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Abstract

Traditionally, robots in manufacturing have been deployed in caged, static and pre-
dictable environments. Advances in robotics are enabling industrial robots to emerge
from these traditional habitats, and enter the final assembly to work along side hu-
mans. My thesis contributes to this effort through development of a mobile robot
capable of operating on final automotive assembly lines to assist humans.

Several algorithmic as well as design challenges exist when mobile robots enter
the unpredictable, human-centric and time-critical environment of final assembly. My
primary focus is on achieving autonomous mobility, a precursor for introducing robots
to operational factory floors. Automotive assembly lines present a distinct challenge
in form of surfaces that are dynamic, i.e., the conveyor belts which ferry cars in
the factory. I develop a control strategy to enable autonomous navigation on such
dynamic surfaces, and design a sensing module capable of detecting the conveyor
belts. The designed system is tested in simulation, implemented on hardware and
evaluated on an operational, automotive factory floor.

Evaluation in factory establishes preliminary success in the designed robotic sys-
tem. Interesting, qualitative observations while introducing a robot in a real envi-
ronment also emerge, and motivate need for enhancing the interaction capability of
robots for time-critical tasks in human-centric environments. Towards this, we carry
out a human subject experiment (N = 24) comparing the performance of the robot
to that of a human assistant in an analogue assembly line environment. Results from
the experiment provide a better understanding of the factors that impact fluency of
interaction and inform the design of a more effective mobile robotic assistant. This
work introduces mobile robots on the automotive assembly lines right next to people,
thereby paving the way for utilizing them to assist busy, human associates in the
myriad tasks involved in final assembly of cars.
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Chapter 1

Introduction

Automotive industries have been one of the first to introduce robotics in their man-

ufacturing processes. Indeed, it is no surprise that around fifty percent of the manu-

facturing in a typical factory today is done by industrial robots [1]. Figure 1-la shows

an example of one such completely automated system being used in the body shop of

an automotive factory. However, driven by the requirement of high reliability, most

of these industrial robots are caged, static and non-interactive. By operating in the

cages and away from humans, the robot environment is rendered highly predictable

allowing for both reliable and human-safe execution of largely pre-planned tasks.

Robots that operate beside or cooperatively with humans are envisioned as the

"next generation of robotics" 18]. There exists an increasing demand to incorporate

mobile interactive robots to assist humans in repetitive, non-value added tasks in the

manufacturing domain. Due to the advancements in the state-of-the-art perception,

planning, control and actuation, the boundaries for robots in manufacturing are be-

ing pushed by roboticists to bring them out of the cages and introduce them into

final assembly along side humans. Kruger et al. [46] provide a detailed survey of

robots being developed for and/or used in assembly lines. Several robotic aids [10]

and collaborative robots [16, 571 have been developed as research prototypes as well

as operational systems for final assembly, including automotive guided vehicles for

delivering parts (Fig. 1-1b). However, till date there have been no mobile robots that

can work along side humans on the automotive final assembly lines.
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(a) Large, industrial robots performing the (b) Automated guided vehicles delivering
initial phase of car manufacturing. [5] parts in an automotive assembly line. [3]

Figure 1-1: Robots being used in different stages of car manufacturing in an automo-
tive factory. (left) Large, industrial robots work in a caged setup away from humans

to manufacture the car chassis through an 100% automated process. (right) Mobile
robots, navigating using magnetic strips in the floor, deliver parts across large factory
floors to human associates.

Our work is aimed at facilitating close-proximity, human-robot collaboration in

automotive manufacturing by introducing mobile robots on the automotive final as-

sembly lines right next to people. To work in close proximity with humans, there

is a need for robots that can operate on the assembly lines and can navigate freely

instead of being restricted to pre-decided lines on the factory floor.

This thesis presents a mobile robot capable of operating on automotive final as-

sembly lines along side human associates, with focus on the design of motion control,

sensing and human-robot interaction. The designed system is tested in simulation,

implemented on hardware and demonstrated on an operational, automotive factory

floor. The mobile robotic system can more directly assist humans working on the car

during its final assembly, and allow for more flexible manufacturing processes. We be-

lieve research towards this robotic assistant, through the development of algorithms,

realization of design guidelines and study of human-robot interaction experience, will

not only introduce industrial robots on the automotive assembly floors but also aid

in furthering robots that work with humans in other time-critical domains, including,

factories, homes and roads.
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In this chapter, we begin with a description of automotive final assembly lines

including aspects that are relevant to design of a mobile robotic system. This mo-

tivates the key research challenges in introducing mobile robots on the automotive

factory floor right next to people. Next, we define the scope of the thesis by describ-

ing the specific problems that we explored and the corresponding assumptions. Key

contributions of the thesis are highlighted in Sec. 1.2.2. The chapter concludes with

an overview of prior work on developing collaborative robots, with focus on robots

developed for final assembly.

1.1 Automotive Final Assembly Lines

To accomplish our objective of developing a mobile robot for automotive factories, it

is important to understand the characteristics of the assembly line environment and

their implications on operation of a mobile robot. In this section, we describe the key

features of the automotive assembly line environment, along with the key challenges

it presents for mobile robots.

Figure 1-2 shows the typical, final assembly environment of an automotive factory.

The environment is highly dynamic, uncertain and cluttered due to presence of human

agents and mobile objects such as, cars on the assembly line and pick carts. In

addition, some modern factories include line-following mobile robots used for delivery

of parts across the factory floor [3]. Motion of human agents is unconstrained and

they are free to move along the factory, both on and off the assembly line. Motion of

other dynamic objects is also uncertain, and depends on the factory operations on a

particular day, personal preferences, and unplanned events.

Along with the dynamic environment, automotive assembly lines have the distinct

property of having surfaces that are dynamic, i.e., the conveyor belts which ferry cars

in the factory. The motion of these conveyor belts and consequently that of the cars

that they ferry is usually periodic; however, the conveyor belt can arbitrarily stop

due to some event on the factory floor. While in motion the conveyor belts tend to

move at a fairly slow (< 0.2 m/s) and almost constant speed.
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Figure 1-2: A typical, final automotive assembly line [10]. The assembly line includes
human associates, dynamic objects such as part-carts, and a conveyor belt which
ferries the cars that are being assembled. The human associates primarily work on
the conveyor belt, and periodically ferry tools and parts from outside the conveyor
belt to carry out the car assembly.

The slow, yet periodic, motion of the conveyor belt results in each car spending

typically less than three minutes at a workstation. Unscheduled stops in the assem-

bly line are strict no-no, as they have high economic costs and human factor issues

associated with them. This renders the tasks to be performed during final assembly

highly time-critical, where every second matters. Any delays caused in car assembly

may have cascading effects leading to disruption and/or inefficiencies in the assembly

process. Any agent, including any prospective mobile robots, involved in car as-

sembly should be able to successfully and repetitively complete its task within these

short cycle times, as any incomplete work will lead to the undesirable, unscheduled

stops. Presence of human agents further makes the task safety-critical, as safety is of

paramount importance.

1.1.1 Implications for Mobile Robots

As described above, the automotive final assembly presents a highly dynamic and

uncertain requirement that includes multiple human agents. This section describes

the implications of such a challenging environment for design of a mobile robot that

were derived based on observation of operations in operational automotive factory

floors and discussion with domain experts.
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Ensuring Human Safety

First and foremost, the robot should have mechanism both at the software and hard-

ware level to ensure safety of humans and other equipment in the surrounding. This

will require detecting obstacles/humans present in the surrounding, and modifying

the robot behavior/plans accordingly.

Autonomous Navigation on Dynamic Surfaces

Next, prior to accomplishing any task on the automotive final assembly line, the

robot first needs to be able to navigate autonomously on dynamic surfaces, i.e., the

moving surfaces of assembly line. Achieving this capability requires the robot to fulfill

multiple requirements that are described as follows,

" Sense obstacles, maintain a map of the environment, and estimate robot state:

This should be done in presence of the dynamic surface, which can affect sensor

performance, as well as dynamic objects and humans.

" Sense the location and state of the conveyor belt: The robot should have the

capability to detect the state (speed) of the dynamic surface, as this informa-

tion is not readily available to the robot in an automotive factory. Further,

the robot should have the ability to detect the location of assembly line. De-

tection whether the robot is on the assembly line is critical, since even small
U

errors/misdetection can be detrimental to robot's hardware and function.

* Trajectory tracking on dynamic surfaces: Mobile robots, using existing control

algorithms, can track a desired plan generated by a user or path planners. How-

ever, to operate in automotive final assembly lines the mobile robot should be

able to control its motion and track desired trajectories seamlessly, irrespective

of whether it is on static surface, moving surface, or is straddling the assembly

line (e.g., in the case when the robot is partially on the moving assembly line

and remains partially on the static surface).
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* Generating efficient path plans: The robot should be able to generate paths

which are efficient, adhere to the time constraints of the task, and are capable

to plan for goal locations that are moving (such as, a moving human that is to

be assisted and/or car which is being assembled). This may additionally require

tracking dynamic goals, such as, tracking the car/s being assembled.

Fluent Human-Robot Interaction

Along with being safe and navigating autonomously, the robot should also perform

tasks efficiently and collaborate fluently with humans. To provide benefit, similar to

other human-robot interaction scenarios, the robot should

" Perform deliberative task planning and scheduling: To function in dynamic

manufacturing environments, the robot should be able to dynamically plan

tasks, and maintain flexible schedule [20, 30].

* Infer the task/motion intent of human agents: Autonomous planning in dynamic

environments can benefit if high fidelity, predictive information regarding the

future state of the environment is available. By inferring the task/motion of hu-

man agents the robot can better reason for the dynamic, uncertain interactions

in the final assembly.

" Convey its intent: Awareness of robot's intent will help the humans better reason

and adapt while working with a robot, resulting in a more fluent collaboration.

Considerations for Factory Deployment

Issues concerning factory deployment of the robot should also be considered, as much

as possible, in the design process of the robot. These requirements primarily include

design of a system that

" requires minimal modifications to the factory layout and infrastructure,

" is easy to use and maintain, and

* includes redundancy for a more robust autonomous operation.
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1.2 Scope of the Thesis

As discussed in the previous section, several algorithmic as well as design challenges

exist when mobile robots enter the unpredictable, human-centric and time-critical

environment of final assembly. This section describes

(i) the problem statements that we tackle in this thesis towards the multi-disciplinary

challenge of introducing a mobile robot in automotive final assembly,

(ii) the robotic platform selected to demonstrate the designed capabilities, and

(iii) the outline of the thesis.

Autonomous Mobility on Conveyor Belts: Control and Sensing

In this thesis, firstly, we focus on achieving autonomous mobility on conveyor belts,

a precursor for introducing robots to operational factory floors. Specifically, we un-

dertake the design of a control and sensing module for robot navigation on dynamic

surfaces. The goal is to demonstrate the designed autonomous mobility capability in

an operational factory floor. Development of this enabling capability will allow for

mobile robots to be used in automotive factory floors, thereby paving the way for

utilizing them to assist busy, human associates in the myriad tasks involved in final

assembly of cars that require autonomous mobility.

Human-Robot Interaction in Final Assembly

Irrespective of the specific task that the mobile robot carries out in the final assembly,

it will always be working with or along side human associates. Small deficiencies in the

human-robot interaction in the time-critical domain of automotive final assembly can

significantly degrade the efficiency of overall work-flow. Hence, secondly, we seek to

gain a better understanding of the factors that impact the saliency and collaborative

fluency of a robot while working with a human during a time-critical assembly task.
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1.2.1 Hardware Platform: Rob@Work 3

Design of a robotic system for automotive final assembly is heavily influenced by its

hardware capabilities, for instance, differentially driven robots are not suitable as

they cannot hold their position while straddling the moving conveyor belt.

U Motor
controllers for
steering motor

" Wheel units with
drive actuator

" Battery packs

" Sick S300 professional
laser scanner

" 10 inch touch
screen

" EM Stop button
and on/off key
switch

" Speaker

" Industrial PC

" Brakes / Wireless
EM Stop

Figure 1-3: Schematic of the Rob@Work 3 mobile robotic base 1111.

We select Rob Work 3 mobile platform [11] as the basic system to build upon

our robotic system for automotive assembly lines. Rob@Work 3 is a mobile robotic

platform, developed by Fraunhofer IPAO, for industrial applications (see Fig. 1-3).

Table 1.1 summarizes the key features of the Rob@Work 3 robotic platform.

Table 1.1: Rob Work 3: Salient Features

Dimensions 103 x 57 x 40 cm
Weight 120 kg
Payload Capacity 150 kg
Maximum Speed 1.2 m/s
Actuators 4 wheels (2 motors per wheel,

for driving and steering)
Sensors Eight encoders (1 per motor)

2 SICK S300 Laser Scanners

The primary reason for the choice of this platform is the presence of four inde-

pendently actuated wheels that can be both steered and driven. We leverage this

characteristic of the platform for developing the control algorithm for robot motion

on dynamic surfaces.
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In addition the robotic platform has several features that are desirable for indus-

trial applications, namely

" a high payload capacity that is required to carry out fetch-and-deliver and other

tasks on the factory floor,

" a long battery life, that allows for extended robot operations without requiring

frequent downtime for charging the batteries,

" on-board sensing, which includes motor encoders for odometry and two planar

laser scanners with combined 3600 field of view,

" laser-scanner based safety system and emergency stops to prevent collisions with

humans in the surrounding, and

" Robot Operating System (ROS) [541 based middleware, that enables easy adop-

tion of off-the-shelf code for various robot functionalities, such as localization

[28], mapping [33] and navigation [29, 49], and quick prototyping during system

development.

Figure 1-4: The modified Rob Work 3 mobile robotic platform, with four optic flow
sensors for augmented surface sensing capabilities.

Lastly, as described in Sec. 2.2, we augment the sensing capability of the robot

mobile base by installing a suite of four PX4Flow optic flow sensors [39]. Figure 1-4

shows the basic robotic platform along with the augmented optic flow sensor suite.
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1.2.2 Thesis in a Nutshell

In this thesis, we present a mobile robot designed for and capable of operating on

automotive assembly lines along side human associates. To accomplish this aim,

we developed a control strategy to enable autonomous navigation on dynamic sur-

faces, and design a sensing module capable of detecting the conveyor belts at sub-cm

level accuracy. The developed control and sensing solution was implemented on the

RobWork 3 hardware platform described in Sec. 1.2.1, and evaluated in an opera-

tional automotive factory floor.

In addition, with the aim of improving human-robot interaction in final assembly,

we conducted a human subject experiment to assess the key factors impacting the

saliency and collaborative fluency of a mobile robot assisting busy human co-workers.

In this section, we provide a detailed outline of the thesis.

Trajectory Tracking on Dynamic Surfaces

We designed, implemented and tested a control algorithm and sensing system, de-

scribed in Chapter 2, for the objective of tracking desired robot trajectories generated

either by a teleoperator or path planner.

The sensing module senses the location and motion of dynamic surfaces using four

on-board optic flow sensors and off-board contact-based wheel encoder (see Sec. 2.2).

Various sensing alternatives for measuring the state of dynamic surface were consid-

ered, and first an on-board solution using only optic flow sensors was developed. To

make the mobile robot more robust to the dynamic environment of final assembly,

the sensing module was augmented with an off-board contact-based wheel encoder

for sensing the speed of assembly line (dynamic surface). The knowledge of location

and state of assembly line, the dynamic surface in automotive final assembly, is crit-

ical for position control of the robot on dynamic surfaces. In addition, the sensing

information is useful for robot localization and for tracking objects, such as the cars

being assembled, located on the assembly line.
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Solutions readily exist for control of wheeled mobile robots on static surfaces;

we build on the open-source Robot Operating System (ROS) software architecture of

Robe Work 3 [121 and generalize the control algorithm for environments with dynamic

surfaces (see Sec. 2.1). The control algorithm utilizes the information from sensing

module for tracking desired trajectories. Due to its modular design, the control

algorithm can be used with any path planning algorithm irrespective of whether the

robot is located on a static or dynamic surface. The developed trajectory tracking

solution was first validated in simulation using the Gazebo robot simulator [441. This

was followed by hardware implementation of the control and sensing sub-systems.

Initial hardware validation was carried out in a controlled lab environment, wherein

a customized treadmill was used to emulate dynamic surfaces.

Evaluation in an Operational Automotive Factory

Next, to assess the performance of our robotic system in the dynamic and human-

oriented environments, we evaluated the system in an operational automotive final

assembly line (see Chapter 3). The trajectory tracking solution was integrated with

algorithm for mapping, localization and path planning in dynamic environments.

Evaluation in factory, among human co-workers, establishes preliminary success in the

designed robotic system as evidenced through the quantitative metrics of navigational

performance, and motivate future directions for improving the robot performance and

interaction in time-critical tasks in human-centric environments.

Human-Robot Interaction: Collaborative Fluency and Robot Saliency

Fluent human-robot collaboration is critical to successful introduction of mobile

robots in the automotive final assembly. Using the designed autonomous naviga-

tion capability for the robot, fetch-and-deliver will be one of the primary collabo-

rative tasks that the robot can carry out. Since, our robotic system has a non-

anthropomorphic geometry, omni-directioncal mobility and no in-built communica-

tion capability, we first aimed to evaluate its performance in a human-robot collabo-

ration task to identify the need and format of design interventions.
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We carried out a human-subject experiment, detailed in Chapter 4, which com-

pared Human-Robot (HRI) and Human-Human Interaction (HHI) during delivery

phase of fetch-and-deliver tasks. We observed statistically significant differences be-

tween human and the robot in the objective measures of fluency [37], as well as in

a measure we defined as robot saliency. Interestingly, we observed that though the

human-robot interaction was more salient it was less fluent than the human-human

interaction. Additionally, participants were observed to respect a human collabora-

tor's time more as compared to that of a robotic assistant. The study suggests a

need for design interventions, especially for the time-critical operations in a factory

where the robot idle time should be minimized and human-robot collaboration be

made more fluent.

1.3 Related Work

There has been significant research towards designing and deploying interactive robots

to assist humans. As exemplified in Fig. 1-5, these robotic systems span multiple

domains. In this section, we provide an overview of such robotic systems with focus

on robots designed for close proximity interaction with humans for the domain of

final assembly.

1.3.1 Mobile, Interactive Robots

The breadth of recent and on-going work in robotics demonstrates a definitive push

across sectors and academia to enable human-robot collaboration, including to enable

novel applications, achieve ergonomic benefit, and improve task performance/efficiency.

Indeed, several interactive robots haven been developed either as research prototypes

and/or commercial products in the last two decades. Here, we describe few of these

robotic systems. Please note that the intent of this description is not to provide an

exhaustive list of such robots, but rather to ground our work and glean insights from

the state of the art by studying existing, prototypical systems. We begin with a brief

description of interactive robotic systems from domains other than manufacturing.
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Figure 1-5: A Venn diagram exemplifying various interactive robotic systems. These
robots span across multiple domains, including, health-care, homes, and final assem-
bly. Further, many of these systems are mobile. However, our effort, to the best
of our knowledge, is the first towards designing mobile robots that are capable of
working along side humans on the automotive final assembly line.

Museums have been one of the first environments for deployment of interactive,

mobile robots among humans. RHINO, an autonomous, interactive tour-guide robot,

was successfully deployed in a densely populated museum for a period of six days

as early as 1997 [521. The autonomous operation of the robot was made possible

due to various probabilistic algorithms, including those for localization, mapping,

collision avoidance and planning. Minerva, the second generation of museum tour-

guide robots, additionally included better planning and interactive capabilities [221.

These robots, developed and deployed more than a decade ago, demonstrate the

potential of mobile robots for applications involving human-robot interaction.

More recently, interactive, mobile robots have been developed for applications in

shopping malls [41], homes [7], health-care [15, 32, 53], and warehouses [34]. Along

with being mobile, several robotic systems are capable of performing collaborative

tasks with humans. For instance, the Home Exploring Robotic Butler (HERB) robot

is capable of performing various manipulation tasks, including delivery of objects to

humans [66].
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1.3.2 Robots in Final Assembly

Industries have been the primary users of robotics at large scales. Indeed, today most

robots are used in manufacturing operations [9]. As opposed to the robots described

in Section 1.3.1, most of these industrial robots have been non-interactive. However,

due to the advances that are enabling human-robot ineraction in service robotics,

there also exists an increasing demand to incorporate mobile, interactive robots in

the final assembly.

Indeed, to cater to the needs of modern factories, industrial robots are increasingly

becoming more mobile [21], adaptive 113] and interactive [4]. Multiple robotic sys-

tems have been developed to collaborate with or assist humans in the final assembly

[461. Design of control strategies for mobile manipulation, with the aim of designing

robotic assistants to aid human workers, is discussed in [42]. An autonomous mo-

bile manipulator for assembly tasks is presented in 1361. The designed mobile system

provides high flexibility and robustness, and has been empirically demonstrated to

achieve high reliability in an insertion assembly task.

Robots in Automotive Final Assembly

Robotic systems have also been developed for our domain of interest, i.e., the final

automotive assembly 1561. For instance, Akella et al. 116] discuss the design principles

and prototype of cobots, an intelligent assist device (IAD) which provide ergonomic

benefit to human workers in automotive assembly lines. Subsequently, these IADs

have been commercialized for use in automotive assembly for assisting humans in

tasks, such as, cockpit install and engine assembly. Apart from IADs, static robots

have also been used for accomplishing specific tasks in car assembly, e.g., final door

assembly [14]. Similarly, PowerMate, an workplace and time sharing robotic system,

has been designed to assemble heavy parts of an automotive rear axle in collaboration

with a human worker 157]. These robots operate in close proximity with humans;

however, by being static are limited in the operations that they can perform and

provide less flexibility while designing manufacturing processes.
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Automated guided vehicles, as shown in Fig. 1-Ib, are being used in many factories

to carry out bulk of delivery of parts across the large-scale factory floors [10, 74].

However, these AGVs operate as line followers with their mobility being limited to

the grids laid down in the environment, and are not capable of entering the automotive

assembly line or performing tasks on moving parts/cars. The need and challenges of

mobile robotic systems that can perform assembly tasks on moving assembly lines

have been identified in [60]. As an enabling step towards developing these mobile

robots, solutions for tracking moving objects from a mobile robot for applications

in automotive assembly have also been developed [35, 61]. Using these tracking

solutions and pure pursuit tracking control, Shi et al. have designed and implemented

a mobile robot capable of performing assembly tasks on a moving vehicle body [59].

Specifically, the robot has been demonstrated to perform the task of attaching a

wiring harness to a moving vehicle body.

The designed mobile robotic system, which is the closest work related to our

design effort, is developed for applications in robotic automation stations [60] where

the moving vehicle body is ferried by automated guided vehicles. Due to this the

design assumes mobile manipulation being performed on static surfaces and does

not consider the impact of dynamic surfaces on robot's operations. However, as

described in Section 1.1, automotive final assembly lines typically include dynamic

surfaces in the form of conveyor belts that ferry moving vehicle bodies. Further,

the environment includes human associates that will work in close proximity with

the robotic system, thereby necessitating consideration of safety and human-robot

interaction. As detailed in subsequent chapters, in this thesis we consider both of these

factors, i.e., dynamic surface and close proximity interaction with human associates,

while designing and deploying a mobile robotic system for automotive final assembly

lines.
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Chapter 2

Trajectory Tracking on Dynamic

Surfaces: Control and Sensing

Ensuring autonomous mobility is key to successful introduction of mobile robots for

the final assembly of cars. The automotive final assembly presents a challenging

environment which is dynamic, cluttered and largely unpredictable due to presence

of moving cars and human agents in the environment (see Section 1.1 and Fig. 1-2).

In addition, the automotive final assembly includes assembly lines, in the form of

conveyor belts, which ferry cars around the factory floor. These assembly lines are

essentially dynamic surfaces which could either be static or moving.

Autonomous mobility constitutes a robot being able to sense its environment, plan

a path based on the sensed information to the desired goal location, and successfully

follow the planned path. Solutions exist for each of these three components, i.e., sense,

plan and control, when a robot is navigating a static surface 149, 63, 681. However,

no attempts have been made for achieving autonomous robot navigation on dynamic

surfaces. In this chapter, we first present a modular control algorithm designed for

trajectory tracking of RobdWork-3 on a dynamic surface. The control algorithm

allows the robot to successfully track a desired trajectory/path, generated either by

a user or a path planner, irrespective of the surface being static or dynamic. As an

input the designed control algorithm requires the location of the robot relative to the

dynamic surface as well as the absolute velocity of the surface.
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Figure 2-1: Nominal control architecture of the RobeWork 3 robotic platform.

A number of exogenous factors influence the stopping and starting of the assembly

line. Factories oriented around manual work do not typically maintain a reliable

signal of the lines' on/off state and thus this state must be sensed directly by the

robot. Thus, next a sensing subsystem is developed that provides location and speed

measurements of the dynamic surface, an input for the designed control algorithm.

Other objects in the factory (part carts, cars, people) will move over different

timescales and the robot will need localization and path planning algorithms that

are suitable for dynamic environments. Due to the modular design of the control

and sensing subsystems, the subsystems for dynamic surfaces can be coupled with a

variety of (novel or existing) localization, mapping and planning algorithms thereby

enabling autonomous mobility in the automotive final assembly line.

2.0.1 Reference Frames

The robot, due to its numerous parts and sensors, requires maintenance of over fifteen

reference frames for its complete kinematic description. Primarily, three reference

frames are used in this chapter: map, robot, and optici. The map frame, denoted

by superscript M and used as reference for localization, is the static frame fixed to

a reference point in the factory. The robot frame, denoted by superscript R, is fixed

to the robot body, and is used for maintaining the robot odometry and location with

respect to the static world frame. Finally, a reference frame is defined for each of the

four optic flow sensors. This is used to suitably transform the sensor information into

the robot frame.
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2.1 Control on the Assembly Line

This section begins with a description of the nominal navigation system of our

robotic platform. Though capable of successfully tracking a trajectory on a static

surface, we observe through simulation that the robot is unable to do the same on

surfaces that are dynamic. This motivates the need for a novel control subsystem,

which is capable of navigating environments with both static and dynamic surfaces.

We discuss the requirements and alternatives for designing such control algorithm,

and present the design and performance of a modular control solution for our robotic

platform.

2.1.1 Trajectory Tracking of Rob@Work 3

Control of wheeled robots is a well studied problem 163]. State-of-the-are wheeled

robots are capable of following a given path or trajectory with high fidelity. The

Rob Work 3 robotic platform, too, can exhibit this trajectory tracking behavior 112]

on static surfaces.

2.1.1.1 Nominal Architecture

Figure 2-1 shows the nominal control architecture of the robotic platform for naviga-

tion. The control architecture of the mobile base uses multiple feedback loops [24]. A

path planning algorithm or a human tele-operator issues a desired trajectory, which

is translated into velocity commands for the mobile robot. The desired velocity of

the ith wheel VR hee1,i I vy,i) is obtained in terms of robot velocity (ir, ir, q r) as

follows,

VxJ = Xr - 7rYw,i (2.1a)

Vy,i = yr + rXw,i. (2.1b)
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Each wheel velocity command is then converted to the wheel configuration, a

steering angle b and angular rate 0 command, as detailed in [241. A PD controller is

used for controlling 0 and 6 for each wheel. The control architecture, implemented

in ROS, also incorporates safety considerations that are essential while operating in

an industrial environment.

2.1.1.2 Simulated Performance on Assembly Line

The control architecture of the Rob@Work 3 though capable of following a given

trajectory is not designed for dynamic surfaces. However, the realized performance of

the existing control architecture might still be acceptable due to the low speed (< 0.2

m/s) of dynamic surfaces encountered in the automotive final assembly. To test this

hypothesis, we conduct simulation of trajectory tracking on dynamic surfaces using

the nominal control architecture.

A test scenario, shown in Fig. 2-2, simulating a factory-like environment with a

dynamic surface is created using the Gazebo simulator [44]. The dynamic surface,

similar to assembly line in an automotive factory, either remains stationary or moves

at a uniform speed in a fixed direction. Gazebo simulator is the natural choice for

validation as it allows for testing of the hardware-ready ROS code in simulation.

In the test environment, the robot's task is to navigate across the dynamic surface

that is moving with a constant velocity throughout the simulation. An off-the-shelf

path planner [291 is used to generate the robot's path, which is a straight line in the

current scenario.

Figure 2-3 shows four stills from the simulated performance of the nominal control

algorithm while navigating the dynamic surface (a video of the complete simulation

is available at http://tiny. cc/aogo3w ). In spite of the low magnitude of surface

velocity, the robot continuously deviates from the desired path while on the dynamic

surface. As is evident from the simulated performance, the existing architecture fails

to follow a desired trajectory on dynamic surfaces.
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Figure 2-2: A Gazebo test scenario simulating factory floor with an assembly line.

to t2 '4

Figure 2-3: Four stills from the simulated performance of the nominal control archi-

tecture while the robot traverses the moving surface. The red arrow indicates the

desired robot path. As the robot moves across the moving line, the deviation from

the desired path continues to grow.
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Figure 2-4: The robot can enter the conveyor belt in any arbitrary configuration.
The figure shows few of the many possible orientations in which the robot (shown as
a blue polygon with red wheels) can entering the conveyor belt that ferries cars. At
any instant, any number of robot wheels can be present on the dynamic surface.

Effect on Robot Hardware

Not only does the nominal control architecture fails in tracking trajectories on dy-

namic surfaces, it also has a detrimental effect on the robot hardware. By not account-

ing for motion of the dynamic surface, the robot hardware experiences high torques

while transitioning from static to dynamic surface or vice-versa. Repeated applica-

tion of these high torques will structurally weaken the joints between the robot chassis

and wheels, and may eventually cause the wheels to break off from the chassis. This

impacts the maintainability of the robot and is highly undesirable for introduction of

mobile robots on the factory floor.

2.1.2 Control Algorithm for Dynamic Surfaces

Having ascertained that the nominal control architecture is insufficient for robots

navigating automotive final assembly lines, we aim to design a control algorithm which

exhibits desired trajectory tracking performance on dynamic surfaces and avoids any

undesired torques on robot hardware.

The mobile base can operate in multiple configuration with respect to the dynamic

surface, i.e., it could have any number of its wheels on the dynamic surface in any

arbitrary orientation (see Fig. 2-4). Further, due to its omni-directional motion the

first wheel to encounter the dynamic surface will not be same for different trajectories.
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Thus, along with functioning on the dynamic surface, the designed control algorithm

should also be able to work when the robot is on a static surface, or is straddling the

assembly line in any arbitrary orientation.

2.1.2.1 Control Alternatives

The nominal control architecture has been designed for static surfaces, and thereby

does not model or account for effects of surface motion on motion or hardware of the

robot. For successful trajectory tracking on dynamic surfaces, we consider control

algorithms that explicitly account for effect of surface motion. Several approaches

exist to model the effect of surface motion, either as an unknown but estimated

parameter, as a disturbance, or as an sensed input.

High Bandwidth Position Control

To avoid any additional sensing requirement, one approach to achieve trajectory track-

ing is through a high bandwidth position control, i.e., to increase control gains to track

desired positions along the trajectory. Though, such an approach is theoretically pos-

sible, through careful choice of control gains, it is highly undesirable from a hardware

standpoint. A control which just corrects for position will theoretically be able to

track the robot body center, but similar to the nominal control architecture will cause

inordinate torques when the robot is straddling a dynamic surface. Such high torques

may damage robot hardware, especially due to repeated robot motion on and off the

dynamic surface.

Adaptive Control

An adaptive control approach f65] to trajectory tracking can also be applied by treat-

ing the surface speed as the unknown parameter. Design of independent adaptive

controllers for each wheel will enable robot control even when robot is straddling

the dynamic surface. However, while transitioning from static to dynamic surface or

vice-versa any adaptive control design will exhibit transient response due to a jump
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in values of unknown parameter, i.e., speed of the surface. This, too, will result in

repeated torques on the robot hardware which is undesirable on a factory floor.

Reference Shaping

To avoid any undesirable torques on robot hardware, one approach to trajectory

tracking is to model the surface motion as an additional input to the system. Such a

reference shaping approach would allow modular implementation, but require addi-

tional sensing of surface parameters. However, as this approach avoids any undesired

effects on robot hardware, a key requirement for structural integrity of robots and in-

troducing them on factory floor, we design the novel controller for trajectory tracking

using this approach.

2.1.2.2 Controller Design

We design a control algorithm, based on reference shaping, which considers the speed

of dynamic surface as an additional input. Fig. 2-5 shows the designed control ar-

chitecture, and Algorithm 1 details the modification to the nominal controller. This

control architecture leverages the independent actuation of each wheel, and compen-

sates fur motion thl e d1ynamic surface thrIUgh suitably modifying he reierence

to the robot's wheel controllers. This modification results in a modular design that

preserves use of the existing wheel PD controllers, and software architecture.

Algorithm 1: Modification to the command to nominal wheel controller for
navigating environments with dynamic surfaces, such as, automotive final as-
sembly lines

Input: Nominal command to the wheel controller
Output: Compensated command to the wheel controller

rbit : absolute velocity of the surface at ith wheel in robot frame
vweoeti : absolute velocity of the at ith wheel

foreach robot wheel do
sense absolute surface velocity (V rfi) at wheel;
modify the nominal command:-

Vwheel,i Vwheel,i - surf,i;
end
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Figure 2-5: Designed control architecture of RobOWork 3 for environments with
dynamic surfaces.

The nominal wheel controllers, described in Sec. 2.1.1.1, operate assuming the

commands are issued for the case of static surface. Hence, if any of the wheels are on

a moving surface, the nominal controller does not provide the desired response. To

overcome this issue, we compensate the command for each wheel (vwheel,i) based on

the absolute surface velocity at its point of contact (Vsri). Algorithm 1 describes how

the commanded velocity for each wheel is altered assuming the knowledge of surface

velocity. The modified wheel velocity command is used to compute the desired wheel

configuration (4',6).

2.1.2.3 Simulated Performance on Assembly Line

To validate the modifications to the control algorithm prior to its implementation on

the robot hardware, we use the test environment developed in Section 2.1.1.2 using

the Gazebo simulator. To validate the controller independently of the sensing, the

Gazebo simulation assumes perfect sensing of the surface velocity. Robot's task and

environment are kept identical to Section 2.1.1.2.

Fig. 2-6 shows the deviation of robot's center from the desired path for the sim-

ulated scenario. Using the designed control subsystem, the maximum deviation is

observed to be <4cm for this task when the moving surface is operating at 0.10

m/s (a representative value for automotive assembly lines). Fig. 2-7 shows four

stills from the simulated performance of the designed subsystem (video available at

http://tiny.cc/aogo3w ). In contrast to the nominal control architecture's sim-

ulated performance shown in Fig. 2-3, using the modified system the robot can

successfully navigate across the simulated assembly line. This is accomplished by
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Figure 2-6: Performance of the modified system for the task of robot traversing the
moving surface from a typical Gazebo simulation run. Magnified view shows the
deviation in the path as the robot enters the moving surface. However, this deviation
is <4cm for the entire path, validating the modification in control sub-system.
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Figure 2-7: Four stills from the simulated performance of the modified control archi-
tecture while the robot traverses the moving surface. The red arrow indicates the
desired robot path. As the robot moves across the moving line, the deviation remains
bounded with the designed control architecture.

dynamically compensating for the surface velocity and correcting the robot heading.

Next, we describe the design of the sensing subsystem that provides the information

regarding the dynamic surface, required by the designed control architecture.
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2.2 Sensing the Assembly Line

Awareness of the dynamic surface and its current state is an important requirement

that a mobile robot needs to fulfill to operate on automotive final assembly lines.

Primarily, for executing the control algorithm described in Section 2.1, the robot needs

to know whether it lies on the assembly line or not. Additionally, for accomplishing

any task on the moving line, such as, assisting in car assembly, the robot needs to

maintain an estimate of the state of the assembly line.

Requirements: The key requirements for designing a sensing subsystem include

maintaining an online estimate of assembly line location, and measuring the absolute

speed of assembly line. As maintaining these estimates are critical to robot's function,

safety capability and structural health it is important to have a reliable and robust

sensing module. Lastly, to minimize the need of any additional infrastructure, it is

desirable that the sensing be done on-board as far as possible.

In this section, we explore different sensing alternatives, design an on-board sens-

ing system and augment it with off-board sensing to improve the reliability of the

sensing module.

2.2.1 Sensing Alternatives

We explored the use of four types of on-board sensors for measuring the speed of the

dynamic surface: miniature radars [6], optic flow sensors [391, contact-based encoders,

and inertial sensors. As the surface moves relatively slowly (< 0.2 m/s), the perfor-

mance of miniature radars and low-cost inertial sensors is limited by accuracies at

low speeds. Further, measurements from an indirect method (such as, inertial sensor

based system) will be reactive, detecting surface motion only via disturbance in the

robot's motion caused by the surface. This will result in a delayed response of the

controller. An on-board contact sensor will negatively affect the ground clearance of

the robot, limiting its mobility over uneven surfaces.
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On-board optic flow sensors have been previously used for maintaining location

estimates of mobile robots 150] on static surfaces. Here, instead, we intend to apply

them for detecting the surface velocity. Further, the images from on-board optic flow

sensors can also be potentially used to detect the location of robot relative to the

automotive final assembly line. In our design, we first evaluate the use of on-board

optic flow sensors for sensing the assembly line.

An on-board optic flow sensor can only provide information regarding the relative

speed of the dynamic surface relative. As detailed in the following sections, the optic

flow sensors will need to rely on an independent source of robot velocity to measure

the absolute surface speed. Though, an estimate of robot velocity can be maintained

using other sensors, e.g., on-board laser scanners, a more robust solution is desired for

application on the factory floor. Hence, to increase the sensing reliability, we include

an off-board contact-based wheel encoder in the final design of our sensing module.

2.2.2 Location of Assembly Line

The initial estimate of the location of the assembly line is known to the robot a priori,

based on the static map of the environment. Given that the location of the assembly

line is fixed, even though the surface is dynamic, ideally this a priori information

should be sufficient to maintain an estimate of assembly line location. For instance

in Fig. 1-2, the surface of conveyor belt (which is wooden in texture) which ferries

cars moves, but the boundary between the conveyor belt and the static surface (gray

in color) does not change.

However, the assembly line location is to be known relative to the robot, which

in turn requires knowledge of robot's pose and map representation. This estimate of

robot's pose is obtained using an online localization algorithm, which is informed by

noisy sensors and thus has some estimation error and drift. Thus, the accuracy of the

a priori estimate of the relative location of the assembly line with respect to the robot

will only be as good as localization accuracy. The localization algorithm is designed

and implemented with the specification of maximum localization error as 5cm.
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Figure 2-8: PX4Flow Optic Flow Sensors [391

As reliable and accurate estimation of assembly line location relative to the robot

is important for maintainability of the robot hardware (see Section 2.1), we need to

maintain an estimate of the assembly line location in the current map representation

of the robot which is updated online. To obtain this online estimate, we use four

PX4Flow optic flow sensors [39] mounted on-board the robot and facing downwards.

The PX4Flow, shown in Fig. 2-8, is a CMOS image based optical sensor designed

for mobile robotic applications, including aerial vehicles [39]. The sensor includes

a microcontroller, image sensor, gyroscope and sonar with on-board processing, and

interfaces with the robot through ROS'. Presence of four sensors allows for detection

of assembly line independent of the robot's heading or pose while it enters the assem-

bly line; this is especially of importance due to the omni-directional motion of the

Rob Work 3 mobile base (see Fig. 2-4).

These optic flow sensors are integrated with the robot software using ROS and

transmit black-and-white images of the surface to the robot computer with a frequency

of 6Hz. We use standard image processing techniques to detect if the image includes

a line corresponding to the boundary of the assembly line. Note that such a line will

be present in the image when the sensor transitions from static to dynamic surface or

vice-versa. Specifically, for each image, transmitted by the four sensors, we use Canny

edge detector2 to detect edges in the image. Next, we calculate the Hough transform 3

to detect lines in the detected edges. Lines which differ from the expected orientation

of the assembly line are eliminated from the possible detection of the assembly line.
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Figure 2-9: Image processing pipeline to detect the location of assembly line

Lastly, based on the current location of the sensor and the line in the image,

the location of the assembly line is updated. This process mitigates the error in

assembly line estimation based purely on localization information, achieves sub-cm

level accuracy, and provides redundancy in detection of assembly line during robot

operations.

2.2.3 Speed of Assembly Line

2.2.3.1 Optic Flow Sensors

Along with detecting the location of assembly line in robot's map, the image sensors

of the PX4Flow also provide the surface velocity. In the off-the-shelf PX4Flow sensor

module, the image gradient, obtained from the CMOS camera, is processed using a

Kalman filter implemented on the microcontroller to obtain a refined estimate. The

derived optic flow is next compensated for image distance (using sonar), and sensor

rotation (using on-board gyroscope) to provide the image velocity.

In our application, by being mounted facing downwards, the sensors capture im-

ages of the surface underneath the sensor, and provide its velocity relative to that of

the robot. Use of optic flow sensors requires that the surface have sufficient image

features, and we empirically validate that this is the case for our particular factory

environments. The sensors are mounted at a fixed height and maintain a constant
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distance from the surface. Hence, the fixed height of the sensor is used in calculating

velocity, rather than the noisy sonar measurements. This modification considerably

reduces the noise in the velocity measurement for our application. We then process

the output velocity using a low pass filter to generate the estimate of surface velocity.

The sensors are attached to the robot frame to measure surface velocity relative to

the robot at the it h wheel (v',*.0bot), which is then transformed from sensor frame,

optics, to the robot frame, R, to provide vRrfi-robot,

Vsensor surfi-robot Vurf - Vrobot

Robot localization using only laser scanner measurements is a problem that has

been studied in detail [17, 45]. Successful algorithms have been tested in real systems

and have been developed and implemented. For our application, we use a scan match-

ing approach to localization as described in [45], primarily because of its open source

ROS implementation4 . Further, the algorithm requires low computational resources

and is capable of simultaneous localization and mapping. Implementation of the

algorithm on our robotic hardware results in acceptable localization performance in

static environments. Robot's absolute velocity, obtained from the laser-scanner based

localization algorithms, is then combined with the sensor measurement to calculate

the absolute surface velocity,

R R + VyR
. surfi sensors robot'

Performance

The performance of the PX4Flow sensor is first compared to the ground truth infor-

mation, to gauge its accuracy and inform the requirement of additional processing of

the raw measurements. Fig. 2-10 shows the performance of the optic flow sensor for

a challenging practical scenario: where the moving surface starts from rest and then

reaches its maximum velocity, and then again resumes its original rest state.
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Figure 2-10: Performance of the optic flow sensor as compared to the ground truth.
Both raw measurements from the optic flow sensor, and its filtered value using low
pass filter are shown.

As can be observed from the Fig. 2-10, the sensor is capable of tracking the

surface motion albeit with substantial noise. Further we observe that performance

and measurement range of the optic flow sensor is dependent on the quality of image

features present on the surface.

High levels of noise in surface sensing will produce cascading effects in the con-

troller performance, and rapidly changing commands will negatively affect the actu-

ator hardware. This motivates the design of a discrete time Kalman filter with its

state as the surface velocity. The process model accounts for the variation in the

state through a discrete white noise term with variance a2 . Process noise is charac-

terized based on the variation in the surface speed during its on state, which for our

application is approximated as 3o-= 1 cm/s. The measurement noise is also assumed

to be white for filter design, and its standard deviation is approximated as 3 cm/s,

based on the in-house tests. A Kalman filter with steady-state gains is used rather

than one with time varying gains. This is equivalent to a low pass filter with gains

set to the steady-state gains of the Kalman filter.

The performance of the optic-flow based surface speed detection, though accept-

able for static test environments, is directly dependent on the localization accuracy

of the laser-scanner based localization algorithm. In dynamic environments accuracy

of such localization algorithm can degrade, resulting in a noisy estimate of surface

speed from the optic flow sensors.
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2.2.3.2 Off-board Contact-based Sensor

To overcome the limitation of optic flow based sensing in dynamic factory environ-

ments, in our final design we use an off-board wheel encoder mounted on the dynamic

surface which measures the speed of the assembly line. The sensing information is

transmitted wirelessly to the robot base, and provides a robust solution to detect the

speed of the assembly line without the need of any additional measurement of robot

velocity.

Though presence of an off-board sensor requires additional infrastructure such as

wireless communication, the need for system to be robust far outweighs the limitation

of these additional infrastructure. This simple solution also alleviates any cascading

effects of error in estimating robot velocity which are imperatively present in any

on-board solution for estimating the speed of dynamic surface.

2.2.4 Initial Hardware Validation

After independent validation of the controller (through Gazebo simulation) and optic

flow sensor (via comparison with the ground truth), we proceed towards observing

the performance of the combined system. We use a customized treadmill5 to test the

system on a real moving surface. The velocity of the treadmill can be controlled,

thereby enabling testing at different operating conditions.

As an initial step, the sensor for surface velocity is mounted off-board and per-

formance of the system for the 'position hold' task is observed. Position hold is an

important task for a robotic assistant, especially while delivering parts to a human

associate working on a moving line. Fig. 2-11 shows the two test scenarios for the

position hold experiment, namely, when the robot is completely on, and when it

straddles the moving surface. For the position hold tests, the customized treadmill

operates at ~20cm/s during its on state. For both the cases, the robot successfully

maintains a constant position despite the change in the assembly line's on/off state.

5http://goo.gl/8JGtVQ
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Figure 2-11: Position hold experiments with off-board surface sensing being conducted
in two cases: the robot being completely on (left), and straddling (right) the moving
surface.

In these tests, the laser scanner based localization is used to detect when the wheels

are on the customized treadmill and the surface velocity is obtained using the ground

truth sensor; for surfaces with sufficient image features off-board optic flow sensors

also yield similar performance. Next, the robot's ability to navigate across the moving

assembly line is tested in the same test environment. Similar to Gazebo simulation,

the robot successfully traverses the moving surface (accompanying video available at

http://tiny. cc/aogo3w).

2.2.5 Summary and Next Steps

In this chapter, we presented a novel control and sensing solution for a mobile robot

to track desired trajectories on dynamic surfaces, such as those encountered on au-

tomotive final assembly lines. Information about surface velocity is essential for our

modified control algorithm. Off-the-shelf sensors and localization algorithms are ex-

plored for fulfilling this requirement, and a customized solution is presented using

PX4Flow optic flow sensors and an off-board contact-based wheel encoder.

We perform initial validation of the controls and sensing subsystems using both

software simulation and hardware tests. Software simulation and hardware imple-

mentation of the full hardware system yield promising results; using off-board surface

sensing the robot successfully moves across and maintains its position while on, and

while straddling, the moving line.
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In the current test setup, we demonstrated operation of the robot on a moving

surface but in an otherwise static, known environment. In a real factory setting, the

environment will be dynamic with part carts and humans moving in a very dense and

cluttered space. Additional capabilities are necessary to detect and avoid humans

and other obstacles, and to ensure efficient robot navigation. The following chapter

discusses these challenges associated with deployment of our robotic system in an

operational factory floor.
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Chapter 3

Robot Evaluation on the

Automotive Final Assembly Line

Having developed the control and sensing system that enables robot navigation on

dynamic surfaces and testing the same in controlled laboratory environments (as

described in Chapter 2), here we focus on deploying and evaluating our mobile robotic

system in an operational automotive final assembly. Several challenges need to be

overcome when the robot enters the dynamic, human-centric factory environment;

these span across subsystems including localization, mapping, sensing, path planning,

and control as well as their interactions.

This chapter discusses these challenges and presents the results from a five-day

long deployment of the mobile robotic system in an operational factory floor. We

begin with a description of the test scenario that was used for evaluation of the robot

on the automotive final assemble line. Next, salient details of various subsystems

that were instrumental in deploying the robot are discussed. Results from the fac-

tory demonstration are presented next, which include quantitative analysis of the

navigation performance of the robot on automotive assembly line as well as qualita-

tive observations of close-proximity, human-robot interaction. These demonstrations

establish confidence in the designed system and motivate future directions for im-

proving the robot performance and interaction in time-critical tasks in human-centric

environments.
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Figure 3-1: A schematic of the robot's work environment during the factory eval-
uation. The work environment was shared with human associates working on the
assembly of cars. The figure depicts important landmarks - start, A, B - associated
with the robot's task. Locations A and B are defined relative to the moving car, and
are dynamic points in the absolute frame. The dynamic surface is shown in orange.

3.1 Test Scenario

As the next step in our evaluation and to subsequently guide our design, we deployed

the robot in an operational automotive final assembly line. This section describes the

details of the specific test scenario used to demonstrate and evaluate the designed

mobile robotic system. The test was carried out over a period of five days. Though

name and location of the factory cannot be disclosed to maintain anonymity, we

provide the features of the test scenario pertinent to the system demonstration.

Environment of the Robot

The test was performed in a work area, where each car roughly spent between 150-180

seconds (i.e., the cycle time) due its motion on the dynamic surface. A schematic of

the robot's work area in the factory floor is depicted in Fig. 3-1. The motion of the

assembly line was beyond the control of the robot and was dictated by the schedule

of the factory. The line typically moved continuously at an average speed of approxi-

mately 8 cm/s and stopped during certain hours according to the factory's schedule.

Additionally, we also observed stops of short duration due to unplanned/unscheduled
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events in the factory. As the motion of the dynamic surface was not modified to suit

the robot demonstration, the robot had to adapt to the factory's schedule as would

be expected of an autonomous system in a typical work environment.

Human Co-workers

The work area included human associates usually working on the assembly of cars

adjacent to that of the robot and at times simultaneously on the same car. The

human associates working along side the robot on assembly of car were briefed about

the presence of the robot on the first day of the task. They were asked to work

naturally along side the robot, except not to interfere with the robot motion when it

was moving unless necessary.

Navigation Task

The robot's task involved going from the start location on the static surface, i.e.,

outside the conveyor belt, to location A next to an on-coming car. Location A is

defined relative to the car and moves in the absolute frame requiring the robot to

track and plan path to a moving goal. After reaching at the location A, the robot

had to perform a task for car assembly and return back to the static surface.

Details of the specific assembly task are proprietary, but from perspective of navi-

gation the task required the robot to perform position hold relative to the moving car

while the task was being performed. This manufacturing task had to be completed

within the cycle time of the car being in robot's work cell, making the task highly

time-critical. As a more challenging task, we also evaluated the robot performance

when it had to perform the same task on either side of the car within the single time.

The robot motion in this task involved the following waypoints: start, A, B, A, start.

During the test at least three engineers were present to monitor the robot and

override the autonomous robot in case of any unwarranted behavior. The task was

initiated by one of the engineers following which the complete task was performed au-

tonomously. Next, we describe the different robot subsystems designed, implemented

and integrated to evaluate the robot in the operational factory floor.
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3.2 Enhancements and Refinements

As detailed in Chapter 2, we developed enabling solutions for robot navigation on

dynamic surfaces. Prior to the factory deployment, these developed solutions were

refined and improved through both software simulation using Gazebo simulator [44]

and hardware validation in static, controlled environments.

In this section, we describe the refinements and enhancements to the developed

control and sensing solutions as well as the supporting subsystems (mapping, local-

ization, path planning, etc.) while deploying the robot in an operational factory.

Though successful during the preliminary validation in static environments, these

solutions were revisited with the aim of making them more robust for operations in

dynamic environments among human associates and expensive factory equipment.

3.2.1 Trajectory Tracking

Due to the modular design of the control algorithm, no modifications are required to

the motion control architecture for use in the dynamic factory environments. Thus,

for the test scenario we use the developed control architecture as is when the robot

navigated to and from the assembly line.

To improve the robot's position hold performance while it is performing the as-

sembly task, however, the motion commands are issued relative to the car's reference

frame (as opposed to the absolute reference frame) once the robot reaches location

A/B. This essentially results in application of no control effort when the assembly

task is being performed, with better position hold performance and identical control

architecture.

For the sensing module, parameters of the image processing algorithm (described

in Section 2.2.2) were tuned based on the surface properties of the factory environ-

ment. This helped improve the the location sensing of assembly line. The overall

architecture of the sensing subsystem, similar to the control sub-system, remained

identical.

56



The contact based sensor, i.e., the off-board wheel encoder, to sense the surface

speed was placed on the assembly line next to robot's work cell and connected to the

on-board robot through a wireless network.

3.2.2 Supporting Subsystems

Along with the control and sensing solutions developed in Chapter 2, the preliminary

validation required use of off-the-shelf algorithms for robot localization, mapping and

path planning. These off-the-shelf solutions though useful for initial validation, were

substituted by validated, proprietary software developed by Fraunhofer IPA 1 for

robot deployment in dynamic environment.

Additionally, in contrast to the preliminary validation, the factory task required

the robot to track and plan paths to moving objects, i.e., the cars being assembled.

This required use of algorithms, also described subsequently, to track moving cars

and plan paths to moving goals for the factory task. Here, to provide a complete

picture of the developed system, we provide an overview these subsystems including

their input and output information.

Localization

The localization algorithm requires knowledge of the static map of the environment

and provides on-line update of the robot position and orientation every 0.01 s. For

our factory deployment, a map of the environment was created while the assembly

line was static and was used as an input for the localization algorithm. It uses sensing

information available from the on-board laser scanners, encoders on robot wheels, and

the sensing module developed in Section 2.2.

Encoders on the robot wheels are used to provide odometry information, however

this information can be ambiguous on the dynamic surface due to robot exhibit motion

in the global frame (due to the dynamic surface) in spite of the wheels being stationary.

Vodom,rectified odom surf /

'http://www.care-o-bot.de/en/publications.html
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Hence, the algorithm additionally uses information regarding the speed of assem-

bly line, as measured in Section 2.2, to compensate for robot motion due to dynamic

surface and obtain disambiguated robot odometry (Veom rectified). Equation 3.1 de-

scribes how surface velocity (vsrf) is used to compensate the robot's odometry in-

formation (vRom), and thereby alleviate the error in robot's odometry caused due to

the moving surface.

Though the localization algorithm takes static map as an input, it is applied

to provide localization estimates in dynamic environment which includes humans,

cars and other dynamic objects. Due to sensing inaccuracies, dynamic surface and

dynamic environment the localization error can grow as high as 5cm during typical

operations.

Path Planning

For path planning, an implementation based on the Elastic Band planner [55] is

used. This reactive planner requires knowledge of the robot goal and current ob-

stacles in the environment, and provides smooth paths that avoid obstacles in the

current environment. Though the path planner does not reason about future states

of the environment while creating robot paths, it is used for its ability to quickly re-

plan and create smooth robot paths. These properties are desirable in the dynamic,

human-centric environment of the factory floor. In addition, the planner is augmented

with the capability to plan paths to dynamic goals, such as, the moving cars on the

assembly line.

Car Tracking

Creating path plans to the dynamic cars located on the assembly lines requires the

robot to be able to track these cars. Hence, a tracking algorithm is implemented to

track cars on the assembly line. The tracking algorithm first uses laser scanners to

identify the cars that are to be assembled, and uses a filter to track the identified

cars based on the information received from laser scanner and speed sensing of the

dynamic surface.
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3.3 System Performance on the

Automotive Final Assembly Line

In this section, we describe the performance of the designed robotic system from the

final day of the five day long robot deployment in the operational automotive final

assembly line. We first describe the performance of individual subsystems, followed

by the navigation performance of the overall robotic system. Lastly, since, the robot

operation were carried out in an operational factory we report the observed interaction

between human associates and robot.

3.3.1 Task Characteristics

The presented results are based on data logs from fifteen instances of the test scenario,

described in Sec. 3.1, recorded during the factory evaluations. Figure 3-2 shows the

task times for each of these runs. As can be seen from the figure, the task time for

trial # 9 was significantly higher than others; this trial of the task depicts the more

challenging scenario when the robot had to perform assembly tasks on either side of

the car, i.e., at both locations A and B. On average for these trial runs the single-side

task took 53.77 sec, as required due to the finite length of robot's work cell and cycle

time of each car within it.
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Figure 3-2: Task times across different trials of robot's test scenario.
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Delay in this process might result in some cars not being assembled, thereby

causing delays in the manufacturing process and affecting task efficiency and manu-

facturing quality. The ability of the robot to navigate within the cycle time of 150-180

seconds allows for robot to perform tasks for the final assembly of cars.

3.3.2 Assembly Line: Location

In order to use the designed control and tracking algorithms for of the dynamic

surface, the robot needs to know which robot wheels are on the dynamic surface. A

typical localization algorithm includes error arising from two sources : dead reckoning

and odometry drift [2]. By periodically updating the location of the transition from

static to dynamic surface, we can significantly reduce the effect of localization drift

error in detecting whether the robot is on the assembly line or not.

For the demonstration of the robot in the factor floor, Figure 3-3 shows the number

of assembly line location updates in each of the trial runs, using the optic flow sensors

and image processing pipeline described in Section 2.2. Typically, the robot detects

this transition at least once during each task, thereby allowing for better detection of

which wheels are on the assembly line. In a few runs we also observe the transition

was not captured; this is because of the limited update of the images from the optic

flow sensors (6 Hz), and can be rectified by pubilshing surface images at a higher rate.
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s of robot's test scenario.
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3.3.3 Assembly Line: Speed

Figure 3-4 shows the typical speed profile of the assembly line as it transitions from

off to on state. As, no ground truth information is available from any other sensor, we

report only the measured information from the wheel encoder. The typical, measured

speed of the assembly line when in on state was 7.89 cm/s with a standard deviation

of 0.17 cm/s. The speed information of the assembly line was available to the robot

throughout its motion at an update rate of 30 Hz.
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1: Typical speed profile of the assembly line.

3.3.4 Control Subsystem

To mitigate adverse torques on the robot hardware, the algorithm modifies commands

to the robot wheels based on the location and speed measurements of assembly line.

As a fool-proof check for the control subsystem we tested the robot in a position

hold task when it was straddling the dynamic surface similar to Section 2.2.4. This

scenario is specifically challenging due to the excessive, damaging torques that the

robot could experience in the case the control algorithm does not compensate for the

surface motion. The robot was observed to successfully hold its position despite only

two of its wheels being on the moving conveyor belt.
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Figure 3-5: A typical robot trajectory for the test scenario with assembly task being
performed only on the left side of the moving car (location A). The gray area denotes
the dynamic surface. The red circle denotes the start location, and the red square
denotes the final location of the robot. Once the robot reaches next to the car, it

remains stationary relative to the car. This is observed as the straight line motion of
the robot on the assembly line.

3.3.5 Navigation Performance

Having discussed operation of the individual subsystems, we present the overall nav-

igation performance of the integrated system. Figure 3-5 shows the robot path from

one run of the robot tasks on the automotive final assembly line. Similarly, Fig. 3-6

shows a similar plot when the robot performed the assembly task on either side of the

moving vehicle. Further, during certain trials we observed that the dynamic surface

changes it state during the task; for instance, the assembly line (and consequently

the car) stops moving after the robot begins its motion. By maintaining an estimate

of the speed of the assembly line, the robot can accomplish the task despite such

unscheduled changes in the state of the assembly line. In all the recorded runs of the

designed system, the robot was successfully able to navigate on the dynamic surface

of the assembly line irrespective of whether it was moving or stationary.

An accompanying video of the rviz visualization of the mobile robot for both of

these tasks is available at http: //tiny. cc/c94gyx. Due to proprietary limitations,

we show the rviz 2 visualization of the test environment and the robot's task instead

2 http://wiki.ros.org/rviz
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Figure 3-6: A typical robot trajectory for the test scenario with assembly task being
performed on both sides of the moving car (location A and B). This task requires the
robot to travel farther and spend more time on the dynamic surface.

of the raw video. This visualization has been created using the laser scanner and

robot odometry information recorded during the evaluation.

3.3.6 Qualitative Observations: Human-Robot Interaction

An interesting by-product of evaluating our mobile robot in an operating factory

floor was to observe the naturalistic interaction between the factory associates and

the mobile platform, which is rather challenging to replicate and achieve in controlled

laboratory experiments. The human associates working in close proximity to the

robot were briefed about the robot's operation on the assembly line, and that its

motion was being monitored by the on-site engineers.

We observed the human associates working next to the robot though showed some

initial curiosity as and when the robot performed any novel sub-task, their behavior

eventually became indifferent to the robot's motion. Over the period of the work

week, during the evaluation period, their deviation in behavior diminished as the

robot began completing its task more reliably and repetitively.

Since, the robot and humans were often working on the assembly of the same or

neighboring car they often had to work in close proximity. We observed no visible

change in the modus operandi of the human associates, when they were working along
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Figure 3-7: An rviz visualization of the mobile robot working in close proximity with
human associates on the assembly of neighboring cars. The black box represents the
car on the assembly line, and the red dots show the tracks of robot's laser scanner. The
robot base is shown in yellow, and the conveyor belt of the assembly line is shown in
dark green. We can observe the laser scan tracks of legs of a human associate working
near the robot.

side the robot. As the mobile robot was monitored throughout the evaluation process,

the observed interaction might not correspond to the interaction between human and

an autonomous robot. However, this interaction does provide confidence regarding

introducing robots right next to busy human associates.

3.3.7 Limitations and Future Directions

Along with testing the current system, the evaluation of the robot in an operational

factory floor provided several directions for further improvements. In the current

tests, the robot was continuously monitored by three engineers. This will not be true

for the case when the robot is deployed in daily workflow of the factory. Thus, the

system should be made more reliable, redundant and easy to maintain. On-board

optic flow sensors are being used to detect transition between static and dynamic

surface; one solution includes there use as an alternate measure of the surface speed,

thereby increasing the redundancy in assembly line detection.

During certain runs the robot operation might be delayed due to the dynamic,

uncertain events, thereby motivating the need for dynamic scheduling of factory tasks.
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In addition, anticipatory path planning techniques and design interventions which

enable fluent human-robot interaction may be used to reduce such delays as far as

possible. Specifically, the time-critical nature of the task motivates the need to study

and improve the interaction between busy, human associates and the autonomous,

mobile robot.

Lastly, in the worst case scenario, a major challenge is to devise a fail-safe strategy

to ensure human and equipment safety in the case when the robot stops functioning

on the assembly line; though, this was not encountered in the current evaluation such

a case cannot be neglected when the robot is working without any oversight during

repeated daily operations.

3.4 Summary

This chapter presented the first published demonstration of a mobile robot capa-

ble of working directly on the automotive final assembly line in close proximity to

busy, human associates. The designed system was demonstrated and evaluated in an

operational factory floor, which included dynamic surfaces (conveyor belts), human

associates, and other dynamic objects. Successful performance of the robot in these

factory demonstrations, which was carried out over a period of five days, establishes

confidence in the current system and paves the way for mobile robots that can col-

laborate on the dynamic surface of automotive final assembly lines. The design and

evaluation also provided several directions for future work, which include improving

system reliability and designing anticipatory path planning algorithms.
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Chapter 4

Human-Robot Interaction

in the Final Assembly

Robot autonomy is necessary but not sufficient for successful introduction of mobile

robots on the automotive final assembly lines. The autonomous robot should also

be able to work fluently along side the human associates in its surroundings. Small

deficiencies in the human-robot interaction in a time-critical domain such as automo-

tive final assembly can significantly degrade the efficiency of overall work-flow. This

motivates the need for considering human factors while developing a robot for auto-

motive final assemblies. In this chapter, we analyze human-robot interaction during

the delivery phase of a repetitive fetch-and-deliver task. The development presented

herein complements the algorithmic solutions developed in Chapters 2-3 towards the

holistic design of an autonomous, collaborative robot for final automotive assembly.

4.1 Introduction

Human-robot interaction has been widely studied for multiple application domains,

and is critical to successful introduction of robots among humans [31]. This holds true

while designing interactive robots for the manufacturing domain that need to work

in human-oriented environments. Akin to human-human collaboration, prior human-

robot interaction studies have shown that a fluent collaboration requires awareness
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and anticipation of intent by both human and robotic agents [38]. To enable and

facilitate this awareness and anticipation, it is important that both humans and robots

communicate their status, location and intent, either explicitly through certain cues

such as audio/visual signals or implicitly via their actions and motion paths. Our

goal is to gain a better understanding of how such factors impact the efficiency and

effectiveness of a robot assistant situated in an analogue assembly line environment,

and suggest design interventions to improve the same.

As a first step towards improving the human-robot interaction in the final assembly

line, we begin with analyzing the performance of the robotic assistant - both with

and without design interventions - while collaborating with humans. Human-human

interaction is often considered as a benchmark for human-robot interaction, thus we

also compare the comparative performance of the robotic assistant to that of a human

assistant. To do so, we design and conduct a human subject experiment in which we

study these interactions in a controlled yet analogue assembly environment.

Leveraging its autonomous mobility developed in Chapters 2-3, the robotic assis-

tant can perform myriad tasks on the factory floor. One of the primary tasks involving

human-robot interaction will be that of delivering parts to human associates occu-

pied with assembly tasks. Thus, the designed experiment focuses on a task involving

delivery of parts by the assistant to busy, human associates.

Through the experiment, we assess objective and subjective measures of team

fluency, assistant saliency, and investigate the requirement and effectiveness of explicit

and implicit indicators designed to improve the human co-worker's awareness of the

mobile robotic assistant. Specifically, we assess the effect of a flashing light on the

robotic assistant and variations in the assistant's approach angle. Due to the presence

of ambient noise in a typical factory floor, we consider a visual signal, i.e., the flashing

light, as the explicit indicator instead of an audio signal. Prior work on human-aware

navigation [64] suggests that humans prefer a robot path which is more visible, which

motivates the use of approach angle as the implicit indicator. Lastly, we analyze

whether a more salient assistant (utilizing the aforesaid indicators) results in a more

fluent collaborator.
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Outline of the Chapter

In this chapter, we begin with a brief overview of prior studies analyzing human-robot

interaction in tasks similar to fetch-and-deliver. Next, we list the specific hypotheses

we aim to evaluate. This is followed by a detailed description of the experiment

design, protocol and evaluation measures. The statistical analysis of the experimental

observations is presented next. Lastly, we discuss how the observed results inform the

design of a more effective assistant, and also suggest interesting questions regarding

robot saliency and its affect on collaboration, which warrant further investigation and

analysis.

4.2 Related Work

Human-human collaboration during fetch-and-deliver tasks is seemingly natural, and

does not require much cognitive effort for the human agents. For instance, while deliv-

ering or receiving an object from a fellow human being we are least concerned about

the motion of our hands. However, much can be learnt about how to successfully

carry out human-robot collaboration by studying human-human interactions [19, 40].

Prior studies on human-robot hand-overs provide useful insights for improving

the motion of armed manipulators f23, 26, 67]. Experiments of give-and-take tasks

between a human and robot 126], standing at a fixed locations, investigate the use

of robot reaching gestures, vocalizations, and pauses as indicators for delivery. The

study reports that communication using implicit natural actions is sufficient for give-

and-take tasks, and the human collaborators do not require explicit instructions or

expertise while collaborating with the robot. In other work, multiple studies on

human-human and human-robot hand-overs result in design recommendations for

robot motion, and formal descriptions of the physical and cognitive aspects of the

hand-over process (see Fig. 4-1) [671. Experiments in [231 investigate the use of

contrasting motion to communicate the onset of a hand-over, and demonstrate statis-

tically significant improvements in fluency of hand-overs by using temporal contrast
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during delivery. The study also reports a small but not significant increase in robot

waiting time when the human participant is performing an attention task. Although

a mobile robot is used in 123], the primary focus is on the motion of the armed

manipulator, and modifications to motion that reduce the human waiting time.

Establish Establish
what when

Establish
where

Approach Reach Transfer

Enter Exit

Figure 4-1: Formal description of the hand-over process 167]

Interaction between mobile robots and humans has been investigated for fetch-

and-carry tasks. Studies evaluate robot approach direction and its impact on task

efficiency and human comfort [43, 73]. Ideally results from these experiments would

inform the design of motion planners that take into consideration human preferences.

However, reported results are contradictory. Walters et al. [731 finds a left/right

approach direction to be most favorable, while a rear approach direction to be the

least favorable. In contrast, Koay et al.143] indicates a frontal approach and delivery

to be more favorable, especially for participants experienced with robots. These stud-

ies are carried out in settings without restrictions on approach directions, and with

human participants that are primarily focused on the robot throughout its approach.

Furthermore, no measurements concerning fluency of human-robot interaction have

been made.

Though multiple studies evaluating robot's approach and fetch-and-deliver tasks

have been conducted in the past, key differences exist in the domain of final assem-

bly. A frontal approach is often not practical in a constrained factory environment.

Oblique approach angles affect the human's visibility of the robot, and further study

is needed into the effect of variations in robot approach angle from the rear direc-

tion. The robots are usually non-anthropomorphic, and the environment typically
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noisy. More importantly, human workers in a factory setting will usually be busy and

not actively focused on the robot. Hence, there is a need to evaluate and improve

human-robot interaction during the robot's approach towards an otherwise busy hu-

man co-worker.

4.3 Aim of the Experiment

Through human subject experimentation, we investigate interactions between an as-

sistant and worker in an analogue assembly line environment, where the experiment

participant takes the role of the worker. The task of the robotic or human assistant

is to present the parts on a tray to the static human co-worker in a timely manner

for continuation of the assembly task. Through the experiments we seek to evaluate

the following hypotheses:

H1 The interaction between the robotic assistant and worker during the delivery phase

is less fluent than the interaction between a human assistant and worker. For

this hypothesis, fluency is characterized by objective measures including work-

station time and the assistant idle time.

This hypothesis is founded in prior studies of hand-overs [67], which indicate

hand-over quality degrades when working with a robot versus a human part-

ner. We hypothesize that a similar effect exists, even when the assistant does

not use manipulators and manipulation is the sole responsibility of the human

worker. Idle times of agents (both human and robot) are indicative of fluency

in a collaborative task, and have been used as objective measures of fluency in

prior studies [38, 58, 511. The design of our experiment ensures that the human

worker is continuously occupied with tasks, and hence only idle times of the

assistants (both robot and human) are evaluated. Interaction time, indicative

of the total delivery time, is meant to quantify the time both the agents are

interacting during the delivery phase of the task.

H2 The worker subjectively assesses the interaction with the robotic assistant during
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the delivery phase to be less fluent than similar interaction with a human assis-

tant. Subjective measures of fluency are evaluated using a series of Likert-scale

questionnaires.

Subjective measures of fluency are as important as their objective counterparts

for evaluating human-robot collaboration. Hence, we evaluate the current hy-

pothesis as a follow-on to H1. We have developed the questionnaire used in

this experiment based on [37], which includes a survey of questions used to eval-

uate team fluency that produce values of Cronbach's alpha > 0.7 (indicating

measurement of similar latent variable).

H3 Salient indicators for the robotic assistant improve the worker's awareness of the

robot. Namely as indicators, we investigate the effect of variations in approach

angle and the inclusion of a flashing light on the robot.

Literature suggests awareness of the assistant and its intent improves task effi-

ciency [38]. Factory settings are noisy, the workers' attention is occupied with

assembly tasks, and the robot may not always be in the human worker's field of

view. With this hypothesis we evaluate whether the specified indicators make

the robot more salient. We measure the look time, the time of the participant's

first head turn towards the assistant. An evaluation inspired by the Situational

Awareness Global Assessment Technique (SAGAT) [27] is designed to measure

the human worker's awareness of the robot in the task environment.

H4 Salient indicators for the robotic assistant improve the objective and subjective

measures of fluency for the robot.

With this last hypothesis we evaluate whether the indicators, which may make

the robot more salient, do indeed influence task fluency. Namely, we investigate

the effect of indicators described in H3. The objective and subjective measures

described in H1 and H2 are used to assess improvement in task fluency.

72



4.4 Experiment Methodology

The experiment is designed to simulate an analogue environment to the assembly line.

In this setting the participant worker is standing at a workstation, stationary, and

facing away from the assistant's approach path. The worker is provided an assembly

task to occupy their attention. In the course of each trial two assistants, one robotic

and one human, interact with the experiment participant. The assistants deliver parts

enabling the continuity of the assembly task.

4.4.1 Materials and Setup

Figure 4-2: The Rob@ Work mobile robotic platform augmented with additional sen-
sors, a raised platform and tray. The modified setup is used as the robotic assistant
for human subject experimentation.

We use a modified version of the RobkXNork robotic platform, shown in Fig. 4-2,

as the mobile robotic assistant for this experiment. The basic platform is augmented

with one Asus Xtion RGB-D device' used for person tracking, and one red, flash-

ing and rotating light 2 . A raised platform and tray are mounted on the robot to

represent the height. of a future robotic arm. The robot, though capable of navi-

gating autonomously, is operated manually by a human supervisor throughout the

experiment.

'http://www.asus.com/Multimedia/XtionPROLIVE/
2http: //goo .gl/yxreko

73



Location Markers

Human oo
Participant
and Work-
station

.Rob@Work
Platform
(Robotic
Assistant)

Figure 4-3: Experiment setup with human subject, workstation, Rob Vork platform,
and white location markers.

Location
markers

Figure 4-4: Schematic diagram of the experimental setup for the two approach angles
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Observations during the experiment are obtained using demographic survey, four

in-experiment questionnaires, a post-experiment questionnaire, a Vicon motion cap-

ture system, video camera, and the on-board Xtion. The participants and the human

assistant wear hard hats with Vicon markers. The robotic assistant also has Vicon

markers mounted on its top to enable tracking via overhead Vicon cameras.

During each experiment, a recording of factory sounds3 is played to simulate

the factory environment. This serves to mask the noises made by the movement

of the assistants to some degree, much like actual factory conditions would. Human

participants are asked about the location of assistants in some questionnaires; thus, to

eliminate the need to numerically estimate distances we place three large white poles

equidistant from each other behind the participant. These poles are used as visual

indicators to mark locations in the room (see Figs. 4-3-4-4), and divide the room into

four names zones: very close, close, far, and very far, relative to the participant.

4.4.2 Procedure

During the experiment, each participant is instructed to stand at a specified location

to work at a standing table as shown in Fig. 4-3. A dexterous, model-assembly task is

presented to the participant. The task is chosen for its complexity and similarity to a

factory assembly task, and involves constructing a Lego model (Fig. 4-5). Portions of

the Lego parts and assembly instructions are delivered at specified intervals during the

experiment by either the human or robotic assistant. Each delivery, but for the first,

consists of three items: Lego parts, corresponding instruction set, and a questionnaire

to assess level of awareness of the robot, and perception of safety, comfort, trust,

and fluency. To keep the participants occupied prior to the first delivery, the first

set of instructions (but not the Lego parts and questionnaire) are given during the

briefing, and the first delivery contains only Lego parts and a questionnaire. The

total experiment task time is ~12-18 min, with a cumulative participant-assistant

workstation time of ~ 10 - 20 seconds for each trial. This is similar to factory-like

tasks, where delivery of parts constitutes only a portion of the overall assembly.

3http://goo.gl/odllEQ

75



Figure 4-5: The Assembled Lego Model
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Figure 4-6: Timeline of the Experiment
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An overview of the experiment's timeline is shown in Fig. 4-6. Each participant is

aided by an assistant four times during the experiment, twice consecutively each by

the human and robotic assistant (as shown in Fig. 4-7). This setup allows for each

participant's response towards the robot to be compared to their own responses of

working with a human assistant. Participants are randomly assigned to two groups

one in which the first assistant is a human and the other in which the first assistant

is a robot, to counterbalance differences that may arise due to the sequence of human

and robot interactions. Further, trays are used by both human and robotic assistants

during delivery, since the focus of the study is on the assistant's approach rather than

manipulator motion.

Figure 4-7: Typical deliveries made by the Assistants (Top row: back approach,
Bottom row: rear approach, Left column: robotic assistant, Right column: human
assistant)

Participants are instructed to remove all the items from the tray once an assistant

stops next to them. Further, they are told before the experiment that the assistants

are involved in other time-sensitive tasks, to indicate the importance of the assistant's

time. Using the delivered items, the participants build the part of the Lego model

corresponding to the current instruction, and then answer the questionnaire. The

assistant's approach towards the human co-worker, for the next delivery, starts as

soon as the participant begins answering the previously delivered questionnaire.
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When a delivery is not in progress, the human and robot assistants either move

around behind the participants in the far or very far zones or stand still. These

movements are scheduled for pre-determined times during the experiment, and are

included to simulate the assistant's involvement in other factory tasks. At differ-

ent, pre-determined times the appearance of the robot is altered by affixing different

colored foam bumpers and printed signs; similarly, the human assistant alters his

appearance by wearing/removing a safety vest, watch, and gloves. The color of the

trays used by both human and robotic assistants, on which items are delivered, also

varies between deliveries. The participants are not informed of these signs, indicators,

and possibility of their modification a priori, since our goal is to evaluate the saliency

of these features in a natural work-flow.

4.4.3 Design

The experiment is designed to evaluate the effect of three independent variables on

the human-robot collaboration task:

IVI: Human or Robotic Assistant, varied within participants.

IV2: Robot's Flashing Light (Explicit Indicator) On or Off, varied between partici-

pants.

IV3: Assistant Approach Angle (Implicit Indicator) Back or Oblique, varied between

participants.

The approach angle variable indicates the orientation of participant relative to that

of the assistant's fixed approach path (Fig. 4-4). The back approach angle corre-

sponds to the participant facing towards a wall and directly away from the assistant's

path. The oblique approach indicates an orientation of approximately 450 away from

the wall and towards the assistant's path. Additionally, participants are randomly

assigned the first assistant as either the human or robotic assistant to counterbalance

any learning effects and differences that may arise due to the sequence of human and

robot interactions.
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Table 4.1: Design of Experiment (N=24)

Approach Angle
Back Oblique Participants

On H-H-R-R (3) H-H-R-R (3) 12
Light R-R-H-H (3) R-R-H-H (3)

Off H-H-R-R (3) H-H-R-R (3) 12
R-R-H-H (3) R-R-H-H (3)

Participants 12 12 24

Thus, the experiment is carried out as a mixed factorial design with four fac-

tors, one within- and three between-participants. Participants are randomly assigned

across the 8 groups (2 k, where k = 3 is the number of between-participant factors)

indicated in Table 4.1. The following sections describe the dependent measures ob-

served for each participant.

4.4.4 Objective Evaluation

thead-turn tarrive treach tpickup tretreat
Look Time Id eT mI

Workstation Time

Figure 4-8: Key time epochs and derived measures based on the delivery phase of the
experiment. Note that the order of these time instances and thereby sign of the time
measures depends on the specific interaction.

Objective measures of team fluency are defined based on measures of time during

the interaction. For the designed experiment, this interaction between the participant

and the assistant (human/robot) primarily takes place during the delivery of objects.

To extract the objective measures from the interaction, we identify key time instances

during the interaction as shown in Fig. 4-8.

Interaction during a typical delivery begins when the participant first notices the

approaching assistant. This measure is particularly difficult to identify, but can be

approximated through either participant reported times or through certain codifica-
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Table 4.2: Objective Measures: Definitions

Workstation Time tretreat - tarrive
Time between assistant's stop on arrival and retreat,
i.e., time required to complete the delivery.

Assistant Idle Time max(O, treach - tarrive)
Time between assistant's stop on arrival and the
onset of the participant's reach towards the tray.

Look Time tarrive - thead-turn
Time between participant's first head turn towards
the assistant and the assistant's stop on arrival.

tion of the interaction. However, self-reporting interferes with participant's task and

relies on participant's memory. Thus, we use the time when the participant first turns

it heads towards the approaching assistant, denoted by thead-turn, to approximate

the time when the participant first notices the approaching assistant. Note that the

participants are facing away from the assistant during the task, and need to turn their

head only during the delivery. The assistant next arrives at the workstation, coded

by the time instant tarrive, and waits till the participant reaches for the objects on

the tray, coded as treach. The time at which all the parts are picked from the tray is

denoted as tpickup. Once all the parts are retrieved by the participant the assistant

retreats from the workstation at tretreat. The order of the time instances shown in

Fig. 4-8 is based on typical deliveries; however, certain interactions may involve a dif-

ferent order of thead-turn, tarrive and treach. For instance, the participant may turn

his/her head towards the assistant after the assistant arrives at the workstation or the

participant may reach for the objects on the tray before the assistant has stopped.

Based on the extracted time instances during interaction, we calculate the derived

objective measures of team fluency; these include workstation time and assistant idle

time and are inspired by previous studies of fluency in human-robot interaction [37].

Workstation time is defined as the difference between the assistant's stop on arrival

and the beginning of the assistant's retreat, and measures the time of each delivery

phase of the task. We also perform statistical tests using an alternate definition of

workstation time given as tpickup - tarrive, to account for any confounding variations

in robot's retreat that may occur due to teleoperation. No differences in statistical
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significance are observed for either of the definitions.

Assistant idle time is defined as the difference between the assistant's stop on

arrival and the start of the participant's reach towards the tray. Idle time is a subset

of the workstation time; we measure both since idle time specifically focuses on the

time before which human actively interacts. In case the participant's reaching motion

begins before the assistant arrives at the workstation, the idle time for that interaction

is treated as zero.

Saliency of the assistant is quantified by the derived measure look time, the time

between the participant's head turn towards the assistant and the assistant's arrival.

Note that the look time may be negative or positive depending on whether the assis-

tant is acknowledged with a head turn prior to or after its arrival. Table 4.2 defines

these measures for the delivery task in the current experiment.

These measures are summed across the two deliveries, for each assistant, to obtain

the cumulative measures reported in Section 5. The total task time, a usual measure

of task fluency, is not used in this study since the assistants only deliver the parts

and do not contribute in the actual assembly. This renders the total task time to

be dependent on the participant's expertise in Lego assembly tasks and not on the

interaction between the participant and the assistant.

These objective measures are independently coded by two raters from the video

recordings of the experiment. The measured quantities are continuous and so Pear-

son's correlation coefficient is used to determine the inter-coder agreement. For all

the derived quantities, the resulting correlation coefficient is > 0.98 indicating very

high inter-coder agreement. Degree of agreement in the coded data is further veri-

fied using the intra-class correlation coefficient [62] and the non-parametric measure

Spearman's rho. Further, when determining statistical significance, data from both

the coders is used independently to arrive at the final results, and any differences

among coders are reported as errors.

To evaluate saliency of robot features, additional quantitative data is derived

through in-experiment questionnaires. Participants are requested to fill out these in-

experiment questionnaires between assembly steps. Questions are selected from the
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Table 4.3: Objective Measures: Question Set

Awareness of Assistant
Common Questions
1. What color was the top surface of the tray on which the Lego pieces
were delivered?
2. After delivering the parts, what was the robot/human assistant
doing while you were working on the model? (i.e. which zone was
he/it in, was he/it stationary or moving?)
Robotic Assistant
3. What colors were the bumpers on the robot?
4. What did the sign on the robot say the last time it delivered Legos?
5. Were the lights on top of the robot on during the last delivery?
Human Assistant
6. What color was the assistant's watch?
7. What color were the assistant's gloves?
8. Was the human assistant wearing a safety vest?

list shown in Table 4.3 pertaining to assistant's whereabouts and characteristics, and

responses are evaluated as correct or incorrect. The questions pertain to the time

immediately preceding the delivery of the questionnaire, and the features, of both

the robotic and human assistant, examined via these questions are hidden from the

participant while he or she answers the questions. This evaluation is inspired by the

Situational Awareness Global Assessment Technique (SAGAT) [271, and focuses on

Level 1 SA pertaining to "the perception of the elements [including status, attributes,

and dynamics] in the environment within a volume of time and space."

4.4.5 Subjective Evaluation

Likert-scale statements and open-ended questions are used to collect subjective data

regarding the experiment. Participants are administered a pre-experiment demo-

graphic survey and a post-experiment questionnaire. Further, subjective questions

are also presented via the four in-experiment questionnaires. Several Likert-scale

measures, derived from [371 and listed in Table 4.4, are used to evaluate participants'

subjective response regarding comfort, safety, and perceived fluency. Some statements

are repeated across questionnaires.
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Table 4.4: Subjective Measures: Question Set

Comfort and Safety
1. I am comfortable with the time at which I first noticed the assistant.
2. I feel safe working in this environment.
3. I am comfortable with my level of awareness about the assistant's
whereabouts.
4. I was stressed when the human/robotic assistant was assisting me.
5. I felt safe when working with the human/robot assistant.
6. I would have liked to notice the human/robot assistant coming
earlier.
Fluency
7. The human/robotic assistant and I work well together.
8. Deliveries made by the human/robotic assistant were smooth.
9. I worked fluently together with the human/robot assistant.
Trust in Assistant
10. The human/robotic assistant's actions were consistent.
11. The human/robot assistant came when I expected him/it to.
12. The human/robot assistant's actions were predictable.
13. The human/robot assistant was dependable.
Additional Indicators
14. The human/robot assistant did his/its part successfully.
15. The human/robot assistant contributed to the success of the task.
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4.5 Results

This section summarizes statistically significant results, trends, and other insights

obtained from the experiments.

4.5.1 Participants

Thirty participants performed the experiment, out of which data from six participants

could not be used in analysis due to incorrect task performance, non-completion of

the experiment, or missing video data. The results presented in this section are for

the 24 participants that successfully completed the experiment with complete data

for analysis. These participants were randomly assigned amongst the three between-

participant factors of the experiment, resulting in three replicates for each experi-

mental setting (Table 4.1). The participants (13 men and 11 women) were recruited

via email, and had a median age of 20 years (max = 31, min = 18). None of the

participants indicated any form of colorblindness in the pre-experiment demographic

survey. Prior to the experiment a pilot study was carried out with 5 participants

to streamline the experimental procedure; data from the pilot experiment are not

included in the reported analysis.

4.5.2 Task Time

Each participant took an average of 890 s (~ 15 minutes, SD=207.12 s) to complete

the model-assembly task along with the in-experiment questionnaires.

4.5.3 Assistant Workstation and Idle times

A mixed factor, three-way Analysis of Variance (ANOVA) is carried out to compare

the workstation times and assistant idle times across the four independent variables (1

within-, 2 between-participants) as detailed in Tables 4.5-4.6. Statistically significant

differences (p<0.05, N=24) are observed in both these measures for use of human

versus robotic assistant (the within-participant variable). No statistically significant
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differences are found across the other factors, i.e., use of robot flashing light and

approach angle. The alternate definition of workstation time yields similar statistical

significance. To confirm that no learning effects are present, a four-way ANOVA

was also performed which included type of first assistant as an independent variable.

This randomization factor is found to be non-significant, while the other significance

results are identical to the three-way ANOVA.

Table 4.5: Workstation Time: Mixed-factor Analysis of Variance

Source SS df MS F p
Within-SubjectEffects

Assistant 84.748 1 84.748 6.699 0.018
A B 13.104 1 13.104 1.036 0.321
A C 2.134 1 2.134 0.169 0.686

A B C 10.773 1 10.773 0.852 0.367
Error 253.026 20 12.718

Between-Subject Effects
Angle (B) 20.254 1 20.254 0.729 0.403
Light (C) 13.632 1 13.632 0.491 0.492

B C 15.504 1 15.504 0.558 0.464
Error 555.571 20 27.779 1

Figure 4-10 compares the mean for human and robotic assistants across all the par-

ticipants for the objective metrics of fluency. Further analysis of the significant factors
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Table 4.6: Workstation Time: Mixed-factor Analysis of Variance

Source SS df MS F p
Within-SubjectEffects

Assistant 174.625 1 174.625 13.732 0.001
A B 37.395 1 37.395 2.941 0.102
A C 5.833 1 5.833 0.459 0.506

A B C 13.512 1 13.512 1.062 0.315
Error 254.339 20 12.717

Between-Subject Effects

Angle (B) 0.669 1 0.669 0.017 0.898
Light (C) 56.002 1 56.002 1.407 0.249

B C 0.002 1 0.002 0 0.995
Error 796.061 20 39.803

confirms that the workstation times and idle times associated with the robotic assis-

tant are statistically significantly higher than those for the human assistant (p<0.05,

using two-tailed, paired t-tests to compare means with unknown, unequal covariance).

The human assistant on average interacts with the participant for a cumulative time

of 8.98 seconds (SE = 0.62 s) as compared to the robotic assistant's average of 12.8

seconds (SD = 1.31s). Similarly, the human assistant idles for a cumulative time

of 1.45 second (SE = 0.43s), in contrast to the robotic assistant's idle time of 4.1

seconds (SE = 1.19s). These results support our first hypothesis H1, i.e., according

to the objective measures of fluency the robotic assistant is a less fluent collaborator

in comparison to the robotic assistant.

4.5.4 Subjective Measures of Fluency

Likert responses to statements about fluency (presented in Section 4.4.5) are analyzed

across factors using non-parametric tests. No statistically significant differences are

found in responses for the human versus robotic assistant (using the paired, Wilcoxon

signed-rank test). Thus, the second hypothesis H2 comparing the subjective measures

of fluency is not supported by the experiment results.
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Figure 4-10: Objective Measures of Fluency: Differences across Assistant type

4.5.5 Saliency

Saliency of the assistant is evaluated using the derived measure look time. Responses

to fourteen objective questions (listed in Table 4.3) pertaining to assistant's where-

abouts and characteristics are also evaluated and frequencies of correct versus in-

correct answers are compared. Overall no statistically significant effects are found

for type of indicators, and the third hypothesis H3 is unsupported. Type or use of

indicators did not produce statistically significant differences in workstation and idle

times, leaving the fourth hypothesis H4 unsupported as well.

However interesting differences emerge based on type of assistant, human or robot

(within-participant variable) as shown in Fig. 4-11. Analysis of look time is performed

using a mixed factor ANOVA (see Table 4.7), and a statistically significant difference

(p<0.005) is observed. The robotic assistant is noticed much earlier with average

notice time of 8.82 seconds (SE=2.02s) prior to stop on arrival, as opposed to the

human assistant's average notice time of 1.65 seconds (SD=0.71s). These results

suggest that degradations in fluency are likely due to factors other than robot saliency,

since on average the robot is acknowledged earlier than the human assistant.

Overall, there is only one statistically significant difference in the frequencies of

correct responses between types of assistants. Color of the tray is noticed significantly
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Figure 4-11: Objective Measure of Saliency: Differences across Assistant type

Table 4.7: Look Time: Mixed-factor Analysis of Variance

Source SS df MS F p
Within-Subject Effects

Assistant (A) 616.955 1 616.955 11.651 0.003
A B 0.201 1 0.201 0.004 0.951
A C 0.446 1 0.446 0.008 0.928

A B C 5.048 1 5.048 0.095 0.761
Error 1059.069 20 52.953

Between-Subject Effects
Angle (B) 48.736 1 48.736 0.728 0.404
Light (C) 31.698 1 31.698 0.474 0.499

B C 60.062 1 60.062 0.898 0.355
Error 1338.354 20 66.918
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better by the participants during the two deliveries each made by the robotic assistant

(37%) than the human assistant (8%) (p<0.05, Fisher's exact test with 2x2 contin-

gency table). However, participants demonstrated through responses on Question 2

(Table 4.3) that they were significantly more aware of their background environment

after delivery by a human assistant (p<0.001). This suggests that the robot may

have a transitory distracting effect that degrades situational awareness, even after

the robot leaves the participant's side.

More visible features such as safety vest for human assistant and the state of

the light for the robotic assistant were noticed by 79% and 67% of the participants,

respectively. The participants were not informed about the existence or relevance of

these signs in advance, and thus noticed them during the course of natural interaction

with the assistant. Participants were equally unaware about less noticeable features

such as the human assistant's glove color (13% correct responses) and watch (18%),

and the robot's bumper color (4%) and printed signs (21%).

4.5.6 Factors Affecting Subjective Measures

The effect of flashing light and approach angle (between-participant factors) on Likert

statement responses is evaluated using the two-sided unpaired Wilcoxon rank sum

test. Participants agreed less strongly with the following statements when the robot's

light was flashing, indicating a reduction in perception of safety and trust in the robot:

* I felt safe while working with the robot. (p<0.05, evaluated during post-

experiment survey)

" The robot assistant's actions were consistent. (p<0.01 through in-experiment

questionnaire, while not statistically significant during post-experiment survey)

Variation in approach angle resulted in statistically significant differences in re-

sponses as well. Participants agreed more strongly with the following statement in

the 450 approach condition, indicating increased comfort with the robot when it ap-

proaches obliquely as opposed to from the rear (no such difference was found for the

human assistant):
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* I am comfortable with my level of awareness about the robot assistant's where-

abouts. (p<0.05, assessed twice in the in-experiment questionnaires)

4.5.7 Open-ended comments

The participants are asked to provide open-ended comments about their experience

with each assistant at the end of the experiment. Selected comments from these re-

sponses are included in Table 4.8. The open-ended responses suggest mixed reactions

towards the robotic assistant. Interestingly, some comments reflect that participants

felt rushed by the human assistant, and that the robot let them work at their own

pace.

Table 4.8: Sample of Open-ended Comments

Human Assistant
"I liked that he said thank you!"

"Making eye contact & speaking was key to feeling more comfortable-
I liked getting confirmation that the person wanted me to take stuff
from the tray."

"Delivered parts when I'm still working, made me feel more stressed."

Robotic Assistant
"Smooth transition. Didn't get too close to me which I liked."

"iu a guu jUu at a simple task.

"Having the robot moving around in the background was more dis-
tracting than the human in the background."

"With the robot, I think I made it wait till I'm done to get the stuff,
I was less stressed."

4.6 Discussion

The results of the human subject experimentation support our hypothesis (H1) that

the human-human collaboration is more fluent, as quantified by the workstation times

and assistant idle times, than human-robot collaboration for the designed fetch-and-

deliver task. Statistically significant results indicate that the robotic assistant spent

on average 3.8 seconds (43%) more time than the human assistant interacting with
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the human for the same delivery tasks. Similarly, a statistically significant two-fold

rise (2.65 seconds, 183%) is observed in the assistant idle time. A factory assistant will

be making deliveries to multiple human co-workers. These differences in workstation

and idle time, though small in magnitude, will substantially affect the productivity

of the robotic assistant over the course of a two or three-shift work day, and should

be alleviated using design interventions.

Surprisingly, the robotic assistant's approach is noticed on average much earlier

(7.2 seconds, a statistically significant difference) by the participants as compared to

that of the human assistant. Nonetheless, the robotic assistant idled more than the

human assistant. This provides contrary evidence for the fourth hypothesis (H4),

suggesting a salient agent does not necessarily produce an efficient collaborator.

These results suggest that degradations in fluency are likely due to factors other

than robot saliency, since on average the robot is acknowledged earlier than the

human assistant. While the participants reported the human and robotic assistant to

be equally fluent, they appeared to be more comfortable with making the robot wait.

This is supported by open-ended responses indicating different attitudes towards the

human and robotic assistants. We posit that the human assistant's time is valued

more than that of the robot, and personal objectives and comfort take a higher

priority during collaboration with the robotic assistant. Further study is required to

understand how to design the robot and its human interface so that it does not wait

unnecessarily for human co-workers, which degrades the productivity of the robotic

assistant and the overall assembly line workflow.

We confirm that an oblique approach angle is preferable since the participants

report increased comfort about their awareness of the robot, although it did not

improve the objective measures of fluency. The red flashing light is observed to be

the most noticeable feature amongst those evaluated but did not improve objective

measures of fluency. Further, the participants reported feeling less safe with the light

flashing. This is possibly due to the color choice, and suggests that a red flashing

light should not be used in nominal, safe operation of the robot.
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4.6.1 Limitations

We designed our experiment to emulate a factory setting through careful choice of task

and features such as noise, however limitations remain. The study was carried out

in a large mostly empty room with student participants rather than factory workers.

Further, the participants were working with the robotic assistant for the first time, and

hence the effect of long-term experience working with the robot cannot be evaluated.

In typical factory operations, the robot will be assisting multiple workers. Although

participants were told that the assistant has additional responsibilities and tasks, it is

possible human workers will behave differently when the robot's responsibilities clearly

relate to other co-workers. Hence, there remains a need to study the interaction that

include a longitudinal study with multiple co-workers, to observe how the interaction

changes over time and with multiple people.

4.7 Summary

Successful introduction of mobile robots on the factory floor requires them to be

capable of fluent human-robot interaction. To understand the factors that impact

human-robot interaction, we conduct a human subject experiment to compare the

performance of a mobile robotic assistant and human assistant. As fetch-and-deliver

will be one of the primary tasks to be performed by the designed mobile robot, we

use delivery of parts as the representative task to study human-robot interaction.

Results from the experiment indicate that interaction times and idle times are

statistically significantly higher for the robotic assistant than the human assistant.

However, the robotic assistant's approach is noticed on average much earlier by the

participants as compared to that of the human assistant. These results suggest that

degradations in fluency are likely due to factors other than robot saliency. Based on

our observations, we conjecture that the human assistant's time is valued more than

that of the robot, and personal objectives and comfort take a higher priority during

collaboration with the robotic assistant.
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We confirm that an oblique approach angle is preferable since the participants

report increased comfort about their awareness of the robot. The robot's red flashing

light did not improve objective measures of fluency, and the participants reported

feeling less safe with the light flashing. This suggests that a red flashing light should

not be used in nominal, safe operation of the robot.

The experiment provides initial guidelines for designing and improving human-

robot interaction during delivery of parts in manufacturing domains. These insights

will help make the autonomous robots not only a more efficient agent but a better col-

laborator while working along side humans on factory floors, including the automotive

final assembly line.
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Chapter 5

Conclusion

The primary objective of this thesis was to develop a mobile robotic system that can

operate in automotive final assembly lines. We presented the desired robotic system

that was designed by developing novel solutions, at both algorithmic and hardware

level, and leveraging the prior art in mobile robotics. The robotic system was subse-

quently deployed in an operational automotive factory and its navigation performance

was evaluated. Lastly, we analyzed the factors that impact the systems performance

from a human-robot interaction perspective. This chapter briefly summarizes the key

contributions of the thesis and discusses directions for future work.

5.1 Thesis Contributions

In summation, this section describes the key contributions of the thesis towards in-

troducing mobile robots on the automotive final assembly lines.

Chapter 2: Trajectory Tracking on Dynamic Surfaces

Navigation on dynamic surfaces is a key prerequisite for introduction of mobile robots

in automotive final assembly lines. To tackle this challenge we designed a modular

position control algorithm that can track desired trajectories on both static and dy-

namic surfaces. The modular controller can be coupled with a variety of localization

and path planning algorithms to enable robot navigation on dynamic surfaces.
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Simulation using Gazebo robot simulator [44], off-the-shelf localization and plan-

ning algorithms, and assuming perfect knowledge of the surface speed demonstrate

the efficacy of the designed control architecture in comparison to the nominal con-

troller. In a simulated test scenario, where the robot has to traverse across a dynamic

surface moving at 10 cm/s, the nominal control fails in tracking the desired trajectory

while the designed control architecture results in a maximum deviation of 4 cm. In

addition to tracking trajectories, by design the control algorithm avoids any adverse

torques on the robot hardware due to the surface motion; an essential feature for

maintainability of robot hardware in automotive factories.

In comparison to the nominal control architecture, the designed control architec-

ture additionally requires as input the speed and location of the dynamic surface. We

study various sensing alternatives, and design a sensing module capable of providing

the required input signals to the robot in an automotive final assembly line. The

sensing module comprises of four on-board optic flow sensors to detect the edge of

assembly line, when the robot is transitioning to or from a dynamic surface, and an off-

board contact-based sensor to measure the speed of the assembly line. A completely

on-board solution using optic flow sensors is also discussed [711; however, for robust

performance in dynamic environments the final design consists of both on-board and

off-board sensors.

The designed solution is implemented on the Robe Work 3 robotic platform using

off-the-shelf optic flow sensors and an off-board wheel encoder. The hardware imple-

mentation is tested in a controlled lab environment, wherein a customized treadmill is

used to emulate the dynamic surface. As a first step, the position hold performance

of the robotic base using the designed control architecture and sensing module is

evaluated. The robot can successfully hold its position irrespective of whether it is

completely on the moving surface or is straddling the same. A hardware test similar

to the Gazebo simulation scenario is also performed, and the robot is observed to

successfully traverse the moving surface. These software and hardware tests in static

environments serve as a useful preliminary validation of the designed trajectory track-

ing solution, which is next evaluated in an operational automotive factory.
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Chapter 3: Robot Evaluation on the Automotive Final Assembly Line

Equipped with the capability of navigating on dynamic surfaces, we deployed and

evaluated the mobile robotic base in an operational, automotive final assembly line.

To our knowledge this was the first instance of a mobile robot navigating dynamic

surfaces of automotive factories. The mobile robot was tasked to perform proprietary

assembly tasks on cars situated on an automotive final assembly line that was moving

at an average speed of 8 cm/s. Two task scenarios were considered, which involved the

robot to perform the assembly task on one or both sides of the moving car. Further,

the task was to be performed along side humans in the dynamic environment and

within the limited amount of time the car spent in robot's work area.

We report results from fifteen trial runs from the evaluation in the operational

automotive factory. Using the designed trajectory tracking solution and custom lo-

calization and planning algorithms, the robot was able to successfully navigate in the

operational, factory floor. The integrated, mobile robotic system took on average less

than a minute to complete the time critical assembly task on one side of the moving

car. Performance of the individual sensing and control sub-systems was also evalu-

ated and found to be satisfactory. For the reported trial runs the on-board optic flow

sensors were able to update the location of assembly line typically thrice for each of

the trial run. The control sub-system was successfully able to track desired trajecto-

ries, and was independently validated using an additional, challenging position hold

test while the robot was straddling the dynamic surface.

The successful evaluation of the mobile robot in the real environment establishes

confidence towards introducing autonomous, mobile robots on the automotive final

assembly line next to humans. During the evaluation, the mobile robot was moni-

tored by three engineers; for autonomous operations the system should be made more

robust, maintainable and user friendly. To be successful in time critical tasks, the

robot additionally needs dynamic scheduling, anticipatory planning and interaction

capabilities. Thus, factory evaluation suggests several directions for future work for

successful introduction of robots among humans in dynamic, time-critical domains.

97



Chapter 4: Human-Robot Interaction: Collaborative Fluency and

Robot Saliency

Factory evaluations motivate the need to improve the interaction capability of the

mobile robot. In order to analyze the interaction between the mobile robot and busy

humans, we designed and conducted a human subject experiment with 24 partici-

pants [721. The experiment was conducted in an analogue assembly line environment,

wherein the human associates (participants) had to perform an assembly task. The

human associates worked with two assistants, namely, a human assistant and a mo-

bile robotic assistant (RobdWork 3). The task of the assistants was to deliver parts,

which were required for the assembly task, to the human associate. By comparing the

observed human-human interaction with the human-robot interaction, we aimed to

study the factors that impact robot saliency and collaborative fluency. Both objective

and subjective measures, motivated by prior research in human-robot collaboration,

were used to measure robot saliency and collaborative fluency.

A statistically significant increase of 2.65 s (183%) was observed in the assistant

idle time for human-robot interaction in comparison to that for human-human inter-

action (p < 0.05). This difference in objective measures of fluency suggests the need

for design interventions to make the human-robot collaboration more fluent for time-

critical assembly tasks. For the human and robot assistants, no statistically significant

differences were observed in the subjective measures of fluency. Further, it was ob-

served that the participants notice the robot (as measured by the measure: look time)

earlier during the collaboration as compared to the human assistant. These results

along with the open-ended comments from the participants suggest that degradations

in fluency are likely due to factors other than robot saliency. Our experiment also

evaluated the impact of robot's approach and a visual indicator (red flashing light).

For these measures, no statistically significant differences were observed in objective

measures. However, participants through the subjective measures reported increased

comfort about their awareness of the robot for an oblique approach angle (p < 0.05).

Next, we discuss few recommended directions for future work.
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5.2 Recommended Future Work

The contributions of this thesis are important yet initial steps towards developing

mobile robots that can work seamlessly with human associates for automotive final

assembly. Automotive assembly present several additional challenges, both in research

and implementation, that are beyond the scope of this thesis. For instance, issues of

incorporating flexible robotic assembly in dynamic environments are discussed in [60].

Section 1.1.1 provides an overview of the implications of the dynamic environment

of automotive final assembly for the mobile robot. Further, based on the factory

evaluation of our system, Section 3.3.7 discusses the future steps for ease of integration

of the mobile robot in the factory floor, especially where its autonomous operations

will not be continuously monitored.

Here, we focus on two of these future directions, namely, efficient path planning in

human-oriented environments and conveying the motion intent of robot. Future work

in these two areas will make the robot navigation more efficient and intuitive to the

robot's human collaborators, and complement the development of safe, autonomous

navigation of robot in automotive final assembly lines presented in this thesis.

Path Planning among Humans

While developing the control and sensing solution in Chapter 2, we assumed that the

desired robot path is available from a path planner or human teleoperator. Conse-

quently, as a first step, in the factory evaluation of our robotic system we used an

existing, reactive path planning approach 1551.
However, this reactive approach creates plans based on the current sensing infor-

mation and does not reason about the future locations of the dynamic objects and

humans in the robot's surroundings. Further, the challenge of robot navigation while

in proximity to humans includes aspects of physical human-robot interaction, wherein

the robot must plan and execute trajectories toward goal locations that may interact

with the trajectories of other agents in the environment. Prior work on the design

of autonomous algorithms for robot navigation has shown that, in crowded environ-
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ments, a robot benefits from anticipating the motion and cooperative behavior of

humans [18, 47, 48, 70, 75]. Further, in absence of anticipation of the cooperative

behavior, the robot stops frequently and exhibits the freezing robot problem [69].

Thus, we posit that in order to be effective, a robot navigating around humans

must be capable of both predicting the motion of dynamic obstacles (including hu-

mans) and using this predictive information to plan safe and purposeful paths. This

requires research in developing algorithms for (i) on-board detection of humans from

mobile robots, (ii) real-time prediction of future states of humans, and (iii) anytime

path planning using the anticipatory information of the environment.

Communicating Motion Intent

Research has shown that robot agents that are intent-expressive tend to collaborate

better [38]. Further, navigation in human crowds is often a cooperative task in which

humans implicitly collaborate 170]. For instance, we often give way to other pedes-

trians if we anticipate they are in hurry. As robot navigation amongst humans is a

collaborative task and conveying intent improves collaboration, we believe, a robot

which conveys its motion intent can navigate better among humans.

Prior work exists on legibility of robot motion, i.e. how to disambiguate the goals

of the robot by purposefully modifying the robot motion [25]. This has led to the

development of autonomous algorithms which aim to generate motion that conveys

the intended goal and use the motion itself as the communication modality. Future

work should explore design of systems that complement these algorithms and convey

the planned path of robot using audio/visual communication modalities.
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