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ABSTRACT

I present a three-dimensional model of a human in a seated posture that consists
of two deformable thigh models connected to a rigid torso. 1 develop a
framework for taking contact pressure data gathered from a real person sitting in
a chair and, using the physics of the human model, compute the angles of
inclination when the person leans in the chair. Preliminary results of the model’s
ability to reconstruct leaning posture are shown.
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Chapter 1

INTRODUCTION

One of the greatest barrers to automated computer recognition and
understanding of human behavior is the lack of sensory “organs” in today’s
personal computers. Even the most powerful computer running the most
advanced software cannot see, hear, taste, smell, or touch objects in their
environment without sensors. Yet we implicitly expect them to be aware of these
things and react intelligently. While this is changing for computer vision and
speech recognition as video cameras and voice microphones are finding their way
to consumers and are slowly becoming mainstream peripherals, haptic, or touch-
based input and output devices are only now just starting to appear on the

information landscape.

I propose and implement a system that tracks the leaning state of a seated person
from the contact pressure distribution, i.e., it will “feel” the pressure of the person
sitting on the sensor and report that he or she is leaning to the left 10 degrees and
forward 15 degrees. The Seated Posture Tracking System (SPoTS) takes the
contact pressure data obtained using the Tekscan pressute sensor system and
employs a physical model of a seated human to calculate two inclination angles
that characterize how the person is leaning in the chair. This model “interprets”
the contact pressure data in a physically interpretive way by approximating the

physics involved in the body while leaning in the chair.



1.1 Motivation for the Work

An important question to answer about this work is why we want to track human
seated posture? One answer is that deriving the seating posture from the contact
pressure between the human and the chair in a physically interpretive way is an
interesting research problem that requires a lot of mechanical engineering. This
problem can be solved in a variety of non-mechanical ways, such as training a
purely statisitcal system like a neural network or a hidden Markov model
However, we believe that taking a physical approach can provide certain
advantages in terms of the ease of understanding and extending the system.
Because we use a physical model, every step in the process that we outline in the
next chapter can be justified and interpreted in a physical way. In other words,
instead of maximizing the likelihood or probability of an event as we would in a
statistical framework, we work with balancing real forces and minimizing strains
in the physical realm. In addition, because we do work in the physical domair,
extending the system involves simply connecting new structures and control

schemes or applying new forces to our model.

Another reason for solving this problem is that we are providing a methodology
and a toolkit for tracking human seating posture. By providing a method to
calculate leaning posture from the contact pressure, we can then focus our
attention on using this in a useful way. Two possible applications that could
potentially take advantage of posture tracking are in the areas of driver safety and

chair ergonomics.

In the area of driver safety, posture tracking can assist a system that is trying to
learn the relationship between posture changes and driver intention by allowing it
to look at inclination angles instead of raw pressure data. It has long been
recognized that driver intention is linked to real, physical manifestations of these

intentions. For example, one of the first things a driver education teacher warns



the driving student is to avoid veering the car to the left while checking for
obstacles in the left rearview mirror. If a predictive relationship between the
driver’s posture and his or her intention to speed up, slow down, or change lanes
could be established, then the car would be aware of the driver’s intentions and
could do something to watn people of potential collisions and other hazards.
Although having a posture tracking system would not directly solve this learning
problem, it could assist a learning system by providing it a set of physically-based

guesses of what it thinks the leaning state is, based on the pressure data.

Another instance in which having a method for posture tracking would be
beneficial is in the area of chair ergonomics. People need to move in the chair
from time to time to redisiribute the stresses on body parts that come into
contact with the chair. Usually, we do this naturally without thinking about it very
much. However, sometimes when we are really concentrating on performing a
task, we override our natural control systems and neglect to shift positions. This
can lead to discomfort in the chair or even the dreaded “pin-cushion” sensation.
By tracking the seated posture, we can remind the petson to move from time to
time if he or she has not been doing so, with an ergonomically sensitive “active-
comfort” system, if you will. Again, the posture tracker would not solve the
ergonomics problem directly. However, it does provide physically interpretive
data in the form of leaning angles to the “active-comfort” system so that it can

react appropriately.

We believe that using pressure sensors and posture tracking software is important
because it opens up access to a different kind of information not accessible to
other sensors. Pressure sensors can complement, and in some circumstances,
replace the use of other sensors like cameras. An example of this involves the
“Smart Desk” research project being conducted at the Media Laboratory at the

Massachusetts Institute of Technology. This research involves tracking the



upper-body in three dimensions with a pair of cameras. Recently, some people
have been interested in exiending the system with the capability to track the lower
body as well. Because the table completely occludes the line of sight to the lower
body, a traditional vision solution to the tracking problem would involve placing
one or more cameras under the table. However, when doing so, one quickly
encounters problems with lighting. chair occlusion and body self-occlusion that
are associated with vision-based solutdons. By using a pressure sensor and a
posture tracking system, we aveid many of these problems altogether. We do not
have to worry about lighting the scene because we are sensing contact pressute
and not light. Although, in some sense, it can be said that the bottom the body
that is in contact with the chair completely occludes the “view” of the rest of the
upper body, the model can calculates the most likely upper body leaning position

that is be responsible for the detected contact pressure distribution.

1.2 Previous Work

In looking at the prior work, we’ve come to realize that not much has been done
in terms of using a physical model to track human seating posture. Most of the
related work generally involves the modeling of other body patts like the lips and
the fingertips. Also, the approach taken by previous work is divided mostly into
two camps, with statistically based systems that focus on computation speed on
one side, and slow, highly accurate biomechanical models on the other. We hope
to bridge this gap by providing a reasonably accurate system that can compute

leaning angles from contact pressure in real time.

Tan, Lu and Pentland [18] have constructed an “eigenposture” system that
employs a statistical method to do human posture classification of contact
pressure data. The eigenposture system uses a method similar to the Turk and

Pentland face recognition system [19]. The eigenposture system is trained initially



on pressure data for each of the postures to be recognized. The data set is
reduced to a set of eigenvectors that characterize the “modes of vibration” of the
posture space and together, span the space that covers all the training data, i.e.,
these eigenvectors can be linearly combined to form any pressure map on which
it was trained. Each of the trained postures is associated with a unique point of
the posture space. In the recognition phase, the system projects the new data
onto this eigenspace. The system then finds the distance from the projection to
the points corresponding to the various trained postures. It classifies the new
data with a posture label if the distance from its projection is the minimum, and is
within a predetermined threshold. This system sacrifices some accuracy for speed

by using only eigenvectors associated with the largest eigenvalues.

Pawluk [13] and Dandekar [5], on the other hand, instead of training a model
using statistical methods, take a mechanical approach and explicitly nmodel the
fingerpad structures with biomechanical data. Pawluk has created a quasi-linear
viscoelastic model of the human 'ﬁngcrpad that is subjected to Hertzian contact.
Dandekar [5] has assembled a three-dimensional finite element model of the
material layers in the fingertip using the large displacement tormulation. The
FEM model is solved on a supercomputer for the strain and stress state. Both

approaches sacrifice speed for high accuracy of the results.

Basu [1] takes an interesting approach in tracking human lip movement with a
hybrid system that employs a simple finite element lip model as a “physical prior”
for a probabilistic tracking system based on skin-color. The physical model
imposes physical constraints that regularize between sparse observation points to

derive the correct physical modes for the model.

We hope to emulate the approach taken by Basu to find a happy compromise

between high speed and high numerical accuracy. We want to construct a system

10



that is “accurate enough” for posture tracking and computationally simple
enough to run in real-time. We approach this problem by making a quasi-static
assumption about the dynamics of the system, and by approximating each thigh
as a single, homogeneous elastic object, each fitted by a single, three-dimensional
isoparametric finite element. We also make some assumptions about the
positioning of various body parts as well as the range of motion the system can
track. Making these simplifying assumptions allow us to track human seated

posture by calculating leaning angles from contact pressure data in realtime.
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Chapter 2

METHODOLOGY AND SYSTEM ARCHITECTURE

2.1 Overview of the Seating Posture Tracking System (SPoTS)

The Seating Posture Tracking System (SPoTS) is a family of components
programmed in ANSI _ ,
Cand C++ and in the  [RRSTRRNEy By I EORES

Matlab 5.0 scripting

“Thingworld

Contact Reaction forces

language for use on the pressure data
Silicon Graphics family

Figure 1 - SPoTS component architecture.
of UNIX workstations.

Our experimental setup utilized an Octane class workstation running all three
compornients on the same computer simultaneously. Computer graphics
visualization of the physical system is implemented using the SGI Open Inventor

toolbox.
The SPoTS architecture consists of three main components: (See Figure 1.)

- The first component (represented by the left box in Figure 1)
consists of the chair, the Tekscan pressure sensor system, and
preprocessing code that segments out the pressure sub-maps for

the left and the right thighs models.

- The second component (tepresented by the middle box in Figure 1)
consists of a finite element solver that takes the pressure data from

the first component and applies the forces to the FEM model of

12



the left and right thighs. It calculates the reaction forces necessary
to keep the knee and hip joints of the thigh models stationary. It
also displays graphics depicting strain state of each thigh model.

- The third component (represented by the right box in Figure 1)
consists of a constraint enforcing system that balances the reaction
forces from the thigh models with the gravitational force exerted by
the torso. It also displays a graphic depicting the leaning state.

wid &L R WL/

3T 34051 1LeF JLEM A 88 -

LML B LI Y 38 -

right -ot8

[0 TS ]

rigt.3

g

s YN
A
rrdld it
rldat

Figure 2 - SPoTS running on a Silicon Graphics machine. The top window displays the lcaning state of
the body. The lower two windows depict a representation of the strain state of the right and left thighs.
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These three components work in sequence to calculate the two leaning angles

from the raw pressure data. (See Figure 2.)

SPoTS makes a couple assumptions that are crucial to the system. First, it
assumes that the person is seated in the chair with both feet on the floor at all
times. This assumption is made because in calculating the reaction forces in the
FEM thigh models, we fixed the positions of the knee and hips in the model. We
believe this assumption is acceptable because when one sits and leans in a chair

with boot feet on the floor, the position of the knees and hips stay relatvely fixed.

Another assumption that we make is that the seated person is in balance at all
times, ie., the person is not off balance or losing balance when the contact
pressute distribution is read. We also assume that the person is not moving very
fast, e.g., spasming left and rght in the chair. These assumptions are made
because we presume that we have a quasi-static situation where all dynamics at
each frame of the simulation settle down before the next frame. If the person
moves rapidly or is out of balance, dynamic effects at each frame would become

important but would not be accounted for in the model.

2.2 Preprocessing using Expectation Maximization
The contact pressure data that the
Tekscan sensor system outputs is
similar to that shown in Figure 3.
The top of the figure corresponds to
the front of the body where the
knees are located, and the bottom, to
the backside of the body. The left
and right sides of the figure are

ey

Figure 3 - Tckscan 42x48 pressurc map.
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reversed — the left side of the image corresponds to the right side of the chair, and
vice versa. Thus, the right “blob” in the figure cotresponds to the contact
pressure from the left thigh, and the left “blob,” the pressure from the right thigh.
The coordinate system associated with the pressure map starts at (1,1) in the

lower left corner of the figure and ends at (48,42) in the upper right corner.

In order to separate this pressure map into two smaller portions that we can map
onto the surfaces of the two FEM thigh models, we use the expectation
maximization algorithm (EM) as presented by Bishop [2] to “fit” a mixture of
four gaussian densities to the data. We then use two of the four gaussians to
recreate each pressure “blob” (the left blob and the right blob in Figure 3) that
will be mapped to the FEM thigh models.

The weighted expectation maximization algorithm we use in SPoTS is an iterative
method for finding a good fit for a mixture of our four target gaussians to our

pressure data. Each gaussian is associated with five parameters that completely
define the gaussian. These parameters are the mean in the x direction, [, the
mean in the y direction, Wy, the variance in the x-direction, G, the covariance
between x and y, Oy, and the variance in the y-direction, Oy,. Graphically, the x
and y means define the location of the center of the gaussian, and the covariance
matrix (a 2x2 matrix consisting of the variances on the diagonal and the

covariance on the off-diagonals) define the horizontal and vertical spread of the

gaussian as well as the rotation of the gaussian.

The first step in the EM process is to guess the initial gaussian parameters. For
the SPoTS preprocessor, we chose as the initial location for the four gaussians the
four points located at (13,11), (13, 33), (37,11), (37,33). For the initial covariance
matrix for the four gaussians, we initialized with the covariance matrix

cotresponding to all the data points combined.

15



In the EM algorithm, we define the data vector x" to be a vector (x, y)
corresponding to the position of the datapoint n. The superscript n ranges from
1 to the total number of data points in the pressure map. We also introduce the
variable z", which is an integer in the range of 1 to 4 specifying which of the four
gaussians generated the data point n. Also, E<™ is the negative log-likelihood (or

etror function) for the complete data problem:

N
ECDMP - _Z ln{PMW(Zn )pncw (xn zn )} (1)

where Prev(z0) is the probability of the gaussian, and pne¥(x"|z") is the probability

of x» given the gaussian. The pressure at each point is used as a weighting factor.

To find the probability distribution of the {z"}, we can use our initial guesses and
compute the expectation of E<™ with respect to this ditribution. This

corresponds to the expectation step of EM.

The next step in the EM algorithm is to find the “new” parameter values by
minimizing the expected error and maximizing the likelihood with respect to

these parameters. This corresponds to the maximization step of EM.

These new parameter values are then fed back as the initial guesses for the next
iteration, and the process is repeated until the likelihood for the complete data
problem is sufficiently maximized. With the data preprocessor in SPoTS, we
iterate twenty times to get a good fitting of gaussian mixtures to the pressure data.

(See Figure 4.)

From these gaussian parameters we can recreate a pressure map that is very
similar to the original map. The two main differences between the original and

the recovered pressure maps are:

16



Figurc 4 — The left figures are EM fitting of four gaussian distributions to pressurc maps - the cllipses
corresponding to the gaussians, two standard deviations from the mean. The right figures are the
recovered pressure maps from gaussian parameters. The corresponding postures arc leaning left 15
degrees, no leaning, right 15 degrees, forward 15 degrees, and backward 15 degrees.
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(1) There is a scaling difference between the original and the reconstructed maps

because the values in the recovered map represent probabilities and are thus
all less than unity. We remedy this by scaling all the values in the
reconstructed map so that the highest point in this map is the same as the

highest point in the original map.

(2) The recovered map is the best fit of a mixture of four gaussians to the

pressure data — there will be an automatic smoothing of data in the recovered
pressure map. This regularization can be considered a feature of the system

because it filters out noise in the pressure map.

We gain two very important benefits from performing EM on the data:

M

)

We obtain a closed-form formulation of the pressure map. Given any point
(x, y) on the map, we can compute a corresponding pressure by adding the

contributions of each of the four gaussians at that point.

We also gain the ability to segment out the two pressure sub-maps to apply to
each of the FEM thigh models. Looking at Figure 4, we see that four
gaussians cluster into two “blobs” each made up of two gaussians with very
little overlap between the blobs.
Although the entire pressure
map is formed from a mixture
of all four gaussians, since most
of the data in the gaussians is
contained within two standard

deviations from the mean of

each gaussian, we see that the

Figure 5 - Resampling of the pressure data.

gaussians in the left lobe do not

18



add substantially to the points in the right lobe, and vice versa. Therefore, we

can simply use a mixture of only two gaussians to construct the sub-maps to

be mapped on each FEM thigh model.

The next step of the preprocessing procedure is to resize the pressure maps to

dimensions compatible with the left and right FEM thigh models. We reduce the

dimensions from a 42x24 map to a 7x8 map by locally averaging the pressure sub-

maps. (See Figure 5.)

Figure 6 - Geometry of the thigh models.

We than map these pressure maps
onto the thigh model surfaces by
applying each pressure reading in the
7x8 sub-map to the points on the
thigh model (See Figure 6.)

2.3 Finite Element Method and
Thingworld

Thingworld [15] is physics simulation
and animation system developed in
the Vision and Modeling Group at the
MIT Media Laboratory that uses the
physics of a single 27-node

isoparametric finite element to animate deformable graphic objects.

The system utilizes the finite element method (FEM), which is a numerical

method for approximating the physics of a deformable object. The isoparametric

element used is a 27-node three-dimensional element in a 3x3x3-cube

configuradon. (See Figure 5.)
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Contrasted to the finite
difference method, which g

computes the physics of the 17 ]

object only at the nodes, the

finite element method also

models the physics in between

the nodes using a set of

interpolation functions, Hfr, s,

t). The interpolation functions,
also called shape functions,

allow us to go between the

Figure 7 - 27-node isoparametric finite element.

undeformed local space (t, s, t) and deformed space (x, y, 2):
u(x,y,z) = H(r,s,0i ¢

where @ represents the nodal displacements, H is the interpolation matrix of

interpolation functions, and u is the displacement polynomial.

The strain €, which describes the deformations caused by stresses exerted on the

body, can be found by using the strain-displacement transformation matrix B:
¢ =Ba. 3)

B is obtained by differentiating H with respect to r, s, and t, and premultiplying

the result by the inverse of the Jacobian operator.

How an elastic object deforms is associated with the object’s stiffness matrix. To
find the stiffness matrix K for the clement, we integrate the following over the

volume of the element:

20



K = [B"CBdV @

where C is the material matrix descrbing the stress-strain relationship between
the various degrees of freedom in the element. It should be noted that the
volume integration extends over the natural coordinate volume, and in general,

we need to make the following transformation:
dV =det J drds dt 6)]
where det J is the determinant of the Jacobian operator.

The material matrix C for a three-dimensional isoparametric finite element is

1 &% &% 0 0 0
= 1 & 0 0 0

__Ea-v) |H =] 0 0 0 ©
+v)1-20)| 0 0 0 HF& 0 O
0 0 0 0 X% 0
|0 0 0 O TR

where E is the Young’s modulus and V is the Poisson’s ratio.

In SPOTS, we assume quasi-statics, which means that at each time step in the
simulation, the dynamic interplay between external forces, material elasticity and
inertia equilibratc before the next time step. This simplifies the physics from the

generalized equations of motion involving inertia and damping

Mii+ Cu+Ku =R 0

to the quasi-static form

21



Ku=R ®)

where R is the sum of the external body forces Rp and surface forces Rs, and u

represents the nodal displacements.

To get the nodal surface force matrix Rs, we again turn to the interpolation

functons:

R, = [H°'°dS. )
s

The vector fS is the pressure sub-map that we constructed in the preprocessing

step.

With the surface forces applied to the FEM thigh models, we can solve for the
reaction forces at the knee and the hip of the FEM thigh models with the
assumption these points remain fixed. This assumption corresponds to fixing
nodes 24 and 25 in each FEM thigh model. (See Figure 7.) We believe that it is
fair to make this assumption because the hip and the knees stay relatively fixed

when someone is leaning,

We remove the rows and
columns in the stiffness matrix
corresponding to the fixed
nodes and solve for the
displacements of the other
nodes that are free to move

using gauss eliminatdon. We

can then back-substitute the
displacements and calculate the Figure 8 - Seme modes of vibration of the thigh model.

reaction forces at nodes 24 and 25 necessary to keep them fixed.

22



Because the Thingworld system pre-computes the modes of vibration of the
stiffness matrix (see Figure 8) and animates by superposing these modes, we
convert from nodal displacements u to modal displacements X for so that

Thingworld knows how to display the objects on the screen:

X = ®T™u. (10)

2.4 A Modular Constraint System and BodyModel

BodyModel is an object-oriented modular constraint management and animation
system implemented at the Vision and Modeling Group at the MIT Media
Laboratory. [23] Solid physical

objects with masses and

rotational moments of inertia Feronteft Ffrone.cighy Fractesi+ Foack.right
can be quickly connected ﬂ

together using hard constraints
such as pin and ball joints or soft
constraints like linear and

rotational springs. We first solve ' >€ 2 Ioa right

for the correct leaning angles 0 Frmeicn Frmeich

and @ by enforcing a force and Figute 9 - Fotce balance.

torque balance, (see Figure 9)
and then use the BodyModel system to visualize the corresponding posture.

We calculate 8, or how much the model is leaning to the left or right by the
following:

Z forces=F ,+F,, -F,, =0

1n
Ztorque =F,at+F,rcos—F ,a=0

23



where the lengths rand 4 ate as shown in Figure 9, Fiert is the sum of Fontlert and
Fbackteft, and Frgne is the sum of Frontghe and Foack-right. These two equations

combine to become

0= cos-l[(ﬂefr - Fright)g]. (12)
(Fip + Frgn) 1

We balance the left and right forces to find @:

2 forces=F,,  +F,  —F,, =0 (12)
Ztorque =F, 4rsin@cosp—F, =0
where the length /is shown in Figure 9, Ffront is the sum of Fonttete and Freont-right,
and Fpack is the sum of Fack-leftand Fiack-rign. These equations combine to form

Q= cos"'[ F pon ! ] (13)

F,,.+F,, rsin@

Jront

We use angles 0 and @ to make the model lean correctly. (See Figure 10.)

Figurc 10 - The puppet
leaning to the right.
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Chapter 3

TESTING AND RESULTS

3.1 Training the System

The training for the system was performed by capturing five pressure maps
corresponding to the five posture — no leaning, leaning left, leaning right, leaning
forward, and leaning backward, all 15 degrees from vertical. The body angles

were measured visually with a protractor.

The system was calibrated using these five control points. The intended theta and
intended phi columns in Table 1 are what ideal training data would yield as the
inclination angles for each posture. However, it was difficult, for example, to lean
only to the left or right without leaning forward or backward. The theta and phi
columns are the closest calculated posture angles after fitting the five control

points.

Leaning Position -~ Theta- . Phi Intended theta * Intended phi

Tohla 1 Tha raliheatinn nninte fare the crctam
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3.2 Performance of the System

To test the system, we collected two additional sets of pressure data. For the
both sets of test data, the subjects were asked to sit upright, lean left, lean right,
lean forward, and lean backward at an angle 30 degrees from the vertical. 'The

angle of inclination was measured visually using a protractor.

The first set of test data was collected from the same person as the training data
was collected. He is a 5°6” male weighing 145 Ibs. The results of running the
data through the system are shown in Table 2. The system was running at

approximately 8 frames per second for this test.

| Leaning . .Theta - Phi Intended :Intended’ % Error.- % Error
Position . _ . theta . - '‘phi- ~ theta. .. " ‘phi

Table 2 — Calculated and intended posture angles for subject A.
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The second set of data was collected from 2 second subject. He is a 5’10” male
weighing 200 Ibs. Data for the leaning backward posture was not used because
the subject could not lean backward 30 degrees without hitting the backrest. The
results of running his data through the system are shown in Table 3. The system

was running at approximately 8 frames per second for the second test.

‘Leaning - Theta - L Phi Intended - Intended . "o Error °o Error phi
Position .-+ . theta. . phit o ctheta :

Table 2 — Calculated and intended posture angles for Subject B.
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Chapter 4

DISCUSSION

Overall the performance of the system was varied. Although the system did
predict posture angles that were as high as 34% off from the intended angle, it did
determine qualitatively the direction that the person was leaning, i.e., if somebody
leaned left. The system correctly detesmined when a person was leaning to the
left or right, although there was some error in determining the amount of lean in
these directions. The system was not as sensitive to leaning forward and

backward.

We believe that the low performance by the system in predicting how much the
person is leaning may be due to two major factors. The first is that there seems to
be a lot of coupling between leaning left and right with leaning forward and
backward — it was extremely difficult to constrain the leaning posture to just one
degree of freedom. This factor is even more important when we realize that the
coupling occurred in the training data where it was assumed to be nonexistent.

Errors in the training would obviously lead to errors in tracking.

The second reason why the error rates were high may be because our assumption
that the hips remain stationary may have broken down. This would lead to high
error rates because one could generate different contact pressure distributions

while stil! remaining in what looks like the same posture, and vice versa.

There is some evidence that the stadonary hip assumption may be somewhat
invalid. By simply looking at the pressure maps of sitting upright for a number of

people, one sees that there is usually more pressure on one side of the body than
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on the other, despite the fact that they are all sitting upright. This phenomenon
would have an affect on the accuracy of posture tracking,

The future ditection of this work should be focused on determining the cause of
error in the system ard then compensating for the error. Perhaps by modeling
the behavioral control of posture in addition to mere physical balance (people
probably don’t lean in such a way that they have to actively keep their balance) we
could achieve better tracking accuracy. Perhaps instead using the fixed knee /
fixed hip assumption and solving for the reaction forces at these joints we should
model contact explicitly. These are all possible avenues of exploration that we

should try in the future.
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APPENDIX A: DATA PREPROCESSING CODE

The data preprocessing component of the SPoTS system is composed of

expectation maximization routines coded in C++ and data matrix processing

code written in Matlab script.

The expectation maximization code is located in /u/ilu/bigu/Bodymodel/serial
on the MIT Media Laboratory file server. It includes the following files:

Makefile The gmake makefile for creating the binaries.

buttview.c++ The main c++ file. It reads in a Tekscan data file either from
a file or over the sedal port and applies the estimation
maximization routines to the data. It outputs the gaussian
parameters to the screen.

eispack.h A header file for the eispack single value decomposition
library.

em.c++ The routines for the expectation maximization algorithm.

em.h The header file for the expectation maximization routines.

lu_solve.c The routines for the gauss elimination and backsubstitution
algorithms.

lu_solve.h The header file for the gauss elimination and backsubstitution
algorithms.

matrix.c The routines for matrix arithmetic.

matrix.h The header file for the matrix arithmetic routines.

matrix_eispack.c

The routines that allow matrices access to the cispack library.
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matrix_eispack.h

The header file for the routines that allow matrices access to
the eispack library.

matrix_init.c Routines for creating and destroying matrix structures.

matrix_jnit.h The header file for the matrix creation and destruction
routines.

scanargs.c Routines for parsing the command line arguments.

scanargs.h The header file for thc command line argument parsing
routines.

sedal.c++ Routines for sending and receiving data over the serial port.

serialh The header file for the serial port routines.

The data matrix processing code is located in /u/ilu/prints on the MIT Media

Laboratory file server. It includes the following files:

backwardEM.m | Recreates the backward pressure map from the gaussian
paramcters.

backwardMaps.m | Creates intermediate data sub-map files for the backward
pressure map.

centetEM.m Recreates the center pressure map from the gaussian
parameters.

drawbackward.m | Plots the backward pressure map with the fitted gaussians
superimposed on the graph.

drawcenter.m Plots the center pressure map with the fitted gaussians

superimposed on the graph.

drawforward.m

Plots the forward pressure map with the fitted gaussians
superimposed on the graph.
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drawleft.m Plots the left pressure map with the fitted gaussians
superimposed on the graph.

drawright.m Plots the right pressure map with the fitted gaussians
superimposed on the graph.

ellipse.m Draws an ellipse given a center (x, y) and a covariance matrix.

forwardEM.m Recreates the forward pressure map from the gaussian
parameters.

forwardMaps.m | Creates intermediate data sub-map files for the forward
pressure map.

leftEM.m Recreates the left pressure map from the gaussian parameters.

leftMaps.m Creates intermediate data sub-map files for the left pressure
map.

makeAllDataFile | Takes all the intermediate data sub-map files and makes the

s.m final sub-map files.

rightEM.m Recreates the right pressure map from the gaussian
parameters.

rightMaps.m Creates intermediate data sub-map files for the right pressure

map.
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APPENDIX B: MODIFIED THINGWORLD CODE

The modified Thingworld component of the SPoTS system is a collection of
routines located in /u/ilu/bigu/Bodymodel/modal-1.1/stc on the MIT Media
Laboratory file server. It includes the following files:

Makefile ‘The gmake file for creating the binaries.
applyForces.c++ The routines for applying surface forces to
ThingWorld objects.
applyForces.h The header file for surface force application

routines.
butt-tw2.c++ The main source file for the component.
colormapLookup.c++ The routine for looking up a value in a colormap

and returning the corresponding RGB color.

colormapLookup.h The header file for the colormap lookup routine.

decode.c++ The routine for decoding data in encoded in base
128.

decode.h The header file for the decoding routine.

displace.c Routines for calculating the displacements in the
superquad.

dmap30.c Routines for calculating the displacement map for
a 30 DOF system.

dmap81.c Routines for calculating the displacement map for

an 81 DOF system.

draw_gl.c The draw routines for openGL.
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encode.c++ The routines for encoding data in base 128.

encode.h The header file for the encoding routine.

fem.c Routines used to determine forward and inverse
polynomial mappings from superquadric space to
isoparametric finite element space, and from
deformed space to superquadric space.

fem81.c Routines for computing the value and the partials
ior FEM interpolation polynomial for a 27-node
isoparametric element.

fit30.c Routines for fitting data points in a 30 DOF
system.

fit81.c Routines for fitting data points in a 81 DOF

system.

fit_ellipsoid.c

Routines for finding an initial superquad ellipsoid
from data points.

fit_ellipsoid.h The header file for the routines for finding the
initial superquad.

ivDisplay.c++ Routines for drawing the superquad on the screen
using Inventor.

ivDisplay.h The header file for the Inventor drawing routines.

Isq.c Routines for weighted least squares.

lu_solve.c Routines for gauss elimination.

lu_solve.h The header file for the gauss elimination routines.

mass.c Routine for finding the mass matrix.

matrix.c Matrix arithmetic routines.
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matrix.h

The header file for the matrix arithmetic routines.

matrix_eispack.c

Routines for using the eispack library with
matrices.

matrix_jnit.c Routines for creating and destroying matrix
structures.

matrix_jinit.h The header file for matrix creation and destruction
routines.

phi30.c Routines for finding the modes of vibration for a
30 DOF system.

phi8i.c Routines for finding the modes of vibration for a
81 DOF system.

point_mapping.c Routines that maps forces.

point_mapping.h

The header file for routines that map forces.

polygons.c Routines for superquad sampling.

rotate_phi.c Routine to rotate phi.

rotation.c Routines for dealing with rotations.

scanargs.c Routines for parsing the command line arguments.

scanargs.h The header file for the command line argument
parser routines.

sq.c Routines for setting up the superquad.

sq.h The- header file for superquad initialization
routines.

sq30.c Routines to manipulate a 30 mode superquad.

sq8l.c Routines to manipulate an 81 mode superquad.
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stiffness.c

Routines to create the stiffness matrix.

svd_matrix_invert.c

Routine that uses svd to solve a weighted least
squares problem.

testldle.c++ Routines that are performed while Inventor is idle.

testldle.h The header file for the routines performed during
the Inventor idle callback.

undeform30.c Routines to undeform a point back to the original

space.

undeform81.c

Routines to undeform a point back to the original
space.

36




APPENDIX C: BODYMODEL CODE

The BodyModel component of the SPoTS system is a collection of routines
located in /u/ilu/bigu/Bodymodel/Constraint/dynamics/ on the MIT Media
Laboratory file server. It includes the following files:

Client.c++ The main client object.

Clienth++ The header file for the main client object.
Connector.h++ The header file for connectors.
Connector2D.c++ 2D connector objects.
Connector3D.c++ 3D connector objects.
ConnectorQ.c++ Connector points on quat objects.
Constraint.c++ Constraints — ball and pin joints, etc.
Constrainth++ The header file for constraint objects.
Integrator.c++ - The numerical integrator.
Integrator.h++ The header file for the integrator.
Interface.h++ The interface object.

Makefile The gmake file for creating the binaries.
Matrix.c++ The matrix class.

Matrix.h++ The header file for the matrix class.
Object.c++ Generic objects.
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Objecth++ Header file for the generic objects.

QObject.c++ Quat objects.

QObjecth++ Header file for quat objects.

Quaternion.h++ Quaternion routines.

Server.c++ The graphics server object.

Server.h++ The header file for the graphics server.

Servo.c++ Linear and rotational spring objects.

Servo.h++ The header file for linear and rotational spring
objects.

State.c++ Vector class.

State.h++ The header file for the vector class.

buttmodelPVM.c++ The main file.

scanargs.c Routines for parsing command line arguments.

scanargs.h The header file for the parser.
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APPENDIX D: PARALLEL VIRTUAL MACHINE

Parallel virtual machine (PVM) is a software package that allows multple
computer processes running on the same or multiple computers to communicate
with each other and trade information with minimum overhead. PVM is
supported on a variety of computer platforms including Alpha, HP, Intel / Linux,
Intel / Win32 and SGI. The official support web site is located at

PVM is used in SPoTS to allow the modified Thingworld component to talk to
the BodyModel component. All that is necessary to use PVM is to include the
header file pym3.h in the source code, and to link to the two PVM libraries —
libpvm3.a and libgpvm3.a — during compilation of the executable.

Everything is explained in detail in the online manuals at the official web site.
Also, extensive documentation as well as the libraries themselves are available on

the MIT Media Laboratory file server at /mas/vision/built/pvm3.
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