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Abstract

Microturbulence is present in all magnetic confinement fusion devices, and is believed
to play a major role in driving anomalous transport levels that exceed neoclassical theory
predictions. In NSTX, electron thermal transport is found to dominate energy loss. The-
ory and experiments have shown that electron temperature gradient (ETG) turbulence
on the electron gyro-scale, kpe < 1, can be responsible for anomalous electron ther-
mal transport in NSTX. Electron scale (high-k) turbulence is diagnosed with a high-k
microwave scattering system [92] in NSTX. Here we report on the stabilization effects
of the electron density gradient on electron-scale density fluctuations in a set of neutral
beam injection (NBI) heated H-mode plasmas. We found that the absence of high-k den-
sity fluctuations from measurements is correlated with large equilibrium density gradient,
and this correlation will be shown to be consistent with linear stabilization of ETG modes
due to density gradient by using the analytical ETG linear threshold in [94] and linear
gyrokinetic simulations with GS2 [95]. We also found that the observed power of the
electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density
gradient. Thorough analysis of electron density fluctuations from the high-k scattering di-
agnostic at NSTX shows that larger equilibrium density gradient leads to higher values of
the wavenumber corresponding to the maximum in the fluctuation wavenumber spectrum.
Higher equilibrium electron density gradient also gives rise to a lower value of the plasma
frame frequency of the detected density fluctuations. Linear gyrokinetic simulations using
GS2 are in agreement with experimental results, and show a clear correlation between the
wavenumber value at the maximum linear growth rate and the local value of the electron
density gradient. Higher values of the electron density gradient are also shown to reduce
the value of the real frequency of instability.
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Chapter 1

Introduction to Controlled

Thermonuclear Fusion

1.1 Role of fusion in the energy scene.

The ultimate goal of controlled thermonuclear fusion is the production of energy. The

world population is continually increasing, and the demands on electricity, and thus en-

ergy production, are expected to increase in the future. Magnetic confinement fusion

energy is one of the most promising techniques that addresses key issues that the world

needs to face with respect to energy production.

Magnetic fusion energy has several important advantages when compared to existing

energy sources today. The main advantages are the reserves of fuel, the impact on the

environment and safety. The reserves of fusion fuel on earth are extremely abundant,

and could provide the world population with energy for centuries. The basic fuel for a

fusion reaction are light elements, such as hydrogen (H) and its isotopes deuterium (D)

and tritium (T). Deuterium is naturally present on earth, and its natural abundance with

respect to hydrogen is 1 atom of deuterium for every 6,400 atoms of hydrogen [1]. The

earth's oceans are natural reservoirs of hydrogen and deuterium and their large quantities

are infinite from a practical viewpoint. Tritium is not naturally present on earth but it

can be obtained by breeding reactions with the Li6 isotope. Tritium production is subject

to the natural abundance of Li6 on earth. Geological estimates indicate that the natural

17



abundance of the lithium-6 isotope on earth is sufficient for fusion energy to provide the

base-load electricity supply for an order of a thousand years [1] (assuming increases in

global energy demands, and base-load provided by fusion is taken to be 30 %). The

environmental impact of fusion is practically inexistent and fusion reactions produce no

greenhouse emissions contrary to existent energy sources such as oil or coal. Fusion

energy is also a safe energy source and will not give rise to a radioactive meltdown.

It is important to mention the several disadvantages fusion has with respect to existent

energy sources. The science of fusion is intrinsically complex and is explained by plasma

physics. Numerous scientific challenges involving the physics of fusion plasmas have yet

to find a solution, namely the control of a self-heated plasma and non-inductive steady

state operation. There are also technological challenges that need to be addressed, namely

the problem of plasma-wall interactions and the divertor problem. The development of

high-field superconducting magnets and structural materials able to sustain the strain from

magnetic forces are also imperative issues that need a solution. The economic challenges

from fusion come from the inherently complex nature of a fusion facility. Complexity

means cost, and in order to become an energy source in the future, fusion needs to be

competitive cost-wise with other energy options existent today.

1.2 Principles of fusion energy.

Fusion is a form of nuclear energy and is the source of energy that powers the sun.

In a fusion reaction, light elements (nuclei) merge together to form heavier nuclei. The

mass difference between products and reactants provides an excess energy to the products

known as reaction yield. This energy is needed to sustain the fusion reaction. The mass

difference can be calculated using the famous Einstein's relation Ereactants - Eproducts =

AMc2. The principal reaction considered is the deuterium-tritium (D-T) reaction. As

deuterium and tritium fuse, they produce an alpha particle (helium nucleus) and a high-

energy neutron. In order for fusion reactions to occur, nuclei need to have sufficient energy

to overcome the mutual repulsion from the Coulomb potential barrier. The minimum

temperature for a D-T fusion reaction to occur is typically on the order of 108 K (10 keV.

In plasma physics and in this manuscript we use energy units for temperature kBT -- T).

18



N N

Deuteium Alpha particle

Tritium Neutron

Fuel energy - 10 keV Product energy 17.6 MeV

Figure 1-1: Deuterium-Tritium fusion reaction. P and N stand for proton and neutron
respectively.

As a comparison, the D-T fusion reaction produces 17.6 MeV of energy. The D-T fusion

reaction is shown in Fig. 1-1.

The D-T fusion reaction is expected to power the first generation fusion power plants.

However, the D-T reaction has its advantages and disadvantages. On figure 1-2 are com-

pared to the D-T, D-D and D-He3 reaction rates and cross sections. The deuterium-

deuterium (D-D) and deuterium-helium 3 (D-He3) reactions could be possible candidates

for powering future generation power plants. The quality or performance of a fusion re-

action can be described by the reaction cross section (fig. 1-2 a)) or the reaction rate

(fig. 1-2 b)), indicative of the probability for a reaction of occurring. For values of energy

below about 100 keV, the D-T reaction has the largest cross section and reaction rate.

For this reason it is the major candidate for first generation fusion reactors. However,

tritium is not present naturally on earth and would have to be produced, for example, by a

breeding reaction with lithium (Li6 ). Earth's natural lithium reserves are not as abundant

as deuterium reserves. As fusion energy research continues to develop, alternate fusion

reactions like D-D or D-He3 could become more interesting in the far future, as lithium

reserves become scarce on earth. Additionally, the D-D reaction produces less energetic

neutrons, which can be a radiological concern.

Plasma is the state of matter at temperatures necessary for fusion reactions to occur.

At fusion temperatures, electrons are completely or partially disassociated from atomic

nuclei, and the result is a soup of charged particles, electrons and ions, called plasma.

Charged particles in the plasma respond to electric forces from other charged particles and

19
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Figure 1-2: a) Fusion reaction cross sections. b) Fusion reaction rates, averaged over a
Maxwellian distribution function [2].

give rise to shielding. This collective behavior shields particles for distances greater than

the Debye length AD, given by AD = (EoTe/nee2) 1/2, where T, is the electron temperature

and n, is the electron density in the plasma. The shielding effect on a test particle in

the plasma is shown on figure 1-3. Plasma physicists define what is called the plasma

parameter A by A = neA3 . This parameter denotes the number of particles that live

inside a sphere centered on the test particle with radius AD, called the Debye sphere. If

A >> 1 a large number of particles are susceptible of interacting with a test particle

and a statistical treatment of the plasma (based on the theory of statistical physics) is

adequate. A simple manipulation allows expression of the plasma parameter A as the

ratio of a characteristic kinetic energy of particles (Eth, given by the temperature Te) to

the characteristic energy of Coulomb interactions between particles distant ~ AD (Fig.

1.1). Hence the condition A > 1 translates the fact that the kinetic energy of particles is

much higher than the Coulomb interaction energy, and collective effects within the plasma

dominate over Coulomb collisions.

47r e 3/2 Et 3/2 6 T 3/ 2  (1
3 kDe2/47roAD Eco/ ni/ 2

In equation 1.1, T is measured in keV (1 keV ~ 10 7 K) and n is measured in units of

10 2 0m-3 . For typical fusion plasma of T = 15 keV and n = 2 x 1020 m 3 , A ~ 108. The

condition of collective effects to dominate over Coulomb interactions is largely satisfied

by a fusion plasma. The definition of the Debye length is central in plasma physics. In this
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Figure 1-3: Debye shielding effect in a plasma. Beyond the Debye length AD a test particle

is shielded out. The Debye sphere denotes the volume of particles in the plasma that are

sensitive to interact with a test particle.

thesis we will make use of the Debye length to define coherent and incoherent scattering of

waves in the plasma. In this thesis, coherent scattering of micro-waves is used to diagnose

turbulence in the plasma through measurement of fluctuations in the plasma density.

There are other requirements a fusion plasma has to obey in order to attain fusion

reactor conditions and yield a net energy production. The plasma has to be confined for

a sufficiently long time and be sufficiently dense in order for sufficient fusion reactions

to occur. The initial calculations of power balance analysis in a thermonuclear fusion

reactor were made by J. D. Lawson in his original publication [3], where he introduced the

importance of the parameter nTE. n is the plasma density and TE is the energy confinement

time. The energy confinement time is a measure of the confinement quality of the plasma,

and is defined as the ratio between the total energy in the plasma by the total power loss by

the plasma. This definition responds to a intuitive sense of confinement time: TE increases

with the total plasma energy and decreases with plasma power loss. We have already

mentioned the importance of achieving a high temperature in order for fusion reactions

to take place. A simple criterion that takes into account all the previous requirements on

nrTE and T can be summarized in a simple triple product condition,

nTTE > 3 x 102m-3 keVs (1.2)

Ignition is achieved when fusion power from fusion reactions balances energy losses

in the plasma and is the ultimate goal towards achieving steady state fusion reactor op-
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eration. The energy confinement time TE has proven to be the most difficult parameter

to increase due to complicated mechanisms that produce energy loss in the plasma. The

confinement of a fusion plasma has been a big concern ever since the beginning of con-

trolled thermonuclear fusion research. In stars and our sun, confinement is achieved by the

enormous gravitational force exerted on the plasma. However, fusion reactions do not nat-

urally occur on earth and the high temperatures needed to produce fusion reactions make

the confinement of a fusion plasma on earth a daunting task. Controlled thermonuclear

fusion research has conceived two ways of achieving fusion: inertial confinement fusion

and magnetic confinement fusion. Inertial confinement fusion seeks to produce fusion

energy by exerting huge pressures on a small pellet of fuel which will be be compressed

to high temperature and inside which fusion reactions will occur. There are nowadays

two main inertial confinement fusion facilities in the world, the National Ignition Facility

(NIF) situated at the Lawrence Livermore National Laboratory in Livermore, California,

and the project Laser Megajoule in Bordeaux, France. On the other hand, magnetic con-

finement fusion seeks to use magnetic fields to exert a force on the plasma particles and

produce confinement.

1.3 Magnetic confinement fusion.

As the name indicates, magnetic confinement fusion devices seek to use magnetic

fields to produce confinement. When subject to a uniform magnetic field charged parti-

cles gyrate in circular motion around magnetic field lines and drift at constant velocity

parallel to the magnetic field line. By bending the magnetic field lines in a closed shape

particles should remain confined to the field line. This is the principle behind magnetic

confinement fusion, as implemented today in tokamaks and stellarators. Stellarators were

first conceived by Lyman S. Spitzer in the 1950's and his ideas gave rise to Project Sher-

wood on controlled thermonuclear fusion. Tokamaks were conceived in the Soviet Union

from original theoretical ideas of red army soldier Lavrent'ev [5] that were further ex-

ploited by Sakharov and Tamm [5-7] and developed into the tokamak concept we have

today.

The curvature and non uniformity of the magnetic field lines created in stellarator and
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Figure 1-4: Tokamak (left) and stellarator (right) design concepts. Notice the axis of
symmetry present in a tokamak. Courtesy of [4].

tokamak devices give rise to particle drifts across the magnetic field lines. Particles are

subject to drifts perpendicular to the magnetic field lines which translate into particle and

energy losses from the plasma to the outside, hence degrading the confinement. Stellara-

tors have overcome this difficulty by using helical magnetic field lines that balance particle

drifts (Fig. 1-4 b)). Tokamaks have a torus shape and are symmetric around an axis (ax-

isymmetric) by design (Fig. 1-4 c)). Tokamaks rely on the presence of an electric current

along the toroidal direction (the long way around the torus, subscripted t. cf. Fig 1-5) that

will in turn produce an additional magnetic field in the poloidal direction (subscripted p,

cf. Fig. 1-5). The poloidal magnetic field Bp in a tokamak curves magnetic field lines

in the poloidal direction and produces the confinement. Sustaining the electric current,

and thus the poloidal magnetic field, by non-inductive means, is of great importance in

tokamak research nowadays.

The axisymmetry of a tokamak greatly reduces the complexity of the geometry with

respect to the stellarator and also allows the existence of simpler, closed flux surfaces com-

pared to the the stellarator (also known as magnetic surfaces). To introduce the concept of

flux surfaces it is useful to mention the concept of magneto-hydrodynamical equilibrium.

The theory of magneto-hydrodynamics is a fluid theory that is very well suited to describe

the equilibrium state of toroidal plasmas. The equilibrium state of a tokamak plasma is

well described by the force balance equation
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Figure 1-5: Schematic representation of the geometry in a tokamak device. Ro is the
major radius and a is the minor radius. t is the toroidal direction and p is the poloidal
direction.

J x B = VP (1.3)

where P is the pressure, J is the total current density and B the total magnetic field.

By taking the dot-product of that equation with B one gets B - VP = 0, which means

that magnetic field lines lie in surfaces of constant pressure. One can prove that these

surfaces also preserve poloidal magnetic flux [8]. In fact, one can prove that pressure P

and current J are flux functions (functions only of poloidal flux), such that P = P(O)

and J = J(7p), where ?p is the value of the poloidal flux. These surfaces are known as

flux surfaces. Flux surfaces can be theoretically well defined in a very precise manner,

but this simplistic definition allows to easily grasp the concept behind flux surfaces. For

more precise definitions of flux surfaces, the reader is referred to [8].

1.4 Standard tokamak and the spherical tokamak (ST)

Research based on the spherical tokamak (ST) design [9] began in the 1990s with

the tokamak START [10] in the Culham Science Centre in the United Kingdom. START

revolutionized the tokamak and led the construction of two new ST devices: the National

Spherical Tokamak Experiment (NSTX [11, 12]) in the Princeton Plasma Physics Lab-

oratory and the Mega Ampere Spherical Tokamak (MAST [13]) also at Culham, both
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currently undergoing a major upgrade.

The mission of NSTX and MAST is to establish the physics baseline to test the vi-

ability of the ST as a practical fusion power source such as ST-FNSF (Spherical Torus

Fusion Nuclear Science Facility [14, 15]). The ST provides access to a wide variety of

new regimes inaccessible to the standard tokamak. The main goals of NSTX can be sum-

marized as follows: simultaneously attain high-0 (1.4.1), high confinement (1.4.2) and

high bootstrap fraction (1.4.3), and provide solutions to handle the heat loads on plasma

facing components (1.4.4).

Figures 1-6 and 1-7 are shown flux surfaces for a standard tokamak and for typical

NSTX plasmas. The magnetic axis is defined as the innermost flux surface (reduced to a

point in Fig. 1-7) and the last closed flux surface determines the plasma boundary. Flux

surfaces can be open or closed depending on their topology (cf. Fig. 1-7 b)) and are

delimited by the last closed flux surface (LCFS). The aspect ratio of a tokamak plasma

is defined as A = Ro/a, where RO is the major radius of the LCFS and a is the LCFS

minor radius (Fig. 1-5). Standard tokamak plasmas are large aspect ratio, typically A > 3

while spherical torus plasmas (ST) are A ~1 (Fig. 1-6) and this is a major difference

between standard tokamaks and spherical tori. The inverse aspect ratio is E = a/Ro. The

elongation is defined as r = b/a where 2b is the LCFS height and the triangularity 6 = c/a

(cf. Fig. 1-5). The safety factor q can be defined as the number of turns in the toroidal

direction per one full poloidal turn and it is a measure of how curved the magnetic field

lines are in the poloidal direction. At large aspect ratio we obtain the cylindrical limit of

the safety factor q ~ rBt/RBp, where Bt = IBtI is the value of the magnetic field in the

toroidal direction, and Bp = IBp is the magnetic field in the poloidal direction (cf. Fig.

1-5 for clearness). The magnetic shear s is defined as the logarithmic radial derivative of

the safety factor A =din(q)/dln(r) and it is a measure of how sheared are the magnetic

field lines from one flux surface to another. The magnetic shear s and safety factor q are of

great importance in tokamak plasmas as they can stabilize some magnetohydrodynamic

instabilities as well as micro instabilities that give rise to loss of particles, energy and

momentum across the magnetic field lines (transport).
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Figure 1-6: Comparison of conventional tokamak and spherical tokamak configurations
(from [91]). B is the magnetic field direction and Ip the plasma current.

1.4.1 High toroidal beta

The plasma toroidal-3 is defined as the ratio between the average plasma pressure to

the applied magnetic field pressure, that is

i = (P)/(B'/2po) (1.4)

In this definition, (.) indicates the average over the flux surface, also known as flux

surface average. The toroidal-3 measures how efficiently the applied magnetic field of the

tokamak is used to produce confinement. NSTX has achieved values of #t approaching

40%, about a factor of 4 greater than that accessible to standard tokamaks. High plasma

/ is also important towards the development of a pilot ST power plant since high plasma

pressure is needed to produce fusion reactions (fusion power scales as the squared of

plasma pressure KP) 2).

1.4.2 High confinement

The confinement properties of an ST can be substantially different to those in a stan-

dard tokamak. Assessing the confinement quality from first physics principles has proven

to be a challenge in tokamaks. A popular way to evaluate the confinement performance

in tokamaks are empirical 'scaling laws' that relate the energy confinement time to typ-

ical tokamak parameters such as the I,, Bt, R, etc (I is the total plasma current, not to

confuse with the poloidal direction, subscripted p). In NSTX, the H-mode global en-
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ergy confinement has been shown to have a very strong dependence on collisionality

BTE - /v* [20] and is different from the ITER98y 2 scaling BTE~ independent of

v* [16] (the electron collisionality v* measures the importance of Coulomb collisions in

the plasma). The energy confinement scaling on collisionality exhibited in STs is radically

different to that exhibited in standard aspect ratio tokamaks and is favorable to operation

in low-collisionality regimes for future STs.

The low aspect ratio A = Ro/a, high elongation r = b/a condition of STs induce

strong magnetic field line curvature on ST plasmas (cf. Fig. 1-6). High magnetic field

line curvature is believed to have a stabilizing effect that can improve confinement with

respect to standard tokamaks. Neutral Beam Injection (NBI) heated plasmas at NSTX

exhibit high E x B shearing rates that have proven beneficial to the confinement in STs

with respect to standard tokamaks. At the same time, fast-ion populations coming from

NBI can in turn destabilize a particular set of instabilities known as Alfv6n eigenmodes,

which can give rise to high levels of transport and hence degrade the confinement. Fur-

thermore, high beta levels attained in NSTX can also destabilize electromagnetic modes

such as micro-tearing modes (MT). Drift wave modes such as the electron temperature

gradient (ETG) instability are also routinely found unstable in NSTX. This thesis makes

a contribution towards the understanding of the ETG-driven micro instability, diagnosed

experimentally with the high-k scattering system at NSTX [92]. By scattering micro-

waves off the plasma the high-k scattering diagnostic at NSTX is able to measure density

fluctuations on the electron gyro-radius scale (p,) that are indicative of the ETG insta-

bility. It is found that the local value of the electron density gradient has a stabilizing

effect on electron density fluctuations. Linear gyrokinetic simulations carried out with

the GS2 code [95] show that the electron density gradient value is correlated with the

wavenumber at peak linear growth rate, and anticorrelated with high-k linear growth rate

values. One important research thrust for NSTX-U and many other tokamaks world-wide

is the study of the transport of electron energy. Electron thermal transport is routinely

the main energy loss channel at NSTX and is observed to be much higher than predicted

by theory (more on this on next section). The toroidal ETG instability is thought to be

responsible for these anomalous levels of electron thermal transport under some operating

regimes. Diagnosing the ETG instability with the high-k scattering diagnostic at NSTX
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Figure 1-7: a) NSTX device. b) Poloidal flux surfaces (also simply flux surfaces or mag-
netic surfaces) in a typical NSTX plasma: last closed flux surface (LCFS) in solid red,
open flux surfaces in dashed blue lines, closed flux surfaces in dashed red lines. Because
the pressure P is a flux function (P = P(O)), these are also contours of constant pressure.
The magnetic axis is a green dot.

is important to gain a deeper understanding to the problem of electron thermal transport.

In addition to the ETG instability at NSTX, the coexistence of all the micro instabilities

mentioned in this paragraph makes the study of confinement and the transport properties

in STs substantially different than in standard high aspect ratio tokamaks.

1.4.3 High bootstrap fraction: towards steady-state operation

We previously emphasized the importance of a toroidal electric current in the toka-

mak. Since the first tokamaks came into operation, tokamaks have relied on transformer

inductive action as a mechanism to drive current, having the plasma as the secondary cir-

cuit. This method is not able to drive current and produce the confinement needed for

steady state operation in a reactor. New methods of so-called non-inductive current drive

are envisioned to exist in future reactor scale fusion plants, and are an area of current

research nowadays, particularly in NSTX.

A very important contribution to the total current driven in NSTX (and also in NSTX-

U [26]) is the bootstrap current. In the 1970s, it was theorized that pressure gradients

between the hot core and the cold edge region in a toroidal plasma would drive a toroidal
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plasma current due to the friction force between particles in the plasma [30, 31]. The

bootstrap current has been experimentally observed in tokamaks since the 1980s, and

it is expected to play a major role in future fusion reactor plants since it will relax the

constraints on non-inductive current drive systems. It is thought that the plasma current

in a fusion power plant should have a bootstrap fraction on the order of 80%. In the limit

of unit aspect ratio (A = Ro/a = 1), the bootstrap current takes a simple form

dP dP dr
jBS =-R =-R (1.5)

dV) dr d@b

as shown in [28], where 4 is the poloidal flux (recall the pressure P is a flux function:

P = P(0)). This simple expression for JBS directly highlights the importance of the

pressure gradient contribution to the bootstrap current. When we consider larger aspect

ratio (A > 1, c = 1/A < 1), the bootstrap current has a dependency as follows JS _

-6 1/ 2 Rdp/do. It is interesting to compare the scaling relationship between JBS and the

Ohmic current JOH (current usually driven by an electric field, though it can also be driven

by neutral beams or waves)

jBS/jOH E1/20P (1.6)

where OP = 2poP/B 2 is the poloidal beta. This dependency shows a favorable con-

tribution of the bootstrap current in small inverse aspect ratio tokamaks, such as STs

(e ~ 1). In addition, the scaling on Op is favorable for the spherical tokamaks since STs

are designed to operate at high beta with respect to standard tokamaks. For a detailed dis-

cussion of the physics behind the bootstrap current the reader is referred to [28,29]. The

bootstrap current was experimentally confirmed in tokamaks in the 1980s [32]. Obtain-

ing high bootstrap current fractions fBs = IBS/Ip (I, is the total current carried by the

plasma and and IRS is the total bootstrap current) is very beneficial to tokamaks since it

relaxes the obligation for auxiliary current drive systems. As we have seen, the bootstrap

current is very effective in the ST because of its low aspect ratio A and high-3 (NSTX has

achieved 70% of bootstrap current fraction).

NSTX complements bootstrap current drive by using a coaxial helicity injection (CHI

[33]) system, NBI and a high-harmonic fast wave (HHFW [34]) system. CHI is used at
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NSTX for plasma current initiation and has delivered 160 kA of current. NBI and HHFW

act both as auxiliary plasma heating and current drive systems. NBI relies on the injection

of fast-neutrals that will become ionized once they enter the plasma. The fast-ion pop-

ulation originating from NBI fast neutrals will carry a current that will eventually slow

down on the plasma. The overdense plasma condition of NSTX plasmas (Wpe/Qe > 1)

precludes the use of conventional electron cyclotron heating (ECH) and electron cyclotron

current drive (ECCD). In these overdense scenarios, a HHFW system has proven success-

ful to heat and drive current in NSTX plasmas. The NSTX HHFW system uses 30 MHz

waves injected in the plasma, and is able to couple up to 6 MW of power. Core electron

temperatures of over 5 keV have been achieved in HHFW heated plasmas at NSTX.

1.4.4 Solving the plasma heat load problem

High power levels are anticipated in conventional tokamak test reactors as well as in

compact STs, and will give rise to high heat flux loads on plasma facing components

(PFC), in particular the divertor. The divertor in a tokamak is a device allowing the

removal of waste material from the plasma and it can reach heat flux levels of up to

10MW/m 2, comparable to levels expected to be attained in ITER. NSTX is unique in the

world fusion program for investigating the impact of lithium PFCs on H-mode plasmas. It

has been shown that lithium can offer several potential benefits such as enhancing thermal

confinement and the suppression of edge localized modes (ELMs). ELMs are disruptive

instabilities typical of H-mode plasmas that create bursts of energy and particles that can

seriously damage PFCs and the divertor. In addition to the use of lithium PFCs, resonant

magnetic perturbations (RMPs) coils were installed on NSTX and NSTX-U to mitigate

ELMs, following succesful demonstration at the DIIID tokamak [27]. So far RMPs have

triggered, rather than stabilized ELMs at NSTX and further research understanding the

mechanisms of RMPs will continue at NSTX-U. High flux expansion is another viable

possibility to reduce heat flux peaks on the divertor plates. Magnetic configurations such

as the "snowflake" divertor have been successfully implemented at NSTX and further

investigation will continue on NSTX-U.
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Figure 1-8: Original NSTX device capabilities as a first of a kind, ultra-low aspect ratio
spherical torus (from [93]). Note the magnetic field has since then been increased to
B = 0.55 T for NSTX, and will achieve 1 T for NSTX-U. The plasma current I, is
expecting a upgrade to 2 MA for NSTX-U.

1.5 Thesis scope

In this thesis, I present the analysis results of a series of experiments that measure

high-k turbulence levels in NSTX. Theory and numerical simulations [97,98, 101-106]

have suggested that micro instabilities driven by the electron temperature gradient (ETG)

could be responsible for the anomalous electron thermal transport levels observed exper-

imentally. ETG turbulence is diagnosed in NSTX plasmas using the high-k scattering

diagnostic. The high-k scattering diagnostic measures electron density fluctuations on

the electron gyro radius scale (kipe 3 1) using a 280 GHz microwave coherent scat-

tering system [92]. The scattering system consists of five collection channels that si-

multaneously measure five different wave numbers in the range 5 < k1 < 30 cm- 1.

Heterodyne receivers installed on each channel allow to determine the direction of propa-

gation of the observed fluctuations. The wavenumber resolution of the observed electron

density fluctuations is Ak ~ 0.7 cm- 1 and the radial resolution AR ~ +2 cm. Mea-

sured wave vectors are primarily radial k, with a small binormal component kb satisfying

kb/kr 0.2 - 0.3 (k, is the radial component perpendicular to the flux surface and kb

is the binormal component perpendicular to the local magnetic field but inside the flux

surface). A ray tracing code was used to compute the detected wavenumbers by each

channel of the high-k system. Linear gyrokinetic simulations with the gyrokinetic code

GS2 complement the experimental study carried out with the high-k scattering diagnostic.
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The chapter 2 of this thesis gives is a general background on plasma turbulence and

transport in tokamaks, and the distinctive features of transport in spherical tokamaks.

Chapter 3 discusses the physical principles underlying the scattering process taking place

in the measurement of electron scale density fluctuations, and describes the experimental

configuration of the high-k scattering diagnostic at NSTX. Chapter 4 provides the analysis

tools used in the course of this work to analyze electron density fluctuation measurements,

carry out linear gyrokinetic simulations with GS2, ray tracing calculations and TRANSP

calculations. Chapter 5 describes the experimental observation of the background equilib-

rium density gradient as a stabilizing mechanism on high-k turbulence at NSTX. Linear

gyrokinetic simulations with GS2 support the experimental observations.
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Chapter 2

Plasma Turbulence and Transport

Background

The theory of transport goes well beyond plasma physics. By definition transport

describes situations that are out of equilibrium, and can be explained by the theory of non-

equilibrium thermodynamics. We start this chapter by describing transport as a diffusive

process. We will then turn to explain transport in conventional aspect ratio tokamaks, and

will end by giving a very brief review of the current understanding of transport processes

in spherical tokamaks such as NSTX.

2.1 Transport as a diffusive process

Particle, momentum and heat fluxes can be rigorously calculated from first-principle

physics. Non-equilibrium thermodynamics defines transport fluxes having a linear rela-

tion to thermodynamic forces (typically given by gradients of a certain physical quantity)

for situations close to equilibrium. In that context, we can define transport fluxes as the

proportionality factor between a transport flux and a thermodynamic force. A simple

constitutive relation is given by Fick's law

Fr = -D (2.1)
Or

which states a linear relation between a particle flux r, and its conjugate thermody-

33



namic force On/Or. The simple Fick's relation 2.1 coupled with the particle conservation

equation results in the well-known diffusion equation. The proportionality factor D is

known as the particle diffusivity. The analogous relation to 2.1 for energy defines a radial

heat flux Q, and heat diffusivity x as a function of the conjugate thermodynamic force

OT/Br as Q, = -nX&T/&r. In reality, and in particular in tokamak plasmas, fluxes

cannot always be simply expressed as a function of its conjugate thermodynamic force,

and several thermodynamic forces might come in play in the definition of a particular

flux. In this thesis, we will look at a particular type of flux, the electron heat flux in toka-

mak plasmas. A process in which fluxes exhibit a linear relationship with thermodynamic

fluxes is known as a diffusive process. In tokamak plasmas, situations may arise where

fluxes are also non-diffusive. A simple but realistic example of a non-diffusive process

is I. = -Dan/ar + Vn. In this case, the term Vn is known as the convective term

and V is the convective velocity. Such an expression for the flux will give rise to what

is commonly known as the advection-diffusion equation. This form has been applied to

tokamak plasmas and experimentally verified [52].

2.2 Transport in conventional aspect ratio tokamaks.

Transport of particles across the magnetic field lines in a magnetically-confined plasma

determines the confinement quality of the plasma. Small transport levels of particles and

energy across the magnetic field will give rise to good confinement. In a uniform magnetic

field, particles gyrate around the magnetic field in circular motion and move at constant

velocity along the magnetic field. When particles are part of a plasma, Coulomb colli-

sions are inevitable and they give rise to transport of particles from one magnetic field

line to another, commonly known as classical transport. Magnetically confined plasmas

are inherently nonuniform and anisotropic with densities and temperatures that peak in the

plasma core. Transport processes driven by gradients are enhanced by geometrical effects

and exceed classical transport in a uniform magnetic field. This so-called 'neoclassical

transport' is based on a robust, first principles physics foundation [35] and studies trans-

port due to collisions in a toroidal geometry such as the tokamak. Many aspects of neo-

classical transport theory have been verified experimentally [32,36-38], as is the case for
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Figure 2-1: Expected wavenumber values for relevant drift wave turbulent modes in mag-
netically confined fusion plasmas. Of particular importance to spherical torii is the ETG
instability. Note here that values for the ion sound gyro-radius p, were taken from typical
NSTX discharges (p, is computed using T and mi instead of T and mi as in pi).

the bootstrap current. Neoclassical transport sets the irreducible minimum transport level

attained in a tokamak. Despite success at describing parallel heat transport in tokamak

plasmas, bootstrap current, and in many cases impurity transport, neoclassical transport is

not able to predict experimental levels of cross-field (perpendicular) heat transport in the

plasma.

The excess transport observed in experiments is widely referred to as anomalous trans-

port, and electron heat transport remains the least understood transport channel. Radial

transport in present day experiments exceeds predictions from neoclassical theory by up

to three orders of magnitude. This disagreement between first principles theory and ex-

periments has existed since the beginnings of tokamak plasmas. Theories today are still

far from being able to explain anomalous transport in tokamaks but a huge progress has

been made and the gap is closing in. Anomalous transport is currently widely attributed

to small-scale micro instabilities that give rise to turbulence in the plasma [39,40].

Of particular importance is the transport of electron energy. In a thermonuclear fusion

reactor, high energy alpha particles will transfer most of their energy to the electrons.

Electrons thus play a key role in the sustainment of plasma energy in a reactor, hence

the importance of the electron thermal transport problem. In current fusion experiments

such as NSTX, electron thermal transport is regularly found at anomalous levels. As was

previously mentioned, this thesis contributes to the understanding of electron thermal

transport by focusing on a particular micro instability called the electron temperature

gradient instability (ETG). The ETG instability is also found to play a very important

role in conventional aspect ratio tokamaks, as will be discussed in the next section.
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In the core of a standard tokamak, the current belief is that most of the turbulence

is driven by drift waves. Drift waves propagate in the plasma perpendicularly to density

and temperature gradients. Drift waves can become unstable in a toroidal plasma due to

inhomogeneities and gradients (namely of density) and due to geometrical and curvature

effects, which can further enhance the instability of these modes. Depending on the in-

stability drive of drift waves, they are identified as the ion temperature gradient driven

instability (ITG [41-44]), the trapped electron mode (TEM [45]) and the electron tem-

perature gradient driven instability (ETG [46]). Drift waves are highly anisotropic. The

spatial scale length perpendicular to the magetic field can be of the order of the ion gyro-

radius pi (ITG, TEM), and it can even go down to a factor of the electron gyro-radius p,

(ETG). In the plasma turbulence and transport context, the ITG and TEM instabilities are

characterized by kpi ~ 1, whereas the ETG instability is characterized by kip, - 1.

Along the magnetic field these waves have parallel wavelengths of the order of the device

size and they tend to form elongated structures along the magnetic field. We have then

a clear separation of length scales between k and k1 (kj1 < k1 ), a fundamental prop-

erty of drift waves in magnetically confined toroidal plasmas that will be fully exploited

in the scattering experiments presented in this thesis. Concerning the time scales, these

are low frequency modes and their characteristic frequency is smaller than the ion gyro-

frequency. Drift waves span a wide variety of modes which, when driven unstable by

some mechanism, can result in high transport levels. Due to the relevance of drift waves

in present day toroidal confinement experiments, it is important to gain some insight into

the physical mechanism driving drift waves unstable. The derivation presented in the next

section closely follows that of [50,51] and gives the simplest physical picture of drift wave

propagation.

2.2.1 Drift waves

We assume a simplified slab geometry. The basic requisite for the existence of drift

waves is the presence of a density or temperature gradient. Assume an electron density

gradient Vne is directed in the --direction, a background magnetic field BO coming out

of the board in the i-direction and a constant electron temperature T,. In the presence of
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a density gradient, electrons (and ions) are subject to a diamagnetic drift velocity

V*e = V, T, (2.2)
ne eBo

Drift waves have small but finite kl (cf. [40]), which allows electrons to flow along

BO and establish a thermodynamic equilibrium. Electrons will then satisfy the Boltzmann

relation

6 -n - o (2.3)
ne Te

We see that small sinusoidal density perturbations in the y-direction results in space

charge accumulation zones (cf. 2-2). Charge perturbations then give rise to an electric

field, which in turn translates to E x B drifts VExB in the --direction. The E x B drift

created moves the density perturbations in such a way that a wave propagates in the y-

direction. The phase velocity of this wave is the electron diamagnetic drift velocity ve.

= V*e (2.4)

This simple mechanism is unable to capture a net radial flow of particles (in the i-

direction in figure 2-2). In the present discussion, a small parallel wavenumber kl allows

electrons to move freely along Bo and the Boltzmann relation 2.3 is fulfilled. In this rela-

tion, density n, and electric potential / are in phase and drift waves are stable. However,

there exist a certain number of mechanisms such as electron-ion collisions, Landau damp-

ing, electron inertia or inductance, that can limit the parallel electron motion and render

drift waves unstable. If electrons are not able to move freely along the magnetic field,

a lag between the electron density and the electric potential will set in and a phase shift

(6, assumed small in this description) between the two perturbations will appear. The

Boltzmann relation 2.3 can then be modified as follows

6-- - e-( -_ ) (2.5)
ne Te (

The small modification in equation 2.5 with respect to the Boltzmann relation 2.3

leads to a modification of the dispersion relation 2.4 as follows
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V*e(1 + i6) (2.6)

A time variation of exp(-iwt) and 6 > 0 means that the potential perturbation has

acquired an additional phase with respect to the density perturbation. In this situation the

drift wave is unstable, and the linear growth rate is given, in this simplistic description, by

= kyv*e6.

The particle flux F associated with this drift wave is simply given by the time average

of the electron density perturbation ne times the E x B velocity produced by the electric

potential perturbation 0, as follows (neVEXB)T = kydOne/2Bo sin(6)-. We see then

that, if 5 = 0, fluctuations are adiabatic and no particle transport occurs. In the unstable

situation where ( > 0 a radial particle flux in the positive --direction (down the density

gradient) occurs.

Note we have only dealt here with particle flux. Similar considerations will apply

to heat flux Q if we consider temperature perturbations and a temperature gradient. We

have considered a simple slab geometry that is usually not applicable in standard toka-

maks, even less in spherical tokamaks, and geometrical effects can play a very big role in

enhancing/stabilizing this drift wave mechanism.

The interested reader will refer to more complete review papers and manuscripts [40,

50, 51] for more detailed explanations and physical insight.

2.2.2 Relevance of the electron temperature gradient instability in

transport.

As we have previously mentioned, theory and experiments suggest that drift waves are

responsible for anomalous levels of transport observed in magnetically confined experi-

ments. It would take us too far to derive the different drift wave modes (ITG, TEM, ETG)

thought to play the most important role in transport and we will simply give an estimate

on the transport that originates from these instabilities.

Gyro-Bohm estimates indicate that the electron thermal diffusivity X9' ~Pvte/L e

is a factor of vmi/me smaller than the ion thermal diffusivity ~ p vs/LTi, such that

XeB /B/ 60 in deuterium plasmas. This estimate suggests that transport of electron
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v - Wave propagation
3 ExB

+ Perturbation at t

Perturbation at t + dt

n ExB
VnO

Figure 2-2: Simple physical mechanism for the propagation of a stable drift wave. The
toroidal direction is out of the board in this description. The poloidal direction corre-
sponds to the y-axis, and the radial direction corresponds to the x-axis.

energy is not a significant fraction of the total transport in the tokamak and should not be

relevant in a reactor.

Nonlinear gyrokinetic simulations predict substantial ion thermal and particle trans-

port due to the TEM mode [55, 56]. Theory and modeling have also predicted that the

ITG and TEM modes can give rise to electron thermal transport [40,53]. Thus, the agree-

ment between theory and simulations on the transport produced by the ITG/TEM modes

and the ability of these modes to give rise to electron thermal transport, added to pre-

liminary, small Gyro-Bohm estimates of the electron heat diffusivity XgB (with respect

to the gyro-Bohm ion heat diffusivity XqB) all suggest that the ETG mode is not sig-

nificant to transport. For a long time, the standard model for turbulent transport only

included the ITG and TEM modes [53, 57]. Unfortunately, the mentioned predictions

cannot account for the experimental levels of electron thermal transport observed in many

tokamak plasmas. Electron thermal transport is routinely observed at anomalous levels

in present day tokamaks. Spherical tokamaks exhibit neoclassical levels of ion thermal

transport [20,21,115], but electron thermal transport is never found at neoclassical levels.

The problem of electron thermal transport has received much attention in the last decade,
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as there is evidence that electron scale turbulence can play an important role in transport

levels of tokamak plasmas [103-105]. This thesis is an experimental study of the ETG

instability, diagnosed through a micro-wave scattering diagnostic system at NSTX, and it

contributes to the understanding of the physical mechanisms of the ETG instability.

2.3 Turbulence and transport in the National Spherical

Tokamak Experiment

The spherical tokamak is able to operate in different plasma regimes than those ac-

cessible to standard aspect ratio tokamaks. As has been mentioned previously, STs are

characterized by a small aspect ratio A, high elongation r and high magnetic field line

curvature, which allows to access different operational space (Iilgher 3). Under these

conditions, transport processes in spherical tokamaks can be of Aifferent nature than in

standard tokamaks. In this section we proceed to explain some ol these differences.

The toroidal magnetic field in a tokamak plasma (as well a in STs) varies roughly

as follows Bt - 1/R, where R is the major radius location witi n the plasma. It can be

shown by a simple physical argument that the low-field side region of a tokamak plasma

(also known as outboard) is subject to an effective acceleration due to the curvature of the

field lines and can destabilize a certain number of instabilities (ballooning instabilities).

The low field side region of the tokamak is subject to an effective acceleration that tends

to destabilize ballooning modes (cf. [29]). For this reason the low-field side region of

the plasma is also known as bad-curvature region. On the other hand the high-field side

region (inboard) is stable and ballooning instabilities are accumulated on the low-field

side. The geometry of STs is optimized to minimize these low-field side instabilities,

as can be seen on Fig. 1-6. On a standard tokamak, magnetic field lines wander long

distances in the low-field side region of the plasma. Since to a first order approximation

plasma particles follow the magnetic field lines, they spend a long time in the low-field

side (unstable) region of the plasma. In an ST the curvature introduced in the magnetic

field lines shortens the distance that field lines spend on the low-field side region, thus

leading to suppression of bad-curvature instabilities and enhanced confinement [19].
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In addition to strong field-line curvature, NSTX plasmas exhibit high levels of toroidal

flow induced by Neutral Beam Injection (NBI). Toroidal flow in the plasma gives rise

to ExB shearing rates that are believed to be responsible for long-wavelength ion-scale

(on the ion gyro radius scale pi) turbulence suppression, as routinely observed in NSTX

H-mode plasmas [21] and supported by theory and modeling [23,25]. The ion-scale tur-

bulence suppression observed in NBI heated NSTX H-mode plasmas allows to isolate

turbulence and transport studies to the electron thermal channel. The electron thermal

transport channel is consistently observed to be the dominant power loss channel in the

plasma. Several mechanisms have been recently identified as possible candidates for elec-

tron thermal transport. The high beta levels attained in NSTX can destabilize electromag-

netic modes such as micro-tearing modes (MT) as discussed in [17, 18], and NBI fast-ion

populations destabilize compressional and global Alfven eigenmodes (CAE/GAE) as dis-

cussed in [59,60]. NSTX has proven to be a valuable laboratory to study electromagnetic

and stochastic magnetic field effects on turbulence and transport. Electron temperature

gradient driven drift waves (ETG) are small scale turbulence on the electron gyro radius

(kLpe < 1) and have also been observed to give rise to experimental levels of electron

thermal transport. This thesis describes a particular diagnostic installed at NSTX to di-

agnose electron scale, high-k density fluctuations by scattering of micro-waves (using a

high-k scattering system [92]) that are indicative of ETG turbulence. Previous to the study

presented here, several parameters have been predicted and experimentally observed to af-

fect ETG turbulence such as E x B shearing rates [107,108], reversed shear [109,110] and

the electron density gradient [111, 112]. The present thesis develops the study carried out

in [111], and further points out the importance of the electron density gradient on high-k

electron density fluctuations.

High levels of toroidal rotation in NSTX plasmas is an essential element in achieving

high # values. Heating by Neutral Beam Injection (NBI) is a commonly used technique

for heating and current drive in tokamak plasmas, and is particularly efficient in producing

toroidal flow in the plasma. A simple argument on toroidal angular momentum conser-

vation between fast-ion injected neutrals and plasma particles gives rise to higher angular

velocities in STs than in standard high-aspect ratio tokamaks for a given value of heating

power. Toroidal rotation is favorable because it can stabilize certain macroscopic instabil-
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ities such as edge localized modes (ELMs) and the resistive wall mode (RWM) instability,

and can also stabilize certain micro instabilities that are responsible for enhanced transport

across the confining magnetic field. Toroidal rotation in NSTX introduces a population of

ultra-fast ions whose velocity can exceed the Alfven speed VA= B/ pop (note the mag-

netic field B is reduced in STs with respect to standard tokamaks, which leads to smaller

values of VA. p is the mass density of the plasma) and can resonate with a wide variety

of Alfv6n waves and destabilize them. These so called Alfven eigenmodes can lead to

particle and energy transport and hence degrade the confinement. However, the study of

fast-ion populations is without a doubt of primordial importance towards the development

of fusion energy since fusion a-particles and NBI fast-ions in ITER are expected to be

unstable to such instabilities. In summary, Alfven eigenmodes play an important role

in NSTX plasmas due to the high values of fast-ion toroidal velocity with respect to the

Alfven velocity (NBI is more efficient in STs and VA is smaller in STs due to reduced B

field). NSTX has arisen as a unique experimental platform for studying the stability and

confinement of fast particle populations.

In conclusion, at least four instabilities have been identified as potentially responsible

for anomalous electron transport at NSTX: micro-tearing modes (MT [90]), collisionless

trapped electron modes (CTEM [45]), electron temperature gradient modes (ETG [46]),

and Global Alfven Eigenmodes (GAE [48]). Micro-tearing (electromagnetic), ETG (elec-

trostatic), and GAE modes (Alfv6nic) have been correlated with anomalous electron trans-

port in NSTX [18,48,49, 59,60]. Multiple instabilities may be present simultaneously in

NSTX plasmas, and isolating the effects of individual instabilities can be difficult. Higher

magnetic field and current (as in NSTX-U) will provide access to much lower collisional-

ity allowing suppression of micro-tearing modes [18, 125] (recall that obtaining the low-

collisionality confinement scaling is a major research thrust for NSTX-U, as mentioned

in 1.4.2). Higher magnetic field will also provide access to reduced fast-ion instability

drive and enable the reduction (possibly suppression) of GAE modes [125]. Thus, access

to higher magnetic field will enable the ability to control the onset of electromagnetic and

Alfvenic modes and to separate the impact of these modes from electrostatic modes.
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2.4 ETG and the Jenko critical gradient

The electron temperature gradient instability is a major candidate for explaining anoma-

lous levels of electron thermal transport experimentally observed in some operating regimes.

Ion thermal transport however, is observed at neoclassical levels in most NSTX H-mode

plasmas, consistent with low-k (ion-scale) turbulence suppression from large E x B shear

driven by neutral beam (NBI) driven plasmas ( [20,21, 115]).

Radial transport of electron thermal heat flux is often modeled with a linear depen-

dence on the electron temperature gradient. In order to account for possible non diago-

nal transport terms in the electron thermal heat flux, the linear dependence on the elec-

tron temperature gradient can be offset by a quantity, which defines a critical gradient

(VTe)crit [116-118], and the expression for the modeled heat flux can be expressed as

qe = neXe(VTe - (VT)crit) (2.7)

where Xe = 0 for values of VT, < (VTe)crit. This formula deserves two important

comments: 1) When VT < (VTe)crit, the radial electron heat flux predicted by this

model is zero. Experimental observations support this conclusion [116, 117]. 2) As its

name indicates, the ETG instability is driven by the electron temperature gradient. The

critical electron temperature gradient can be also regarded as a threshold for ETG insta-

bility.

An analytical expression for the critical gradient was derived in [94] by carrying out

many linear gyro kinetic simulations. From now on until the end of this thesis, we will

often refer to this expression by the Jenko critical gradient. It is given by

( RoI/LT, ),rit = ma~x O8oL,(2.8)
(I + T)(1.33 + 1.9%/q)(1 - 1.5c)(1 + 0.3dr /dE)

where T = Zeff Te/T. In this expression, quantities Lx are defined as Lx = -dlnX/dr

correspond to typical scale lengths of a quantity X. Ro/Lx are normalized gradients of

the quantity X, such as Ro/LT, and Ro/Lne, and RO is the corresponding flux surface

center. Zeff is the effective ion charge, T is the electron temperature, T is the ion tem-
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perature, A and q are the magnetic shear and safety factor. E is the inverse aspect ratio. It

is important to mention the regime of validity of this formula. The electron temperature

critical gradient in equation 2.8 was derived under the assumptions of positive magnetic

shear ( > 0.2 ), low-# and large aspect ratio A. These conditions preclude the use of 2.8

in typical NSTX plasmas, characterized by high-) and small aspect ratio. In this thesis,

linear gyrokinetic simulations using the gyrokinetic code GS2 [95] were used to explicitly

compute the critical gradient in a particular discharge. Surprisingly, the GS2-computed

critical gradient matches the critical gradient formula to a high degree of accuracy. More

details will be given in the corresponding section of this thesis.

The Jenko critical gradient formula 2.8 results very useful in practice, as it allows to

characterize some of the parametric dependencies of the ETG instability. One direct and

obvious dependency is the normalized electron density gradient Ro/L. According to

expression 2.8, the electron density gradient is predicted to have a stabilizing effect on the

ETG instability. High values of the electron density gradient will make the 0.8RO/L,,

term dominant in expression 2.8, thus it will determine the value of the critical gradi-

ent. As we have seen, variations in RO/L., or s will give rise to different values of

(Ro/LTe ),i, thus having an effect on transport, as predicted by 2.7. High enough values

of RO/L., will even be able to set the critical ETG to values above the local tempera-

ture gradient value. This should stabilize the ETG instability. In the past, electron density

enhancement and peaked profiles from pellet injection have been reported to improve con-

finement [119]. More recently, [108, 111] report on the first experimental demonstration

of density gradient stabilization of plasma turbulence. In this thesis, we present clear ex-

perimental evidence of the electron density gradient stabilization of electron gyro-scale

turbulence, and provide arguments to the repetitiveness of this phenomenon. Linear sta-

bility analysis carried out with the gyrokinetic code GS2 confirms our observations.

2.5 The gyrokinetic model

The gyrokinetic model is the theoretical framework used to study turbulence in mag-

netized plasmas. The critical gradient formula 2.8 in the previous section was derived

using linear gyrokinetic simulations using the gyrokinetic code GS2 [85,95]. The equa-
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tions solved by GS2 are presented here in a somewhat simplified manner.

We saw in chapter 1 that plasmas such as fusion plasmas are characterized by being

weakly coupled (ne 3 > 1) which justifies a kinetic description of the plasma based on

one-particle distribution functions f. The one-particle distribution f, for species s is such

that f,(r, v, t)d3rd3V is the number of species in a volume d3r located at position r and

having a velocity v within a d3 V velocity differential.

The one-particle distribution function satisfies the Boltzmann equation in phase-space

(r, v)

Of + v + a - _ = CUS) (2.9)
Ot (9V

also known as the Fokker-Planck equation depending on the form of the collision op-

erator C. The collision operator takes into account collisions of species s with all species

in the plasma (usually Coulomb collisions, but nuclear reactions could also be included

on the right hand side in the case of burning plasmas and charged-neutral collisions are

also possible). We will not specify here the form of the collision operator, and the reader

is referred to [28] for a complete description. The quantity a is the acceleration given

here by the Lorentz force

a = [E(r, t) v ' B(r, t) (2.10)
m8  c

where ms and e, are the mass and charge of species s and E(r, t) and B(r, t) are the

electric and magnetic field values felt by a particle at position r at a time t. The electric

and magnetic fields in the plasma satisfy Maxwell's equations

V - E = 47p,

V x B= j+IO

(2.11)

V x E lIOB
C Bt

V -B=-0
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where the plasma charge density pc and current j are the sources for Maxwell's equa-

tions, and are linked to the distribution function by pc(r, t) = E, e, f d'vf8(r, v, t),

j(r, t) = E, e, f d3 vvf8 (r, v, t). We see then that the evolution of the distribution func-

tion f, in eq. 2.9 provides the source terms to Maxwell's equations in 2.11, which in turn

impact the evolution of f, through the Lorentz force. In principle, the full Fokker-Planck-

Maxwell equations must be solved to determine f.

Although this kinetic description of a fusion grade plasma is fundamentally correct, it

is not appropriate from a practical point of view. Analytic solutions to the Fokker-Planck-

Maxwell equations are rare, and numerical simulations result extremely time consuming.

The full distribution function depends on 7 variables, and assuming steady state reduces

the number of variables to 6. Today's most powerful super-computers are not able to

numerically solve equations 2.9, 2.11, even in steady state. The theory of gyrokinetics

aims to further reduce the number of relevant variables in the distribution function from

6 to 5 (assuming steady state). Numerical codes all around the world (such as GS2)

have implemented this reduction of equations 2.9 and 2.11 to solve for a 5D distribution

function and the electric and magnetic fields. Numerical solutions are now possible.

The basic idea behind gyrokinetic theory is to decouple the fast gyro motion of par-

ticles around a background magnetic field from the slower gyro-center dynamics. Time

scales associated with turbulent phenomena in magnetically confined plasmas are much

lower frequency than the cyclotron frequency Qj, such that w/Qi < 1. The gyrokinetic

model assumes strongly magnetized plasmas, characterized by pi/L = p, < 1, where

L is an equilibrium characteristic length scale (typically the minor radius a in tokamak

plasmas) and pi is the ion gyro radius pi = VthiQ. Parallel length scales are elongated

along the background magnetic field k L - 1 and perpendicular motion scales as the

gyro radius kLpi ~ 1. We see once more that the assumption kgl < k1 made in previous

chapters is consistent with the gyro kinetic ordering.

The transformation from a 6D to a 5D dimensional problem is achieved by applying

the gyro-center transform as outlined in [80] and shown schematically in Fig. 2-3. The

guiding center coordinates R, are related to the particle position r by r = R, - v x b/Q,

with v = vj b + v1 (coso- + sin y). In the present notation b is the unit vector along the

background magnetic field B (subscripted the parallel 11 direction), p is the gyro phase
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guiding-centre coordinates gyro-centre coordinates
6D phase space 5D phase space

gyro-centre trans orm)

Figure 2-3: Transformation from guiding-center R, to gyro-center coordinates used in
gyrokinetics to reduce the problem for a 6-dimensional one to a 5-dimensional one. Image
taken from [79].

and - and y are the perpendicular coordinates to the background magnetic field (noted

with a _L subscript sign). Roughly speaking, the gyrokinetic equation is solved using a

gyro-center coordinate system in which the fast time scale phenomena associated with

gyro motion is eliminated, and the gyro phase variable p (describing gyro motion) is

eliminated.

The distribution function f, and the fields q0, A and B are expanded between equilib-

rium and perturbed quantities, noted with a ~ symbol notation (f, = FO, + fLi + ... , and

similarly for , A and b). Here FO, is the equilibrium distribution function for species s.

Gyrokinetics relies on following ordering assumptions

- ~ ~ _ < -~ - -1 kL~ kxp~ 1 (2.12)
Q L Fo T Bp B

where we omitted the subscript s to denote the species. We have already discussed

the time and length scale assumptions related to gyro motion. In equation 2.12, h is

the non adiabatic part of the first-order perturbed distribution function defined by h8 =

f8 + 8FOs. The condition < 1 simply assumes that h is a small perturbation to the

background distribution function FO. The following three assumptions on $, Al and il,

assume small perturbations of the electromagnetic fields to background quantities such as

temperature T and background magnetic field B.

In depth derivations of the gyrokinetic equations can be found in [79-83]. Here we

will simply write the equations solved by the gyrokinetic code GS2. The equations are

solved in field-aligned coordinates [84] and using local Miller equilibrium [123]. The
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notation is adopted from [82,85]. The gyrokinetic-Maxwell system of equations is given

by

dt O.n-Wd2St*-SE Ot

Vi5 47 E, e, f d3 V es + Jo()h8s

(2.13)

VIA_ = E Z f d3 ve v Jo(y)h,

f11 - V ( r d3vmvl JiC)A

B B5 -. s .' I -y

In equations 2.13, the time derivative is equal to d/dt = /t + (c/B){, .} where

{. .} is the Poisson bracket defined by {U, V} = b -[U/aR, x OV/'R,] and i is given

by

= J0 (y) (5 - -A) + (2.14)

Jo and J, are Bessel functions that take as argument the finite Lai nor radius parameter

= kiv1 /Q. The perpendicular curvature and VB drifts are incorporated in Od =

k - x (mv b - Vb + tVB)/(BmQ) and w, = cn,0 Fo/a'I where no is the toroidal

mode number of the perturbation. p = mvl/2B is the magnetic moment. Note the

zeroth-order distribution function Fos Fos(E, T) only depends on energy E = mv 2/2

and flux surface label 'I.

Equations 2.13 solve self-consistently for the perturbed distribution function of each

species. The perturbed fields can be calculated from the perturbed distribution function.

Once the distribution function is calculated, gyrokinetic simulations can calculate particle,

energy and momentum fluxes by integrating h, with the right quantities. However, this

last step of calculating transport levels using gyrokinetic simulations is only possible when

nonlinear effects are properly taken into account in the numerical solution. In the work

presented in this thesis we have not attempted to run nonlinear gyrokinetic simulations.

Linear gyrokinetic simulations are not able to compute transport levels, but can provide

the linear growth rate and real frequenciy of the instability under study, which as we shall
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see, can turn to be very valuable information.
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Chapter 3

Collective scattering at NSTX

In this chapter we focus on the principles of scattering of electromagnetic waves as a

diagnostic tool used to determine relevant quantities of interest in a magnetized plasma.

In the first section we give a general introduction to the process of scattering by a plasma,

discuss the subtle concepts of incoherent and coherent scattering and some practical ap-

plications of scattering for diagnostic purposes in magnetic confinement fusion devices.

In the second section we discuss how scattering of electromagnetic radiation can be used

to diagnose density fluctuations arising from turbulent processes in the plasma. In the

third section we describe the experimental configuration of the high-k scattering diag-

nostic used at NSTX to detect electron-scale density fluctuations. In the fourth section

we present the physical principles towards obtaining highly localized scattering measure-

ments, based on the work carried out by Ernesto Mazzucato at PPPL (cf. [68, 113, 114]).

3.1 Collective scattering background

Scattering of electromagnetic radiation is a very powerful method of diagnosis of

hot plasma experiments such as fusion plasmas. Most major magnetic confinement fu-

sion experiments world-wide use today some kind of scattering technique for diagnostic

purposes. Scattering of electromagnetic radiation is a non-perturbing technique on the

plasma, and this is a main advantage when compared to other diagnostic techniques (such

as probes). Scattering also has the potential of determining very crucial information about

the plasma, such as the electron density and temperature, ion density and temperature, and

51



electron density fluctuations. In this chapter, I will discuss the scattering process of elec-

tromagnetic radiation as a diagnostic technique to measure electron density fluctuations.

This technique is a unique diagnostic implemented in the National Spherical Tokamak

Experiment (NSTX [11, 12]), and will also be implemented in NSTX-U ( [26]).

The physical process of scattering of electromagnetic radiation from plasmas may

be understood as follows. The fundamental principles of electromagnetic theory establish

that when an electric charge is accelerated, it emits electromagnetic radiation as a result of

its acceleration. The scattering process takes place when the acceleration on the electric

charge is produced by an electromagnetic wave. When the angular frequency w of the

electromagnetic wave is low compared to the electron rest mass mec2 , such that hw <
mec2 , the process is known as Thomson scattering. The scattering processes is primarily

dominant for electrons due to their small mass and higher acceleration, giving rise to

higher scattered power.

Hot plasmas like fusion plasmas are mainly composed of ions and electrons, and neu-

tral atoms appear in smaller quantities. In the introductory chapter of this thesis we dis-

cussed the importance of the Debye length AD as a fundamental characteristic scale length

in a plasma. The effects of a potential-perturbing charge in a plasma are much shorter-

range than in the vacuum. Charges in a plasma tend to redistribute themselves so as to

shield the plasma from the electric field generated by the perturbing charge. In thermal

equilibrium, perturbing effects of a charge will penetrate into the plasma a distance only

of the order of the Debye length AD. For distances longer than the Debye length, the

charge is screened out by a shielding cloud, and practically nonexistent. To each point

charge in the plasma we can associate a Debye sphere of radius AD centered on the point

charge (cf. Fig 1-3). Charges inside that Debye sphere will be of opposite sign of the test

charge, and will be able to interact with it.

In a scattering experiment, an incident electromagnetic wave (typically a laser) inter-

acts with charged particles of the plasma and a scattered wave is radiated. We call ki

the wave number of the incident wave, k, the wave number of the scattered wave, and

k = Iki - k, I (the meaning of k will be explained later, but it can be revealed here that we

have a conservation law of type k = k, - ki, cf. Fig. 3.10). The product kAD measures

the correlation between a point charge and its surrounding shielding cloud. The limit
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Figure 3-1: Schematic of incident ki, scattered k, and plasma wave-vector k, correspond-
ing to a conservation law of type k = k, - ki. The incident beam of radiation has a 1/e 2

radius of a. The intercting volume between the incident and the scattered beams is called
the scattering volume. The length of the scattering volume is noted L.

kAD >> 1 corresponds to the limit of incoherent scattering. In this limit, we are prob-

ing length scales in the plasma that are much smaller than the Debye length (A < AD)

in which electrons are not correlated. Incoherent Thomson scattering (or non collective

scattering) thus corresponds to scattering of randomly distributed plasma particles within

the scattering volume. Incoherent scattering is employed in the Multi-Pulse Thompson

Scattering (MPTS) diagnostic implemented at NSTX. Typical incoherent Thomson scat-

tering systems measure electron density ne and electron temperature T in the plasma.

A more detailed description of incoherent Thomson scattering and how to access MPTS

data at NSTX data is found in the Appendix.

The limit kAD < 1 corresponds to coherent (or collective) scattering. In this regime,

we are probing length scales in the plasma that are bigger than the Debye length (A >

27rAD). As electrons provide shielding to ions and to other electrons in the plasma, the

scattering process reveals information about the collective behavior of particles in the

plasma. We are able to observe coherent structures and collective motion of plasma par-

ticles. Even though it is the electrons that contribute to the shielding (due to their small

mass), the shielding on the ions can provide information about the ion temperature, den-

sity and flow. Coherent Thomson scattering is being used in tokamaks such as JT60U and

Asdex Upgrade for these purposes ( [61,62]). By probing the collective motion of the

plasma, coherent scattering is also able to detect coherent structures that can be indica-

tive of turbulent processes. At NSTX, collective Thomson scattering is implemented to

measure electron density fluctuations n-e using the high-k scattering diagnostic [92].
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3.2 Collective scattering as a turbulence diagnostic

Turbulent fluctuations inside a plasma are characterized by a wavelength A, or equally

a wave-vector k. The ion sound gyro-radius p, is often used as a normalizing quantity for

k (p, is calculated using Te, mi and the local magnetic field B, as opposed to pi which

is calculated using T, mi and B). When the dimensionless quantity kp, is smaller than

one, kp, < 1, we are dealing with low-k (long wavelength) turbulence such as the ITG or

TEM modes we discussed in the previous chapter. When kp, > 1, we are dealing with

high-k (short wavelength) turbulence. The high-k scattering diagnostic at NSTX-U seeks

to measure high-k turbulence, hence its name.

The first experimental confirmation of core turbulence in tokamak plasmas was carried

out by E. Mazzucato in the adiabatic toroidal compressor (ATC) [113]. At the time,

electron density fluctuations were observed by carrying out spectral analysis of scattered

waves. Since then, collective scattering of microwaves continues to play a major role

in the analysis of short-scale turbulence in magnetically confined plasmas. The analysis

techniques outlined in [113] are very similar to the ones used today in NSTX and soon in

NSTX-U, and will be presented in the discussion that follows.

Consider a beam of incident electromagnetic waves with wave vector ki into a plasma

with electron density ne (r, t). As the electromagnetic waves propagate in the plasma, they

are scattered in all directions. Consider a scattered beam of radiation with wave number

k. We are interested to know what is the power that is scattered from the plasma P, with

respect to the incident power of radiation Pi. The full derivation of the scattered power

from electron density fluctuations is given in references [65,68, 126]. Its expression is the

following

LP = Pr 2LIH -e2S(k, w) (3.1)
dvedQ, e

where re is the classical electron radius (~ 2 10-15 m), L is the length of the scattering

volume (cf. caption in figure 3.10), H is the polarization tensor and &i is the polarization

of the incident radiation (direction of the incident electric field). In expression 3.1, v,

is the value of the scattered frequency and Q, is the value of the solid angle (typically

the solid angle covered by the collection optics). Equation 3.1 is then an expression

54



for the scattered power P, per solid angle Q, and per unit frequency v. Note that an

incident wave with wave-vector ki is scattered in all directions according to equation 3.1.

The direction of the scattered wave with wave-vector k, is determined by the fluctuation

wave-vector k being probed in the plasma, according to the conservation law k, = ki + k

(cf. eq. 3.5). It is important to note that k is purely a quantity characteristic of the local

turbulence being probed, and it completely determines the propagation of the scattered

beam detected by the receiver. Hence, the receiver is oriented beforehand to probe the

plasma in a direction where it will be sensitive to fluctuations in the high-k part of the

spectrum (cf. Fig. 2-1). In equation 3.1, S is the scattering form factor

S(k,w) = (3.2)
VT

and n, (k, w) is given by

n,(k, w) = j jne (r', t')ei(wt'kr')dr'dt' (3.3)

where the space integral is taken over the scattering volume V and the time integral

over a finite time T. It might be important here to understand the meaning of keeping

finite time duration and volume. Note that definition 3.3 does not exactly define a Fourier

transform due to finite V and T. The effect of keeping finite V and T is to restrict the

wavenumber and frequency resolutions to Ak 1/V'/ 3 and Ac - 1/T. Density fluc-

tuations are characterized by a typical scale length, known as the correlation length. If

the correlation length of density fluctuations is much smaller than the scattering volume

length L - V'/3 , then there is no difference between keeping finite V and V -+ 00. A

similar argument applies to w and T. For a discussion on the importance of keeping finite

Fourier transforms in eq. 3.3, the reader is referred to [65] pg. 295-296.

The scattering form factor S in eq. 3.2 measures the enhancement of the scattered

power due collective effects in the plasma (S is directly related to the scattering cross

section, cf. equation 3.1 and reference [68]). We see then that the scattered power is

proportional to the square of the electron density fluctuations P, N h'. We can explicitly

calculate the total scattered power from a coherent density fluctuation with amplitude he

and wavelength A2, and it is given by
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PS = Pr2 L2A2i2 (3.4)
4

This equation allows to directly calibrate the electron density fluctuation spectrum of

the high-k scattering diagnostic at NSTX, and it provides an estimate to the value of the

electron density fluctuations that this system is able to measure. Note that in formula 3.4,

P, r, and Ai are known quantities. The value of P, detected is calibrated beforehand,

so that we're able to obtain a quantitative value of the electron density fluctuations from

scattering experiments.

Consider a scattering process between an incident electromagnetic beam of radia-

tion (subscripted i) and a plasma, giving rise to a scattered beam (subscripted s). We

call ki and k, the wavenumbers of the incident and scattered beams, and k the plasma

wavenumber. In diagnosing density fluctuations by collective scattering measurements, k

corresponds the wavenumber of the fluctuation that is present in the plasma, and is giv-

ing rise to the observed scattering. Typically this fluctuation wave vector is due to some

turbulent process in the plasma. At NSTX, the high-k scattering diagnostic measures

wavenumbers that are characteristic of the ETG turbulent mode (such that k1 p, > 1) as

we will see. We denote by wi and w, the angular frequencies of the incident beams, and

w the angular frequency of the fluctuation in the plasma. In a scattering process we have

conservation laws between energy and momentum

W = WS - W1  (3.5)
k=ks -ki

where ki = I wki = w 2/c and k, = IksI = w./c. Fluctuations probed by the high-k

system at NSTX are typically low frequency, such that w < wi, which means wi e w,

and thus ki a k,. In this situation, we have 1k. - ki12 ~ 2k - 2k, - ki, which leads to

the well known Bragg condition

k = 2kisin(O,/2) (3.6)

where O, is the scattering angle between ki and ks (cf. Fig. 3.10). One of the main

advantages of a scattering diagnostic is the ability to produce a frequency and wavenumber
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spectrum of the turbulent process under study. The wavenumber and frequency spectrum

are the basic signatures a turbulent mode, the ETG mode in our case. Equation 3.6 is a

very useful and important relation keep in mind. It relates the wavenumber k of the plasma

fluctuations that are being probed with the wavenumber of the incident electromagnetic

wave ki and the scattering angle 0. ki is well determined by the wavelength of the incident

beam (ki = 27r/Al) and 0, is determined by the viewing geometry and the collection

optics (Fig. 3.10, 3-2). These two quantities alone are well determined beforehand in

a scattering experiment, and they alone completely determine the wavenumber of the

measured fluctuations. The high-k scattering diagnostic presented in this thesis uses a 280

GHz incident beam with Ai ~ 1.07 mm. Typical scattering angles are 0, ~ 5 - 300,

which allows to probe plasma fluctuations with wavenumbers k ~~ ki < 30 cm-' (recall

k 1 << k1 ), or kp, < 20. These values correspond to high-k fluctuations, typical of the

ETG instability. Owing to particularly low values of the magnetic field, NSTX is able to

diagnose high-k turbulence due to particularly high values of kip, (typically kjp, ~ 20).

These values of kjp, are very hard to measure in conventional aspect ratio tokamaks,

and makes the high-k scattering system at NSTX the unique diagnostic in the world that

measures electron-scale turbulence in tokamak plasmas.

3.3 Experimental configuration of the high-k scattering

system at NSTX

Due to the importance of electron scale turbulence and its relation to the problem of

electron thermal transport, a 280 GHz microwave coherent scattering system (the high-k

scattering system) was implemented on NSTX [92, 127]. This high-k scattering diagnos-

tic measures electron scale density fluctuations on the order of the electron gyro radius

kipe < 1 (p, is the electron gyro-radius). The high-k system has 5 channels available,

which allows it measure 5 distinct fluctuation wavenumbers. Each channel 'looks' at the

plasma with a different angle. In virtue of the Bragg condition (eq. 3.6), each channel

is sensitive to a different fluctuation wavenumber. By detecting fluctuations from the 5

channels, one is able to produce a wavenumber spectrum of fluctuations, as will be shown
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Figure 3-2: a) Experimental configuration of NSTX shot 141767 (view from the top). The

probe beam is launched nearly on the midplane. Gaussian beam propagation is calculated

using a ray-tracing code. The different channels of the scattering system each measure

a different fluctuation wavenumber k. b) Orthonormal basis (e, i, li) used to denote

the radial, parallel and binormal components. c) In black are the (k,, k1j, kb) components

of the fluctuation wavenumber k. One can also decompose k into radial, poloidal and

toroidal components (kr, kp, kt)(in purple). Both decompositions completely determine

k. The perpendicular wavenumber k1 is given by k = k + kb. In this thesis we work

with a decomposition along the basis (er, ej, eb).
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in a later chapter of this thesis. The beam propagation geometry for 4 of the channels is

shown in figure 3-2 (beam propagation is carried out using a ray-tracing code).

The propagation of the incident beam is chosen to be nearly on the midplane for a tan-

gential scattering geometry, and is shown in figure 3-2. As we have seen in this chapter,

collective scattering theory shows that the detected scattered power P, is proportional to

the mean square of electron density fluctuations h' (c.f. eq. 3.4). The scattering system

consists of five collection channels that simultaneously measure five different wave num-

bers in the range 5 < k$ < 30 cm- 1. The trajectory of the probe beam and the k response

are computed using a ray tracing code. Heterodyne receivers installed on each channel

allow one to determine the direction of propagation of the observed fluctuations [92, 127]

in the lab-frame. (As we will later see, the detected fluctuation spectrum in the lab-frame

is subject to a Doppler shift. Determining the Doppler shift WD will allow us to determine

the propagation direction of fluctuations in the plasma-frame, cf. the Doppler subtraction

section for more details). The wavenumber resolution of the observed electron density

fluctuations Ak 0.7 cm- is well determined by the gaussian beam diameter of the

probe beam [127]. A remote control system of launching and receiving optics allows for

between shot adjustment. The radial coverage of the detected electron density fluctuations

is R = 106 - 144 cm, and the radial resolution AR 2 cm. This small radial resolution

is the unique feature of the high-k scattering system at NSTX.

The near tangential geometry of the NSTX high-k scattering system forces measured

wave vectors to be primarily radial k, with a small binormal component kb satisfying

kb/kr ~ 0.2 - 0.3. Note the binormal direction (along eb, Fig. 3-2 b), c)) is perpen-

dicular to B and on the flux surface, and it does not correspond to the poloidal direction

(subscripted p in Fig. 3-2.b) and c)). The radial direction (along er, Fig. 3-2 b), c))

is perpendicular to the flux surface (cf. Fig. 3-2, 4-3). Typical values for the parallel

wavenumber kII satisfy k1 /k 1 < 0.01, so we assume here kI = 0. Taking k1 = 0, we can

map the flux surface components of k from (kII, kb) to (kp, kt) (cf. Fig. 3-2) as follows

kp kbcos< 
(3.7)

kt = kbsin

Fig. 3-2 clarifies the notation. Additionally, the perpendicular component k1 is equal
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in this notation to k_ = k kr.

It is a common practice to express the measured wavenumber values as dimensionless

quantities by using the ion sound gyro-radius p, (p, is computed using local values of

electron temperature Te and magnetic field from equilibrium reconstruction p, c,/wci

with c, = VITe/mi and wci = q2Bo/mi).

In this thesis we focus on a particular experiment, shot 141767 in which the scattering

system is sensitive to fluctuations taking place at R ~ 135 - 136 cm with radial resolution

AR 2 cm. Channel 1 measures kps ~ 13 - 17 and kbp8 ~ 3 - 4, which in physical

units typically corresponds to k, ~ 18 - 25 cm-1 and kb - 5 cm 1 . As the reader will

notice, the high-k system is mostly sensitive to the radial component of the fluctuation

wavenumber kr, and it does not capture the dominant kb component of ETG turbulence,

which is usually a much higher wave number. Most of the figures and results presented in

this thesis will come from channel 1 (unless otherwise specified).

For a complete description of the NSTX high-k scattering system, the microwave

source and waveguide, the launch and receiving hardware, the quasi-optical beam propa-

gation and the heterodyne receiver, the reader is referred to D.R. Smith's PhD thesis [127]

and Rev. Sci. Instruments article [92].

3.4 Detection of short-scale anisotropic turbulence at NSTX

The first evidence of the existence of the turbulent modes driven by the electron tem-

perature gradient (ETG modes) was obtained by Mazzucato first using reflectometry [63]

and later repeated using scattering experiments with microwaves [64]. Since then co-

herent scattering of microwaves from small scale electron density fluctuations in fusion

plasmas has struggled to obtain high spatial resolution measurements. Based on the work

done by Park in [76,77] and Devynck et al in [75], a proposal for a new high-resolution

diagnostic system was approved and installed in NSTX. We present here the principle of

spatial localization and wave-number resolution employed in the NSTX high-k scattering

system.

As was shown in equation 3.4, the length of the scattering volume L is essential to

determining the value of the scattered power P, (for calibration purposes). The length of
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Figure 3-3: Geometry of the incident and scattered beams. The overlap volume is the
region of intersection between the two beams. On the left, the measured wavenumber
satisfies the conservation relation k = k, - ki (image courtesy of [68]).

the scattering volume is a measure of the spatial resolution of the measured fluctuations.

A rough estimate of the scattering volume can be obtained by simply considering the

overlap volume between the incident and scattered beam, as is shown in figure 3-3. One

obtains

L/2 = w/sin(05 /2) = 2wki/k (3.8)

For typical NSTX parameters A = 1.07 mm, w = 2 cm, k = 15 cm- 1 one finds L ~

30 cm. This very rough estimate of the scattering volume length L can be greatly reduced

by making use of our understanding of the turbulence being probed and the magnetic

geometry at NSTX.

The previous estimate we found for the scattering volume length (eq. 3.8) did not make

any assumption on the type of turbulence being probed, and is only valid for the case of

isotropic turbulence (turbulence that is isotropic in all dimensions: along the perpendicu-

lar and parallel directions to B). However, we already mentioned in the previous chapters

that drift wave turbulent modes under investigation in this thesis are highly anisotropic:

they form elongated structures along the magnetic field B but have small spatial length

scales perpendicular to B (note we do not address here the question of anisotropy in the

perpendicular (kr, kb) plane). The typical spatial dimension along the magnetic field lines
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scales as k1i ~ 1/qR [40] where q is the safety factor and R is the major radius. The

particular case of ETG turbulence diagnosed by the high-k scattering diagnostic has a

length scale perpendicular to the field lines that scales as kipe < 1. In other words, the

turbulence under investigation satisfies k1l < k-L. For practical purposes we will assume

k - B = 0 in the discussion that follows. In other words we will assume that the wave

vector of detected fluctuations is purely perpendicular to the local magnetic field (this is

indeed a very good approximation, as not only theory [40] but ray-tracing calculations

carried out for the particular discharges presented in this thesis provide wave-vector com-

ponents that satisfy k1 /kI < 10--2).

The Bragg relation in equation 3.6 gives yet a further constrain on the detected wave-

vector k. The two constrains a measured wave-vector k must satisfy can be summarized

as follows

k-B=0
(3.9)

k = 2kisin(Os/2)

The first condition of equation 3.9 makes the probed wave-number dependent on the

magnetic geometry. As the reader will see, highly curved magnetic field lines will have

an impact on the measured k, more precisely it will constrain the scattering volume and

highly improve spatial resolution. This can be easily understood in the simple case where

the propagation of the probe beam and receiving beam is on the midplane, as is shown

on figure 3-4. Given a fluctuation wavenumber k, the reader will convince himself that

conditions 3.9 are only satisfied at points P and P2. First, the condition k -B = 0 forces

P1 and P2 as the only possible scattering locations along the incident probe beam, for

a given fluctuation wavenumber k. Second, the Bragg condition forces the direction of

k to be outward at P and inward at P2 as is shown in figure 3-4. The scattered beam

propagates along k, and its direction of propagation is highly sensitive to the magnetic

field line curvature, for a given fluctuation wavenumber k. The red shaded area shows the

propagation of the incident microwave beam and the blue shaded area shows the scattered

microwave beam that is actually detected by the receiver (note that in the configuration

presented in Fig. 3-4 the receiver does not detect wave-vectors originating from P and P2 ,

but it is sensitive to a smaller k that gives rise to the scattered beam in blue arriving to the
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receiver). It might not be completely obvious in this situation as to why we have so many

scattered beams on Fig. 3-4 (in P1, P2 and the scattered beam detected by the receiver

in blue). We can understand this as follows: as the probe beam propagates through the

plasma, it scatters at all locations along the probe beam and in all directions, with an

intensity given by equation 3.1. What is unique in a scattering experiment is that the

collection optics are oriented in a particular direction that selects a particular wave-vector

k at a particular location (cf. Fig. 3-2.a) and 3-4).

An important comment to make here is that the detected wavenumber is purely in

the radial direction k, for the case of midplane propagation. In the actual experiment,

the beam propagation of the high-k system at NSTX is nearly in the midplane, but not

exactly. As it turns out, slightly off midplane propagation can further improve the spatial

localization of the scattering experiment, and at the same time will introduce a finite

binormal component kb in the detected wavenumber k. The NSTX high-k scattering

diagnostic has adopted an off-midplane probe beam and collection optics, which as we

shall see enhances the spatial resolution of the measurement.

The detection efficiency of the receiver is quantified by the instrumental selectivity

function F. Following the derivation outlined in [68, 113, 114], we turn to compute the

instrumental selectivity function F. We assume a probe beam with Gaussian amplitude

profile A('ri) =exp(-r I/w 2 ), where r is the perpendicular direction to the propagation

direction (set by ki for the incident beam and k, fo the scattered beam. Note r1 is perpen-

dicular to k; and not to B). The beam spectrum is simply the Fourier transform of A and

is given by G(t, 1 ) =exp(--I/2) where ri is the component of the beam wave-vector

perpendicular to the propagation direction.

Consider an spherical coordinate system (u, v, t) in which the t-axis is along k; and

0, is the angle between ki and k8 , i.e. the scattering angle (c.f. Fig. 3-5.a)). In this

coordinate system we can write ki and k, as follows

0 kjsinOscospo

ki = 0 k= kjsinOssinw (3.10)

ki kicosO,

which form an angle OS as expected, and satisfy Ik,| = Iki|. The idea is to find an
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Figure 3-4: Scattering geometry for midplane propagation. Given a wavenumber k, condi-
tions 3.9 are only satisfied at P and P2. The disparity between the scattered wave-vectors
k, at P1 and P2 is due to the curvature of the magnetic field lines, which constricts the
scattering volume as shown. The receiver is not sensitive to fluctuation wavenumbers
originating from P and P2, but it is detects a smaller k that in turn gives rise to the
scattered beam in blue arriving to the receiver.
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expression for KI (value of wavenumber perpendicular to the direction of propagation)

as a function of the geometry and other known quantities, such that the beam spectrum

G(,I) will provide the collection efficiency given by the instrument selectivity function

F. In practice, the scattering receiver is set to point in the direction where efficiency

is maximum. Assume this direction is given by k,, (bold blue line in Fig. 3-5.a) and

c)). Since the receiver has a finite wavenumber resolution, we refer to any other detected

wave-vector by k,' (see Fig. 3-5.a) and c)).

First, we're interested in determining the angle a between k, and k' assuming |k, =

lk'. The result is readily obtained by a simple dot product k., - k'/k?. After simple

algebraic manipulations (follow [68, 113, 114]), one finds

a2 ~ 402sin2 (6op/2) (3.11)

The wavenumber perpendicular to k, is given by K- = kia (cf. Fig. 3-5.c)). The

angular collection efficiency is readily obtained from the beam spectrum G(ri'i)

F =-exp(-a 2/aO) (3.12)

where ao = A/ki. Note the Gaussian depence o F with a. The Bragg condition

for small scattering angles is written as k = kiO,. Puiting everything together yields the

instrument selectivity function

F = exp[-(2ksin(6p/2)/A) 2 ] (3.13)

As one might expect, the collection efficiency is maximum at a = 0 and decreases

as a increases. One can obtain an expression for o as a function of the local magnetic

field using the relation k - B = 0 in our particular geometry. The expression is rather

cumbersome and not particularly enlightening, so we invite the reader to refer to [68,113,

114] for all the details. However, it is interesting to point to one important consequence

of that derivation. Given a magnetic geometry (from model or EFIT reconstruction) one

is able to plot the instrument selectivity function as a function of x (coordinate along

the incident probe beam, cf. Fig 3-4). The result is given in figure 3-6 (with permission
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Figure 3-5: a). Orthogonal coordinate system used to derive the instrumental selectivity

function F, following [68, 113, 114]. Incident wave-vector ki in red, and scattered k,

for which efficiency is maximum (F = 1) is in bold blue. In thin blue is an additional

scattered wave-vector k' detected by the receiver, but for which the detected efficiency has

decreased with respect to k, by F =exp[-(2ksin(6/2)/A) 2 ] b). Geometry within the

flux surface at the scattering location. / is the angle formed between the incident wave-

vector ki and the local magnetic field B (note ki is tangential the scattering location, thus

inside the flux surface). c) Definition of I as the component of the detected wave-vector

that is perpendicular to k. k, is the wave-vector that produces a maximum efficiency

(F = 1).

of [68]) for an ITER scenario with major radius 5.2 m and minor radius 2 m [78].

As we mentioned previously, off-midplane propagation can lead to a further enhance-

ment in the spatial resolution of the scattering system. We call / the angle between the

local magnetic field B and ki (cf. Fig. 3-5.c) for clarification). The idea behind this is

that the conditions in expression 3.9 become extremely sensitive to the angle / as it gets

to smaller values. For midplane propagation, / takes the value of the magnetic pitch angle

S(cf. Fig. 3-5.c)).

In Fig. 3-6 is plotted the instrument selectivity function F for different values of beta

(with permission from Mazzucato [68]). Panel a) corresponds to a value of # = 4.3",

b) corresponds to / = 140 and c) corresponds to /3 = 18". The width of the instrument

selectivity function clearly increases with increasing /, meaning that minimizing 3 is the

good strategy to further improve the spatial localization of the scattering measurement.

Off-midplane propagation of the probe and scattered beams can achieve this by helping

align ki with B. For this reason, NSTX adopted off-midplane propagation to implement
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Figure 3-6: Instrument selectivity function F along the x coordinate set by the probe
beam propagation direction (Fig. 3-4). a) Angle / = 4.3'. b) Angle 3 = 14'. c) Angle
0 = 180. Note how lower angle / between ki and B enhances the localization of the
measurement.

the high-k scattering diagnostic. The probe beam and collection optics are set to make

~ 4 - 50 with respect to the midplane.

Concerning the wavenumber resolution, a similar procedure can be carried out. Drop-

ping the condition Ik,, k' 1, the instrument selectivity function now takes the form

F exp[-((k' - k)2 4k'ksin2 (6 o/2))/A 2 1 (3.14)

from which the wavenumber resolution Ak = A is readily obtained. The radial reso-

lution of the scattering system is limited by the beam width w. For typical NSTX param-

eters, one finds a wavenumber resolution Ak ~ 2/w 1 cm- 1 and a radial resolution of

AR ~w ~ 2 cm.

We have shown in this section how high spatial and wavenumber resolution is achieved

using the high-k scattering diagnostic at NSTX. This condition makes the NSTX high-

k system unique in the world in the detection of highly resolved, short-scale electron

density fluctuations. Obtaining a highly localized measurement is crucial to study the
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dependencies of the observed density fluctuations on local equilibrium quantities, such

as electron temperature and density gradients, safety factor, magnetic shear etc. In this

thesis, we report on the influence of the local electron density gradient on the observed

electron density fluctuations measured with the high-k scattering system at NSTX.
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Chapter 4

Analysis tools

In the previous chapter we described the principles of the scattering process and its

use for diagnostic purposes, and we described the experimental configuration of the high-

k scattering system at NSTX. In this chapter, we turn to the practical side to provide the

reader some useful information necessary to reproduce the work presented in this thesis.

4.1 On-site and remote users from PPPL

The National Spherical Torus Experiment is based at the Princeton Plasma Physics

Laboratory (PPPL) in Princeton, NJ. PPPL is a U.S. Department of Energy national lab-

oratory dedicated to fusion energy research. The first thing to do for on-site and remote

users is to create a PPPL account. In the framework of the present project and contract

between MIT and PPPL I was working under the supervision of Dr. Stanley M. Kaye

(kaye~pppl.gov), Principal Research Physicist and Head of the NSTX Physics Analysis.

Stanley and Lena Scimeca (lscimeca~pppl.gov), Technical Assistant at PPPL provided

me the information necessary for creating a PPPL account and a UNIX account. In the

case where the user will be running TRANSP, it is important to contact Lena or Stanley

for establishing TRANSP account.

The previous information is valid both for on-site and remote users. Remote users

further need to procure a SecurlD token to connect through VPN to the PPPL network

(contact Lena for obtaining the SecurlD token). Information for VPN access is detailed at

https : //vpn.pppl.gov. Once VPN is established, the user has the choice of connecting
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to the PPPL servers by SSH connection or using NoMachine. For both purposes the con-

tact is Ashwini Borkar, Unix/Linux System Engineer at PPPL (aborkar opppl.gov). For

downloading NoMachine to a Student Workstation at PSFC-MIT or to a personal/work

computer, the user should go to the website https : //www.nomachine.com.

Once all these connections are established, the user is now able to access NSTX data

from the tree and proceed with the physics analysis.

4.2 Accessing NSTX data

In this chapter we refer to NSTX data as data stored in the MDSplus tree from each

diagnostic corresponding to past NSTX discharges. Typical data used in this thesis comes

from the magnetics (Mirnov coils, Rogowski coil, etc.), profile diagnostics (Thomson

scattering MPTS, charge exchange CHERS etc.), high-k scattering, and other such as the

D0 signal and interferometer for the line-integrated density.

There are several ways to access data stored from past NSTX experiments, and one

could choose either options depending on the purpose. One method is using the Web,

namely the Web Tools platform provided by PPPL available at http ://nstx.pppl.gov/

nstxl Software/. Web Tools are particularly useful for finding MDSplus signal names

as well as for preliminary data visualization and analysis. However the most efficient way

to perform a detailed analysis of NSTX experiments is to access MDSplus data directly

from UNIX clusters or personal computers without used the Web. The software Matlab

was used in the course of this work as a tool to access and perform analysis of NSTX data.

Matlab routines mdsconnect ('lark.pppl.gov : 8501'), mdsopen('activespec', shot), mdsclose

and mdsdisconnect need to be included in the beginning and the end of each Matlab

script to access MDSplus data. The routine mdsvalue('signalname') is also necessary

for accessing a particular signal data.

All the Matlab routines used to create the work presented here can be found in my

personal directory at PPPL /u/j'ruizrui/matlab/myroutines. A list of the routines

used is given in the appendix. Of particular importance in this work is the access of data

from the high-k scattering diagnostic, and the subsequent frequency analysis.

The routine get hkdata.m provides two arrays of time and raw signal from the high-
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k scattering system, for each channel. Measurements presented in this thesis were per-

formed using 7.5 MS/s. The time history of the high-k data was subdivided in Hann

windows of 546 ps. Fast Fourier Transforms (FFTs) were calculated within each Hann

window using 8192 time samples. The frequency resolution is 1.83 kHz. For each time

window with N = 8192 time points, the time averaged signal power is

1N N

P = E |V(tj)r =5 |(fk (4.1)
j=1 k=1

where V is the Fourier Transform of V over the time interval of the Hann window

N

V(fk)-= N V(tj)exp(-2i7fktj) (4.2)
j=1

Using this technique of frequency analysis with Hann windows on raw high-k data

one is able to reconstruct figure 4-1. Figure 4-1.a) shows the spectrogram of measured

fluctuations channels 1, 2 and 3 of the high-k scattering diagnostic, along with time slices

of channel 1 in 4-1.b) as reconstructed using the Matlab routine plot-highk-spec.m. Fig.

4-1 is plotted in log scale and units are in dB. Note that the high central peak at f = 0

is due to stray radiation. The high-k features of electron density fluctuations we focus on

are at negative frequencies (f < 0).

As was mentioned in the previous chapter, each channel of the high-k scattering sys-

tem is oriented at a given angle with respect to the incident beam of radiation, which

selects a different wavenumber of fluctuations for each channel. The wavenumbers kLp,

that each channel is sensitive to are explicit in Fig. 4-l.a).

One additional analysis tool used in this thesis is accessing TRANSP data. TRANSP

is a time dependent numerical transport code used in tokamak experiments [71-73]. In

the field of transport one is often interested in knowing what are the particle, energy and

momentum fluxes within the plasma. It is impossible to calculate these fluxes by inserting

probes into the plasma due to the hot conditions of fusion plasmas, and probes can only

be implemented at the plasma edge. TRANSP has figured a way to calculate fluxes of

particles, energy and momentum based on power balance calculations. TRANSP takes

as input experimental profiles along with detailed models of unavailable data from exper-
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Figure 4-1: a) Spectrogram of high-k density fluctuations from channels 1, 2 and 3 of shot
141767 of the high-k scattering system at NSTX. b) Frequenc\ spectrum of fluctuations
corresponding to times as shown on a) by vertical color lines from channel 1. Note b) are
simply time slices of channel 1 at the vertical color lines. Each channel is sensitive to a
different wavenumber kLp, as is indicated in a).

iments (such as NBI heating absorption by the plasma using Monte Carlo calculations)

and neoclassical calculations to solve the power balance equation for all species in the

plasma, and arrive to an expression for the particle, heat and momentum diffusivities

(transport coefficients corresponding to fluxes). The interested reader is encouraged to

turn to references [71-73] for all the details of using TRANSP from the physics foun-

dation to the practical matters. The Matlab routine getjtransp.m is used in this thesis

to access TRANSP data from previous TRANSP runs. In particular for shot 141767, we

used the transp ID 'BOl' and 'C02'.

Apart from being able to calculate transport coefficients such as the electron or ion heat

diffusivities, TRANSP was of particular use in this thesis to obtain values of the E x B

shearing rate according to the Waltz-Miller definition [74]. TRANSP was also used to

obtain values of the radial electric field used in the Doppler shift frequency subtraction

(see section on Doppler shift in this chapter). One important use of TRANSP was as being

an input file to linear gyro-kinetic simulations using GS2. The use of linear gyro-kinetic

simulations is explained in the following section. As will be mentioned, linear gyro-

kinetic simulations require experimental profiles from the diagnostics as well as input files
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from TRANSP. All these aspects of using TRANSP will be explained in the corresponding

sections of this thesis.

The suppression of turbulence by E x B shear flow is a universal turbulence sup-

pression mechanism in tokamak plasmas [22-24]. The E x B shearing rate is defined

as

(RBO) 2  
__E3

3ExB ~ B OV) RBo '3

The E x B shearing rate is usually compared with the linear growth rate -y of the

particular turbulent mode under study. A general rule of thumb to determine the reduction

or suppression of a turbulent mode is the following: when Y < YEx B, the turbulent mode

is said to the reduced or suppressed by E x B shear [74]. In figure 5-8.a) we plot precisely

the linear growth rates of ion-scale and electron scale turbulent instabilities along with the

E x B shearing rate. In that situation we have YE ExB, and we conclude that ion scale

turbulence is suppressed by E x B shear.

Performing a transport analysis using TRANSP and comparing results with nonlinear

gyro-kinetic simulations is the next step of the piece of work presented in this thesis.

I have not made extensive use of TRANSP in the work presented in this thesis. For

making TRANSP runs, obtaining a TRANSP account the reader is referred to http

//w3 .pppl.gov/transp/DigiCert/ Instructions. html and reference [73].

4.3 The gyrokinetic code GS2

GS2 is a 6f gyrokinetic code that solves equations 2.13 using a field aligned, flux tube

geometry [123]. In the work presented in this thesis, GS2 is run in its linear mode. Linear

gyrokinetic simulations are able to provide linear growth rate, real frequency and mode

structures of instabilities such as ITG, TEM, ETG, etc. Linear gyrokinetic simulations

can also provide critical gradients for instability, following the procedure outlined in [94]

and also at the end of this section.

On this work we focus on instabilities having zero radial wavenumber (k, = 0) corre-

sponding to the most unstable mode. The binormal wavenumber kb (perpendicular to the
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magnetic field and inside the flux surface) is a free parameter. In GS2, the convention is

that positive real frequencies correspond to propagation in the ion drift direction (ITG) and

negative real frequencies correspond to propagation in the electron drift direction (ETG,

TEM). Typical wavenumbers for the ITG and TEM instability are kbp, ~ 0.3 - 0.8.

Simulations where kbp, ~ 0.3 - 0.8 will be referred to in this thesis as ion-scale sim-

ulations. The ETG instability that we focus on this particular work has wavenumbers

kbp, ~ 20 - 50, and we will refer to simulations in that particular regime as electron-

scale simulations. Drift wave instabilities such as ITG, TEM and ETG exhibit parallel

mode structure with even parity for q (cf. Fig. 4-2 c)), and micro-tearing mode exhibit

parallel mode structures with odd-parity [90]. The linear simulations presented are fully

electromagnetic, and include fluctuations in A, B11 and N.

GS2 evolves the distribution function in a field aligned, flux tube geometry [84].

The computational domain follows a magnetic field line and can extend several toroidal

lengths around the torus. In the perpendicular direction only several gyro radii are sim-

ulated. This elongated, or flux tube, computational domain is well suited for calculating

properties of local instabilities and transport (if run in the nonlinear mode). The geometry

specification used is based on the Miller local equilibrium model [123]. For information

concerning the GS2 implementation of the Milller local equilibrium model, please refer

to [86,87].

The simulation time step in GS2 is set by the namelist parameter delt. delt is

normalized to units of a/c8 , where a is the LCFS minor radius and c, is the sound speed.

The parallel spatial grid is determined by nperiod and ntheta. The number of 27

cells along the field line is 2*nperiod -1. The number of grid points per 27r cell is

ntheta (needs to be an even number). In this work, we set delt = 0.01 for ion scale

simulations and delt = 0.001 for electron scale simulations, nperiod = 4 - 6 and

ntheta = 48 - 96.

The energy computational parameters are negrid, ngauss and ecut. negrid

is the number of energy grid points, ngaus s is the number of passing pitch angles, and

ecut is the energy grid points cover. We typically used neg rid = 16, ecut = 2.5 and

ngau s s = 10, and those parameters were not varied in all simulations presented here.

GS2 allows to import numerically generated output from other numerical codes used
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in the fusion community. We used output files from the MHD equilibrium reconstruction

codes EFIT [88] and LRDFIT [89]. We also used output files from the numerical trans-

port code TRANSP. All this was implemented in the routine gs2_submit.m, and will be

detailed in the appendix.

The routine used in this work to create GS2 input files is called gs2_submit.m. Ad-

ditional numerical parameters related to the type of implicit scheme used can be specified

as input in gs2_submit.m. Ion-scale simulations use values bakdif = 0.9 and f expr

= 0.1, and electron scale simulations use bakdif = 0.03 and fexpr = 0.45. The

routine gs2_submit.m is also able to perform local scans of equilibrium quantities such

as the electron temperature gradient. When local scans are computed, all experimental

input parameters are set fixed, and only the quantity under scan was varied. The electron

temperature gradient is specified as a normalized quantity Ro/LTe = RO|VTe /Te where

RO is the flux surface center (major radius). Note RO does not correspond to the major

radius location where the gradient is computed.

Following the procedure outlined in [94], local scans on Ro/LT, were performed to

calculate the critical electron temperature gradient using GS2 (Fig. 4-2). We compute

the critical electron temperature gradient at a given time and radial location. Given a

particular wave number kbpS, linear growth rates -y were computed. Then the value of

RO/LT, (recall that Ro/LT, is the driving mechanism for ETG under study here) was

varied until we approached marginal stability (-y = 0) for that given wavenumber. Linear

extrapolation provides the value of Ro/LT, value that saturates -y for for that particular

wavenumber, and we call that value (Ro/LTe )k. The same procedure was carried out

for different wavenumbers, and the corresponding value of (RO/LTe )k was recorded. The

critical electron temperature gradient (Ro/LTe )crit is defined as the minimum value among

the previously recorded (Ro/LTe)k values, such that (Ro/LTe)crit = mink{(Ro/LTe )k}

This value will indeed saturate the linear growth rate associated to all the wavenumbers

calculated, and will correspond a stable ETG regime.
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Figure 4-2: a) = b) Schematic representation of the procedure carried out to numerically
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135 cm and kbp, = 21. d) Parallel vector potential perturbation AlI for the same values as
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4.4 Ray tracing calculations

Scattering experiments are a vey powerful method of diagnosing turbulent fluctuations

in magnetized plasmas. Unlike other diagnostic techniques, multichannel scattering ex-

periments are able to provide a wavenumber spectrum of the measured fluctuations, as we

will see in the next chapter. It is thus very important to determine the correct value of the

wavenumber k detected by each channel of the scattering diagnostic. As was mentioned

already in this chapter, the measured wavenumber can be determined beforehand by the

Bragg condition k = 2kisin(O,/2). However, this can only provide an estimate of the

measured k. Morover, as well will see shortly, inhomogeneities present in the plasma

such as density gradients give rise to refraction of the incident probe beam of radiation,

thus complicating the calculation of the the measured wavenumber. Simple analytical

calculations are thus not appropriate for these kind of experiments and one has to rely on

numerical simulations to access the measured wavenumber, and this is the purpose of ray

tracing calculations.

Refraction effects of the incident beam of radiation are usually small, but certainly

not negligible and result to be very important in the implementation of the high-k scat-

tering diagnostic. In addition to determining the measured fluctuation wavenumber by

the scattering system, ray tracing is also able to account for refraction, calculate the exact

scattering location, the scattering volume, and the instrument selectivity function, which

will be defined later.

The conditions of validity for ray tracing can be summarized in a simple condition

jVkj < k 2 , known as the geometrical optics approximation or WKB approximation.

This approximation states we can treat each individual ray of incident radiation as inde-

pendent from the rest of the rays. The geometrical optics approximation also states that

the wavelength of the incoming radiation does not vary significantly as the wave prop-

agates a distance of one wavelength in the plasma (weakly inhomogeneous medium),

and one could easily convince himself of this fact jVkj < k2 e 271 VAI < 1. We

can calculate the value of jVk /k 2 easily in the following way. By definition of the re-

fractive index N = ck/w, we have jVk /k 2 = c/w(VN/N 2 ). As a rough estimate,

we can approximate N 1 (high frequency limit and far from cutoffs). The gradient
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VN is easily approximated by VN ~ a/L, where a is the refraction angle given in

appendix (a ~ neL/2ncLne). Thus we find the expression |Vk|/k 2 ~ ca/wL. Tak-

ing typical values for a ~ 100, L - 1 m, f = 280 GHz and c = 3.108 m/s, we find

ca/wL ~ 10-4, 10- < 1 and the geometrical optics approximation is well suited here

for ray tracing calculations in typical NSTX plasmas.

The starting point of ray-tracing calculations is the dispersion relation of waves in the

plasma. The cold plasma model is well suited in NSTX like plasmas for frequencies far

from cutoffs and resonances. Typical time scales of the plasma are the electron plasma

frequency fpe = wpe/27 1/27r(nee2 /meco) ~ 60 GHz (ne ~ 5.10 19 m- 3 ), the electron

cyclotron frequency fce = wce/27r = 1/27r(eBo/me) ~ 14 GHz (Bo 0.5T). The

electron thermal speed vte = V2Te/me takes the value 107 m/s (Te ~ 0.5 keV). In

comparison, the probe frequency of the incident beam is 280 GHz. At this frequency

we're in the high frequency regime, far from cutoffs and resonances (W >> wpe, Wc), and

the cold plasma model is valid. In fact, w/kJvte > 1 for typical kl < k1 ~ 2.103 m- 1,

and kipi < 1, where Pe =Ve/Wc~ 104 m. We proceed then to compute the cold

plasma dispersion relation in the high frequency regime, known as the Appleton-Hartree

dispersion relation (c.f. for example reference [65] for a proper derivation).

Maxwell's wave equations in (w, k) space can be written as

k x (k x E(w, k)) + -, E - E(w, k) = 0 (4.4)

where E is the dielectric tensor and E is the wave electric field. Note that here k does

not correspond to the plasma fluctuation wavenumber but to the probe beam wavenumber

denoted as ki in the rest of this thesis. In this section we will make no use of the plasma

fluctuation wavenumber and we will simply use k to denote the probe beam wavenumber.

We use the orthonormal coordinate system (&z, eY, z) obtained from the previous

(er, Cl1, Cb) by the correspondence ex = e., ey = eb and --. We call 0 the angle

between k and the background magnetic field BO. From equation 4.4 we can define the

dispersion tensor
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S - N2 cos2 O -iD N2 cos0sinO
w22

V = kk-k2  2 = 2 iD S-N 2  0 (4.5)

N2cos~sin 0 P - 2sin20

with N ck/w and S, P, D are Stix parameters given by

S 1 - )PS
- /-. 2 Q2

D = Z QW
2  (4.6)

P1-Z~2
P =W1

Where the sum Z. is performed over the species present in the plasma. Note the

definition of Q, = qB/m, includes the sign convention: Q, < 0 and Qj > 0. The

condition D - E = 0 provides a non trivial solution for E provided D det(D) = 0,

which gives the dispersion relation

AN 4 - BN2 +C = 0 (4.7)

where A = Ssin20+Pcos 2 O,B = (S2 -D 2 )sin20+PS(1+cos 2 0), C P(S 2 -D 2 ).

Equation 4.7 is quadratic in N2 , and can be solved to provide two solutions

BkvB 2 -4AC 2C
2A BT B2 -4AC (4.8)

which ultimately gives rise to the Appleton-Hartree dispersion relation [65,66]

D = 1 - N 2 - X(-X)= 0 (4.9)
1 - X - Y2sin 20 k Y 2sin20)2 + (1 - X) 2y 2cos 2O

where X = ,/2 and Y = Qe/w. This dispersion relationship describes O-Mode

(+ solution) and X-Mode (- solution) at perpendicular propagation 0 = wF/2 and parallel

propagation at 0 = 0.

We can now write the ray equations using the dispersion relation 4.9. They are given

by [66,68]
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dr O)D dk OD
dT -kD- --- (4.10)dT =_k A )=0 dT Or I'=O

where T parametrizes the distance along a ray. Given initial conditions (r(0), k(0))

one is able to compute the ray trajectory (r(T), k(T)) by integrating equations 4.10.

Equations 4.10 are a system of 6 nonlinear ordinary differential equations, which can

be solved numerically using the Runge-Kutta method [69]. Equations 4.10 typically have

to be solved in toroidal geometry which introduces an axisymmetry condition around the

toroidal angle 0. For more details on solving the ray equations in toroidal geometry, the

reader is referred to [68,70].

The ray-tracing code used during the course of this work was implemented by Y. Ren

and D. R. Smith, both currently scientists from the Princeton Plasma Physics Laboratory.

The matlab routines used in this thesis are all noted in the appendix. For more details

about the ray tracing code used in this work, the reader is referred to D. R. Smith's PhD

thesis [127].

4.5 Doppler shift frequency subtraction

Neutral Beam Injection heated (NBI) plasmas at NSTX exhibit high levels of toroidal

rotation. It was emphasized in section 1.4.3 the importance of achieving high levels of

toroidal rotation in tokamak plasmas. For the purposes of our scattering experiment, high

levels of toroidal rotation in tokamak plasmas have a direct consequence on measured

frequency spectra of fluctuations.

One important feature of the type of turbulence that is being diagnosed is the propa-

gation direction of the measured frequency of fluctuations in the plasma frame. We need

to distinguish the laboratory frame (labframe), which is the frame of reference where the

scattering signal is detected and the plasma frame in which the plasma is stationary. We

mentioned in the previous section that heterodyne detection is able to determine the prop-

agation direction of the detected electron density fluctuations in the labframe. However,

to access the propagation direction in the plasma frame, we need to perform the Doppler

subtraction of the measured signal.
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Figure 4-3: Flux surface geometry used to compute the Doppler shift frequency WD of
fluctuations introduced due to toroidal rotation. We use the orthonormal coordinate sys-
tem (&,, &i, &s) in the radial, parallel and binormal directions respectively. ( is the mag-
netic pitch angle.

In order to explain the direction of propagation of fluctuations in the plasma frame,

it is important to define the geometry we will use. Consider the orthonormal coordinate

system (&,, &i, &) nfgue32ad4.Weal phefequency of fluctuations as they

were emitted in the plasma frame, and Wiab the frequency of fluctuations as we detect them

in the lab frame. The general Doppler shift frequency can be proven to be WD ~ tvt (the

reader is encouraged to turn to the appendix for a proper derivation of this expression).

Due to toroidal rotation, measured frequencies of fluctuations in the lab-frame will be

Doppler shifted from plasma-frame fluctuation frequencies. The lab frame frequency of

detected fluctuations is related to the plasma frame frequency of fluctuations by

lab Op+ WD p tot (4-.11)

Theory states that plasma fluctuations due to the electron temperature gradient (ETG)

instability propagate along the electron diamagnetic drift direction VDe = Pe X B/erne B2

in the plasma frame [97, 98] (due to toroidal geometry and other effects, the propagation

phase speed for ETG instability fluctuations is not exactly VDe, but it is on the same

direction as VDe). We call these electron modes. Conversely, fluctuations due to the ion

temperature gradient (ITG) instability propagate in the ion diamagnetic drift direction

VD -~p X b/eriaB2 , and we call them ion modes. Determining experimentally

the propagation direction of the measured fluctuations in the plasma frame is thus an
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important step towards resolving the kind of turbulent mode that is being diagnosed with

the high-k scattering system.

As we have mentioned, WD e ktvt, where the toroidal direction is along Bt = Btet.

Here 6t = cos(I) 11 - sin( )&b (cf. Fig. 3-2 and 4-3). It is important to mention here

that the direction of the plasma current I in NSTX plasmas is along -&t, i.e. in opposite

direction to the toroidal magnetic field Bt. Looking at the toroidal component of VDe and

VDi we have

-' I Bsin_1 d4ThBp
VDe et eneB2  enB2 > 0

(4.12)

'' I &Bp
enjB2

From these expressions, we can conclude that plasma co-rotation (i.e. along -6t)

shifts the lab-frame frequency spectrum of electron and ion modcs towards the ion direc-

tion. This is an important statement. Having access to toroidIl rotation data allows us

to determine the propagation direction (in the plasma frame) oF the measured frequency

spectrum by the high-k scattering system.

We would like to comment here on the value of vt used iit this thesis to compute the

Doppler shift frequency fD ktvt/27r. Our final goal is to compare Doppler subtracted,

plasma frame frequency of fluctuations with real frequencies given by linear gyrokinetic

simulations using GS2. Linear gyrokinetic simulations are carried in the plasma frame.

The toroidal velocity of the plasma frame is related to the radial electric field through the

radial force balance equation

Er =- +v tBp - vpBt (4.13)
Zinie

where the subscripts p, t indicate respectively the poloidal and toroidal components

of the velocity v and magnetic field B. Under usual conditions in tokamak plasmas, the

poloidal velocity term vpBt is negligible. In regions outside the pedestal or internal trans-

port barriers, the pressure gradient term Vpi/Zinie is also negligible and the toroidal

velocity term usually the dominant term. In the particular plasma discharge presented in

this work, the poloidal velocity term typically accounts for a ~ 5% contribution to E,
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Figure 4-4: a) Plasma toroidal velocity suffers a change in sign in the time of interest.
b) High-k frequency spectrum of fluctuations. Note how the change in vt translates into
a shift in the measured lab frame frequency of fluctuations. This example shows how
plasma co-rotation produces a Doppler shift in the ion diamagnetic drift direction. Figure
adapted from [67].
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and the pressure gradient term typically has a - 15% contribution. Based on this approx-

imation, the radial electric field in GS2 is calculated using uniquely the toroidal velocity

term, which sets the toroidal velocity of the plasma frame in which GS2 calculations are

performed. TRANSP simulations can provide the value of all terms in equation 4.13. The

toroidal velocity is then computed as follows vt = E/Bp. This is the definition used in

this thesis to compute the Doppler shift frequency fD.

Figure 4-4 provides an example of the Doppler shift effect on measured fluctuation

spectra. In this particular discharge, the plasma toroidal velocity was subject to a change

in direction, and the effect was observed on the high-k frequency fluctuation spectrum.

Positive toroidal velocity corresponds to plasma co-rotation and negative toroidal velocity

corresponds to plasma counter-rotation. At t ~ 0.39 s, the toroidal velocity is close to

o (vt ~ 0) and the plasma frame frequency of fluctuations f, = w,/27r can be read

directly from the frequency spectrum in 4-4 .b) as indicated (note how at t ~ 0.417 s the

toroidal velocity vt ~ 0 and a similar frequency is observed from the high-k spectrum in

4-4.b)). Recall that fluctuations measured by the high-k system propagate in the electron

diamagnetic drift direction. This defines the ion drift direction as being in the f < 0

direction. As time increases, at t - 0.4 - 0.41 s, the toroidal velocity has a negative

value, and the frequency spectrum from the high-k is shifted in the electron direction

(vt < 0 corresponds to plasma counter-rotation). At later times t > 0.42 s, the toroidal

velocity becomes positive which corresponds to a Doppler shift in the ion diamagnetic

drift direction as was previously argued. Figure 4-4 was adapted from [67] to provide

a clear example of the toroidal velocity effect on measured lab frame high-k frequency

spectra.

On the next chapter will be presented the experimental observation of the density gra-

dient effect on high-k electron density fluctuations. In particular, we will present a system-

atic method of obtaining the plasma-frame frequency of high-k fluctuations, and how this

will provide an experimental dispersion relation of the measured frequency spectra. This

will then be compared to real frequency of fluctuations calculated using the gyrokinetic

code GS2 and the influence of the electron density gradient will be highlighted.
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Chapter 5

Experimental observation and analysis

of density gradient effects on high-k

turbulence

The influence of electron density gradient on ETG turbulence was first pointed out

by Y. Ren et al. in [111]. The normalized local electron density gradient (RO/Le) was

reported to stabilize longer wavelength modes (kp, < 10), and reduced the plasma

effective diffusivity. Nonlinear ETG gyrokinetic simulations carried out for the same

NSTX discharge 140620 were reported in [112], and showed in fact that the fractional

electron heat flux was greatly reduced at lower ETG wavenumbers and at the same time

shifted towards higher wavenumbers.

This chapter presents the measurements, ray-tracing calculations and linear stability

analysis carried out with the gyrokinetic code GS2 for a particular NSTX NBI-heated H-

mode plasma discharge. Experimental measurements show an absence of electron density

fluctuations detected by the high-k system when the experimental temperature gradient is

at marginal stability levels with the critical gradient for ETG (eq. 2.8). Measurements

also show how the local value of the electron density gradient affects the amplitude of the

electron density fluctuations when the experimental temperature gradient surpasses the

critical gradient linear threshold. According to the ETG critical gradient (cf. eq. 2.8),

the discharge presented here is electron density gradient dominated. The electron density
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gradient is shown to experimentally have a big impact on density fluctuation data. Lin-

ear gyrokinetic simulations using GS2 show that ETG is indeed unstable at the scattering

location and the local electron density gradient is shown to have a big impact on the lin-

ear growth rate and real frequencies from GS2. Experimentally measured wavenumbers

corresponding to peak values of the wavenumber fluctuation spectrum exhibit a positive

correlation with the local electron density gradient. Wavenumber values corresponding

to peak linear growth rates from GS2 simulations also show a correlation with the local

electron density gradient and a similar behavior is observed from linear gyrokinetic sim-

ulations and experimental measurements. The plasma frame frequencies of fluctuations

obtained by Doppler subtraction of lab frame frequencies from the high-k system exhibit

a correlation with the local electron density gradient, and a similar trend is observed with

real frequencies calculated by GS2. The similar behavior between density fluctuations

measured by the high-k system and linear gyrokinetic simulation results shows a good

connection between experiment and simulation.

5.1 Experimental study of electron density gradient de-

pendence

Here we focus on a particular experiment of an NBI-heated NSTX H-mode plasma

(shot 141767). The general characteristics of the discharge are shown in Fig. 5-1. The

NBI heating power is stepped down from a maximum value of 6 MW to a value of 2

MW, and stays constant during the time range of interest. The time range of interest is

chosen to be t > 0.3 s (see vertical dashed line in black in Fig. 5-1), corresponding to

a time span where MHD activity (indicated in the low-frequency Mirnov signal) is quite

low (Fig. 5-1.d)). Plasma current is ramped up until a time slightly before 0.3 s, when

it reaches the flat top phase, followed by a controlled current ramp-down phase between

0.4 s to 0.45 s from a value of ~ 1.1 MW to ~ 0.9 MW. An ELM-like feature is observed

at t ~ 0.292 s from the D0 and low-f Mirnov signal followed by a smaller ELM-like

feature at t ~ 322. Low-f Mirnov fluctuations quiet down after the big ELM event at

t ~ 292 ms (black dashed line), and high-k electron density fluctuations start to develop

86



Shot141767
6a) NB (MW)

6a)MA)
4 C
2r

0

5 d .Low-f Mirnov (G)

0

8 e line-integrated f (115cm
6 d

o o.1 0.2 0.3 0.4 0.5 a
t(s)

f)3
f)2

N

-2

9) 4

2

0

_ 1

141767 ch 1

Da (a. u.)

-- --
low-f Mironv (G)'

28 0.3 0.32 0.34 0.36 0.38 0.4
t(s)

Figure 5-1: General characteristics of shot 141767. a) NBI heating power PNB (MW),

b) plasma current 4, (MA), c) D, emission (not calibrated), d) low frequency magnetic

fluctuations (G), e) line-integrated density 77, (1015 cm- 2 ), f), g), h) Zoom on fluctuation

spectrogram, D, signal and low-f Mirnov signal showing the onset of ETG fluctuations

after a small ELM feature at t ~ 322 ms (red dashed line).

after the small ELM event at t ~ 322 (red dashed line in Fig. 5-1.g)). The line-integrated

electron density (Fig. 5-1.e)) and toroidal magnetic field (Bt ~ 4.6 - 5 kG) are fairly

constant during the time range of interest. Preceding 0.3 s the low-f Mirnov signal shows

high MHD activity. High amplitude MHD activity will contaminate the scattering system

fluctuation measurements, thus we will only focus on the time range after t = 0.3 s where

MHD activity is observed to be weak.

In figure 5-2.a) is plotted the frequency fluctuation spectrogram from channel 1 of the

high-k system, along with time slices showing the frequency spectrum of fluctuations at

t = 398, 448, 498, 565 ms in 5-2.b). The colored lines in 5-2.a) correspond to the analysis

times in 5-2.b). Radial profiles of electron density and temperature are shown in 5-2.c)

and 5-2.d). The electron temperature gradient is the driving mechanism for ETG turbu-

lence, and it does not significantly change at the scattering location. The electron density
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Figure 5-2: a) Frequency fluctuation spectrogram from channel 1. b) Fluctuation spec-
trum from channel 1 at times corresponding to the vertical color lines in a). c) - d)
Electron temperature and density profiles.

gradient undergoes a large change in the scattering region. The electron density gradient

is weak at t = 398 ms (RO/L,, ~ 1.5), and it corresponds to a time where the fluctuation

level on 5-2.a) and 5-2.b) is highest. As the electron density gradient increases at later

times, the fluctuation amplitude decreases and a correlation can be established. Note how

the electron density gradient is highest at t = 565 ms (RO/L,,, 6.4), and the fluctua-

tion amplitude is lowest at that time. This qualitative preliminary correlation between the

electron density gradient and density fluctuations from the scattering diagnostic will be

explored.

Theory suggests that the electron density gradient can have a stabilizing influence on

the ETG turbulent mode. As its name indicates, the ETG drift wave turbulent mode is

driven by the electron temperature gradient. Theory suggests that the relevant driving

parameter for ETG is q, [98-100]

lie = Lne-/LTe = (neVTe)/(TeVne) (5.1)

The parameter 77e incorporates temperature gradient as driving mechanism, but also

takes into account the density gradient value in the denominator. Since Vn, is in the de-
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nominator of eq. 5.1, the electron density gradient can be seen as a stabilizing mechanism

for ETG. This is also in agreement with the critical gradient formula derived by Jenko et

al [94] and shown in eq. 2.8. For reference, we reproduce the critical gradient formula

once more

( Ro/ LT,jcjt = max 08oL,(5.2)
(I + T)(1.33 + 1.9%/q)(1 - 1.5c)(1 + 0.3d/de) (5.

where T ZeffTe/Ti. The first term very closely relates to the 71e parameter, ex-

cept for the factor 0.8 of little relevance here. Once more, the electron density gra-

dient term appears as a stabilizing mechanism. High enough values of RO/Ln6 will

raise the critical gradient value, thus having a stabilizing influence on turbulence. The

first term in 5.2 corresponds to the slab limit of ETG, since Ro is simplified out when

(RO/LTe)crit 0.8R/Lne. The second term in eq. 5.2 corresponds to a toroidal term,

where the complexity of the geometry is introduced by the inverse aspect ratio e, elonga-

tion K and magnetic geometry through A/q.

We want to highlight the condition under which this formula was derived, and presum-

ably most valid. The electron temperature critical gradient in equation 5.2 was derived

under the assumptions of positive magnetic shear (. > 0.2 ), low-/3 and large aspect ratio

A (cf. [94]). These conditions preclude the use of eq. 5.2 for typical NSTX plasmas,

characterized by high- and small aspect ratio. To test the applicability of the Jenko crit-

ical gradient formula, we computed explicitly the critical gradient using GS2, following

the procedure outlined in the previous chapter.

The Jenko critical gradient value (eq. 5.2) is calculated for the particular discharge

under study here, and is shown on Fig. 5-3. The two terms in the max function are also

plotted in blue (density gradient term) and green (toroidal term). The local values of elec-

tron density ne and electron temperature Te present in the Jenko critical ETG formula are

measured with the Multi Point Thomson Scattering diagnostic at NSTX (MPTS, [121]).

Ion temperature T and effective ion charge Zef f are measured with the Charge Exchange

Recombination Spectroscopy system (CHERS [120]). Magnetic shear s, safety factor q

and inverse aspect ratio E are obtained using LRDFIT (LR circuit model with Data Fitting
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capabilities) equilibrium reconstructions constrained by magnetic pitch angle measure-

ments from the Motional Stark Effect (MSE) diagnostic [122]. All these experimental

values are local values, meaning they are computed at the scattering location.

In figure 5-3, triangles show the critical gradient computed using GS2. The first com-

ment to note here is that the GS2 computed critical gradient agrees with the Jenko critical

gradient for most part of the discharge. This rather surprising result allows us to use

the Jenko critical gradient to estimate the linear threshold for instability in this particular

discharge. From now until the end of this thesis, we will assume eq. 5.2 is correct and

applicable in our case of study. It can also be noted from Fig. 5-3 that the electron density

gradient term in blue is dominant for most part of the discharge. According to formula

5.2 (which we assume correct according to our previous discussion), the local value of

the electron electron density gradient completely determines critical electron temperature

gradient value, which will affect ETG turbulence as predicted by theory. High enough

values of RO/L, will be able to raise the critical gradient linear threshold above the ex-

perimental temperature gradient value, and thus stabilize turbulence. This motivates the

study of the electron density gradient effects on ETG turbulence diagnosed by the high-k

scattering diagnostic. The characteristics of this particular discharge are very favorable

for the study of the electron density gradient influence on high-k fluctuations, since this

discharge is density gradient dominated as can be seen from Fig. 5-3.

We want to compare the critical gradient value at the scattering location with actual

density fluctuation data from the high-k system. In figure 5-4 is plotted the total scattered

power from channel 1 (integrated spectrogram in frequency from Fig. 5-2.a)) along with

the experimental and critical electron temperature gradient at the scattering location (black

and red respectively in Fig. 5-2.b)), and the difference between the two in Fig. 5-2.c).

Recall that the total scattered power is directly proportional to electron density fluctuation

amplitude according to equation 3.1 (Ptt ~ f(6ne/hne) 2 dv), and we will use both terms

interchangeably in the following discussions.

For early times (t ,< 0.33 s), the experimental temperature gradient is at marginal

stability levels with respect to the critical gradient, and no high-k fluctuations are observed

at that time in Fig. 5-4.a). Note the high spike at t ~ 292 ms from 5-4.a) corresponds to a

powerful ELM event and does not correspond to ETG fluctuations. As the critical gradient
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Figure 5-3: Jenko critical gradient (black) and both terms in the max function (green
and blue curves). Triangles show the critical gradient explicitly computed using GS2,
following the procedure outlined in the previous chapter.
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Figure 5-4: a) Total scattered power from channel 1 of the high-k scattering system.
The total scattered power is found integrating the frequency spectrogram in Fig. 5-2.a) in
frequency. b) Experimental (red) and critical temperature gradient (black) at the scattering
location. c) The difference R/LP - R/LP indicates whether ETG is unstable or not,
and should correlate to the presence of electron density fluctuations.
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Figure 5-5: a) Fluctuation spectrogram from channel 1. b) Total scattered power from
channel 1 of the high-k scattering system. c) Jenko critical gradient (black) and both
terms in the max function (green and blue curves).

suddenly decreases at t - 330 ms, R/LER - R/L egk, increases in Fig. 5-4.c), and ETG

becomes unstable. At that time, electron density fluctuations start to develop in Fig. 5-

4.a). An important comment should be made concerning this figure. During the time span

t ~ 0.36-0.53 s (grey time panel), R/LP - R/LJe,,k has a very similar value. However,

this very similar value of R/L'x - R/LJegko gives rise to a very different fluctuation

amplitude in 5-4.a). This suggests the following form of the modelled turbulent electron

radial heat flux

turb - GB e, - Ro/Li"t) (5.3)qe Xe f(Vne, ...XB **)(RILLTe, ILII~Te

such a model contains a linear threshold for instability given by Ro/Lrit (which can

depend on various plasma parameters as shown by eq. 5.2), as well as a nonlinear depen-

dence of qturb on other plasma parameters. We aim to show in this work the nonlinear

dependence of such a function f on the local electron density gradient.

In figure 5-5 is shown the influence of the electron density gradient on the fluctuation

amplitude of the high-k scattering system. We argued from figure 5-4 that the difference
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R/Lex - R/L Jenko determines the presence of electron scale density fluctuations. We

saw how at t ~ 0.33 s, R/L - R/L enko > 0 and fluctuations develop at the same

time. Looking at Fig. 5-5.c), we see that the sudden decrease of R/L eAko at t ~ 0.33 s

is due to a big decrease of the density gradient (term in blue). This experimental remark

is in agreement with dependence of the linear threshold on the density gradient given by

equation 5.2. ETG remains unstable and high-k fluctuations persist until the end of the

discharge (cf. Fig. 5-4).

The electron density gradient term (0.8Ro/Ln,, blue curve in Fig. 5-5.c)) is dominant

for most part of the time range of interest (t > 0.3 s). The fast broadband ELM event seen

at t ~ 292 ms from the total scattered power (Fig. 5-5.b)) precedes a high increase in the

electron density gradient, as can be seen from the 0.8RO/L, term increase on panel 5-

5.c). These high levels of RO/L, make it the dominant term in the Jenko critical gradient

(260 <3 t < 330 ms), and set the critical gradient to marginal stability levels with respect

to the experimental temperature gradient value: ETG is marginally stable during that

time and no high-k scattered power is detected. As the electron density gradient drops at

t ~ 330 ms, the critical gradient drops well below the experimental temperature gradient

(cf. Fig. 5-4.b)), and ETG is unstable. At that time, high-k fluctuations (Fig. 5-5.a))

start to develop and the total scattered power increases. In fact, ETG remains unstable

and high-k fluctuations persist until the end of the discharge (Fig. 5-5.a)). Between

360 < t < 410 ms, the electron density gradient term becomes subdominant (blue curve

on Fig. 5-5.c)), and an enhancement of high-k fluctuations is observed in figure 5-5.a)

and b). As the electron density gradient becomes the dominant term in the Jenko formula

at t ~ 420 ms, high-k fluctuations appear to mitigate. Recall that 360 < t < 410 ms

corresponds to a time span where R/L"P - R/Lcyri is practically constant (cf. gray panel

in Fig. 5-4.c)). The previous comments support the claim of a nonlinear dependence of

qturb on the local density gradient Vne as suggested in eq. 5.3. After a sudden increase in

the electron density gradient at t ~ 520 ms, high-k fluctuations appear to mitigate once

more (Fig. 5-5.a) - b)). The current ramp-down phase from t = 400 and t = 450 ms

(Fig. 5-1).b) does not appear to have a big impact on the critical gradient, since the s/q
term remains subdominant during the current ramp-down phase (Fig. 5-5.c)).

We have seen how in this particular discharge, the electron density gradient can affect
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Figure 5-6: a) Scattered power from channel 1 of high-k scattering diagnostic, at time t =
398 ms. Fluctuation frequencies are Doppler shifted by fD ktvt/27r. The plasma frame
frequency of fluctuations f, is obtained by fp = flab - fD. b) Dispersion relation obtained
experimentally from measured electron density fluctuations.

transport related quantities such as electron density fluctuations. We now wish to study

the dependence of the real frequency of fluctuations with the density gradient. In the pre-

vious chapter we saw how the measured frequencies in the lab frame (flab) are Doppler

shifted from intrinsic frequencies of measured fluctuations in the plasma frame fp, by

a quantity fD ktvt/21r, and fp = flab - fD (Fig. 5-6.a)). A proper justification of

the Doppler shifted frequency expression fD ktvt/27w is given in the appendix. Here

kt is the toroidal component of the fluctuation wavenumber (obtained from a ray-tracing

code), and Vt is the toroidal velocity at the scattering location, obtained from charge ex-

change recombination spectroscopy (CHERS) measurements [120] and TRANSP calcu-

lations (cf. section on Doppler shift in previous chapter). The quantity flab is defined

as f fS(f)df/ f S(f)df, and is shown on figure 5-6.a) for the time t = 398 ms, as a

black line passing roughly through the maximum of the spectral peak of fluctuations at

f ~ -1000 kHz. S(f) is the frequency spectral power on figure 5-6.a) at t = 398 ms.

At each time in the analysis, the Doppler-subtracted, plasma frame frequency of fluc-

tuations fp can be plotted against the experimental perpendicular wavenumber (obtained

by a ray-tracing code). This provides an experimental dispersion relation of the measured

fluctuations, and can be compared with a dispersion relation obtained from a linear gy-
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rokinetic simulation. On figure 5-6.b), the plasma frame frequency fp is plotted against

the perpendicular wavenumber k1 of the measured fluctuation by the high-k scattering

system. In this notation k1 = + k', where kb is the binormal component of the

measured wavenumber and kr is the radial component (cf. Fig. 3-2). At a given time, the

different wavenumbers correspond to the different channels of the high-k scattering diag-

nostic. The experimental dispersion relation shown on Fig. 5-6 is plotted at four different

times. We note that the uncertainties in fp come from kt and vt. Higher wavenumbers give

rise to higher plasma frame frequencies. In the following sections, we wish to compare

the plasma frame real frequency with real frequencies calculated by GS2 linear analysis.

A wavenumber spectrum of fluctuations can be obtained by integrating the frequency

spectrum (Fig. 4-1.a)) from the different channels. In figure 5-7, the wavenumber values

are calculated using a ray-tracing code. At t = 398 ms the fluctuation level is high, and

corresponds to a time when the electron density gradient term (Fig. 5-7.b)) is subdomi-

nant in the Jenko critical gradient. At t = 448 ms the fluctuation level at low and mid

wavenumbers (kp, ,< 12) has been greatly reduced. At this time the electron density

gradient term has become dominant in the Jenko critical gradient. At t = 498 ms the

electron density gradient term is still dominant (marginally dominant) in the ETG critical

gradient formula. At the same time, lower-k (kp, ~ 10) density fluctuations have no

significant change with respect to t = 448 ms, but higher-k (kips > 12) density fluctua-

tions at t = 498 ms have noticeably increased from t = 448 ms levels. At t = 565 ms,

the fluctuation wavenumber spectrum is similar to the spectrum at t = 498 ms at higher-k

wavenumbers (kp, > 13 - 14) but the lower-k fluctuation level has also increased with

respect to t = 498 ms. The electron density gradient seems to be most efficient in sta-

bilizing lower-k fluctuations (kp, < 10, still high-k), and also in shifting the spectrum

towards higher k.

We have seen in this section how the local value of the electron density gradient is

correlated to the density fluctuation amplitude. It is shown how the linear threshold for in-

stability has a clear dependence on the electron density gradient through the Jenko critical

gradient formula. In addition, the electron density gradient is shown to have a stabilizing

influence on high-k density fluctuations during ETG unstable time periods.
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Figure 5-7: a) Wavenumber spectrum of electron density fluctuations. Note k1 -
k7 + k'. b) Jenko critical gradient and the two terms in the m ax function composing it.

Note the electron density gradient term is the blue curve. Vertical color lines correspond
to the analysis times in a).

5.2 Linear stability analysis

In this section we report on the influence of the electron density gradient on high-k

linear growth rates and real frequencies corresponding to linearly unstable wavenumbers

from the GS2 gyrokinetic code [95]. GS2 is an initial value gyrokinetic code that uses flux

tube geometry. In its linear version, GS2 tracks the fastest growing modes for a given pair

of radial and poloidal wavenumbers. In the linear simulations presented in this thesis, the

radial component k, was set to 0 to find the most unstable mode. Electromagnetic effects

were also included in these linear runs. The linear simulations shown in this section use

local Miller equilibrium [123].

In the first subsection, computed linear growth rates are compared with observed elec-

tron density fluctuations from the high-k scattering diagnostic. Experimental profiles were

used as input in our linear gyrokinetic simulations. In the second subsection, a scan of

the electron density gradient was carried out to confirm the effect of the electron density

gradient on high-k linear growth rates and real frequencies from GS2. In the third sub-

section is shown the impact of the local electron density gradient on real frequency from

GS2 and compared with the Doppler subtracted, plasma frame frequency of fluctuations
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Figure 5-8: a) Linear growth rates computed with GS2 for low-k (0.1 < kbp, $ 1) and
high-k wavenumbers (10 < kbp, < 60). Notice the linearly unstable high-k wavenumbers
are shifting to even higher wavenumbers as time progresses. Horizontal lines correspond
to ExB shearing rate from TRANSP calculations (Waltz-Miller definition [74]). b) Max-
imum linear growth rate computed with GS2. c) Wavenumber corresponding to the max-
imum growth rate computed with GS2. d) Total scattered power (integrated in frequency)
from channel 1 of the high-k scattering diagnostic. e) Normalized electron density gra-
dient RO/L, computed at the scattering location. Notice the similarity between figures
5-8.c) and 5-8.e).

from experiment. In subsection four we gather the visual, qualitative correlations in this

chapter and try to present them in a more quantitative, systematic way.

5.2.1 Correlation between unstable wave numbers and observed fluc-

tuations.

Linear stability analysis was carried out for low-k (kp, < 1) and high-k (kIp, 1)

wavenumber values. The wavenumber kb is normalized with respect to the ion sound gyro

radius p5, and the computed linear growth rates are normalized by the quantity c,/a, where

c, is the ion sound speed, and a is the minor radius.

The computed linear growth rates are shown on figure 5-8 for times t = 0.398, 0.448, 0.498

and 0.565 s. In order to calculate linear growth rates GS2 uses experimental profiles at the

closest experimental time points. Those times correspond to Thomson scattering diagnos-
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tic time points (MPTS), and electron density and temperature values at those times were

used as input for linear gyrokinetic calculations on Fig. 5-8. Low-k linear simulations on

the ion-scale were carried out for wavenumbers 0.1 < kbp, < 1 and high-k simulations

for wavenumbers 10 < kbPS < 60, while k, was set to 0 to find the most unstable mode.

E x B shearing rates computed using TRANSP calculations [71] are also plotted in Fig.

5-8.a) (Waltz-Miller definition [74]) at the analysis times. Similar levels between ExB

shearing rates and low-k linear growth rates corresponding to the most unstable mode

suggest that low-k (ITG) turbulence is suppressed.

Figure 5-8.a) shows that low-k linear growth rates monotonically increase in time

throughout the shot and are substantially lower than high-k linear growth rates. High-k

linear growth rates increase from t = 0.398 s to t = 0.448 s and they decrease afterwards.

Linear growth rates (low-k and high-k) from Fig. 5-8.a) are not correlated with the total

scattered power from the high-k scattering diagnostic (Pt0 t Oc (6n2e/ne) 2 in Fig. 5-8.d)).

In fact, at t = 0.448 s the high-k linear growth rate attains the highest value among the

four times in the analysis (see orange dot), but the fluctuation level in panel 5-8.d) is

lowest at that time.

At each time in the analysis the maximum linear growth rate (-Ymax/(cs/a)) and the

wavenumber corresponding to that maximum linear growth rate kbp,(7Ymax) are calcu-

lated. These two quantities are then computed for several times, and are plotted in Fig.

5-8.b) - c). From the orange dot in 5-8.a) at t = 0.448 s, the values of 7ymax/(cs/a)

and kbPsy/max) are retrieved and mapped in 5-8.b) and c). As we previously noticed, no

correlation is observed between 7max/ (cS/a) and Ptit (indicative of electron density fluc-

tuations) from Fig. 5-8.d), however a correlation can be established with the wavenumber

at the maximum linear growth rate kbps(ymax). During the time 0.33 < t < 0.42 s (grey

time panel), low kbp, ('Ymax) corresponds to a high level of fluctuations. As kbp,(Yrnax)

increases between 0.4 < t < 0.45 s, a clear reduction in density fluctuations is observed.

A period of slight decrease of kbps (7max) between 0.45 < t < 0.5 s corresponds to a

higher level of scattered power Ptot, and a clear increase in kbPs(7Ymax) for 0.5 < t < 0.57

s agrees with a further reduced level of fluctuations.

One additional correlation might be established with the experimental value of the

electron density gradient. A similar shape in the curve kbPs(7Ymax) in time (Fig. 5-8.c)
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) and the local value of RO/La, (Fig.5-8.e) ) suggests a clear correlation. An analysis

of these two curves provides an R2 linear correlation coefficient between kbp, (7max) and

RO/L, of R2  85% (note here R2 denotes a linear correlation coefficient and not major

radius). The previous correlation between fluctuations (P&, in Fig. 5-8.d) and kbps(7Ymax)

(Fig. 5-8.c) can be extended to include the local electron density gradient RO/L, (fig.

5-8.e). Low values of RO/L, correspond to higher level of electron density fluctuations

and vice-versa.

A remark should be made on the similarity between kbps(Ymax) and Ro/Le: the

previous comments allow us to argue that it is the electron density gradient that is driving

high-k turbulence levels (Fig. 5-8.d) to even higher wavenumbers, and at the same time

suppressing lower-k high-k turbulence. The fluctuation level in Fig. 5-8.d) is indicative

of high-k turbulence, and it seems to be driven to even higher wavenumbers by the effect

of the local electron density gradient. To confirm this effect a local scan on the electron

density gradient is carried out using GS2 and is described in the following subsection.

5.2.2 Electron density gradient scan with GS2.

In the previous subsection, a correlation was established between the fluctuation level

from the high-k scattering diagnostic, the linearly unstable wavenumbers corresponding

to the maximum growth rate (kbp,(2max)) and the local value of the electron density gra-

dient (RO/Le). In this subsection, we give further evidence that supports our previous

conclusions of a correlation between the electron density gradient and the linearly unsta-

ble wavenumbers at maximum growth rate kbps (Ymax).

A scan of the electron density gradient is performed about its experimental value,

keeping all other experimental parameters constant. This scan is carried out at two differ-

ent times in the discharge (t = 398, 565 ms). Figure 5-9 shows real frequencies and linear

growth rates computed for different values of the electron density gradient, and at two

different times. At t = 565 ms, the electron density gradient has a high value (Fig. 5-8.e))

and is the dominant term in the Jenko critical gradient formula (Fig. 5.2). A scan on the

local RO/L, shows a big effect on the real frequency and linear growth rate at t = 565

ms computed with GS2 (Fig. 5-9.c) - d)). In fact, additional scans carried out at different
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times (and not shown here) show that more the electron density gradient is dominant, the

bigger the observed effect on linear growth rates. At t = 398 ms, RO/L, has a small

value and is subdominant (cf. Fig. 5-8.e) and 5.2). At that time, the real frequency and

linear growth rate appear to be practically insensitive to small changes in RO/L, (Fig.

5-9.a) - b)). We have shown in Fig. 5-8 that a direct correlation between the high-k

linear growth rates and the local electron density gradient RO/La, cannot be established,

so establishing a correlation between linear growth rates in Fig. 5-9 and RO/L, would be

inappropriate. Notwithstanding, a correlation between the wavenumber at the maximum

linear growth rate and RO/L., can be once more established in the local scan, as is clearly

shown on Fig. 5-9.d) as the RO/L, changes. This is once more in agreement with the

previous statement that the electron density gradient is driving high-k linearly unstable

wavenumbers towards even higher-k values. The local density gradient scan appears to

have a very noticleable change on the real frequency at t = 565 ms. In the following

section we proceed to compare this change in real frequency with experimental plasma

frame real frequencies measured by the scattering diagnostic at NSTX.

5.2.3 Electron density gradient and real frequency

In this subsection we show a comparison between the real frequency obtained from

linear gyrokinetic simulations using GS2, and the Doppler subtracted, plasma frame real

frequency of fluctuations as detected by the high-k scattering diagnostic at NSTX. The

Doppler subtraction was performed following the procedure outlined in the previous sec-

tion of this chapter.

In Figure 5-10 the plasma frame frequency of detected fluctuations is shown in a), and

the real frequency of instability is shown in b). An important remark should be made here

before the comparison is made. The experimental frequencies in a) are plotted against

the experimentally detected wavenumbers kip"P determined by ray tracing calculations.

We saw in chapter 3 on collective scattering measurements at NSTX that the measured

wavenumber by the scattering system is mostly radial, but has a small binormal compo-

nent kb, and k, > kb. In the present convention, k1 = v/k, + kb. Recall that typical

detected wavenumbers satisfy k_ ~ 20 cm'. Concerning the simulation wavenumbers
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Figure 5-9: A local scan on the electron density gradient is carried out at two times. At t =
398 ms, the electron density gradient is low and subdominant in the Jenko critical gradient
(Fig. 5-8.d) and 5.2), and is shown to have negligible impact on the real frequency and
linear growth rate. At t = 565 ms, the electron density gradient is high and dominant
in the Jenko critical gradient (Fig. 5-8.d) and 5.2). At that time, a small change in the
electron density gradient is shown to have a big impact on the real frequency and linear
growth rate.
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in b), they are all set to have a null radial component kr = 0. This condition corresponds

to the most unstable mode of the instability. In that sense, kb is the only component left in

k1 , and the real frequencies in b) are plotted against kbpsi'. The difference between the

experimental and simulation wavenumbers precludes plotting the two curves together. In

the discussion that follows we do not attempt to make quantitative comparisons between

experiment and simulation and obtain agreement within errorbars. Our goal here is to

look for a qualitative trend that might be present in both experiment and the simulation.

One reasonable thing to do would be to run linear gyrokinetic simulations specifying the

experimental value of the wavenumber as input, instead of setting kr = 0 from the start.

These linear simulations were carried out and showed that the mode is linearly stable at

the experimental wavenumber value. A convincing explanation of this fact is not cur-

rently available. Nonlinear gyrokinetic simulations might be needed to further explore

the experimentally detected wavenumber.

We see in Figure 5-10 that the Doppler subtracted experimental frequency seems to

increase in time from a lowest value at t = 398 ms to a highest value at t = 565 ms. This

same trend is observed from the linear simulations carried out. In fact, from t = 398 ms

to t = 565 ms, the electron density gradient is increasing, as can be seen from Fig. 5-8.e).

As the electron density gradient increases, the frequency is decreased (in absolute value)

and approaches 0. This is the same trend observed in the local density gradient scan in

the previous subsection.

In the next subsection we go even further and attempt to make a more direct compari-

son between experiment and simulation, and correlations with the density gradient.

5.2.4 Density gradient and comparison between experiment and lin-

ear simulations

In this section we attempt to present the density gradient effects on density fluctua-

tions, linear growth rates and real frequencies that we explained in the previous sections

in a slightly different manner. We seek a compact way to quantify the correlations previ-

ously found.

In Figure 5-11 are the linear simulation results. Following the procedure established
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Figure 5-10: a) Doppler subtracted, plasma frame frequency of fluctuations. b) Real
frequency of instability from GS2 linear gyrokinetic simulations. Note the very similar
behavior of the real frequencies from experiment and simulation.

previously, at each time we calculate the maximum linear growth rate 7ymax/(cs/a) and

the wavenumber corresponding to the maximum growth rate kbp, (-Ymax). At the particular

time of t = 0.42 s, these values are taken from the orange dot in Fig. 5-11 .a). Linear

simulations are run at different times, and the corresponding values of 'ymax/(cs/a) and

kbPs (Ymax) are retrieved. At each time, a local value of the electron density gradient is also

obtained, and one can plot 7Yax/(cs/a) and kbps(Ymax) as a function of the local value

of the electron density gradient. The plots are shown in 5-1 .c) and d). A very weak

correlation is observed between 7ymax/(s/a) and Ro/Lne, and was previously mentioned

in this chapter. However, a clear correlation is observed between the wavenumber at

maximum linear growth rate and the electron density gradient RO/Lne, and the linear

correlation coefficient is found to be R2 ~ 85%. This correlation was already observed

previously in this chapter, and is presented here once more in a different manner.

To exploit the correlation between real frequency and density gradient, we choose to

pick a fixed wavenumber, and calculate at each time, the frequency corresponding to that

fixed wavenumber. We chose the wavenumber kbp, = 30, and the real frequencies at

four of the analysis times are shown in figure 5-1 .b). The orange dots correspond to the

real frequency values at kbp, = 30 (Fig. 5-11 .e)). In a similar way as was done with

the linear growth rates, Wr(kbp, = 30) is plotted against the local value of Ro/La, at the
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Figure 5-11: At each time, the maximum linear growth rate 7mrax/ (cs/a) and the
wavenumber corresponding to the maximum linear growth rate kbPs(7max) are recorded
(a)), and are plotted against the local value of the density gradient in c) and d). To analyze
the real frequency, the real frequency is calculated at a fixed wavenumber (kbp8 = 30) and
is plotted in e) as a function of density gradient.

corresponding time. A very clear correlation is observed, and a correlation coefficient of

R2~ 91% is obtained. This once more is a very clear indication, from the simulation, of

the effect of the local density gradient on real frequency of instability calculated by GS2.

In figure 5-12 we try to make a very analogous analysis, but this time using experi-

mental measurements. A very clear parallel between figure 5-11 and 5-12 can be made

if linear growth rates are substituted with the wavenumber spectrum of fluctuations from

experiment, as shown in figure 5-7.a). This can be argued by a simple mixing length ar-

gument (cf. [124]). The real frequency from GS2 is replaced with the Doppler subtracted,

plasma frame frequency of fluctuations from experiment. The maximum fluctuation level

(6nre/ne)2ax is plotted against the density gradient in fig. 5-12.c) and the wavenumber

corresponding to the maximum fluctuation level is plotted in 5-12.d). It should be men-

tioned here that this analysis was only carried for times when there was a clear maximum

in the wavenumber fluctuation spectrum, as in figure 5-12.a). Cases where a maximum

in the wavenumber fluctuation spectrum could not be easily determined were rejected. In

practice, when the fluctuation level was determined by 3 points (3 wavenumbers corre-

104



10-1

0

-5

-= 0,432

9 10 11 12 13 14 15 16 1

-10-

-15

-20

_0 5 10
k pexp
IPs

15

C)

2

1

d) 0
14
13
12
11
10

e)

7

0

(Exp.)x 10'

( n e/n max [a.u.]
00

0-

0

R0
R =O.- 5098

. 2 = 0.85059 0 0

0 0 0

0

0 k p @ (b n /n ) [
Se max

M2 n ARWQ7

0 0 0
00 0

00 0 (s/a) @ k p =1

2 3 4
R/L (exp.)

3.2

5 6 7

Figure 5-12: This figure is the experiment analog of figure 5-11. At each time, the max-
imum fluctuation level (6ne/ne)2 and the wavenumber corresponding to the maximum
fluctuation level kbPs,(Qne/fne),)a are recorded (a)), and are plotted against the local
value of the density gradient in c) and d). The real frequency is calculated at a fixed
wavenumber (kp, = 13.2) and is plotted in e) as a function of density gradient.
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sponding to 3 channels, as in a)), were kept only those cases where the maximum clearly

lied in the mid-wavenumber, in order to clearly keep track of the maximum of the fluctu-

ation level and the corresponding wavenumber. Concerning the plasma frame frequency,

we picked a fixed wavenumber, k_Lps = 13.2, and plot on 5-12.e) the frequency corre-

sponding to that wavenumber as a function of density gradient. The same trends found

from the linear simulation are reproduced from experimental data. The best correlation is

observed between the wavenumber at maximum fluctuation level and the density gradient.

The correlation found between the wavenumber at maximum fluctuation level and

density gradient in fig. 5-12.d) can have a tricky interpretation and we would like to

discuss it here. Concerning the experiment, it is true that a gradient in the electron den-

sity affects the measurement wavenumber from the different channels by refracting the

incident beam of radiation. The measurement wavenumber from each channel slightly

changes in time, and in fact, if one were to plot the measured wavenumber from a partic-

ular channel with respect to the density gradient, one would find a very clear correlation.

Refraction acts to increase the detected wavenumber by each channel of the scattering

diagnostic. This effect has nothing to do with plasma turbulence but is purely a refrac-

tion effect due to density gradient. In the appendix we discuss how a density gradient

can give rise to beam refraction using a simple model, and one can see that the refraction

angle a oc dne/dr. Following this argument, one could interpret fig. 5-12.d) as being

purely a refraction effect. However, figure 5-12.d) is picking the wavenumber that gives

rise to a maximum fluctuation level, which itself is a turbulence-related quantity. Even

though a density gradient is indeed bending the probe beam and resulting in bigger de-

tected wavenumbers, when the measurement records a maximum in fluctuation level for

a mid-wavenumber (a case with a clear maximum in (6ne/ne) 2 ), this is telling us that tur-

bulence is strongest at that particular wavenumber, and is the crucial point behind figure

5-12.d). As we have seen from figure 5-11, linear gyrokinetic simulations from GS2 are

in agreement with the experimental observation.

We have shown in this section a quantitative way of presenting the several correlations

observed throughout this chapter. Throughout this chapter we have tried to emphasize the

different correlations observed from simulations and experiment with the density gradient,

and are condensed in figures 5-11 and 5-12. The same qualitative trends are observed both
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from simulation and experiment. The local value of the density gradient seems to be a

main actor affecting high-k turbulence levels in the plasma discharge presented here. One

distinctive feature of this discharge might be the fact that the ETG appears to be density

gradient dominated, as indicated from figure 5-3, and this seems to be the explanation of

the large influence of the electron density gradient in this plasma. Further work might

encompass studying the density gradient dependence in similar discharges, and certainly

one major step in the present analysis would be to study the impact of density gradient on

transport using TRANSP and nonlinear gyrokinetic simulations.
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Appendix A

Expression of Doppler shift frequency

We want to establish a reliable and simple formula for the Doppler shift frequency WD

from first physics principles. The widely used expression WD ktvt is here justified in a

proper manner. I will first carry out the derivation and state the assumptions made one by

one as the reasoning progresses. I will justify the use of these assumptions at the end of

this appendix.

Assume the plasma frame is moving at a uniform velocity 3 = v/c with respect to

the lab frame. It is well known from first physics principles that the relation between wiab

and wp is

Wlab = wp( + 3 - )= Wp + WD (A.1)

where n is directed from the source of emission (plasma frame) to the observation

point (lab frame). WD is the Doppler shift, and it is in general given by WD = k ' v.

However, we can try to simplify this expression thanks to our knowledge of the turbulent

fluctuation wave vector k and the velocity of the plasma frame v, dominated by toroidal

rotation. We use the orthonormal coordinate system (4., &ii, ^b) of figure 4-3. We can

decompose the dot product k - v into its parallel and perpendicular components (with

respect to the magnetic field B)

k -v = k1v 1 + k -vI (A.2)

We make a first assumption' stating that k1iv1 < k -v1 . Second, we can decompose
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Figure A-1: Flux surface geometry used to compute the Doppler shift frequency WD Of
fluctuations introduced due to toroidal rotation. We use the orthonormal coordinate sys-
tem (r, d11, b) in the radial, parallel and binormal directions respectively. is the mag-
netic pitch angle.

the perpendicular component into the binormal and radial components introduced in figure

4-3. We have

kv-~k v -V =kVb+kv, (A.3)

We make a second assumption 2 stating that kv, < kvb, and we obtain

k -v kbvb (A.4)

Here Vb is the binormal component of the plasma frame velocity (not directly available

from diagnostics) and kb is the binormal component of the detected fluctuation wavenum-

ber k. By use of simple geometry, we can further simplify this expression. From figure

4-3 we have sin() = kt/kb. At this stage we make yet a third simplifying assumption3

stating that the total velocity of the plasma is uniquely in the toroidal direction, and it is

the sum of the parallel and binormal components of the plasma velocity. More formally,

we assume

VII + Vb V Vt (A.5)

This is the underlying assumption made in fig. 4-3. Knowing this, we have sin() =

Vb/vt, which allows us to express A.4 as
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WD k - v kbb = vtsinQ ) = ktvt (A.6)
sin( )

This expression for the Doppler shift frequency WD is the desired expression, and the

one used in the analysis of Doppler subtraction performed in this thesis to obtain plasma

frame frequency of fluctuations, as explained in chapter 5.

I now turn to justify the use of the previous assumptions made in the derivation of A.6.

1. This assumption states k11v11 < k -vI = k1 v 1 .

It is well established from magnetized plasma turbulence theory that k1 ~ 1/qR,

where q is the safety factor and R is the major radius [97]. Knowing this we have

k11v 1  1 1 V11  ' 1 1 1

kLv 1  qR k1 v1  qR k 1 tan(

where we made use of v, < Vb, or equally v_L Vb (which gives v1 /Vb = tanr).

Plugging in typical values from experiment we have

k1l v 1  1 1 v1  1 1 1 1 1 (A.8)
klv 1  qR k1 v1  5 x 1m 2000m-1 tanr 10000 tane

where use was made of typical perpendicular wavenumbers k1 ~ 2000 m- 1 as

obtained from ray tracing calculations. The quantity in A.8 is much smaller than 1

for typical values of the magnetic pitch angle in experiment. Note we could've

also used values of k11 obtained from ray tracing calculations. In either case, the

conclusion would've been the same. With this we have justified assumption 1.

2. This assumption states that krVr < kbvb

We rely once more of typical values of k, and kb from ray tracing, and v, and Vb

from TRANSP calculations. We have

kv, 20cm- 1 vr V
--- ~ ~1 ~4 < I (A.9)

kbvb 5cm- 1 Vb Vb

which justifies assumption 2.
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3. The third assumption states v 11 + Vb e Vt .

Note this is an assumption on the flux-surface plasma velocity components. Making

no approximation whatsoever, we can always write

V + Vb = Vt + Vp (A.10)

where Vp is the poloidal component of the velocity. In A. 10 we simply expressed

the flux-surface velocity components in a different coordinate system (toroidal t

and poloidal p components, instead of parallel Il and binormal b components). The

approximation v11 + Vb ~ vt thus simply translates that vp < v, which is generally

justified in tokamak plasmas. TRANSP calculations are in accordance with this

assumption in our particular experiment.

Neoclassical theory is able to justify assumptions 2 and 3 in a proper manner. The

reader is referred to reference [28] for a more theory based justification of these two

assumptions. Here we simply used experimental values for our particular experiment as

calculated using TRANSP to justify our assumptions.

We have thus justified the widely used expression of the Doppler shift frequency WD

ktvt from first physics principles.
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Appendix B

Comments about beam refraction and

diffraction and gaussian beam

propagation

It is instructive to understand the origin of the refraction effects from plasma inho-

mogeneities. We have seen that the scattering angle 0, is selected beforehand by the

collection geometry. We will see that refraction effects can produce a bending of the

probe beam, (see Fig. 3-2) thus affecting the value of the scattering angle 0, with respect

to straight line propagation of the probe beam. Since the scattering angle 0, is directly

related to the measured wavennumber k by the Bragg relation (eq. 3.6), it is important to

correctly determine the value of 0, by properly taking into account refraction effects. Here

we turn to explain how plasma inhomogeneities (the electron density gradient) explain the

process of beam refraction.

Assume an incident beam of electromagnetic radiation of frequency wi (and finite

width d) enters a plasma of electron density ne. The electric field of the incident beam

varies as E = Eei(ki x-wit). As the beam propagates a distance L into the plasma, its

phase varies as # = fL ki - dl, where dl follows the ray trajectory. This can also be

written as # = fL(Nwi/c)dl.

Due to the finite width of the probe beam and a plasma density gradient (inhomogene-

ity in the plasma makes N = N(r, t)), each ray in the beam will experience a different
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Figure B-1: Deviation of light rays in an inhomogeneous plasma. The inhomogeneity
manifests itself as a variation of the refractive index N with position. Note how each ray
in the probe beam traverses a medium with different refractive index N. This gives rise to
differences in the optical path for each ray (assume finite beam width), which ultimately
translates into a bending of the wave front.

refraction index N, which will give rise to a phase shift between the rays and subsequently

refraction of the beam. As we can see from figure B- 1, the refraction angle of the probe

beam a due to the phase shift between the rays is

tan(a) ~ a ~ (j N 2d 2 - Ndl1) /dy ~ (N2 - N1)dl/dy (B.1)
\L 2 L 1 / L

At high frequencies, we have seen that the refractive index of the medium satisfies

the Appleton-Hartree dispersion relation 4.9, which can be further simplified (at high

frequencies) by N 2 - 1 _ 2 /W2 . Since wpe < w (c.f. section 4.4), we have N ~

1 - ne/2nc, where n, is the cutoff frequency given by n, = w2 m'Eo/e2 . Knowing this,

we can find a simple expression for the refraction angle as the beam traverses the plasma

a ~ (N2-N1)dlldy ~ J - (ne2-nei)/2ncdl/dy ~ L (One/0y)d/(2ncdy) nc LSLJL L nc 2 Ll
(B.2)

where L is the length of the propagation of the beam inside the plasma, and Lne is

the density gradient scale length of the plasma as the probe beam traverses it L, =

ne/Vnel. Here we shall assume L ~ Ro, 2RO. Using typical NSTX values RO/L, ~ 4,
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ne ~ 4.1019 m 3 and n, ~ 1021 m- 3 , one finds a ~ 100. This value of the beam

refraction angle is of the same order as typical scattering angles 0, in collective scattering

experiments with the high-k system at NSTX. We see the importance of using ray-tracing

calculations: a simple minded estimate of the scattering angle assuming straight line probe

beam propagation would be off by a value of a - 100. This erroneous value of 0, would

in turn propagate to an erroneous value of the detected avenumber k by the high-k system

(using the Bragg condition k = 2kisin(O,/2)). Not taking refraction effects into account

gives a very poor estimate of the measured wavenumber k.

We have thus given a physical intuitive explanation of the scattering of the probe beam

as it propagates in the plasma from first physics principles. It is important to realize that

the density gradient effect on beam propagation is not a plasma turbulence effect. The

density gradient effect here is independent of the electron-scale turbulence stabilization

by density gradient discussed in chapter 5. The effect that the electron density gradient has

on electron scale turbulence is independent of the refraction process by density gradient.

The probe beam launched into the plasma is approximately gaussian. As is described

in [92, 127], the beam is quasi-optically transformed as it exits the waveguide to produce

a probe beam suitable for scattering experiments. The 2-D beam intensity profiles are

measured with a pyroelectric detector and are fit to a gaussian function. The beam radius

w and the radius of curvature of the wave front R, characterize a gaussian beam (note that

for a plane wave Rc = oc, as is the case for z = 0) and they are given by

w(z) = wo(1+ z2/z)1/2 R(z) = (z' + z')/z (B.3)

where ZR is the Rayleigh length ZR= kjw0/2 and z is the coordinate along the direc-

tion of propagation of the central ray (see Fig. B-2). Typical value of ZR ~ 80 cm (using

Ai = 1.07 mm, wo = 1.65 cm). For values of z>> ZR, w has a linear dependence with

z and the beam divergence angle is OR ~ 4/kiwo 2.360. For the purpose of scattering

of microwaves a plane phase front is required, so the scattering volume should be located

at the beam waist (region near z = 0 where R, -- oc). The diffraction process on the

probe beam propagation manifests itself as the divergence OR. Diffraction effects will be

negligible at short wavelength, and the condition is 0 < A/7rwo. We have thus in hand
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Figure B-2: Schematic of propagation of of Gaussian beam. The probe beam is prepared
to scatter at the beam waist wo is the beam waist (where wave-front is plane), ZR is the
Rayleigh length and 0 R is the beam divergence angle (image modified from [68]) pg. 46.

a useful condition for the importance of the diffraction effects on the probe beam, as we

did for refraction. Note that the refraction condition depends on the plasma condition

(density gradient) while the refraction effects depend exclusively on the characteristics of

the launched beam A and wo.
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Appendix C

List of Matlab routines used in this

thesis

The routines used in the course of this work were written in Matlab. Some of the

routines used were written by myself, although I would like to show my gratitude espe-

cially to Yang Ren for having put his personal routines available, which were of great

use and continue to be. The routines presented here are used to access and plot NSTX

data, perform ray tracing calculations, prepare and analyze input and output files for

using GS2 and for using TRANSP. The routines are located in my personal directory

/u/jruizrui/matlab/myroutines.

The following routines were used to access NSTX and TRANSP data

- getshotcha

in the acutua

" getmirnov.n

" getbfield.m

" getefit.m

- get_lrdfit.m

" get_s.m

* get mpts.m

ract

[ routine).

Get general characteristics of the plasma dicharge (see details

Get signal from Mirnov coils.

Get components of magnetic field B.

Get data from EFIT equilibrium reconstruction.

Get data from LRDFIT equilibrium reconstruction.

Get magnetic shear and other equilibrium reconstruction parameters.

Get MPTS data.
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* get-chers.m Get CHERS data.

* gettransp.m Get TRANSP data.

* plot-chijtransp.m Produce plots from TRANSP data.

" mean-freq-dop.m Perform Doppler shift frequency subtraction.

" get-hkdata.m Get data from high-k fluctuation data.

- get-kspec-morenofit.m Get wavenumber spectrum of fluctuations from high-

k diagnostic.

" k-spectrumt.m Obtain wavenumber spectrum of high-k fluctuations.

" plot-highk-spec.m Construct and plot high-k fluctuation spectrogram.

" analysisroutine_3.m Analyze correlations between equilibrium quantities and

high-k data.

The ray-tracing routines used in this thesis are the following:

" callraytracing.m main routine that calls rayjracing-nstx.m.

- rayjracing-nstx.m (function) inputs: (shot, time, lxang, Izang, cmxang, ewwin,

ewxang,ew-yang,varargin). outputs: matlab structure (rt) with information from

probe beam (pb), scattered beam (sb), and other relevant information.

" ray-tracing_2010.m Equivalent routine to ray-tracing-nstx.m.

The following routines are used to create input files for GS2 and also to plot and

analyze GS2 output.

- gs2_submit.m Create input file and submit to GS2.

" call gs2_submit.m Routine that calls gs2_submit.m with proper input data.

* plot-gs2.m This routine extracts the proper output data from GS2 to plot it

conveniently.

* plot-plot-gs2.m Plot GS2 linear growth rate, real frequency and eigenfunc-

tions.
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