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Abstract

Models used in engineering design often face trade-offs between computational cost
and prediction uncertainty. To ameliorate this problem, correlated models of varying
fidelities are used together under different fidelity management strategies to pro-
duce accurate predictions while avoiding typically expensive costs. However, existing
strategies either account for model correlation and operate under the assumption of
a strict fidelity hierarchy, or do not consider model correlation but allow model fi-
delities to vary across the design space. In this thesis, we present a surrogate-based
multifidelity framework that simultaneously accounts for model correlation and ac-
commodates non-hierarchical fidelity specifications.

The development of our multifidelity framework can be classified into three stages.
The first stage involves the construction of three separate wing weight estimation
models that simplify different aspects of the wing sizing problem, thereby creating
a scenario where model fidelities are not confined to a rigid hierarchy. The second
stage involves the establishment of a formal definition of model correlation, and an
extension that allows model correlations to vary across the design space. The third
stage involves the incorporation of model correlation in surrogate-based information
fusion. To illustrate the application of our framework, we set up a wing weight
estimation problem using wing span as design variable. In a later chapter, the problem
is extended to two dimensions for increased complexity using body weight and aspect
ratio as design variables.

Results from both wing weight estimation problems indicate a combination of
variance reduction and inflation at different positions in the design space when model
correlation is considered, in comparison to the case where model correlation is ig-
nored.

Thesis Supervisor: Karen Willcox
Title: Professor, Department of Aeronautics and Astronautics
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Chapter 1

Introduction

Models used in engineering design often face trade-offs between computational cost

and prediction uncertainty. In this thesis, a multifidelity framework based on fusion

of correlated information is presented. Section 1.1 overviews the existing multifi-

delity methods, Section 1.2 discusses Bayesian regression techniques for generating

surrogates, Section 1.3 explains the motivation behind this endeavor, and Section 1.4

summarizes the research objectives.

1.1 Overview of Multifidelity Methods

Multifidelity design optimization is the concept that information from multiple sources

with varying degrees of confidence are combined when searching for the best design

as governed by some objective function. In doing so, we harness the inexpensive na-

ture of low order models while achieving the accuracy associated with highly detailed

models. With regard to model fidelity, many state-of-the-art frameworks operate un-

der the assumption that some rigid hierarchical structure exists among the models.

For example, in the fluid mechanics community, a hierarchy often manifests in the

form of Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), Reynolds

Averaged Navier-Stokes (RANS), and Euler Equations[26], with DNS being of highest

fidelity and Euler Equations being of lowest. By similar logic, for models that nu-

merically solve partial differential equations, hierarchies may be established through
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differences in fineness of mesh. In general, model fidelity is inversely proportional

to model inadequacy, where model inadequacy is defined as the discrepancy between

model output and the true value it is assigned to estimate.

Strategies to perform multifidelity design optimization have been studied exten-

sively, and some methods make use of response surface surrogates. Under the as-

sumption of hierarchical model fidelities, these methods leverage on minimizing the

discrepancy between the output of the highest fidelity model and those of lower fideli-

ties. The associated computational savings thus come from clever sampling schemes

and reduced number of expensive model evaluations. For instance, one might refine

surrogates from low fidelity models using evaluations from high fidelity models[5].

Alternatively, one can create surrogates approximating the difference between a high

fidelity model and a low fidelity model, thereby improving the confidence of the low fi-

delity model over a large portion of the design space without sacrificing computational

cost[19][17]. All of the aforementioned techniques can be extended to multiobjective

optimization. Furthermore, trust region methods have also seen application in the

context of multifidelity optimization. Work by Alexandrov et al. demonstrated an ap-

proach when gradient information is available[l][2], and March and Willcox developed

a mpthod in the derivative-frPP Qettinog[19.

Given the large number of disciplines considered during aircraft design and the

great selection of models within each, an approach that grants more versatility to

model fidelity relaxes the assumption of fixed hierarchical structure. Instead, it as-

signs different models different confidence depending on location in the design space.

As such, uncertainties of models with coupled physical mechanisms can be more ac-

curately represented. For instance, a group of wing weight estimation models may

take identical inputs, but make simplifications to different aspects of their respective

sizing routines. The results they produce would have different accuracies across the

design space; the best model in one part of the design space may not be the best in

another. This example serves to illustrate the nature of several models we built to

guide the development of our multifidelity framework.
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1.2 Bayesian Regression Surrogates

When using a surrogate to approximate model output, it is important to assess the

associated uncertainty. A rigorous measure of uncertainty is essential in justifying

both optimality and robustness of a design. Common approaches to building sur-

rogates that integrate uncertainty information often stem from Bayesian regression.

In contrast to the frequentist's technique of devising a solution by minimizing some

measure of error relative to a set of training points, the Bayesian technique starts

with some hypothesis on the form of the data-generating distribution (the prior) and

treats the training points as evidence refining that hypothesis (the likelihood). Since

Bayesian inference is performed by mixing and scaling probability distributions, a

Bayesian solution (the posterior) withholds a measure of confidence. In application

to surrogate optimization, the prior and the likelihood are chosen such that the poste-

rior is analytically tractable. This way, no additional computational resources would

be required to reproduce the form of the posterior.

Without reliable knowledge on the class of best fitting parametric models in the

context of the underlying physical processes, it is difficult to quantify uncertainty ac-

curately. Under a fixed functional form (e.g. linear, quadratic, etc.), any discrepancy

between training points and the posterior mean manifests into global variance infla-

tion. However, this behavior does not match our intuition that uncertainty should

be lower where training points are concentrated, and higher where no model eval-

uation is present to guide the response surface. To address this, Gaussian Process

Regression (GPR), also known as Kriging, is adopted as a surrogate construction

technique[27][11]. Gaussian Process Regression is a powerful nonlinear regression

technique that allows a wide range of functional specifications for the behavior of the

response surface and variance in relation to distance from training points. Gaussian

Process Regression belongs to the larger class of kernel methods, which has well-known

associations in finance, bioinformatics, and artificial intelligence.

Different kernel specifications lead to different surrogate characteristics. In or-

der to enforce smoothness and accommodate gradient-based optimization algorithms,
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Gaussian Process Regression used in multifidelity frameworks often implement the

generalized squared exponential kernel function. If, in addition, gradient information

is available, an extension to the Gaussian Process Regression known as Co-Kriging

can be applied to build multifidelity surrogates[7][8][14].

Given that Bayesian regression provides only a measure of uncertainty from sam-

pling, we must find a way to account for uncertainty from model inadequacy as well.

Our work follows a method proposed by Lam[22], in which the total surrogate vari-

ance is broken down into sampling variance and fidelity variance. Sampling variance

is the variance computed directly from performing Bayesian regression on the training

set, and fidelity variance is a function defined within the design space representing

uncertainty in the model's output. Unlike sampling variance, fidelity variance comes

from expert elicitation, and is subjective.

1.3 Motivation

Models estimating the same quantity of interest likely operate under similar mecha-

nisms. Consequently, information from similar models are somewhat correlated. Co-

Kriging makes use of this correlation by integrating it into covariance matrices[14].

However, Co-Kriging operates under the auto-regressive assumption[20], which ne-

cessitates that higher fidelity models encompass all information from lower fidelity

models. Therefore, multifidelity frameworks implementing Co-Kriging lack the versa-

tility of non-hierarchical frameworks. Through a separate approach, Lam, Allaire, and

Willcox recently developed a multifidelity framework that does not rely on the auto-

regressive assumption, but does not explicitly take into account model correlation [23].

When models are correlated, treating their information as independent may result

in greater variance reduction than is justified. On the flip side, exploiting correla-

tion may allow us to infer more information from similarities between models than

what each model contributes independently. Hence, we propose an extension to the

framework developed by Lam, Allaire, and Willcox that takes advantage of model

correlation structure in information fusion.
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1.4 Objectives

In this thesis, we propose a definition for model correlation that is derived from model

discrepancy trends across the design space. We then incorporate model correlation

into information fusion and study its effects on the fused surrogate. Finally, we

demonstrate the application of the proposed methodology on a multifidelity wing

sizing problem.

The thesis is composed of 6 chapters. Chapter 2 provides an overview of the

models we created to guide the development of the multifidelity framework. Chapter 3

defines model correlation and applies the idea to the demonstration problem. Chapter

4 conducts information fusion and compares the case in which models are correlated

against the case in which models are assumed to be independent. Chapter 5 applies

the multifidelity framework to a 2-D wing sizing problem, and Chapter 6 concludes

the thesis with a summary and brief discussions of future work.
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Chapter 2

Overview of Models

This chapter introduces the data-generating models used to guide the development of

the multifidelity framework and presents the setup of the 1-D demonstration problem.

Section 2.1 covers the models, and Section 2.2 details the problem formulation.

2.1 Description of Models

This section provides descriptions of four models we used to guide the development

of the multifidelity framework.

2.1.1 Transport Aircraft System Optimization (TASOPT)

Transport Aircraft System Optimization (TASOPT) is a physics-based conceptual

aircraft design tool developed by Professor Mark Drela at MIT. The software conducts

sizing and optimization of a proposed architecture specified through a text-based

input file and computes weight, aerodynamic, and engine-performance predictions

using fundamental theory and associated computational methods 110]. TASOPT is

intended for designing aircraft with potentially unconventional architectures, but is

also capable of conducting analysis on existing airframes. Our project makes extensive

use of the latter functionality.

TASOPT is a multidisciplinary tool. It captures coupling interactions by iterating

29



over disciplinary subroutines. An example of such process flow can be set up as

follows: a subroutine governing aerodynamics computes lift and drag, and feeds the

intermediate results to a structural subroutine that computes stresses together with

the required geometry at various span-wise positions. The structural subroutine then

feeds the calculations into a function that updates the associated weights, perturbing

the formerly satisfactory parameters with respect to mission profile and landing load

constraints. A propulsion subroutine then revises engine parameters, which, together

with current airframe geometry, are returned to the aerodynamics subroutine for

updates to lift and drag. This process is repeated until all the constraints are satisfied

and the design converges, or until some specified maximum number of iterations has

been reached. A more detailed iteration procedure can be found in [9].

This thesis presents an application of our proposed multifidelity framework in

a single discipline-wing structures. Nonetheless, the idea can be generalized into

multiple coupled disciplines with minimal changes. In order to gain deeper insight into

the mechanisms behind TASOPT's structures module, we made slight modifications

to the fortran code of the software in order to inspect certain intermediate variables.

In TASOPT, there are two components to wing weight; they are wing box weight

and add-ons weight respectively. Wing box weight is further broken down into inboard

weight and outboard weight, with inboard representing the wing segment between the

fuselage and the engine, and outboard representing the segment extending beyond

the engine. Add-ons weight encompasses skins, control surfaces, and other minor

structural elements, and is computed based on an empirical ratio relative to total

wing weight.

Wing box is sized according to moment and shear loads at wing root and wing

break. Wing root defines the position where the inboard intersects the fuselage, while

wing break defines the position where the engine is attached. Wing box consists of

three key geometric parameters - spar cap thickness (tcap), spar web thickness (tweb),

and chord length (c). Spar cap is sized according to wing root and break bending

moments, spar web is sized according to wing root and break shear loads, and chord

length is assumed to follow a triangular distribution along wing span, constrained by
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taper ratios. Wing box height (hb,,) and width (wb0 .) are inferred based on ratios

relative to local chord, and are adjustable in the input file. Figure A-5 is taken from

TASOPT documentation [10], and offers a visual reference of the wing box. TASOPT

does not allow wing span to be manually specified, and instead sizes for it based on

required lift in limit operating cases. As a result, higher cruise altitude typically

correspond to higher wing spans. We will take advantage of this relationship later

in setting up the multifidelity problem. Additional details on TASOPT's wing sizing

routines can be found in [101.

t cap A fuel

T --

W box

Figure 2-1: The solid lines represent the wing box as modeled by TASOPT, while the
dotted lines outline the general shape of the wing. The figure is taken from [10].

2.1.2 Finite Element Model (FEM)

We develop a one-dimensional finite element model (FEM) as a simple model of

the wing structure. The model takes in geometric parameters directly and does

not size the wing internally. The FEM assumes a hollow rectangular beam as an

approximation to the shape of the wing box, and computes secondary component

weights using a similar technique as TASOPT. The FEM's functionality includes

both wing weight prediction and wing tip deflection estimation, although we are only

interested in using the former for this exercise.

We consider the FEM to have model inadequacy in wing weight estimation. The

rough approximation to wing geometry, along with the lack of an iterative sizing

routine likely makes the tool inaccurate for computing wing weight. Table 2.1 sum-

marizes the input to the model. Note that in the table, as well as throughout the

thesis, we use "weight" and "mass" interchangeably. Both terms carry units of kg.
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Table 2.1: The columns summarize input parameters to the FEM.

To compute wing weight, the FEM multiplies the volume of the wing box with

material density, then adds secondary component weights by assuming that they

account for 31.5% of total wing weight. The volume of the wing box is given by

span-weighted averages of tcap, tweb, hwbo0 , Wbox, and c from TASOPT.

2.1.3 Rectangular Wing Weight Model (RWW)

The Rectangular Wing Weight Model (RWW) is another simple model used to es-

timate wing weight. It contains an internal sizing routine that implements similar

physical principles as TASOPT. The RWW assumes a rectangular wing profile, and

computes secondary component weights in the same way as TASOPT. Table 2.2 sum-

marizes the input to the RWW.

Variable Units Description Variable Units Description
Name Name
AR [-] Aspect Ratio mengine [m] Engine Mass
b [m] Wing Span t/c [m] Thickness/Chord Ratio
mbody [kg] Empty + Payload - N [-] Critical Loading Factor

Wing - Engines Mass

nfuet [kg] Fuel Mass

Table 2.2: The columns summarize input parameters to the RWW.

The model first guesses a wing weight, then calculates the moment and shear loads
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Variable Units Description Variable Units Description
Name Name
E [N/m2 ] Young's Modulus tcap [m] Spar Cap Thickness
p [kg/m ] Material Density tweb [in] Spar Web Thickness
b [IM] Wing Span inbody [kg] Empty + Payload -

Wing - Engines Mass
hox [m] Wing Box Height Meng [kg] Engine Mass
Wbox [m] Wing box Width N [.] Critical Loading Fac-

tor



at wing root using equations 2.1 and 2.2,

so =Mody gN (2.1)
2

0O =mbody gN b menggN b (2.2)
2 2 1 2

meng gN b
1 2

- minge gN b - 77ift)
2 2

mfuel gN b
2 2 j(cm - ?lift),

where So and Mo represent shear and moment at wing root respectively, T11ft rep-

resents center-of-lift as a fraction along semi-span (with 0 taken to be centerline of

fuselage and 1 taken to be wing tip), and 77cm represents wing and fuel tank center-of-

mass as a fraction along semi-span. In particular, the RWW assumes a near-elliptic

spanwise lift distribution along the wing such that Tlift = - + 0.01 (outward shift of

0.01 from true elliptic lift distribution). This is a reasonable approximation given the

assumed geometry of the wing [4]. The assumption of rectangular wing box translates

to a wing and fuel tank center-of-mass at qim = 0.5, or exactly halfway across the

semi-span.

After obtaining the shear and moment loads, the RWW uses manually specified

maximum acceptable bending and shear stresses to size the spar cap and spar web

respectively. These numbers are chosen to be consistent with those used in TASOPT.

Equations 2.3 and 2.4 compute spar cap thickness-over-chord (fcap) and spar web area

(Aweb) respectively.

Mcap -jO 6h 1 (2.3)

- so(2.4)
Aweb

where -cap and Tweb represent the aforementioned maximum acceptable bending and

shear stresses, 5 represents standard mean chord length [m], and h and C represent

average height and width of wing box divided by 5.

33



Once the new wing box geometry parameters are determined, the RWW recal-

culates mwings and stores its value for possible next iteration. If the current wing

weight and the wing weight from previous iteration differs by less than 10 kg, the

procedure terminates and returns the current wing weight as output. Otherwise, the

RWW proceeds onto the next iteration with the latest wing weight as the new guess.

The number of iterations until convergence varies depending on the problem setup;

the data in this thesis are produced typically in under 10 iterations.

2.1.4 Elliptic Wing Weight Model (EWW)

The Elliptic Wing Weight Model (EWW) builds upon the RWW and incorporates

additional details with regard to lift distribution and wing geometry. As the name

implies, the EWW assumes an elliptic wing, which translates to variable chord lengths

across the wing span. As in the RWW, the wing spar caps and spar webs are sized

based on moment and shear loads at wing root. But unlike the RWW, the root

position is taken to be the intersection between the wing and the fuselage rather

than at the centerline of the fuselage. An extension to this change manifests in the

form of an altered lift distribution, where the segment of the wing inside the fuselage

does not provide lift, but the fuselage carries over some of the lift from the exposed

portion of the wing. The benefit to computing the exact magnitude of the fuselage

carryover lift is quite small given the uncertainty due to other sources of error in this

model, so an estimation is made that relies on an adjustable ratio representing the

fraction of lift relative to a true- wing the fuselage provides. By default, this ratio is

set to be consistent with TASOPT (fcarryoer = 0.5). Note that in the latest version

of TASOPT, fuselage carryover is accounted for in a different manner, so this thesis

references an older version of the software (v. 2.08).

Table 2.3 summarizes the input to the EWW. They are mostly the same as those

in the RWW, with the addition of in-fuselage wing segment length (b,) as a variable.

Due to the elliptic wing geometry and the presence of fuselage carryover, moment

at wing root is computed in a different manner from the RWW. Equation 2.5 captures
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Variable Units Description Variable Units Description
Name Name
AR [-) Aspect Ratio mfuel [kg] Fuel Mass
b [m] Wing Span Meng [kg] Engine Mass
bo [m] In-Fuselage Wing Seg- t/c [m] Thickness/Chord Ratio

ment Length
Mbody [kg] Empty + Payload - N [.] Critical Loading Factor

Wing - Engines Mass

Table 2.3: The columns summarize input parameters to the EWW.

the new approach.

MO =(b)2(yoggit - owih o(sn1g)+ sin(2si'n- (,qo) - 7T)
2 Yo,weight)[]~ + ir(si'(i 0 ) -

cos3 (sir-1 (o)) meng gN b
+ ] - -(77s - no)) (2.5)

3 1 2

where

4L
yo 4ft 0 [(-2sin--(?7o) - 271 cos(sin- 1(o)) + 7r)

b/2

+ 2fcarryover (sn 1 (,qo) + o COs(sin-'(qo

4w,
Yo,weight - 7r b/2

mbody gN meng gN mnings gN +mfuel gN
LO -- 2 + I + 2 -+ 22 + 1 2 2

m wings gN mfuel gN

2 2

The equations for computing moment are derived by integrating the elliptic lift

distribution associated with the EWW's wing geometry. Aside from the revised mo-

ment, the EWW also numerically integrates for wing weight to accommodate variable

chord length along wing span. However, it does not apply appropriate reductions to

structural requirements for the wing segment inside the fuselage despite it carrying

a mitigated load. This leads to potential overestimate of wing weight if the moment

at wing root is high. Thus, the EWW has higher fidelity in certain regions of the

design space than the RWW and the FEM, but lower fidelity in others, giving rise to

a scenario where our models are not aligned in a strict fidelity hierarchy.
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2.1.5 Model Validation

We are interested in modeling the wing weight of medium-range commercial transport

aircraft, so we set up our model validation process based on the well-known Boeing

737-800 design. The 737-800 is a variant of the third generation derivative of the 737,

and has been in service around the world since 1998. The aircraft features two wing-

mounted turbofan engines, a back-swept cantilever wing, and a carrying capacity of

up to 189 passengers[13]. In addition, the aircraft is designed for missions with cruise

range around 5500 km, cruise altitude around 11000 m, and cruise speed of Mach

0.785[18].

We use TASOPT's estimate of 737-800 performance parameters as a baseline

against which to validate. Previous work with TASOPT using the same reference

aircraft has been conducted with extensive validation against parameters published

through Boeing's website, therefore we are confident in the model's estimates. Ta-

ble 2.4 presents the result from all our models using shared inputs corresponding to

the parameters of the reference aircraft.

The FEM, RWW, and EWW all model the 737-800 reasonably well. In this

particular scenario, the FEM performs the best because it obtains wing geometry

parameters directly from TASOPT and does not size anything on its own. The FEM

assumes a constant wing box profile and uses span-weighted average of c, tcap, tweb,

etc. to compute wing weight. Since the wing box structural components do not vary

linearly across wing span, the FEM often underestimates the inboard weight and

overestimates the outboard weight, leading to an accurate overall wing weight only in

special cases where the aforementioned errors cancel out. As such, the model works

well when we can ensure that the pattern of variation in structural components can be

suitably approximated by the weighted averaging method. This limits its predictive

power to the class of cantilever wings that are roughly rectangular in geometry, have

nearly uniform chord lengths, and carry similar loads at wing root and wing break.

The RWW outperforms the EWW in this setup. A rectangular wing is a better

approximation than an elliptic wing for 737-800, and the lift profile for the actual
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Physics-Based Methods
Variable Units TASOPT The FEM The RWW The EWW Torenbeek
AR [- 9.15 9.15 9.15
b [im] 37,816 37.816 37.816 37.816 37.816
c [im] 1.668-6.176 4.133 4.133
A (Sweep) [deg] 25.33 0 0 25.33
S [m2] 127.6 156.3 156.3
A (Taper Ratio) [-] 0.27
N [-] 3 3 3 3 3

t/c [.] 0.109-0.190 0.156 0.156
hbo [im] 0.182-1.173 0.505 0.580 0.580
Wbox [in] 0.807-2.988 1.868 2.066 2.066
teap [IM] 0.00956-0.02480 0.0165 0.0176 0.0182
tweb [im] 0.00245-0.00636 0.0043 0.0032 0.0032

MO [Nm] [ 4595769 4097204 (-10.8%) 4210875 (-8.4%) M

meng [kg] 5708 5708 5708 5708

mfueL [kg] 22127 22126 22126

mempty [kg] 56164 56164

GTOW [kg] 78291 78291

mbody [kg] 35029 35029 35029 35029
Mwing[kg] 9719.09;

Input * No relief due to engine

Table 2.4: Model validation is performed using 737-800 as reference aircraft. Cells
colored in light blue represent input to the particular model, cells colored in orange
represent output from the particular model, cells colored in gray represent reference
parameters, and cells with no color represent intermediate variables. Note that all
models implement physics-based methods for wing weight estimation.

aircraft is closer to that in the RWW than in the EWW. Additionally, the RWW

underestimates the moment at wing root to a greater extent than the EWW, which

allows it to offset the overestimate in wing spar cap thickness more effectively than

the EWW. The overestimate in wing spar cap is a result of using the standard mean

chord rather than variable chord lengths in sizing-a characteristic common to both

the RWW and the EWW.

The EWW computes the bending moment at every point along the wing. In order

to ensure that the model correctly accounts for engine relief and that the moment

distribution matches our intuition, we refer to Figures 2-2 and 2-3. Figure 2-2 is given

in TASOPT documentation [10], while Figure 2-3 is generated by the EWW.
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Figure 2-2: The red curve shows the general trend of the spanwise moment distri-
bution according to TASOPT. %i represents the engine attachment location. The
engine weight contributes a substantial amount of moment relief at 71, where the
wing intersects the fuselage. The figure is taken from [10].

Figure 2-2 provides a sketch illustrating how moment at wing root should be

modified due to engine attachment. We observe similar behavior in the EWW. From

Table 2.4, we notice that Torenbeek's wing root bending moment exceeds those from

the other models. The formula used by Torenbeek is presented in Equation 2.6[291

MO = -b N 7llift GTOW[1 - "fuel(1 - mempty (26)
4 77upjt GTOW

where 77fuel and rljft represent coordinate of center of mass for fuel tank and center

of lift respectively, both relative to semi-span. Specifically, we assume the fuel tank

to coincide with the wing box (Ti uel = 7cm), and the lift to follow an elliptic profile

(7hljft = -). Torenbeek's overestimation stems from the absence of moment relief due

to engine attachment. The EWW accounts for that moment relief, but fails to trim

down the structural requirement for the in-fuselage segment of the wing. As a result,

the EWW properly computes moment at wing root, but overestimates the overall

wing weight.

The models we use all compute wing weight differently, with some incorporating

more details than others, and some working under more suitable assumptions than

others. It is easy to see that the models are somewhat correlated, and we proceed to

show how to take advantage of that by first setting up a demonstration problem.
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Figure 2-3: The blue curve shows the spanwise moment distribution computed for the
737-800 using the EWW. Rather than terminating at the wing root, the calculation
is extended to the portion of the wing inside the fuselage. In this particular setup, 'q
is fixed at 0.285, and 7k is taken to be 0.106.

2.2 1-D Problem Setup

This section details the setup of the demonstration problem. The problem serves as

a context under which our multifidelity framework is developed.

2.2.1 Reference Aircraft

As in model validation, we adopt the 737-800 as reference aircraft for the demon-

stration problem. This implies that any parameters not treated as design variables

will assume values matching the technical specifications of the reference aircraft. Of

course, this is a gross simplification of the true multidisciplinary nature of the design

problem. In doing so, we introduce many designs that may not be realistic or even

feasible, given the lack of consideration for coupling effects our models should have

against other disciplines. Nevertheless, these uncertainties are reflected in model fi-

delity definitions, which will be discussed in Chapter 3. A more comprehensive list of

technical specifications of the reference aircraft can be found in Appendix A. Table 2.5
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summarizes the default values of a few parameters most relevant to wing sizing.

Variable Units Value Description
Name

mbody [kg] 35029 Empty + Payload - Wing -
Engines Mass

meng [kg] 5708 Sized for Cruise at Mach 0.78,
35000 ft

mfuel [kg] 22127 Sized for 5556 km Mission,
180 Passengers

bo [m] 3.607 Sized for Fuselage Diameter
of 3.91 m

b [m] 34.18 Sized for Cruise at Mach 0.78,
35000 ft

co [m] 6.176 Chord at Wing Root
CS [m] 4.323 Chord at Wing Break (En-

gine Attachment)
ct [m] 1.668 Chord at Wing Tip
AR [-] 9.15 Aspect Ratio
A [deg] 25.33 Fixed Sweep, not Considered

by FEM, RWW and EWW
[.] 0.285 Engine Attachment Position

along Semi-Span

Table 2.5: The columns provide a subset of technical specifications of the reference
aircraft (737-800). A more comprehensive list of technical specifications can be found
in Appendix A.
each variable.

All units are given in SI, and brief descriptions are provided alongside

2.2.2 Design Variable Selection

We would like to explore the relationship between wing weight and wing span over

a range of aspect ratios, so we replace the reference b and AR values with those we

manually specify. However, TASOPT does not allow b to be chosen explicitly. In

order to generate data with TASOPT, we rely on cruise altitude as a tuning knob.

Figure 2-4 shows the relationship between the two at fixed aspect ratio. Clearly, we

can take advantage of the positive monotonicity between wing span and altitude. A

drawback to this method is that we cannot enforce ordered structure to the input

vector (e.g. evenly-spaced grid).

Given that aspect ratio is defined by the square of wing span divided by wing

area, we expect b and AR to be highly correlated. Figure 2-5 shows the relationship

under constant altitude. Typically, it is advisable to select design variables that
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Wing Span vs. Altitude, Constant Aspect Ratio (8.00)
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Figure 2-4: The blue curve represents the wing span values converged upon by
TASOPT's internal sizing routine as cruise altitude is varied. We take advantage

of the monotonicity between the two variables by explicitly specifying altitude to

control wing span.

are independent. In this case, only wing span is treated as design variable, while

aspect ratio is used to expand the set of data points available for computing model

correlation. Therefore, collinearity between wing span and aspect ratio does not

introduce unnecessary complications to the setup.
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30.5 Wing Span vs. Aspect Ratio, Constant Altitude (29000 ft)
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Figure 2-5: The red curve shows the relationship between wing span and aspect

ratio for the reference aircraft (737-700) under constant altitude (29000 ft). The

linear nature of the curve suggests high collinearity between wing span and aspect

ratio. Note that for the demonstration problem, only wing span is used as design

variable, while aspect ratio is perturbed to generate more data for characterizing

model correlation.
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Chapter 3

Model Correlation and Fidelity

This chapter presents a method for quantifying model correlation and model fidelity.

Section 3.1 details the process through which we characterize model correlations, and

Section 3.2 assigns fidelity variance to respective models using expert elicitation.

3.1 Characterizing Correlation

This section covers the method for computing model correlation, and applies the idea

to the demonstration problem.

3.1.1 Defining Model Correlation

Model discrepancy, used interchangeably with model error in this thesis, is defined as

the difference between a model's output and the true value it is assigned to estimate.

The idea originated with Goldstein[151 and Kennedy[21] in the context of general

computer simulations. More formally, model discrepancy can be represented in the

following manner. Let d' be the vector of design variables characterizing design 1,

d2 be the vector of design variables characterizing design 2, ... , and d" be the vector

of design variables characterizing design n. Assume without loss of generality that

each d' has length m. Let ZAld' be the output of model A evaluated at d', ZRJd'

be the output of model B evaluated at d', ..., and Ztruth d' the output of the "truth
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model" evaluated at d'. All zAJd', zBldk, and ztuthd k are scalars. We have,

Di =za~d - Ztrut~d1  Di =ZBld - Ztruthld' (3.1)

DA =ZA~d - ZBruth Di =ZBd - Ztruth d

Di =znAd" -- Ztruthldn DB nZBld - Ztruth d ,

where Dk, Dk are model discrepancies of A and B based on design k. Dk and Dk can

be treated as random variables. Note that the random nature of the variables comes

from the lack of information on Ztruthldk. Elements obtained by iterating over k in

the sets {Dk} and {D k} form the vectors DA and DB, both of which have length n.

When we refer to model correlation, we refer explicitly to the degree of linearity

in model discrepancy trends. Equation 3.2 gives the precise mathematical definition

cov(DA, DB)
PA,B - (3.2)

V/var(DA)var(DB)

where PA,B is the correlation between models A and B. Notice that this is exactly

the Pearson's correlation coefficient between DA and DB[28]. When more than two

models are involved, the correlation between each pair of models is computed and

organized in a symmetric, positive-definite correlation matrix of the form

1 PM 1,M2 ''' PM1,MN

PM 2,M 1  1 PM2,MN

-PMN,M41 PMN,M2 . 1

where N is the number of models (not including the "truth model") and Mi enumer-

ates the models.

In application to the demonstration problem, ZA, ZB, and zC are produced by

the FEM, the RWW, and the EWW, respectively. As in model validation, we use

TASOPT to approximate true aircraft parameters, so Ztruth is produced by TASOPT.
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Based on past validation studies, we assume TASOPT's wing weight estimates to

fall within t5% relative to true unknown values over all dk. If wing weight data

and detailed technical specifications for a large number of aircraft are available, we

can use that information directly instead of relying on estimated parameters from

TASOPT. However, for the sake of convenience, we adopt TASOPT as the "truth

model", against which the FEM, the RWW, and the EWW compute their respective

model discrepancies.

Models that work in similar ways tend to exhibit similar discrepancy trends. But

similar discrepancy trends do not necessarily imply the same mechanisms behind

the models. Hence, it is important that we understand the mechanisms behind the

models and are able to explain discrepancy trends through model physics. As such,

model correlation is no longer a mere artifact of mathematics, but carries physical

significance that can be quite valuable to the design process.

3.1.2 Data for Model Correlation

Different training data can be used to obtain different model discrepancy vectors.

Selection of the training data should be done under the engineer's discretion. For

instance, if the wing we are interested in has relatively high aspect ratio, we should

refrain from including wings with low aspect ratios in the training data. This way, the

model correlations will apply more specifically to the type of aircraft we are interested

in, despite the models' ability to handle other wing architectures. In other words,

instead of weighing all training points evenly, we can impose certain restrictions on

the available data so that points most similar to our intended design are weighted

higher than those farther away.

In our problem, the training set is generated based on perturbations of two param-

eters from the reference aircraft, AR and b. AR is sampled by taking 50 evenly-spaced

values from 8.0 to 10.0, inclusive, and b is sampled by taking 50 evenly-spaced val-

ues of altitude from 29000 ft to 41000 ft, inclusive. In order to generate the design

variable vectors, we submitted all combinations of 50 aspect ratios and 50 altitudes

to TASOPT and obtained the associated input parameters for the FEM, RWW, and
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EWW. Each aforementioned combination corresponds to a unique aircraft and wing

design, leading to a total of 2500 unique designs. Furthermore, we allow mbood and

meng to vary freely, giving us a training set that covers a wider range of wing archi-

tectures. Figure 3-1 shows the discrepancies of the FEM, the RWW, and the EWW

projected onto b.

1500 Wing Weight Error vs. Wing Span (Used to Characterize Correlation)
- FEM Error
- - RWW Error

iooo - EWW Error

500

0

-1000

1505 30 35 40 45
Wing Span [m]

Figure 3-1: Colored points represent model discrepancies based on a set of inputs
obtained by perturbing the reference design (737-800). The blue points represent the
model discrepancies of the FEM, the green points represent the model discrepancies
of the RWW, and the purple points represent the model discrepancies of the EWW.

Based on this training set, the FEM underestimates wing weight, the EWW over-

estimates wing weight at high wing spans, and the RWW performs consistently every-

where. Differences in these trends owe their nature to different flaws in model physics.

In particular, the FEM's method for interpolating wing box geometry through fixed

points along semi-span leads to an underestimation of inboard weight that is not

cancelled by an overestimation of outboard weight with similar magnitude. Its model

discrepancy grows with wing span because the failure to capture non-linearities in

wing profile becomes more and more exacerbated as wing span increases. the RWW's

assumption of rectangular wing geometry, coupled with an iterative sizing routine
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that somewhat corrects for segment weight miscalculations makes the model rela-

tively proficient throughout our design space. The EWW's incorporation of fuselage

carryover results in more accurate wing weight estimations compared to the RWW

at lower spans, but the model overcompensates by failing to reduce the structural

requirements for the wing segment inside the fuselage at higher spans. More specif-

ically, at lower spans, the EWW slightly underestimates wing root moment despite

fuselage carryover corrections. This underestimation cancels out some of the errors

from oversizing the wing segment inside the fuselage, giving the EWW an edge over

the RWW. However, at higher spans, the EWW more accurately computes wing

root moment, making the oversizing mitigation disappear. The result is the pattern

of model discrepancies in Figure 3-1, which should aid us in characterizing model

correlations and assigning model fidelities.

3.1.3 Region Selection

Just as models may perform better in one part of the design space than in another,

their correlations may also change depending on the location in the design space.

To capture these changes, we propose a guideline for stratifying the training data.

We begin with a naive method where we divide the design space into equally-sized

regions, each containing a unique subset of the training data (i.e. the first region

contains d', d 2 , ..., dP, the second region contains dP+', dP+ 2 , ..., d+q, and so

on.). Model correlation associated with each region is characterized using exclusively

the training data contained within that region (i.e. the first region uses p points to

characterize model correlation, the second region uses q points to characterize model

correlation, and so on.). Provided that the total number of data points stays fixed,

the more regions there are, the fewer the number of data points per region. The

top plots of Figures 3-2, 3-3, 3-4, and 3-5 show the model correlations computed

using this approach for different stratification schemes, and the bottom plots show

the corresponding distribution of data points across the regions.

Data points tend to become sparse near the edges of the design space, and there

can be as few as 2 or 3 if too many regions are chosen (e.g. 75 regions). Regions
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Regional Correlation Coefficient with
18 Regions of Width -1.0 m
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Figure 3-2: The design space is divided into 18 equally-sized regions. Top: the
markers represent correlations between different pairs of models at region centroids.
Triangles correspond to the correlation between the FEM and the RWW. Squares
correspond to the correlation between the FEM and the EWW. Stars correspond to
the correlation between the RWW and the EWW. Bottom: the bars correspond the
the number of data points used for characterizing correlation. The left edge of each
bar coincides with the centroid of its associated region.

48

A

1.0

0.5

*

A
*

A A
M

M

A)

0
U
C
0

0
U

A
0.0

-0.5

-1.0

250-

200

C
0

150

0

C
4-
0

100

E
D

50

Number of Data Points per Region for Characterizing Correlation
(18 Regions of Width -1.0 m)

,



Regional Correlation Coefficient with
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Figure 3-3: The design space is divided into 25 equally-sized regions. Top: the
markers represent correlations between different pairs of models at region centroids.
Triangles correspond to the correlation between the FEM and the RWW. Squares
correspond to the correlation between the FEM and the EWW. Stars correspond to
the correlation between the RWW and the EWW. Bottom: the bars correspond the
the number of data points used for characterizing correlation. The left edge of each
bar coincides with the centroid of its associated region.
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Regional Correlation Coefficient with
50 Regions of Width -0.363 m

** *A ^Kw x w **

U A*

A AA
A

A AA A

A

*

-1.01

A A FEM vs. RWW
* U FEM vs. EWW
* * RWW vs. EWW

30

Number of Data

200

0 150

0
a.

100

E
z3

U

U

U
*

g
"U *a *

35
Wing Span [m]

40

Points per Region for Characterizing Correlation
(50 Regions of Width -0.363 m)

Region Centroid along Wing Span [m]

Figure 3-4: The design space is divided into 50 equally-sized regions. Top: the
markers represent correlations between different pairs of models at region centroids.
Triangles correspond to the correlation between the FEM and the RWW. Squares
correspond to the correlation between the FEM and the EWW. Stars correspond to
the correlation between the RWW and the EWW. Bottom: the bars correspond the
the number of data points used for characterizing correlation. The left edge of each
bar coincides with the centroid of its associated region.
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Regional Correlation Coefficient with
75 Regions of Width -0.242 m
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Figure 3-5: The design space is divided into 75 equally-sized regions. Top: the
markers represent correlations between different pairs of models at region centroids.
Triangles correspond to the correlation between the FEM and the RWW. Squares
correspond to the correlation between the FEM and the EWW. Stars correspond to
the correlation between the RWW and the EWW. Bottom: the bars correspond the
the number of data points used for characterizing correlation. The left edge of each
bar coincides with the centroid of its associated region.
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with fewer data points carry larger degrees of uncertainty, since each data point holds

considerable leverage in the collinearity of the discrepancy trends. This limitation

can be alleviated by making the design space narrower or by obtaining additional

data points. However, as we shall soon discuss, this is not always the most sensible

solution. It is advisable to choose a stratification scheme that maintains a sufficient

number of data points across all regions.

Another important fact to note is that the correlation averaged from two adjacent

regions is not the same as the correlation from the union of the two regions. In

particular, if the discrepancy trends for the models follow some nonlinear pattern

closely, then the magnitude of correlation from the union of adjacent regions will

generally be lower than that from each individual region. Therefore, it is possible

for the model correlations to change drastically as the region widths vary. Perhaps

a more fitting way to think about stratification then is to consider region widths,

and let the number of regions follow naturally. As such, we can define regions that

both contain a sufficient number of data points and are physically sensible. A wider

region captures physics on a larger scale, while a narrower region captures physics on

a finer scale. This idea is easily illustrated through drag aerodynamics, where higher

order effects often ignored in low Mach regions can become significant towards high

Mach regions. Hence, if Mach number was a design variable, the transition from low

Mach number to high Mach number would prompt a corresponding shift in region

width across the design space. As a result, we only need to constrict the design space

or obtain new data points if there is still an insufficient number after appropriate

region widths have been chosen. The execution of the proposed idea carries a high

degree of subjectivity, and relies on proper judgment on behalf of the engineer. An

inappropriately chosen region width may introduce unnecessary noise to the final

surrogate or leave out valuable correlation information. Nevertheless, our observations

in Figures 3-2, 3-3, 3-4, and 3-5 suggest that correlation trends are relatively robust

against different stratification schemes, or at least situationally so, given the lack of

a solid mathematical basis. As an additional verification, we simulate continuous

correlation by imposing a "moving window" across the design space that expands
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and contracts dynamically to include a constant number of data points everywhere.

Figure 3-6 shows the result. The general correlation trend from various stratification

schemes matches that of the continuous simulation. Note that the computational

cost for continuous simulation follows the well-known class of nearest neighbor search

algorithms, and can become prohibitively expensive as the number of dimensions

increases.
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Figure 3-6: The black lines represent model correlations evaluated at 200 evenly-
spaced wing span values using 50 data points per evaluation.

For our problem, we set the region width to be uniformly around 1.0 m, which

gives us a sufficient number of data points across all regions. Moreover, the region

width of 1.0 m agrees with the order of magnitude on which the model physics act.

The significance behind the region width is similar to that of the characteristic length

from the squared exponential covariance function used to create the GP surrogates

of our models. In Chapter 4, we will address the relevant hyperparameters in greater

detail. Based on experience, a reasonable region width usually lies between 0.01 and

0.1 times the GP surrogate's optimal characteristic length.

At present time, our framework does not quantify and propagate uncertainty
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associated with model correlation into the final surrogate. This is an important factor

to consider both when applying our ideas and for future work. The aforementioned

uncertainty stems from uncertainty in region widths, and inconsistent distribution of

data points per region.

3.1.4 Interpolating for Continuity

The information fusion process operates by taking a correlation adjusted, variance-

weighted average over constituent surrogate means. Consequently, the continuity of

the fused result is dependent upon that of the individual surrogate means, variances,

and model correlation. Any discontinuity in constituents will translate to discon-

tinuity in the fused surrogate. While dividing the design space into regions allows

us to capture variability in model correlation, we still face the problem of enforcing

continuity between regions. The continuous simulation from previous section may

seem promising, but can become prohibitively expensive in higher dimensions. It

also carries added complexity from simultaneously handling the "number of points

per region" and the "region width" constraints (in essence, it solves a constrained

nearest neighbor search problem every time a local correlation is queried). A solution

then is to interpolate between the centroids of adjacent regions. However, not all

interpolation methods can be applied. An additional property we must preserve is

the positive-definiteness of the correlation matrix p, represented in the three-model

case by

1 PA,B PA,C

PA,B 1 PB,C

[PA,C PB,C 1 J
where PA,B represents the correlation between models A and B, and so on. This

property guarantees the proper conditioning of the covariance matrix E used in the

fusion formula, as well as ensures the final surrogate variance is greater than zero, thus

physically sensible. If p is not positive-definite everywhere and model correlations are

continuous, then at some point an eigenvalue of the covariance matrix will drop to

zero, leading to numerical instabilities.
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To find an interpolation scheme that preserves positive-definiteness, we use lemma

2.2 in Fitzgerald[12], which states that any positive linear combinations of real positive-

semidefinite matrices is also positive-semidefinite. In application to our problem, we

perform an Euclidean-distance-weighted linear interpolation of the correlation matri-

ces from each pair of adjacent regions. Figure 3-7 shows the result. The case where

p possesses a zero eigenvalue only occurs when a pair of models have correlation of

1-a situation only possible when all the data points within a certain region are per-

fectly aligned. This would signify a problem with model physics or region selection

rather than a by-product from interpolation. Therefore, p should never contain a

zero eigenvalue, and the method guarantees positive-definiteness.

Linearly Interpolated Correlation Coefficients with
18 Regions of Width -1.01 m
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Figure 3-7: The solid line represents the interpolated model correlation between the
FEM and the RWW. The dashed line represents the interpolated model correlation
between the RWW and the EWW. The dotted line represents the interpolated model
correlation between the RWW and the EWW.

While Figure 3-7 demonstrates the idea in 1-D, it can easily be extended to multi-

ple dimensions. A drawback to this method is that while continuity can be guaranteed

in the final surrogate, smoothness cannot. The result of information fusion can only

be as smooth as its constituent means, variances, and correlations. In order to con-
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duct gradient-based optimization on the final surrogate, post-smoothing would need

to be applied.

3.1.5 Relation to Model Physics

We discussed earlier that model correlation refers to the degree of linearity in model

discrepancy trends. Similar discrepancy trends do not necessarily imply same mech-

anisms behind the models. Therefore, we provide explanations of the linear interpo-

lated correlation trends based on our knowledge of model physics. Figures 3-8, 3-9,

and 3-10 show how model discrepancies match up with correlation trends in respective

model pairs. The plots divide the correlations between different pairs of models into

three colored boxes. Red box corresponds to low wing spans (~25-34 m), yellow box

corresponds to medium wing spans (-34-40 m), and blue box corresponds to high

wing spans (~40-46 m). For the FEM vs. the EWW, the plot of discrepancies along

wing span may appear misleading, so we refer to Figure 3-11 to aid visual inspection.

Starting with the FEM vs. the RWW, we notice that the two are highly correlated

in the red box. That is, taking slices along wing span (z-axis), the slope of the linear fit

between the FEM and the RWW discrepancies is positive, and the residuals are small.

In this box, the RWW's own wing sizing routines converge on wing geometry that is

very similar to what is fed directly into the FEM, so the high positive correlation is

indeed due to similar model physics. Correlation between the two models falls sharply

in the yellow box, which is due to the linear fit between the model discrepancies

worsening. This happens because in the yellow box, the RWW is more sensitive to

variables aside from wing span, and its wing sizing routines produce corrections that

are absent in the FEM over the associated range of inputs. In the yellow box, the

RWW's discrepancies are somewhat more of a constant offset than scaled on inputs

in comparison to the FEM's. The correlation is still positive because the slope of

the linear fit is still positive. Finally, the model correlations bounce back up in the

blue box. This is because the RWW assumes a fully exposed (no fuselage diameter)

rectangular wing, which, at high wing spans, carry many of the same properties as

the simple hollow rectangular beam used by the FEM. Thus, despite the differences in
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the mean offset of the two-a consequence of misrepresenting inboard and outboard

geometries by different degrees, the models operate under similar physics.

Moving onto the FEM vs. the EWW, we notice that the models are highly corre-

lated in the red box. This can be explained simply by the observation that the elliptic

wing geometry and lift profile are not too different from the rectangular counterparts

assumed by the FEM at low wing spans. In the yellow box, model correlations tran-

sition from positive to negative. Taking slices along wing span, we would see the

slope of the linear regression line go from slightly positive to slightly negative. The

correlation between the FEM and the EWW decreases sharply for the same reason as

in the case for the FEM vs. the RWW (the EWW is sensitive to variables other than

wing span). The correlation does not bounce back up because as wing span increases,

the overcompensation of the EWW's fuselage carryover becomes significant, causing

the EWW to overestimate wing weight while the FEM continues to underestimate

it. The differences in physics remain meaningful at high wing spans, so it is expected

that the two models exhibit medium-high negative correlation in the blue box.

Next, we examine the RWW vs. the EWW. The models are positively correlated

in the red box. The high correlation is the result of both models having an internal

sizing routine, thus computing wing box geometry in a similar manner (e.g. spar cap

thickness based on bending moment). Furthermore, aside from several fixed parame-

ters unique to the EWW for estimating fuselage carryover lift (e.g. fuselage diameter

and wing attachment location), both models use the same set of inputs to size the

wing. In the yellow box, model correlation steadily decreases. This follows from the

differences in wing geometry, lift profile, and fuselage carryover between the models

gradually becoming significant. The EWW's discrepancies initially trend downwards

with increasing wing span, but turns to trend upwards once its overcompensation

for fuselage carryover becomes problematic. The RWW's discrepancies always trend

downwards with increasing wing span. This explains the eventual sign switch in cor-

relation in the yellow box. At high wingspans, the EWW's physics continues to push

its discrepancies upwards, while the RWW's discrepancies continue to trend in the

opposite direction. As a result, the models are negatively correlated in the blue box.
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The three colored boxes cover the entire design space of about 21.0 m with neg-

ligible amounts of overlap. Given our choice of region width at approximately 1.0

m, each box should contain multiple regions. The explanations for correlation trends

therefore only apply macroscopically. In general, for some region centroid ci, we can

project all points in that region onto the plane at z = ci in order to study the local

model correlation. Physical explanations of observed trends can be derived by study-

ing the overall similarities and differences among the models and identifying the most

dominant ones in the region of interest.

3.2 Fidelity Variance Assignment

This section covers the method for assigning variance associated with model fidelity

in the context of our demonstration problem.

3.2.1 Polynomial Regression

In surrogate based optimization, there are two main sources of uncertainty. The

first is uncertainty due to sparsity of samples in the training set, and the second

is uncertainty due to model fidelity. Since the models used in engineering design

are almost always deterministic, there is no uncertainty due to measurement noise.

Uncertainty due to sparsity of samples can be quantified through Bayesian regression.

Oftentimes, this source of uncertainty can be mitigated if prior knowledge regarding

underlying structure of the data is available. If we have no information aside from

simple governing physics behind the models, it is generally good practice to use kernel

methods. Uncertainty due to model fidelity is, however, far more subjective. There

is no standard way to characterize model fidelity, and the expert elicitation process

that precedes it is a field of its own. Given that the focus of our project is on utilizing

model correlation to aid information fusion, we only provide a loose guideline for the

assignment of fidelity variance to respective models.

The data used for characterizing correlation is in the form of discrepancy from

TASOPT. Thus, in addition to studying discrepancy trends between different model
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pairs, we can use the data to estimate the performance of the models across the entire

design space. Once again, we emphasize that the coverage range of the data should

fully encompass the design space. Otherwise, we would have to extrapolate both

model correlation and model fidelity variance, making the surrogate highly unreliable.

Since each model performs differently at different locations, one way to represent

model fidelity is to fit a curve through the discrepancies of each model and treat the

absolute value of the response surface as some standard deviation. The particular

polynomial used for the curve fit in the demonstration problem is quadratic, and is

chosen based on visual inspection of the data. The variance is then simply the square

of that standard deviation.

3.2.2 Addition of Constant Term

In addition to the polynomial fit, we add a constant term on the order of the maximum

absolute discrepancy of each model to their respective fidelity standard deviations.

This way, the true wing weight is more likely to fall within the confidence interval

associated with our model estimates. The magnitude of the constant is again at the

engineer's discretion. For the demonstration problem, we assign 1500 kg to the FEM.

This is a conservative estimate, but one we adopt to demonstrate a few properties of

fusion with correlation later on. For the RWW, we assign 100 kg. The small value

is justified because despite misrepresenting the wing in a variety of ways, the RWW

still performs well in general. Finally, we assign 500 kg to the EWW. The value is

chosen because the EWW overcompensates for fuselage carryover by failing to reduce

the structural requirements of the in-fuselage portion of the wing, the magnitude of

which averages to around 500 kg. Figure 3-12 shows the result after the constants

have been added. Note that the constants are not added to standard deviations

directly, but are squared and then added to the respective variances. This way we

introduce a smoothing effect to the standard deviations.

Given that the posterior distribution for our choice of Bayesian regression should

be analytically tractable (otherwise the added computational cost defeats the purpose

of surrogate optimization), we prioritize convenience over precision. Thus, despite the
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fact that certain models may only underestimate or overestimate the true output, our

surrogates employ symmetric posterior densities that cannot accommodate one-sided

confidence intervals.

Despite what Figure 3-12 may suggest, the method we used to assign fidelity vari-

ance does not require the models to follow some strict hierarchy. It is also worth

mentioning that regardless of how one chooses to characterize model fidelity, continu-

ity in fidelity variance functions should be enforced. Otherwise, the fused surrogate

will also display discontinuities at the corresponding locations.
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FEM vs. RWW Errors along Wing Span
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Figure 3-8: Top: the points represent model discrepancies of the FEM and the RWW
along wing span. Bottom: the solid line shows the model correlation between the
FEM and the RWW computed based on their discrepancy trends. The red box
encompasses low wing spans, the yellow box encompasses medium wing spans, and
the blue box encompasses high wing spans, classified with respect to the range of the
design space.
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FEM vs. EWW Errors along Wing Span
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Figure 3-9: Top: the points represent model discrepancies of the FEM and the EWW
along wing span. Bottom: the solid line shows the model correlation between the
FEM and the EWW computed based on their discrepancy trends. The red box
encompasses low wing spans, the yellow box encompasses medium wing spans, and
the blue box encompasses high wing spans, classified with respect to the range of the
design space.
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RWW vs. EWW Errors along Wing Span
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Figure 3-10: Top: the points represent model discrepancies of the RWW and the
EWW along wing span. Bottom: the solid line shows the model correlation between
the RWW and the EWW computed based on their discrepancy trends. The red box
encompasses low wing spans, the yellow box encompasses medium wing spans, and
the blue box encompasses high wing spans, classified with respect to the range of the
design space.
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FEM vs. EWW Errors along Wing Span
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Figure 3-11: The points show the FEM vs. the EWW model discrepancies from
different viewing angles.
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50O Model Fidelity Standard Deviations from Expert Elicitation
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Figure 3-12: The colored lines represent 1 standard deviation from respective model
output wing weight estimations. The probability of the true wing weight as approx-
imated by each model follows a Gaussian distribution. The blue line represents the
std. of the FEM, the green line represents the std. of the RWW, and the purple line
represents the std. of the EWW, as functions of position in the design space.
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Chapter 4

Fusion of Information

In this chapter, we apply regression techniques to generate surrogates for each model,

and conduct fusion of correlated information based on those surrogates. Section 4.1

implements Bayesian regression on select set of training points for each model. Sec-

tion 4.2 fuses the constituent surrogates, taking into account model correlation.

4.1 Individual Model Surrogates

This section introduces the individual model surrogates produced using Gaussian

Process Regression for the demonstration problem.

4.1.1 Training Set

Unlike the application of kernel methods in machine learning and statistics, surrogate

optimization works with very few training points while relying heavily on appropri-

ately chosen kernel functions and parameter bounds to maintain the integrity of the

results and minimize computational cost. To emulate the sparsity of training points

typically available in design optimization problems, we restrict ourselves to just a

few points in each training set. Furthermore, the training points are not distributed

evenly across the design space, but are more concentrated in places where the respec-

tive models perform best. Figure 4-1 details the distribution of training points for
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each model. Note that the inputs used to produce the training points are derived

from the same reference design as the data for characterizing model correlation and

fidelity.

16000 raining Set of Various Models for Wing Weight vs. Wing Span
1 * iD FEM Training Points
Rectangular Wing Weight

14000 Model raining Points
Elliptic Wing Weight
Model Tralning Points

12000 ,

.*

Z 10000

8000

6000

400

4005 30 35 40 45 50
Wing Span [m]

Figure 4-1: The colored points represent the training set for individual surrogates.
Blue corresponds to the training set for the FEM, green corresponds to the training
set for the RWW, and purple corresponds to the training set for the EWW.

It is generally good practice to include at least a few training points towards the

edges of the design space regardless of local model fidelity. The reason is that many

popular kernels used in building surrogates compute correlation matrices by some

measure of statistical distance (e.g. Mahalanobis, Euclidean, etc.). When calculating

the optimal parameters in these kernels through maximum likelihood, having training

points with joint coverage over a large portion of the design space will generally lead

to better estimates. In particular, since we apply Gaussian Process Regression with

squared exponential kernel in the demonstration problem, having points towards the

edges of the design space will aid the convergence onto an appropriate characteristic

length scale.
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4.1.2 Bounds on Hyperparameters

Gaussian Process Regression accommodates a broad range of kernel functions. Prior

knowledge regarding the nature of the response surface should serve as a guideline

for the its selection. Since all the major factors influencing aircraft wing sizing vary

continuously, the square exponential kernel, which guarantees smoothness in the re-

sponse surface, is appropriate. Equation 4.1 gives the exact form of the kernel in

m-dimensions.

k(dk, di) =cx'p exp(- mE d~d) (4.1)
i=1 2

where dk and di represent two training points, i represents the particular dimension

in d, represents variance due to sampling, and 1i represents the characteristic

length scale in the ith dimension.

The hyperparameters of interest are au and Ii. a 2 sets the upper bound on

variance in the absence of nearby training points, and 1i can be understood qualita-

tively as the average distance one would need to travel on the response surface along

dimension i before any significant change in profile is observed. While setting the

hyperparameters by maximum likelihood right away can be enticing, we must first

impose certain constraints derived from our knowledge of model physics so that the

surrogates will be physically sensible. In general, bounds on the hyperparameters do

not have to be the same across all models, but we keep ours consistent for convenience

sake. First, we fix or at 10000 kg2 for all three models. a 2 should not be chosen

automatically because it reflects the highest degree of potential errors when there are

no training points nearby. Global maximum likelihood estimate makes use of patterns

in the training set to infer information on the data-generating process. For aGp in

particular, the better the training points are aligned in the manner described by the

response surface, the higher the confidence (the lower the U2y) that will be assigned

to the regression estimates. This is a purely mathematical notion, and the resulting

2YG is in some ways decoupled from the model physics. A global maximum likeli-

hood estimate would be justified if the data-generating process is susceptible to noise,
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or if the true mechanism that turns input to output is extremely complex and not

well-understood (as is often the case in statistics). However, all of our models are de-

terministic and physics based, so aG should be chosen to be a conservative estimate

that reflects the uncertainty from replacing the model output with some regressed

approximation when there are no neighboring training points to serve as a guide. On

the other hand, we allow some variability in 1j, given that no universal standard exists

in determining the length scale on which the model physics act. In general, there can

be multiple maxima in the likelihood function, but the global maximum is not always

the most sensible one in the context of the design problem. The bounds we choose

for 1i should ensure that the value found through local maximum likelihood remains

physically sensible. Since we know beforehand that the relationship between wing

span and wing weight is roughly linear, we expect the associated characteristic length

scale to be rather large (there is almost no change in profile across any distance for a

linear surface). Hence, we assign only a lower bound to 1i at 20 m for all three models.

Note that the characteristic length scale converged upon by local maximum likelihood

can often serve as a guideline for the selection of region width in characterizing model

correlation, as these values now carry the appropriate physical significance.

4.1.3 Results

The result of the Gaussian Process Regression for respective models is shown in

Figure 4-2. Note that the "measurement noise" is a regularization term added to the

diagonal of the covariance matrix to ameliorate potential overfitting problems. The

larger the magnitude of the term, the less stringent the regression is in getting the

response surface to go through training points exactly. Dotted lines around the means

represent one standard deviation after fidelity variance has been added. In this case,

model fidelity appears to be the primary contributor to uncertainty everywhere in the

surrogates, although this may not be true in general.

Table 5.1 summarizes the associated hyperparameters of the surrogates. As ex-

pected, the sampling variance for all three models is fixed at 10000 kg. The charac-

teristic lengths all exceed the range of our design space (- 21.0 m), which indicates
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Surrogates of Various Models for Wing Weight vs. Wing Span
(Measurement Noise = 4A(kg))
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Figure 4-2: The solid lines represent the means of respective surrogates, and the
dashed lines represent 1 standard deviation about the means. Blue corresponds
to the surrogate of the FEM, green corresponds to the surrogate of the RWW, and
purple corresponds to the surrogate of the EWW.

Sampling Variance Characteristic
_ o* [kg 2] Length 1 [m]

The FEM 10000 83
The RWW 10000 67
The EWW 10000 67

Table 4.1: The columns show the respective Gaussian Process Regression hyperpa-
rameters for the 1-D demonstration problem.

that the response surfaces are linear.

4.2 Information Fusion

This section details the algorithm for combining the individual surrogates under the

presence of model correlation.
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4.2.1 Theory and Review

Fusion of information without any restrictions on the form of participating prob-

ability densities is very difficult. Hence, the algorithm we present applies only to

multivariate Gaussians. Given that model errors often assume normal distributions,

and many state-of-the-art surrogate modeling techniques generate Gaussian poste-

riors, the algorithm is still valid across a wide range of setups. Our demonstration

problem falls within this category, so the aforementioned conditions are satisfied. In

addition, the algorithm does not require the surrogates to be produced under the same

regression technique. This property allows the engineer to choose the most suitable

regression method for each surrogate and still be able to fuse information effectively.

Equation 4.2 details the posterior density of the true unknown output, along with its

estimators,

p(z*|{ ZAjd, ZBjd, ..., ZnajId}) 1 exp(- (z* -IEZ*])
2  (4.2)

/27r var(Z*) 2 var(Z*)

e' >-]Zi:t
IE[Z*] = Tl

eTE-le
1

var[Z*] =
eTr-le'

where z* is the true unknown output, Z* is a random estimate of z* based on in-

formation fusion, and ZA Id, ZBd, ... , Zjinai are random estimates of the true out-

put based on constituent surrogates under some common input d. e = [1, ..., 1]T,

Zi: = [zAjd, ZBjd, ..., Zfinal d], and E is the covariance matrix. For three constituent

models, as is the case for our demonstration problem, the covariance matrix can be

represented as

or 2 PA,BOAUB PA,CUAUC

2PB,AOBCA GB PB,CUBUC

PC,AUrCUrA PC,B0C 7B UC
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which can be easily extended to N models. Specifically, if we enumerate the models

with subscript M, a generalized E can be written as

or2
A pM1 ,M 2 M 1 M 2  ... PM1,MNUM1JMN

p PM2,M 1 M2 M1  PM2,MN7 2 MN

PMN,M1 MNUM1 PMN,M2 rMN UM 2  2 _

Note that E is positive-definite and symmetric. The covariance matrix can be con-

structed by taking the entrywise product of the correlation matrix p and the matrix

consisting only of the covariances among model discrepancies. cTMi is equivalent to

the corresponding surrogate's standard deviation after fidelity variance has been ac-

counted for.

The algorithm for fusion of correlated information is supplied by Winkler[30], and

demonstrated in the context of multifidelity design optimization by Allaire[3]. In

his work, Allaire explored fusion of correlated information using two abstract models

and a manually specified correlation coefficient. He made the observation that if two

models are highly correlated and have very different fidelity levels, the fused result

will exhibit even lower variance than if the models were independent to start with.

He argues that this is because the adequacy of the lower fidelity model must have

been understated (since it is so highly correlated with a model in which we have

great confidence), and thus the lower fidelity model provides more information to the

fusion than its level of fidelity implies. On the other hand, if the two models are

highly correlated and have very similar fidelity levels, the fused result will exhibit

higher variance than if the models were independent. This is more intuitive because

the models' respective contribution of information to the fused result is not distinct,

and redundant information should not be considered when evaluating confidence.

Furthermore, the mean of the fused model will shift in the direction of the higher

fidelity model as correlation increases, even to the extent of going beyond the original

model's mean if the correlation is high enough. This can be explained by that highly

correlated models are more likely to produce estimates that lie on the same side of
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the true quantity, since both models are prone to make the same mistakes.

In continuation of Allaire's work, Christensen explored fusion of correlated in-

formation in a multidisciplinary aircraft design problem16]. Christensen found that

by taking model correlation into account, the final design converged upon through

surrogate optimization is slightly different from the independent case, and carries less

confidence in its parameters. Hence, there is evidence that model correlation has the

potential to make substantial impact on the outcome of surrogate optimization.

4.2.2 Independent Case

Fusion of information under the independence assumption has been demonstrated

by Lam[22]. Mathematically, it is the same as using the identity as the correlation

matrix p. Figure 4-3 shows the result in application to our problem.
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Figure 4-3: The solid red line corresponds to the mean of information fusion under
model independence, and the dashed red curves symmetric about the mean correspond
to 1 standard deviation. The solid blue line corresponds to the mean of the FEM's
surrogate, and the dashed blue lines correspond to 1 standard deviation. In a similar
manner, green lines correspond to the RWW's surrogate, and purple lines correspond
to the EWW's surrogate.
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Under the independence assumption, information from each constituent model

does not overlap with information from any of the others. The fused mean is then

a weighted average over all constituent means, and more weight is given to models

with lower variances. Figure 4-3 reflects this quite well, as the fused mean almost

perfectly aligns with that of the RWW, which has the lowest variance.

4.2.3 Correlated Case

When correlation is taken into account, the weight that fusion assigns each constituent

model becomes modified by an additional factor. As suggested by Equation 4.2, the

exact values of the weights can be computed by

T e TY-

eTE-le'

which, when multiplied to z1:t, yields the fused mean. Note that the weights sum to 1,

but are not strictly positive. Negative weight occurs for model Mi if its correlations

with other models are highly positive, and its variance is higher than that of the other

models. Figure 4-4 shows the result of fusion with correlation for our problem.

As a consequence of the way we characterized model correlation, the fused mean is

of differentiability class Co. Hence, before gradient-based optimization methods can

be employed, post-smoothing must be performed in order to guarantee smoothness.

One way to do so is to conduct another Gaussian Process Regression with small

measurement noise on points densely sampled from the raw fused surrogate. As such,

all the features of the fused surrogate can be preserved and the sharp edges smoothed

without sacrificing confidence.

4.2.4 Analysis and Discussion

Upon initial inspection, there does not appear to be significant difference between the

two fused surrogates. The fused mean for the correlated case lie slightly above that

of the independent case, while the variance is generally lower. Figure 4-5 compares

the two in greater detail.
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Figure 4-4: The solid red line corresponds to the mean of information fusion under
model correlation, and the dashed red curves symmetric about the mean correspond
to +1 standard deviation. The solid blue line corresponds to the mean of the FEM's
surrogate, and the dashed blue lines correspond to +1 standard deviation. In a similar
manner, green lines correspond to the RWW's surrogate, and purple lines correspond
to the EWW's surrogate.

Since correlation and model uncertainty both vary continuously across the design

space, it is not surprising that we see different behavior at different locations. At

wing spans of about 27 to 34 m, fusion with correlation shows greater confidence than

fusion under independence. This can be explained using the same argument Allaire

made in that given the high positive correlation between the FEM and the other two

models, the FEM's fidelity level must have been understated, and thus it provides

more information to the fusion than its level of fidelity implies. At wing spans of

about 35 to 40 m, fusion with correlation exhibits lower confidence than fusion under

independence. This can be explained in that moderate correlation among the models

suggests the presence of redundant information, which should lead to higher variance

than if all information were distinct. At wing spans of about 40 to 46 m, fusion with

correlation displays higher confidence than fusion under independence. This is once

again in part due to the FEM's fidelity level being understated. However, another
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source of variance reduction can be traced to the negative correlations between the

FEM and the EWW, and between the RWW and the EWW. Mathematically, negative

correlation in certain model pairs makes corresponding elements in E negative, leading

to a general inflation of the sum of all elements in the inverse of E (more elements in

the adjoint of E are positive). Since E- 1 lies in the denominator of the fused variance

formula, the greater the sum of its elements, the lower the fused variance. The

physical reasoning behind this phenomenon stands in that when models are negatively

correlated, their discrepancy trends go in opposite directions, and inference on the

direction of the true output can be made based on bounds set by the aforementioned

discrepancy trends. Figure 4-6 tracks the denominator in the fusion formulae (i.e.

eT-le). As expected, the denominator increases sharply at wing spans of about 40

to 46 m, which is accompanied by an increase in correlation between the FEM and

the RWW (the more positive this value, the larger the denominator), and an increase

in negative correlation between the RWW and the EWW (the more negative this

value, the larger the denominator).

In general, there are two main conflicting forces in characterizing variance. The

first is variance reduction from extrapolated information based on model correlation

(the higher the correlation, the more confidence the extrapolated information carries).

The second is variance increase from inconsistency of information carried by highly

correlated models. Interactions between model correlations and variances determine

the degree to which each force manifests in the fusion.

Before the surrogate is ready for optimization, it is generally good practice to

check the conditioning of various components. Even though we have guarantees of

positive-definiteness in E, it does not preclude us from possible numerical instabilities

derived as a result of interactions between terms during fusion. Figure 4-7 tracks the

condition number of E and p across the design space.

Visual inspection reveals that the maximum condition number lies around 106. A

condition number of 106 will lose us an upwards of 6 digits of accuracy. Given that

real, non-integer variables used throughout our analysis are stored under double-

precision floating-point format, this leaves us with 8 to 9 significant decimal digits.
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Thus, we still have more than enough numerical precision after information fusion has

been conducted. If, in a separate application of this framework, a matrix becomes

ill-conditioned, one should first verify that E is positive-definite everywhere in the

design space. Once that has been confirmed, the problem most likely lies in p, which

is influenced by model physics and region selection. The most common mistakes

usually stem from inappropriately chosen region widths, which leads to insufficient

data points in certain regions. Such practice will cause high linear dependency among

columns of p, which translates to ill-conditioned E.
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Figure 4-5: Top: the solid and dashed red curves correspond to the mean and 1
standard deviation, respectively, of the fused surrogate under model correlation. The
solid and dashed black lines correspond to the mean and 1 standard deviation,
respectively, of the fused surrogate under model independence. Bottom: the red curve
represents the result after subtracting the standard deviation of the fused surrogate
under model independence from the standard deviation of the fused surrogate under
model correlation.
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Figure 4-6: The black curve represents the quantity eTE-le (corresponding to the

denominators of the mean and variance terms in Equation 4.2) across the design

space. Notice that the y-axis uses logarithmic scale.
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Figure 4-7: The blue curve represents the condition number of E across the design

space. The black curve represents the condition number of p across the design space.

Notice that the y-axis uses logarithmic scale.
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Chapter 5

Application in 2-D

This chapter applies our proposed multifidelity framework on a 2-D problem. Sec-

tion 5.1 outlines the setup of the surrogate optimization problem. Section 5.2 covers

the characterization of model correlation. Section 5.3 overviews the assignment of

fidelity variance. Section 5.4 presents the individual model surrogates built by differ-

ent Bayesian regression methods. Finally, Section 5.5 shows the results from fusion

of correlated information.

5.1 Problem Setup

As in the demonstration problem, we are interested in studying wing weight in re-

lation to other design variables. We continue to focus our efforts on commercial

transport aircraft, and keep the 737-800 as reference. Recall that in the demonstra-

tion problem, the chosen design variable was wing span. For the 2-D problem, we

select aspect ratio and body weight (empty + payload - wings - engines weights).

We choose aspect ratio because it is dimensionless. Dimensionless variables carry

physical significance insensitive to scaling, so they can provide intuition over a wide

range of wing architectures. We choose body weight because it does not specify wing

geometry like aspect ratio, and instead impacts the wing weight by influencing wing

sizing. Both variables are used only by the RWW and the EWW in computing wing

weight. We intentionally exclude variables used by the FEM in order to demonstrate
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the versatility of our framework. Consequently, the output of the FEM should stay

at the estimated wing weight of the 737-800 across the entire design space.

We want to explore wing weight for designs with aspect ratios spanning from 8.40

to 9.60 and body weights spanning from 34890 kg to 35600 kg. To generate data for

characterizing model correlation and fidelity, the input to TASOPT must produce

parameters encompassing the entire design space. Aspect ratio can be specified ex-

plicitly in the input, but body weight is computed by adding together a number of

different component weights. Only certain component weights can be specified ex-

plicitly (e.g. passenger weight, etc.) in the input, while others are sized internally.

Hence, we need one or more "tuning knobs" to control body weight, much in the

same way we did for wing span in the demonstration problem. Fortunately, varying

altitude alone is enough to influence body weight, and there is no need to find other

highly correlated variables.

For generating the data, we sampled aspect ratios from 8.0 to 10.0 in 75 evenly-

spaced segments, and altitudes from 29000 ft to 41000 ft in 75 evenly-spaced segments.

The resulting body weights span from 34500 kg to 36000 kg, sufficiently covering our

design space. There are 5625 unique designs in total, prior to the removal of any

designs significantly different from our reference.

5.2 Characterizing Correlation

This section applies our method for characterizing model correlation to the 2-D sur-

rogate optimization problem.

5.2.1 Data for Correlation

Out of the 5625 designs, a majority deviates considerably from the reference aircraft.

In deciding which designs to keep for computing model correlation, we picked two

parameters that are especially relevant in governing wing weight-wing span and

engine weight. Wing span directly specifies wing geometry, while engine weight affects

the degree of moment relief at wing root. For simplicity, we adopt a strict cutoff in
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relation to similarity of each design to the reference aircraft (737-800). Similarity is

measured by Euclidean distance between parameter values. Given that the reference

aircraft has a wing span of 34.18 m, we accept only designs with wing spans from 31

m to 37 m (approximately t3 m from the reference). For engine weight, the reference

aircraft has 5708 kg. We accept only designs with engine weights from 4700 kg to

6700 kg (approximately 1000 kg from the reference). This idea can be extended to

all other parameters, but since they either do not vary much in our data or are not

especially important to wing sizing, we do not devise acceptance criteria with respect

to them.

Once the data has been trimmed, we are left with 1889 unique designs. Figure 5-

1 shows the errors of the FEM, the RWW, and the EWW based on those points

projected onto the design space. As long as region divisions are properly made, 1889

designs should still be sufficient for characterizing correlation. It is worth mentioning

that the data points are not distributed evenly across the design space, and we must

take care to ensure that each region contains a sufficient number of points.

5.2.2 Region Selection

As in the demonstration problem, we select region widths based on model physics.

For simplicity, we set region widths to be uniform across the design space. For body

weight, we choose 740 kg, which leads to 2 regions along that dimension in total.

740 kg is appropriate because changes in output wing weight over our range of input

body weight is small. A long region width captures general model correlation trends

without being excessively sensitive to small variations. For aspect ratio, we choose

0.3, which leads to 5 regions along that dimension in total. 0.3 is appropriate because

wing weight changes by roughly the same amount over 0.3 in aspect ratio as over

740 kg in wing weight. Notice that wing weight changes more over aspect ratio (as

a fraction of its range in design space) than over body weight (as a fraction of its

range in design space). In both dimensions, the width selection is performed while

ensuring that each region contains a sufficient number of data points. Specifically,

the least number of data points within any region is 32, followed by 80, 84, etc. This
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Figure 5-1: The colored points represent model discrepancies across the design space.
Blue points correspond to the FEM, green points correspond to the RWW, and purple
points correspond to the EWW. Points representing designs significantly different
from the reference have been removed.

is enough for characterizing model correlation locally, and the result should be robust

to outliers.

Regardless of how region widths are picked, it is essential that the range of design

variables stay within the space where model correlation is defined. In the 2-D problem

setup, the data for model correlation covers aspect ratios from 8.0 to 10.0 and body

weights from 34500 kg to 36000 kg, while the corresponding design variables range

from 8.40 to 9.60 and from 34890 kg to 35600 kg. Once the regional model correlations

have been computed, bilinear interpolation is used to enforce continuity between

adjacent regions. Figures 5-2, 5-3, and 5-4 show correlations between different pairs

of models over both the maximum coverage of the data and the range of our design

space.
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Figure 5-2: The piecewise linear surfaces show the interpolated model correlations
between the FEM and the RWW. The grid outlined in black represents the maximum
data coverage range, and the grid in red represents the range of the design space.

5.2.3 Relation to Model Physics

In order to validate the model correlations for information fusion, we must identify

mechanisms driving the correlation trends. In 2-D, the complexity of our models

and the multitude of error sources make it rather difficult to explain comprehensively

all the relevant model physics and their interactions. Nevertheless, we provide some

basic intuition for the observed correlation trends. In general, the greater the body

weight, the higher the structural requirement for the wing (the aircraft requires more

lift overall, which translates to higher moment at wing root). Under fixed wing span,

varying aspect ratio only changes wing area, which translates to shifts in mean chord

length. The FEM does not consider mean chord length, but for the RWW and the

EWW, the shorter the chord, the higher the required wing spar cap thickness. In the

arguments that follow, we will fix one dimension and discuss the correlation trend as

the other dimension changes.

At low aspect ratio (8.0), the RWW's errors in wing weight prediction scales
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Figure 5-3: The piecewise linear surfaces show the interpolated model correlations
between the FEM and the EWW. The grid outlined in black represents the maximum
data coverage range, and the grid in red represents the range of the design space.

with the FEM's. This is because both the RWW and the FEM assume rectangular

wing geometry, and at low aspect ratio, minor non-linearities in wing box component

geometries present similar problems for both models (both models take weighted av-

erages of dimensions drawn from fixed spanwise positions). However, these problems

are more prominent in the FEM at high body weights, hence the fall in correlation as

we move from low body weights to high body weights. At high aspect ratio (10.0), the

RWW's errors in wing weight become negatively correlated with the FEM's. This is

because higher aspect ratios are associated with shorter chord lengths, and a shorter

chord means more spanwise non-linearities in wing box structural components. The

FEM fails to capture these non-linearities to a large extent, but the RWW somewhat

corrects for them through its internal sizing routine. At low body weight (34800

kg), the RWW and the FEM go from being positively correlated to being negatively

correlated with increasing aspect ratio. This is because lower aspect ratios trans-

late to longer chord lengths, which make the FEM's spanwise weighted averaging of

structural components a more reasonable approximation. As aspect ratio increases,
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Figure 5-4: The piecewise linear surfaces show the interpolated model correlations
between the RWW and the EWW. The grid outlined in black represents the maximum
data coverage range, and the grid in red represents the range of the design space.

the decreasing chord length causes the FEM to incur worse errors from the resulting

nonlinearities in geometry. In contrast, the RWW sizes the wing internally, thereby

reducing the influence of the aforementioned nonlinearities. At high body weight

(34800 kg), the RWW and the FEM stay highly positively correlated. This is be-

cause the RWW tends to underestimate the moment at wing root, and does so to

a greater extent at higher body weights. The RWW also oversizes the wing spar

caps, which, coupled with the moment underestimation, leads to underestimation

in inboard weight and overestimation in outboard weight. Similarly, the FEM un-

derestimates inboard weight and overestimates outboard weight by directly spanwise

averaging the output wing geometry parameters from TASOPT.

At low body weight (34800 kg), the FEM and the EWW remain highly negatively

correlated with increasing aspect ratio. This is because unlike the RWW, the EWW

does not assume a fixed chord length throughout the wing (although it still assumes

constant spar cap and web thicknesses). This somewhat corrects for the overesti-

mation of outboard weight, but also leads to an overestimation of inboard weight.

87



Fuselage carryover further exacerbates this effect, so the EWW's error trends are the

opposite that of the FEM's. At high body weight (34800 kg), the FEM and the EWW

still remain highly negatively correlated with increasing aspect ratio. This is because

at high body weight, the EWW's fuselage carryover correction leads to a more accu-

rate wing root moment estimation, which translates to a structural overcompensation

in the in-fuselage portion of the wing. The result is a large overestimation of inboard

weight across all aspect ratios. In contrast, the FEM increasingly underestimates

wing weight as it fails to account for nonlinearities in geometry.

At low body weight (34800 kg), the RWW and the EWW move from being nega-

tively correlated to being positively correlated with as aspect ratio increases. This is

because for the given body weight, the effect of over-designing the in-fuselage portion

of the wing decreases with decreasing chord lengths (increasing aspect ratios). The

RWW's errors trend downwards with increasing aspect ratio since its underestimation

of wing root moment cancels out its over-sizing of spar caps as chord lengths become

shorter. At high body weight (34800 kg), the RWW and the EWW errors stay neg-

atively correlated with increasing aspect ratio, being most so near 8.5-9.0. This is

because at high body weight, the errors derived from the EWW's overdesigning the

in-fuselage portion of wing always fall towards overestimating wing weight regardless

of chord lengths (shorter chord reduces weight in one direction, but causes structural

requirements to go up in a perpendicular direction to compensate; the tradeoff be-

comes less favorable with increasing body weight). The RWW, on the other hand,

always underestimates the wing root moment, which counteracts its overestimation

of outboard weight by underestimating inboard weight. Its errors thus trend in the

opposite direction to that of the EWW. At low aspect ratio (8.0), the RWW and

the EWW stay negatively correlated with increasing body weight. This is because

lower aspect ratio leads to longer mean chord, which worsens the effect of the EWW's

oversizing the in-fuselage portion of the wing. In contrast, the RWW underestimates

the wing weight consistently, leading to negative correlation between the two models.

At high aspect ratio (10.0), the RWW and the EWW go from positively to negatively

correlated with increasing body weight. This is because at low body weight, the extra
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moment exerted on wing root due to fuselage carryover does not contribute signifi-

cantly towards the EWW's errors in oversizing the in-fuselage portion of the wing.

Given that the RWW underestimates wing weight, both models have errors trending

downwards. However, as body weight increases, the aforementioned extra moment

becomes significant, so the EWW's errors vector towards overestimation while the

RWW's errors vector towards underestimation.

5.3 Fidelity Variance Assignment

In the demonstration problem, fidelity variance is specified through the combination

of a quadratic fit to model errors and a constant offset. In the 2-D problem, the

quadratic fit is extended to both body weight and aspect ratio, yielding six coefficients.

The coefficients correspond to the respective square terms, the interaction term, the

respective linear terms, and the constant term. Figure 5-5 shows the quadratic fit

to the respective model errors. The same constant offsets used in the demonstration

problem are applied here, and the justifications for their selection translate as well.

Specifically, we have 1500 kg for the FEM, 100 kg for the RWW, and 500 kg for

the EWW. In Section 5.5, we will show that 1500 kg for the FEM is somewhat

understated. We will also show the result from using 4000 kg instead of 1500 kg in

order to illustrate the marginalization of the FEM's contribution to the fusion due to

its severe inadequacy. Figure 5-6 shows the final model fidelity standard deviations

after the constant offsets have been included.

5.4 Individual Model Surrogates

This section introduces the individual model surrogates produced using two different

regression methods for the 2-D problem.
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Figure 5-5: The colored points represent model discrepancies across the design space.
The colored wireframes represent the quadratic fits to the respective model discrep-
ancies. Blue color corresponds to the FEM, green color corresponds to the RWW,
and purple color corresponds to the EWW.

5.4.1 Training Set

In the demonstration problem, we sampled each model sparsely and obtained training

points that are more concentrated in certain areas. We generate the training set for

the 2-D problem in a similar manner. The points are more densely packed where the

models perform best, but at least one point lie in each extremity of the design space in

order to guide the optimization of characteristic lengths. Note that in our particular

2-D problem, the design space is shaped as a rectangular plane. This is not true in

general, since constraints may alter the feasible region of the original hyperplane.

For the FEM, the training points are picked at body weight [kgJ and aspect ratio

combinations of (35000, 8.67), (35000, 9.34), (35250, 9.0), (35500, 8.67), and (35500,

9.34). These five points are distributed symmetrically about the plane, such that one

point sits at the center and one at each corner. The FEM considers neither body

weight nor aspect ratio when computing wing weight, so its output is equivalent to

the wing weight estimate of the reference aircraft (737-800) everywhere in the design
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Figure 5-6: The colored wireframes represent the quadratic fits to model discrepancies
after the addition of the constant offsets from expert elicitation. These values reflect
uncertainty associated with model fidelity, and correspond to 1 Gaussian standard
deviation.

space.

For the RWW, the training points are picked at body weight [kg] and aspect ratio

combinations of (35000, 8.4), (35000, 9.0), (35500, 8.67), and (35500, 9.34). These

four points are distributed around the plane with a bias towards low body weights

and low aspect ratios. The RWW contains an internal sizing routine that uses both

design variables when computing wing weight, and the direction where the sample

concentration is biased indicate where the RWW's estimates are most accurate .

For the EWW, the training points are picked at body weight [kg] and aspect ratio

combinations of (35000, 8.67), (35000, 9.34), (35000, 9.5), and (35500, 9.0). These

four points are distributed around the plane with a bias towards low body weights

and high aspect ratios. The EWW's fuselage carryover lift correction causes it to

overestimate wing weight to a greater extent at higher body weights, so its samples

are concentrated at low body weights. Given that the RWW already samples densely

at low aspect ratios, we bias the EWW's training points towards high aspect ratios.
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When devising a strategy for picking the training points, we also ensured that

a response surface in the form of a plane can be fit at least deterministically via

least squares. As such, both Gaussian Process Regression and Linear Regression can

produce well-behaved surrogates.

5.4.2 Regression and Hyperparameters

Based on the training points from the previous section, we fit response surfaces using

two different techniques. For the FEM, we fit a plane using Bayesian Linear Regres-

sion. This is an appropriate choice because the FEM's training points all share the

same output value, and fitting a constant plane using Gaussian Process Regression

will lead to numerical instabilities (characteristic lengths will be infinitely large). As

mentioned in the demonstration problem, fusion of information can be conducted

as long as the posterior distribution of the surrogate is Gaussian. Bayesian Linear

Regression with an uninformative (zero mean, extremely large variance) prior conju-

gate to the Gaussian likelihood satisfies this requirement, as the Gaussian family is

self-conjugate.

For the RWW, we fit a response surface using Gaussian Process Regression. The

linearity in surface profile warrants Bayesian Linear Regression for generating the sur-

rogate. However, in order to demonstrate fusion of information using surrogates pro-

duced by different techniques, we apply Gaussian Process Regression to the RWW's

training set. As in the demonstration problem, we impose certain restrictions on

hyperparameters. The sampling variance is bounded at 10000 kg, the characteristic

length along body weight is bounded below at 100 kg, and the characteristic length

along aspect ratio is bounded below at 0.1. Sampling variance is fixed to represent

maximum uncertainty in the absence of nearby training points, where "nearby" cor-

responds to distances on the order of the respective characteristic lengths. The lower

bounds on the characteristic lengths along body weight and aspect ratio are chosen to

ensure that the model does not overfit the training set when picking hyperparameters

through maximum likelihood estimate.

Similarly, we use Gaussian Process Regression for the EWW and apply the same
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restrictions on hyperparameters. Figures 5-7, 5-8, and 5-9 show the respective means

of the individual surrogates in conjunction with the training set that produced them.

Figure 5-10 presents a side-by-side comparison of the means, and Figure 5-11 with

the standard deviations. Note that the standard deviations from Figure 5-11 include

sampling uncertainty, so they are greater than those given in Figure 5-6.

Bayesian Linear Regression Surrogate for FEM FEM Training SetFEM B3LR Fit
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Figure 5-7: The blue points correspond to the training points for the FEM's surrogate.
The blue wireframe represent the FEM's surrogate mean. The FEM's surrogate is
produced using Bayesian Linear Regression.

Optimization of hyperparameters by maximum likelihood yields the following re-

sults: where the characteristic lengths along both dimensions for the RWW and the

Sampling Vari- Characteristic Characteristic As-
ance o2p [kg2 ] Body Weight 1b, pect Ratio 1

AR

The FEM N/A N/A N/A
The RWW 10000 56251 5.74
The EWW 10000 61300 6.39

Table 5.1: The columns show the respective Gaussian Process Regression hyperpa-
rameters for the 2-D problem.

EWW suggest that the surface profiles are linear over the design space. The surro-
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Figure 5-8: The green points correspond to the training points for the RWW's sur-
rogate. The green wireframe represent the RWW's surrogate mean. The RWW's
surrogate is produced using Gaussian Process Regression.

gate for the FEM has no hyperparameters because it is not produced using a kernel

method. The coefficients of the linear regression are 0 for each of the the linear

terms and 9006 for the constant term. The model means follow similar trends, with

the RWW and the EWW almost overlapping and the FEM a short distance below.

With regard to standard deviations, the FEM has the highest out of all three, the

EWW the second highest, followed by the RWW. In this particular scenario, there

is a clear hierarchy in model fidelity, as the RWW outperforms the EWW, and the

EWW outperforms the FEM everywhere in the design space. The formation of the

hierarchy is due to expert elicitation, and does not happen in general. Furthermore,

Figure 5-11 and Figure 5-6 appear almost identical. This is because uncertainty from

sampling is almost negligible compared to uncertainty from model fidelity. The lin-

earity of the surface profile greatly diminishes the effect of or on the overall model

uncertainty, so model fidelity becomes the dominant factor in deciding the reliability

of the surrogate.
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Figure 5-9: The purple points correspond to the training points for the EWW's

surrogate. The purple wireframe represent the EWW's surrogate mean. The EWW's

surrogate is produced using Gaussian Process Regression.

5.5 Information Fusion

This section reviews the results of information fusion with model correlation.

5.5.1 Results

We present the results for information fusion under model independence in the same

plot as information fusion with model correlation to provide a basis of comparison.

Figure 5-12 shows the respective fused means, and Figure 5-13 shows the respective

standard deviations.

The fused mean for the correlated case mostly lies below that for the independent

case. The slope of the surface is also different for the correlated case compared to the

independent case. This is because the contribution of the FEM to the fused surrogate

is overstated. Since the FEM's surrogate mean lies below that of the other two models

and its surface harbors no slope, the information it carries conflicts with those supplied

by its counterparts. Given that the FEM is the most inadequate model out of the
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Figure 5-10: The blue wireframe represents the FEM's surrogate
wireframe represents the RWW's surrogate mean, and the purple wi
the EWW's surrogate mean.

three (it does not use either of our design variables in computing wing weight), it

is likely that the level of fidelity it was assigned during expert elicitation had been

overstated. Coupled with the influence from model correlation, the contribution from

the FEM causes the fused surrogate to be behave inconsistently. Specifically, there is

an unjustified sharp increase in the fused mean towards high body weight and aspect

ratio.

The fused standard deviation for the correlated case is lower than that for the

independent case. The cause for the improved overall confidence lies in the negative

correlation between the FEM and the EWW. Taking advantage of the opposing error

trends between the FEM and the EWW, the fused surrogate can more readily infer

the direction of the true output. The fused standard deviation troughs at low body

mass and high aspect ratio. This is because both the RWW and the EWW have

lowest uncertainty there, and the models are mostly independent in that region. The

fused standard deviation peaks near medium body mass and high aspect ratio. This

is due to complex interactions among model correlations and uncertainties, such that

96

o o FEM
0 0 RWW

n EWW

- 16000

14000

12000

10000

8000 5

6000

4000

10.0

9.5

mean, the green
reframe represents



Surrogate Standard Deviations
L FEM

U L RWW
EWW

1800

1600

1400 0

1200

1000 _

800

600

400

10.0

- 9.5

34600 4\09.0

35000 35200 
8.5

BOy Ma35400 35600
ss Ikg] 35800 36000 -0

Figure 5-11: The blue wireframe represents the FEM's surrogate standard deviation,
the green wireframe represents the RWW's surrogate standard deviation, and the
purple wireframe represents the EWW's surrogate standard deviation. The stan-
dard deviations include both uncertainty from sampling and uncertainty from model
fidelity.

the variance inflation due to inconsistency of information outweights the variance

reduction from extrapolation based on model correlation.

To improve the representation of the FEM's model fidelity, we add 4000 kg of

constant offset instead of the original 1500 kg to the quadratic fit of the FEM's

errors. The new information fusion results are shown in Figures 5-14 and 5-15.

Under the FEM's updated model fidelity, the fused surrogate becomes much more

sensible. The fused means of the two cases are more similar, aside from the slightly

increased variability in surface profile for the correlated case. The contribution from

the FEM has been marginalized; the fused surrogate contains less information from

the FEM. However, at high body weight and high aspect ratio, the fused mean is

still pushed upwards. This can be attributed to the negative weight associated with

the FEM's mean in the fusion formula. The weight is negative because the FEM and

the RWW are highly correlated there, and the FEM carries the highest variance out
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Figure 5-12: The red wireframe corresponds to the mean of the fused su
der model correlation. The black wireframe corresponds to the mean c
surrogate under model independence.

rrogate un-
f the fused

of the three models (the difference in variance between the FEM and the RWW is

greater than the difference in variance between the FEM and the EWW, so the FEM's

highly positive correlation with the RWW overpowers its highly negative correlation

with the EWW in dictating its weight in the fused mean, making it negative overall).

Nevertheless, we have shown that by adding uncertainty to a model, we can reduce its

contribution to the fusion of information. In the most extreme case, one can simply

remove the model from consideration altogether, which is perhaps more sensible (and

computationally beneficial) than adding a large uncertainty to its output. The fused

standard deviation also exhibits a small overall increase, since the FEM can no longer

be relied upon as an accurate information provider.

5.5.2 Analysis and Discussion

The fused standard deviation under model correlation forms arches near each edge

of the design space and exhibits significant variation. In contrast, the fused standard
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Figure 5-13: The red wireframe corresponds to the standard deviation of the fused
surrogate under model correlation. The black wireframe corresponds to the standard
deviation of the fused surrogate under model independence.

deviation under model independence appears generally flat. For the fused standard

deviation under model correlation, the largest arch occurs along aspect ratio of 9.60,

and the top of the arch lies near the body weight of 35200 kg. On first glance, since

Gaussian Process Regression often produces surrogates that have arch-shaped sam-

pling standard deviations with roots at training points, those features may readily

propagate into the standard deviation of the fused surrogate. While the sampling

uncertainties do play a role, their contribution to the fused standard deviation turns

out to be negligibly small. The primary contribution comes from uncertainties asso-

ciated with model fidelity. In addition, model correlations dictate the reduction or

inflation of standard deviations during information fusion. Consequently, the roots

of the arches in the fused standard deviation under model correlation do not coin-

cide with positions of any of the constituent surrogates' training points, but instead

coincide with edges in the surfaces representing model correlations.

Recall the information fusion formulae given by Equation 4.2, and recall that the

fused variance at any given point is computed by summing up all elements in E-
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Figure 5-14: The red wireframe corresponds to the mean of the fused surrogate under
model correlation, after the FEM's fidelity has been updated. The black wireframe
corresponds to the mean of the fused surrogate under model independence, after the
FEM's fidelity has been updated.

and taking the reciprocal of the result. The larger the sum of all elements in E-1

(corresponding to the denominators of the mean and variance terms in Equation 4.2),

the smaller the fused variance. Figure 5-16 shows the value of eTE-Te (the sum of

all elements in E- 1) across the design space. Note that all of our subsequent analyses

are conducted based on the updated model fidelity for the FEM (4000 kg in constant

offset).

As expected, the peaks of Figure 5-16 matches the troughs of Figure 5-15. But

why would eTE-le exhibit any peaks in the first place? And why would eTE-le not

vary linearly, given that linear interpolation is used to enforce continuity of model

correlation between adjacent regions? Furthermore, why would certain peaks occur

at positions where the correlation between none of the pairs of the models appear to

be at an extreme (possess values close to -1 or 1)?

Fortunately, all of these questions can be answered by inspecting Figure 5-17.

Figure 5-17 shows corresponding values of eT-le over all combinations of model
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Figure 5-15: The red wireframe corresponds to the standard deviation of the fused
surrogate under model correlation, after the FEM's fidelity has been updated. The
black wireframe corresponds to the standard deviation of the fused surrogate under
model independence, after the FEM's fidelity has been updated.

correlations. Figures 5-18, 5-19, and 5-20 show slices along the x, y, and z axes of

the 3-D geometry in Figure 5-17 respectively. In the volumetric plot, color represents

the value of eTEle-the brighter the color, the larger the value. The x, y, and

z axes (the z-axis is vertical) correspond to the correlations between the FEM and

the RWW, the FEM and the EWW, and the RWW and the EWW, respectively.

Furthermore, we have restricted the plot to show only results for positive-definite

E matrices. That is, any combinations of model correlations yielding non positive-

definite E matrices are ignored, since they lead to negative fused variances that carry

no physical significance. An interesting corollary is that the volume enclosed by the

colored surface in Figure 5-17 also represents the range of all positive-definite 3 by

3 E matrices (under fidelity standard deviation constant offsets of 4000 kg for the

FEM, 100 kg for the RWW, and 500 kg for the EWW). In general, the closer the

correlation between a given pair of models is to 1 or -1, the less room for variation

the other model correlations have in order to maintain positive-definiteness in E.
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Figure 5-16: The black wireframe represents the quantity eTE-'e (corresponding to
the denominators of the mean and variance terms in Equation 4.2) across the design
space. The z-axis uses linear scale.

Peaks in eTE-le occur at certain combinations of model correlations. In particu-

lar, these peaks are almost exclusive to combinations involving negative correlations.

In the 2-D problem, the FEM and the EWW are highly negatively correlated ev-

erywhere. Taking slices along the y-axis (the correlation between the FEM and the

EWW) as showing in Figure 5-19, we see that peaks tend to form as correlation be-

tween the FEM and the RWW approaches -1, or as correlation between the RWW

and the EWW approaches -1, or through some combination of both. A correlation

close to -1 between one or more pairs of models will overpower moderate correlation

between the remaining pairs. For instance, if the correlation between the FEM and

the EWW and the correlation between the RWW and the EWW are both close to -1,

then a peak will form even if the correlation between the FEM and the RWW is forced

to take on a moderately positive value in order to maintain positive-definiteness of

the overall correlation matrix. In fact, this example explains the highest peak in Fig-

ure 5-16. However, a correlation close to -1 between a pair of models is not required

for a peak to form, as combinations of non-extreme correlation values can still specify
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Figure 5-17: The 3-D geometry encompasses the set of all positive-definite 3 by 3 E
matrices (under fidelity std. offsets of 4000 kg for the FEM, 100 kg for the RWW,
and 500 kg for the EWW). The colors represent the value of eTE-le corresponding to
different combinations of model correlations. Yellow signifies values close to 0.0010,
blue signifies values close to 0.

points that lie in the peak regions (denoted in Figure 5-17 by bright yellow color).

Figure 5-17 also reveals the reason behind eTE-'e not varying linearly. Given

any combination of model correlations, we can identify a value based on color from

Figure 5-17, corresponding to the associated eTE'e quantity. A linear interpolation

between correlation matrices pi and P2 corresponds a linear translation in Figure 5-17

between points with coordinates specified by model correlation values in pi and P2.

Points that lie on the interpolated segment correspond to points that lie along the

linear translation path. Judging from Figure 5-17, changes in eT E-e along any linear

translation path do not have to be linear. Depending on the direction of translation,

eTEle may nonlinearly increase, decrease, or even reverse direction somewhere in

the middle (thanks to local convexity of the domain). Figure 5-16 shows the complex

behavior of eTE-le specific to the 2-D problem.

Aside from model correlation, the respective model uncertainties also contribute

to the formation of peaks. Figure 5-21 shows corresponding values of eTE-le for all

103



Quantity of erE le at All Possible Model Correlations
(Slices along correlation between the FEM and the RWW)

FEM vs. EW

1 ,

0.5 ,

0,

-0.5 ,

1 2

x10-3

F10.9

FEM vs. RWW Correlation

Figure 5-18: The layers represent slices along the x-axis (corresponding to the cor-
relation between the FEM and the RWW) of the 3-D geometry in Figure 5-17. The
colors represent the value of eTE-le corresponding to different combinations of model
correlations. Yellow signifies values close to 0.0010, blue signifies values close to 0.
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Figure 5-19: The layers represent slices along the y-axis (corresponding to the cor-
relation between the FEM and the EWW) of the 3-D geometry in Figure 5-17. The
colors represent the value of eTE--le corresponding to different combinations of model
correlations. Yellow signifies values close to 0.0010, blue signifies values close to 0.
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Quantity of e1 l e at All Possible Model Correlations
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Figure 5-20: The layers represent slices along the z-axis (corresponding to the corre-
lation between the RWW and the EWW) of the 3-D geometry in Figure 5-17. The
colors represent the value of eTE-'e corresponding to different combinations of model
correlations. Yellow signifies values close to 0.0010, blue signifies values close to 0.

combinations of model correlations when all the models have equal fidelity standard

deviations of 100 kg. Figures 5-22, 5-23, and 5-24 show slices along the x, y, and z

axes of the 3-D geometry in Figure 5-21 respectively.

Since large eTE'e values correspond to small fused standard deviations, a nega-

tive correlation between two models leads to the extraction of more information than

either model independently carries when performing information fusion. This extrap-

olation can be interpreted as an inference based on model discrepancy trends, which

provides additional information on top of the contribution from each constituent

model. Nevertheless, confidence in the fused result is contingent upon thorough un-

derstanding of all the model error trends, the responsible model physics, and the

proper reasoning behind all the model correlations. As such, certain combinations of

model correlations can vastly reduce uncertainty in the final surrogate. However, we

must caution that the fused standard deviations are likely understated, since we have

not accounted for uncertainty in the model correlations themselves.

As in the demonstration problem, we provide the condition numbers of both E and
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Quantity of eTE le at All Possible Model Correlations

0

FEM vs. RWW Correlation

Figure 5-21: The 3-D geometry encompasses the set of all positive-definite 3 by 3 E
matrices (under fidelity std. offsets of 100 kg for the FEM, 100 kg for the RWW, and
100 kg for the EWW). The colors represent the value of eTE-le corresponding to
different combinations of model correlations. Yellow signifies values close to 0.0010,
blue signifies values close to 0.

p matrices for verification. Figure 5-25 shows the result. Visual inspection reveals

that the maximum condition number lies around 104, which is sufficiently low for our

purposes.
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Quantity of eE 'e at All Possible Model Correlations
(Slices along correlation between the FEM and the RWW)
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Figure 5-22: The layers represent slices along the x-axis (corresponding to the cor-
relation between the FEM and the RWW) of the 3-D geometry in Figure 5-21. The
colors represent the value of eTE -'e corresponding to different combinations of model
correlations. Yellow signifies values close to 0.0010, blue signifies values close to 0.
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Figure 5-23: The layers represent slices along the x-axis (corresponding to the cor-
relation between the FEM and the EWW) of the 3-D geometry in Figure 5-21. The
colors represent the value of eTE-le corresponding to different combinations of model
correlations. Yellow signifies values close to 0.0010, blue signifies values close to 0.
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Quantity of e' " e at All Possible Model Correlations
(Slices along correlation between the RWW and the EWW)
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Figure 5-24: The layers represent slices along the x-axis (corresponding to the corre-
lation between the RWW and the EWW) of the 3-D geometry in Figure 5-21. The
colors represent the value of eTE-le corresponding to different combinations of model
correlations. Yellow signifies values close to 0.0010, blue signifies values close to 0.
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Figure 5-25: The red wireframe represents the condition number of E across the
design space. The blue wireframe represents the condition number of p across the
design space. Notice that the y-axis uses linear scale.
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Chapter 6

Conclusion

This chapter concludes our development of the multifidelity framework. Section 6.1

highlights the main features of the proposed framework. Section 6.2 supplies direc-

tions with potential for future work.

6.1 Summary

The primary objective of this work is to incorporate model correlation when combining

information from different sources. In aid of the framework's development, we created

three models of varying fidelities, the Finite Element Model (FEM), the Rectangular

Wing Weight (RWW) model, and the Elliptic Wing Weight (EWW) model. The

fidelity levels of the three models change as functions of position in the design space.

Using TASOPT as truth model and 737-800 as reference aircraft, we set up a 1-

D demonstration problem with wing span as design variable and wing weight as

predicted quantity of interest.

Model discrepancy data over the range of the design space is required for quantify-

ing model correlations and fidelities. To produce the data, we perturb the parameters

of the reference aircraft and use them as inputs to each model. Model discrepancies

are then computed by taking differences between the output of each model and the

output of TASOPT. In order to track model correlation across the design space, we

divide it into different regions each containing some minimum number of data points.
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Region widths are chosen based on model physics, and any variability in model corre-

lation is connected to some underlying mechanism behind the models. Once regional

model correlations are defined, we apply linear interpolation between adjacent region

centroids to enforce both continuity and positive-definiteness in correlation matrices.

The data used for characterizing model correlation is also used to estimate model

fidelity. Expert elicitation indicates that quadratic fits to model errors followed by

various degrees of constant offset are sufficient for approximating associated output

variances. . Once model fidelities have been assessed, we designate positions in the

design space where training points for respective model surrogates are to be evaluated.

Bayesian Regression techniques are used to build surrogates that contain uncertainty

from sampling. Summing together uncertainty from both model fidelity and sampling

yields overall surrogate variance.

Fusion of information is conducted both with and without consideration for model

correlation. The weight vector pre-multiplying the component surrogate means serves

as a basis for weighing the contribution of each constituent surrogate towards the fused

surrogate. In the demonstration problem, fusion under model correlation produces a

different result from fusion under model independence. Two conflicting forces govern

the behavior of the fused variance. The first is variance reduction from extrapolated

information based on model correlation, and the second is variance inflation due to

inconsistency of information carried by highly correlated models.

The same procedure is applied to a problem that considers two design variables of

body weight and aspect ratio. The results reveal deeper insight into the behavior of

the fused variance in relation to different combinations of pairwise model correlations.

In general, negative model correlations allow for the extraction of more information

from each model surrogate than it independently carries. This extrapolation can be

interpreted as an inference based on model correlations, which provides additional

information on top of the contribution from each model alone. Hence, there is po-

tential in boosting the confidence of the fused surrogate when model correlation is

accounted for.
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6.2 Future Work

The proposed multifidelity framework opens up a few potential areas for further

exploration. Topics mentioned below are aimed at extending the functionality and

improving the performance of the framework.

6.2.1 Systematic Region Width Selection

In the presented framework, we stratify data for characterizing model correlation

according to manually selected region widths. The region widths are justified through

knowledge of model physics. However, in reality, we often do not have as detailed

information regarding a model's underlying mechanisms as we do in the demonstration

problem. Therefore, it would expand the applicability of our framework if there can

be a systematic method for determining region widths. A starting recommendation

is perhaps to consider the sensitivity of each design variable to the model output and

choose region widths such that the same percentage change in model output can be

produced by traversing the same units of region width in any dimension. However,

this method depends on the monotonicity of the model output along all dimensions,

and further study is needed before it can be integrated into the framework.

6.2.2 Similarity Functions

Data for characterizing model correlation in the 2-D problem is trimmed via expert

elicitation based on similarity to the reference aircraft, where similarity is measured by

Euclidean distance across a select number of parameters between a perturbed design

and the reference design. When the number of parameters becomes large, however, it

becomes increasingly difficult to isolate a sizable subset without significantly relaxing

the similarity requirement across all parameters. While the framework accommodates

a large data set in computing model correlation, it is still inappropriate to include

correlation information for all available aircraft when the design objective falls within

a particular class. For instance, it would be rather misleading to include data from

recreational aircraft when computing model correlation if the design objective is a
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long range military transport aircraft. The models may be correlated differently for

the recreational aircraft compared to the military transport aircraft, given that the

scale on which certain model physics act is different across the two aircraft types.

Thus, it is important to develop a robust and automatic way to identify, out of all

available data, a suitable subset for the specific design problem.

There are two different approaches. The first is to use a continuous weighting

function instead of the strict cutoff presented in the 2-D problem. Functions such

as logistic, piecewise linear, and exponential can all be used to provide continuous

weights based on similarity to the reference aircraft. This approach allows all designs

to be relevant in computing model correlation, but those more similar to the reference

design will be weighted higher than those less similar. The main challenges involved

are the potential scale differences among design variables and the amalgamation of

weights across all parameters (perhaps not all parameters are equally important).

The second approach makes use of classification algorithms in machine learning.

To implement this approach, the engineer must first hand-pick a training set including

both similar and dissimilar designs to the reference aircraft. Afterwards, classification

tools such as support vector machines, generalized additive models, neural nets, and

trees can be trained to classify the rest of the available data[16].

6.2.3 Alternate Correlation Definitions

In the proposed framework, model correlation is given by Pearson's correlation co-

efficient. Pearson's correlation is a measure of strength and direction of the linear

relationship between two variables. While it is mathematically possible to construct

a scenario in which model A's error increases nonlinearly relative to model B's, it can

only occur when one of the models is extremely inadequate, in which case its surro-

gate variance should appropriately reflect its fidelity level and render its contribution

to the final surrogate insignificant. Furthermore, by stratifying the available data

based on its position, we can capture model correlation piecewise locally across the

entire design space. Appropriately sized regions should reflect model physics, which

should naturally lead to well-defined model correlations.
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Nevertheless, there are other types of correlation that have not been explored

in the context of the proposed framework. Spearman's correlation, for instance,

measures how well the relationship between two variables can be described by a

monotonic function. It is quite possible that a different type of correlation will lead

to different region widths, which would imply the highlight of physics on a different

scale.

It is also worth mentioning that the formulae for information fusion are borrowed

from Winkler[30]. In his paper, Winkler defines a correlation measure based on

the proportion of points common to each pair of samples. By this definition, a

correlation can never be negative, since minimum correlation happens when no points

are common to any pair of samples. In Allaire's work[3], however, model correlation

is characterized based on model discrepancy trends, which opens up the possibility

of negative correlation. This extension of definition prompts further study on this

topic, and we have provided a means for continuation through our analysis of results

in the 2-D problem.

6.2.4 Interpolation

We have shown that linear interpolation between correlation matrices from adja-

cent regions produces continuous and positive-definite correlation trends. However,

post-smoothing must be conducted on the fused surrogate before gradient-based op-

timization can be applied. Analysis of results from the 2-D problem reveals that the

region containing all positive-definite covariance matrices with respect to pairwise

model correlations may be convex. Furthermore, the geometry of the region appears

insensitive to the constituent surrogate variances. If the aforementioned speculations

are true and can be generalized, it may be possible to devise an interpolation scheme

under the positive-definite constraint (specified in analytically tractable form) that

preserves smoothness, thereby removing the need for post-smoothing.
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6.2.5 Dynamic Surrogate Refinement

The motivation behind surrogate optimization is to reduce cost of computation.

Global surrogates, such as ones produced using the proposed framework, may still

exhibit inadequacies if the area near the optimum does not carry many training

points. Borrowing ideas from recursive Bayesian estimation, it may be possible to

devise algorithms for dynamic surrogate refinement, such that new training points

can be introduced to some current state of the constituent surrogates without the

need to retrain everything from scratch, when the optimizer is nearby.

6.2.6 Quantifying Uncertainty in Model Correlation

An important source of uncertainty that was not accounted for in the fused surrogate

comes from model correlation. We have shown in the demonstration problem that

model correlation is sensitive to region width. Given that region widths are chosen

subjectively, coupled with potential variability from similarity functions discussed in

Section 6.2.2, ignoring uncertainty in model correlation could mean large underesti-

mation in fused variances. One place to start might be to track the variability in

model correlation at every point (after interpolation) as we vary region widths across

a range of values. The extent to which model correlations change may shed light onto

its uncertainty.

6.2.7 Multiobjective Optimization

In this thesis, the proposed framework is demonstrated on problems that can be set up

for single-objective optimization. Nevertheless, given that models in engineering de-

sign often produce multiple outputs, combinations of models may be used to conduct

multi-objective optimization. The naive approach to multi-objective optimization in

a multifidelity environment assumes independence among model outputs. However,

correlation between model outputs may influence fidelity management strategies, pro-

vided that improved confidence in one output could lead to improved confidence in a

separate, highly correlated output. Li introduces a method for assigning confidence

114



to models with multiple correlated outputs[24].
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Appendix A

Reference Aircraft Parameters

This appendix details the input parameters to TASOPT associated with the reference

aircraft (737-800) used throughout the thesis. Note that for certain parameters,

TASOPT includes a conversion multiplier for user convenience.

A.1 Mission Specification
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Variable Description Default Value Conversion Mul-

Name tiplier

Range Flight distance 3000.0 [nmi] 1852.0 [m/nmi]

Npax Number of passengers 180

Wpax Passenger weight (including luggage) 215.0 [lb] 4.45 [N/lb]

altTO Takeoff/landing altitude 0.0 [ft] 0.3048 [m/ft]

TOTO Ambient takeoff/landing temperature 288.0 [K]

altCR Altitude at beginning of cruise 35000.0 [ft] 0.3048 [m/ft]



A.2 Takeoff and Initial Climb Parameters

Variable Description Default Value Conversion Mul-

Name tiplier

clpmax Max perpendicular lift coefficient of 2.25

wing CLmax/cos(sweep)2

cdefan Fan drag of dead engine during free 0.500

climb CDA fan f an

CDgear Landing gear drag during climb 0.015

CDAgearS

CDspoiler Spoiler drag during breaking 0.10

CDA APonevls

muroll Rolling resistance (friction) coefficient 0.025

mubrake Braking resistance (friction) coefficient 0.35

hobst Obstacle height 35.0 fft] 0.3048 [m/ft]

IBFmax Max takeoff length 8000.0 [ft] 0.3048 [m/ft]

gtocmin Min tn-nf-Aimh grardirnt 0.015

thetaCB Cutback sight angle (figure 1) 40.0 [deg]

gammaCB Prescribed cutback climb angle (figure 3.0 [deg]

1)

gammaDE1 Prescribed descent angle at top of de- -3.0 [deg]

scent

gammaDEn prescribed descent angle at bottom of -3.0 [deg]

descent
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Figure A-1: The visualization serves as a reference for takeoff and climb profile nomen-
clature. The Figure is taken from [10].

A.3 Sizing-Load Parameters

Variable Description Default Value Conversion Mul-

Name tiplier

Nlift Max vertical load factor for wing bend- 3.0

ing loads

Nland Max vertical load factor for fuselage 6.0

bending loads

Vne Never exceed indicated air speed (IAS), 280.0 [nm/h] 0.514

for tail loads [h/nm.m/s]

cabin Altitude at which cabin becomes artifi- 7000.0 [ft] 0.3048 [m/ft]

pressure cially pressurized

altitude*

A.4 Cruise-Aero Parameters

Variable Description Default Value Conversion Mul-

Name tiplier

CL Coefficient of lift at cruise 0.58

Mach Mach number at cruise 0.78
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A.5 Basic Wing Parameters

Variable Description Default Value Conversion Mul-

Name tiplier

sweep Wing sweep angle 25.33 [deg]

AR Overall wing aspect ratio 9.15

bmax Max wingspan (for constraint) 117.6 [ft] 0.3048 [m/ft]

lambdas Inner panel taper ratio c, /c, (Figure A- 0.70

2)

lambdat Outer panel taper ratio ct/Co (Figure A- 0.25

2)

iwplan Wing type: plain cantilever(O), engine 1

mounted(1), or strut braced(2)

ifwcen Fuel presence (boolean) in center wing 1

box

rWfmax Usability factor of theoretical max fuel 0.90

volume

fLo Fuselage lift carryover loss factor (Fig- -0.3

ure A-3)

fit Tip lift rolloff factor (Figure A-3) -0.05

yo Wing centerbox halfspan 71.0 [in] 0.0254 [m/in]

etas Engine-attach fractional span (Fig- 0.285

ure A-4)

TASOPT models aerodynamic load P in a piecewise-linear fashion. Lift corrections

AL0 and ALt are applied for fuselage carryover and tip lift rolloff. These values are

realized through the adjustment factors fLo (f&) and fLt (f&). Note that the wing

root is located at r%, and the wing break, where the engine is attached, is located at

77S,
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Figure A-2: The diagram serves as a reference for wing geometry variables over a
piecewise-linear wing or tail planform. The figure is taken from [10].
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Figure A-3: The solid blue curve shows the piecewise-linear aerodynamic loads across
the half-wing. The shaded areas represent the aerodynamic load corrections. The
figure is taken from [10].

zs
Engine weight alternative

~'to strut force R

Figure A-4: The diagram shows a cross-section of the wing (cut along the axis of the
fuselage), and serves as a reference for engine mounted wing geometry variables. The
figure is taken from [10].
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A.6 Tail Downward Loading Parameter

Variable Description Default Value Conversion Mul-

Name tiplier

CLh/CLma Used for tail sizing and wing positioning -0.5

A.7 Wing Spanwise Lift and Moment Distributions

over Mission

Takeoff, initial climb

Variable Description Default Value Conversion Mul-

Name tiplier

rcls Wing break/root cl ratio c./cl. 1.1

rclt Wing tip/root cl ratio ci/Cl0  0.6

cmpo Wing profile cm (pitching moment co- -0.20

efficient) at q, wing root location (Fig-

ure A-2)

cmps Wing profile cm (pitching moment coef- -0.20

ficient) at q, wing break location (Fig-

ure A-2)

cmpt Wing profile cm (pitching moment co- -0.02

efficient) at qt wing tip location
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Clean climb, cruise, descent

Variable Description Default Value Conversion Mul-

Name tiplier

rcls Wing break/root cl ratio ci,/ci0  1.238

rclt Wing tip/root cl ratio ct/dco 0.90

cmpo Wing profile cm (pitching moment co- -0.06

efficient) at 7, wing root location (Fig-

ure A-2)

cmps Wing profile cm (pitching moment coef- -0.06

ficient) at m7 wing break location (Fig-

ure A-2)

cmpt Wing profile cm (pitching moment co- -0.06

efficient) at 77t wing tip location

Landing

Variable Description Default Value Conversion Mul-

Name tiplier

rcls Wing break/root cl ratio cj 1 /c 0  1.1

rclt Wing tip/root cl ratio lt/c1 0.5

cmpo Wing profile cm (pitching moment co- -0.35

efficient) at 77 wing root location (Fig-

ure A-2)

cmps Wing profile cm (pitching moment coef- -0.35

ficient) at a7s wing break location (Fig-

ure A-2)

cmpt Wing profile cm (pitching moment co- -0.02

efficient) at 71t wing tip location
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A.8 Wing and Tail Structural Box Parameters

Variable Description Default Value Conversion Mul-

Name tiplier

wbox Box width/c (Figure A-5) 0.50

hboxo Box height/c at wing root (Figure A-5) 0.19

hboxs Box height/c at wing break/tip (Fig- 0.109

ure A-5)

Variable Description Default Value Conversion Mul-

Name tiplier

rh Web-height/hbox ratio (Figure A-5) 0.75

Xaxis Spar box axis x/c location 0.40

hstrut strut t/c (only for strut-braced config- 0.15

urations)

tcap \Afuel

Khbo _'x i --------

Wbox

Figure A-5: The diagram shows a spanwise cross-section (perpendicular to the spar
axis) of an abstract wing, and serves as a reference for wing/tail box geometry vari-
ables. The figure is taken from [10].
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A.9 Weight Fractions of Flight Surfaces and Sec-

ondary Wing Components (Relative to Wing

Box)

Variable Description Default Value Conversion Mul-

Name tiplier

fflap Flaps, flap mounts and actuators 0.200

weight fraction

fslat Slats, slat mounts and actuators weight 0.100

fraction

faile Ailerons, aileron mounts and actuators 0.040

weight fraction

flete Leading and trailing edge weight frac- 0.100

tion

fribs Ribs, local stiffeners and reinforcements 0.150

fspoi Spoilers, spoiler mounts and actuators 0.020

fwatt Wing attachment hardware weight frac- 0.030

tion

A.10 Horizontal and Vertical Tail (HT, VT) Param-

eters

Variable Description Default Value Conversion Mul-

Name tiplier

iHTsize Set horizontal tail area (Sh) via Vh(1) 2

or CLhCGfwd at max-forward center-

of-gravity (CG) during landing(2)
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Variable Description Default Value Conversion Mul-

Name tiplier

Vh HT volume coefficient (used if iHT- 1.45

size = 1) (Equation 301 in TASOPT

documentation[10])

CLhCGfwd HT CL at forward CG trim (used if -0.70

iHTsize = 2)

iVTsize Set vertical tail area (Sv) via Vv(1) or 2

CLveout on engine-out(2)

Vv VT volume coefficient (used if iVT- 0.10

size = 1) (Equation 302 in TASOPT

documentation[10])

CLveout VT CL at engine-out trim (used if iVT- 0.5

size = 2)

iwxmove Wing position specifier (fixed(0), move 0

to get CLh = CLhspec in cruise(1), or

move to get min static margin = SM-

min(2))

CLhspec Specified HT lift coefficient at never- -0.02

exceed dynamic pressure

SMmin Minimum static margin (distance be- 0.05

tween the center of gravity and the neu-

tral point, or aerodynamic center, of the

aircraft)

dCLh/dCL HT lift-curve slope factor for neu- 0.36

tral point calculation (Equation 292 in

TASOPT documentation[10])

deps/da Downwash factor at tail 0.60
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Variable Description Default Value Conversion Mul-

Name tiplier

dCLn/dCL Nacelle lift-slope ratio for neutral point 0.70

calculation

dCLn/da Nacelle lift-curve slope for neutral point 3.8

calculation

ARh HT aspect ratio 6.29

ARv VT aspect ratio 1.95

lambdah HT taper ratio 0.25

lambdav VT taper ratio 0.30

sweeph HT sweep 36.1 [deg]

sweepv VT sweep 21.5 [deg]

yoh HT support y location 0.0

yov VT support z location 0.0

fCDhcen CDhtail (HT drag coefficient) contribu- 0.1

tion factor for center part 0 < y < yoh

CLhmax HT max +/-CL at Vmn (maneuvering 2.0

velocity), for HT structural sizing

CLvmax VT max +/-CL at Vmn (maneuvering 2.6

velocity), for VT structural sizing

fhadd HT added-weight fraction (e.g. ribs, 0.30

LE, elevator)

fvadd VT added-weight fraction (e.g. ribs, 0.40

LE, rudder)

wboxh HT box width/chord 0.50

wboxv VT box width/chord 0.50

hboxh HT box height/chord (airfoil t/c) 0.14

hboxv VT box height/chord (airfoil t/c) 0.14
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Variable Description Default Value Conversion Mul-

Name tiplier

rhh HT web-height/hbox ratio 0.75

rhv VT web-height/hbox ratio 0.75

nvtail Number of vertical tails 1

A.11 Cabin and Fuselage Geometry Parameters

Variable Description Default Value Conversion Mul-

Name tiplier

Rfuse Main bubble radius 77.0 [in] 0.0254 [m/in]

dRfuse Downward shift of lower bubbles 15.0 [in] 0.0254 [m/in]

wbd Bubble center y offset 0.0 [in] 0.0254 [m/in]

hfloor Depth of floor beams 5.0 [in] 0.0254 [m/in]

anose Nose radius 1.65 [m]

btaii Tail radius 2.0 [m]

xnose Nose tip location 0.0 [ft] 0.3048 [m/ft]

xend Tail tip location 124.0 [ft] 0.3048 [m/ft]

xblendl Start of cylindrical section 20.0 [ft] 0.3048 [m/ft]

xblend2 End of cylindrical section 97.0 [ft] 0.3048 [m/ft]

xshelll Front of pressure shell (center of nose 17.0 [ft] 0.3048 [m/ft]

ellipse)

xshell2 End of pressure shell (center of end 102.0 [ft] 0.3048 [m/ft]

bulkhead)

xconend End of tailcone primary structure (dis- 117.0 [ft] 0.3048 [m/ft]

tinct from aerodynamic endpoint)

xwbox Wing box location 57.0 [ft] 0.3048 [m/ft]
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Variable Description Default Value Conversion Mul-

Name tiplier

xhtail HT box location 114.5 [ft] 0.3048 [m/ft]

xvtail VT box location 110.0 [ft] 0.3048 [m/ft]

zwing Wing box z location -5.5 [ft] 0.3048 [m/ft]

zhtail HT box z location 0.0 IftI 0.3048 [m/ft

iengloc Engine location (wing(1) or fuse- 1

lage(2))

xeng Engine x location 52.0 [ft] 0.3048 [m/ft]

yeng Lateral distance of the outermost en- 16.0 [ft] 0.3048 [m/ft]

gine from the centerline

neng Number of engines 2

lambdac Tailcone taper ratio 0.3

fstring Stringer weight ratio Wstringer/Wskin 0.35

fframe Frame weight ratio Wframe/Wskin 0.25

fadd Added wing weight 0.20

(flaps+slats+ailerons+ leading/trailing

edge+ribs+spoilers+wing attachment

hardware) ratio Wadd/Wkin

Wfix Added fixed weight (pilots, cockpit) 3000.0 [lb] 4.45 [N/lb]

xfix Location of Wfix's center of gravity 7.0 [ft] 0.3048 [m/ft]

W'window Window weight per unit length 145.0 [m] 3.0 [N/m

W, ind,/length

W"insul Insulation and inside shell weight per 22.0 [N/m 21

unit area Winsui/area

W"floor Floor planking (not beams) 60.0 [N/m 2
]

Wfloor/area
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A.12 Power Systems and Landing Gear Locations

and Weight Fractions

134

Variable Description Default Value Conversion Mul-

Name tiplier

rMh Inertial-relief factor for HT load on 0.4

fuselage (for modeling unconstrained

structures)

rMv Inertial-relief factor for HT load on 0.7

fuselage (for modeling unconstrained

structures)

ifclose Fuselage tapering option (to a point(O) 0

or to an edge(1))

CMVf1 Fuselage moment volume derivative 2390.0 [in] 0.0254 [m/in]

d(Mfuse)/dCL

CLMf1 CL where Mfuse = 0 0.185

fduo Fuselage velocity overspeed at wing 0.018

root

fdus Fuselage velocity overspeed at wing 0.014

break

fdut Fuselage velocity overspeed at wing tip _0.0045

Variable Description Default Value Conversion Mul-

Name tiplier

xhpesys Hyd/pneu/ele system location 62.0 [ftI 0.3048 [m/ft]

xlgnose Nose landing gear location 14.0 [ft] 0.3048 [m/ft]



Variable Description Default Value Conversion Mul-

Name tiplier

dxlgmain Main landing gear offset behind wing 1.0 [ft 0.3048 [m/ft

lift centroid

fhpesys Hyd/pneu/ele system weight ratio (rel- 0.010

ative to total weight) Whpesys/WMTO

flgnose Nose landing gear weight ratio (relative 0.011

to total weight) Wlgnose/WMTO

flgmain Main landing gear weight ratio (relative 0.044

to total weight) Wlgmain/WMTO

A.13 Other Added-Weight Fractions

Variable Description Default Value Conversion Mul-

Name tiplier

xapu Auxiliary power unit (APU) location 120.0 [ft] 0.3048 [m/ft]

fapu APU weight fraction (relative to pay- 0.035

load weight) Wapu/Wpay

fseat Seat weight fraction (relative to pay- 0.10

load weight) Wseat/Way

fpadd Other payload-proportional fraction 0.35

e.g. flight attendants, food, galleys, toi-

lets, luggage compartments and furnish-

ings, doors, lighting, air conditioning

systems, in-flight entertainment sys-

tems, etc. (relative to payload weight)

Wpadd/Wpay
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Variable Description Default Value Conversion Mul-

Name tiplier

feadd Engine accessories, fuel system frac- 0.10

tion (relative to bare engine weight)

Weadd/Wbare

fpylon Engine pylon weight fraction 0.10

Wpylon/(Webare + Weadd + Wnacele)

freserve Reserve fuel fraction (relative to fuel 0.200

burn) Wfreserve/Wburn

A.14 Allowable Stresses at Sizing Cases

Variable Description Default Value Conversion Mul-

Name tiplier

sigfac Multiplier on all stress values below 1.0

sigskin Allowable fuselage pressurization skin 15000.0 [Pa] 0.000145

stress [psi/Pa]

sigbend Allowable fuselage bending 30000.0 [Pa] 0.000145

skin+stringer stress [psi/Pa]

sigcap Allowable wing, tail bending caps stress 30000.0 [Pa] 0.000145

[psi/Pal

tauweb Allowable wing, tail shear webs stress 20000.0 [Pa] 0.000145

[psi/Pa

sigstrut Allowable strut stress 30000.0 [Pa] 0.000145

[psi/Pa]
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A.15 Fuselage Shell Modulus Ratio, for Bending Ma-

terial Sizing

Variable Description Default Value Conversion Mul-

Name tiplier

rEshell Fuselage shell Young's modulus ratio 1.0

Ebend/Eskin

A.16 Moduli, for Strut-Induced Buckling Load Esti-

mation

Variable Description Default Value Conversion Mul-

Name tiplier

Ecap Wing sparcap Young's modulus 10.0e6 [Pa] 0.000145

[psi/Pa]

Estrut Strut Young's modulus 10.0e6 [Pa] 0.000145

[psi/Pa]

A.17 Structural Material Densities

Variable Description Default Value Conversion Mul-

Name tiplier

rhoskin Fuselage skin density 2700.0 [kg/m3]

rhobend Fuselage bending stringers density 2700.0 [kg/M 3]

rhocap Wing, tail bending caps density 2700.0 [kg/m 3]

rhoweb Wing, tail shear webs density 2700.0 [kg/M3]

rhostrut Strut density 2700.0 [kg/M 3]
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A.18 Database for Wing Profile Drag in Transonic

Cruise, High Climb

Variable Description Default Value Conversion Mul-

Name tiplier

cdfw Wing profile 2D friction drag coefficient 0.0085

for low speed (takeoff, initial climb)

cdpw Wing profile 2D pressure drag coeffi- 0.0035

cient

Rerefw Wing profile reference Reynold's num- 20.0e6

ber

cdft Tail profile 2D friction drag coefficient 0.0060

cdpt Tail profile 2D pressure drag coefficient 0.0030

Rereft Tail profile reference Reynold's number 10.0e6

aRexp Exponent for Reynold's number scal- -0.15

ing: CD = cd * (Re/Reef )aRexP

fexcdw Wing excrescence drag factor 1.08

fexcdt Tail excrescence drag factor 1.08

fexcdf Fuselage excrescence drag factor 1.10

fBLIw Fraction of wing boundary layer kinetic 0.0

energy defect ingested

fBLIf Fraction of fuselage boundary layer ki- 0.0

netic energy defect ingested

iBLIc 0 = core in clean flow, 1 = core ingests 0

kinetic energy defect (if any)
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A.19 Fuel Parameters

Variable Description Default Value Conversion Mul-

Name tiplier

ifuel N/A (Not provided in TASOPT 11

(methane) documentation[10])

ifuel N/A (Not provided in TASOPT 12

(ethane) documentation[10])

ifuel N/A (Not provided in TASOPT 13

(propane) documentation[10])

ifuel (bu- N/A (Not provided in TASOPT 14

tane) documentation[10])

ifuel (oc- N/A (Not provided in TASOPT 18

tane) documentation [10])

ifuel N/A (Not provided in TASOPT 24

(kerosene) documentation[10])

rhofuel Fuel density 423.0 [kg/M 3]

(methane)

rhofuel Fuel density 547.0 [kg/M 3]

(ethane)

rhofuel Fuel density 582.0 [kg/m 3]

(propane)

rhofuel Fuel density 600.0 [kg/M 3]

(butane)

rhofuel Fuel density 700.0 [kg/rn 3]

(octane)

rhofuel Fuel density 817.0 [kg/M 3]

(kerosene)
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A.20 Engine Temperatures

Variable Description Default Value Conversion Mul-

Name tiplier

Tmetal Turbine metal temperature 1222.0 [K]

Tt4TO Turbine inlet total temperature for 1833.0 [K]

takeoff

fTt4CL1 Turbine inlet total temperature fraction 0.2

for initial climb

fTt4CLn Turbine inlet total temperature fraction 0.2

for for climb

Tt4CR Turbine inlet total temperature for 1591.5 [K]

cruise

A.21 Turbine Cooling Parameters

variaDie Description Default value Uonversion Mul-

Name tiplier

dTstrk Hot-streak temperature allowance 200.0 [K]

Mtexit Turbine blade row exit Mach, for tem- 1.0

perature drops

StA Area-weighted effective Stanton num- 0.09

ber

efilm Blade-to-cooling flow heat transfer effi- 0.72

ciency

tfilm Cooling-film effectiveness factor 0.32

M4a Mach number at start of cooling-air 0.9

mixing zone
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Variable Description Default Value Conversion Mul-

Name tiplier

ruc Velocity ratio of exiting cooling air 0.30

Ucool /Uedge

A.22 Design Pressure Ratios, Efficiencies, etc.

Variable Description Default Value Conversion Mul-

Name tiplier

OPR Overall design pressure ratio 26.2

pihc High pressure compressor (HPC) pres- 9.0

sure ratio

FPR Fan pressure ratio 1.61

pid Diffuser pressure ratio 0.995

pib Burner pressure ratio 0.946

pifn Fan nozzle pressure ratio 0.9937

pitn Core nozzle pressure ratio 0.9919

epolf Fan polytropic efficiency at FPR 0.923

FPRo

epollc Low pressure compressor (LPC) poly- 0.937

tropic efficiency

epolhc High pressure compressor (HPC) poly- 0.904

tropic efficiency

epolht High pressure turbine polytropic effi- 0.871

ciency

epollt Low pressure turbine polytropic effi- 0.876

ciency

FPRo Fan efficiency function constants 1.61
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Variable Description Default Value Conversion Mul-

Name tiplier

Kepf Correction factor for epolf epolfactuai -0.47

epolf + Kep * (FPR - FPR,)

BPR Bypass ratio 5.5

Gearf LPC/fan speed ratio 1.0

HTRf Fan hub/tip ratio 0.30

HTRlc LPC hub/tip ratio 0.60

HTRhc HPC hub/tip ratio 0.80

M2 Fan-face Mach number 0.60

M25 HPC-face Mach number 0.60

A.23 Fan Nozzle Area Factors Relative to Cruise De-

sign Area

Variable Description Default Value Conversion Mul-

Name tiplier

static Fan nozzle area factor during static 1.0

state

rotation Fan nozzle area factor during rotation 1.0

takeoff and takeoff

cutback Fan nozzle area factor during cutback 1.0

climbi Fan nozzle area factor during initial 1.0

climb

climbn Fan nozzle area factor during final 1.0

climb

descent1 Fan nozzle area factor during initial de- 1.0

scent
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A.24 Core Nozzle Area Factors Relative to Cruise

Design Area

143

Variable Description Default Value Conversion Mul-

Name tiplier

descentn Fan nozzle area factor during final de- 1.0

scent

Variable Description Default Value Conversion Mul-

Name tiplier

static Core nozzle area factor during static 1.0

state

rotation Core nozzle area factor during rotation 1.0

takeoff and takeoff

cutback Core nozzle area factor during cutback 1.0

climbi Core nozzle area factor during initial 1.0

climb

climbn Core nozzle area factor during final 1.0

climb

descentl Core nozzle area factor during initial 1.0

descent

descentn Core nozzle area factor during final de- 1.0

scent



A.25 Nacelle Drag Related Variables

Variable Description Default Value Conversion Mul-

Name tiplier

rSnace Nacelle + pylon wetted area/fan area 16.0

Snace /Af an

rVnace Nacelle local/freestream velocity ratio 1.0

A.26 Engine Weight Model

Variable Description Default Value Conversion Mul-

Name tiplier

iengwgt Engine weight model selection: McDon- 1

nell Douglas original model(O), NF's

new model (basic tech)(1), NF's new

model (advanced tech)(2); Geared if

Gearf < 1, ungeared of Gearf 1
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