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Abstract

In the Bayesian statistical paradigm, uncertainty in the parameters of a physical
system is characterized by a probability distribution. Information from observations
is incorporated by updating this distribution from prior to posterior. Quantities of
interest, such as credible regions, event probabilities, and other expectations can then
be obtained from the posterior distribution. One major task in Bayesian inference is
then to characterize the posterior distribution, for example, through sampling.

Markov chain Monte Carlo (MCMC) algorithms are often used to sample from
posterior distributions using only unnormalized evaluations of the posterior density.
However, high dimensional Bayesian inference problems are challenging for MCMC-
type sampling algorithms, because accurate proposal distributions are needed in order
for the sampling to be efficient. One method to obtain efficient proposal samples is an
optimization-based algorithm titled 'Randomize-then-Optimize' (RTO).

We build upon RTO by developing a new geometric interpretation that describes the
samples as projections of Gaussian-distributed points, in the joint data and parameter
space, onto a nonlinear manifold defined by the forward model. This interpretation
reveals generalizations of RTO that can be used. We use this interpretation to draw
connections between RTO and two other sampling techniques, transport map based
MCMC and implicit sampling. In addition, we motivate and propose an adaptive
version of RTO designed to be more robust and efficient. Finally, we introduce a
variable transformation to apply RTO to problems with non-Gaussian priors, such
as Bayesian inverse problems with Li-type priors. We demonstrate several orders of
magnitude in computational savings from this strategy on a high-dimensional inverse
problem.

Thesis Supervisor: Youssef M. Marzouk
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Inverse problems

In the field of computational modeling, much work is done on the refinement of

model parameters from observed data. This process is an example of solving an

inverse problem. Inverse problems appear in many applications, including tomography,

chemical kinetics, robot localization, reservoir geomechanics, and weather prediction.

Typically, scientists and engineers have access to a mathematical or computer

model that simulates the response of the system, called the forward model. In

particular, the forward model has parameter values as the input and calculates the

desired measurements as the output. This forward model is used in conjunction with

observed, "real" measurements to infer the input parameters. Thus, original data can

be used to provide insight into system, to make informed predictions, or to guide

decision-making.

To illustrate this process, we give here the example of reservoir geomechanics. The

inverse problem, in this case, is to characterize the underground permeability and

porosity of a reservoir using pressure measurements obtained at wells, represented in

Fig. 1-1. The parameters of interest are the two rock properties, permeability and

porosity, and the observations are the pressure measurements. A flow-geomechanical
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Geomechanical model

Flow model

Figure 1-1: Reservoir geomechanics. Example application for inverse problems. Illus-
tration is taken from [13].

simulation constitutes the forward model. Solving the inverse problem involves using

well pressure measurements in a physical reservoir and finding, though successive

computer simulations, likely values for permeability and porosity. These parameter

values can then be used to predict future production from the wells and help make

informed management decisions.

Inverse problems are also an integral part of filtering (also known as data assimila-

tion) and experimental design. In filtering, inverse problems are solved sequentially to

obtain state estimations of a dynamic system in time. A current state is then propa-

gated using model dynamics to create forecasts, which are subsequently incorporated

into the state estimation at the next time step. In experimental design, observations

from previously-conducted experiments are used to characterize system parameters in

order to determine the best experiments to perform in the future.

Unfortunately, many inverse problems are ill-posed, meaning that the solution to

the inverse problem may not exist, may not be unique, or may be highly sensitive to

small changes in the data. This can occur when widely different parameter values

yield very close outputs in the model. In addition, for some applications, we are not

only interested in the particular values of the system parameters, but also want to

characterize the uncertainty surrounding those values. The is known as uncertainty

quantification. The uncertainty can be described by a variance, a credible region, or

10



an entire distribution. Characterizing the uncertainty of the parameters is important

for incorporating risk in analysis and decision making.

1.1.2 Bayesian inference

Bayesian inference is a framework for solving inverse problems that addresses both

ill-posedness and uncertainty quantification. In Bayesian inference, we describe the

uncertainty of a parameter using a distribution. An initial prior distribution describes

the belief state of the parameter before any observations are taken into account. Then,

the prior is updated to the posterior distribution using Bayes' rule.

likelihood prior

P(AY) = p(y10) p(0)

posterior 
LP(Y I

evidence

where 0 is the parameter and y is the observation. The evidence is a normalizing

constant and is often costly to compute.

Solving a Bayesian inference problem typically reduces to characterizing the

posterior distribution. Given the posterior, we can calculate the posterior mean,

variance, higher moments, and event probabilities by taking expectations. We can

also determine the posterior mode' and credible regions. There are many ways to

characterize the posterior. [14] and [24] are two useful references for inverse problems

and Bayesian inference. In this thesis, we focus on using samples to characterize the

Bayesian posterior. With posterior samples, we can use Monte-Carlo integration to

calculate any expectation of interest.

1.2 Markov-chain Monte Carlo

Markov-chain Monte Carlo (MCMC) algorithms are widely used to generate samples

from a distribution for which the normalizing constant is difficult to compute, as is

'The posterior mode is sometimes referred to as the maximum a posteriori (MAP) point.
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the case for a posterior distribution. MCMC generates dependent samples from a

target distribution by simulating a Markov chain. These algorithms are commonplace

and are described within several textbooks [9] [20] [4].

Random-walk Metropolis

A canonical MCMC algorithm is the random-walk Metropolis, described in Algorithm 1.

In order to generate a chain of samples distributed according to the posterior, we

propose a point from a Gaussian centered at the current point in the chain. A simple

calculation is used to determine whether to accept and move to the proposed point,

or to reject and remain at the current point. Each proposal requires a calculation of

the unnormalized posterior density at the new point, which requires a forward model

evaluation. When the Markov chain is continued ad infinitum, the distribution of its

samples will approach the posterior2 .

Algorithm 1 Random-walk Metropolis

1: start with 0(0)

2: for i = 1, ... , nsamp do

3: propose $(i N(O(-), 0.21)

4: 6(* = f () with probability min (P I), 1)
90(-) otherwise

Here, nsamp is the number of samples in the chain, 6 are the proposal points, and

O are posterior samples.

Independence Metropolis-Hastings

One useful MCMC algorithm to know for the rest of this thesis is independence

Metropolis-Hastings. In contrast to random-walk Metropolis, the proposal sample

does not depend on the current point in the chain; rather, it is drawn independently

from a fixed proposal distribution. Algorithm 2 outlines the steps. The parts colored
2 The distribution of the samples from such a Markov chain will approach the posterior under

reasonably weak conditions.
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in red highlight the difference between independence Metropolis-Hastings and random-

walk Metropolis.

Algorithm 2 independence Metropolis-Hastings

1: start with 0(0)

2: for i = 1,.. , nsamp do

3: propose (i q(.)

4: -= (i with probability min (p,9( I y)q( )

0 (i--) otherwise

Here, nsamp is the number of samples in the chain, 0 are proposal samples, 0 are

posterior samples, and q(.) is a fixed proposal distribution.

1.2.1 Optimization-based samplers

The efficiency of MCMC algorithms is tied to the correlation in the Markov chain. A

chain of samples that are highly correlated will result in a higher variance (and error,

on average) when used to calculate any expectation. One measure of the information

contained in a chain of samples is the effective sample size (ESS). The ESS is the

number of independent samples from the posterior that would give the same variance

in calculating an expectation. Inefficient MCMC algorithms produce highly correlated

chains and, hence, longer chains are required to obtain a desired ESS. The efficiency

of MCMC samplers depends heavily on effective proposals.

Many MCMC techniques use adapted Gaussian proposals. The random-walk

Metropolis algorithm, see Sec. 1.2, is one example. Two other examples are delayed-

rejection adaptive Metropolis (DRAM) [11] and Metropolis-adjusted Langevin algo-

rithm (MALA) 1211. DRAM proposes from a Gaussian adapted to the sample-estimated

posterior covariance. When a sample is rejected, DRAM proposes from a second

Gaussian with a reduced covariance. MALA uses derivative information to shift its

proposal from being centered at the current sample towards the high-posterior region.

All of these samplers propose from a Gaussian to update the Markov chain, and are

reasonably efficient in low dimensions. However, for especially non-Gaussian posteriors
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and high dimensional parameters, these and other simple MCMC samplers become

inefficient.

One technique to improve sampling efficiency is to leverage optimization to draw

from effective proposal distributions, proposal distributions that are close to the

posterior. Optimization-based sampling techniques use optimization to propose from

non-Gaussian distributions that depend on the posterior distribution or the inverse

problem itself. Since their proposals are non-Gaussian, these algorithms have a higher

possibility to be efficient for high dimensional, non-Gaussian posteriors. Implicit

sampling [5] and Randomize-then-optimize (RTO) [2] are two such techniques, the

latter of which will be the focus of this thesis.

1.3 Thesis Contribution

In this thesis, we focus on solving inverse problems using Bayesian inference by

sampling from the posterior using RTO. The major contributions of this thesis are:

1. A new geometric interpretation of the RTO algorithm.

2. An adaptive version of RTO that is more robust and efficient.

3. A prior transformation technique to extend RTO to Bayesian inference problems

with non-Gaussian priors.

The geometric interpretation provides intuition about the conditions under which

RTO performs well. Adaptive RTO uses this interpretation to improve upon the

original algorithm. Finally, a prior transformation technique allows us to use RTO on

a broader range of inverse problems.

Each of these contributions is described in further detail in its own chapter. In

Chapters 2 and 3, we use the assumption of a Gaussian prior and Gaussian observational

noise. In Chapter 4 we relax this assumption to consider non-Gaussian priors, in

particular, Li-type priors.

14



Chapter 2

Geometric Interpretation of RTO

This chapter describes and reinterprets the randomize-then-optimize (RTO) algorithm

12] for sampling from a Bayesian posterior. RTO is motivated through a geometric

perspective. The posterior density is interpreted as a manifold intersecting a high-

dimensional multivariate Gaussian. RTO is then reintroduced as a projection of

samples from the high-dimensional multivariate Gaussian onto the manifold described

by the forward model.

Following naturally from this geometric interpretation, we describe generalizations

to RTO and discover a parameterized family of RTO-like proposal distributions to

which the prior distribution belongs. This family of RTO-like proposals can be thought

of as 'tuning knobs' of the sampling algorithm; the original RTO formulation provides

heuristic values for the knobs, and practitioners may adjust the knobs to obtain

desirable performance from RTO. The next chapter will demonstrate a few cases

where the default, heuristic values of the knobs are inefficient or invalid. The family of

RTO-like proposal distributions will then be used in an more robust adaptive version

of RTO.

A second interpretation of RTO (and the RTO-like proposals) recasts it as an

implicit approximate transport map. Using this formulation, we connect RTO to

transport-map accelerated MCMC 119] and implicit sampling [17]. In particular, RTO

and implicit sampling can both be thought of as using implicitly defined approximate
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transport maps1 . Transport maps are defined from the forward model for RTO,

defined from the the target distribution for implicit sampling, and evaluated by

solving optimization problems. This contrasts the transport-map accelerated MCMC

approach, where an explicit approximate transport map is represented as a multivariate

polynomial expansion and evaluated directly.

This chapter is organized as follows: Section 2.1 describes the geometric inter-

pretation of the posterior in Bayesian inference; Section 2.2 reintroduces RTO as

a projection, and provides intuitive reasoning as to why the algorithm generates

proposal samples that are distributed close the posterior; Section 2.3 generalizes RTO

to uncover a parameterized family of RTO-like proposals and describes the conditions

under which the proposals are valid; Section 2.4 connects RTO to transport-map

accelerated MCMC, and Section 2.5 connects RTO to implicit sampling.

2.1 Geometric Interpretation of the Posterior

Before describing the details of RTO, we begin by exploring the structure of the

posterior distribution that RTO exploits. RTO requires that the posterior be in

least-squares form. Let n be the number of parameters and m be the number of

observations. The least-squares form is defined as

p(6Iy) c exp ( ||F(O) - Y11)

where 0 E Rn is the parameter vector, p(. ly) : Rn -- R+ is the posterior density

function, F(.) : R' -+ Rn+n is a parameter-to-response function which, in the context

of Bayesian inference, contains the forward model, and Y E Rn+n is the response

vector, which in the context of Bayesian inference contains the observation.

Since we can always transform an inverse problem with a non-standard Gaussian

prior and a non-standard Gaussian observational noise to a problem with a standard

Gaussian for both, we consider an inverse problem with standard Gaussian prior and

1RTO and implicit sampling both use approximate transport maps to provide samples from the
exact posterior.
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noise without loss of generality.

y = f(o) +E 0 , N(0, I) E ~. N (0, I )

where y E R' is the observation vector, f(-) : R' - RI is the forward model, and

E E R' is the observational noise. The posterior density function that arises from this

inverse problem is

p(Ay) oc p(y10)p(9) (2.1)

oc exp (- 1f (0) - y12) exp (1012) (2.2)

= exp ( (2.3)
2 f (0) y

F(O) Y

As shown above, when the prior and observational noise are Gaussian, the posterior

can be written in least-squares form. Here we incorporate prior information on each

parameter as separate responses to obtain m + n responses as the output of F.

An interesting thing to note in Eq. 2.1 is that the form of the posterior distribution

resembles that of a multivariate Gaussian in R'+'. In particular, if we replace the

parameter-to-response function F(9) with a vector of independent random variables,

we obtain a standard Gaussian centered at Y. We can interpret Eq. 2.1 as being

constrained on a R" dimension manifold in R'+' that is parameterized by F(O). In

other words, the unnormalized posterior density evaluated at a particular value of 0 is

the same as the density of a standard Gaussian in Rm+1 evaluated at F(9) = [0, f(0)]T.

When m = n = 1, we can visualize the higher-dimensional multivariate Gaussian.

F(9) becomes a line, a 1-D manifold embedded in 2D, as in Fig. 2-1. The local

posterior density at a particular value of 9, shown on the horizontal axis, is determined

by the height of the 2-D Gaussian, centered at [0, y]T, evaluated at [of(0)]T on the

line.

One strategy to obtain samples from the posterior is to first sample from a proposal

17



distribution that is close to the posterior. Then, these samples are corrected using

independence Metropolis-Hastings or importance sampling. RTO, map-accelerated

MCMC, and implicit sampling all employ this strategy. The main challenge is then

to obtain samples close enough to the posterior such that correction in independence

Metropolis-Hastings is efficient. In the next section, we describe the procedure RTO

uses to obtain proposal samples that are close to the posterior.

18
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-2 0
9

2

Figure 2-1: Posterior in least-squares form. (Top) 1-D manifold defined by the forward

model intersecting a multivariate Gaussian. (Bottom) Posterior density. The posterior

density at 0 is equal to the density of the high dimensional Gaussian evaluated at

[0, f(0)]T .
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2.2 RTO as a Projection on to a Manifold

RTO is motivated from the geometric posterior description described in the previ-

ous section. It generates proposal samples by sampling from the high-dimensional

multivariate Gaussian, and then transporting, or projecting, these m + n-dimensional

samples on to the n-dimensional manifold described by the forward model. The

projection directions are orthogonal to the tangent space at the posterior mode. In

other words, the samples are free to move in the directions orthogonal to the space

spanned by the columns of the Jacobian of F(9) at the posterior mode.

Fig. 2-2 is a 2D visualization where n = m = 1. The red dots describe the initial

m + n-dimensional samples, and the purple dots are the projected samples that lie

on the n-dimensional manifold. As seen in Fig. 2-2, the samples generated in such a

manner are distributed according to a proposal distribution that is very close to the

posterior. We expect this to be the case when the forward model is smooth and close

to linear in the high posterior region.

It is very easy to verify that when the forward model is linear, as is the case

for a straight line in 2D, the RTO proposal is exactly the posterior and they are

Gaussian. When the forward model is nonlinear, but smooth, the posterior may

be very non-Gaussian, meaning that a Gaussian proposal may be a poor choice for

independence Metropolis-Hastings. However, RTO's proposal distribution may be

very efficient.

A brief description of the RTO algorithm follows. RTO first solves an optimization

problem to find the posterior mode. This is done through

6 = arg min I JJF(6) - Y11 2  (2.4)
o 2

where 0 E R' is the posterior mode. RTO determines the tangent space at the

posterior mode by storing an orthonormal basis Q E R(+mn)xn, which is found through

a QR factorization of J(6). It then samples the m + n-dimensional standard Gaussian

for a point Ej and projects this point onto the manifold by solving the optimization

20



problem

0) = arg min Q (F(6) - (Y+E2i)) 2 (2.5)
0 2

Then, under certain conditions described in the next section, the proposal distribution

can be evaluated as

q(0) oc |QT J(9)Iexp ( JQT(F(O) -Y) |2 (2.6)

where IQTJ(9 )l indicates the absolute value of the determinant of the matrix QTJ(9).

The RTO algorithm is summarized in Alg. 3.

Algorithm 3 RTO

1: Find posterior mode 9 using optimization

2: Find Q, the orthonormal basis that spans the columns of J(O)

3: for i = 1, ... , nsamps do in parallel

4: Sample E from m + n-dimensional Gaussian

5: Find proposal samples O) by minimizing Eq. 2.5.

6: Find q(#()) from Eq. 2.6

7: for i = 1, ... , nsamps do in series

8: Use independence Metropolis-Hastings to obtain O)

Note that Q can be found from a thin-QR decomposition of J(#). In theory, the

algorithm can be implemented directly using J(6) in Eq. 2.5.

21
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<3=> Gaussian
f(0)

-samples

0

-2 0 2
0

-- posterior
proposal
proposal samples

0.5

a)

0
-2 0 2

0

Figure 2-2: RTO's procedure to generate proposal samples. (Top) Gaussian samples
shown, in purple, are projected on to the manifold. The black X is F(O) and the
arrow is Q. (Bottom) The resulting samples are distributed according to the proposal
density.
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2.3 Validity and Generalizations of RTO

In this section, we explore when RTO is valid and generalize the algorithm by

considering changes to Q and Y, interpreting the changes geometrically. This will

lead to a more flexible description of an RTO-like proposal distribution, and reveal a

family of such distributions for which we can evaluate the proposal density and from

which we are able to sample. Being able to evaluate the proposal density is important

because it allows us to use independence Metropolis-Hastings to obtain true posterior

samples from the proposal samples.

The theorem that describes the circumstances under which the proposal distribution

from RTO is valid is found in [2]. We paraphrase the main points of the theorem

below. The conditions are:

(i) p(&jy) oc exp(-IflF(9) -Y 2 ), where 9 E R', Y E Rm

(ii) F : RI -+ Rm is a continuously differentiable function with Jacobian J.

(iii) J(9) E Rmxn has rank n for every 9 in the domain of F.

(iv) the posterior mode 9 = arg min, p(Ofy) is unique.

(v) J(9) = [Q, Q] [R, 0 ]T is the QR-factorization of J(9).

(vi) the matrix QTJ(9) is invertible for all 9 in the domain of F.

(vii) there is a 9 such that QT(F(0) - (Y + E)) = 0 for any E.

Theorem 2.3.1. Assuming (i) to (vii) directly above are true, then lines 1-6 of Alg. 3

will sample from the distribution with the probability density described in Eq. 2.6.

The proof of Theorem 2.3.1 is found in [2]. In that paper, the authors considered

any target distribution that can be written in least-squares form. In Bayesian inference,

we often have a posterior distribution with a Gaussian prior and observational noise.

When we have a continuously differentiable function f(.), F(.) is also continuously

differentiable. Thus, assumptions (i) and (ii) are automatically satisfied. Next, we

show that (iii) is also true.
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Theorem 2.3.2. When we have a posterior distribution with a Gaussian prior and

observational noise, J(O) E R'xn has rank n for every 0 in the domain of F.

Proof.

J(0) -F(O) -
00 00f (0) _Vf (0)

Regardless of Vf (9), the columns of J(O) will be linearly independent due to the

identity matrix at the top. Hence, it will have rank n. El

Conditions (iv) and (v) are only used to ensure a unique Q. The final two conditions

(vi) and (vii), are not automatically satisfied and are left as assumptions. In the next

chapter, we will show the breakdown of RTO when these assumptions do not hold.

The steps to proving Theorem 2.3.1 only use the facts that Q has orthonormal

columns and that QTF(9) is invertible for all 9. In addition, the proof does not use

any information on how Y is obtained. We can imagine using the same theory, and

essentially the same algorithm, to sample from a proposal very similar to RTO by

changing Q and Y. This leads to a family of proposal distributions parameterized by

Q and Y.

An interesting observation is that the position of the original samples orthogonal

to Q do not affect the resulting posterior samples in RTO. This leads to one minor

modification to RTO, where we now sample E R instead of (E R+n and change

Eq. 2.5 to

() = arg min 1||QT(F(O) - Y) + () 12 (2.7)
0 2

Here, QT- .

Alg. 4 describes the procedure to sample from an RTO-like proposal. Fig. 2-3 and

Fig. 2-4 depict two choices of Q and Y yielding different proposals.
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Algorithm 4 Generate RTO-like proposal samples

1: Specify a particular Q

2: Specify a particular Y

3: for i = 1, ... , nsamps do in parallel

4: Sample (() from n-dimensional Gaussian

5: Find proposal samples OW( by minimizing Eq. 2.7.

6: Find q(9(t)) from Eq. 2.6

A particularly interesting choice of Q and Y is

_ I 0
Q =Y =

0 A

where A is any fixed value. The resulting proposal distribution corresponds to a

standard Gaussian centered at zero, which is exactly the prior. Hence, the prior is

a member of the RTO-like proposal family. We will see in Chapter 3 that this prior

can be used as a 'safe' starting point for an adaptive algorithm that changes Q and Y

during sampling.
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Figure 2-3: Modification to RTO's proposal. Instead of sampling from a joint Gaussian,
we sample from the 1D Gaussian oriented along QT. The resulting samples are exactly
the same.
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Figure 2-4: An RTO-like proposal obtained by modifying Q and Y. The proposal

distribution is different from RTO's but its density can still be calculated.
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2.4 Connections to Transport Maps

2.4.1 Transport-map accelerated MCMC

Transport-map accelerated MCMC defines a map T(.) : R' -+ Rn that acts on

reference samples to obtain proposal samples. The transport map is constructed from

posterior samples. It approximates a true map that pushes a reference density, such

as a standard Gaussian, to the posterior exactly. The samples pushed forward using

the approximate transport map are used as proposal samples. A lower-triangular

structure is imposed on the map:

T1 (61)

T(6 1,9202 1 On) = T2(01, 62)

T(61,n01 02, On)-,On

Here, 64 is the ith component of 6, and Ti(-) : R' -- R is the ith component of T. Each

T is represented as a polynomial expansion. This triangular structure and polynomial

representation allows the map to be evaluated and inverted easily. [19] derives the

proposal density that results from pushing samples though the transport map, and

also highlights additional constraints on the transport map needed for independence

Metropolis-Hastings to be ergodic.

2.4.2 RTO as an approximate map

RTO can also be viewed as a transport map. In particular, the inverse map is defined

from the relationship

Q T (F(O) - Y) = g. (2.8)

T- 1 (0)

In transport-map accelerated MCMC, an explicit, invertible map is determined

from approximate samples of the posterior. These approximate samples could be

obtained from an unconverged MCMC chain, for example. In contrast, RTO defines
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an implicit map before any sampling occurs. Using a transport map defined implicitly

from the forward model, RTO avoids requiring an initial period of inefficient sampling

from the posterior before obtaining a good proposal. However, since the RTO's map

is not defined explicitly, we can not directly evaluate it. We can only evaluate its

inverse using the forward model and hence, must employ optimization techniques to

push forward one reference sample.

2.5 Connections to Implicit Sampling

2.5.1 Implicit sampling

Implicit sampling incorporates a very similar idea to RTO. It also uses a transport map

from a Gaussian random variable to obtain samples close to the posterior. Two main

differences between it and the RTO presented here, are that the proposal samples are

used in self-normalized importance sampling rather than in independence Metropolis-

Hastings, and that typically multiple inverse problems are solved sequentially in a

filtering context2 rather than a single posterior distribution being explored at a time.

First, we paraphrase the random map implementation of implicit sampling. In

implicit sampling, we consider more general posterior densities where

p(Oly) oc exp (-R()). (2.9)

Here R(.) : Rn -+ R' is the negative-log-posterior function. In our case, for posteriors

in least-squares form, R(9) = 1lF(O) - Y11 2 .

Implicit sampling imposes the ansatz that the map 0 = T( ) solves the following

scalar equation
1

R(9) - R(0) = - (2.10)
2

where

9= arg min R(O).
0

2 Filtering can be thought of as sequentially propagating uncertainty through a time-dependent
model and performing Bayesian inference when observations arrive.
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Intuitively, Eq. 2.10 matches the negative-log-posterior with the negative-log of the

density from a standard Gaussian. [5] list four additional desirable conditions for the

map T(.) in implicit sampling:

(i) T(.) is one-to-one and onto with probability one.

(ii) T(.) is smooth.

(iii) T( = 0) = 6.

(iv) ) can be computed easily.

Eq. 2.10 and conditions (i) to (iv) above do not uniquely define T(-). The random

map implementation of implicit sampling [17] chooses the following map:

0 = T() =+ A()L T (2.11)

where L is any invertible matrix we choose, and we solve for A( ) that satisfies Eq. 2.10

using optimization. This implementation can be thought of as sampling from a

standard Gaussian, taking its direction -1 and magnitude I l1, and marching from the

posterior mode 0 in the direction LTA until Eq. 2.10 is satisfied using the magnitude

|. One suggested choice of L is LTL = H, where H is the Hessian of R. The

proposal density is evaluated as

q(0) oc exp -2(

where = T-(0) and

21T(()T 1-n/2 A"n-1
= 2|L|( ()

I , 2(VoR)L T ( 1||(||)

which is proven in [17]. Note that the expression given in [17] is

q(O) exp (-R(6))

which can be derived from Eq. 2.9, 2.10 and 2.12.
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The implicit map is well defined when Eq. 2.11 is one-to-one. This occurs when

the level sets of the posterior is 'star shaped'. In other words, for any level set

R(9) - R(O) = c > 0, a straight line passing through the posterior mode 9 must

intersects the level set at exactly two points. This is exaplained in more detail in a

section of [101. When this condition is not satisfied, implicit sampling will not sample

from the true posterior. This is analogous to the breakdown of RTO described in

Sec. 3.1.

2.5.2 RTO's alternative ansatz to define an implicit map

However, there are striking similarities between the proposals used in implicit sampling

and RTO. Both algorithms solve an optimization problem to transport Gaussian

distributed samples to proposal samples close to the posterior; both proposal generating

processes can be defined using a map; and both maps satisfy several desirable properties.

This section explores these connections in more detail.

In RTO, we satisfy a different ansatz but the same conditions (i) through (iv).

From Sec. 2.4, RTO's map T(.) is defined implicitly from the vector equation, see 2.8.

Q T (F(O) - Y) = .

This equation replaces Eq. 2.10 and also defines a unique map.

We now show that the map defined by Eq. 2.8 satisfies the conditions (i) to (iv)

above under the same assumptions as Theorem 2.3.1. Condition (i) asks for T(-) to

be one-to-one and onto. In RTO, when QTJ(9) is invertible, and there exists a 0

such that QT(F(O) - (Y + E)) = 0 for any B, then condition (i) holds. Condition (ii)

requires that T(.) be smooth. If f(-) is differentiable, then F(-) is differentiable. Then,

T-1 (.) is smooth, and T(.) is smooth. Condition (iii) is shown to be true by setting

the derivative of the objective in Eq. 2.4 to zero and comparing it to Eq. 2.8 with the

substitution = 0. Condition (iv) holds due to Theorem 2.3.1.

To summarize, we can interpret RTO and implicit sampling as implicitly defining a

particular map from a Gaussian random variable to the proposal distribution. Both
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these algorithms satisfy several desirable conditions, listed as (i) to (iv) above, which

produce the exact posterior when the forward model is linear, produce a proposal

close to the posterior when the forward model is nonlinear, and allow us to determine

their proposal densities. The main difference between the algorithms is the ansatz.

Implicit sampling matches the log-posterior to the log-density at , and RTO matches

the residual, F(O) - Y, in certain directions, to .
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Chapter 3

Adaptive RTO

This chapter discusses a few drawbacks of the original RTO algorithm and uses the

geometric interpretation developed previously to construct an improved, adaptive

version of the algorithm. Adaptive RTO is designed to be more robust and efficient

than the original. Numerical examples demonstrate that when RTO fails in sampling

from the posterior, adaptive RTO can succeed, and when RTO samples from the

posterior correctly, adaptive RTO does so in a more efficient manner.

Previously, we identified two assumptions that RTO and the forward model needed

to satisfy in order for RTO to work properly. When these assumptions do not hold,

RTO does not sample from the posterior. In fact, a naive implementation of RTO

fails dramatically, and the obtained 'posterior' samples collapse in parameter space,

as will be shown later. A change in Q, one of the tunable parameters for RTO-like

proposals, can fix this issue.

A second issue is when RTO's proposal distribution varies significantly from the

posterior. This leads to inefficient sampling in independence Metropolis-Hastings.

This can be easily demonstrated using a skewed posterior in ID. The differing proposal

and posterior distributions are caused by the constraint that the center of the Gaussian

is projected to the mode of the posterior. This problem can be alleviated by changing

the point Y, another tunable parameter for RTO-like proposals.

In light of these problems, we propose an adaptive version of RTO that, through

changing Q and Y, searches within the RTO-like proposal family to find a distribution
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that satisfies the assumptions and is as close to the posterior as possible. One metric

for measuring the distance between two distributions is the K-L divergence. Using the

K-L divergence, we obtain an optimization problem constrained on a manifold, which

can be solved without any additional forward model evaluations.

The resulting method is an adaptive RTO algorithm that simultaneously samples

from the posterior and determines the optimal RTO-like proposal. Experiments show

that by using adaptive RTO, we sample from the true posterior on problems where

the original assumptions for RTO do not hold, and that we are more efficient than

RTO on problems where RTO is valid.

This chapter is organized as follows: Section 3.1 describes problem-specific chal-

lenges that RTO may face; Section 3.2 outlines the core idea of adaptive RTO;

Section 3.2.1 describes the details of the optimization problem that is solved during

adaption; Section 3.2.2 summarizes all the steps in the adaptive algorithm, and Sec-

tion 3.3 shows two numerical examples comparing the original RTO and the adaptive

version.

3.1 Drawbacks of RTO

In this section we highlight two drawbacks of the original RTO algorithm that motivate

an adaptive alternative. These are two cases where the original RTO algorithm either

does not work or is inefficient. They are: when the assumptions required for RTO do

not hold, and when RTO's proposal is very different from the posterior.

3.1.1 Assumptions do not hold

From Section 2.3, the two main assumptions in order for RTO to work are:

* QTTJ(0) is invertible for any 0.

" There exists a 9 such that QT(F(0) - Y) = ( for any (.

When these assumptions do not hold, a naYve implementation of RTO fails dramati-

cally, as shown in Fig. 3-1. This phenomenon results from the fact that not all samples
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can be projected orthogonal to Q and onto the manifold. When samples cannot be

projected onto the manifold, the optimization routine stops at a non-zero minimum,

which causes these samples to cluster. The proposal samples are not distributed

according to the analytical formula. In addition, the samples cluster around the point

where QTJ(9) is singular and do not cover the entire range of the posterior. Following

through with the algorithm and blindly using its proposal density within independence

Metropolis-Hastings will not result in sampling from the true posterior. In fact, the

problem is further exacerbated through independence Metropolis-Hastings, since the

proposal density formula evaluated around the cluster is very small and will cause

independence M-H to reject any steps proposed outside of the cluster.

Another view of this breakdown is that the map from the Gaussian random samples

( and the parameter values 0 is no longer one-to-one. In this case, there may be

zero or more than one (9, f(0)) points on the manifold that intersect a projected line

tangent to Q and originating at Y + E.

Fortunately, we are able to detect this issue while sampling the proposal. During

the optimization step of RTO, the presence of a non-zero local minimum 0" in the

residual, i.e. when the residual is not zero after the optimization halts, indicates that

QTJ(4) is not invertible at that local minimum and that the proposal density formula

does not hold. This can be seen by taking the derivative of the objective function

with respect to 9 and setting it to zero at the local minimum.

9 [C T (F(O) - (Y + c))] = 0

2J(9*)TQQT(F(*) - (Y + E)) = 0

Thus, at the local minimum, either the residual is reduced to zero, in other words

QT(F(9*) - (Y + 6)) = 0, or J(9*)TQ E Rn"n is singular. Hence, when we find a local

minimum with a non-zero residual, QTJ(o*) is not invertible at that local minimum

and assumptions of RTO are violated.
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Figure 3-1: Case where RTO assumptions do not hold. (Top) Gaussian and manifold.
(Middle) Posterior, proposal formula and projected samples. (Bottom) Histogram
of actual samples drawn from RTO. There is a quadratic forward model with one
parameter and one observation. The projected path from some random samples
do not pass through the manifold. The resulting analytical form of the proposal
distribution is no longer valid.

36



3.1.2 Proposal differs from posterior

The second drawback of RTO occurs when the proposal is valid but is very different

from the posterior. In this case, the sampling is inefficient. In other words, we obtain

a highly-correlated chain from independence Metropolis-Hastings, and would require

many steps of the Markov chain to obtain a large effective sample size. This is because

the posterior over proposal density (sometimes called the importance weight) varies a

lot from sample to sample. More steps in independence M-H more are likely to be

rejected.

We illustrate this example (in ID) using a posterior that is highly skewed, seen in

Fig. 3-2. In the original RTO formulation, there is an equal probability of sampling

c to the left and the right of 6, and, thus, there must be equal probability mass in

RTO's proposal on either side of 6. As such, the proposal median must be located at

the posterior mode 9. This constraint guarantees that the proposal from RTO will

not be able to approximate skewed posteriors well. Fig. 3-3 shows that this scenario

can be avoided if we change Y and use an altered RTO-like proposal.

These two drawbacks indicate that the original RTO algorithm's performance is

problem-dependent. The sampling algorithm may fail completely, such as when RTO's

assumptions do not hold, or be very inefficient, such when the proposal is far from

the posterior. They also suggest that changing Q and Y can be helpful in different

scenarios. In the next section, we build upon this intuition and outline an adaptive

RTO algorithm that changes Q and Y as we sample from the posterior.
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Figure 3-2: Case of RTO where proposal varies from posterior. (Top) Gaussian and
manifold. (Bottom) Posterior, proposal formula and projected samples. Although
the proposal formula is correct, the proposal distribution is very different from the
posterior.
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Figure 3-3: RTO-like proposal on previous problem. (Top) Gaussian and manifold.

(Bottom) Posterior, proposal formula and projected samples. Choosing a different Q
and Y creates a proposal closer to the posterior.
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3.2 Adapting the Proposal

The drawbacks outlined in the previous section motivate a change in Q and Y. This

involves choosing a different proposal within the RTO-like proposal family. We can

freely choose any distribution from the RTO-like proposal family provided that the

RTO's assumptions hold for the corresponding Q. This is because we are able to

sample from any of them and we can evaluate any of their densities.

We propose an adaptive version of RTO where we avoid the two undesirable

situations outlined in Section 3.1 by changing Q and Y from their heuristic values

in RTO. In particular, we find the 'best' values of Q and Y such that we obtain the

most efficient proposal distribution in the family of RTO-like proposal distributions.

An efficient proposal is one that is close to the posterior, so named because it

makes independence Metropolis-Hastings sampling more efficient. Following a similar

adaptive approach to [19j, we choose to quantitatively measure the distance between

the two distributions using the Kullback-Leibler (KL) divergence from the posterior to

the proposal. This idea is similar in spirit to variational techniques where the closest

distribution in a parameterized family is used as an approximation.

3.2.1 Optimization of the proposal distribution

The details of optimizing the KL divergence are outlined here. The KL divergence is

defined as

DKL[p(|y )||q()] = Ep(e1y) [log ((0)

= EP( 1Y) - log IQTJ()I + I QT (F(9) - r) 112] + C

Evaluating the KL divergence requires an expectation over the posterior. During

sampling, we have approximate samples from the posterior using the Markov chain

generated up to this point. Given posterior samples 0 ('), their function evaluations

F((')), and their Jacobians J(9()), we can estimate the KL divergence by
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flsamp -

DKL[p(0y)q()] ~ Z s - log JQT j(9(i))j + (F(0)) - ) 12 + C

Then, the optimization problem is

minY - log IQT J(6(i)) I + QT (F(0(')) - Y) 2 subject to QTQ = 1 (3.1)

This is an optimization problem over a manifold, in particular, a product of a

Grassmann manifold and an Euclidean manifold. The directions Q is constrained to

a Grassmann manifold, and the center Y is constrained to an Euclidean manifold.

Manifold optimization problems are well-studied and can be solved using specialized

algorithms, such as steepest descent and conjugate gradient over manifolds [8]. In this

thesis, we use the MATLAB library manopt [3].

The following section outlines the new adaptive RTO algorithm.

3.2.2 Adaptive RTO: Algorithm Overview

Adaptive RTO is summarized as follows

1. Start with a valid RTO-like proposal density (such as the prior).

2. Obtain samples from the posterior using the current proposal and independence

M-H.

3. Optimize for the best Q and Y given the samples of the posterior obtained thus

far.

4. Repeat steps 2 and 3 for a fixed number of adaptation steps.

5. Use the final adapted proposal with independence M-H to obtain a large number

of posterior samples efficiently.

A more detailed version is presented in Algorithm 5.
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Algorithm 5 Adaptive RTO

1: Initialize an empty set of posterior points L = 0.

2: Start with a valid proposal defined by Q(O) and Y(0).

3: for k = 1, ... nadapt do in series

4: for i = 1, ... , nsmail do in parallel

5: Obtain proposal (), F(()), and J((i)) using Algorithm 4

with Q = Q(k-1) and y = y(k-1).

6: for i = 1, ... , nsmall do in series

7: Use independence Metropolis-Hastings to obtain posterior samples 6 (),

f(0()), and J(0(0).

8: Add the current posterior model-Jacobian pairs {[6(1), F(0(1)), J(6(1)],- } to

the set of posterior points L.

9: Use that set L to optimize Eq. 3.1 for Q(k) and y(k).

10:

11: for i = 1,.-- , niarge do in parallel

12: Obtain proposal samples (j) using Algorithm 4

with Q = Q(nadapt) and Y = y(adapt)

13: for i = 1,.-. , narge do in series

14: Use independence Metropolis-Hastings to obtain posterior samples O(W.

Here, nadapt is the number of adaptation intervals, nsmall is the number of samples

to take during each adaptation step, and niarge is the number of samples to take

using the final adapted proposal distribution. For the initial choice of Q(O) and Y(0),

we can either use RTO's original heuristic choices, which is valid only when RTO's

assumptions hold, or the prior distribution, which is always valid. The idea is to

obtain more samples that accurately describe the posterior in conjunction with a

RTO-like proposal distribution closer to the posterior.

Note that the manifold optimization problem does not require any additional

forward model evaluations, which are typically the most computationally expensive
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components. The optimization only uses the list of stored forward model evaluations

and Jacobians to describe the posterior. When the algorithm starts off poorly, with

an under-sampled or unrepresentative list of posterior points, adaptive RTO may

select an invalid proposal during the optimization step. Experimentally, we observe

that adaptive RTO is more robust when we use a larger number of samples in each

adaptation step.

Typically, large numbers of stored forward model evaluations and Jacobians are

desired. Specific implementation details concerning how many points to keep in the

list and whether to thin out the points, such as, for example, by keeping every nth

point, merit further exploration, and are likely to be problem-dependent. Efficient

manifold optimization in high dimensions and accelerated starting procedures to avoid

under-sampling are potential directions for future development.

3.3 Numerical Examples

The following two numerical examples demonstrate two cases where adaptive RTO

improves upon the original version. In the first test case, RTO's assumptions were not

originally satisfied. We observe that RTO breaks down, but adaptive RTO does not.

In the second test case, RTO's assumptions are satisfied, and we show that adaptive

RTO is more efficient than the original.

3.3.1 Boomerang example

For this example, there are two parameters and one observation. The forward model is

3(02 + 201 - 1) when 01 < -1

f (0) 3(02 -0) when -1<01 < 1

3(02 - 201 + 1) when 01 > 1

It is plotted in Fig. 3-4. We observe y = 1 and the prior is a Gaussian with mean

[1, 0 ]T and identity covariance. The resulting posterior is also shown in Fig. 3-4.
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Figure 3-4: Boomerang example problem. (Left) Forward model. (Right) Posterior.

When we naYvely implement RTO, we observe several proposal samples that do

not converge, in other words the residuals do not decrease to zero. As a result, these

samples cluster around a ridge in R2 , shown in Fig. 3-6. This is caused by the fact that

QTJ(9) is not invertible at those values of 0 along the ridge. In addition, since the

proposal formula prescribes a very low proposal density near the ridge, independence

Metropolis-Hastings almost always rejects the samples that do not lie on the ridge.

The result is a Markov chain that is not distributed according to the posterior.

When we change Q so that RTO's assumptions hold, for example when Q corre-

sponds to the prior, we obtain the correct samples from the posterior; see Fig. 3-5.

Adaptive RTO selects a proposal distribution that satisfies RTO's conditions and is

also efficient. In Fig. 3-7, the autocorrelation from adaptive RTO decays faster than

that from using the prior as a proposal. For this test case, we show that adaptive

RTO succeeds in sampling from the posterior when RTO does not.
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Figure 3-5: Boomerang example: prior results. (Top) Scattered proposal samples,
in red, and posterior samples, in black. (Middle) Markov chains after independence
Metropolis-Hastings. (Bottom) Autocorrelation function of 62.
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Figure 3-6: Boomerang example: RTO results. (Top) Scattered proposal samples,
in red, and posterior samples, in black. (Middle) Markov chains after independence
Metropolis-Hastings. (Bottom) Autocorrelation function of 62.
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3.3.2 Cubic example

Similar to the previous example, we have two parameters and one observation. The

forward model is

f (0) = 1002 - 106 + 50 + 60,

and is shown in Fig. 3-8. We observe y = 1, and the prior is a Gaussian with mean

[1, 0 ]T and identity covariance. The resulting posterior is also shown in Fig. 3-8.

For this example, both RTO and adaptive RTO sample relatively efficiently from

the true posterior; see Fig. 3-9 and 3-10. The adaptive algorithm has a faster

decaying autocorrelation function. Adaptive RTO has a higher acceptance ratio: 0.76,

compared to RTO's 0.55. This indicates that adapting the proposal can improve

sampling efficiency.
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Figure 3-8: Cubic example problem. (Left) Forward model. (Right) Posterior.
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Figure 3-9: Cubic example: RTO results. (Top) Scattered proposal samples, in
red, and posterior samples, in black. (Middle) Markov chains after independence
Metropolis-Hastings. (Bottom) Autocorrelation function of 02.
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Figure 3-10: Cubic example: adaptive RTO results. (Top) Scattered proposal samples,
in red, and posterior samples, in black. (Middle) Markov chains after independence
Metropolis-Hastings. (Bottom) Autocorrelation function of 62.
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3.4 Concluding Remarks

Motivated from the geometric perspective of RTO, we present an adaptive version of

RTO that is more robust and efficient, through optimizing for the best proposal in

the family of RTO-like proposals. This algorithm simultaneously samples from the

posterior and determines the best proposal to do so. Numerical examples show that

adaptive RTO improves upon the original version.
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Chapter 4

Prior Transformations: How to use

RTO with Non-Gaussian Priors

The methodology and algorithms described the previous two chapters are well defined

for Bayesian inverse problems with Gaussian priors and observational noise. The

resulting posterior density functions from such inverse problems can be written in

least-squares form, which is required for RTO. However, in many applications, the

prior distribution may be non-Gaussian, and the posterior may not be rewritten in

least-squares form. In such cases, we are unable to directly apply RTO or its adaptive

variant.

We address this issue by transforming the inverse problem to one that is amenable

to RTO. In doing so, we demonstrate that RTO can be applicable to a broader

range of priors. A new random variable, the reference parameter, is constructed to

have predetermined one-to-one mapping' to the physical parameter. The reference

parameter is designed to have a Gaussian prior. The inverse problem is then redefined

over the reference parameter and solved using RTO. The resulting posterior samples

of the reference parameter, are then transformed back to corresponding posterior

samples of the physical parameter.

This chapter illustrates the above procedure using a concrete application: Li-type

'The prior transformation mapping is used as a change of variables for the inverse problem. Do
not confuse this with the RTO's approximate map in Sec. 2. RTO's approximate map describes the
steps within RTO that change Gaussian samples to proposal samples.
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priors. Li-type priors, which include Total Variation (TV) priors and B',1 Besov space

priors, are often used to infer blocky, discontinuous signals. We build up the analytical

prior mapping for Li-type priors and interpret its effect on the posterior; then, we

conclude with a numerical example, a reconstruction of a blocky signal from noisy and

blurred measurements using a TV prior. In the numerical example, we show that this

approach yields the correct answer 2 with orders of magnitude increases in efficiency

compared to other state-of-the-art sampling algorithms.

This chapter is organized as follows: Section 4.1 defines Li-type priors and describes

their use; Section 4.2 broadly sketches the procedure to sample from the posterior with

a non-Gaussian prior using RTO and a prior transformation; Section 4.3 describes the

prior transformation for one parameter with a Laplace prior; Section 4.4 describes the

prior transformation for multiple parameters with a joint Li-type prior, and Section 4.6

presents the numerical example in detail.

4.1 Li-type Priors

Li-type priors are defined to be priors that rely on the Li norm of the parameters3

The Li-type priors considered in this chapter are those that have independent Laplace

distributions on an invertible transformation of the parameters. These priors can be

written in the following form

p(9) oc exp (-A DOJl1) = exp -AE (D)il
i=1

where D E Rn>n is an invertible matrix and A E R is a hyper-parameter of the prior.

Three examples of Li-priors are: total variation (TV) priors, Bf,1 Besov space

priors, and impulse priors. The first two are used to specify the a priori knowledge

that the parameter field4 is blocky or has discontinuous jumps. The impulse prior

is used to specify the a priori knowledge that the parameter values themselves are

2This approach will obtain the correct answer, samples from the true posterior, under the same
assumptions as in RTO.

3L1-type priors may also rely on the Li norm of multiple linear combinations of the parameters.
4The parameter field is the random field for which we wish to solve the inverse problem.
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5sparse

TV priors are related to the much more well-known TV regularization, wherein the

total variation of a signal is used as a regularization term in optimization to promote

a blocky, discontinuous solution in signal processing. [23] introduced constrained

optimization on the total variation to remove noise from images. [1] used total

variation regularization to reconstruct blocky images. However, when we use a TV

prior in Bayesian inference, many have observed that the samples are not discontinuous

or blocky in nature even though the posterior mode may be thus. The TV prior can

be thought of as multiple independent Laplace distributions on the differences between

neighboring parameter node values.

TV priors are criticized for not being discretization-invariant6 . [7] proposes an

alternative prior, the Besov space prior. The Besov space prior is discretization-

invariant and also promotes blocky solutions. The B',, Besov space priors can be

thought of as independent Laplace distributions on the wavelet coefficients of the

signal'. Finally, the impulse prior is an independent Laplace distribution on the

parameter values themselves.

The exploration of Li-type priors and experimental verification of theoretical

results require sampling from high dimensional, irregular posteriors. Sampling from

such posteriors using traditional MCMC techniques is difficult. The posteriors are

not differentiable even with differentiable forward models. Typically, derivative-free

MCMC algorithms, such as random-walk Metropolis-Hastings or single-component

adaptive Metropolis, are used. [15] derived an over-relaxed Gibbs sampler to sample

from the such a posterior when the forward model is linear.

'A sparse parameter vector has many components equal to or very close to zero.
'Loosely, a prior distribution is discretization-invariant when the mean and mode of the posterior

that describes the uncertainty in the parameter field converge to an infinite dimensional answer, as
we refine the discretization; and that the infinite dimensional answer captures the intended a priori
knowledge.

7The wavelet coefficients of the parameter field are expected to be sparse.
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4.2 RTO with Prior Transformations

We propose an alternative technique to sample from the posterior by means of a

variable transformation. The transformation changes the Li-type prior defined on the

physical parameter 9 E R" to a standard Gaussian defined on a reference parameter

u E R'. This transformation simplifies the prior and pushes the complexity to the

likelihood term of the posterior. In particular, the transformed forward model is the

original forward model composed with the nonlinear mapping function. After such

a transformation, the posterior density is in least-squares form8 and we are able to

use RTO. In addition, when the forward model is differentiable, the posterior also

remains differentiable and we can use gradient-based sampling techniques such as the

Metropolis-Adjusted Langevin Algorithm (MALA).

Alg. 6 broadly sketches the procedure for sampling from a posterior on 9 E R'

using RTO and the prior transformation.

Algorithm 6 RTO with prior transformation

1: Determine the prior mapping function g: R' -+ R' where 9 = g(u).

2: Find the mode fi E R" of transformed posterior.

3: Calculate Q E Rnx+n in transformed posterior, whose columns form a basis of

the tangent space at U.

4: for i = 1, ... , nsamps do in parallel

5: Sample a standard Gaussian for (()

6: Optimize using RTO to get samples f() distributed according to RTO's proposal

defined on u.

7: for i = 1, ... , nsamps do in series

8: Use independent Metropolis-Hastings to obtain 0 distributed according to

the posterior defined on u.

9: Transform samples back using 0(') = S(u(')) to obtain samples distributed to

the posterior defined on 9.

'The transformed posterior is in least-squares form with the additional assumption of a Gaussian
noise.
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The prior transformation described is very similar to the variable transformation

presented in [12]. In the paper, a variable transformation is used to obtain a target

distribution with super-exponentially light tails, so that sampling using random-

walk Metropolis is geometrically ergodic. In a similar fashion, to perform a prior

transformation, we use a variable transformation to obtain a posterior distribution in

least-squares form so that RTO can be applied.

In the following two sections, we describe the prior transformation of one parameter

g1D() : R -+ R for the Laplace prior, and the prior transformation of multiple

parameters g(-) : R' R" for the Li-type prior, in more detail.

4.3 Prior Transformation of One Parameter with a

Laplace Prior

Suppose we have a single observation and a single parameter in a Bayesian inference

setting.

y = f(6) + 6 E ~ N(0, o-2bs)

where 0 E R is a random parameter, f(-) :R --+ R is a nonlinear forward model, c E R

is an additive Gaussian noise, and y E R is the observation. With the Laplace prior

on 0,

p(O) oc exp (-A101),

the posterior is

p(Oly) oc exp (f()Y exp (-A101).
2 crobs

Due to the Laplace prior, the posterior density cannot directly be written in least-

squares form and is also not differentiable. We can use gradient-free sampling tech-

niques such as DRAM [11] or, if the forward model is linear, the Gibbs sampler for

Li-type priors found in [15].

The alternative we propose is to transform the problem in order to change the

prior to a standard Gaussian distribution and, as a result, change the posterior to
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be in least-squares form and be differentiable. Let us define a one-to-one mapping

function g(.) : R -+ R that relates a reference, a priori Gaussian distributed random

variable u E R to the physical, a priori Laplace distributed parameter 0 E R:

0 = g(u)

One invertible, monotone transformation that achieves this is

g(u) = E %(U)) = -- sgn O(u) - log I - 2 p(u) - (4.1)

where L(.) is the cumulative distribution function (cdf) of the Laplace distribution

and p() is the cdf of the standard Gaussian distribution. To prove that the reference

random variable is indeed the standard Gaussian, we find its cdf.

IP(u < uo) = P(g-'(x) < uo) = P(9 < g(uo))

= 1(g(uo)) = a a cp(uo) = p(uo)

Hence, this mapping function indeed transforms a standard Gaussian reference random

variable u to the Laplace distributed parameter 9, and thus,

p(u) c exp u 2.

Fig. 4-1 and Fig. 4-2 depicts the analytical mapping function and its derivative.

The transformation is a one-to-one analytical mapping between 0 and u. We can

perform Bayesian inference on u and transform the posterior samples of u to posterior

samples of 9 using the mapping. We now derive the posterior density on u.

In only the following few lines, we will change notation for clarity. Let we(w)

p( 0)Io=, be the prior density on 9 evaluated at 9 = w, and Tu (w) = p(u)Iu= be the

prior density on u evaluated at u = w, and so forth for the posterior densities. First,

note that

7re(g(U)) = WU(u) ag9 1 (0)
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Transformation 0 = g(u)

4

4 -

-4

0 0.5
0.5

0
-4 0 4

U

Figure 4-1: Transformation from the standard Gaussian to a Laplace distribution

(with A = 1). The probability mass between the two red lines is equal to that between

the two green ones.
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Figure 4-2: Mapping function 1D(-) and its derivative. The mapping function is
smooth and its derivative is continuous.
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and thus

7rUIY(U y) = 7ely(g(u)|y) a-g(u)

[i/f a g(u) - y )21oc exp 7re (g(u)) --- g(u)
2 O-obs I9

oc exp -- Ir(fo(UY) (U -g-1(0) -- g(u)2 O'obs ao au

oc exp - r)7, (U)
2 O'obs

oc exp -- f0g(U exp 'U2.

After the transformation, the prior over the new variables simplifies to a standard

Gaussian, and the forward model becomes more complex. In particular, the trans-

formed forward model is the original forward model composed with the nonlinear

mapping. The mapping g(.) is differentiable. Its derivative is

I -_____

g'(U) A 
Acp(U) (U)

(1 - V(u)) U < 0

where y'(u) is the pdf of the standard Gaussian distribution,

1 1
sp'(u) = exp -u2

v72 (2

The mapping g(.) from standard Gaussian to Laplace is smooth and monotonic,

and its derivative is continuous, as seen in Fig. 4-1 and Fig. 4-2. The resulting posterior

is in least-squares form with a Gaussian prior and observational noise. The resulting

structure allows us to use RTO. This transformation also changes the posterior to be

differentiable and allows us to use derivative-based sampling techniques for Bayesian

inference.
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4.4 Prior Transformation of Multiple Parameters with

an Li-type Prior

This section introduces the prior transformation for multiple parameters and multiple

observations. Let n be the number of unknown parameters and m the number of

observations.

We have multiple parameters of interest with the following vector of observations

y = f (O) +E E e ~N(0, Fos),

where 9 E R' is a vector of parameters, f() : R" -+ R" is a nonlinear differentiable

forward model with a vector of outputs, c E R' is a vector of additive Gaussian noise

with covariance matrix Fobs E Rm, and y E R' is a vector of observations. We

impose the following Li-type prior on 9

p() oc exp (-A |DOI||) = exp -A |7(D9)j,

where D E Rn"" is an invertible matrix9 and (DO)i denotes the ith element of vector

DO. The posterior on 9 is then

p(Oy) oc exp -- (f(9) - y)T F-I (f (9) - Y) exp (-AfDIf 1 ).

Each element of the vector DO is a priori independent and identically distributed

(i.i.d.) Laplace. Reference random variables that are a priori i.i.d. Gaussian can be

transformed to each Laplace-distributed element of DO using the 1-D transformation

1D() defined by Eq. 4.1. Using such a transformation, the posterior over the new

9 TV priors (with appropriate boundary conditions) in one dimension and Bej Besov space priors
can both be cast into the Li-type prior form shown with an invertible matrix D.
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linear observation
Gaussian prior

0

linear observation
Li-type prior

0

Transformed

U

Figure 4-3: Posteriors from Bayesian inference of two parameters. The plots depict
the log-prior, log-likelihood and log-posterior. The three cases shown are a Gaussian
prior with linear likelihood (left), Laplace prior with the same likelihood (middle), and
transformed Laplace prior with transformed likelihood (right). The transformation
changes the prior to a Gaussian and makes the likelihood more complex. The posterior
on the right is smooth and can be written in least-squares form.
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variables is then

p(uly) c exp [ (f (D-'g(u)) - y) T I-1 (f (D 1 g(u)) - y) exp ( u u)

- exp - (1(u) - y) - () - exp 2 TU

where u E R" is a vector of new variables, g(-) : R' -+ R' is a vector valued function

that transforms each element of u using the Gaussian-to-Laplace transformation, and

f(u) = f(D-'g(u)) is effectively the transformed forward model. Samples of u can be

transformed back to samples of 0 by

0 = D-'g(u).

The transformation changes the prior to a standard multivariate Gaussian and makes

the likelihood term more complex. In particular, a linear forward model will have a

nonlinear likelihood due to the transformation. See Fig. 4-3.

In addition to having a posterior in least-squares form, a second benefit of solving

the inverse problem on the transformed variables u rather than the original parameters

9 is that the posterior has a continuous gradient, provided that the original non-linear

forward model is C1 continuous. This allows us to use sampling algorithms that require

derivative information, such as MALA.

To perform the optimization steps in RTO and to evaluate the proposal density of

RTO, we need the Jacobian of f E R" -+ R" with respect to u. Let us denote this

Jacobian, evaluated at u*, by Jl(u,), where J1 (-) : R' - R"'. By the chain rule,

this Jacobian is

Jy(u*) = Jf (D-g(u*))D-Jg(u*)

where Jf(-) :R' -+ R" m is the Jacobian of the original forward model and J,(.)

R' -+ R"' is the Jacobian of g, which is a diagonal matrix that contains the
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derivatives of the scalar function gD defined by Eq. 4.1.

J(u*) =

g'D (U*,1)

91D (U*,2)

g'D (U*,n)

4.5 Validity of RTO with Linear Forward Models

and Prior Transformations

In this section, we explore the cases when RTO is valid after a prior transforma-

tion. Suppose the original forward model is linear.

f(D-1 g(u)) = AD-'g(u) and the posterior on u is

Let f(0) = AO, then f(U)

p(uly) oc exp

= exp

- (AD-1g(u) - y) T'F-1(AD-1g(u)

1

S1/2ADg(u)

= exp ( ||F(u) -

where

F(u) = [P/A1UF~u) F _-1/2 A D -g(U)

From Sec. 2.3, RTO samples from the true posterior after independence M-H, when

the following two conditions hold

(i) the matrix QTJ(u) is invertible for all u in the domain of F.

(ii) there is a u such that QT(F(u) - (Y + E)) = 0 for any E.

For the prior transformation defined in Sec. 4.4, we show that (i) is true and leave (ii)
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as an assumption. For any ui E R" and U2 E R',

T-

det [J(ui)T J(u2 )] = det T 1/2r- /AD-1Jg(ui) r- i/AD-'Jg (U2)

= det [I + Jg(ul)DT ATFobsAD-Jg(u 2 )]

= det Jg(ui) det [Jg(ui) 1 Jg( 2 ) + D-TATFObsADl] det Jg(U2).

Jg(u) is a positive diagonal matrix for any u, and D-TATFobsAD-l is symmet-

ric positive semi-definite. Then, J,(Ui)-'Jg(U2) + D-TATFobsAD-1 is symmetric

positive definite and the final expression in the equation above is positive. Thus,

det [J(ui)T J(u 2)] > 0 and J(ui)T J(u 2) is invertible.

Q is from the compact QR-decomposition of J(d), where ft is the posterior mode

on u. It follows that J(u)TQ = J(U)TQ -l = J(U)TJ( )-1 is invertible for any

u E R'. This proves condition (i) holds.

4.6 Numerical Example: Deconvolution

We use a deconvolution of a square signal as a numerical experiment. In this example,

a square pulse, discretized on 128 grid points, is convolved with a Gaussian kernel to

obtain a blurred signal. 32 noisy measurements of the convolved signal are used as

observations. The inverse problem is to reconstruct the original signal from the noisy

and blurred measurements. Fig. 4-4 depicts the true signal, the convolved signal and

the measurements. A TV prior is used.

ir(9) oc exp (-A|DO|)
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where 0 9 R128 , D E R128x128, A = 1 and

1

-1 1

-1 1

Note that here, we fix the left boundary (the first row in matrix D) to make D

invertible, which is needed to define a one-to-one transformation of an independently

Laplace distributed random variable to the parameter value on the grid.

Posterior samples are obtained using over-relaxed Gibbs10 [15], MALA" and RTO.

In MALA and RTO, we use a prior transformation to redefine the problem on reference

parameters described in the previous section.

10 Over-relaxed Gibbs uses the code provided by the original author of [15] with a systematic scan
and a relaxation parameter of 7.

"MALA uses the Hessian at the posterior mode for preconditioning.
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Figure 4-4: ID deconvolution problem. The unknown true signal (blue), the signal
after convolution (green) and noisy observations (red). The inverse problem is to

determine the true signal from the noisy observations.

As shown in Fig. 4-5, 4-6 and 4-7, the posterior distribution using the three

samplers match. The posterior mean, covariance, and marginals agree. This is the

expected behavior, as all algorithms should sample from the true posterior as the

number of samples obtained approaches infinity.

A visual comparison of the sampling efficiency of the three algorithms can be done

by examining the autocorrelation decay as a function of the number of forward model

evaluations. For this problem, RTO took an average of 7.4 function and derivative

evaluations to generate a new point in its MCMC chain, and Gibbs requires an update

in each dimension with 128 function evaluations for each new point in its MCMC chain.

Fig. 4-8 shows the autocorrelation over function evaluations for the three methods.

Table 4.1 lists the number of function and derivative evaluations required per effective

sample size for the three algorithms. The sampling efficiency of Gibbs and MALA are

comparable, whereas RTO is four orders of magnitude more efficient.
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Table 4.1: Function evaluations per effective sample size for the three sampling
algorithms.

Method

Gibbs

prior transformation + MALA

prior transformation + RTO

Function/ derivative evaluations per ESS

2 518 000

1 886 000

164

This numerical example demonstrates that RTO, with a prior transformation,

can be an extremely efficient algorithm for problems on which other state-of-the-art

sampling algorithms struggle.

Posterior mean and standard deviation
12 r-

RTO

M10

8

6

4

2

0

-2
0 20 40 60 80 100 120

Ub
ALA

140
x

Figure 4-5: Posterior mean and standard deviation. The posterior mean and standard
deviation from all three sampling techniques match.
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Figure 4-6: Posterior covariance over parameters from the three sampling techniques.
Gibbs (top), MALA (middle), RTO (bottom). The posterior covariances from all
three MCMC chains agree.
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Figure 4-7: Posterior marginals of the 1 "t, 6 1" and 1 2 1St parameters. All sampling

techniques show similar marginals.
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Figure 4-8: Autocorrelation over function evaluations of the 1 ", 6 1 "t and 1 2 1 't

parameters using the three sampling techniques. RTO requires requires significantly
fewer function evaluations to reduce its autocorrelation.
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4.7 Concluding Remarks

In this chapter, we demonstrate that RTO can be applied to non-Gaussian priors. We

derive a prior transformation for Li-type priors and outline the steps to use the prior

transformation with RTO. In the numerical example, RTO with this transformation is

substantially more efficient than other sampling techniques.

For other types of priors, we would need to define its application-specific mapping

function. A few general frameworks that may help are: the Rosenblatt transformation

[22] and optimal transport maps [18] [19].

The sampling efficiency for the different algorithms is problem-dependent. In cases

where the Jacobian of the forward model can not be computed cheaply, RTO may need

to use finite differences to determine its Jacobian, and would require more function

evaluations for each new point in its chain.
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Chapter 5

Conclusions and Future Work

This thesis presents three main contributions that improve the performance and

the understanding of the randomize-then-optimize (RTO) algorithm. The geometric

interpretation helps visualize and understand RTO. It connects RTO to two other

MCMC methods in literature. The interpretation is also used in constructing an

adaptive version of RTO that is demonstrated to be more robust and efficient than

the original. Finally, a prior transformation technique is presented that allows RTO

to be applied to a broader range of inverse problems. Using the transformation in

combination with RTO results in a method shown to be several orders of magnitude

more efficient than other state-of-the-art algorithms when applied to a challenging

problem.

As optimization routines and differentiation techniques1 are improved, the compu-

tational cost for RTO will decrease. In addition, high performance computing with

distributed processing promotes algorithms that scale well in parallel, which is true

of RTO. Thus, with future developments in mind, this relatively new algorithm has

the potential to become one of the go-to sampling tools for Bayesian inference. An

understanding of RTO and other optimization-based sampling algorithms may become

essential within the uncertainty quantification academic community.

With that said, there are many avenues for future development. A few are listed

'Adjoints in finite element solvers is one example where the derivative is obtained as cheaply as
one simulation.
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below.

" Building upon the connection to optimal transport maps, we may be able to

ascertain the conditions under which sampling from RTO will be produce a

uniformly ergodic Markov chain. In particular, [16] discusses conditions under

which Metropolis-Hastings converges geometrically to the true posterior.

" In terms of implementation and performance, the proposal sample generating

procedure in RTO requires repeated optimization of a cost function that depends

directly on the forward model. There is a possibility that information from

previous optimizations can be stored and used to help future optimizations. This

would reduce the computational cost of RTO.

" Multi-modal posteriors remain difficult to sample from using a single RTO-

like proposal. Mixtures of RTO-like proposals may be used to tackle these

particularly challenging distributions.

" Extending RTO sampling to very high dimensions remain a challenge. Incorpo-

rating dimension-reduction techniques such as likelihood informed subspaces [6]

may be helpful.

There appears to be much work remaining between the current state of the RTO

sampling algorithm for Bayesian inference and its full potential. This thesis is a small,

but sure step forward in improving its efficiency and applicability.
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