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Abstract

Electrohydrodynamic (EHD) thrusters utilize ion neutral collisions in air to produce
a propulsive force. The ions are generated at an emitting electrode in an asymmetric
capacitor by a corona discharge. This thesis presents a Hybridized Discontinuous
Galerkin (HDG) formulation for solving the EHD thruster governing equations with
the exception of fluid flow equations. The problem is two-way coupled and non-linear.
A smoothed charge injection model from the literature for the corona discharge is
included in the HDG scheme. The formulation is validated against a model prob-
lem which has an analytical solution and parallel wire single stage and dual stage
thruster performance data from the literature. The model problem consists of con-
centric cylinders with charge density and potential specified on the inner and outer
cylinders. The inner cylinder is offset to test the charge injection boundary condition
in an asymmetric solution. The single stage thruster consists of two parallel wires of
different diameters separated by a 1 cm gap. The dual stage thruster consists of three
inline parallel wires of different diameters separated by 1 cm and 3 cm. The HDG
solution for the model problem is found to produce normalized errors on the order
of 10-3 for the potential and charge density solutions. The charge density applied
to the inner emitter electrode is increased over several solution iterations to resolve
high charge density gradients. The charge density boundary condition applied to the
offset case represented the expected qualities of a corona discharge. The smoothed
boundary condition is shown to be tunable to allow for a trade-off between accu-
racy and numerical stability. The single stage thruster model replicated experimental
thrust results within 14% error using homogeneous charge injection and the smoothed
charge injection model requires a less stable setting to achieve similar accuracy. The
dual stage model shows the necessity of a mixed outflow boundary condition to avoid
non-unique solutions.

Thesis Supervisor: Steven R.H. Barrett
Title: Associate Professor
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Chapter 1

Introduction and Theory

Advancements in aerial vehicles and propulsive technologies are only possible with

concurrent development in engineering analysis tools. Development of high perfor-

mance airplanes, unmanned aerial vehicles (UAV), and gas turbine engines have ben-

efited from improvements in analysis tools such as Computational Fluid Dynamics

(CFD) and Finite Element Method (FEM) techniques. Such tools are readily accessi-

ble through resources like openFOAM and the increasing power of personal computers.

New developments in the field of electrohydrodynamics (EHD) geared towards fea-

sible propulsion solutions for aerial vehicles necessitates the development of capable

analysis tools and techniques.

EHD describes the behavior of fluids in the presence of electrostatic fields. The in-

teraction of continuous media and electromagnetic fields is generally called continuum

electromechanics. Melcher provides a detailed look at the governing principles includ-

ing the coupling of Navier-Stokes (N-S) equations governing fluid flows and Maxwell's

equations governing electromagnetic phenomenon [31,32]. An EHD thruster is a de-

vice that uses electrostatic fields to affect a working fluid for the purpose of generating

a propulsive thrust.

Recent work by Masuyama, Gilmore, and Barrett has shown that EHD thrusters

may be of comparable efficiency to conventional means of propulsion in terms of

thrust generated per unit power required [29,30] and provides thrust density appro-

priate for small UAVs [16]. These investigations have been primarily theoretical and
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experimental in nature with simple thruster geometries. Given the results of these

efforts, the researchers aim to produce a proof of concept vehicle which uses an EHD

thruster as the primary means of propulsion.

re

d -V

rc

Figure 1-1: Single stage EHD thruster.

Figure 1-1 illustrates the basic EHD wire-to-cylinder thruster geometry which

has been used in experimental studies [8,16, 29, 30, 33, 51]. The configuration is an

asymmetric capacitor where the electrodes are separated by a distance d and the

voltage difference V between the electrodes is sufficiently high that a corona discharge

is ignited at the smaller electrode which will be referred to as the emitter. The

discharge ejects positive ions into the air gap between the electrodes. The ions are

pulled towards towards the larger electrode, termed the collector, by electrostatic

Coulomb forces given by

fc = pE, (1.1)

where fc is the body force density, p is the charge density in the air gap, and E is

the electric field [19]. Ions undergo momentum transfer collisions with neutral species

in the air gap resulting in flow which is termed the ionic or electric wind. The drift

16



velocity, ID, of the ions in the air gap is

UD= E (1-2)

where /p is the ion mobility in air which is 2.155 x 10-1 m2V-Is 1 for saturated air

(100% RH) and 1.598 x 10 4 m2 V'-s-1 for dry air [49]. The ion mobility is set to

2 x 10-2 m2V-ls-1 for this work. While the ion drift velocity is on the order of

100 ms-, the ionic wind velocity has been measured in the lab at 1 - 10% of the

drift velocity [15, 33]. The ionic wind constitutes a net momentum flux and thus a

net force on the device directed from the collector toward the emitter.

While the behavior and application of EHD thrusters have been characterized in

the lab, the design of EHD thrusters has not been informed with application of model-

ing and analysis tools capable of assessing the impact of specific electrode geometries

and configurations. A tool with predictive capabilities will be essential to the detailed

design of air vehicles which take advantage of EHD thruster technology. This paper

applies the Hybridized Discontinuous Galerkin (HDG) finite element method (FEM)

to the EHD governing equations to develop a numerical scheme for modeling EHD

thrusters. The remainder of this chapter will provide details of the governing physics

and thrust mechanism. Previous work regarding modeling efforts will be discussed in

chapter two. Chapter three presents the theoretical formulation and implementation

of the HDG scheme. Results are reviewed in chapter four and discussed in chapter

five.

1.1 Corona Discharge

In the presence of a high electric field near the emitter, free electrons gain sufficient

energy for ionizing collisions with neutral air particles. The product electrons are

free to undergo ionizing collisions as well while traveling to the positive electrode;

positive ions migrate to the collector and recombine with electrons at the collector

surface. The electron avalanches (Townsend discharge) are self-sustaining only where

17



the electric field strength is high enough that the electrons can be accelerated to

sufficient energies for ionization collisions. The ionization region is thus confined to

a zone very close to the emitter electrode [27]. This is known as a corona discharge

since the electrode geometry strongly determines extent of the ionization region [17].

Thus far only a direct current (DC) unipolar positive corona discharge has been

considered. The phenomenon is also observed for emitting electrodes of negative

polarity or alternating polarity. The present numerical study is limited to a positive

DC corona at the emitter.

The corona discharge, in addition to ejecting ions into the drift region, is also

chemically active. The discharge produces ozone, molecular oxygen and nitrogen,

and nitrogen oxides [5]. The discharge may also produce high energy electrons which

can escape the device and radiation in the UV and x-ray spectrum [45].

The ignition or inception voltage, V, is the voltage at which a corona current is

first observed. The ignition voltage is highly dependent on the electrode geometries

of the EHD device since the minimum radius of curvature of the emitter electrode

determines the maximum electric field. While the ionization processes at the emitter

are best described via the kinetic theory of gases [3], experimental correlations have

been determined to predict the macroscopic behavior of the corona discharge. Peek

conducted a series of experiments to find the critical field strength resulting in the

electrical breakdown of air as a function of the geometry of the emitting electrode and

configuration of the device [41]. His studies were limited to geometries, like parallel or

concentric cylinders, where the maximum electric field can be analytically calculated.

The critical field strength varies according to

C
Ecrit Eom,6 (I + , (1.3)

where E0 , m,, and c are experimentally determined constants and r is the radius of

the emitter wire in cm. This correlation is known as Peek's law or criterion. The

parameter 6 = 3.92P/T, with pressure P in cmHg and temperature T in K, accounts

for variation in atmospheric conditions. The electrode surface condition factor, m,

18



ranges from 0.67 to 1 for electrodes having surface irregularities like scratches or dirt.

Peek recommended using m, = 0.87 - 0.9 for general design purposes.

Table 1.1: Constants for Peek's law

EO[kV/cm] C

Parallel wires 30 .301
Concentric cylinders 31 .308

Table 1.1 provides the remaining constants for Peek's law for parallel wires of

equal radius and concentric cylinders. As voltage is increased after the inception

of the corona discharge, the corona current is observed to increase according to the

Townsend current-voltage relation I xc V(V - V) [6]. The positive corona current

has a reducing effect on the max electric field on the emitter. Kaptsov's hypothesis

is the assumption that the current pins the electric field at the emitter at the critical

value [23]. Peek's law and Kaptsov's hypothesis provide a model of the electrostatic

boundary condition at the surface of the emitter which can be used in numerical

models.

1.2 Thrust Mechanism

While the ionic wind clearly results in a net momentum flux which manifests as

thrusting force on the EHD device, the mechanism by which the force is applied to

the device is less obvious. The charge distribution in the neutral fluid experiences

Coulomb forces from the imposed electric field. By Newton's third law, the charge

distribution must also act on the source of the electric field. Martins and Pinheiro

investigated this hypothesis with numerical models and found that the electrostatic

traction on the collector electrodes is primarily responsible for the EHD thrust [28].

19



1.2.1 Governing Equations

The macroscopic phenomena is described by three systems:

D'J
pf Dt = -V P + A + pvV 2, (.

V - E = (1.4b)
E0

V -j= 0, (1.4c)

where pf is the fluid density, p is the pressure field, and p, is the fluid dynamic

viscosity. For EHD thrusters the working fluid is air. Here (1.4a) is the incompressible

Navier-Stokes equations, (1.4b) is Gauss's law, and (1.4c) enforces the conservation

of charge. The primary unknowns in the system are fluid velocity U', charge density

p, and the electric field E. The coupling mechanism between the fluid flow and

electrostatic equations is the body force (see [14]) fb which is given by

fb= fc = pE. (1.5)

The coupling is two-way since the fluid flow carries charge via advection given by pul.

The current density j is in general

j= p(pE + U') - DVp. (1.6)

The other two terms, pPE and -DVp, are ion drift due to the electric field and

diffusion. The electric field drift term couples the charge conservation equation with

Gauss's law and poses a challenge for numerical approaches to solving these equations

since it is nonlinear. These issues will be addressed in more detail in chapters two

and three.

1.2.2 EHD Thrust Investigations

The thrust produced by EHD devices has been characterized in a laboratory setting

and compared against 1D theoretical analysis of (1.4). The primary findings are
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summarized here. As stated earlier, the EHD thrust T can be computed as the total

Coulomb force on the emitted ions, which in ID is

T =d (1.7)
It

where I is the total emitted current [16,29,30,42]. Gilmore & Barrett take this result a

step further by using a streamtube analysis to show that (1.7) is true regardless of the

impact of the charge distribution on the electric field [16]. Masuyama & Barrett [30]

did note that the thrust deviates from the linear relation at higher applied voltages.

The observed behavior is approximately bilinear for electrode gaps less than 15 cm

and nonlinear for larger gaps. They posited that an electron current discharge at

the collector electrode could account for the reduced performance. This is consistent

with the behavior of corona discharges since high applied voltages induce streamers

and sparks extending from the emitter to collector; these are concentrated current

pathways with reduced interaction between the ions and the neutral media [26].

Since the corona current varies with voltage per the Townsend current-voltage

relation, the thrust also varies with applied voltage V as

T~ CV(V -V)d (1.8)
11L

where C is a geometry dependent constant [6,29]. Since the input power to the device

is simply P = IV, a thruster performance parameter is

T Id d (1.9)
P PIV /V

Thrust per input power is a measure of the thruster efficiency and increases as V

approaches V. While the thrust per power efficiency parameter has been shown by

experiment to be comparable to established means of propulsion [29,30], the achiev-

able thrust density may limit the application of EHD devices. Pekker & Young

identified space charge limited (SCL) currents as a physical limitation of an EHD

thruster and note that the performance of such a device will degrade with altitude



due to the reduction in air density [42]. They used a theoretical 1D thruster model to

also conclude that the maximum thrust density cannot exceed 20 Nm- 2 to 30 Nm- 2 .

Wilson [51] conducted a series of experiments using various electrode shapes hoping

to achieve a thrust density of 20 Nm- 2 . Though he failed in that goal, he did note that

the configurations which resulted in more current draw and hence more thrust did

not have the sharpest emitter electrodes. This implies that increasing the emitting

surface area may also increase thrust.

The presence of a charge distribution in the space between electrodes (space

charge) raises the potential in the gap and will eventually reduce the electric field

to zero at the charge injection point. The current which causes this condition is the

SCL current and varies as

ISCL OC V 2 (1.10)

which is the well known Child-Langmuir law [25]. This effect is observed in ion

thruster space propulsion devices. Gilmore & Barrett [16] take this concept into

account and derive a theoretical max thrust density for a 1D EHD thruster which is

given by
F 9 V 2

-= (- .(1.11)
A 8 d2

Gilmore & Barrett concluded their investigation by finding that the demonstrated

thrust density may be suitable for a small unmanned aerial vehicle (UAV).
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Chapter 2

Previous Work on EHD Thruster

Modeling

Techniques for modeling the field and space charge due to a corona discharge have

been developed for many different applications including electrostatic precipitators

(ESP) [1, 10,35,48,53], cooling for electronics [4], high voltage DC (HVDC) transmis-

sion lines [9], and thrusters [27,28]. The Continuous Galerkin (CG) FEM is commonly

used since it provides flexibility for handling different geometries and commercial

codes like FEMLAB, COMSOL, FLUENT, and ANSYS are available. Implementa-

tions of the CG method vary in the treatment of boundary conditions and handling

of the corona charge injection phenomenon. Further, there are only few examples

in the literature where the electrostatic equations are solved concurrently with the

charge transport and fluid equations.

ESPs differ from EHD thrusters in that the unipolar current generated by the

corona discharge is primarily used to charge and extract particulates or contami-

nants that are present in a fluid flow rather than generating thrust. The numerical

techniques used for their analysis, however, are identical. Adamiak's review of simu-

lation methods for wire-plate ESPs reveals that numerical approaches are limited to

finite difference methods (FDM), CG-FEM, and the Finite Volume Method (FVM).

A number of investigations included solution of the turbulent N-S equations [1]. The

typical approach is to solve the electrostatic and charge transport equations sepa-
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rately and pass the solution as a body force to a flow solver [52, 53]. There are few

formulations that solve coupled flow, charge transport, and electrostatic systems con-

currently; Skodras implemented a simultaneous solver for all three systems with user

defined functions in FLUENT, which is a FVM based code, and Feng achieved a

similar result by applying the standard CG-FEM [14,15,48].

While FVM and CG-FEM can successfully solve the pertinent equations, the use

of Discontinuous Galerkin (DG) methods may overcome the shortcomings of each

approach. DG methods are in a sense a generalization of the FVM in that they are

locally conservative and the elements in the domain are connected by fluxes through

element boundaries; the solution values can thus be discontinuous from element to

element. DG methods, however, have the advantage of allowing high order represen-

tation of the solution within individual elements and thus are better able to handle

large gradients in the solution [50]. DG methods are also more stable compared to

CG-FEM formulations for convection-dominated problems [36,43]. The present prob-

lem is such a case; the dominating term in the current conservation equation is the ion

drift due to the influence of the electric field. While Feng [13] argued that oscillations

in the numerical solution are avoided by the application of Neumann boundary con-

ditions at collector electrodes, the presented examples did not include freestream flow

which would be present for an EHD thruster; large freestream velocities could impact

solution stability with the CG-FEM approach. Further, the implementation of the

charge injection boundary condition using Kaptsov's hypothesis required addition of

additional residual equations which would result in oscillations if the feedback term

was not selected appropriately [13].

The primary criticism of DG-FEM is that the method is too computationally

expensive since they require degrees of freedom on element boundaries in addition

to degrees of freedom on the element interior. The Multiscale DG (MDG) [22] and

Embedded DG (EDG) [18] methods address this problem by considering the solution

on element boundaries as the set of global unknowns. However, MDG and EDG

are not locally conservative and have similar convergence rates compared to CG-

FEM [36].
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The HDG method - first introduced for elliptic problems by Cockburn, Gopalakr-

ishnan, & Lazarov [7] - constitutes an improvement over MDG and EDG in that the

solution is locally conservative and displays optimal convergence rates for all approxi-

mate variables while remaining competitive with CG-FEM in terms of computational

efficiency [36]. Nguyen & Peraire show HDG formulations for a number of different

problem types in fluid dynamics and solid mechanics and note that the generality of

the HDG approach allows it to be readily adapted for other PDE systems including

electromagnetics [36,40] .

While DG methods have clear advantages for problems in computational fluid

dynamics and have been applied to problems in linear elasticity, Maxwell equations,

and plates [2, 40]. Application to EHD equations have been limited. Vaizquez &

Castellanos applied an upwinded DG method to the charge transport equation while

relying on CG-FEM for solving the electrostatic and fluid flow systems for transient

charge injection between parallel plates [50]. They used a simple cut-off scheme to deal

with non-physical negative values of electric charge which result from high gradients;

application of a complex slope limiter would yield more consistent results. They noted

that the upwinding results in a more diffusive solution compared to Particle-in-Cell

(PIC) or Method of Characteristics (MOC) results; a diffusion term was not included

in the formulation. Overall, Vizquez & Castellanos concluded favorably for applying

DG methods to the charge transport equation due to the high accuracy of the steady

state solution and ease of implementation compared to the PIC method.

Tools for analyzing EHD thrusters using FVM and CG-FEM have already been

developed but suffer from the shortcomings of each numerical scheme. HDG for-

mulations for a variety of flow systems have already been developed but have not

been coupled to the electrostatic and charge transport systems. Given the proven

advantages of the HDG approach and a need for a predictive analysis tool for EHD

thrusters, application of the HDG method to the electrostatic and charge transport

equation is a worthwhile endeavor and the first step in developing a tool for analyzing

all aspects of an EHD thruster.
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2.1 FEM/MOC Theory

This section illustrates some of the difficulty in simultaneously solving the electrostatic

and charge transport equations by looking at the CG-FEM/MOC approach for these

equations. By only considering the drift due to the electric field, equations (1.4) can

be reduced to

v2 _ _P, (2.1)
60

AVO. Vp - . (2.2)
E0

The equations exhibit two-way coupling through # and p with a nonlinear term in

equation (2.2). While equation (2.1) is the familiar elliptic Poisson problem and

is readily solved using CG-FEM if p is known, equation (2.2) has a form that is

suitable for the Method of Characteristics (MOC) technique [9]. Equation (2.2) has

characteristic curves given by

dx -pd (2.3a)
dt dx'
dy do3

=i -pd. (2.3b)dt dy

Given a solution for 0, the charge density along any characteristic line can be calcu-

lated by solving
dp - 2 (2.4)
dt EO

Equation (2.4) can be integrated in time to yield

1 
(25(t)= -- N+ ( .)2.ti

The system given by (2.1) and (2.2) can then be fully solved by following the proce-

dure:

1. Solve equation (2.1) with p = 0 over the domain.

2. Guess p0 at the emitter surface.
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3. Calculate characteristic trajectories and space charge distribution using (2.3)

and (2.5).

4. Solve equation (2.1) with p from step 3.

5. Iterate on steps 3 and 4 until # and p are converged.

6. Check that the electric field on the emitter surface meets any applied criteria

e.g. Peek's law.

7. If step 6 is not satisfied, update po and return to step 3.

While solution of the equations in the above manner is relatively straightforward,

there are aspects of the implementation which pose significant difficulties, particularly

if a flexible analysis tool is desired. The characteristic trajectories must be calculated

in time which requires the use of algorithms like adaptive Runge-Kutta [11] in order to

ensure the step size guarantees a certain level of accuracy. The error in the trajectory

increases the longer equations (2.3) are integrated. Given the small size of the emitter

relative to the domain, the step size must be very fine in the vicinity of the emitter to

ensure the trajectory does not bypass the emitter. This problem is made worse by the

high electric field strength near the emitter. In addition to the problems with time

integration, a sufficient number of trajectories must be calculated to ensure sufficient

coverage of the domain. These problems require an implementation that is very

specific to a given EHD thruster geometry. The routines which calculate trajectories

must be tailored for each thruster and perhaps for a given set of boundary conditions.

This underscores the need for an approach which allows simultaneous solution of the

governing equations.

2.2 Model Problem

Validation of the HDG implementation and assessment of convergence rates requires

an analytical solution. The simplest geometry to validate the implementation is

concentric cylinders as shown in figure 2-1. While general analytic solutions for this

geometry are complex (see [12]), a simple analytical solution is possible by assuming a

constant electric field. It is clear from the geometry that the solution is axisymmetric
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Figure 2-1: Concentric cylinders for model problem.

as long as the boundary conditions are homogeneous. Given these assumptions, the

governing equations in cylindrical coordinates are

0#Er + = 0, (2.6a)
Or

1 =(Er) -, (2.6b)
r Or EO

I 0(r ppE,) = 0, (2.6c)
r Or

where Er is the radial component of the electric field. Substituting (2.6a) into (2.6b)

and (2.6c) and taking the derivative yields

119 + 0 = (2.7a)
r ar ' r2 CO'

p 0 + 20+p1 =9 0. (2.7b)
r rr Or2 Or Or

Simplifying (2.7b) further results in

p 2 Op 00
+ = o. (2.8)

EO ar Or
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If Er is constant, the potential 0 will be linear in r with the assumed form

0(r) = A(r - B) + C, (2.9)

where A, B, and C are constants to be determined. If 0 is the potential at the inner

cylinder, r = r, then

#(r) = A(r - ra) + Oo. (2.10)

Using (2.10) in (2.7a) and defining p(r) = po, then

#() = aPO (r - ra) + 0, (2.11a)
EO

Er rapo (2.11b)
Or CO

Now a suitable equation for p(r) is found by inspection after substituting (2.Ila) into

(2.8). The charge density is then given by

p(r) = rapo (2.12)

The boundary conditions on the outer cylinder, r = rb, have not yet been considered.

The assumption that E, is constant over the domain precludes specification of another

boundary condition on the outer cylinder. A numerical boundary value problem

requires specification of an additional boundary condition to ensure that the solution

is unique. Requiring (rb)= 0 determines the geometry of the outer cylinder. Using

the boundary condition in (2.11a) and solving for rb yields

rb = O60+ ra. (2.13)
rapo

The analytical solution and geometry of the outer cylinder are fully defined if po, ra,

and #o are specified.
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Chapter 3

Numerical Formulation and Theory

This chapter develops an HDG-FEM scheme for solving the governing equations for an

EHD thruster. The N-S equations are not considered in this formulation since HDG

schemes have already been developed by Nguyen & Peraire [36]. Since modeling

steady state performance of a thruster is of interest, all time dependent terms in

the formulation are zero. The governing equations are presented and developed into

a weak form using HDG methods. Finally boundary conditions and aspects of the

numerical implementation are discussed.

3.1 Governing Equations

The simplest EHD thruster consists of a unipolar corona discharge at an emitting

electrode and a downstream collecting electrode. The relationship between the electric

field, E, and charge density, p, is described by Gauss's Law

V.E- p (3.1)
60

where EO ~ 8.854 x 10-12 F/m is the permittivity of free space. Equation (3.1) is

valid for an EHD thruster in air since the relative permittivity of air is approximately

one [21]. Given that the system is at steady state, the Maxwell-Faraday equation
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gives

V X E= B =0. (3.2)

This allows the electric field to be defined as

E=-V, (3.3)

where # is the electric potential. Conservation of charge requires that

V -j =0. (3.4)

The current density, j, has contributions from electric field drift, advection, and

diffusion and is expressed as

J = p( uE + 1) - DVp (3.5)

where p is the ion mobility in air, U' is the velocity field, and D is the diffusivity of

charged particles in air. D is related to the ambient temperature, T, and elementary

charge, q e 1.602 x 10-19 C, by Einstein's relation

D = pkBT (36)
q

where kB ~ 1.3806 x 10-23 '/K is the Boltzmann constant. The governing equations

are simplified by ignoring the advection component of the current density. Determina-

tion of the fluid velocity field via the N-S equations is beyond the scope of the current

work. Further, the electrostatically induced velocity has been found to typically be

less than 10% of the ion drift velocity [15]. The field drift term remains the primary

component of current density. The diffusion term may also be ignored given that the

coefficient D is on the order of 106 whereas the drift term is on the order 101 - 102.

Though other numerical schemes have made both simplifying assumptions [9,13], ig-

noring diffusion in the HDG formulation leads to a matrix system which is singular

for the trivial solution where all variables are zero.
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The final system of governing equations is the following:

E + V# = 0,

C + Vp = 0,

V. -E =0.
60

17 - (DC + fp$) =0.

Here C is introduced as the gradient of p such

as follows:

that the equations can be expressed

Q+Vu=0,

-V - F(Q, u) + s(u) = 0,

(3.11)

(3.12)

(3.13)

(3.14)

Q = ,
(C)

Z
F =

(DC + ppE

The field drift term, ApE, in equation (3.10) introduces nonlinearity into the problem.

The equations are also coupled since the source term for equation (3.9) is a function

of the solution to equation (3.10). Any numerical scheme to solve these equations

must have a suitable linearization approach.

3.2 HDG Formulation

DG-FEM methods allow the approximate solution to be discontinuous across element

boundaries. This leads to increases in problem degrees of freedom since there are re-

peated nodes at element boundaries. The HDG method is a refinement of the DG
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approach in that the problem is solved only using degrees of freedom on the element

boundaries. This is accomplished through appropriate choice of function spaces and

introduction of independent variables on element boundaries which approximate the

numerical trace of the solution. In many cases, the HDG approach is competitive with

CG-FEM schemes in terms of computational efficiency and accuracy [36]. The appli-

cation of HDG methods to the present problem closely follows techniques presented

by Nguyen et al. [36-38].

3.2.1 Function Spaces and Inner Products

A finite physical domain, Q, in Rd with boundaries OQ is discretized by a set of disjoint

elements denoted by Th. A given element in the set h is called K. 0Q is the union

of OQD and OQN which denote boundaries where Dirichlet and Neumann boundary

conditions are applied. Note that OQD nOQN= 0. The set OTh = {K : K E TA}

consists of all element boundaries in Th. Each element boundary OK has an outward

unit normal n. The set of element faces OK on the domain boundary OQ is denoted

Eh and any individual face is called F. Eh is the set of faces shared by any two

elements, K+ and K-, in Th. The full set of faces Ch is the union of boundary and

interior faces, 8S and 8h. The difference between 0Th and Eh is that 4h contains each

face in the domain once whereas interior faces are repeated in 07h.

The set of function spaces necessary for the discontinuous finite element projection

are

W = {a E L2 (h) : aK E pk (K) VK c Th},

= {a E (L2 (h))" : aK E (pk(K))m VK c Th},

Q= {A (L 2 (h))mxd : AIK E (pk(K)mxd VK E Th},

M84= { E (L 2 (gh)) IlF C (Pk(F))m VF C Sh}-

Pk(w) are polynomials of degree k defined over a domain w. Functions associated
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with the element spaces have components as follows for 1 < i < m and 1 j K d:

a =(ai),

A =(Aij),

yI = (pi).

All functions except those belonging to A4 are square integrable in the domain and

are discontinuous between elements; functions in M are only integrable along faces

and are discontinuous between faces. The following volume inner products can now

be defined:

(a, b)Th =
KETh

(a, b)K, where (a, b)K

(ab)h =
KETh

(a, b)K, where (a, b)K = J a -b, andK

(A, B)Th = (A, B)K,
KETh

where (A, B)K

There are also corresponding boundary inner products as follows:

(a, b) =Th

(a,b)=h

(A, B)h

E

VOCTh

a, b)OK' where
Th

(a, b)aK, where
'h

(A, B)K, where

(a, b)aK IK ab,

(a, b)OK IK a -b,

(A, B)aK K T

3.2.2 Weak Form

Manipulation of equations (3.11) and (3.12) to a weak form is accomplished by mul-

tiplying through with test functions and integrating by parts. Approximate variables

are introduced and denoted with the subscript h. The HDG formulation seeks an
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approximation (Q4, Uh, Uh) E x x M such that

(Q, A)T - (Uh, V. A)T + (it, A -n),, 0, (3.15)

(Fh, Va)T -Ph - n, a + (s, a) = 0, (3.16)

K- n, p)h - (gN, I)&QN 0, (3.17)

for all (A, a, p) E Qk x Vk x .M . Equation (3.17) enforces the continuity of fluxes

through the domain and the Neumann boundary conditions, gN, applied to &QN-

The approximate numerical flux is

h = F(Qh, Uh) - T(Uh - Uh)n, (3.18)

where T is a stabilization parameter with implications for solution stability and ac-

curacy, particularly for convection dominated problems. Nguyen, Peraire, & Cock-

burn [37,38] provide a thorough analysis of the stability parameter and provide con-

ditions that the parameter must meet. The present system can be solved by setting

T = 1 for the electric field flux and T 1/D for the current density flux. This corre-

sponds to a centered scheme for the fluxes. A more rigorous choice of T may improve

the solution convergence rate.

Dirichlet boundary conditions are applied by requiring ith = gD on OQD. After

the system is linearized as shown in the following section, the Dirichlet conditions can

be included in the initial solution and carried through each iteration by eliminating

stiffness matrix rows and columns that correspond to degrees of freedom on OQD.

Further details are provided in sections 3.3.1 and 3.4.

3.2.3 Linearization

The system of equations presented in section 3.2.2 cannot be solved implicitly due

to the nonlinearity in the numerical flux. Newton's method is used to linearize the

equations such that solution perturbations are calculated which reduce residuals from

equations (3.15), (3.16), and (3.17). Given an approximate solution at the current
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iterative step n, the solution at the n + 1 step is defined by

Qfl+= Q" + Q"

Una+1 U + Un, (3.19)

i6n0 = n + 6in.

Solution dependent functions are defined in terms of the solution and solution per-

turbations at step n by

+ F (Q 'un in)6uh

Ou

n+1 = N _gN Ng~ Q huh 6Qh +

+ (Q , h , i4 )6ith,

h9Nn n

Note that the Neumann boundary condition gN can in general be nonlinear and a

function of the solution. Substituting (3.19) and (3.20) into equations (3.15), (3.16),

and (3.17) results in the following problem: find (6 Qh, 6 Uh, &&h) E h xh Ah

such that

a(6 Qh, A) + b(3uh, A) + c( 6 ith, A) n(A),

h(6Qh, a) + d(6uh, a) + e( 6 h, a) (a),

k(OQh, IL) + lOUh, IL) + M(iLh, A) ()

(3.21)

(3.22)

(3.23)
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+OF (Qn
+ Q" h

h") + Q(Qh u, Ih)Qh

(3.20)

n OF (
h")6Qh + (- h oNs,



for all (A, a, ji) c Qk X Vx M with forms given by

a(6Q

b(6u

h(6Q

d(6v

e(Ri

hA) ( 6QhA)Th

hA) - -(6uh V. A)Th

h, A) K(H4h, A n).h

ri(A) -(Qh A)T h,VA)T - (iLh, A n)aT,

ha) io Q Va OiQ - n, )"DF OOh

(OF O
h,a) = Oh,Va  Ou a - , +a

\OU '/T\OU /0T

/, a = O
!h, aV-uhn, a ,

f(a) = - (Fh, Va)T + K.h- n,a - (s,a),

h, (--O 6Qh n y< K- 6Qh,"X N

KOhu'O XU h n, K 09NUh, /I

h, OP n, A

g(A) - KPh - n) t T + (gNi P'a)N

(3.24)

Note that the superscript n denoting the current iteration has been omitted above

to simplify notation. Derivatives with respect to solution variables Q, u, and it are

analytically derived functions based on definitions in equation (3.14). Appendix B

provides details of these sensitivity functions.

3.3 Boundary Conditions

The system defined by equations (3.21), (3.22), and (3.23) can be solved to find a

solution which satisfies the governing equations, however, the choice of boundary

conditions determines how closely the solution captures the behavior of a physical

EHD thruster. The two primary governing equations, Gauss's Law and conservation
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of charge, each require one boundary condition for every surface in the domain Q.

An insufficient number of boundary conditions may result in a non-unique solution

while over-constraining the system may prevent the solution from converging due

to incompatibilities. This section describes the boundary condition options that are

available and strategies for applying conditions to allow for convergent numerical

solutions that adequately reflect physical reality.

3.3.1 Dirichlet Boundary Conditions

Dirichlet boundary conditions are also known as essential boundary conditions. They

are essential in that at least one surface in the domain must have a Dirichlet boundary

condition specified. Failure to satisfy this requirement leads to a non-unique solution

since a scalar solution plus a constant also satisfies the governing system of equations.

This is particularly true for Gauss's Law but a Neumann charge injection boundary

condition may be sufficient for the conservation of charge equation in the system.

For any EHD thruster geometry, the potential at the emitter and collector elec-

trodes are prescribed since these parameters are set directly on the thruster power

supply. An EHD thruster is meant to be operated in an open environment where the

potential is zero an infinite distance away from the thruster device. Such a boundary

condition cannot be directly implemented in a numerical model due to computational

limitations. Instead, schemes such as the ballooned boundary method [46, 47] or ex-

terior to interior mapping [34] are used to account for the conditions at infinity on

the truncated domain in CG-FEM problems. Further development of HDG meth-

ods is required to find a scheme which will achieve the same goal. In the present

work Dirichlet conditions on the truncated boundary are left unspecified. The de-

fault condition in this case is the natural boundary condition as described in section

3.3.2.

The charge density on the emitter electrode surface may also be specified as a

Dirichlet boundary condition. The distribution of charge on the surface is not known

a priori but may be calculated iteratively to satisfy a given requirement. The charge

injection conditions described in section 3.3.2 are examples of requirements which can
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be used to arrive at an appropriate distribution of charge. In cases where the size of

the emitter is small relative to the domain and there is sufficient symmetry, assuming

a constant charge density on the emitter surface may be a reasonable approximation

[10].

3.3.2 Neumann Boundary Conditions

Neumann boundary conditions are requirements imposed on normal fluxes in the

HDG formulation. In the present problem, the fluxes are the electric field and the

current density. These fluxes are typically not known a priori and typically vary

along boundaries. It is necessary to specify an outflow condition otherwise the nat-

ural boundary condition applies. The HDG formulation requires integration of the

numerical flux through all surfaces in the domain which is in effect requiring

P -n =gN = 0 on N, (3.25)

if gN is not otherwise specified. This constitutes the natural boundary condition

and applies on the the truncated domain boundary. This condition would positively

impact the calculated performance of an EHD thruster by forcing all emitted current

to be collected at the anode. An outflow condition is set by specifying

P -n =gN = F -n onQN- (3.26)

This overrides the natural condition and allows any value of flux on the boundary

since, for a converged solution whereit = UitK,

P - n - F - n = -(u -it) 0 on OQN. (3.27)

The outflow condition for current density should be applied to any collector electrodes.
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Charge Injection

The charge injection boundary condition applied to the emitter electrode is an ap-

proximation of the impact ionization occurring in the high field region surrounding

the emitter. Cagnoni et al. provide a summary of various charge injection models

for an emitter electrode [4]. The first model applies a uniform current density to the

emitter surface and is expressed by

P2 -n= 9N = onQN, (3.28)
Ae

where P 2 refers to the boundary flux associated with the conservation of charge equa-

tion, Im is a prescribed total current, and A, is the surface area of the emitter. Im can

be an experimentally measured current. This model does not allow predictive simu-

lations since the total current is a prescribed value and will not accurately represent

the current density distribution around electrodes of complex geometry.

The next model relies on correlations such as Peek's law to set a corona onset

field, E0 n, and enforces Kaptsov's hypothesis in a pointwise manner on the emitter

surface. The model can be expressed as a Neumann condition on the current flux by

F 2 - n =9N= -ppEon on DQN, (3.29)

where p is the charge density solution at the current iterate. While this boundary

condition can be implemented directly in the HDG formulation, the solution will be

non-unique since the trivial solution for charge density automatically satisfies (3.29).

The boundary condition must be enforced in a manner similar to the approach used

for the FEM/MOC scheme in section 2.1 or with augmented residual equations as

demonstrated by Feng [14]. The FEM/MOC approach updates the distribution of

charge density on the emitter surface in an outer loop until the converged HDG

solution satisfies (3.29) on &QN-

The charge injection model (3.29) allows for abrupt changes in the charge density

which are difficult for polynomial basis functions to accurately represent. Cagnoni
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et al. found that (3.29) would introduce numerical oscillations if not treated with

sufficient under-relaxation [4]. They proposed a smoother but less accurate form of

(3.29) which can be expressed as

F 2 -n =N = F2 -n+ ppEn - preflPEonexp ( E )Eon) on OQN. (3.30)

In this case, the trivial solution for p does not automatically satisfy the boundary

condition. The choice of the reference values, pref and Eref, determines how sharply

the current flux increases with E - n. The normal electric field is set with a negative

sign in (3.30) to account for the sense of the normal vector, which is always an outward

normal.

3.4 Implementation

The HDG formulation is implemented using MATLAB R2013a. The solver is con-

structed to be independent of problem geometry, boundary conditions, and mesh.

Information specific to a particular problem is contained in an application struc-

ture. This information includes boundary condition functions, problem constants,

convergence criteria, and problem geometry. Mesh data and master element data are

independent of boundary conditions but construction of the mesh requires geometry

information from the application structure. Mesh constructors also require the order

of polynomial basis functions. The value of the polynomial basis functions and their

derivatives at Gauss points are contained in the master element data structure. The

master element data structure also contains the location of element interior nodes

which support the polynomial basis functions in barycentric coordinates.

3.4.1 Meshing

The triangulation on the domain is calculated using the adaptmesh command from

the PDE Toolbox add-in for MATLAB. This function uses the MATLAB Delaunay

triangulation routine to create the initial triangulation and then refines the mesh
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based on the accuracy of the mesh in solving the Laplace equation with first order

basis functions. The maximum number of triangles can be specified as an input to

the function. Other meshing tools may also be used such as the DistMesh suite of

tools made available by Per-Olaf Persson [44]. DistMesh relies on distance functions

and truss force balance simulations to ensure smooth element size variation and ideal

element shapes. This proved problematic for meshing some of the geometries investi-

gated here because of the size difference between the emitter electrodes and the rest

of the domain. The DistMesh force balance simulations had difficulty converging in

the vicinity of the small emitter electrode. The present implementation only takes

advantage of the distance function tools in the DistMesh package for locating element

face nodes on curved boundaries.

Once the triangulation is complete and triangle to node connectivity data is avail-

able, element face to triangle connectivity is determined. Element faces are con-

structed such that the vector described by the start and end points of a face is

directed in the counter-clockwise sense along the element boundary. Faces which are

on a domain boundary are identified and associated with a boundary number. This

facilitates application of boundary conditions. Triangles which share a given face are

also identified.

The mesh constructor also defines a distance function for the domain which cal-

culates the distance of a given point to the closest domain boundary. The distance

function is stored in the mesh structure. The element interior node coordinates are

in general calculated using the element vertex coordinates and the barycentric coor-

dinates of the nodes on the master element. Nodes which are intended to lie on a

curved boundary must be moved towards the boundary until the distance function

for those points is zero. Figure 3-1 shows an example of a fifth order DG element and

associated nodes on a curved boundary.
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* Boundary Nodes
* Interior Nodes

Figure 3-1: Fifth order DG element, nodes are shown with small perturbations to
avoid overlaps.

3.4.2 Solving

Equations (3.21) and (3.22) must be satisfied on each element as well as the entire

domain. The linearized system of equations results in a matrix system

AK

HK

KK

BKCK

DK EK

LK MK

QK

OUK

OUK

NK

= FK

LGK

(3.31)

where aQK, OUK, and &UK correspond to the vectors of the solution degrees of

freedom on a given element. Since the solution is allowed to be discontinuous between

elements, the solution on element interior degrees of freedom is equal to

[ QK]

OUK

AK

LHK

- -1 - - 1- - - -

BK NK AK BK K

K L FK K K [EK

(3.32)
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The matrix composed of AK, BK, HK, and DK is block diagonal and invertible. The

remaining matrix equation is

- - OQK

[KK LK [9Uj + MKOUK = GK- (3.33)

Substituting (3.32) into (3.33) yields

MK ~ K LK KBK CK JK
- HK DK EK

SK

- K 1 L NK
GK - KK LK I (33

HK K FK

RK

where JK is the element Jacobian matrix for scalar solution degrees of freedom on

the element boundary and RK is the corresponding residual vector. JK and RK can

then be stamped into the global Jacobian matrix J and residual vector R. The final

matrix system for the scalar solution on element face degrees of freedom is

JU = R. (3.35)

The system can be reduced further for matrix inversion by temporarily eliminating

rows and columns in JK, 0U, and R associated with boundaries where Dirichlet

conditions apply. Once 0U is calculated using built-in MATLAB functions to invert

the system, the interior solution is retrieved on an element-by-element basis using

(3.32). Matrix assembly and solution retrieval are suitable for parallel processing

implementation since only current solution information for a given element is required

to either construct the element Jacobian matrix or the element interior solution.
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3.4.3 Post-Processing

Thruster performance parameters must be post-processed from the raw solution. The

thrust component in the direction of a unit vector c is calculated by

T= (phE,, . (3.36)

The total current is found by integrating the current density on the surface of any

emitting electrode

I KPhh - n, l (3.37)

where 1 is the length of the emitting electrode.

3.5 Validation Procedure

The HDG implementation will be validated with the following approach:

1. Use the model problem to assess convergence rate.

2. Assess the charge injection boundary condition by offsetting the inner cylinder

in the model problem.

3. Simulate single stage and dual stage EHD thrusters based on geometry tested

by Masuyama and Barrett [29,30].

The model problem inner cylinder radius is set to ra = 0.01 m. An outer cylinder

radius of rb = 0.4527m corresponds to po = 10-1 Cm- 3 and 0 = 5000 V in equation

(2.13). The system is also assumed to be at atmospheric pressure (76 cmHg) and

20 C. Figure 3-2 shows the resulting analytical solution for # and p from equations

(2.11a) and (2.12). The gradient of p close to the emitter is very large and may

pose problems for convergence if the mesh density near the emitter is not sufficient.

Another approach to handling the large gradient is to successively ramp p at the

emitter surface until the target value po is reached. The converged solution for a

given p at the emitter surface is used as the initial solution for the subsequent case.
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Figure 3-2: Model problem solution for ra = 0.01 m, po = 10-1 Cm-3, and

50

Oo = 5kV.

The convergence rate, r, for scalar unknowns is assessed in the L2 norm using

u n+1 _
lim = C,

n-+oo -
(3.38)

where C > 0 is a finite constant, Un is the approximate solution at iteration n, and

a is the true solution [20]. The solution error is generally expressed as en = U - U.

Equation (3.38) is reformulated to simplify determination of the convergence rate by

expressing it as

log(l en+ 1 1) = r log(I e 1) + log(C). (3.39)

The convergence rate r is then simply the slope of the best fit line for a plot of

log(Il en+111) VS. log(Illl|).

The charge injection boundary condition per equation (3.30) requires a relation-

ship between Pref and Eref. This is obtained for a given applied voltage by ramping

p at the emitter surface and finding the corresponding converged solutions. Per equa-

tion (1.3) (Peek's law) with 6 ~ 1.02, m8 = 1, c = .308, r = r, and Eo = 3 1 kv/cm,

the critical field strength is En = Ecrit ~ 41.13 kV/cm. Using the model problem set-

tings described previously, Er from equation (2. 11b) is approximately 0.11 ky/cm. The

fact that E0 n >> E, indicates that the analytical solution is not consistent with the

corona discharge physics; either the applied voltage is too low or the charge density

at the emitter is too high.
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The single stage thruster geometry tested by Masuyama & Barrett [29, 30] con-

sisted of a 32 AWG (0.202mm diameter) tinned copper wire emitter electrode and

a 0.635cm diameter 6061 aluminum tube collector electrode (see figure 1-1). Both

electrodes were 40 cm long. The d = 1 cm electrode spacing is investigated here first

using the experimentally determined current-voltage characteristic in the homoge-

neous boundary condition equation (3.28) and then using the smoothed charge injec-

tion model given by equation (3.30). In this case the parallel wire coefficients from

table 1.1 are more appropriate for equation (1.3); the critical electric field strength is

Eo e- ~ 12 1. 1 kV/cm.

re

7-7j-c11

rc2

Figure 3-3: Dual stage thruster geometry.

Figure 3-3 illustrates the dual stage thruster geometry tested by Masuyama &

Barrett [29, 30]. The intermediate electrode is a single strand 4 AWG (5.189 mm

diameter) solid copper wire. The emitter electrode and collector electrode are the

same as the single stage case. The electrode spacings di = 1 cm and d2 = 3 cm are

investigated in the present work. The applied voltage V2 is maintained at 20 kV while

V1 is varied.
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Chapter 4

Results

Numerical results from the validation procedure described in the previous chapter are

presented here. The model problem investigation involves three phases: performance

against analytical solution, determination of charge injection reference parameters,

and evaluation of charge injection boundary condition. The results of the model

problem inform the charge injection boundary condition configuration in subsequent

sections. A single stage thruster numerical model is used to evaluate the predictive

capability of the HDG implementation. Finally, a dual stage thruster numerical

model is used to evaluate the HDG implementation for more complex geometries.

Analysis meshes are shown in Appendix D and are generally composed of less than

4000 elements to facilitate solving on a personal computer. Each matrix assembly

and inversion iteration takes less than one minute on a personal computer running

Windows 7 with 4 processing cores and 8 Gb of RAM. A high resolution mesh of

11428 elements is used for part of the single stage thruster modeling and requires a

desktop computer with 16 Gb of RAM and 6 processing cores to solve.

4.1 Model Problem

The model problem geometry consists of concentric cylinders for comparison against

the analytical solution. The investigation for determining and testing the charge

injection parameters requires offsetting the emitter electrode. The outer cylinder is
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maintained at zero potential while the potential applied to the emitting electrode is

varied.

4.1.1 Approximation of Analytical Solution

As mentioned in section 3.5, the high gradients near the emitter electrode necessitate

ramping the charge density at the emitter over the course of four analysis cases. The

charge density Dirichlet boundary condition for each case is expressed as a factor

multiplying po which is the emitter charge density corresponding to the analytical

solution.
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(a) Normalized residuals for 0.2 x po case. (b) Normalized residuals for 1.0 x po case.

Figure 4-1: Model problem normalized residuals for ra = 0.01 m, po = 10- Cm-3.
and o = 5 kV.

Figure 4-1 shows the normalized residuals for the first and last cases. The first

case requires more iterations to arrive at a converged solution since the initial solution

is the solution to the Laplace equation where charge density is zero everywhere. The

initial solution for the last case includes the charge density from the previous case

which is a closer approximation to the analytical solution. Attempting to solve the

final case without the intermediate solutions results in instabilities in the charge

density solution near the emitter. Non-physical negative values of charge density

appear which cause the solution to diverge.
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log e" IL 2 for identical meshes with basis functions

The error schedules are shown in figure 4-2 and table 4.1. The error is reduced

with an increase in order of the polynomial basis. The convergence rate for 4 is

large until the solution approaches the analytical solution. The convergence rate for

p is initially quadratic but reduces as the analytical solution is approached. The

k = 3 case indicates that the quadratic convergence rate can be maintained for more

iterations with higher order basis functions.

Table 4.1: Error schedules for # and p showing convergence rate for each iteration,
polynomial order k = 2.

n

(a)

log e"I L2

Error schedule for #

log eln+lfIL2 '

0 1.40 1.31 -
1 1.31 .034 14.6
2 .034 -. 51 .43
3 -. 51 -. 51 -5.1 x 10-4

4 -. 51 -. 51 -6.0 x 10-6

(b) Error schedule for p

n log||en||L2 logjjen+l J2 r

0 -7.18 -7.60 -
1 -7.60 -8.50 2.2

2 -8.50 -9.33 .93
3 -9.33 -9.33 2.7 x 10-3

4 -9.33 -9.33 5.5 x 10 -
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(b) Charge density solution.

ra =0.01 m, po = 10-1 Cm- 3 , and 40 = 5 kV.

Figure 4-3 shows the potential and charge density solutions as a function of radial

distance from the inner emitter electrode to the outer cylinder for each case. The

final approximate solution is a close match to the analytical solution. The potential

solution for the first case and the last case are within 9% of the analytical solution.

The charge density solution for the first and last case on the other hand diverges

at r < 5 cm. This underscores the importance of including intermediate solutions to

ensure convergence for the charge density. The maximum error normalized by applied

potential and charge is at most on the order of 10-3 per figure 4-4.
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Figure 4-4: Scalar solution errors
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(b) Charge density normalized error.

for ra = 0.01 m, po = 10 - Cm-3 , and #0 = 5 kV.
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Figure 4-5: Model problem solution for

Current Density [A/m2
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(d) Current density solution.

ra = 0.01 in, PO = 10-5 Cm-3, and o = 5kV.

The solution contour plots in figure 4-5 show that the potential, charge density,

charge density gradient, and current density vary smoothly over the domain. The

discontinuity across element boundaries for the approximate solution is not apparent.
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4.1.2 Determination of pref and Eef

The model problem geometry is modified such that the inner electrode is offset radi-

ally by rb/2. Given that the critical field strength is 4 1.1 3kV/cm and E, = 0.11 WV/cm,

the applied voltage must be increased. Per figure 4-6, a minimum applied voltage

of 150 kV ensures the critical field strength is exceeded. Figure 4-7 shows the maxi-

mum and minimum electric field at the emitter surface for po from 2 x 10-7 Cm-3 to

1 x 10-4 Cm- 3 and applied voltages 150 kV, 200 kV, and 250 kV.

44_

3--- E, = 41.13kV/cm
43

42

S41

40-

39

38 -

37

36 -

35
120 125 130 135 140 145 150

Applied Voltage in kV

Figure 4-6: Maximum electric field vs. applied voltage for model problem with inner
electrode offset by rb/2, po = 0 Cm- 3

Figure 4-6 shows that the maximum electric field increases linearly with applied

voltage. This trend is maintained even with po $ 0 as shown in figure 4-7. The impact

of charge density on the field strength is minimal for po < 1 x 10-6 Cm- 3 . For po

changing from 2 x 10-7 Cm- 3 to 1 x 10-7 Cm- 3, the electric field is reduced by 1.7%

with an applied electric field of 150 kV. For 250 kV applied voltage, the electric field

reduction is 1.1%. This indicates that the change in electric field strength is less

sensitive to charge density at higher voltages.
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Figure 4-7: Maximum and minimum electric field strength on emitter surface as a

function of charge density.
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Figure 4-8: Potential

Figure 4-8 illustrates the impact of increased po on the electric potential. The

increased positive charge raises the potential in vicinity of the emitting electrode.

The electric field at the higher charge density is shown in figure 4-9a. The electric

field in the small gap between the inner and outer cylinders is elevated compared to

the rest of the domain. The charge density distribution as shown in figure 4-9b is no

longer uniform and is biased to the region of higher electric field.
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Figure 4-9: Electric field and charge
1 x 10-4 Cm-3.
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(b) Charge density.

density solution for V = 150 kV, po

While the current density solution is smooth as shown in figure 4-10b, the charge
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Figure 4-10: Charge density gradient

Po = 1 x 10-4 Crn-3.
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and current density solution for V

density gradient in figure 4-10a exhibits some faceting. The impact of the discontinu-

ous charge density solution is minimal since the diffusion coefficient D is small in the

definition of the current density (see equation (3.5)). The charge density gradient is

maximized at the 6 o'clock location on the emitter since the charge density decreases

rapidly with distance from the emitter (see figure 4-9b).

The solutions for the axisymmetric case and the offset emitter case have used a

uniform charge density applied to the emitter as a Dirichlet boundary condition. The

dependence of the electric field at the emitter for various values of po indicates that

there are orders of magnitude for po where the normal electric field is affected strongly

or minimally. Table 4.2 lists the choices for p,-ef and Eref which are investigated in

the next section. The range is based on solutions where V = 150 kV. Case 4 consists

of arbitrarily chosen parameters.

Choices for

Pref C/M3
1 j 10-4 12.14
2 10-5 32.58
3 1o-6 39.96

10~6 1
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4.1.3 Evaluation of Charge Injection Boundary Condition
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Figure 4-11: Charge injection term from equation (3.5) (see table 4.2 for cases).

Cases 1 through 3 for the charge injection parameters provide less variation in

the required current density to satisfy equation (3.30) compared to case 4. The

high sensitivity to the normal electric field provided by case 4 results in a closer

approximation to the ideal charge injection boundary condition given by equation

(3.29) at the expense of stability since the derivatives with respect to the normal

electric field are very large.

The charge density corresponding to the cases in table 4.2 is assessed and solution

parameters are examined at the emitter surface. The solution parameters are also

evaluated for applied voltages ranging from 150 kV to 250 kV.
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Figure 4-12: Charge density solution using
150 kV.

p[C/m 3]
0.4

0.3

0.2

0.1

0

-0.1

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

(b) pref = 10-5 Cm- 3 , Eref = 32.58 kV/cm.

0.4

0.3

0.2

0.1

0

p[C/m3]

1.3-1.5

M *0.5

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

(d) Pref = 10-6 Cm- 3 , Eref =1 kV/cm.

charge injection boundary condition, #o

Figure 4-12 shows the charge density solution for each case from table 4.2. All

solutions show that the charge density is greater in the smaller gap at 12 o'clock. The

solution is also less uniform with evidence of ripples, particularly for case 4 shown in

figure 4-12d. The ripples are indicative of numerical oscillations in the solution and

are more visible as pref is reduced. A finer mesh would allow for better resolution

of the charge density with the effect of reducing the ripples. A comparison of figures

4-12c and 4-12d indicates that a smaller Eref allows for more variation in charge

density along the emitter surface. This is in effect a closer approximation of the ideal
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charge injection boundary condition.

Figure 4-14 shows electric field, current density, and charge density on the emitter

surface. The 12 o'clock position corresponds to location of the minimum gap between

the emitter and the outer cylinder. All choices except case 4 for the charge injection

parameters allow variation of the solution along the emitter surface. The electric field

variation is the same for each case except that cases 3 and 4 drive the field strength

closer to E,,,. This is consistent with the fact that pref = 10-6 Cm- 3 corresponds to

the intersection with the E, line in figure 4-7a. Case 1 and 2 drive too much current

injection such that the field is driven below E,,. Since pref is the same for cases 3 and

4, the effect of Eref surmised previously is confirmed; the lower Eref drives higher

sensitivity to the normal electric field resulting in greater variation in emitted current

along the surface.

p[C/m3] X, Current Density [A/m2
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(a) Charge density. (b) Current density.

Figure 4-13: Charge density and current density solution using charge injection
boundary condition, pref = 10-6 Cm- 3, Eref = 12.14 kV/cm, and q0 = 250 kV.

Figure 4-15 is constructed similarly to figure 4-14 except the charge injection pa-

rameters are held constant at pref = 10-6 Cm- 3 and Erej = 12.14kV/cm and the

applied voltage #o is varied from 150 kV to 250 kV. The solution parameters do ex-

hibit more variation along the boundary and due to the lower choice of Eref. Some

instability is evident with ripples on the boundary and in the domain shown in figure

4-13. While increasing #o does drive up the emitted current, the effect is not lin-
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ear. Figure 4-15a shows that for the same increase in potential, the increase in field

strength is reduced from 10% for case 1 to 2 to 2% for case 2 to 3.
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Figure 4-14: Electric field, current density, and charge density along the emitter

surface, <0 = 150 kV (see table 4.2 for cases).
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Figure 4-15: Electric field, current density, and charge density along the emitter

surface, Pref 10-6 Cm- 3 and Eref = 12.14 kV/cm; cases correspond to 0 150 kV,

200kV, and 250kV.
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4.2 Single Stage Thruster

The single stage thruster is modeled using the natural boundary condition on domain

edges, a charge injection boundary condition on the emitter, and an outflow bound-

ary condition on the collector. The potential of the collector is held at zero while

the potential applied to the emitter, #o, is varied. The charge injection boundary

condition is either a homogeneous current flux based on experimental measurements

from Masuyama & Barrett [29, 30] or the charge injection model with parameters

Pref = 10- Cm- 3 and Eref = 100 kV/cm. The large Eref facilitates convergence given

the relatively coarse nature of the mesh. A denser mesh with 11428 elements al-

lows for convergence of a high sensitivity charge injection boundary condition with

Pref = 10-5 Cm- 3 and Eref = 1 kV/cm but requires the use of a more powerful com-

puter.

Contour plots of the solution for the homogeneous charge injection boundary

condition are shown in figure 4-17. Corresponding plots for the charge injection model

are shown in figure 4-18. The primary difference in the results is the magnitude of the

charge density. The homogeneous case results in charge density on the order of 10-3

whereas the charge injection model results in charge density a full order of magnitude

lower. The smoother charge injection characteristic does not drive enough of an

increase in current for a given voltage. The charge density solution in Figure 4-16 is

calculated with a higher sensitivity charge injection model on the coarse mesh. Even

at a lower applied voltage, the solution exhibits faceting and numerical instability.

Increased mesh density is required to use the less stable model.
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Figure 4-16: Charge density solution with charge injection
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The post-processed thrust and current characteristics are compared to the exper-

imental result from Masuyama & Barrett [29, 30] and ID theory in figure 4-19. The

homogeneous boundary condition case results in a maximum thrust error of 14%.

This is likely due to the natural boundary condition applied to the domain boundary.

The natural condition forces all emitted current to the collector; no charge escapes to

the surrounding. Figure 4-20 compares the collected and emitted current for all anal-

ysis models. Figure 4-19b also confirms that the emitted current for the homogeneous

boundary condition case exactly matches the imposed experimental results.

The low sensitivity charge injection case does not represent the experimental re-

sults very well. The maximum error in thrust is 75% and the maximum error in

current is 76%. The model results in high current below the corona ignition voltage

and low current at high voltages. The higher sensitivity charge injection model (noted

as case 2 in figure 4-19) correlates better with the experimental results but does not

converge on the coarse mesh at higher voltages. The maximum thrust error is 0.4 mN

with a current error of 1.8 x 10' niA. The experimentally measured current was zero

with a non-zero thrust; this indicates that the current level is below the measurement

resolution. The high resolution mesh allows the high sensitivity charge injection case

to converge properly at higher applied voltages. The thrust and current characteris-

tics (see case 3 in figure 4-19) are within 6% of the homogeneous case and within 19%
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Figure 4-19: Thrust and current characteristics compared to experimental data and
ID theory. Experimental currents are applied to the emitter for the homogeneous
case. Charge injection boundary condition cases: 1) pref = 10-4 Cm- 3, Eref =

100 kV/cm, 2) pref = 1-5 Cm- 3 , Eref 1 kV/cm on coarse mesh, 3) pref 10-5 Cm 3 ,
Eref =1 kV /cm on fine mesh.
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of the experimental results and ID theory. These results demonstrate the predictive

capability of the charge injection model.
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9 IeM Homogeneous
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Figure 4-20: Emitted and collected current for homogeneous boundary condition and
charge injection boundary condition cases: 1) Pref 10-4 Cm- 3 , Erf = 100 kV/cm,
2) pref =1-5 Cm- 3, Eref = 1kV/cm on coarse mesh, 3) pre=10-5 CM- 3, Eref

IkV/cmyl on fine mesh.

Electric field strength, charge density, and current density on the surface of the

emitter for the homogeneous, low sensitivity charge injection, and high sensitivity

charge injection boundary condition cases are shown in figure 4-21. The homogeneous

boundary condition results in constant current density. The charge density varies

around the perimeter inversely to the electric field strength. The field strength from

the homogeneous boundary condition case is 20% lower than the critical value E..

This indicates that either Peek's law does not accurately predict the critical field

strength or the 2D model does not capture some 3D corona discharge effects. The

surface condition parameter used in Peek's law to calculate the critical field strength

is m, = 1. A different choice of m, could result in a closer match to the experimental

results.

The high sensitivity charge injection case drives the electric field strength to within

5% of the critical value. Charge density at the surface of the emitter exhibits far more

variation around the circumference compared to the lower sensitivity charge injection
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case with a peak at the 6 o'clock position. This corresponds to the location of highest

electric field strength. The jagged charge density trace is indicative of the instability

inherent in the high sensitivity charge injection boundary condition parameters.

Corresponding plots for the collector electrode are shown in figure 4-22c. The

current is collected primarily on the upper half of the collector. The critical field

strength for the collector is E, = 46.64 kV/cm. The maximum field strength on the

collector is less than half of the critical value; this indicates that a negative corona at

the collector is not likely.

While the low sensitivity charge injection results presented here do not reproduce

the experimental results, the fact that the high sensitivity model is a better match

indicates that the charge injection model is tunable to balance accuracy and solution

stability. The stability of the model will increase with mesh density since the sharper

changes in current flux can be more accurately represented. The present study is

limited by the resources available on a personal computer or desktop. A mainframe

or server would be required to perform computations for larger models.
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Figure 4-21: Electric field strength, charge density, and current density on the emitter
surface, 0 = 13 kV. The charge injection settings are pref = 10-4 CM- 3, Ere =
100 kV/cmn and pref =1-5 Cn- 3 , Erej 1 kV/cm for the high sensitivity case.
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Figure 4-22: Electric field strength, charge density, and current density on the col-
lector surface, #0 = 13kV. The charge injection settings are Pref 10- 4 CM-3
Eref = 100 kV/cm and pref = 10-5 Cm- 3 , Eref = IkV/cm for the high sensitivity case.
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4.3 Dual Stage Thruster

The dual stage thruster model takes advantage of the system's vertical symmetry

to reduce the size of the problem. An experimentally determined current from Ma-

suyama & Barrett [29,30] for V = 5 kV is applied as a homogeneous current injection

boundary condition the emitter. The HDG formulation presented in the current work

is unable to arrive at a converged solution. The un-converged charge density and po-

tential are shown in figure 4-23. The charge density solution exhibits faceting due

to numerical instability. A stream of charge is also evident in the gap between the

intermediate electrode and the collector. This stream of charge is not physical and

is a product of the outflow boundary condition applied to the intermediate and col-

lecting electrode. The outflow boundary condition given by equation (3.26) allows

any incoming current flux. Current stream-tubes bounded by field lines emanating

from the intermediate electrode and terminating on the collector can thus contain

an arbitrary current. The problem becomes ill-posed since the solution for charge

density is not unique.
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(a) Charge density solution. (b) Potental solution.

Figure 4-23: Un-converged potential and charge density solution using #o = 5 kV and

experimentally determined current 0.015 mA from Masuyama & Barrett [29,30].

A more appropriate boundary condition for the intermediate electrode is a mixed

boundary condition. A mixed boundary condition allows current outflow on the
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portion of the boundary where E -n < 0 and requires a Dirichlet boundary condition,

p = 0, everywhere else. Implementing such a mixed boundary condition becomes

problem specific since the portion of boundary where the Dirichlet condition applies

is not known a priori. The mesh must also be sufficiently dense to allow resolution of

the transition from the outflow portion of the boundary to the Dirichlet portion.

The mixed boundary condition is not novel. Cagnoni et al. [4] did include it as part

of the requirements for discharging electrodes in their study, however, the geometries

they investigated did not include a configuration which allows charge stream-tubes

between non-emitting surfaces. The geometry modeled by Martins [27] does allow

for such a situation but he avoids the problem by applying a zero charge Dirichlet

condition to the collecting electrodes. This approach is less physically accurate and

may introduce errors into the results.
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Chapter 5

Conclusions

This thesis presents an HDG formulation and numerical scheme for solving the EHD

thruster governing equations. The approach is used with a model problem, a single

stage thruster geometry, and a dual stage thruster geometry to assess solution ac-

curacy and performance. The validation analysis shows that the scheme accurately

solves the governing equations and replicates test results when using a posteriori

charge injection boundary conditions. A predictive charge injection boundary condi-

tion poses numerical challenges which require more computing resources to improve

accuracy.

The HDG scheme implemented here successfully solves the governing equations

within a normalized error on the order of 10' for second order elements. Further,

the solution is achieved with less than 10 Newton iterations. The number of solution

iterations is reduced if the initial solution is close to the final solution. The conver-

gence rate for the potential solution is better than second order and variable with

each iteration. The convergence rate for the charge density can be as good as second

order.

The ideal charge injection boundary condition was not implemented since it al-

ways allows the trivial solution. The CG-FEM implementation by Feng [13] required

additional residual equations to avoid this problem. The charge injection boundary

condition model proposed by Cagnoni et al. [4] is used instead. The model does not

allow the trivial solution and is tunable to balance stability and accuracy via the
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choice of reference parameters.

The charge injection model is shown to qualitatively approximate the expected

variation of charge and normal electric field on the emitting electrode. The model

problem geometry with an offset emitter shows that the charge injection model biases

the current flux to the area of the emitter with the highest electric field. The model

does not strictly enforce Kaptsov's hypothesis that the electric field is pinned at the

critical value at the emitter. This affects the predictive capability of model.

Analysis of the single stage thruster using the predictive charge injection model

shows that the model can predict the thruster performance if higher sensitivity param-

eters are chosen. The solution does not converge on the coarse mesh at higher applied

voltages. Lower sensitivity settings allow convergence at the expense of predictive ac-

curacy. Higher sensitivity settings on a fine mesh allow predictive simulations with

thrust and current errors up to 19% of the experimentally measured values.

If experimentally determined currents are used, the HDG model reproduces the

measured thrust within 14% error. The discrepancy could be due to the natural

boundary condition applied to the domain. All emitted current is forced to the

collector which would result in higher thrust since more charge is available to impose

a Coulomb force on the electrodes. The model results also show that the the critical

field strength is not maintained at the emitter. This indicates that Peek's law should

be modified with a surface factor less than one for this geometry or that there are 3D

discharge effects that are not captured in the model.

The ability of this model to reproduce the experimental results is encouraging

given that the analysis models in the literature are much larger. The geometry ana-

lyzed by Martins & Pinheiro [27] and Martins [28] required meshes with more than

50, 000 elements. An HDG problem size beyond 5000 second order elements becomes

cumbersome on a personal computer in terms of computing time and memory re-

sources.

The attempt at modeling the dual stage thruster illustrates a shortfall of the

current HDG implementation. The charge outflow boundary condition allows non-

unique solutions in charge stream-tubes connecting outflow surfaces. This situation
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occurs between the intermediate and the collector in the dual stage thruster geometry.

A mixed boundary condition is required to address this problem. Other geometries

modeled in the literature generally do not allow this indeterminate situation. Martins

[27] avoided this problem by applying Dirichlet boundary conditions.

5.1 Recommendations for Future Work

This work constitutes a first step in developing an HDG based solver for analyzing

the electrohydrodynamic phenomenon associated with EHD propulsion devices. It is,

in effect, a numerical proof on concept. There are a number of additional steps to

move beyond this basic implementation to arrive at a full fledged design tool.

The most significant omission in the HDG approach shown here is the lack of

fluid effects. The HDG approach has been successfully applied to a variety of fluid

problems by Nguyen & Peraire [36]. The theoretical formulation must be revisited

to include fluid parameters from the Navier-Stokes equations. The resulting problem

size will be impractical to solve on a personal computer. An intermediate measure

could utilized readily available N-S analysis codes like OpenFOAM to solve the flow

equations with a linking approach like that used by Cagnoni et al. [4].

In anticipation of larger and more complex problems, a parallel computing im-

plementation should be explored. Such an implementation should take advantage

of networked computing resources to allow distributed batch processing of problems.

The implementation should be accelerated using compiled functions as well to improve

solution time speed.

The errors in replicating experimental results are related to boundary conditions.

The accuracy of the high sensitivity charge injection boundary condition should be

investigated using fine meshes to confirm the solution convergence which is observed

with lower sensitivity implementations. The charge outflow boundary condition

should be revised to allow for a mixed boundary condition for appropriate electrodes.

This effort is likely to be numerically challenging since an adaptive mesh may be

required to resolve the transition from outflow to Dirichlet boundary conditions. Fi-

77



nally, a representative open domain boundary condition should be developed for the

HDG method. An approach similar to the ballooning boundary analysis presented

by Silvester & Hsieh [47] could be fruitful. Another facet of the HDG approach that

is not implemented here is the elemental post-processing which allows for H(div, Q)

conforming solutions. In practice, this serves to improve solution accuracy and con-

vergence rate [37-39]. Including elemental post-processing between each Newton it-

eration may alleviate some of the instability introduced with a high sensitivity charge

injection boundary condition.
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Appendix A

HDG for Poisson Equation

An abbreviated presentation of the HDG formulation for the Poisson problem is shown

here. The solution found using this approach is used to initialize the solution for the

full set of nonlinear equations in chapter 3. For details beyond what is shown here,

please see the work by Nguyen et al. [37].

The governing equation for the Poisson problem do not include the charge con-

servation equation. They are

E + V# = 0, (A.1)

V - E =-. (A.2)
60

The function spaces and inner products are defined in the same way as shown in

section 3.2.1 except the tensor space Qk is not required. The numerical flux is given

by

Eh Eh - T(Oh - Oh)n (A-3)
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Multiplying (A.1) and (A.2) through by test functions and integrating by parts yields

(h, a) - (#h, V - a)T + h, a -n = 0, (A.4)
/ T OT

-(V h, a) T (Trh, a),T - Th, T (-pco , a)T,, (A.5)

KEh n,"-),Th - (Tq~h, P) a~h + (g, )~h= w' )Th~ (A.6)

Note that the numerical flux given by equation (A.3) has been substituted into the

system. This is possible since the problem is linear. The resulting elemental matrix

system has the form

AK -BK CK QK 0

-- BT DK -EK UK =FK (A7)

CK EK MK JK GK

The upper left quadrant is again block diagonal and may be inverted to reduce the

system to degrees of freedom on the boundaries. Note that the system in this case

has fewer unique sub-matrices. This facilitates matrix assembly by reducing required

computations. The final form of the global problem is

HO = R. (A. 8)

Newton iterations are not required since the problem is linear. The accuracy of the

solution is then limited by the mesh and element order.
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Appendix B

Sensitivity Functions

This section provides details of the sensitivity functions used in the formulation shown

in chapter 3. The flux sensitivities are shown first followed by the boundary condition

sensitivities. The flux definitions are reproduced here for reference.

F =

F DC + ppE

Ph-= F(Qh, ith) - 7 a - inh)n,

(B.1)

(B.2)

The 2 x 2 matrices shown on the RHS

of F with respect to component Q(ij).
shown here.

OF
SQ (11)

OF
9Q (12)

OF
OQ (21 )
DF

_OQ(22)_

in (B.3) are the derivatives of the components

This convention is used for all sensitivities

1

Ap

0

0

0

D

0

0

0

0

1

AP

0

0

0

D

(B.3)
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_,9u (2)_
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OQ (11)
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(Q (12)
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9Q (21)

_Q (22)

OFEn u(1) I
OPI
,u (2)_

ap[Oii (1)_ =

Oii(2)1

1

0

0

.[--

0

01

1 0

pp 0

0 1

0 ~~

0 0

D 0

0 0

0 D

-Tnx -Tny

0 0

0 0

p-r-Tnx -T rnA

[Tfx Tny]

KEx + TFnx 1iEy +

(B.4)

(B.5)

(B.6)

(B.7)

Equation (B.8) shows the source term sensitivity.

as
Ou (1)E s 2)
Ou(2_

0

0
1

Co

0

(B.8)

The following sensitivities are for the ideal and smoothed charge injection bound-
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ary conditions as well as the outflow boundary condition. The boundary condition

expressions are repeated from section 3.

Current and electric field outflow:

F

_[

(B.9)-n -= N= F - n on OQN.

09N
aQ (11)

0 9N
19Q (12)

OQ (21)

9N
.19Q (22)_

199N
au (1)

agN
&u (2) I [

pp-nx

my

0

Dnx

0

DnY

0

0

pE n

(B.10)

(B.11)

Note that the outflow condition for the electric field is not used in the current

study.

Ideal charge injection:

F2 -n=9N =-ppEn on OQN,

aQ (11)
99N
aQ (12)

agN
aQ (21)

.9N
aQ (22)_

(B.12)

[0]
[0]

10]

_L J

(B.13)
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agN

OU (2)

(B.14)= 04 1

_ -PEon

Smoothed charge injection:

F2 - n 9N =F2 - n + ppEn - Pref PEon exp (
Eref ) On OQN. (B.15)

Here the superscript (2) on the flux denotes the conservation of charge flux com-

ponents.

-n - Prejp'Eon exp((-E -n -

-n - pref tEonexp((-E-

8F(2)
a Q(21) n
S(2)

BQ(22) J

Eon)/Eref) E I
Eon)/Eref) E

E F(2 ) 1 1

_ a (1) n ]

aF t+(2) fl
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Appendix C

Integration Implementation

Numerical integration of the volume and surface inner products are achieved using

the set of Koornwinder orthogonal basis functions. The code which calculates the

value of the basis functions at points on the unit master element as well as the Gauss

integration points and weights was provided by Jaime Peraire for the 16.930 course

offered at MIT. Since the basis functions are defined on the master element, integrals

for a given element must be mapped onto the master element using the Jacobian

matrix
[ox Dy

J = 7 D (C. 1)
lx 0y
L 5 77

A volume integral can then be computed by

Ng

/K f (Uh (X), X)#Oi#O = EWg f (Uh (Xg), Xgn)#Oi(Vn)#Oj(VU)JI, (C.2)
n=1

where 9 are the Gauss points and Wn are the Gauss weights. A face integral is

constructed in a similar manner, however, the Jacobian matrix is reduced to the face

by defining

85) = + , (C.3)
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where is the coordinate along a unit line. The face integral is mapped onto a unit

line "master element". The tangential vector and normal are given respectively by

1 (Ox Oy\ (C4)

I = Ox(C.5)

A face integral can then by computed by

= Mg

f f(Uh()x)nxi E Wg Wf (Uh( n .t)Oi),g j 9 11 ( ) I, (C.6)A f e i a n nn

where $9 are the Gauss points and Mg are the Gauss weights.
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Appendix D

Analysis Meshes

The analysis meshes used for each validation problem in chapter 4 are shown here.

The mesh size is limited to less than 4000 elements to facilitate solving on a personal

computer.
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Figure D-1: Model problem mesh, 1564 elements.
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Figure D-2: Model problem mesh with offset emitter, 1564 elements.
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Figure D-3: Single stage thruster mesh, 3746 elements.
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Figure D-4: Single stage thruster mesh, 11428 elements.
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Figure D-5: Dual stage thruster mesh, 2355 elements.
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Nomenclature

CG Continuous Galerkin

DG Discontinuous Galerkin

EHD Electrohydrodynamic

FE Finite Element

HDG Hybridized Discontinuous Galerkin

Constants

CO Permitivity of free space

kb Boltzmann constant

q Elementary charge

Variables

P Ion mobility

0 Electric potential

p Charge density

C Gradient of charge density

E Electric field

B Magnetic field

8.854 x 10-12 Fm

~ 1.3806 x 10-23 JK

1.602 x 10-16 C

Vs

V

m
3

C
V4

T

T

91



. Current density

Ui Velocity field S

F Flux terms

Q Vector variables, e.g. E, C

u Scalar variables, e.g. <, p

D Ion diffusivity in air M2
S

T Temperature K

92



Bibliography

[1] K. Adamiak. Numerical models in simulating wire-plate electrostatic precipita-
tors: A review. Journal of Electrostatics, 71(4):673-680, August 2013.

[2] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini.
Unified analysis of discontinuous garlerkin methods for elliptic problems. SIAM
J. Numer. Anal., 39(5):1749-79, 2002.

[3] J. A. Bittencourt. Fundamentals of Plasma Physics. Springer, 3rd edition, 2010.
ISBN 978-1-4419-1930-4.

[4] Davide Cagnoni, Francesco Agostini, Thomas Christen, Nicola Parolini, Ivica
Stevanovid, and Carlo de Falco. Multiphysics simulation of corona discharge
induced ionic wind. Journal of Applied Physics, 114(23):233301, 2013.

[5] Junhong Chen and Jane H. Davidson. Ozone Production in the Positive DC
Corona Discharge: Model and Comparison to Experiments. Plasma Chemistry
and Plasma Processing, 22(4):495-522, 2002.

[6] E. A. Christenson and P. S. Moller. Ion-neutral propulsion in atmospheric media.
AIAA Journal, 5(10):1768-1773, Oct 1967.

[7] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. Unified
Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Meth-
ods for Second Order Elliptic Problems. SIAM Journal on Numerical Analysis,
47(2):1319-1365, Jan 2009.

[8] Dorian F. Colas, Antoine Ferret, David Z. Pai, Deanna A. Lacoste, and
Christophe 0. Laux. Ionic wind generation by a wire-cylinder-plate corona
discharge in air at atmospheric pressure. Journal of Applied Physics,
108(10):103306, 2010.

[9] J. L. Davis and J. F. Hoburg. HVDC transmission line computations using finite
element and characteristics methods. Journal of Electrostatics, 18(1):1-22, Feb
1986.

[10] James L. Davis and James F. Hoburg. Wire-duct precipitator field and charge
computation using finite element and characteristics methods. Journal of Elec-
trostatics, 14(2):187-199, Aug 1983.

93



[11] Erwin Fehlberg. Low-order Classical Runge-Kutta Formulas with Stepsize Con-
trol and their Application to Some Heat Transfer Problems. NASA Technical
Report NASA TR R-315, NASA, July 1969.

[12] James Q. Feng. An analysis of corona currents between two concentric cylindrical
electrodes. Journal of Electrostatics, 46(1):37-48, Mar 1999.

[13] James Q. Feng. Application of Galerkin Finite-Element Method with Newton
Iterations in Computing Steady-State Solutions of Unipolar Charge Currents in
Corona Devices. Journal of Computational Physics, 151(2):969-989, May 1999.

[14] James Q. Feng. Electrohydrodynamic flow associated with unipolar charge cur-
rent due to corona discharge from a wire enclosed in a rectangular shield. Journal
of Applied Physics, 86(5):2412, 1999.

[15] James Q. Feng. Application of Galerkin finite-element computations in studying
electrohydrodynamic problems. Journal of Electrostatics, 51-52:590-596, May
2001.

[16] Christopher K. Gilmore and Steven R. H. Barrett. Electrohydrodynamic thrust
density using positive corona-induced ionic winds for in-atmosphere propulsion.
Proceedings of the Royal Society of London A: Mathematical, Physical and En-
gineering Sciences, 471(2175), 2015.

[17] M. Goldman, A. Goldman, and R. S. Sigmond. The corona discharge, its prop-
erties and specific uses. Pure and Applied Chemistry, 57(9):1353-1362, 1985.

[18] S. Giizey, B. Cockburn, and H. Stolarski. The embedded discontinuous Galerkin
methods: application to linear shells problems. Int. J. Numer. Methods Eng.,
70(7):757790, May 2007.

[19] David Halliday, Robert Resnick, and Jearl Walker. Fundamentals of Physics.
John Wiley & Sons, Inc., 4 edition, 1993.

[20] Michael T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill,
2nd edition, 2002.

[21] L. G. Hector and H. L. Schultz. The Dielectric Constant of Air at Radiofrequen-
cies. Journal of Applied Physics, 7(4):133-136, Nov 1936.

[22] T.J.R Hughes, G. Scovazzi, P.B. Bochev, and A. Buffa. A multiscale discontinu-
ous Galerkin method with the computational structure of a continuous Galerkin
method. Comput. Methods Appl. Mech. Eng., 195(19-22):2761-2787, April 2006.

[23] N. A. Kaptsov. Elektricheskie yavleniya v gazakh i vakuume. Technical report,
OGIZ, Moscow, Russia, 1947.

[24] Pijush K. Kundu and Ira M. Cohen. Fluid Mechanics. Elsevier Inc., 4 edition,
2008.

94



[25] Irving Langmuir and Katharine B. Blodgett. Currents Limited by Space Charge
between Coaxial Cylinders. Phys. Rev., 22:347-356, Oct 1923.

[26] L. Leger, E. Moreau, and G.G. Touchard. Effect of a DC corona electrical
discharge on the airflow along a flat plate. IEEE Trans. on Ind. Applicat.,
38(6):1478-1485, Nov 2002.

[27] Alexandre A. Martins. Modelling of an improved positive corona thruster and
actuator. Journal of Electrostatics, 71(1):61-67, Feb 2013.

[28] Alexandre A. Martins and Mario J. Pinheiro. Modeling of an EHD corona flow
in nitrogen gas using an asymmetric capacitor for propulsion. Journal of Elec-
trostatics, 69(2):133-138, Apr 2011.

[29] Kento Masuyama. Performance Characterization of Electrohydrodynamic
Propulsion Devices. Master of science, Massachusetts Institute of Technology,
September 2012.

[30] Kento Masuyama and Steven R. H. Barrett. On the performance of electrohy-
drodynamic propulsion. Proceedings of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences, 469(2154), 2013.

[31] J R Melcher and G I Taylor. Electrohydrodynamics: A Review of the Role
of Interfacial Shear Stresses. Annual Review of Fluid Mechanics, 1(1):111-146,
1969.

[32] James R. Melcher. Continuum Electromechanics. MIT Press, 1981.

[33] Eric Moreau, Nicolas Benard, Jean-Daniel Lan-Sun-Luk, and Jean-Pierre
Chabriat. Electrohydrodynamic force produced by a wire-to-cylinder dc corona
discharge in air at atmospheric pressure. Journal of Physics D: Applied Physics,
46(47):475204, 2013.

[34] N. Nandakumaran and S.R.H. Hoole. Tackling Inhomogeneous Open Boundary
Designs by the Finite-Element Method. IEEE Trans. Magn., 44(3):360-364, Mar
2008.

[35] Namir Neimarlija, I. Demirdzi6, and S. Muzaferija. Numerical Method for Calcu-
lation of Two-Phase Electrohydrodynamic Flows in Electrostatic Precipitators.
Numerical Heat Transfer, Part A: Applications, 59(5):321-348, Feb 2011.

[36] N.C. Nguyen and J. Peraire. Hybridizable discontinuous Galerkin methods for
partial differential equations in continuum mechanics. Journal of Computational
Physics, 231(18):5955-5988, Jul 2012.

[37] N.C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable
discontinuous Galerkin method for linear convection-diffusion equations. Journal
of Computational Physics, 228(9):3232-3254, May 2009.

95



[38] N.C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridiz-
able discontinuous Galerkin method for nonlinear convection-diffusion equations.
Journal of Computational Physics, 228(23):8841-8855, Dec 2009.

[39] N.C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable
discontinuous Galerkin method for the incompressible Navier-Stokes equations.
Journal of Computational Physics, 230(4):1147-1170, Feb 2011.

[40] N.C. Nguyen, J. Peraire, and B. Cockburn. Hybridizable discontinuous Galerkin
methods for the time-harmonic Maxwell's equations. Journal of Computational
Physics, 230(19):7151-7175, Aug 2011.

[41] F. W. Peek. Dielectric Phenomena in High Voltage Engineering. McGraw-Hill,
New York, 1929.

[42] L. Pekker and M. Young. Model of Ideal Electrohydrodynamic Thruster. Journal
of Propulsion and Power, 27(4):786-792, Jul 2011.

[43] J. Peraire and P.-O. Persson. The Compact Discontinuous Galerkin (CDG)
Method for Elliptic Problems. SIAM Journal on Scientific Computing,
30(4):18061824, Jan 2008.

[44] P.-O. Persson and Gilbert Strang. A Simple Mesh Generator in MATLAB. SIAM
Review, 46(2), 2004.

[45] Tao Shao, V.F. Tarasenk, Cheng Zhang, D.V. Rybka, I.D. Kostyrya, A.V.
Kozyrev, Ping Yan, and V. Yu Kozhevnikov. Runaway electrons and x-rays
from a corona discharge in atmospheric pressure air. New Journal of Physics,
13:113035, November 2011.

[46] P. Silvester and M.S Hsieh. Exterior finite solution for 2-dimensional exterior
field problems. Proc. IEE, 118(12):1743-1747, Dec 1971.

[47] P.P. Silvester, D.A. Lowther, C.J. Carpenter, and E.A. Wyatt. Exterior finite
elements for 2-dimensional field problems with open boundaries. Electrical En-
gineers, Proceedings of the Institution of, 124(12):1267-1270, Dec 1977.

[48] G. Skodras, S.P. Kaldis, D. Sofialidis, 0. Faltsi, P. Grammelis, and G.P. Sakel-
laropoulos. Particulate removal via electrostatic precipitators - CFD simulation.
Fuel Processing Technology, 87(7):623-631, Jul 2006.

[49] A. M. Tyndall and G. C. Grindley. The Mobility of Ions in Air. Part I. Negative
Ions in Moist Air. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 110(754):341--358, 1926.

[50] P.A. Vazquez and A. Castellanos. Numerical simulation of EHD flows using Dis-
continuous Galerkin Finite Element methods. Computers & Fluids, 84(0):270-
278, Jun 2013.

96



[51] Jack Wilson. An Investigation of Ionic Wind Propulsion. Technical Report
NASA/TM-2009-215822, NASA, 2009.

[52] L. Zhao and K. Adamiak. EHD flow in air produced by electric corona discharge
in pin-plate configuration. Journal of Electrostatics, 63(3-4):337-350, Mar 2005.

[53] Lin Zhao and Kazimierz Adamiak. Numerical Simulation of the Electrohydro-
dynamic Flow in a Single Wire-Plate Electrostatic Precipitator. IEEE Trans. on
Ind. Applicat., 44(3):683691, 2008.

97


