observations, rather

than waiting for them to exit the sensor field of view. Furthermore, we eliminate the

need to construct multiple local maps by maintaining all measurements and poses

during the approach and landing trajectory. We instead keep all poses in a single,

consistent reference frame, overcoming the limitations predicted by [228]. This TRN

approach is additionally capable of fusing measurements from other commonly avail-

able sensors on spacecraft or UAVs, such as IMUs, altimeters, star cameras, or GPS

receivers, in a common framework.

6.2 Graph-based TRN Solver

In this section, we introduce a factor-graph-based incremental smoothing approach

for TRN, which provides a common framework for optimization-based sensor fusion

problems. This approach builds upon recent work in the field of Simultaneous Lo-

calization and Mapping (SLAM) for mobile robotics. Factor-graphs provide a uni-

fied perspective to summary-propagation algorithms, in which "messages" are passed

along the edges of the graph, which include probability-propagation algorithms such

as the Kalman filter and optimal smoothing [230].

A factor-graph is a bipartite graph consisting of both factor and variable nodes.

Variable nodes represent unknowns in the problem, such as the vehicle's pose. Factor

nodes represent probabilistic constraints on the variables, each of which is modeled

as an error function to be minimized. (6.1) defines a generic factor Fi that relates

variables vi and measurement zi through an error function, err(vi, zi), and a cost

function, d(.). Superscript i here refers to all variable nodes constrained by the factor

Fi, and k is the current time-step.

Ti (v') = d(erri (v', zi)) (6.1)

130

For example, (6.2) shows a factor for a measurement with additive Gaussian noise and

a nonlinear measurement model, where zi is the measurement, h(Vk) is the nonlinear

measurement function, and E is the noise covariance matrix.

1
.Fi(v') = exp { - Iflh(v') - ziI } (6.2)

Maximum a-posteriori (MAP) inference is straightforward when using a factor-graph

representation, as it only involves maximizing the product of the factor nodes [231].

This has led to the popularization of the factor-graph representation for solving lo-

calization and SLAM problems. In the remainder of this section, we will first model

the TRN problem using a factor-graph representation (similar to the pose-graphs

used in Chapter 5) and then perform inference on this graph to estimate the vehicle

trajectory using the iSAM2 solver [67, 68].

6.2.1 Graphical Representation of TRN

Terrain relative navigation is well-modeled as a factor-graph, an example of which is

shown in Figure 6-1. The primary optimization variables of interest are the vehicle

poses, x = {Xo, ... , XN}. We additionally estimate the locations of the pre-mapped

landmarks, e = {o, ... , fA}, to improve upon their associated location priors, pf =

{p, .. . , PfM }, whose precision corresponds to the resolution of the terrain database.

We can optionally estimate the locations of opportunistically tracked (unmapped)

terrain features, f = {fo,... , fj}, to effectively add new landmarks to the database.

Adding measurements to the graph simply involves incorporating additional edge

constraints (factors) between these pose, landmark, and feature variables. Every

factor is phrased as an equation of some subset of these variables and is weighted by

its respective measurement noise covariance, as in (6.2).

131

X 0 X 1 X2 X

X0 im J m <X $3>

Figure 6-1: Example graphical model for terrain relative navigation. Variables are

shown as white nodes, factors (constraints) as blue boxes, and constant priors and

absolute-frame measurements as green diamonds. Consecutive vehicle poses x are con-
nected by IMU factors, and landmarks t and opportunistic features f are connected

to poses by projection factors Ft and Ff. If available, global-frame measurements

-F,, such as from a GPS receiver or star camera, can also be connected to poses.
The only difference between the handling of opportunistic features and landmarks is

the additional location prior provided by the landmark database, pee.

Most TRN measurements can be modeled using one of the three basic types of mea-

surement factors defined by [63]. The first class are unary measurement factors, which

handle external measurements to an absolute frame, including prior location infor-

mation. We can use unary factors to model global-frame measurements, such as from

a GPS receiver or star camera, if available. Unary factors are also used to model

the location prior on mapped landmark locations, which have an associated uncer-

tainty due to the limited resolution of available satellite imagery and other maps.

The second class of factors encode relative-pose measurements that fully constrain

the relationship between two poses, such as from an IMU, visual odometry system,

or a probabilistic vehicle motion model (or combination thereof). The third class of

factors represent measurements that partially constrain (i.e., are low-rank) the rela-

tionship between either two poses or a pose and a terrain feature, such as line-of-sight

observations of landmarks or opportunistic features. Projective camera measurements

are low-rank, and thus camera-based feature observations can constrain only two of

an opportunistic feature's three position variables. This means that at least two ob-

132

servations of an opportunistic feature are required before the feature can be added to

the graph. Landmark observations can be incorporated into the graph immediately

because every landmark, fm, has an associated location prior, pem, from the terrain

database that provides a full-rank position constraint. These three classes of factors

can model any pose-pose, pose-landmark, and pose-feature constraints, as well as

global-frame pose or landmark measurements.

6.2.2 Factor Graph Optimization

Factor-graph models for TRN are inherently sparse because factors relate only con-

secutive poses or pairs of poses and landmarks or features, resulting in a highly-

structured factor-graph topology. This means we can solve the factor-graph opti-

mization problem efficiently using iSAM2 (incremental Smoothing and Mapping), an

incremental solver that exploits this type of sparse graph structure [67, 68]. We ad-

ditionally use the RISE algorithm [65], an incrementalized version of the Powell's

Dogleg [232, 233] numerical optimization method, to enhance the robustness of the

solver to objective function nonlinearity and numeric ill-conditioning. These solvers

have been conveniently packaged in the open-source GTSAM library [231], along with

numerous factor constraint model definitions.

The iSAM2 solver allows the solution to be efficiently updated incrementally. This

means that only the past poses that are affected by the most recent measurements

are updated at any given time, making it computationally efficient to maintain the

entire trajectory rather than performing marginalizations, as in the Sliding Window

Filter [81] or Multi-State Constraint Kalman Filter (MSCKF) [221]. Because previous

poses are also updated by the smoother, past linearization errors can be corrected to

improve the real-time estimate of the current pose as compared to that of an EKF.

Recent work on robust SLAM algorithms has also led to approaches for recovering

from incorrect data association in factor-graph-based solvers [234, 235, 236, 237]. In

the case of TRN, where the trajectory typically will not "loop" back upon itself, the

computational cost of updating these past poses when necessary is typically small,

133

and the incremental solver could be implemented on a constrained system, such as

TRNDI. Because only the measurement constraints need to be maintained by the

graph rather than the actual sensor data, maintaining these past poses does not invoke

a significant storage penalty in comparison to the landmark database, which stores

detailed terrain descriptors to enable data association. Furthermore, as the flight

trajectory is observed, landmarks determined to have low or zero utility could be

removed from the database to make room for new factors and opportunistic features.

By combining the factor-graph representation with the iSAM2 factor-graph solver,

we can efficiently compute trajectory estimates incrementally in real-time for terrain

relative navigation.

6.3 Flight Simulation Framework

The Guidance Embedded Navigator Integration Environment (GENIE) is a guidance,

navigation, and control (GNC) system developed by Draper Laboratory to mature

and demonstrate technologies that can perform safe and precise planetary landings.

Since March 2012, 20 GENIE closed-loop flights [209, 210] have occurred onboard the

Masten Aerospace Xombie terrestrial test rocket [238. Figure 6-2 shows GENIE and

Xombie during one of these closed-loop terrestrial flight tests. Figure 6-3 shows the

trajectory of the GENIE Campaign 5 test flight, which was conducted in March of

2013 and consisted of a 500 meter ascent followed by a sloping descent emulating a

planetary landing trajectory, with a total downrange traversal of 300 meters.

Section 6.3.1 provides an overview of GENIE and its navigation sensors and discusses

their current limitations. To work towards overcoming these limitations, we developed

the TRNDI optical payload, described in Section 6.3.2, to serve as a vision-based

navigation and guidance algorithm testbed. Section 6.3.3 details the TRNDI TRN

simulator, which was developed for TRN algorithm development and pre-flight testing

in preparation for a future flight test.

134

Figure 6-2: Draper Laboratory's GENIE GNC system onboard the Masten Space
Systems Xombie terrestrial test rocket performing a closed-loop flight test.

500

400

E 300

200

100

0
-300 -250 -200 -150 -100 -50

Downrange (m)
0

Figure 6-3: The GENIE Campaign 5 flight trajectory, as estimated by GENIE's
onboard navigation system. The red dots are spaced every 5 seconds of flight time.

135

6.3.1 GENIE GNC System

The Draper Laboratory-built GENIE (Guidance Embedded Navigator Integration

Environment) system is a self-contained hardware and software avionics platform ca-

pable of real-time autonomous guidance, navigation, and control (GNC) in a rugged

terrestrial environment [209]. The GENIE project aims to extend closed-loop flight

capability of a NASA-sponsored terrestrial test rocket to help validate future NASA

payloads seeking Lunar- or Mars-like approach trajectory environments here on Earth.

Additionally, through successful rocket flights, GENIE seeks to mature and demon-

strate Draper GNC technology that can perform safe and precise planetary landings

applicable to a broad range of NASA missions.

GENIE's sensing suite consists of a Northrup Grumman LN200 IMU to measure ve-

hicle translational and rotational rates, a Javad GPS to measure vehicle position and

velocity, and an Acuity Laser altimeter to measure vehicle altitude. While the success

of the various flight-testing campaigns has proven this combination of sensors to be

sufficient for terrestrial test flights [209, 210], the system has two weaknesses appli-

cable to non-terrestrial planetary flight. First, dependency on GPS limits GENIE's

ability to simulate realistic planetary approach and landing navigation, as GPS is

unavailable in the actual operational environment. Second, there is a lack of redun-

dancy in the measurement of vehicle attitude. While the GPS is used to constrain

the position and velocity measurements integrated from the IMU's accelerometers,

there is no easily-available daytime star camera analog to constrain the attitude mea-

surements integrated from the IMU's gyroscopes. This could become a limitation in

either the case of a particularly long flight (short GPS outages are acceptable) or a

sensor failure in flight.

These limitations are not unique to GENIE and have been the subject of much re-

search in recent years, as was discussed in Section 6.1. Several sensing systems have

been proposed to fill this gp, but the vast m aj rity ~involvc radar, lidar, or optical

cameras, with camera-based TRN systems being an especially active and promising

136

area of research [228, 214, 215, 216, 217, 227. However, to our knowledge, no such

vision-based navigation system has yet been demonstrated on a powered Lunar- or

Mars-like approach and landing trajectory. The GENIE system, with its demon-

strated ability to perform accurate planetary trajectory simulations onboard a ter-

restrial test rocket, is particularly well-suited to perform algorithm validation in a

relevant, powered-flight environment.

6.3.2 TRNDI Optical Payload

The Terrain-Relative Navigation & Descent Imager (TRNDI) is a self-contained, low

mass and power prototype spacecraft payload providing vision-based navigation and

guidance for safe planetary approach and landing. TRNDI is scheduled to be included

on multiple upcoming GENIE flights in order to demonstrate a suite of vision-based

algorithms' capabilities and robustness. This section details the algorithms, software

framework, and hardware and sensor systems that make up the TRNDI system.

TRNDI includes three classes of vision-based algorithms relevant to navigation and

guidance during planetary approach and landing: Terrain-Relative Navigation (TRN),

Visual Odometry (VO), and Hazard Detection (HD). TRNDI also includes the GENIE

Initial Direction Enhancer (GIDE), which is an automated tool for terrestrial rocket

navigation initialization. TRNDI's HD and GIDE algorithms and their pre-flight

simulation results are discussed in detail in [207]. For purposes of this thesis, we will

focus on TRNDI's TRN system.

The Terrain Relative Navigation (TRN) system provides globally-referenced vehicle

attitude and position updates by identifying unique, pre-mapped landmarks along

the planned vehicle flight path. Points of interest are identified in the camera images

during flight and matched to a catalogue of known landmarks created from satellite

imagery prior to flight. The TRN system provides functionality similar to a GPS re-

ceiver and star camera in planetary environments lacking GPS coverage and adequate

137

visibility for star tracking. However, the performance of TRN systems is proportional

to the resolution of their a priori terrain maps, as only distinctly resolvable objects

and textures can be identified and catalogued as landmarks. These limitations become

increasingly apparent at low altitudes.

TRNDI uses a modularized C++ software framework intended for real-time asyn-

chronous data collection, processing, and logging [239]. This framework encapsulates

each sensor and algorithm within a "task," passing data between tasks using a com-

mon queue in the form of standardized "messages." Algorithms and sensors can be

easily added or removed by simply adding or removing their associated tasks from

the message queue. These tasks run asynchronously in separate threads, making the

system inherently multithreaded and allowing sensors and algorithms to be indepen-

dently triggered by data availability, maximizing use of the CPU.

TRNDI's hardware comprises an embedded computer, a dedicated battery, and three

dedicated cameras, which are shown sitting on a lab bench in Figure 6-4. The com-

puter is a rugged, EMI-shielded IDAN RTD computer with an Intel Core 2 Duo

processor, 4 GB of RAM, and a 480 GB internal SSD for long-duration data log-

ging, and runs Ubuntu Server 12.04. A lithium polymer battery provides power to

the IDAN's internal power regulator for several hours of continuous operation. A

ruggedized StarTech USB hub mounted to the computer provides sufficient connec-

tions and power for the three cameras.

TRNDI uses compact Edmund Optics USB CCD cameras (EO-1312M) with 1280 x

1024 resolution, global shutters, and harsh environment packaging. Two of these

cameras point 30 degrees (re-configurable) outward from the rocket' - one in the

forward direction and the other to the left side of the vehicle - providing a balance

between maintaining as much terrain in the field of view as possible, observing the

terrain nearest to the rocket (typically being directly downward), and avoiding occlu-

'Previous results of TRNDI's hazard detection system [207] had the cameras configured to point
45 degrees outward from the rocket, as they were conducted in preparation for GENIE's Campaign
6 test flight. The camera angle is selected according to the planned trajectory profile.

138

Figure 6-4: The TRNDI flight hardware includes a single-board computer, three USB

cameras, and a LiPo battery, shown here sitting on a lab bench.

sions from the vehicle and rocket plume during takeoff and landing. The cameras are

hardware-synchronized to 7.5 frames per second (fps) and use Edmund Optics 6 mm

compact fixed focal length ruggedized lenses (approx. 60 degree field of view), which

are calibrated prior to flight.

TRNDI is capable of participating in GENIE's existing hardware-in-the-loop (HITL)

Monte Carlo simulator, which is used to validate the GENIE system prior to each test

flight under varying flight conditions. TRNDI interfaces with GENIE over Ethernet

during these simulated runs, just as it does during an actual flight. GENIE sends

flight data to TRNDI at 50 Hz, including the current best navigation estimate. After

each simulated flight, the GENIE simulator sends a command to fully power cycle

TRNDI, taking the hardware through its full operational cycle.

139

TRNDI requires only one additional software module for simulated flights, which

generates simulated camera images based on GENIE's most recent navigation state.2

The image simulation module projects a satellite image of the flight range into the

camera view using a homography transform. The image of the flight range is a

mosaic of many images from Google Earth stitched together using the Microsoft

Image Compositing Editor.

6.3.3 TRN Simulator

The TRNDI TRN simulator generates the odometry measurements, landmark pri-

ors, and landmark line-of-sight observations required by the graph-based TRN solver

described in Section 6.2. Odometry constraints represent a vehicle motion model or

IMU measurements to constrain the relationship between consecutive vehicle poses

and ensure that the poses in the factor-graph are fully connected. This connectivity

is necessary to keep the solver numerically stable in cases when insufficient landmark

observations are available to fully constrain a pose. Landmark priors, which provide a

prior distribution on the positions of landmarks in the terrain database in the global

frame, are assumed to have a position standard deviation of 0.4 meters, which is ap-

proximately the available resolution of Mars imagery. We additionally add a prior on

the first pose's position and attitude, which represents the hand-off from an orbital

navigation system to the TRN system or, in GENIE's case, prior knowledge of the

vehicle's launch site.

An example simulated camera image with line-of-sight observations of terrain land-

marks is shown in Figure 6-5. Candidate landmarks for potential inclusion in the

terrain database are generated by placing points either randomly or evenly-spaced on

visible surfaces throughout the flight-test region. In practice, these landmark can-

didates might be selected using a visual feature detector to identify easily trackable

terrain featur such as the Harris corncr dctcctor [833. For purposes of simula-
2 A future system upgrade will allow TRNDI to receive truth data directly from the simulator for

image generation rather than using GENIE's state estimate.

140

Figure 6-5: Simulated image showing sample landmark observations (blue) and the
five regions (red) used to compute observation dispersion in (6.5). This image has
three regions containing at least one observation.

tion, we assume accurate feature detection and data association for all tests, as these

issues are environment-dependent and have already been well-addressed in the lit-

erature. This assumption allows us to generate the set of candidate landmarks on

a regular 20 x 20 meter grid and set the landmark recognition probability in (3.9)

to be uniform across all landmarks. Setting a uniform recognition probability and

selecting landmarks from a regular grid allows us to observe the most desirable land-

mark database geometries that result from the various selection approaches without

any environment-specific effects or loss of generality. Existing feature tracking meth-

ods, such as those presented in [221, 226, 227], could integrate with our presented

algorithms without modification.

For the purposes of the experiments presented in Section 6.6, the simulations were run

on a 2011 MacBook Pro laptop running Ubuntu 14.04 rather than the TRNDI flight

system. The TRNDI TRN simulator generated a text file of measurement constraints,

which were then parsed using a custom interface to the GTSAM library, rather than

141

fully implementing the TRN solver within the flight code. All measurements common

to the trajectory estimates computed using multiple landmark databases (including

all odometry measurements and landmark priors) were generated simultaneously with

the same random noise values to allow direct comparison of their results.

6.4 Estimating Landmark Observation Probability

Maximum-utility landmark database selection (4.3) requires the probability of the

vehicle's sensors viewing various terrain features (3.9). This probability distribution,

P(view), is computed by integrating over the full trajectory space (3.10) in order

to approximate the probability of each location in the map being viewed using the

trajectory marginalization process described in Section 3.3. However, because there

are infinitely many possible trajectories, we instead estimate P(view) by sampling

from the trajectory space.

In preparation for the GENIE Campaign 5 flight test in March, 2013, 203 flights

were simulated under Monte Carlo flight conditions to evaluate the GNC system

performance across the full flight envelope for safety-of-flight [210]. We used these

simulated flight trajectories to sample the trajectory space in order to approximate

the probability of each location in the terrain map being viewed. We first generated

a grid across GENIE's entire operational environment. Then, for every 1 second of

flight for each of the 203 trajectories, we counted how many times each grid cell was at

least partially viewed by the camera. The estimated viewing probabilities computed

using a 5 meter grid spacing are shown in Figure 6-6. Because the pre-flight Monte

Carlo simulations are intended to ensure the full flight regime is safe rather than

explicitly modeling the expected flight conditions, this collection of flight trajectories

only approximates the true viewing probability distribution of the environment.

142

-1000

-500

E

0

C,,
C,,

500

1000
-500 0 500 1000 1500

Downrange (meters)

Figure 6-6: Terrain view coverage distribution empirically estimated using 203 Monte
Carlo flight simulations generated as part of GENIE's pre-flight testing, normalized by
the maximum viewing probability for display purposes. The planned flight trajectory
begins at (-300,0) and the landing target is (0,0).

The GENIE Campaign 5 flight trajectory is highly constrained at both the take-off

and landing sites because the vehicle always launches from the same position and

attempts to land precisely at a set target. Therefore, the camera views these terrain

regions during every flight simulation and typically does so for comparatively long

durations due to the low vehicle velocity during launch and landing. This results

in very high terrain viewing probabilities near both the trajectory start and finish

locations in comparison to the typically much lower values elsewhere in the terrain.

In order to account for these regions of high viewing probability during maximum-

utility landmark selection in the next section, we will slightly increase the utility

weighting parameter to A = 1.2, which slightly favors well-dispersed landmarks over

frequently viewed landmarks. A = 1.2 was selected because it empirically gave a

143

good fit, and the specific value of A was found to be insensitive in the range of 1.1

to 1.3. This helps to select landmarks that are valuable during the high-altitude

portions of the trajectory when the vehicle is moving quickly and its motion is less

constrained.

6.5 Results of Landmark Database Selection

This section evaluates the greedy landmark selection approach of Section 4.2 using

database evaluation metrics independent of any particular solver, emphasizing the

general applicability of utility-based landmark selection to any landmark-based TRN

solver. Section 6.5.1 first introduces four metrics of landmark database value for

navigation. These metrics can be computed without solving for a vehicle trajectory

estimate, making them applicable to any landmark-based TRN solver, including the

Extended Kalman Filter-based approaches common in the literature. Section 6.5.2

then compares maximum-utility landmark selection against three alternative land-

mark selection approaches using these evaluation metrics. Section 6.6 will evaluate

these same landmark databases using trajectory estimation results computed using

the graph-based TRN solver described in Section 6.2.

6.5.1 Landmark Database Evaluation Metrics

We now define four generalized landmark database evaluation metrics that are in-

dependent of any particular TRN solver. These metrics are inherently trajectory-

dependent, and thus are unavailable at the time of landmark database selection.

However, given the trajectory, placing landmarks to directly maximize these objec-

tives in some combination would result in the "true" optimal landmark database,

and therefore we can use them to compare the results of pre-flight landmark selection

approaches.

144

First, we want to maximize the total number of measurements, which we quantify

using the average number of landmark observations per image, zavg:

Zvg = z (6.3)
k i

Where z is the ith landmark measurement in image frame k, and K is the total

number of frames. Assuming correct data association and error modeling, landmark

line-of-sight measurements always have non-negative information content, so incor-

porating additional measurements typically results in better navigation precision.

Handling extra measurements is more computationally expensive in the solver, but

it is straightforward to perform measurement down-selection during flight, if neces-

sary.

The second evaluation metric is the fraction of images that contain landmarks in their

field of view, Kobs:

Ko1s = m(zk) (6.4a)
k

m(Z{) = 1 |Zk| > 0 (6.4b)
0 otherwise

Function m(zk) = 1 if at least one landmark observation, z, occurred in frame k.

We ideally want the landmark measurements to be evenly spread across all images

without any gaps, which are effectively wasted processing time during which the error

covariance grows without correction.

It is additionally important for landmark measurements to be well-dispersed in the

field of view, as this results in a higher information content per measurement, as

discussed in Section 3.3. To measure this effect, we segment the camera field of view

into five regions of equivalent area, as shown in Figure 6-5. For each image, we

count the number of these regions that contain a landmark measurement. The third

evaluation metric is then the average number of these populated regions per image

145

over the full trajectory, ravg:

ravg = S R(zk) (6.5)
k

Function R counts the number of regions shown in Figure 6-5 containing at least

one measurement in Zk. This evaluation metric measures the dispersion of measure-

ments in the camera field of view without penalizing large measurement counts for a

particular frame.

The fourth metric is simply the fraction of landmarks that are actually observed

during the trajectory, fobs:

4obs = (6.6)

Where represents all landmarks in the terrain database, z is all landmark observa-

tion measurements for the trajectory, and f E z is the set of landmarks observed by

z. Unobserved landmarks are effectively wasted space in the database (though this

is only known in hindsight).

6.5.2 Comparison of Landmark Database Selection Approaches

We now compare the database generated using maximum-utility landmark selection

against those generated by three alternative methods using the four evaluation metrics

described in Section 6.5.1. Each terrain database contains 50 landmarks, greedily

selected from a uniform grid of 10,201 candidate landmarks spaced 20 meters apart

in the 2 x 2 km flight region.

The four landmark database selection methods produce the sets of landmarks shown in

Figure 6-7. The first selection method is simply random selection (Figure 6-7a) from a

uniform distribution across all candidate landmarks. This roughly emulates selecting

the 50 most distinct visual features in the environment, which tend to be clustered in

some areas with distinctive terrain features and sparse in others. The second method

(Figure 6-7b) attempts to maximize the spatial distribution of the landmarks in the

146

flight environment, which is equivalent to setting A >> 1 in (4.3). The third method

(Figure 6-7c) attempts to maximize the total number of landmark observations over

the trajectory by selecting the landmarks with the highest probability of being viewed,

equivalent to setting A = 0 in (4.3). These landmarks are heavily concentrated near

the launch and landing sites, where the trajectory is most tightly constrained. The

fourth method (Figure 6-7d) maximizes the total utility of the landmark database. We

found A = 1.2 to give a good balance between selecting well-dispersed and frequently-

viewed landmarks. As discussed in Section 6.4, the weighting parameter was increased

from the nominal A = 1.0 to compensate for the especially high probability of viewing

terrain near the launch and landing sites.

Table 6.1 provides the evaluation metrics computed for each of these landmark selec-

tion approaches, computed according to GENIE's actual Campaign 5 flight trajectory

(shown in Figure 6-3). The results from random selection represent the average of ten

randomly selected databases. Maximizing the landmark spatial distribution increases

the average number of image regions containing landmark observations, ravg, but oth-

erwise gives comparable performance to random selection. Maximizing the number of

landmark views increases the total number of observations, Zavg, database utilization,

fobs, and the number of images containing observations, Kb,, but reduces the aver-

age spatial distribution of observations within each image, ravg. This is because all

of the selected landmarks lie within the camera frame during the highly-constrained

launch and landing portions of the trajectory, and thus they are very tightly clus-

tered. Despite achieving many observations and a high database utilization, these

observations all have very low marginal information content. This means that many

of these low-value observations would likely be pruned out in an actual operational

scenario to reduce the computational load of the solver using landmark measurement

downselection methods such as [240, 241], resulting in a large reduction in Zavg and

fobs in practice.

147

D
(a) Ra

-1 1
-0.5

0

0.

*

0 3
0

*

* S

0

0

* 0

0

1

E0.5

)
c 0C -
C,)
0c-0.5

0 0.5 1 1.5
ownrange (km)
ndom Selection

-1
-0.5

1

E0.5

0)c 0C-L_
Co)
Co)
0
Lo-0.5

0 0.5 1 1.5
Downrange (km)

(c) Maximum Observations

0

0

. 0

S

0

0

0

00

0 0-

0 0.5 1 1.5
Downrange (kin)

(b) Maximum Dispersion

-0.5 0 0.5 1 1.5
Downrange (km)

(d) Maximum Utility

Figure 6-7: Landmark databases computed by four different a priori landmark se-
lection approaches. Landmarks are colored from dark red to dark blue according to

the order in which they were selected by the greedy algorithm. The planned flight

trajectory begins at (-300, 0) and the landing target is (0, 0).

148

1

. 0 .5

C)
C 0
C - .C,,

0-0.5

-S

0

41-I
-0.5

1

E 0.5

UD
C 0C-
I-..
C')
CD)

-0.5

** . 0

....

-

. -

-

0
- a

0

a

0

- 1

Table 6.1: Comparison of Landmark Selection Approaches

Random

(Average)

Max.

Dispersion

Max.

Meas.

Max.

Utility

Observations per Image, Zavg 1.4 2.0 22.7 5.3

Images with observations, Koob 46% 66% 61% 77%

Avg. populated image regions, ravg 1.2 1.7 1.6 2.4

Database utilization, fobs 18% 24% 100% 52%

Results for 50-landmark databases shown in Figure 6-7 evaluated using the GENIE Cam-

paign 5 test flight trajectory.

The maximum-utility landmark database combines the maximum-dispersion and max-

imum-observation approaches, yielding improvements over both random selection and

maximum-dispersion across all four evaluation metrics. As one would expect, the

maximum-observation selection approach results in the largest Zag and fobs values,

but these values are highly inflated for a typical system, which would likely throw

out most of the observations due to their redundancy. By balancing more potential

observations with better spatial distribution throughout the environment, the max-

imum-utility selection approach most notably achieves a significant improvement in

the average number of populated image regions, ravg, as compared all other selec-

tion approaches, which will improve vehicle position estimation when using any TRN

estimator utilizing line-of-sight measurements.

The maximum-utility method outperforms random selection and maximum-disper-

sion selection on all four metrics and outperforms maximum-observation selection on

two of the four metrics. However, as discussed above, the Zavg and eobs metrics suffer

from diminished returns and are therefore highly inflated for a system performing

redundant measurement removal. Therefore, the maximum-utility selection approach

is the best overall choice for landmark database selection.

149

6.6 Graph-based Solver Results

We now evaluate our utility-based landmark selection method using trajectory esti-

mates computed using the graph-based TRN system introduced in Section 6.2. We

use the TRNDI TRN simulator described in Section 6.3.3 and the flown GENIE

Campaign 5 flight trajectory, shown in Figure 6-3, to simulate landmark observations

with a 10 Hz camera frame rate. Because the true trajectory is unknown, we must

instead simulate using GENIE's own trajectory estimation, and thus we are unable

to make a direct comparison to GENIE's current EKF-based navigation system. The

process of generating these simulated measurements was discussed in Section 6.3.3.

Treating GENIE's trajectory estimate as truth additionally means we cannot use

GENIE's actual IMU measurements without inducing a bias, so we instead simulate

6-degree-of-freedom IMU measurements with Gaussian noise to serve as basic odome-

try measurements in order to guarantee connectedness of the graph. In order to show

the applicability to long-duration trajectories and lower-cost sensors, these simulated

measurements are noisier than those actually available from GENIE's own onboard

IMU and result in a several meter drift when directly integrated without additional

sensor measurements.

Section 6.6.1 uses the graph-based TRN solver to compare the position error of tra-

jectory estimates computed using the maximum-dispersion, maximum-observations,

and maximum-utility landmark databases from Section 6.5. Section 6.6.2 then uses

the solver to compare trajectory estimates computed with variously sized maximum-

utility landmark databases. The results show that maximum-utility landmark data-

bases outperform alternatively selected databases and achieve high-accuracy trajec-

tory estimates even when using very few landmarks.

150

6.6.1 Comparison of Selection Methods

We first compare the performance of our graph-based TRN system when using the

maximum landmark dispersion, maximum expected landmark observations, and max-

imum landmark utility selection methods described in the previous section. Figure 6-

8a shows a top-down view of the vehicle position estimated in real-time by the solver

(i.e., the incremental smoothing result). This real-time position estimate is approxi-

mately equivalent to the maximum likelihood smoothed result given all measurements

up to that time and represents the estimate of the most recent pose at each time step,

which is available to the vehicle for decision-making. Figure 6-8b shows a top-down

view of the vehicle position estimated in post processing by smoothing across all

poses. Because the graph-based solver is an incremental smoother (as opposed to a

filter), the real-time result at the final time-step is equivalent to the smoothed re-

sult. Because our graph-based incremental smoother re-linearizes past measurements

given more recent information, unlike traditional filtering approaches, these two tra-

jectory estimates are dramatically different. This re-linearization also significantly

improves the robustness of the estimator by allowing the incremental smoother to

potentially recover from past linearization errors that might otherwise cause a tra-

ditional filter to become inconsistent. The maximum-utility database achieves bet-

ter real-time and smoothed trajectory estimates than the maximum-dispersion or

maximum-observation databases.

151

2- Truth
- Max. Utility

1 - Max. Observations

SMax.
Spacing

(I)
C:

0 -2

-3

-4

-300 -250 -200 -150 -100 -50 0
Downrange (m)

(a) Real-Time Estimate

2 - Truth
- Max. Utility

1 - Max. Observations
-Max. Spacing

E 0 --
(D
CD
a, -1
CU

0 -2

-3

-4
- | I , I i I -

-300 -250 -200 -150 -100 -50 0
Downrange (m)

(b) Smoothed Estimate

Figure 6-8: Comparison of the (a) real-time (most recent pose incrementally com-

puted) and (b) smoothed (all poses at final time step) position estimates for the

GENIE Campaign 5 flight trajectory using three landmark database selection meth-

ods. The smoothed result is identical to the final real-time result. The maximum

utility selection method results in both the most accurate real-time and smoothed

trajectory estimates, and the final position error is about 0.2 meters, or about 0.07%

of the downrange flight distance.

152

Figure 6-9 shows the real-time position error of the terrain estimator for the duration

of the flight when using the three different landmark databases shown in Figure 6-10,

each of which contains 25 landmarks. As shown in the figure, the maximum-utility

database selection approach outperforms the alternative approaches for the majority

of the trajectory, providing a more accurate in-flight position estimate. Because these

landmark databases are so sparse - each contains only 25 landmarks - jumps can occur

in the trajectory estimate due to changes in observation configurations. For example,

the maximum-utility position estimation error grows slowly during vehicle launch

when only one landmark is observed. However, a second landmark is observed about

22 seconds into the flight, which results in an ambiguous measurement configuration

with multiple solutions. The solver selects an incorrect solution, causing the error to

jump (recall that our simulated odometry measurements provide weak constraints in

comparison to the landmark measurements). A third landmark comes into view and

removes the ambiguity almost immediately afterwards. The solver then re-linearizes

all of the previous measurements to reflect the new estimate, correcting its previous

mistake and extracting more information from these measurements.

Figure 6-11 provides the position estimation errors of Figure 6-9 broken down by

axis with their 2-sigma position error covariances, as computed by the graph-based

solver. The solver uses the same method to compute the position error covariances

in each case, and thus the error covariances reflect the information content of the

landmark measurements and enable comparison of the trajectory estimates free from

the effects of random measurement noise. The TRN problem is highly nonlinear due

to the bearing-only, projective line-of-sight landmark measurements, and therefore

the reported covariance is only a first-order approximation (as in an EKF) of the true

uncertainty of the estimator. Nonetheless, we can see from the figure that the position

error is well-characterized by the covariance estimate of the graph-based solver. For all

three axes, the position error covariance when using our maximum-utility database

is nearly entirely contained within the boundaries of the errors of the alternative

methods, showing that our database selection method results in more precise in-flight

position estimates than the alternative landmark selection methods.

153

3

E

0

C
0

2.5

2

1.5

1

0.5

0
0 20 40

Time (s)
60

Figure 6-9: Comparison of the total error of the real-time position estimate for

the GENIE Campaign 5 flight trajectory when using the three 25-landmark terrain

databases shown in Figure 6-10, which were computed using three different selection
methods. Especially in the well-constrained approach and landing segments of the

trajectory (after the 25 second launch phase), the maximum-utility database results

in a lower real-time position estimation error over the majority of the trajectory.

1

0.5-

0...

-0.5

-1-
-0.5 0 0.5 1 1.5

Downrange (km)

(a) Maximum Utility

1

0.5 k

C
Cn
0

0

-0.5 k

-1 ' - - ' - ' - - '
-0.5 0 0.5 1 1.5

Downrange (km)

(b) Maximum Observations

1

0.5
E)

0)
C:
CU
U)
0n
2

0

-0.5 0 0.5 1 1.5
Downrange (km)

(c) Maximum Dispersion

Figure 6-10: Comparison of the 25-landmark databases used in Figure 6-9.

154

. -

0)

--- Max. Utility -
- Max. Observations
- Max. Spacing

I I I I I

-0.5 -

0

U)
0
0)

0
LJ
U)

0)

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

E 0
0

-0.

- V

20 40 60
Time (s)

-- -

0 20 40 60
Time (s)

5 -

0

5 ---

0 20 40 60
Time (s)

Figure 6-11: Real-time position estimation errors (solid lines) and estimated 2-sigma

error bounds (dashed lines) for the simulations presented in Figure 6-9, which compare

the results of three selection methods: maximizing landmark spatial distribution

(red), maximizing total observations (green), and maximizing landmark utility (blue).

The graph-based TRN solver results in an accurate estimate of the position error, and

the proposed utility-maximization database selection method's error is nearly entirely

contained within those of the alternative methods.

155

-U

I I

6.6.2 Comparison of Landmark Database Sizes

We now compare trajectory estimates computed using variously-sized maximum-

utility landmark databases. Figure 6-12 shows a comparison of the estimator's

real-time position error when using terrain databases containing the top 25 and 100

maximum-utility landmarks and a baseline case of 10,201 landmarks spaced evenly

across the flight environment on a 20 x 20 meter grid, as shown in Figure 6-13. Fig-

ure 6-14 breaks down these real-time position errors by axis, additionally showing

their 2-sigma covariance approximations.

As expected, the trajectory estimation error decreases as database size increases.

However, the difference between the trajectory estimates is generally small, espe-

cially in the well-constrained approach and landing portions of the trajectory (after

the 25 second ignition and launch phase), indicating that even very large landmark

databases do not provide significantly more information content than the highly-

reduced, 25-landmark database. Furthermore, the error covariances resulting from

the 25-landmark case are very close to those of both the 100-landmark database and

baseline database, as shown in Figure 6-14. This indicates that utility-based greedy

landmark selection succeeds at maximizing the information content of a size-limited

landmark database, that the marginal information content of an additional landmark

tends to decrease with database size, and that a small but optimal database is nearly

as beneficial as the complete database. Thus, increasing the size of the landmark

database results in diminishing returns on estimator accuracy and precision.

156

3

0

C
0
Cz

0

0

2.5

2

1.5

1

0.5

0
0 20 40 60

Time (s)

Figure 6-12: Comparison of the total error of the real-time position estimate for the
GENIE Campaign 5 flight trajectory when using maximum-utility databases contain-
ing 25 and 100 landmarks and a baseline case of a 10,201 landmarks evenly spaced in

the flight environment. These landmark databases are shown in Figure 6-13. The 25-
landmark database approaches the error of the baseline case despite containing only

0.2% as many landmarks, indicating that even a small number of maximum-utility
landmarks contains the majority of the information content of the baseline database.

0.5.

0-...

-0.5-

-1
-0.5 0 0.5 1 1.5

Downrange (km)

(a) 25 Landmarks

C
Cz
U_

0

1 .

0.5 .

0 -

-0.5.

-1 - -- ' -
-0.5 0 0.5 1 1.5

Downrange (km)

(b) 100 Landmarks

1

S0.5

0
C

0 -0.5

-1
-0.5 0 0.5 1

Downrange (kin)

(c) 10,201 Landmarks

Figure 6-13: Comparison of the 25 and 100 maximum-utility landmark databases and
baseline database of 10,201 landmarks evenly spaced on a 20 x 20 meter grid used in

Figure 6-12.

157

- 25 Landmarks :
--- 100 Landmarks -
--- 10,201 Landmarks

E)

0)
C

CA)
0
0

1.5

E 2-

0 ~

LII -- ---- ----- ----

-3 --

3

0

a 0

0-2

-3

20 40 60
Time (s)

- ~- -

) 20 40 60
Time (s)

1 -I

-0.5LU 0

-1

0 20 40 60
Time (s)

Figure 6-14: Real-time position estimation errors (solid lines) and estimated 2-sigma

error bounds (dashed lines) for the simulations presented in Figure 6-12, which com-

pare trajectory estimations using maximum-utility databases of 25 (blue) and 100

(green) landmarks and a baseline case containing 10,201 landmarks (red) evenly

spaced on a 20 x 20 meter grid in the flight region.

158

6.7 Chapter Summary

This chapter applied the utility-based database selection approach to landmark selec-

tion for terrain relative navigation (TRN) in the context of the GENIE and TRNDI

systems (described in Section 6.3). Maximum-utility landmark selection enables op-

timal terrain database construction without direct observation of the vehicle trajec-

tory, as required for TRN. Section 6.4 described how a probabilistic representation

of the predicted vehicle trajectory can be computed using Monte Carlo trajectory

marginalization, enabling optimal a priori terrain database selection. Section 6.5

introduced four metrics of landmark database quality independent of any particular

landmark-based TRN solver and showed that the maximum-utility landmark database

outperforms those selected randomly or with alternative approaches for the GENIE

Campaign 5 flight trajectory.

Section 6.2 introduced a novel graph-based incremental smoothing approach to solve

TRN problems. This solver is capable of re-linearizing past measurements as new in-

formation is acquired to efficiently achieve the best-possible trajectory estimate. This

means the solver can correct past linearization errors, such as those resulting from

ambiguous or under-constrained measurement configurations. The solver therefore

maximally utilizes the information content of all landmark measurements, making

it an ideal choice for reduced-landmark trajectory estimation. Section 6.6 used the

graph-based TRN solver and the TRNDI TRN simulator (described in Section 6.3)

to show that the maximum-utility landmark database outperforms alternatively se-

lected landmark databases (Section 6.6.1) and that accurate trajectory estimates can

be achieved even when using highly reduced landmark databases (Section 6.6.2).

159

160

Chapter 7

Conclusions & Future Work

Recently there has been a trend toward data and processing intensive localization

and SLAM systems, which aim to estimate a complete representation of a vehicle's

environment. However, much of this data is redundant or contains relatively low

information content, and unnecessarily stresses the constrained hardware systems on

which they run.

This thesis addressed this problem by defining a measure of sensor measurement

utility for navigation, which can be computed prior to vehicle operation given a set

of basic information that is typically readily available, formulating an optimization

problem to maximize the utility of the location database, and providing a greedy

approximation algorithm to efficiently construct a location database. Prior to this

thesis, the localization and SLAM literature has not addressed location database

selection in advance of vehicle navigation and without direct observability of sensor

measurements or the vehicle trajectory.

161

The results presented in this thesis have shown that the locations at which loop-

closure events occur (including landmark observations) can be sorted according to

their expected reduction in map uncertainty for a general, unknown route, even with-

out access to the pose marginal covariances or actual measurements. In particular,

the proposed location utility consists of the visit probability and spatial distribution

of database locations.

The results further show that the structure of a vehicle's operational environment

and motion can be encoded in the proposed measure of location utility, which in turn

improves performance of reduced-size location databases. Using the location utility

metric to construct limited-size location databases, an accurate pose-graph can be

constructed even when using a location database less than 1% the size of that of a

typical pose-graph SLAM system. The greedy-selection algorithm can additionally

be used as a design tool to estimate the minimum data storage required to navigate

in an environment within a specified position uncertainty.

Chapter 6 applied the proposed measure of landmark utility in the context of ter-

rain relative navigation, showing that location utility can be computed in 3D en-

vironments without direct observation of the vehicle trajectory or a finite number

of potential vehicle routes. The utility metric was used to optimize a database of

landmarks efficiently using the greedy approximation algorithm described in Chap-

ter 4. The presented results showed that, for a fixed-size landmark database, the

utility-maximization method results in a higher quality landmark database than ran-

dom landmark selection or evenly spacing landmarks on a grid for a priori database

computation, confirming the assertion that not all landmarks are equally valuable for

navigation.

In order to validate the landmark selection method, a novel incremental smoothing

approach for terrain relative navigation was additionally introduced, which is capable

of fusing multiple navigation sensors in an efficient optimization framework. The

presented results indicate that this is a worthwhile framework for further TRN study

and possible flight testing.

162

7.1 Recommendations for Future Work

While the core contributions have been demonstrated in a variety of simulations, a de-

tailed experimental demonstration would still be of value, showing that a vehicle can

navigate when loop-closures are limited to a finite set of pre-determined locations.

However, no existing datasets contain all the characteristics required to perform a

comprehensive experimental validation, and thus new datasets will need to be col-

lected. This is primarily due to the lack of structured motion and full environmental

descriptions in existing datasets, in which vehicles tend to wander or aim for areal

coverage rather than efficient routing, making it difficult to estimate a meaningful

viewing probability distribution.

Aside from experimental validation, the database selection approach described in this

thesis opens the door to many exciting areas for future research, including online struc-

ture learning, tight integration with the place recognition system, and application to

multi-agent systems with low-bandwidth communication channels.

7.1.1 Online Structure Learning & Database Management

While this work is limited to a priori computation of location databases, which re-

quires vehicle routing and environment information, it opens the door to a vast arena

of future work. The most obvious and compelling avenue for future work is that of

learning the environment and routing structure online and managing a reduced-size

location database in real-time.

Difficult questions arise when managing the database in real-time, such as when to

replace established locations with new locations. A number of strategies are possible,

but it is likely that the position of the vehicle will factor into decision making. For

example, a database managed online might emphasize locations with close proximity

to the vehicle, removing distant locations from the database, or it might maintain a

global "static" database and a local "active" database.

163

7.1.2 Place Descriptor Learning

Another pathway for future work involves more tightly integrating the place recog-

nition system into the location database selection. This work currently allows for

the expected capability of the place recognition system to recognize various locations

to be integrated directly into the location utility determination, as shown in Equa-

tion 3.3. However, as discussed in Section 2.3, many appearance-based loop-closure

detection systems use information-based methods to compress the sensor data, such

as the venerable "Bag of Visual Words" methods. Compression is enabled by learning

the distribution of descriptors in the environment, and thus the performance of the

place recognition system is highly dependent upon both the number and uniqueness

of the locations in the environment being described.

As discussed in Section 2.3.3, FAB-MAP 2.0 achieved 49% recall on a 70 km dataset,

but only 3% recall for the 1,000 km dataset. By determining the most valuable

loop-closure locations prior to navigation and training the system to recognize these

locations especially robustly, we may be able to boost the overall recall of the system

on the 1,000 km dataset while also encouraging the place recognition successes to

occur at valuable locations.

Bag-of-visual-words matching approaches originated in the object detection and recog-

nition field of computer vision [100]. The PASCAL Challenge [112] led to a great

deal of research progress with regards to classifying objects within images into pre-

determined categories. As discussed in Section 2.3.2, the performance of such object

recognition systems was found to be highly dependent upon the quality of the dic-

tionary of visual words, which must be computed during an a priori learning phase.

Appearance-based place recognition systems for SLAM, including those using bag-

of-words approaches, effectively treat each vehicle pose as a category and attempt to

classify each new image as either one of these existing categories or a new category.

The location selection approach described in this thesis allows valuable locations to be

determined prior to vehicle navigation, thus potentially enabling better bag-of-words

164

vocabulary learning approaches for SLAM by allowing physical locations in space

to be treated as recognition categories with multiple, designated training images for

each location. Thus the objective of vocabulary training shifts from optimally dis-

ambiguating images to optimally recognizing specific locations, which may lead to

better matching performance and reliability. Disambiguating locations rather than

images might also lead to a reduction in the vocabulary sizes required for effective

place recognition.

Because place recognition system performance is dependent on the places being recog-

nized, the optimization approach may need to iterate between selecting the database

locations and training the place recognition system to achieve the optimal set of

locations. This is an especially exciting area for future research that has thus far

been unexplored, and served as the initial motivation for the work presented in this

thesis.

7.1.3 Multi-Agent Localization & Mapping

The pose-graphs generated by the proposed research typically involve long segments

of poses connected solely by odometry constraints with occasional loop-closure con-

straints. Because we know that loop-closure constraints cannot be added to these

poses (any poses that are definitely not in the location database), they are generally

safe to marginalize out, effectively summarizing large portions of the pose-graph. The

result will be a series of constraints between only the poses in the location database.

Thus, these summarized constraints can easily be shared with other vehicles across a

network. As these constraints can be applied in any order and at any time, regardless

of whether other agents have visited the location yet or not, this significantly reduces

challenges associated with measurement ordering and low-bandwidth, high-latency

communication channels.

165

7.1.4 Terrain Relative Navigation

While terrain relative navigation for planetary landing is an active area of recent

research, there is a significant lack of experimental validation of algorithms in relevant

environments. The TRNDI System, described in Section 6.3.2, was originally designed

and assembled to provide such a demonstration onboard a terrestrial rocket flight. We

continue to hope for an opportunity for a flight demonstration of this system.

An additional pathway for future work on the TRN system includes extending the

calculation of the location viewing probability distribution to account for vehicle

altitude, allowing database selection accounting for large vehicle altitude changes,

such as occur during planetary landing. While the presented TRN solver is capable of

seamlessly handling multi-resolution landmark databases, optimal landmark selection

across a continuous resolution space remains an open question, likely requiring a

modification to the spatial dispersion term in the utility computation to account for

the increased dimensionality of the selection space. Existing systems use multiple

landmark databases computed independently for each resolution level.

166

Bibliography

[1] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.
[2] H. Durrant-Whyte and T. Bailey. "Simultaneous localization and mapping:

part I". In: IEEE Robotics & Automation Magazine 13.2 (2006), pp. 99-110.

[3] G. Grisetti et al. "A tutorial on graph-based SLAM". In: IEEE Intelligent
Transportation Systems Magazine 2.4 (2010), pp. 31-43.

[4] V. Ila, J. M. Porta, and J. Andrade-Cetto. "Information-based compact Pose
SLAM". In: IEEE Transactions on Robotics 26.1 (2010), pp. 78-93.

[5] K. Lynch. The image of the city. Vol. 11. MIT press, 1960.
[6] L. Vincent. "Taking online maps down to street level". In: Computer 40.12

(2007), pp. 118-20.
[7] S. Thrun. "Robotic mapping: A survey". In: Exploring artificial intelligence

in the new millennium (2002).
[8] P Cheeseman, R Smith, and M Self. "A stochastic map for uncertain spatial

relationships". In: 4th International Symposium on Robotic Research. 1987,
pp. 467-74.

[9] J. Leonard and H. Durrant-Whyte. "Simultaneous map building and localiza-
tion for an autonomous mobile robot". In: Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. Vol. 3. 1991, pp. 1442-
7.

[10] M. G. Dissanayake et al. "A solution to the simultaneous localization and map
building (SLAM) problem". In: IEEE Transactions on Robotics and Automa-
tion 17.3 (2001), pp. 229-241.

[11] B. Kuipers and Y.-T. Byun. "A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations". In: Robotics and
autonomous systems 8.1 (1991), pp. 47-63.

[12] H. Choset and K. Nagatani. "Topological simultaneous localization and map-
ping (SLAM): toward exact localization without explicit localization". In:
IEEE Transactions on Robotics and Automation 17.2 (2001), pp. 125-37.

[13] M. Cummins and P. Newman. "FAB-MAP: Probabilistic localization and map-
ping in the space of appearance". In: The International Journal of Robotics
Research 27.6 (2008), pp. 647-65.

[14] B. Kuipers. "The spatial semantic hierarchy". In: Artificial Intelligence 119.1
(2000), pp. 191-233.

167

[15] B. Kuipers. The map-learning critter. Tech. rep. University of Texas at Austin,
1985.

[16] M. J. Milford, G. F. Wyeth, and D. Prasser. "RatSLAM: a hippocampal model
for simultaneous localization and mapping". In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation. Vol. 1. 2004, pp. 403-
8.

[17] K. Konolige, E. Marder-Eppstein, and B. Marthi. "Navigation in hybrid met-
ric-topological maps". In: Proceedings of the IEEE International Conference
on Robotics and Automation. 2011, pp. 3041-3047.

[18] S. Tully, G. Kantor, and H. Choset. "A unified Bayesian framework for global
localization and SLAM in hybrid metric/topological maps". In: The Interna-
tional Journal of Robotics Research 31.3 (2012), pp. 271-88.

[19] P. Beeson, J. Modayil, and B. Kuipers. "Factoring the mapping problem: Mo-
bile robot map-building in the Hybrid Spatial Semantic Hierarachy". In: The
International Journal of Robotics Research 29.4 (2009), pp. 428-59.

[20] J.-L. Blanco, J.-A. Fernandez-Madrigal, and J. Gonzalez. "Toward a Unified
Bayesian Approach to Hybrid Metric-Topological SLAM". In: IEEE Transac-
tions on Robotics 24.2 (2008), pp. 259-70.

[21] T. Bailey and H. Durrant-Whyte. "Simultaneous localization and mapping
(SLAM): Part II". In: IEEE Robotics & Automation Magazine 13.3 (2006),
pp. 108-17.

[22] R. Smith, M. Self, and P. Cheeseman. "Estimating uncertain spatial relation-
ships in robotics". In: Autonomous robot vehicles. 1990, pp. 167-93.

[23] A. Gelb. Applied optimal estimation. MIT Press, 1974.
[24] P. Moutarlier and R. Chatila. "An experimental system for incremental envi-

ronment modelling by an autonomous mobile robot". In: International Sym-
posium on Experimental Robotics. 1990, pp. 327-46.

[25] A. J. Davison and D. W. Murray. "Simultaneous localization and map-building
using active vision". In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 24.7 (2002), pp. 865-880.

[26] A. J. Davison. "Real-time simultaneous localisation and mapping with a single
camera". In: Proceedings of the 9th IEEE International Conference on Com-
puter Vision. 2003, pp. 1403-10.

[27] A. J. Davison et al. "MonoSLAM: Real-time single camera SLAM". In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007), pp. 1052
67.

[28] M. Bosse et al. "An atlas framework for scalable mapping". In: Proceedings of
the IEEE International Conference on Robotics and Automation. Vol. 2. 2003,
pp. 1899-906.

[29] C. Estrada, J. Neira, and J. D. Tard6s. "Hierarchical SLAM: Real-time accu-
rate mapping of large environments". In: IEEE Transactions on Robotics 21.4
(2005), pp. 588-96.

[30] M. Li and A. I. Mourikis. "High-precision, consistent EKF-based visual-inertial
odometry". In: The International Journal of Robotics Research 32.6 (2013),
pp. 690-711.

168

[31] J. Civera, A. J. Davison, and J Montiel. "Inverse depth parametrization for
monocular SLAM". In: IEEE Transactions on Robotics 24.5 (2008), pp. 932-
45.

[32] M. Montemerlo et al. "FastSLAM: A factored solution to the simultaneous
localization and mapping problem". In: Proceedings of the AAAI Conference
on Artificial Intelligence. 2002, pp. 593-8.

[33] M. Montemerlo and S. Thrun. "FastSLAM 2.0: An Improved Particle Fil-
tering Algorithm for Simultaneous Localization and Mapping that Provably
Converges". In: IEEE Transactions on Robotics (2003).

[34] E. Eade and T. Drummond. "Scalable monocular SLAM". In: Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. Vol. 1. 2006, pp. 469-76.

[35] S. Thrun et al. "Simultaneous localization and mapping with sparse extended
information filters". In: The International Journal of Robotics Research 23.7-8
(2004), pp. 693-716.

[36] R. Eustice, H. Singh, and J. Leonard. "Exactly Sparse Delayed-State Filters for
View-Based SLAM". In: IEEE Transactions on Robotics 22.6 (2006), pp. 1100-
14.

[37] M. R. Walter, R. M. Eustice, and J. J. Leonard. "Exactly sparse extended
information filters for feature-based SLAM". In: The International Journal of
Robotics Research 26.4 (2007), pp. 335-59.

[38] D. Gamage and T. Drummond. "Reduced Dimensionality Extended Kalman
Filter for SLAM". In: Proceedings of the British Machine Vision Conference.
2013.

[39] S. Koenig and R. G. Simmons. "Unsupervised learning of probabilistic models
for robot navigation". In: Proceedings of the IEEE International Conference
on Robotics and Automation. Vol. 3. 1996, pp. 2301-8.

[40] H. Shatkay and L. P. Kaelbling. "Learning topological maps with weak local
odometric information". In: Proceedings of the International Joint Conferences
on Artificial Intelligence. 1997, pp. 920-9.

[41] S. Thrun, W. Burgard, and D. Fox. "A probabilistic approach to concurrent
mapping and localization for mobile robots". In: Autonomous Robots 5.3-4
(1998), pp. 253-71.

[42] B. Triggs et al. "Bundle adjustment: a modern synthesis". In: Vision algo-
rithms: theory and practice. 2000, pp. 298-372.

[43] S. Granshaw. "Bundle adjustment methods in engineering photogrammetry".
In: The Photogrammetric Record 10.56 (1980), pp. 181-207.

[44] C. Engels, H. Stewenius, and D. Nister. "Bundle adjustment rules". In: Pho-
togrammetric Computer Vision 2 (2006).

[45] G. Sibley. Relative bundle adjustment. Tech. rep. 2307. Department of Engi-
neering Science, Oxford University, 2009.

[46] Y. Jeong et al. "Pushing the envelope of modern methods for bundle adjust-
ment". In: IEEE Transactions on Pattern Analysis and Machine Intelligence
34.8 (2012), pp. 1605-17.

169

[47] S. Ullman. "The interpretation of structure from motion". In: Proceedings of
the Royal Society of London. Series B. Biological Sciences 203.1153 (1979),
pp. 405-26.

[48] R. C. Bolles, H. H. Baker, and D. H. Marimont. "Epipolar-plane image anal-
ysis: An approach to determining structure from motion". In: International

Journal of Computer Vision 1.1 (1987), pp. 7-55.
[49] J. J. Koenderink and A. J. van Doorn. "Affine structure from motion". In:

Journal of the Optical Society of America A 8.2 (1991), pp. 377-85.
[50] P. Sturm and B. Triggs. "A factorization based algorithm for multi-image

projective structure and motion". In: Proceedings on the European Conference

on Computer Vision. 1996, pp. 709-720.
[51] J. Oliensis. "A critique of structure-from-motion algorithms". In: Computer

Vision and Image Understanding 80.2 (2000), pp. 172-214.
[52] G. Klein and D. Murray. "Parallel tracking and mapping for small AR work-

spaces". In: Proceedings of the 6th IEEE and ACM International Symposium
on Mixed and Augmented Reality. 2007, pp. 225-34.

[53] K. Konolige and M. Agrawal. "FrameSLAM: From bundle adjustment to real-

time visual mapping". In: IEEE Transactions on Robotics 24.5 (2008), pp. 1066-
77.

[54] N. Snavely, S. M. Seitz, and R. Szeliski. "Skeletal graphs for efficient structure
from motion." In: Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. 2008.
[55] C. Mei et al. "RSLAM: A System for Large-Scale Mapping in Constant-Time

Using Stereo". In: International Journal of Computer Vision 94.2 (2011),
pp. 198-214.

[56] H. Strasdat, J. Montiel, and A. J. Davison. "Scale Drift-Aware Large Scale
Monocular SLAM". In: Robotics: Science and Systems. Vol. 2. 3. 2010, p. 5.

[57] H. Strasdat, J. Montiel, and A. J. Davison. "Real-time monocular SLAM: Why
filter?" In: Proceedings of the IEEE International Conference on Robotics and

Automation. 2010, pp. 2657-64.
[58] M. Golfarelli, D. Maio, and S. Rizzi. "Elastic correction of dead-reckoning

errors in map building". In: Proceedings of the IEEE/RSJ International Con-

ference on Intelligent Robots and Systems. Vol. 2. 1998, pp. 905-11.
[59] F. Lu and E. Milios. "Globally consistent range scan alignment for environment

mapping". In: Autonomous robots 4.4 (1997), pp. 333-49.
[60] S. Thrun and M. Montemerlo. "The Graph SLAM algorithm with applica-

tions to large-scale mapping of urban structures". In: International Journal of

Robotics Research 25.5-6 (2006), pp. 403-29.
[61] G. Sibley et al. "Vast-scale outdoor navigation using adaptive relative bundle

adjustment". In: The International Journal of Robotics Research 29.8 (2010),
pp. 958-80.

r69] H. Strasdat et al. "Double window optimisation for constant time visual SLAM".L--J

In: Proceedings of the IEEE International Conference on Computer Vision.

2011, pp. 2352-9.

170

[63] V. Indelman et al. "Information fusion in navigation systems via factor graph
based incremental smoothing". In: Robotics and Autonomous Systems 61.8
(2013), pp. 721-38.

[64] A. Walcott-Bryant et al. "Dynamic pose graph SLAM: Long-term mapping in
low dynamic environments". In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2012, pp. 1871-8.

[65] D. Rosen, M. Kaess, and J. Leonard. "RISE: An Incremental Trust-Region
Method for Robust Online Sparse Least-Squares Estimation". In: Robotics,
IEEE Transactions on PP.99 (2014).

[66] R. Kuemmerle et al. "g2o: A general framework for graph optimization". In:
Proceedings of the 2011 IEEE International Conference on Robotics and Au-
tomation. 2011.

[67] M. Kaess, A. Ranganathan, and F. Dellaert. "iSAM: Incremental smoothing
and mapping". In: IEEE Transactions on Robotics 24.6 (2008), pp. 1365-78.

[68] M. Kaess et al. "iSAM2: Incremental smoothing and mapping with fluid re-
linearization and incremental variable reordering". In: Proceedings of the 2011
IEEE International Conference on Robotics and Automation. 2011, pp. 3281-
8.

[69] M. Kaess et al. "Concurrent filtering and smoothing". In: Proceedings of the
15th International Conference on Information Fusion. 2012, pp. 1300-7.

[70] K. Konolige, M. Agrawal, and J. Sola. "Large-scale visual odometry for rough
terrain". In: Robotics Research. 2011, pp. 201-12.

[71] D. Scaramuzza and F. Fraundorfer. "Visual odometry tutorial part I: The First
30 Years and Fundamentals". In: IEEE Robotics & Automation Magazine 18.4
(2011), pp. 80-92.

[72] T. Oskiper et al. "Visual Odometry System Using Multiple Stereo Cameras
and Inertial Measurement Unit". In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2007, pp. 1-8.

[73] E. S. Jones and S. Soatto. "Visual-inertial navigation, mapping and localiza-
tion: A scalable real-time causal approach". In: The International Journal of
Robotics Research 30.4 (2011), pp. 407-30.

[74] T. J. Steiner et al. "Unifying Inertial and Relative Solutions for Planetary
Surface Navigation". In: Proceedings of the IEEE Aerospace Conference. Big
Sky, Montana, 2012.

[75] D. Nister, 0. Naroditsky, and J. Bergen. "Visual odometry". In: Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. Vol. 1. 2004.

[76] D. Nister. "An efficient solution to the five-point relative pose problem". In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 26.6 (2004),
pp. 756-70.

[77] H. Stewenius, C. Engels, and D. Nister. "Recent developments on direct rela-
tive orientation". In: ISPRS Journal of Photogrammetry and Remote Sensing
60.4 (2006), pp. 284-94.

171

[78] M. A. Fischler and R. C. Bolles. "Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography".
In: Communications of the ACM 24.6 (1981), pp. 381-95.

[79] M. Maimone, Y. Cheng, and L. Matthies. "Two years of visual odometry on the
mars exploration rovers". In: Journal of Field Robotics 24.3 (2007), pp. 169-
86.

[80] J.-P. Tardif, Y. Pavlidis, and K. Daniilidis. "Monocular visual odometry in
urban environments using an omnidirectional camera". In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2008,
pp. 2531-8.

[81] G. Sibley, L. Matthies, and G. Sukhatme. "Sliding window filter with applica-
tion to planetary landing". In: Journal of Field Robotics 27.5 (2010), pp. 587-
608.

[82] J. A. Hesch et al. "Towards consistent vision-aided inertial navigation". In:
Algorithmic Foundations of Robotics X. 2013, pp. 559-74.

[83] C. Harris and M. Stephens. "A combined corner and edge detector." In: Alvey
vision conference. Vol. 15. 1988, p. 50.

[84] D. G. Lowe. "Distinctive image features from scale-invariant keypoints". In:
International Journal of Computer Vision 60.2 (2004), pp. 91-110.

[85] H. Bay, T. Tuytelaars, and L. Van Gool. "SURF: Speeded up robust features".
In: European Conference on Computer Vision. 2006, pp. 404-17.

[86] E. Rosten and T. Drummond. "Machine learning for high-speed corner detec-
tion". In: European Conference on Computer Vision. 2006, pp. 430-43.

[87] A. Alahi, R. Ortiz, and P. Vandergheynst. "FREAK: Fast retina keypoint". In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2012, pp. 510-7.

[88] S. Leutenegger, M. Chli, and R. Y. Siegwart. "BRISK: Binary robust invariant
scalable keypoints". In: Proceedings of the IEEE International Conference on
Computer Vision. 2011, pp. 2548--55.

[89] J.-M. Morel and G. Yu. "ASIFT: A new framework for fully affine invari-
ant image comparison". In: SIAM Journal on Imaging Sciences 2.2 (2009),
pp. 438-69.

[90] P. F. Alcantarilla, L. M. Bergasa, and A. J. Davison. "Gauge-SURF descrip-
tors". In: Image and Vision Computing 31.1 (2013), pp. 103-16.

[91] P. F. Alcantarilla, A. Bartoli, and A. J. Davison. "KAZE features". In: Euro-
pean Conference on Computer Vision. 2012, pp. 214-27.

[92] N. Snavely, S. M. Seitz, and R. Szeliski. "Photo tourism: exploring photo
collections in 3D". In: ACM Transactions on Graphics 25.3 (2006), pp. 835-
46.

[93] N. Snavely, S. M. Seitz, and R. Szeliski. "Modeling the world from internet
photo collections". In: International Journal of Computer Vision 80.2 (2008),
pp. 189-210.

[94] S. Agarwal et al. "Building Rome in a day". In: Communications of the A CM
54.10 (2011), pp. 105-12.

172

[95] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cam-
bridge university press, 2003.

[96] R. I. Hartley. "In defense of the eight-point algorithm". In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 19.6 (1997), pp. 580-93.

[97] J. S. Beis and D. G. Lowe. "Shape indexing using approximate nearest-neigh-
bour search in high-dimensional spaces". In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 1997, pp. 1000-6.

[98] S. Brin and L. Page. "The anatomy of a large-scale hypertextual Web search
engine". In: Computer networks and ISDN systems 30.1 (1998), pp. 107-17.

[99] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval. ACM
Press New York, 1999, p. 463.

[100] J. Sivic and A. Zisserman. "Video Google: A text retrieval approach to object
matching in videos". In: Proceedings of the IEEE International Conference on
Computer Vision. 2003, pp. 1470-7.

[101] I. H. Witten, A. Moffat, and T. C. Bell. Managing gigabytes: compressing and
indexing documents and images. Morgan Kaufmann, 1999.

[102] D. Nist6r and H. Stewenius. "Scalable recognition with a vocabulary tree". In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. Vol. 2. 2006, pp. 2161-8.

[103] B. Girod et al. "Mobile visual search". In: IEEE Signal Processing Magazine
28.4 (2011), pp. 61-76.

[104] E. Eade and T. Drummond. "Unified Loop Closing and Recovery for Real Time
Monocular SLAM". In: Proceedings of the British Machine Vision Conference.
Vol. 13. 2008, p. 136.

[105] G. S. Christopher Mei and P. Newman. "Closing Loops Without Places". In:
Proceedings of the International Conference on Intelligent Robots and Systems.
Taipei, Taiwan, 2010.

[106] D. Galvez-Lopez and J. D. Tardos. "Real-time loop detection with bags of
binary words". In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2011, pp. 51-8.

[107] K. Konolige et al. "View-based maps". In: The International Journal of Ro-
botics Research 29.8 (2010), pp. 941-57.

[108] A. J. Glover et al. "FAB-MAP + RatSLAM: appearance-based SLAM for
multiple times of day". In: Proceedings of the IEEE International Conference
on Robotics and Automation. 2010, pp. 3507-3512.

[109] W. Churchill and P. Newman. "Practice Makes Perfect? Managing and Lever-
aging Visual Experiences for Lifelong Navigation". In: Proceedings of the IEEE
International Conference on Robotics and Automation. St. Paul, MN, 2012.

[110] W. Churchill and P. Newman. "Continually Improving Large Scale Long Term
Visual Navigation of a Vehicle in Dynamic Urban Environments". In: Proceed-
ings of the IEEE Intelligent Transportation Systems Conference. Anchorage,
AK, 2012.

[111] W. Churchill and P. Newman. "Experience-based navigation for long-term
localisation". In: The International Journal of Robotics Research 32.14 (2013),
pp. 1645-61.

173

[112] 0. Chum and A. Zisserman. "An exemplar model for learning object classes".
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2007.

[113] M.-E. Nilsback and A. Zisserman. "A visual vocabulary for flower classifica-
tion". In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. Vol. 2. IEEE Computer Society, 2006, pp. 1447-54.

[114] M. Cummins and P. Newman. "Appearance-only SLAM at Large Scale with
FAB-MAP 2.0". In: The International Journal of Robotics Research 30.9 (2010),
pp. 1100-23.

[115] A. Glover et al. "OpenFABMAP: An open source toolbox for appearance-based
loop closure detection". In: Proceedings of the IEEE International Conference
on Robotics and Automation. 2012, pp. 4730-4735.

[116] P. Newman et al. "Navigating, Recognising and Describing Urban Spaces With
Vision and Laser". In: The International Journal of Robotics Research 28
(2009).

[117] P. Pinies et al. "CI-Graph simultaneous localization and mapping for three-
dimensional reconstruction of large and complex environments using a multi-
camera system". In: Journal of Field Robotics 27.5 (2010), pp. 561-86.

[118] W. Maddern, M. Milford, and G. Wyeth. "CAT-SLAM: probabilistic localisa-
tion and mapping using a continuous appearance-based trajectory". In: The
International Journal of Robotics Research 31.4 (2012), pp. 429-51.

[119] J. Vial, H. Durrant-Whyte, and T. Bailey. "Conservative sparsification for
efficient and consistent approximate estimation". In: Proceedings of the 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2011,
pp. 886-93.

[120] M. Chli and A. J. Davison. "Automatically and Efficiently Inferring the Hier-
archical Structure of Visual Maps". In: Proceedings of the IEEE International
Conference on Robotics and Automation. 2009, pp. 387-94.

[121] R. 0. Castle, G. Klein, and D. W. Murray. "Wide-area augmented reality
using camera tracking and mapping in multiple regions". In: Computer Vision
and Image Understanding 115.6 (2011), pp. 854-67.

[122] K. Pirker, M Ruther, and H. Bischof. "CD SLAM-continuous localization and
mapping in a dynamic world". In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2011, pp. 3990-7.

[123] K. Ni, D. Steedly, and F. Dellaert. "Tectonic SAM: Exact, out-of-core, submap-
based SLAM". In: Proceedings of the IEEE International Conference on Ro-
botics and Automation. 2007, pp. 1678-85.

[124] S. Guha and S. Khuller. "Approximation algorithms for connected dominating
sets". In: Algorithmica 20.4 (1998), pp. 374-87.

[125] 0 Booij, Z Zivkovic, and B Kr6se. "Pruning the image set for appearance based
robot localization". In: Proceedings of the Annual Conference of the Advanced
School for Computing and Imaging. 2005.

[126] 0. Booij, Z. Zivkovic, and B Kr6se. "Efficient data association for view based
SLAM using connected dominating sets". In: Robotics and Autonomous Sys-
tems 57.12 (2009), pp. 1225-34.

174

[127] E. Eade, P. Fong, and M. E. Munich. "Monocular graph SLAM with complex-
ity reduction". In: Proceedings of the 2010 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. 2010, pp. 3017-24.

[128] N. Carlevaris-Bianco and R. M. Eustice. "Generic factor-based node margin-
alization and edge sparsification for pose-graph SLAM". In: Proceedings of
the 2013 IEEE International Conference on Robotics and Automation. 2013,
pp. 5748-55.

[129] N. Carlevaris-Bianco and R. M. Eustice. "Long-term simultaneous localization
and mapping with generic linear constraint node removal". In: Proceedings
of the 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2013, pp. 1034-41.

[130] N. Carlevaris-Bianco, M. Kaess, and R. M. Eustice. "Generic Node Removal
for Factor-Graph SLAM". In: IEEE Transactions on Robotics (2014).

[131] N. Carlevaris-Bianco and R. M. Eustice. "Conservative edge sparsification for
graph SLAM node removal". In: Proceedings of the IEEE International Con-
ference on Robotics and Automation. Hong Kong, China, 2014, pp. 854-860.

[132] G. Huang, M. Kaess, and J. J. Leonard. "Consistent sparsification for graph
optimization". In: Proceedings of the 2013 European Conference on Mobile
Robots. 2013, pp. 150-7.

[133] A. Kim and R. M. Eustice. "Combined visually and geometrically informative
link hypothesis for pose-graph visual SLAM using bag-of-words". In: Proceed-
ings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2011, pp. 1647-54.

[134] P. Ozog and R. M. Eustice. "Toward long-term, automated ship hull in-
spection with visual SLAM, explicit surface optimization, and generic graph-
sparsification". In: Proceedings of the IEEE International Conference on Ro-
botics and Automation. Hong Kong, China, 2014, pp. 3832-9.

[135] C. E. Shannon. "A mathematical theory of communication". In: ACM SIG-
MOBILE Mobile Computing and Communications Review 5.1 (2001), pp. 3-
55.

[136] D. J. MacKay. Information theory, inference and learning algorithms. Cam-
bridge University Press, 2003.

[137] M. Chli. "Applying information theory to efficient SLAM". PhD thesis. Impe-
rial College London, 2010.

[138] H. Kretzschmar, C. Stachniss, and G. Grisetti. "Efficient information-theoretic
graph pruning for graph-based SLAM with laser range finders". In: Proceedings
of the 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2011, pp. 865-71.

[139] H. Kretzschmar and C. Stachniss. "Information-theoretic compression of pose
graphs for laser-based SLAM". In: The International Journal of Robotics Re-
search 31.11 (2012), pp. 1219-30.

[140] Y. Latif and J. Neira. "Go straight, turn right: Pose graph reduction through
trajectory segmentation using line segments". In: Proceedings of the European
Conference on Mobile Robots. 2013, pp. 144-9.

175

[141] Y. Wang et al. "Kullback-Leibler divergence based graph pruning in robotic
feature mapping". In: Proceedings of the 2013 European Conference on Mobile
Robots. 2013, pp. 32-7.

[142] A. Kim and R. M. Eustice. "Perception-driven navigation: Active visual SLAM
for robotic area coverage". In: Proceedings of the IEEE International Confer-
ence on Robotics and Automation. Karlsruhe, Germany, 2013, pp. 3181-3188.

[143] A. Kim and R. M. Eustice. "Active visual SLAM for robotic area coverage:
Theory and experiment". In: International Journal of Robotics Research 34.4-5
(2015), pp. 457-75.

[144] M. J. Milford and G. F. Wyeth. "Mapping a suburb with a single camera using
a biologically inspired SLAM system". In: IEEE Transactions on Robotics 24.5
(2008), pp. 1038-53.

[145] M. Milford and G. Wyeth. "Persistent navigation and mapping using a bio-
logically inspired SLAM system". In: The International Journal of Robotics
Research 29.9 (2010), pp. 1131-53.

[146] H. Johannsson et al. "Temporally scalable visual SLAM using a reduced pose
graph". In: Proceedings of the 2013 IEEE International Conference on Robotics
and Automation. 2013, pp. 54-61.

[147] M. Labbe and F. Michaud. "Appearance-Based Loop Closure Detection for
Online Large-Scale and Long-Term Operation". In: IEEE Transactions on Ro-
botics 29.3 (2013), pp. 734-45.

[148] A. Krause, A. Singh, and C. Guestrin. "Near-optimal sensor placements in
Gaussian processes: Theory, efficient algorithms and empirical studies". In:
The Journal of Machine Learning Research 9 (2008), pp. 235-84.

[149] M. Beinhofer, J. Miller, and W. Burgard. "Effective landmark placement for
accurate and reliable mobile robot navigation". In: Robotics and Autonomous
Systems 61.10 (2013), pp. 1060-9.

[150] R. Allen et al. "The Range Beacon Placement Problem for Robot Navigation".
In: 2014 Canadian Conference on Computer and Robot Vision. 2014, pp. 151--
8.

[151] M. P. Vitus and C. J. Tomlin. "Sensor Placement for Improved Robotic Nav-
igation." In: Robotics: Science and Systems. 2010.

[152] S. Frintrop and P. Jensfelt. "Attentional landmarks and active gaze control for
visual SLAM". In: IEEE Transactions on Robotics 24.5 (2008), pp. 1054-65.

[153] S. Hochdorfer and C. Schlegel. "Landmark rating and selection according to
localization coverage: Addressing the challenge of lifelong operation of SLAM
in service robots". In: Proceedings of the IEEE/RSJ international conference
on Intelligent robots and systems. IEEE Press. 2009, pp. 382-7.

[154] S. Zhang, L. Xie, and M. D. Adams. "Entropy based feature selection scheme
for real time simultaneous localization and map building". In: Proceedings
of the IEEE/RSJ international conference on Intelligent robots and systems.
IEEE. 2005, pp. 1175-80.

176

[155] G. Dissanayake, H. Durrant-Whyte, and T. Bailey. "A computationally ef-
ficient solution to the simultaneous localisation and map building (SLAM)
problem". In: Proceedings of the IEEE International Conference on Robotics
and Automation. Vol. 2. IEEE. 2000, pp. 1009-14.

[156] H. Strasdat, C. Stachniss, and W. Burgard. "Which landmark is useful? Learn-
ing selection policies for navigation in unknown environments". In: Proceed-
ings of the IEEE International Conference on Robotics and Automation. IEEE.
2009, pp. 1410-5.

[157] J. A. Bondy and U. S. R. Murty. Graph theory with applications. Vol. 6.
Macmillan London, 1976.

[158] T. H. Cormen et al. Introduction to algorithms. Vol. 2. MIT Press Cambridge,
2001.

[159] E. W. Dijkstra. "A note on two problems in connexion with graphs". In: Nu-
merische mathematik (1959), pp. 269-71.

[160] M. L. Fredman and R. E. Tarjan. "Fibonacci heaps and their uses in im-
proved network optimization algorithms". In: Journal of the A CM 34.3 (1987),
pp. 596-615.

[161] R. K. Ahuja et al. "Faster algorithms for the shortest path problem". In:
Journal of the ACM 37.2 (1990), pp. 213-23.

[162] P. E. Hart, N. J. Nilsson, and B. Raphael. "A formal basis for the heuristic
determination of minimum cost paths". In: IEEE Transactions on Systems
Science and Cybernetics 4.2 (1968), pp. 100-7.

[163] R. W. Floyd. "Algorithm 97: shortest path". In: Communications of the ACM
5.6 (1962), p. 345.

[164] D. B. Johnson. "Efficient algorithms for shortest paths in sparse networks".
In: Journal of the ACM (JACM) 24.1 (1977), pp. 1-13.

[165] L. E. Kavraki et al. "Probabilistic roadmaps for path planning in high-dimen-
sional configuration spaces". In: IEEE Transactions on Robotics and Automa-
tion 12.4 (1996), pp. 566-80.

[166] S. M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Plan-
ning. Tech. rep. Computer Science Department, Iowa State University, 1998.

[167] J. J. Kuffner and S. M. LaValle. "RRT-Connect: An efficient approach to
single-query path planning". In: Proceedings of the IEEE International Con-
ference on Robotics and Automation. Vol. 2. 2000, pp. 995-1001.

[168] S. Thrun et al. "Stanley: The robot that won the DARPA Grand Challenge".
In: Journal of Field Robotics 23.9 (2006), pp. 661-92.

[169] J. Leonard et al. Team MIT Urban Challenge technical report. Tech. rep. Mas-
sachusetts Institute of Technology, 2007.

[170] J. Poppinga et al. "Fast 6-DOF path planning for autonomous underwater ve-
hicles (AUV) based on 3D plane mapping". In: Proceedings of the IEEE Inter-
national Symposium on Safety, Security, and Rescue Robotics. 2011, pp. 345-
50.

[171] J.-A. Meyer and D. Filliat. "Map-based navigation in mobile robots II: a review
of map-learning and path-planning strategies". In: Cognitive Systems Research
4.4 (2003), pp. 283-317.

177

[172] S. Shen, N. Michael, and V. Kumar. "Autonomous multi-floor indoor naviga-
tion with a computationally constrained MAy". In: Proceedings of the IEEE
International Conference on Robotics and Automation. 2011, pp. 20-5.

[173] F. Fraundorfer et al. "Vision-based autonomous mapping and exploration us-
ing a quadrotor MAV". In: Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. 2012, pp. 4557-4564.

[174] F. S. Hover et al. "Advanced perception, navigation and planning for au-
tonomous in-water ship hull inspection". In: The International Journal of Ro-
botics Research 31.12 (2012), pp. 1445-64.

[175] R. Kummerle et al. "A navigation system for robots operating in crowded
urban environments". In: Proceedings of the IEEE International Conference
on Robotics and Automation. 2013, pp. 3225-32.

[176] M. Whitty and J. Guivant. "Efficient global path planning during dense map
deformation". In: Proceedings of the IEEE International Conference on Robot-
ics and Automation. 2011, pp. 4943-9.

[177] S. Prentice and N. Roy. "The belief roadmap: Efficient planning in belief space
by factoring the covariance". In: The International Journal of Robotics Re-
search 28.11-12 (2009), pp. 1448-65.

[178] R. He, S. Prentice, and N. Roy. "Planning in information space for a quadro-
tor helicopter in a GPS-denied environment". In: Proceedings of the IEEE
International Conference on Robotics and Automation. 2008, pp. 1814-20.

[179] R. Valencia, J. Andrade-Cetto, and J. M. Porta. "Path planning in belief space
with Pose SLAM". In: Proceedings of the IEEE International Conference on
Robotics and Automation. 2011, pp. 78-83.

[180] R. Valencia et al. "Planning reliable paths with Pose SLAM". In: IEEE Trans-
actions on Robotics 29.4 (2013), pp. 1050-9.

[181] R. Valencia et al. "Active pose SLAM". In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems. 2012, pp. 1885-
91.

[182] H. Carrillo et al. "Fast minimum uncertainty search on a graph map rep-
resentation". In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2012, pp. 2504-11.

[183] M. Julia', A. Gil, and 0. Reinoso. "A comparison of path planning strate-
gies for autonomous exploration and mapping of unknown environments". In:
Autonomous Robots 33.4 (2012), pp. 427-44.

[184] B. Stenning and T. D. Barfoot. "Path planning on a network of paths". In:
Proceedings of the IEEE Aerospace Conference. 2011.

[185] B Stenning et al. "Planetary surface exploration using a network of reusable
paths". In: Proceedings of the 43rd Lunar and Planetary Science Conference.
2012.

[186] M. Kaess and F. Dellaert. "Covariance recovery from a square root informa-
tion matrix for data association". In: Robotics and Autonomous Systems 57.12
(2009), pp. 1198-210.

[187] L. C. Freeman. "A set of measures of centrality based on betweenness". In:
Sociometry (1977), pp. 35-41.

178

[188] D. J. White. "The maximal dispersion problem and the "first point outside the
neighbourhood" heuristic". In: Computers & Operations Research 18.1 (1991),
pp. 43-50.

[189] E. Erkut. "The discrete p-dispersion problem". In: European Journal of Oper-
ational Research 46.1 (1990), pp. 48-60.

[190] E. Erkut, Y. Ulkiisal, and 0. Yenicerioglu. "A comparison of p-dispersion
heuristics". In: Computers & operations research 21.10 (1994), pp. 1103-13.

[191] E. Erkut and S. Neuman. "Analytical models for locating undesirable facili-
ties". In: European Journal of Operational Research 40.3 (1989), pp. 275-91.

[192] B. Chandra and M. M. Halld6rsson. "Approximation algorithms for dispersion
problems". In: Journal of Algorithms 38.2 (2001), pp. 438-65.

[193] R. M. Karp. "Reducibility among combinatorial problems". In: Complexity of
Computer Calculations. Ed. by R. E. Miller and J. W. Thatcher. New York:
Plenum, 1972, pp. 85-103.

[194] A. Dasgupta, R. Kumar, and S. Ravi. "Summarization Through Submod-
ularity and Dispersion". In: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics. 2013, pp. 1014-22.

[195] A. Tamir. "Obnoxious facility location on graphs". In: SIAM Journal on Dis-
crete Mathematics 4.4 (1991), pp. 550-67.

[196] M. I. Shamos. "Computational geometry." PhD thesis. 1978.
[197] G. T. Toussaint. "Computing largest empty circles with location constraints".

In: International journal of computer & information sciences 12.5 (1983),
pp. 347-58.

[198] R. Z. Farahani, M. SteadieSeifi, and N. Asgari. "Multiple criteria facility lo-
cation problems: A survey". In: Applied Mathematical Modelling 34.7 (2010),
pp. 1689-1709.

[199] J. Kenyon and M. Law. Method and apparatus for distributing and displaying
maps electronically. 2004.

[200] J. Sacks. Techniques for displaying and caching tiled map data on constrained-
resource services. 2008.

[201] M. Haklay and P. Weber. "OpenStreetMap: User-generated street maps". In:
Pervasive Computing 7.4 (2008), pp. 12-18.

[202] T. Opsahl, F. Agneessens, and J. Skvoretz. "Node centrality in weighted
networks: Generalizing degree and shortest paths". In: Social Networks 32.3
(2010), pp. 245-51.

[203] T. J. Steiner, G. Huang, and J. J. Leonard. "Location Utility-based Map Re-
duction". In: Proceedings of the IEEE International Conference on Robotics
and Automation. Seattle, Washington, 2015.

[204] J. Bezanson et al. "Julia: A Fast Dynamic Language for Technical Computing".
In: arXiv Computing Research Repository abs/1209.5145 (2012).

[205] W. Kabsch. "A solution for the best rotation to relate two sets of vectors".
In: Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical
and General Crystallography 32.5 (1976), pp. 922-3.

179

[206] W. Kabsch. "A discussion of the solution for the best rotation to relate two sets
of vectors". In: Acta Crystallographica Section A: Crystal Physics, Diffraction,
Theoretical and General Crystallography 34.5 (1978), pp. 827-8.

[207] T. J. Steiner and T. M. Brady. "Vision-Based Navigation and Hazard De-
tection for Terrestrial Rocket Approach and Landing". In: Proceedings of the
IEEE Aerospace Conference. Big Sky, Montana, 2014.

[208] T. Brady, T. Crain, and S. Paschall. "ALHAT System Validation". In: Pro-
ceedings of the 8th International ESA Conference on Guidance, Navigation &
Control Systems. Karlovy Vary, Czech Republic, 2011.

[209] S. Paschall and T. Brady. "Demonstration of a Safe & Precise Planetary
Landing System On-board a Terrestrial Rocket". In: Proceedings of the IEEE
Aerospace Conference. Big Sky, Montana, 2012.

[210] S. Paschall and T. Brady. "Rocket validation of the ALHAT autonomous GNC
flight system". In: Proceedings of the IEEE Aerospace Conference. 2014.

[211] T. J. Steiner, T. M. Brady, and J. A. Hoffman. "Graph-based Terrain Relative
Navigation with Optimal Landmark Selection". In: Proceedings of the IEEE
Aerospace Conference. Big Sky, Montana, 2015.

[212] A. Katake et al. "LandingNav: a precision autonomous landing sensor for
robotic platforms on planetary bodies". In: IS&T/SPIE Electronic Imaging.
International Society for Optics and Photonics. 2010, pp. 75390D-75390D.

[213] F. Amzajerdian et al. "Doppler Lidar Sensor for Precision Landing on the
Moon and Mars". In: Proceedings of the IEEE Aerospace Conference. Big Sky,
Montana, 2012.

[214] D. Adams, T. B. Criss, and U. J. Shankar. "Passive Optical Terrain Relative
Navigation Using APLNav". In: Proceedings of the IEEE Aerospace Confer-
ence. Big Sky, Montana, 2008.

[215] C. Cocaud and T. Kubota. "Autonomous Navigation Near Asteroids Based on
Visual SLAM". In: Proceedings of the 23rd International Symposium on Space
Flight Dynamics. Pasadena, California, 2012.

[216] J. Alexander et al. "A Terrain Relative Navigation Sensor Enabled by Multi-
Core Processing". In: Proceedings of the IEEE Aerospace Conference. Big Sky,
Montana, 2012.

[217] B. Van Pham et al. "Landmark Constellation Matching for Planetary Lander
Absolute Localization." In: Proceedings of the International Conference on
Computer Vision Theory and Application. 2010, pp. 267-74.

[218] B. Van Pham et al. "Fusion of absolute vision-based localization and visual
odometry for spacecraft pinpoint landing". In: Proceedings of the 9th Interna-
tional Planetary Probe Workshop. Barcelona, Spain, 2010.

[219] J. Cuseo et al. "Machine Vision Techniques for Planetary Terminal Descent
Hazard Avoidance and Landmark Tracking". In: Proceedings of the American
Control Conference. 1991, pp. 1406-7.

[220] C. C. Liebe. "Tracking of planetary terrains". In: IEEE Aerospace and Elec-
tronic Systems Magazine 9.2 (1994), pp. 9-18.

180

[221] A. I. Mourikis et al. "Vision-Aided Inertial Navigation for Spacecraft En-
try, Descent, and Landing". In: IEEE Transactions on Robotics 25.2 (2009),
pp. 264-80.

[222] S Thurman et al. "Space Flight Test of Vision-Guided Planetary Landing
System". In: Proceedings of the AIAA Infotech# Aerospace Conference. 2007.

[223] N. Trawny et al. "Vision-aided inertial navigation for pin-point landing using
observations of mapped landmarks". In: Journal of Field Robotics 24.5 (2007),
pp. 357-78.

[224] A. I. Mourikis and S. I. Roumeliotis. "A multi-state constraint Kalman filter
for vision-aided inertial navigation". In: IEEE international Conference on
Robotics and Automation. 2007, pp. 3565-72.

[225] A. Mourikis et al. "Vision-Aided Inertial Navigation for Precise Planetary
Landing: Analysis and Experiments". In: Proceedings of Robotics: Science and
Systems. Atlanta, GA, USA, 2007.

[226] J. Delaune et al. "Optical Terrain Navigation for Pinpoint Landing: Image
Scale and Position-Guided Landmark Matching". In: Proceedings of the 35th
Annual AAS Guidance and Control Conference. Brekenridge, Colorado, 2012.

[227] L. Singh and S. Lim. "On Lunar On-Orbit Vision-Based Navigation: Terrain
Mapping, Feature Tracking Driven EKF". In: Proceedings of the AIAA Guid-
ance, Navigation and Control Conference. Honolulu, Hawaii, 2008.

[228] A. E. Johnson and J. F. Montgomery. "Overview of Terrain Relative Nav-
igation approaches for precise lunar landing". In: Proceedings of the IEEE
Aerospace Conference. Big Sky, Montana, 2008.

[229] F. Dellaert and M. Kaess. "Square Root SAM". In: Robotics: Science and
Systems. 2005, pp. 177-84.

[230] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. "Factor graphs and the
sum-product algorithm". In: IEEE Transactions on Information Theory 47.2
(2001), pp. 498-519.

[231] F. Dellaert. Factor graphs and GTSAM: A hands-on introduction. Tech. rep.
2012.

[232] M. J. Powell. "A new algorithm for unconstrained optimization". In: Nonlinear
programming (1970), pp. 31-65.

[233] M. Powell. "On the global convergence of trust region algorithms for uncon-
strained minimization". In: Mathematical Programming 29.3 (1984), pp. 297-
303.

[234] M. Graham and J. How. "Robust Simultaneous Localization and Mapping
via Information Matrix Estimation". In: ION/IEEE Position, Location and
Navigation Symposium. 2014, pp. 937-44.

[235] E. Olson and P. Agarwal. "Inference on networks of mixtures for robust robot
mapping". In: The International Journal of Robotics Research 32.7 (2013),
pp. 826-840.

[236] N Sunderhauf and P. Protzel. "Towards a robust back-end for pose graph
SLAM". In: Proceedings of the IEEE International Conference on Robotics
and Automation. 2012, pp. 1254-61.

181

[237] Y. Latif, C. Cadena, and J. Neira. "Robust loop closing over time for pose
graph SLAM". In: The International Journal of Robotics Research 32.14 (2013),
pp. 1611-26.

[238] C. Ake, J. Scotkin, and D. Masten. "Exploring the benefits of commercial
robotic lander testbeds". In: Proceedings of the IEEE Aerospace Conference.
2012.

[239] T. J. Steiner. "A Unified Vision and Inertial Navigation System for Planetary
Hoppers". MA thesis. Massachusetts Institute of Technology, 2012, p. 146.

[240] R. Lerner, E. Rivlin, and I. Shimshoni. "Landmark selection for task-oriented
navigation". In: IEEE Transactions on Robotics 23.3 (2007), pp. 494-505.

[241] P. Sala et al. "Landmark selection for vision-based navigation". In: Robotics,
IEEE Transactions on Robotics 22.2 (2006), pp. 334-49.

182

