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Abstract

In winter, Greenland's coastline adjacent to the subpolar North Atlantic and

Nordic Seas is characterized by a large land-sea temperature contrast. Therefore,
winds across the coast advect air across a horizontal temperature gradient and can
result in significant surface heat fluxes both over the ice sheet (during onshore winds)

and over the ocean (during offshore winds). Despite their importance, these winds

have not been investigated in detail, and this thesis includes the first comprehensive
study of their characteristics, dynamics and impacts. Using an atmospheric reanaly-

sis, observations from local weather stations, and remote sensing data, it is suggested

that high-speed wind events across the coast are triggered by the superposition of

an upper level potential vorticity anomaly on a stationary topographic Rossby wave

over Greenland, and that they intensify through baroclinic instability. Onshore winds

across Greenland's coast can result in increased melting, and offshore winds drive large

heat losses over major ocean convection sites.

Strong offshore winds across the southeast coast are unique over Greenland, be-

cause the flow is funneled from the vast ice sheet inland into the narrow valley of

Ammassalik at the coast, where it can reach hurricane intensity. In this region, the

cold air, which formed over the northern ice sheet, is suddenly released during intense

downslope wind events and spills over the Irminger Sea where the cold and strong

winds can drive heat fluxes of up to 1000 W m-2, with potential implications for deep

water formation. Moreover, the winds advect sea ice away from the coast and out of

a major glacial fjord.

Simulations of these wind events in Ammassalik with the atmospheric Weather

Research and Forecast Model show that mountain wave dynamics contribute to the

acceleration of the downslope flow. In order to capture these dynamics, a high model
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resolution with a detailed topography is needed. The effects of using a different
resolution locally in the valley extend far downstream over the Irminger Sea, which
has implications for the evolution and distribution of the heat fluxes.

Thesis Supervisor: Dr. Fiamma Straneo
Title: Senior Scientist
Woods Hole Oceanographic Institution
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Chapter 1

Introduction

Greenland and the surrounding subpolar North Atlantic ocean (Figure 1-la) are

regions of large climatic significance. Greenland, on the one hand, stores sufficient

freshwater in its ice sheet to raise global mean sea level by 7 m [Houghton et al.,

2001]. Furthermore, increased freshwater runoff from the Greenland ice sheet could

also affect global ocean circulation by freshening the North Atlantic [Manabe and

Stouffer, 1995, Stammer, 2008, Marsh et al., 2010, Weijer et al., 2012, Hu et al.,

2013]. In recent years, the ice sheet has undergone rapid changes. Its mass loss

has quadrupled from 51 t 65 Gt yr-1 between 1992 and 2001 to 211 37 Gt yr- 1

between 2002 and 2011 and thereby raised global mean sea level by 7.5 1.8 mm

from 1992 to 2011 [Shepherd et al., 2012, Hanna et al., 2013]. These changes show

how variable the mass balance of the ice sheet is, and since part of its mass loss has

been attributed to increased surface melt [Van Den Broeke et al., 2009, Hanna et al.,

2011, Hall et al., 2013], they also suggest that alterations in its surface energy budget

entail large-scale climatic consequences.

On the other hand, the subpolar North Atlantic and Nordic Seas bordering the

southwest, southeast and east coast, include three of the few locations where dense

waters are formed, which are the Greenland Sea [Rudels and Quadfasel, 1991, B6ning

et al., 1996], the Labrador Sea [Talley and McCartney, 1982, Clarke and Gascard,
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Figure 1-1: (a) The high elevation of Greenland represents a barrier to the mean
westerly atmospheric flow. SD indicates the location of the southern dome and ND

that of the northern dome. The region between them is referred to as the Saddle

region. (b) Large winter (DJFM) mean heat losses occur over the ocean southwest,
southeast and east of Greenland (based on ERA-I). IS indicates the location of the

Irminger Sea, GS is the Greenland Sea, and LS is the Labrador Sea. Over the ice sheet,
the winter mean turbulent heat fluxes are positive, meaning that heat is transferred
from the atmosphere into the surface. (c) As a frontier to the Arctic, Greenland's
winter mean potential skin temperature increases from the northwest to the southeast

(based on ERA-I). The white line indicates the approximate border of the high Arctic

zone, defined as the region where the average temperature during the warmest month
lies below 5 *C. (d) The winter mean sea level pressure (SLP) field is characterized

by an anticyclone over northeast Greenland and the Icelandic Low over the Irminger
Sea. The streamlines over Greenland are based on the winter mean l1in-wind field.

They start over the southern and northern dome and end at the coast. Both the SLP

and the wind field are obtained from ERA-I.
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1983, Gascard and Clarke, 1983], and the Irminger Sea [Pickart et al., 2003b, Vage

et al., 2011, de Jong et al., 2012] (Figure 1-1b). Ocean convection in these regions

constitutes an integral component of the Atlantic Meriodional Overturning Circula-

tion (AMOC), and thus the northward ocean heat transport [Trenberth and Caron,

2001]. Studies have suggested that the AMOC is not a stable circulation [Bryden

et al., 20051, and variations in the northward ocean heat transport in the past have

been linked with abrupt climate change [Clark et al., 2002, McManus et al., 2004,

Gherardi et al., 2005, Lynch-Stieglitz et al., 20071. Since deep convection is forced

by buoyancy losses at the surface [Marshall and Schott, 1999], changes in the sur-

face energy budget of the ocean convection sites around Greenland can influence the

northern part of the AMOC and thus have large scale implications.

The energy budget of the subpolar North Atlantic and the ice sheet is in turn af-

fected by turbulent heat fluxes across the surface [Serreze and Barry, 20051. In winter,

the mean turbulent heat fluxes are directed into the surface over Greenland and out

of the surface over the ocean, implying that the ocean loses heat to the atmosphere

(Figure 1-1b). This heat loss can in part be explained by the comparatively warm

ocean surface, which results from currents advecting warm subtropical water masses

into the subpolar North Atlantic and Nordic Seas [Siedler et al., 2001]. The advec-

tion of warm water near Greenland's coast creates a land-sea temperature contrast

across the southwest, southeast and east coast, especially in winter (Figure 1-1c), and

this temperature contrast can be amplified through the lower albedo over the ocean,

which results in more absorbed solar radiation, compared to the ice sheet [Bonan,

2002]. Therefore, winds across the coast advect air across a horizontal temperature

gradient and can give rise to large sensible heat fluxes. While onshore winds can

advect heat onto the ice sheet, offshore winds can result in large heat losses over the

subpolar North Atlantic and Nordic Seas. Thus, the atmospheric circulation around

Greenland can influence the surface energy balance over the ice sheet and over the

ocean through winds across the coast.
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The atmospheric circulation over Greenland is in turn affected by the ice sheet,

both mechanically and thermodynamically. The thermodynamic influence is related

to the radiation balance over the ice sheet. In winter, the net radiation over the ice

sheet is negative, causing the air masses above to cool and sink [Born and Boecher,

20001. Thus, a region of high thermal pressure develops over the ice cap and a

temperature inversion forms above a layer of cold, dense air. This results in a katabatic

flow down the smooth terrain of the central ice sheet that accelerates near the steeper

coasts (Figure 1-1d) [Schwerdtfeger, 1984, Parish and Bromwich, 1987, Rasmussen,

1989, Bromwich et al., 1996, Parish and Cassano, 2001]. In summer, the high pressure

field weakens and the katabatic flow is less pronounced.

The mechanical influence of Greenland on the atmosphere arises from its high

elevation of -3000 m that represents a considerable obstacle to the mean westerly flow

(Figure 1-la). The interaction of synoptic weather systems with the high topography

can result in intense wind events, particularly around southern Greenland, which is

one of the windiest regions in the World Ocean [Sampe and Xie, 20071. Among these

wind events are tip jets around the southern tip of Greenland [Doyle and Shapiro,

1999, Vage et al., 2009, Moore and Renfrew, 2005, Renfrew et al., 2009a, Outten

et al., 2009], barrier winds at different locations along the east coast [Moore and

Renfrew, 2005, Petersen et al., 2009, Harden et al., 2011, Harden and Renfrew, 2012,

Moore, 20121 and plateau jets along the eastern and western margin of the ice sheet

[Moore et al., 20131. Observations indicate the existence of another type of wind

event associated with a strong downslope flow across Greenland's southeast coast

[Klein and Heinemann, 2002, Mills and Anderson, 2003], but to date there has been

no comprehensive study about this type of wind event, and winds across Greenland's

coast, either onshore or offshore, have generally received very limited attention.

This gap in our knowledge about high-speed winds across Greenland's coast moti-

vates the research described in this thesis. In Chapter 2, I will present a comprehen-

sive analysis of the large-scale distribution, characteristics, dynamics, and influences

12



of strong cross-coastal wind events, mostly using an atmospheric reanalysis. I will

show that strong wind events across the southeast coast have a large effect on the

heat fluxes over the ice sheet and the ocean. Strong onshore winds are associated

with a warming of the ice sheet and can result in melting or conduct heat deeper

into the snow with implications for melting later in the year. Strong offshore winds

advect cold air over the subpolar North Atlantic, resulting in large ocean heat losses.

There are strong indications, that both types of wind events are triggered by the

superposition of an upper level potential vorticity anomaly at the tropopause over

a stationary topographic Rossby wave, and that they intensify through baroclinic

instability, which culminates in the breaking of the Rossby wave.

Strong offshore winds across the southeast coast are unique over Greenland, be-

cause the flow is funneled from the vast ice sheet inland into the narrow valley of

Ammassalik at the coast, where it can reach hurricane intensity. Therefore, I will in-

vestigate the local characteristics of these high-speed wind events in southeast Green-

land in more detail in Chapter 3 using the reanalysis and meteorological stations. In

addition, I will study their dynamics, and show that both the local topographic and

the large-scale atmospheric forcing are important during the wind events. As previ-

ous studies have suggested that ocean convection is driven by intense, intermittent

wind events [Marshall and Schott, 1999], I will further analyze the immediate impact

of strong individual wind events on the heat loss over the Irminger Sea. I will show

that heat fluxes during individual events can reach 1000 W m- 2 and that these events

significantly contribute to the total heat loss in this region. Based on satellite data,

I also find that downslope wind events in southeast Greenland advect sea ice off the

shelf and out of the local fjord, with potential implications for the coastal ecology

and the local outlet glacier. A modified version of this chapter has been published in

the Journal of Climate [Oltmanns et al., 2014] and is reprinted here with permission

of the American Meteorological Society.

The dynamical analysis in Chapter 3 is based on the reanalysis which does not

13



obtain the full wind speed observed by the weather stations. Therefore, a more

detailed investigation of smaller scale processes, unresolved by the reanalysis, will be

carried out in Chapter 4 using higher resolution model simulations. I will show that

small-scale dynamics associated with mountain waves contribute to the acceleration

of the downslope flow, and that a high model resolution with a detailed topography

is needed to capture these dynamics. The effects of using a different resolution over

the steep coastal slope extend downstream over the Irminger Sea with implications

for the distribution and evolution of the heat fluxes. A modified version of this

chapter is currently in press in the Journal of the Atmospheric Sciences and reprinted

here with the permission of the American Meteorological Society. In Chapter 5, I

will reflect on how the results of this thesis contribute to advancing the scientific

understanding of ice-ocean-atmosphere interactions around Greenland, and suggest

future study directions.
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Chapter 2

Large surface heat fluxes over the ice

sheet and ocean driven by winds

across Greenland's southeast coast

2.1 Abstract

As a frontier to the Arctic, Greenland is characterized by a large land-sea temper-

ature contrast such that strong winds across the southwest, southeast, and east coast

advect air perpendicular to a horizontal temperature gradient and can result in sig-

nificant sensible heat fluxes. Here, the dynamics and influences of high-speed winds

across Greenland's coast are investigated using the atmospheric reanalysis ERA-I,

weather stations and remote sensing data. It is found that the largest heat fluxes

result from high-speed wind events across the southeast coast (onshore and offshore).

Both types of wind events are triggered by the superposition of an upper level po-

tential vorticity anomaly on a stationary topographic Rossby wave over Greenland,

and there are strong indications that they intensify through baroclinic instability.

Offshore flow is generally preceded (followed) by flow across the Arctic border to the

west (north). They advect cold air over the Labrador, Irminger and Greenland Seas,
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and are highly correlated with the winter mean heat losses of these ocean convection

regions. Onshore winds advect warm air from the ocean and upper levels over the

ice sheet and can cause increased melting. The occurrence of these flows across the

southeast coast, or similarly the phase of the topographic Rossby wave, is connected

with the previously identified blocking mode over Greenland. Thus, this study pro-

vides a physical link between the large-scale climate mode, the topographically forced

wind events, and their impact on the ice sheet and ocean.

2.2 Introduction

Greenland is a frontier to the Arctic. From the northwest, where it borders the

Arctic Ocean, to the southeast, where it borders the Irminger Sea, the winter mean

potential temperature difference can be as high as 40 C (Figure 1-1c). The border

of the high Arctic zone, defined as the region where the average temperature during

the warmest month lies below 5 C [Born and Boecher, 20001, runs approximately

along Greenland's southwest, southeast and east coast. High-speed winds across these

coasts (both onshore and offshore) advect air normal to a horizontal temperature

gradient and can result in large sensible surface heat fluxes over the ocean and the

ice sheet.

Offshore winds across the coast advect cold air from the ice sheet over the ocean.

Next to the east, southeast and southwest coast, the ocean loses heat to the atmo-

sphere in winter (Figure 1-1b). These regions (the Greenland, Irminger and Labrador

Seas respectively) are ocean convection sites that feed the northern branch of the

Atlantic Meridional Overturning Circulation (AMOC) [Talley and McCartney, 1982,

Clarke and Gascard, 1983, Gascard and Clarke, 1983, Rudels and Quadfasel, 1991,

Marshall and Schott, 1999, Pickart et al., 2003b]. The substantial amount of heat

transported poleward as part of the AMOC has profound influences on many aspects

of the global climate system [Survey, 2012]. By preconditioning deep convection
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through large surface heat fluxes, cold winds from the Arctic could have larger scale

implications. Specifically, they could affect the climate of northwest Europe [Vellinga

and Wood, 2002] and the sequestration of carbon dioxide by the deep ocean [Sabine

et al., 2004]. Despite their potential importance, the effects of strong offshore winds

across Greenland's coast have not yet been studied in detail. Thus, in this chapter, I

will investigate the influences of these offshore winds across Greenland's coast on the

downstream air-sea fluxes.

Onshore winds across the southeast, east and southwest coast can advect warm

air onto the ice sheet which could impact melting. Even if the temperature does

not reach above freezing, the heat anomaly that is transferred to the ice through

sensible surface fluxes can be conducted into deeper layers and stored in the ice

sheet [Serreze and Barry, 2005], and potentially speed up melting later in the year.

Thereby, warm and strong onshore winds could affect the surface mass balance of

the ice sheet with consequences for sea level rise. Moreover, when melting occurs in

fall, winter or spring and is followed by refreezing, it can affect ecosystems as animals

cannot reach the vegetation underneath [Born and Boecher, 2000]. In peak summer,

winds over Greenland are weaker compared to winter, fall and spring, and inland the

radiative fluxes are more important than the turbulent heat fluxes [Serreze and Barry,

2005]. Yet, even the summer temperature over Greenland is strongly linked to the

atmospheric circulation [Fettweis et al., 2011, Overland et al., 2012, Fettweis et al.,

2013, Hanna et al., 2013] and extremely warm summers have been associated with

preceding warm air advection over the ice sheet [Box et al., 2012, Hanna et al., 2014].

The advection of warm air, in turn, has been linked to an anticyclonic circulation

over Greenland that results in warm southerly winds across the western coast [Hanna

et al., 2014]. In this chapter, I will investigate the characteristics of onshore winds

also across the southeast and east coast of Greenland, and study their effect on the

surface energy balance over the ice sheet.

Given the potentially large impacts of strong onshore and offshore winds, it is
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important to understand their dynamics and predictability. Greenland itself likely

plays a crucial role in forcing the cross-coastal flows, as previous studies have found

that the interaction of the large-scale atmosphere with the high topography (shown

in Figure 1-la) creates strong wind events, particularly near the east coast [Moore,

2003]. These include tip jets around the southern tip of Greenland [Doyle and Shapiro,

1999, VAge et al., 2009, Moore and Renfrew, 2005, Renfrew et al., 2009a, Outten et al.,

2009] and barrier winds at different locations along the east coast [Moore and Renfrew,

2005, Petersen et al., 2009, Harden et al., 2011, Harden and Renfrew, 2012, Moore,

2012], and it was found that both types of wind events are associated with deep

cyclones. In fact, the regions off the southwest, southeast and east Greenland coast

are characterized by a particularly high cyclone frequency and large deepening rates

[Zhang et al., 2004, Tsukernik et al., 2007]. The deepening rates have been attributed

to cyclone bifurcation around the southern tip of Greenland [Moore and Vachon,

2002, Kurz, 2004] and lee cyclogenesis east [Kristjdnsson and McInnes, 1999, Skeie

et al., 2006] and southeast of Greenland [Kristjinsson et al., 2009], and numerical

model simulations and case studies suggest that, in each case, the high topography of

Greenland is crucial for cyclone development [Kristjdnsson and McInnes, 1999, Skeie

et al., 2006, Kristjdnsson et al., 2009]. Yet, the role of the topography in forcing

specifically strong onshore or offshore wind events across different coastal regions,

as well as their connection to large-scale atmospheric flow regimes, remains to be

determined.

The questions that I am addressing in this chapter are therefore:

" Where do strong wind events across Greenland's coast occur?

" What are their large-scale characteristics?

" When (or how) do they occur?

" What is the role of offshore winds across the coast for ocean heat losses over

the convection sites?
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* Can onshore winds influence the surface energy balance of the ice sheet?

First, I will characterize strong onshore and offshore wind events across Green-

land's coast with the reanalysis product ERA-Interim, and show that winds across

the southeast coast have the largest effect on the heat fluxes both over the ocean (in

the case of offshore winds) and over the ice sheet (in the case of onshore winds). Next,

I will investigate the large-scale dynamic setting of these wind events, and show that

they are triggered by the superposition of an upper level potential vorticity anomaly

at the tropopause on a stationary topographic Rossby wave over Greenland. There

are strong indications that the wind events intensify through baroclinic instability,

which culminates in the breaking of the Rossby wave. The phase of the topographic

Rossby wave, and thus the variability of the flow across the southeast coast, is con-

nected with the blocking mode over Greenland. Lastly, I study the influences of strong

offshore and onshore flows across the southeast coast. I find that offshore flows are

indeed associated with large heat losses over the subpolar North Atlantic and Nordic

Seas. Using ERA-I, weather stations and satellite data, I further show that onshore

flows across the southeast coast can result in melting and store anomalous heat in

deeper layers of the snow with implications for melting later in the year.

2.3 Background

The surface energy budget in the Arctic can be described by a balance between

radiative fluxes and non-radiative fluxes [Serreze and Barry, 2005, Serreze et al., 20071.

The total radiative fluxes (Rnet) include shortwave (Qsw) and longwave radiation

(QLw):

Rnet - Qsw + QLW. (2.1)

Qsw represents the net absorbed radiation, Qsw = Rsw (1 - a), where Rsw is

the total downward shortwave radiation and a is the albedo of the surface. Fresh snow
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has an albedo between 0.7 and 0.9, whereas melting snow has an albedo between

0.5 and 0.6 [Serreze and Barry, 20051. QLw represents the net outgoing longwave

radiation, QLW = RLW - EaTs, where RLW is the total downward longwave radiation

and the second term represents the emitted longwave flux which depends on the

surface emissivity e, the Stefan Boltzman constant - and skin temperature Ts. Qsw

is positive, while QLW is usually negative, where I am using a sign convention such

that negative fluxes indicate energy losses of the surface and positive fluxes indicate

energy transfers into the surface. The radiative fluxes are balanced by non-radiative

energy transfers:

Rnet = QS + QL + M + C, (2.2)

where Qs is the sensible heat flux, QL is the latent heat flux, M represents melting

and freezing directly at the interface, and C represents the conduction of heat inside

the surface. The sensible and latent heat fluxes are estimated by bulk formulas (e.g.

Stewart [2004], Goosse et al. [20151):

Qs =pCCsu-dT and QL = pLECLU ' dqs,

where u is wind speed, dT is the temperature difference between the surface and

the air, dq, is the specific humidity difference, p is the density of air, Cp is the

specific heat at constant pressure, Cs is the sensible heat transfer coefficient, CL is

the latent heat transfer coefficient and LE is the latent heat of evaporation. Again,

I use a sign convention such that a positive sensible (latent) heat flux implies that

the near surface air has a higher temperature (humidity) compared to the surface.

The transfer coefficients depend on the stability of the atmospheric boundary layer,

the wind speed and the surface roughness. Over land, the latent heat flux is also a

function of water availability. Thus, the turbulent heat fluxes depend both on the

temperature (or humidity) difference between the surface and the air and on wind
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speed. At any particular location, the surface air temperature is itself influenced by

the surface heat fluxes and horizontal advection. High-speed winds that advect air

across a horizontal temperature gradient, can therefore result in large turbulent heat

fluxes and will tend to equalize the temperature difference. If the flow extends over

a wide part of the ice sheet and initiates melting, it can change the albedo over a

large area generating a positive feedback where more solar radiation is absorbed [Box

et al., 2012].

2.4 Data

To identify and describe strong winds across Greenland's coast, I use the at-

mospheric reanalysis ERA-Interim (ERA-I) from the European Centre for Medium-

Range Weather Forecasts [Dee et al., 2011]. The model runs on 60 vertical levels and

has a horizontal resolution of approximately 80 km near the surface. I mainly use the

surface temperature, 10m-wind, SLP and heat flux fields in the time period between

1979 and 2012 with a 6-hourly temporal resolution.

Several studies have compared ERA-I to observations around southeast Greenland

and over the ice sheet. In October 2008, a comparison with data collected over the

Irminger Sea from the research vessel Knorr (KN194-4) was undertaken to verify the

ERA-I product. The overall conclusion is that ERA-I reproduces surface fields well.

Especially the pressure is in excellent agreement with the observations [Harden et al.,

2011]. During high wind speed conditions the 10m-winds are underrepresented by ~1

m s-1 and the 2m-air temperature has a cold bias of -2 *C. Dropsonde measurements

have been compared to the vertical structure of the ERA-I output [Harden et al., 2011,

Renfrew et al., 2008] and it was found that even though the basic structure of the wind

and the temperature field is captured, ERA-I tends to underestimate the strength of

gradients during high wind speed conditions. Over the Greenland ice sheet, the 10m-

wind field was compared to observations from automated weather stations [Moore
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et al., 2013] and it was found that the data agree with root mean square errors of -1

m s- and correlations of ~0.65. Temperature profiles from ERA-I were compared to

radiosonde data in a study about surface based inversions of the Arctic boundary layer

with the overall conclusion that the data agree reasonably well with the ERA-I output

[Zhang et al., 2011]. ERA-I heat fluxes have successfully been used in other studies

(e.g. Moore et al. [2012], Renfrew et al. [2009b]), and a comparison of ERA-I heat

fluxes with shipboard observations over the Labrador and Irminger Sea showed that

the ERA-I heat fluxes were within the bounds of observational uncertainty [Renfrew

and Anderson, 2002, Renfrew et al., 2009b].

In addition to the reanalysis, I use several weather stations over the Greenland ice

sheet and along the coast to compare the observed winds, temperature and pressure

with the ERA-I output fields. The data are distributed and quality controlled by

the Danish Meteorological Institute (DMI) [Cappelen, 20111, the Greenland Climate

Network (GCNet) [Steffen et al., 19961, and the Geological Survey of Denmark and

Greenland (GEUS), which operates the Programme for Monitoring the Greenland

Icesheet (PROMICE) [Ahlstrom et al., 2011]. The DMI stations that I use in this

study are located along the east and west coast (locations are shown in Figure 2-9).

They have at least a 3-hourly resolution and cover at least 25 years, where most of

the stations have a much longer data record. From the GCNet stations I mostly

use station Summit over the central ice sheet (Figure 2-9), station Saddle between

the southern and the northern dome, and station South Dome over the southern

dome (Figures 2-12b and 2-15a) which have at least a 3-hourly resolution, and been

operated since 1995, 1997 and 1997 respectively. From the PROMICE stations, I

use the stations in Nuuk and Tasiilaq (Figure 2-15), which record data since 2007.

Sometimes breakdowns of the stations occurred during the time period of operation,

but they did not affect the results of this study and the composites obtained from

these stations are based on at least 100 events (in the case of the DMI and GCNet

stations) and more than 50 events (in the case of the PROMICE stations).
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Figure 2-1: The mean of the 2 % fastest downslope (a) and upslope winds (b), based
on 34 years in ERA-I. Shown is the wind speed in m s . The crosses indicate the
locations used for the composites shown in Figure 2-3.

To investigate the influence of the winds on melting over Greenland, I use a

melt extent product, derived from brightness temperature by three satellite-borne

microwave radiometers: the Scanning Multichannel Microwave Radiometer (SMMR),

the Special Sensor Microwave/Imager (SSM/I), and the Special Sensor Microwave

Imager/Sounder (SSMIS) [Mote, 2007]. The occurrence of melting is determined

from a sharp increase in emissivity of the snow when liquid water is present. The

data have a 25 km horizontal resolution with an approximately daily resolution from

1979 to 2012. Several gaps of one day occurred during this period, but they do not

affect our results. At each location, there is either melt or no melt, and thus the data

does not quantify the amount of melting at that location. More information about

this data set is provided in Mote [2007].

2.5 Results

2.5.1 Characteristics of strong wind events across the coast

In order to investigate where high-speed winds across Greenland's coast occur,

I use the topographic gradient with a smoothed topography to identify downslope
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(and upslope) winds because they tend to be perpendicular to the coastline. Using

ERA-I, I find that the strongest cross-coastal winds occur in the south and reach

wind speeds above 20 m s-. In the north, the winds are weaker (Figure 2-1). The

north-south differences are likely connected to the North Atlantic storm track south

of Greenland [Chang et al., 2002]. Indeed, based on a spectral analysis, I find that

the wind speed at weather stations along the southeast and west coast is highly

correlated with the pressure on synoptic time scales, and 90 degree out of phase

(Figure 2-2), which indicates that the wind has a geostrophic component, supporting

connection to cyclones. At the southeast coast, the strong downslope winds are

focused within the valley of Ammassalik, which suggests that topographic effects are

important too [Bromwich et al., 1996, Oltmanns et al., 2014]. The strongest upslope

winds occur across the southeast coast, and they are stronger inland over the ice

sheet where the topography is less steep (Figure 2-1). Thus, the dynamical role of

the regional topography is likely very different for downslope and upslope winds across

the southeast coast.

In the following, I build composites of wind events in southeast Greenland (SE),

southwest Greenland (SW) and west Greenland (W) at locations near the coast where

the winds are strongest (see Figure 2-la for locations). The composite of the upslope

wind events in southeast Greenland (SE,,) is based on the same location as the one

for the SE downslope wind events. The results do not change appreciably if nearby

regions are chosen. To define the events, I use a threshold on downslope (or upslope)

wind speed, such that approximately the same number of wind events is obtained at

each location, which is about nine to ten events per year (thresholds and downslope

wind directions are given in Table 2.1).

The composites of the strong cross-coastal wind events confirm that they are

associated with deep cyclones (Figure 2-3). All wind events reach speeds of -20 m

s1, which is comparable to the calculated geostrophic velocities associated with the

cyclones, indicating that the pressure signal is significant. The location of the cyclone
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Figure 2-2: (a) Storm track estimated from spectral analysis of SLP in ERA-I. Shown

is the SLP variance in the 2- to 6-day period range. The black cross indicates the

location of the DMI station whose date is used to calculate the cross-spectrum shown

in (b). (b) Cross-spectrum (including the power and the phase) between downslope
wind speed and pressure measured by a DMI station at the location shown in (a).

The red lines mark the 90 degrees phase shift and the 2- to 6-day period range. A
phase shift of 90 degrees is expected for geostrophic winds.

IIW SW SE SE.,

Threshold on wind speed (m s-') 10.3 11.5 16.5 9.3
Downslope wind direction 90 (E) 50 (NE) 312 (NW) 312 (NW)
(degrees eastward from N)
Number of events in 34 years 315 305 315 322

Table 2.1: Definitions of the wind events shown in Figure 2-3. There are approxi-
mately 9 to 10 events per year.

either east of Greenland (as in the SE case) or west or southwest of Greenland (as in

the SW, W and SEU, cases) has a strong influence on the air temperature anomaly

over Greenland (Figure 2-3). During SE events, cold air from the north is advected

downstream over the warmer ocean. During W, SW and SEup wind events, warm air

from the southeast is advected over Greenland. The temperature during wind events

along the west coast is up to ~10 K higher compared to the monthly mean whereas the

temperature during wind events at the southeast coast is -8 K lower compared to the

monthly mean (Figure 2-3). The temperature anomalies are especially pronounced
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over the southwest coast. SE wind events are associated with a focused outflow out

of the larger scale Ammassalik valley. The influence of the topography on the SW, W

and SEUP wind events is less pronounced. Weather stations along the coast generally

support these results from ERA-I (Figure 2-4). While the obtained wind speed during

the events is sensitive to the exact station location, pressure and temperature are

not. Thus, all weather stations record a drop in pressure during the wind events. In

addition, the stations at the southwest and west coast obtain a warming during SW

and W events respectively, while the station at the southeast coast records a cooling

during SE events.

Even though I use the term 'upslope' for the SE., wind events, I note that it is

unlikely that the southeasterly flow crosses the topography. From radiosonde data

over Greenland, I obtain a typical stratification of N =- 0.01 s-1 in winter, and a

mean flow of U =- 10 m s-. As the height of the southern dome is H =- 2500

m, I calculate the inverse Froude number defined as = to be ~2.5. According

to the flow regime diagram in Smith [1989], and its extension to rotational flows

[Olafsson and Bougeault, 19971, the flow is blocked under these conditions, and the

air on the western side of the ice sheet must have descended from upper levels. During

the descent, the air warms adiabatically, as typical for Foehn winds [McKnight and

Hess, 20001, and this likely contributes to the warming over the west coast [Born and

Boecher, 2000].

The relationship between temperature and downslope wind speed not only holds

for strong wind events but also for weaker winds, and it can be extended to specific

humidity. Thus, downslope wind speed at the west coast is positively correlated with

the temperature anomaly and to a lesser extend with the humidity anomaly (relative

to the monthly mean), whereas downslope wind speed over the southeast coast is

anti-correlated with the temperature and humidity anomaly (Figure 2-5). Since the

sensible and latent heat fluxes depend on the temperature and humidity difference

between the surface and the air, downslope winds across the southeast coast can cause
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Figure 2-3: ERA-I composites of wind speed, sea level pressure (SLP) and temper-

ature anormaly (relative to the monthly mean) during the high-speed wind events at

the locations shown in Figure 2-1. SEs, events are based on the same location as SE

events. For each location, the composites are based on more than 300 wind events

between 1979 and 2012 (see Table 2.1 for definitions).
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Figure 2-4: DMI weather station composites of wind speed, pressure and temperature

evolution of the downslope wind events identified with ERA-I at the locations shown

in the map. For pressure and temperature, the mean during the events has been

subtracted. The station at the southeast coast is used for the SE events, the station

at the southwest coast for the SW events, and the station at the west coast for the W

events. In the case of the SE and the SW events, the composites are based on ~200

wind events. The station at the west coast obtains over 300 W events.
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Figure 2-5: (a) Shown is u'q' between 1979 to 2012, where u is downslope wind speed

in m s-' and q, is specific humidity in g kg- 1 . The overline indicates a monthly

average and the primes denote deviations from the monthly mean. (b) same as (a)

but with for temperature (K) instead of humidity. All variables are obtained from
ERA-I.

both latent and sensible heat losses over the ocean. The effects on the heat fluxes

will be investigated in more detail in Section 2.5.4.

2.5.2 Variability

As the composite of the wind events indicates, W, SW and SE.p events are con-

nected. In fact, allowing for a time difference of 2 days 50% of the W events are

associated with SW events, 29% of SW events are associated with SE., events, and

41% of the W events are associated with SEs, events. Even if events are not followed

or preceded by wind wind events at the other locations, ERA-I and weather stations

indicate the occurrence of enhanced wind speeds at the other locations. There are

fewer connections of each of the west coast wind events with the SE events. Allowing

for a time shift of four days, 6% of the SW events, 10% of the W events and 12% of

the SEs, events are followed by SE wind events. Since SW, W and SE 1, events are

similar with regard to the cyclone location and temperature anomaly, I will focus in

the following on the comparison between SE and W wind events only.

The interannual distribution of SE and W events suggests a weak anti-correlation
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as years with many SE events tend to be associated with fewer W events and vice

versa (r = -0.4 in winter; the anti-correlation is significant to the 95% confidence

interval, determined by testing the null hypothesis). In some years, SE and W events

are similarly frequent (Figure 2-6). While the number of wind events obtained is

sensitive to the threshold on wind speed, the seasonal and inter-annual distributions

are not. Both types of wind events have a large inter-annual variability with the

number of events per year varying between 4 and 17. While the distribution of W

events clearly peaks in winter, SE events are also frequent in fall and spring (Figure

2-6). The cyclone that triggers SE events is farther north (and north of the mean

jet stream location in winter). Such a northward position is likely facilitated by

the reduced stability over land in fall and spring, when solar insolation and surface

heating is larger. This will be investigated in more detail in the next section.

2.5.3 Large-scale dynamics

Large-scale atmospheric forcing

To understand what causes the wind events, I start by investigating their large-

scale evolution. Composites of equivalent potential temperature at the tropopause

during the evolution of SE and W events show that a cold temperature anomaly

(which is representative of a positive PV anomaly [Hoskins et al., 1985]) is present over

Greenland during SE events and over the Labrador Sea during W events (Figures 2-7

and 2-8). An upper level PV anomaly was also found to be influential for the evolution

of the cyclone in case studies on intense lee cyclones east of Greenland [Kristjdnsson

et al., 1999, Skeie et al., 2006], and in case studies on bifurcation around the southern

tip of Greenland [Moore and Vachon, 2002, Kurz, 2004]. Simultaneously, warm air at

the surface is advected northward over the Irminger Sea in the case of SE events, and

over the Labrador Sea in the case of W events (shown by the meridional stretching

of surface isentropes at 0 hours in Figures 2-7 and 2-8). Especially for the W events,

the surface temperature contours are well aligned with the upper level temperature
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Figure 2-6: Seasonal and interannual variability of SE and W wind events. W event

occurrence peaks in winter whereas SE events are also frequent in fall and spring.

Error bars indicate the standard error of the mean. Both types of wind events have a

large inter-annual variability. For the interannual variability, a year has been defined

to extend from July to the following June, so as not to split the winters.
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contours in the region of the Rossby wave breaking - where colder isotherms at

the tropopause are southward of warmer ones. This indicates that the wind events

intensify through baroclinic instability.

In order to investigate whether both anomalies (at the surface and the tropopause)

contribute to the instability and the Rossby wave breaking, I estimate the penetration

depth H of the anomalies with H = -= 10 km, where I have used a characteristic

length scale of L 1000 km, a typical stratification of N = 0.01 s-1 and a Coriolis

parameter of f =10 s-1. Thus, the velocity at the height of the tropopause

zt =~ 9 km, induced by the surface temperature anomaly, can be estimated with

-H! exp ("), where L is obtained from thermal wind balance. For both types of

wind events, low level temperature anomalies (relative to the monthly mean) suggest

a temperature difference of 5 K over 1000 km (on a constant pressure surface), which

corresponds to a velocity perturbation of 7 to 8 m s-1 at the tropopause. Since the

basic state (i.e. the monthly mean temperature distribution) is itself not completely

balanced, the background flow associated with the large temperature contrast across

Greenland's east coast likely also influences the upper level anomaly, especially during

SE events. From the temperature evolution at the tropopause, I estimate an advective

velocity of 500 km over 12 hours (Figure 2-8), which is equivalent to 11 to 12 m s-

Since this velocity is of the same order of magnitude as that estimated from the

surface anomalies, the results suggest that the surface anomalies indeed contribute to

augmenting the upper level anomalies, and that both types of wind events intensify

through baroclinic instability.

The large-scale evolution of the cyclones provides a potential explanation why

SE events are more frequent in fall and spring compared to W events (Figure 2-6).

During SE events, cyclones are present east of Greenland (Figure 2-7), and during W

events cyclones intensify over the Labrador Sea (Figure 2-8). Thus, the PV anomaly

responsible for SE events moves over land, while the one responsible for W events

moves over the ocean. The surface temperature west and northwest of Greenland
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Figure 2-7: Left: Composite evolution of equivalent potential temperature e at the

tropopause (shading), defined as the 2 PVU (potential vorticity units) surface, and at

the surface (contours) during SE events. The white line marks the location of the 300
K isotherm at the tropopause to show the breaking of the Rossby wave. The contour

interval of equivalent potential temperature at the surface is 5 K. Right: Composite

evolution of SLP during SE events. The composites are based on 315 events between

1979 and 2012.
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Figure 2-8: Left: Composite evolution of equivalent potential temperature 0e at the

tropopause (shading), defined as the 2 PVU surface, arid at the surface (contours)

during W events. The white line marks the location of the 305 K isotherm at the

tropopause to show the breaking of the Rossby wave. The contour interval of equiva-

lent potential temperature at the surface is 5 K. Right: Composite evolution of SLP

during W events. The composites are based on 315 events between 1979 and 2012.
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varies by up to 20 'C between fall or spring and winter. Over the ocean southwest

of Greenland, it varies by less than 5 *C, and radiosonde profiles suggest that the

warmer surface in fall and spring can result in a reduced stability west and northwest

of Greenland. The reduced stability, in turn, leads to a deeper penetration of the

upper level PV anomaly and helps cyclones to spin up [Moore et al., 19961. This can

explain why SE events are more frequent in fall and spring compared to W events.

When an upper-level PV anomaly crosses high topography, a secondary lee cy-

clone can form southward at the surface, propagate northward along the coast and

superpose with the primary anomaly. The presence of either two separate pressure

minima or a very large low pressure anomaly during SE events is supported by weather

station Summit and by several stations along the east coast of Greenland (Figure 2-

9). As the low pressure anomaly crosses the ice sheet, the wind direction and the

temperature change. Simultaneously, a pressure drop is recorded at several locations

along the east coast, indicating that a secondary lee cyclone is propagating along the

coast. The pressure and temperature evolution over the ice sheet during W events

is opposite to that of SE events since the cyclone is on the other side of the coast.

Thus, station Summit confirms that the atmospheric setting on top of the ice sheet

is affected by both types of wind events, even though the high topography usually

represents a barrier to the mean flow associated with an anticyclonic circulation over

Greenland.

Topographic forcing

Previous studies have suggested that the high elevation of Greenland plays an

important role for the formation and deepening rate of cyclones [Kristjinsson and

McInnes, 1999, Skeie et al., 2006, Tsukernik et al., 2007, Kristjinsson et al., 2009J.

The influence of high topography on the atmospheric circulation can be described with

the topographic Rossby wave model. Following Charney and Eliassen [1949], I use

the barotropic vorticity equation ; (h ) = 0, where f is the Coriolis parameter, h
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Figure 2-9: (a) Composite evolution of pressure, wind direction and temperature at
the GCNet station Summit over the ice sheet during SE and W wind events. (b)
Pressure evolution recorded by DMI weather stations along the east coast (shown on
the map) during SE events. The Summit station composites are based on approxi-
mately 100 events between 1997 and 2010 for each type of event. The SLP composite
with the coastal DMI stations is based on more than 200 events for all stations with
most stations recording more than 300 of the wind events since 1979. In each case,
the error bars represent the standard error of the mean.
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is the depth of the fluid, c is geostrophic vorticity and -D is the derivative following

horizontal motion. I also assume that the upper boundary is at a fixed height H,

and the lower boundary at variable height hT (x, y), where IhTI < H and I(gI < fo.

After linearizing the barotropic vorticity equation, applying the mid-latitude 3-plane

approximation, and including a linear damping of the relative vorticity i (where -e

represents the spin-down time-scale for synoptic systems), this yields [Holton and

Hakim, 2013]:

8 8 _ fojohT- + - )(,v+-9- =-LOU ,h (2.3)t 5x Te H Ox

where U is the mean westerly flow. Next, I represent the geostrophic wind and

the vorticity in terms of the perturbation streamfunction T and approximate the

smoothed topography with a Fourier series hT (x, y) = Ek El hk, exp (ikx + ily),

where hk,I are the Fourier coefficients. This has as steady-state solution [Charney

and Eliassen, 1949, Holton and Hakim, 2013]:

'Fk,l = fohk,1/ [H (K 2 - KS - ie)] , (2.4)

where K2 = k 2 + 12 is the total horizontal wave number squared, Ks = repre-

sents the wave number of the the free stationary Rossby wave mode and E = K
2

Te kUi

[Holton and Hakim, 2013]. By Fourier inversion, Equation 2.4 can be solved for the

streamfunction. Thus, the amplitude of the wave is particularly large when its scale

matches that of the free stationary Rossby wave mode. In this case, it is phase-shifted

by one quarter wavelength relative to the mountain crest, consistent with Figures 2-7

and 2-8.

To apply the topographic Rossby wave model to Greenland, I use a mean westerly

flow of 10 m S-1, a mean tropopause height H of 8 km and a frictional spin-down

time of 1 day which is a typical time scale for both types of wind events (e.g. Figures

2-7, 2-8 or 2-9). Using a mean westerly flow of 15 m s-1 or a frictional time scale
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of 2 days does not change the results appreciably. Here, I use a frictional time scale

of 1 day with regard to the constraint that the cyclones be stationary during this

time. The model is simplified as it neglects surface heating and cooling. In addition,

the long meridional extent of Greenland questions the validity of using a constant

mean westerly flow. Despite the simplicity of the model and these shortcomings when

applying it to Greenland, the results indicate that it does reproduce a basic southwest

- northeast asymmetry over the southeast coast which is similar to the composite of

the western and eastern wind events (compare Figures 2-3 and 2-10d). I note that

the asymmetry is not 'perfect' as W and SE events are not exact mirror images of

each other. In addition to representing different phases of the topographic Rossby

wave, they also have a different orientation as the southwest - northeast direction is

more pronounced for W events. The direction or phase of the Rossby wave is likely

dictated by the meandering jet stream (i.e. the mean flow) and the location of the

PV anomalies [Woollings et al., 2008, 2010, Hannachi et al., 2012].

The topographic Rossby wave model is based on an idealized mean westerly flow

and reproduces stationary wave modes. As the westerly flow across Greenland, or

similarly the path of the jet stream, is highly variable, the occurrence of these wind

events is determined by the large-scale atmospheric variability. Specifically, the results

from the previous section suggest that an upper level potential vorticity anomaly

could superpose on the topographic Rossby wave, and thereby create deep cyclones

and strong wind events. Thus, while the topography influences the location of the

synoptic disturbance, the variability of the events is determined by the large-scale

atmospheric variability.

To investigate if there is a large-scale atmospheric mode that describes which phase

of the topographic Rossby wave is dominant at any given time, I use an empirical

orthogonal function (EOF) analysis of daily SLP variability from 1979 to 2012 (for

the full years) in ERA-I. (Figure 2-10). The first EOF mode that is obtained is

connected to the strength of the Icelandic Low and highly correlated with the North
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Atlantic Oscillation (NAO) [Hurrell, 19951. The second mode reflects the strength of

a low pressure anomaly over the Labrador Sea with opposite phases over the eastern

and western North Atlantic. It is similar to the Greenland-Scandinavian dipole (e.g.

Tsukernik et al. [2010]) and the 'blocking' regime described by Cassou et al. [2004]

and Hurrell and Deser [2010]. The third EOF mode resembles the ridge regime in

Cassou et al. [2004]. It is also connected to the Greenland blocking as defined by

Scherrer et al. [2006] and a northern jet stream location [Woollings et al., 2008, 2010,

Hannachi et al., 2012], which is in turn associated with a negative phase of the East

Atlantic pattern [Barnston and Livezey, 1987]. This EOF mode shows similarity with

the stationary topographic Rossby wave pattern over the southeast Greenland coast,

the region of interest in this study. Specifically, in both cases the zero line runs

across the southern dome of Greenland where the topography is higher compared

to the surrounding area. This emphasizes the role of the topography in directing

the cyclone either south or north of the top of the southern dome. The results of

this EOF analysis are insensitive to the size of the domain, as long as Greenland is

included, and to the time period chosen. Thus, the EOF mode associated with the

zero line across southeast Greenland is obtained for all seasons, including summer,

even though its amplitude is much reduced in summer.

The southwest - northeast asymmetry of the third EOF mode is also similar to

that associated with the eastern and western wind events (Figure 2-10c and Figures

2-7 and 2-8). Specifically, isolines of this mode cross the southeast coast, indicating a

geostrophic flow across the coast. Indeed, I find that the winter (DJFM) occurrence

of SE (W) events is correlated with the principal component of the third EOF mode

with a correlation coefficient of -0.70 (0.50), despite explaining only 13% of the total

SLP variance over Greenland. In both cases, the correlation is significant to the 95%

interval (determined by testing the null hypothesis). W events are also affected by

the second EOF mode, whereas SE events are also affected by the first EOF mode. In

addition, the third EOF mode reproduces the seasonality of the wind events in that
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seasonal averages of its principal component (PC 3 hereafter) are smaller in spring

and fall compared to winter, and a smaller (larger) PC 3 favors the occurrence of SE

(W) events. Thus, in the following, I will use the PC3 to approximate the strength of

winds across Greenland's southeast coast, as it is a more quantitative index especially

during time periods when the wind events are less frequent, such as summer. Even

so, it should be kept in mind that it is not the only mode affecting the strength of

these winds as the first two EOFs (which reflect the general strength of atmospheric

variability southeast and southwest of Greenland) are also influential.

2.5.4 Downstream effects

Influence of cross-coastal flows on the heat fluxes over the ice sheet and

ocean

When the flow across the southeast coast is northwesterly (and the PC3 is neg-

ative), it can be associated with an SE event and drive large heat fluxes over the

Irminger Sea [Oltmanns et al., 2014]. I find that prior to the 312 most negative PC 3

events (i.e. the 312 times when the PC3 is most negative between 1979 and 2012,

which had to be separated by at least three days), a geostrophic flow is directed off

the Canadian Archipelago across the Labrador Sea, and after these events there is

a strengthened northwesterly flow from the Arctic over the Greenland Sea (Figure

2-11). Both flows are connected with the same cyclone. When the winds are directed

off the Canadian Archipelago, tip jet events can occur in addition, which are known

to drive large heat fluxes over the Irminger Sea [Pickart et al., 2003a, Vage et al.,

2011]. The strengthened northerly flow over the Greenland Sea after the PC3 events

is likely associated with enhanced heat fluxes in this region. Thus, by describing

the variability of the flow across Greenland's SE coast and generally the flow across

the horizontal temperature gradient associated with the Arctic border (also west and

north of southeast Greenland), the variability of the third EOF mode is well corre-

lated with the heat fluxes over the Greenland, Irminger and Labrador Sea regions

40



a) EOF1 (32%)

30w

C)

b)

I

I

1.5

1

0.5

0

-0.5

-1

--1.5

EOF2 (21%)

Co 0

0

0'

30OW

d )
EOF3 (13%)

30*W

I

I

1.5

1

0 .5

0

-0.5

-1

-1.5

Streamfunction (m s-)

&0 0

30*'W

Figure 2-10: (a,b,c) EOF decomposition in ERA-I based on SLP variability from 1979
to 2012. The modes are normalized by their standard deviation, and the title indicates
the percentage of the atmospheric variance that is explained by them. Topographic
contours are added for the third EOF mode. The black line indicates the zero line of
the third EOF mode. It runs across the top of the southern dome of Greenland. If
the cyclone is north of that line, the flow across the southeast coast is northwesterly.
If it is south, the flow is southeasterly. (d) Perturbation streamfunction (M 2 s- 2 )
derived from the topographic Rossby wave model. Despite its simplicity, the model
reproduces a basic southwest-northeast asymmetry over the southeast coast, that is
similar to that associated with the third EOF mode and the eastern and western wind
events.
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Figure 2-11: Composite evolution of the 312 most negative PC3 times between 1979

and 2012 in ERA-I. PC3 refers to the principal component of the third EOF mode
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and after the time when the PC3 is at its minimum.
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Figure 2-12: (a) Composite difference of the heat flux field (W m -2 ) between the

eight lowest and the eight highest PC3 winters (DJFM) from 1979 to 2012 where PC3
refers to the principal component of the third EOF mode (Figure 2-10). The thin
black line delineates the regions in which the heat flux difference exceeds the two
standard errors associated with the eight highest and the eight lowest PC3 winters.
Negative heat fluxes indicate a heat flux from the surface to the atmosphere. (b)
Composite difference of the surface air temperature (K) between the eight highest and
the eight lowest PC3 winters (DJFM) from 1979 to 2012. The blue line delineates the
region on which the temperature regression is based. (c) Regression of temperature
variability within the region shown in (b) in winter (DJFM) using the PC 3. (d) Inter-
annual variability of the mean winter (DJFM) heat fluxes averaged over the Irminger,
Labrador and Greenland Sea regions shown in (a) and the (normalized) PC3.

in winter (DJFM) with a Pearson correlation coefficient of 0.75 (Figure 2-12d). The

correlation between the heat fluxes and the PC3 is significant to the 95% confidence

interval. This indicates that strong northwesterly flows across the Arctic border do

indeed force heat losses over the ocean convection regions around Greenland.

In the other direction, winds across the southeast coast advect warm air over the

ice sheet. As the winds are generally strongest in winter, I expect the turbulent heat

fluxes to be largest in winter. Indeed, the correlation between temperature over the

ice sheet (which is a more quantitative index than melt extent), and the PC3 (again
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used to approximate the flow across the southeast coast) is r = 0.69 in winter (Figure

2-12c). In spring and summer, indirect effects of the atmospheric circulation, related

to changes in the albedo and radiation become more important (Figure 2-13c). I find

that the correlation of r = 0.52 in spring (March through June) is reduced compared

to winter (December through March), but it remains significant to the 95% interval.

For both seasons I have removed a linear trend from the temperature data. Next, I

will investigate the influences of warm winds on the heat balance of the ice sheet. I

will start by studying how much anomalous heat can be conducted into deeper layers

of the ice sheet during warm winters with frequent and strong onshore winds. Then

I will investigate the more generally the atmospheric causes of melting.

Winter heat storage in the ice sheet

In theory, the heat that is transferred through the sensible heat fluxes during win-

ter can be conducted into deeper layers of the snow, which could precondition melting

in spring (Equation 2.2). To investigate how much additional heat is stored in the

snow in winters when the PC3 is predominantly positive (and when the flow over

south Greenland is mostly southeasterly), I use the one dimensional heat equation

T =a , where z is the depth below the surface, T is the snow temperature and

t is time. a is defined as k, where k is the conductivity of the snow, csn is the

specific heat capacity of snow (csn = 2009 J kg-' K 1 [Hock, 20051), and Psn is snow

density. Thus, a is a function of depth. Sturm et al. [2010] have used a set of 25,688

snow depth and density measurements for different snow types to derive an empirical

relationship between snow depth and density, and based on 488 samples, Sturm et al.

[1997] derive an empirical relationship between snow conductivity and snow density.

Both relationships have been tested, and the accuracy of the conductivity-density re-

lationship is 10%. The relative error associated with the depth-density relationship

is estimated to be less than 0.5%. Thus, I use these relationships to estimate the

snow conductivity and density as a function of depth, and solve the heat equation.
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Specifically, I model the temperature difference of the snow between the eight most

positive and the eight most negative PC3 winters. I define x on the interval from 0

to D, where D is the total snow depth (which I chose to be 10 m to be well below

the penetration depth of seasonal temperature variability). Since the winter (DJFM)

mean surface temperature difference between these winters is 5 K (Figure 2-12b), I

set 5 K as upper boundary condition. The temperature difference of 5 K between

these winters does not need to be the result of warm winds only. Other terms in

the surface energy budget, in particular reduced outgoing longwave radiation asso-

ciated with enhanced cloud cover or atmospheric humidity, can also contribute to

the anomalous surface temperature. As initial condition, I set the snow temperature

difference to 0 K everywhere. Next, I integrate over the entire winter from December

through March and calculate the final heat content H (t) = f0 c,,pTdz.

The empirical relationships for snow density and conductivity are based on param-

eters that vary according to the type of snow considered. Snow types (e.g. 'prairie'

or 'alpine') are classified according to properties such as temperature, liquid water

and ice content, grain size and texture [Sturm et al., 1995]. 'Maritime' characterizes

the most maritime snow class, whereas 'Tundra' corresponds to the most continental

snow class. Depending on which snow class I use, the final heat content difference

between the warm and the cold winters ranges between 4.5 - 106 J m- 2 for 'Tundra'

and 5.1. 106 J M 2 for 'Maritime' (Figure 2-13). Results from the other snow classes

fall within these two. To put this into perspective: The mean total heat flux across

the surface over the most part of the ice sheet (obtained from ERA-I) is ~3 W m- 2 in

April (Figure 2-13). Under these conditions, it takes 17 to 20 days to obtain an equiv-

alent amount of energy. Thus, the model suggests that the additional heat stored in

the ice sheet during the eight most positive PC3 winters compared to the eight most

negative PC3 winters can result in an earlier onset of the melt season by 17 to 20

days. I note that there is a large uncertainty associated with the radiative heat fluxes

in ERA-I [Chaudhuri et al., 2014], despite the fact that ERA-I is one of the better
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performers when different reanalyses are compared [Walsh et al., 2009]. Thus, the

time period of 17 to 20 days should be considered as an estimate only.

Melt events

Since most of the melting occurs in summer when the winds are weak, I investigate

the atmospheric causes of sudden melt events instead of analyzing the effect of strong

onshore winds on melting. Specifically, I use satellite data with a daily resolution

[Mote, 2007] to build a composite of melt events which I define using a threshold of 2.2

standard deviations above the running mean with a period of 15 days. The standard

deviation is taken over the same period as the running mean. In addition, events have

to be separated by at least two days. This results in 304 melt events between 1979

and 2012 (Figure 2-14), and thus the frequency of the events is comparable to that of

the wind events. If different averaging periods are chosen the results do not change.

The results are also insensitive to the region on which the definition is based such that

melting at only the east coast or the west coast results in similar atmospheric settings.

The melt events I obtain mostly occur in fall, winter and spring, and are least frequent

in summer. They are associated with a temperature anomaly of 10 K over the ice

sheet (relative to the monthly mean), with a cyclone southwest of Greenland and an

anticyclone northeast of Greenland, as well as with a southeasterly flow across the

southeast coast (Figure 2-14). Since the melt extent data is daily and the reanalysis

data is 6-hourly, I use the time step within the day at which the temperature over the

ice sheet is maximum for the atmospheric composite, as temperature is likely the most

relevant quantity for melting. Most of the anomalous melt occurs along the coast in

southern Greenland. The atmospheric setting resembles that during SEp events (and

to a lesser extent W and SW events) but with reduced amplitude, indicating that the

turbulent heat fluxes induced by strong upslope flows across the southeast coast are

not the only factor contributing to the melting.

In order to investigate which terms of the surface energy budget contribute to
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Figure 2-13: (a) Evolution of the snow temperature difference between the eight most

positive and the eight most negative PC3 winters using the heat equation with snow

density estimates for the class 'Tundra' in Sturm et al. [2010]. (b) Additional heat

content in the eight most positive PC3 winters relative to the eight most negative

PC3 winters for the snow classes 'Tundra' and 'Maritime', which represent the most

continental and the most maritime snow class respectively. The error bars are based

on the estimated accuracy of the snow conductivity and density obtained from em-

pirical relationships. (c) Mean seasonal evolution of the ERA-I heat fluxes, averaged

over the most part of the ice sheet.
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Figure 2-14: (ab,c) ERA-I composite of the atmospheric setting during 304 melt

events between 1979 and 2012, defined as the time when the total melting over the ice
sheet exceeds 2.2 running standard deviations above the running mean. Melt events

are associated with a warm temperature anomaly (relative to the monthly mean), a

cyclone southwest of Greenland, and a southeasterly flow across the southeast coast.

(d) Melt extent anomaly (relative to a 15 day running mean), as derived from bright-

ness temperature obtained by satellites [Mote, 2007], within the box shown in c. A

melt anomaly of 100% indicates that all of the obtained events at that grid location
are associated with anomalous melt, whereas 0% means that no event is associated

with anomalous melt at that location. The melt anomaly is largest along the coast

in southern Greenland.
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the melting, I use atmospheric weather stations over the ice sheet. A composite of

temperature during melt events at several weather stations confirms the widespread

warming over the ice sheet during melt events (Figure 2-15). The warming is largest

at the west coast and over the central ice sheet, and less pronounced at the east coast,

likely because of the proximity to the ocean and because the winds are southeasterly.

Also, the warming occurs first over the west coast and then over the east coast.

Between the two domes of Greenland, station Saddle, which obtains more than 100

melt events, records both an increase in wind speed (with winds coming from the

east-southeast) and an increase in absorbed radiation during the melt events, and in

theory both of these factors can contribute to the warming (Figure 2-15).

The increase in radiation, in turn, can be due to enhanced absorbed shortwave

radiation when the melting lowers the albedo, or it can be due to reduced outgoing

longwave radiation when there is an increased cloud cover or atmospheric humidity.

Weather stations in Nuuk at the west coast and in Tasiilaq at the east coast observe

both a decrease of the albedo of ~0.1 and an increase in cloud cover of -20% (Figure

2-16) which results in reduced outgoing longwave radiation. There is also a reduction

of absorbed shortwave radiation due to the cloud cover, but this reduction is not as

large as that of outgoing longwave radiation, which could be due to the decrease in the

albedo, such that a larger fraction of the incoming shortwave radiation is absorbed. At

the weather station in NUK, for instance, I calculate that the smaller albedo results

in an additional 9 W m- 2 of absorbed shortwave radiation. Thus, the warming over

the ice sheet is likely the result of several factors: There is advection of warm air

by southeasterly winds. The increased cloud cover (or atmospheric humidity) retains

much of the anomalous heat, and especially near the coast, the warming affects the

albedo of the snow, which results in more absorbed shortwave radiation.
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Figure 2-15: (a) Composite of temperature evolution during the melt events at several

locations over southern and central Greenland (with the mean temperature during

the events subtracted). The composites with the GCNet stations Saddle (Sad), South
Dome (SD), and Summit (SUM) are based on more than a 100 melt events. The com-

posites with the PROMICE stations in Nuuk (NUK) and Tasiilaq (TAS) are based
on ~60 melt events. (b) Composites of temperature, wind speed and radiation evo-

lution during the melt events with the Saddle weather station. For temperature and

radiation the mean during the events is subtracted. The winds have a southeasterly

direction and thus, both the winds and the radiation could contribute to the observed

warming.
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Figure 2-16: Composites of radiation, cloud cover, and albedo evolution during melt

events (means subtracted) with PROMICE weather stations in Nuuk (NUK) and

Tasiilaq (TAS). Both stations record -60 events.
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2.6 Summary and Discussion

In this study, I have characterized strong winds across Greenland's coast and

analyzed their influence on the heat fluxes over the ocean and the ice sheet. I have

found that the strongest winds occur in the south, and winds across the southeast

coast achieve the largest surface air temperature changes over the ice sheet of up to

-10 K in the case of southeasterly flows, and ~-8 K in the case of northwesterly flows

(Figure 2-3). The strong southeasterly and northwesterly flows across the southeast

coast are triggered by the interaction of a large-scale vorticity anomaly with the

high Greenland topography and represent two (approximately opposite) phases of

a stationary topographic Rossby wave. While the topography thus determines the

scale of the events, their variability is controlled by the large-scale atmosphere. In

order to approximate this variability, I have used an EOF mode based on SLP that is

associated with a low pressure anomaly either southeast or northwest of the southern

dome, and thus describes the direction of the geostrophic flow across the southeast

coast (Figure 2-10).

Northwesterly flows across the southeast coast advect cold air over the Irminger

Sea (Figure 2-3). In addition, I have found that they are connected with cold air

advection from the Canadian Archipelago over the Labrador Sea, and with cold air

advection from northern Greenland and the Arctic Ocean over the Greenland Sea.

This can result in enhanced ocean heat losses in these regions, and I find that the

interannual variability of the EOF mode, that describes the flow across the south-

east coast (PC3), is correlated with the winter mean heat fluxes over the Greenland,

Labrador and Irminger Sea with a correlation coefficient of r = 0.75 (Figure 2-12d).

Hdkkinen et al. [20111 suggested that the heat fluxes over the Irminger Sea are highly

anti-correlated with the blocking mode over Greenland [Scherrer et al., 20061, which

is connected to the PC 3. Since the advection of cold air across the Arctic border can

result in large heat fluxes [Pickart et al., 2003a, Vage et al., 2009, Oltmanns et al.,

2014], and is at least partially described by the PC3 , this study provides a physical
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explanation for the high correlation found by Hkkinen et al. [2011].

In addition, I have shown that southeasterly flows over southeast Greenland advect

warm air from the ocean and upper levels over the ice sheet. Previous studies have

suggested that extreme summer melting is preceded by warm air flows across the

west coast and attributed them to a strong anticyclone over Greenland [Box et al.,

2012, Hanna et al., 2014]. In this study, I have found that the temperature over the

ice sheet is also influenced by flows across the southeast coast (Figure 2-3), and that

these flows can result in sudden increases of the melt extent, mostly in fall, winter

and spring. Composites of these melt events with weather stations suggest that the

warming during the events is due to the combined effect of warm air advection across

the southeast coast, an increase of the atmospheric moisture content, and a decrease

of the surface albedo. The increased moisture content in the atmosphere contributes

to the warming because it reduces the amount of outgoing longwave radiation. An

enhanced atmospheric moisture content was also found to be influential for extreme

melting during the summers in 1889 and 2012 [Neff et al., 2014].

Summer melting over Greenland has previously been quantified with the Green-

land Blocking Index (GBI) [Overland et al., 2012, Hanna et al., 2013, 2014]. The

GBI is defined slightly differently compared to the blocking index used by Hikkinen

et al. [2011], but the two indices are closely related to each other, and to the PC3 :

If the GBI is high, the anticyclone over Greenland is strong and blocks the passage

of cyclones over Greenland north of the southern dome. Instead, cyclones are more

likely to pass Greenland farther south such that the flow across the southeast coast is

southeasterly, and warm air is advected onto the ice. Thus, in this study, I have con-

nected these previously identified large-scale modes with the topographically forced

wind events and their heat fluxes over the ice sheet and ocean. Even so, I stress that

the influence of these southeasterly flows on the ice sheet is small in summer, and

that the radiative fluxes associated with the anticyclone are likely more important.

Moreover, the GBI includes long-term changes in temperature and reproduces the ob-
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served warming trend over Greenland, which is not included in the PC3 . This stresses

that warm air advection across the southeast coast is not the only factor determining

temperature over the ice sheet, especially in summer when radiative fluxes are more

important.

It is known that the atmospheric circulation over Greenland in summer influences

the total melting [Fettweis et al., 2011, Hanna et al., 20131. The fact, that the win-

ter circulation can influence the ice sheet later in the year, has not previously been

acknowledged. Yet, the atmospheric variability, the winds, and thus the heat fluxes,

are largest in winter, suggesting that the direct influence of the atmospheric circu-

lation on the ice sheet through the turbulent heat fluxes is particularly pronounced

in winter. The effect of warm winds in winter can be enhanced by other terms in

the radiation budget, such as reduced outgoing longwave radiation due to increased

cloud cover associated with the cyclone that triggers the winds. Here, I used the one-

dimensional heat equation to estimate how much additional heat can be stored in

deeper layers of the ice sheet during warmer winters. I find that the anomalous heat

can be conducted to depths greater than 2.5 m, and the associated heat storage can

shift the onset of the melt season to an earlier time by up to three weeks. Thus, these

results indicate that the atmospheric circulation in winter can precondition melting

in the spring, and thereby influence the ice sheet later in the year.

I conclude that strong atmospheric flows across Greenland's coast indeed affect

the surface energy balance of the ice sheet and the ocean. Previous studies have

emphasized the complexity of atmospheric variability over the North Atlantic and

suggested that several modes of variability need to be considered together [Moore

et al., 2011, Moore and Renfrew, 20111. Ocean-atmosphere-cryosphere interactions

over Greenland add to the complexity, especially when considering melting. Here, I

have shown that melting in the spring can also be affected by the winter atmospheric

circulation because the heat capacity of snow adds a memory effect to the climate

over the ice sheet and needs to be taken into account.
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Chapter 3

Strong downslope wind events in

Ammassalik, southeast Greenland

This chapter has been published in a modified form in the Journal of Climate

[Oltmanns et al., 20141. The authors are M. Oltmanns, F. Straneo, G.W.K. Moore,

and S.H. Mernild. @American Meteorological Society. Used with permission.

3.1 Abstract

Ammassalik in southeast Greenland is known for strong wind events that can

reach hurricane intensity and cause severe destruction in the local town. While a

large-scale overview of strong wind events in this region (the SE events) was provided

in Chapter 2, their local characteristics, dynamics and impacts on the nearby fjord

and shelf region are mostly unknown.

Here, data from two meteorological stations and the reanalysis product ERA-I

are used to identify and characterize in more detail these strong downslope wind

events that are especially pronounced at a major East Greenland Fjord, Sermilik

Fjord, within Ammassalik. Their local and regional characteristics, dynamics and

impacts on the regional sea ice cover and air-sea fluxes are described. Based on a
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Figure 3-1: Map of the Ammassalik area in southeast Greenland with the locations

of the two meteorological stations at and near Sermilik fjord. The satellite image

shown (googleearth.com) is from the region indicated by the blue box in the inset.

The Ammassalik region, used in the text, is defined as the region within the red box

shown in the inset.

composite of the events it is concluded that ERA-I obtains mostly the same events

as the weather stations, but that it underestimates the wind speed locally. It is

shown that the downslope wind events last for about a day. They are associated

with a deep synoptic-scale cyclone between Iceland and Greenland and advect cold

dry air down the ice sheet. The downslope flow is accelerated by the gravitational

acceleration, flow convergence inside the Ammassalik valley and a synoptic pressure

gradient acceleration. Wind events are associated with a large buoyancy loss over the

Irminger Sea and it is estimated that they drive one fifth of the net wintertime loss.

Also, the extreme winds drive sea ice out of the fjord and away from the shelf.
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3.2 Introduction

The Ammassalik region of southeast Greenland is well known for strong winds

blowing off the ice sheet, which can be of hurricane intensity and cause severe de-

struction [Rasmussen, 1989, Born and Boecher, 2000, Mernild et al., 2008]. These

winds are called 'piteraqs' and the strongest was observed on February 6, 1970, with

estimated wind speeds of 90 m s- and temperatures of -20 *C [Born and Boecher,

2000]. While similar events occur in other regions along the coast, e.g. in Kanger-

lussuaq north of Ammassalik [Bromwich et al., 1996], they are most prominent in

Ammassalik and thus, piteraq is an Ammassalik term [Born and Boecher, 20001. It

means 'sudden strong and cold wind, directed out of the fjord', where the fjord is

Sermilik Fjord, a major East Greenland fjord in Ammassalik (Figure 3-1). In the

preceding chapter, I have identified a distinct type of high-speed wind event in south-

east Greenland, but the connection between these SE events and the piteraqs reaching

hurricane intensity in Ammassalik, is unclear.

Earlier studies have addressed the nature of the strong winds and found that

they occur as a combination of different driving forces. The flow originates from the

Greenland ice cap where the radiational cooling of the boundary layer results in a

katabatic wind that accelerates over the steeper slopes at the coast [Rasmussen, 1989,

Parish and Cassano, 2001, Parish and Bromwich, 1987, Schwerdtfeger, 1984, Heine-

mann, 1999]. The valley in Ammassalik and the steep topography around Sermilik

Fjord channel the katabatic flow and intensify the wind speeds [Klein and Heinemann,

2002, Bromwich et al., 1996, Heinemann and Klein, 2002]. This is in agreement with

the results from the previous chapter, since I found that SE events are characterized

by a spatially confined flow out of the Ammassalik valley, in contrast to downslope

wind events at the west coast, where they cover a relatively broad area over the

ice sheet. Case studies have indicated that the boundary layer flow is supported by

a synoptic-scale cyclone such that the geostrophic flow is in the same direction as

the downhill topographic gradient [Mills and Anderson, 2003, Klein and Heinemann,

57



2002, Heinemann and Klein, 2002], which again agrees with the SE events. Thus,

both the synoptic and the topographic support are likely important during strong

downslope wind events. Other case studies of downslope storms in Ammassalik indi-

cate the existence of mountain wave breaking [Doyle et al., 2005] and the creation of

meso-cyclones [Klein and Heinemann, 2002]. These results suggest the importance of

a variety of forcings and dynamical features for the downslope flow during individual

storms and the SE events, but to date there has been no generalized study of their

local dynamics inside the valley of Ammassalik.

Moreover, in the preceding chapter I have identified the southeast Greenland coast

as a key region for ocean-atmosphere interactions. The Irminger Sea, downstream of

the valley, is an important ocean convection site [Pickart et al., 2003b, Vage, 2010],

and thus part of the Meridional Overturning Circulation [Jungclaus et al., 2005, Stouf-

fer et al., 20061 that influences the climate of northwest Europe [Vellinga and Wood,

2002]. Deep ocean convection is an intermittent phenomenon that is triggered by

intense winter storms which force large buoyancy losses [Marshall and Schott, 19991.

Yet, in the preceding chapter, the northwesterly flow across the southeast coast was

approximated with a large-scale atmospheric mode to investigate the interannual vari-

ability of the heat fluxes over Irminger Sea, and the immediate impact of individual

strong downslope wind events is uncertain. While previous studies have argued that

tip jets are associated with a large heat loss over the Irminger Sea [Vage et al., 2009,

Pickart et al., 2003a], to date, no study has examined the direct impact of strong

downslope wind events on ocean convection or the heat loss over the Irminger Sea.

Furthermore, since downslope wind events are directed offshore, they can poten-

tially advect sea ice offshore [Bromwich and Kurtz, 1984] with a possible feedback

on the wind intensity due to the resulting air-sea interaction [Gallee, 1997, Pettr6

et al., 1993]. Indeed, numerical simulations of specific events in Ammassalik have

confirmed this feedback [Heinemann, 2003]. Apart from impacting the ecology by

creating coastal polynyas, the removal of sea ice away from the coast could lead to
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local freshening of the Irminger Sea. The removal of sea ice, moreover, might not be

confined to the shelf region but could extend into Sermilik Fjord, with possible effects

on Helheim glacier, a large Greenland glacier that drains into Sermilik Fjord. In fact,

several authors have found a connection between the movement of outlet glaciers and

the existence of a dense sea ice and iceberg cover (ice melange), which exerts a back

pressure on the glacier and inhibits calving [Amundson et al., 2010, Howat et al., 2010,

Walter et al., 2012]. Thus, if downslope wind events remove the local sea ice cover in

Sermilik Fjord, they could contribute to the destabilization of Helheim glacier.

The questions I will address in this chapter are therefore:

" How does the large-scale wind field in southeast Greenland compare to that in

other regions of Greenland?

" What is the connection between the large-scale flow field (and the SE events)

and strong downslope wind events in Ammassalik? Specifically, what are the

local characteristics of downslope wind events inside the valley and at Sermi-

lik Fjord, and how does ERA-I describe them in comparison to local weather

stations?

" What is the vertical extent of the wind events? Do I see evidence for mountain

waves in ERA-I?

" What are the dynamics of the events over the coastal slope in Ammassalik?

Specifically, how important is the topography relative to the large-scale synoptic

forcing?

" What is the immediate impact of individual strong events on the heat and

buoyancy fluxes over the Irminger Sea?

" What is the influence of strong downslope wind events on the coastal sea ice

cover, especially near the glacier?
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To address these questions, I will present a comprehensive study of strong downs-

lope wind events in Ammassalik using the reanalysis ERA-I and two meteorological

stations, one inside the valley of Ammassalik and one directly at Sermilik Fjord.

While I find that ERA-I underestimates the wind speed observed at the weather

stations, it mostly obtains the same wind events as the stations. I am calling them

strong downslope wind events (DWE) in the following, as their definition slightly

differs from that of the SE events, and the focus here is more on the local downslope

flow. However, DWE and SE events are in large part equivalent, and the large-scale

characteristics of the DWE agree with those obtained for the SE events.

Based on vertical sections along and across the flow in Ammassalik, I find that

DWE are associated with a surface intensified jet, that is strongest within the valley

and advects cold and dry air across the coast. By evaluating the momentum balance

of the downslope flow, I will further show that DWE are accelerated through chan-

neling inside the valley of Ammassalik, by a synoptic pressure gradient and by the

gravitational force. Moreover, I find that individual events can result in heat fluxes

of up to 1000 W M-2, and using remote sensing data, I show that they advect sea

ice away from the coast and out of the local fjord, with potential implications for

Helheim glacier.

3.3 Data

I use three different data sets to identify and characterize DWE. Two of them

are meteorological stations, and the other one is the reanalysis product ERA-Interim

from the European Centre for Medium-Range Weather Forecasts (ECMWF) which

is described in Chapter 2. It has an approximately 80 km resolution at the surface,

and I use it to gain insight in the three dimensional structure of the atmospheric flow,

to put the local observations from the weather stations in a larger scale context, and

to quantify the heat and buoyancy fluxes. To understand how well ERA-I describes
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Figure 3-2: Composite of wind speed (m s-') during the 72 DWE that were identified

with ERA-I in the time period when QuikSCAT was operating. Shown are the com-

posites with QuikSCAT and ERA-I. The method used to identify DWE is described

in section 3.4.

DWE over the ocean, I compared its output to QuikSCAT satellite data. I used

the 2011 reprocessed QuikSCAT ocean wind vectors with an improved geophysical

model function [Ricciardulli and Wentz, 2011] that I obtained from Remote Sensing

Systems, Santa Rosa, CA, USA. I found that the structure of the wind field during

the events was in good agreement but that ERA-I underestimates the wind speeds

by -1 to 2 in s1 in the region of the peak wind speeds (Figure 3-2).

One of the meteorological stations is located on a hill in Sermilik Fjord (Figure

3-1) at 65*40.8' N, 37o55.0' W at a height of 25 m above sea level. Its official name is

'Station Coast'. The station was established by the University of Copenhagen in June

1997 and monitors meteorological conditions at a 3-hourly interval prior to August

21, 2007, and a 10-minute interval thereafter [Mernild et al., 2008]. Since August

8, 2008, there has been a duplicate station in case of failure of the primary. When

data from one station are not available, they are replaced by data from the other. No

data are available from June 28, 2006, to August 6, 2006, and from May 29, 2007, to

August 20, 2007. Every observed time series from the stations was manually analyzed

in detail and compared to observations from other stations in the region, to make sure

that observational errors were eliminated from the data set. In the following, I will

refer to this station as the fjord station.
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The other meteorological station is in Tasiilaq, a town near the fjord (Figure 3-

1). It has been operated by the Danish Meteorological Institute (DMI) since 1958

and is located at 65*36' N and 37*37' W at 53 m above sea level.1 Several small

shifts of the station location occurred during the period of operation, but I did not

find any discontinuities in the data set. Data were recorded at a 3-hourly interval

before August 5, 2005, and at a 1-hourly interval thereafter. During this last period,

some data gaps exist but in most cases they are limited to a few days. The data

are distributed and quality controlled by the DMI [Carstensen and Jorgensen, 2010,

Cappelen, 2011]. In the following, I will refer to this station as DMI station.

The three data sets are complementary in a number of ways. The fjord station

measures the winds directly inside the fjord valley where downhill winds are focused

and the wind speed, likely, highest. The DMI station is only 16 km away from the

fjord station but not directly inside the valley. Thus, I expect the winds to reflect more

the large-scale topographic gradient. The main advantage of the DMI station data

set is its long time span from 1958 onward. The ERA-I product provides information

on the vertical extent of the flow and puts the observations from the local weather

stations in a large-scale context. While the Sermilik Fjord is not resolved, the larger

scale valley of Ammassalik is.

T0 investigate the impact of the winds ok sa ice, luse a sea ice concentration prod-

uct provided by the National Snow and Ice Data Center (NSIDC). It is obtained from

the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E)

on board of the NASA Earth Observing System (EOS) Aqua satellite [Cavalieri et al.,

2004]. The level 3 gridded 89 GHz brightness temperatures have been processed by

the University of Hamburg to calculate sea ice concentration with a resolution of 6.25

km [Spreen et al., 2008]. The record starts in June 2002, ends in September 2011 and

has a daily resolution. I use the sea ice concentration for a confined region along the

1Before March 31, 1982, it was located at 65'36' N and 37'38' W at 36 m above sea level. After
that date it was moved to a 37*37' W at the same latitude but at a height of 50 m above sea level,
less than a kilometer away from its original location. On August 15, 2005, it has been raised to 53
m above sea level.
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DMI Station (Fjord Station]
Mean Wind Speed (m s-1) 2.60+3.48 5.21+3.77
Mean Wind Direction (degree) 305.76+74.67 58.52+53.88
Directional Constancy 0.23 0.74
Shape Parameter 1.22 1.38

Table 3.1: Statistical parameters (mean with standard deviation) of the winds
recorded by the meteorological stations from November through April. The mean
is taken from 1998-2012 for the fjord station and from 1958-2012 for the DMI station.

southeast Greenland coast (Figure 3-12). Since the presence of sea ice in this region

is restricted to the months January through May, I limit the analysis of the impact

of DWE on sea ice to this period.

3.4 Method

Southeast Greenland is unique in that it includes the large-scale valley around

Ammassalik (Figure 3-3) where the topography is particularly steep and the large-

scale flow can be channeled. In order to understand the general forcing of winds

in Ammassalik compared to other regions in Greenland, I first investigate the mean

10m-wind field obtained from ERA-I. I focus on the months November through April,

as the synoptic variability is largest in winter, and in the previous chapter it was found

that SE events are frequent in all seasons but summer. Including more months (e.g.

September through May) or fewer months (e.g. December through March) does not

change the results appreciably. Specifically, I examine where the mean winds follow

the (downslope) topographic gradient, and where they are more strongly influenced

by the mean sea level pressure field (Figure 3-3).

Over the ocean, the mean winds closely follow isobars which are largely associated

with the Icelandic Low (Figure 3-3). Above Greenland, the mean geopotential is high,

giving the wind field an anti-cyclonic orientation. The east Greenland coast (including

Ammassalik) separates the low from the high geopotential. In this region, the mean
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Figure 3-3: a: Surface elevation (m). The black box delineates the region that I

refer to as Ammassalik. b: Mean SLP field (hPa) with the mean 10m-surface winds

(November through April) from ERA-I. The winds tend to follow isobars, but in Am-

massalik they are directed across isobars from high to low pressure and downslope. c:

Directional constancy with the mean 10m-surface winds (also from ERA-I). In Am-

massalik, as well as in many other coastal regions, downslope winds (with a rightward

deflection due to the Coriolis force) are very common. d: Shape parameter from the

Weibull distribution. The low shape parameter along the southeast Greenland coast

indicates a skewed wind speed distribution with many low wind speeds and a few

very high wind speeds.
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wind field is not purely geostrophic but slightly distorted as the winds tend to be

downslope and down pressure gradient. Also, the directional constancy (defined as

the ratio of the speed of the mean winds to the mean wind speed [Moore, 2003,

Parish and Cassano, 2003]) is large along the coast, indicating that the winds are

directed downslope most of the time. At the DMI station, the directional constancy

is considerably smaller (~0.23), indicating that the wind direction varies on scales

(temporal or spatial) not resolved by ERA-I (Table 3.1). The fjord station records

a larger directional constancy (-0.74). A large directional constancy also indicates

that the wind direction is predominantly influenced by the topography, whereas a low

directional constancy suggests a variable wind field, as typical for regions in which

cyclones are frequent. At the DMI station, the mean wind direction is northwesterly

and in the fjord station it is northeasterly. The directional constancies and the mean

wind directions are likely imposed by the local topographic setting at the location of

the respective station.

Wind speed distributions are often described by a Weibull distribution [Hennessey,

1977, Palutikof et al., 1999, Pavia and O'Brien, 1986]. The Weibull distribution is

characterized by its shape and its scale parameter. While the scale parameter is

proportional to the mean wind speed, the shape parameter determines the shape of the

distribution. For instance, a shape parameter of 3.6 indicates a Gaussian distribution.

Exponential distributions have a shape parameter of 1, and Rayleigh distributions

have one of 2. A shape parameter of less than one indicates a monotonically decreasing

distribution. Figure 3-3 displays the shape parameter for the wind distribution in

Greenland. It is comparatively small over southern Greenland compared to northern

Greenland, with minima along the southeast and east coast, including southwest

of the Ammassalik valley. Small shape parameters indicate that the wind speed

distribution is skewed and has a long tail, such that there are frequent low-speed

winds and sometimes very high-speed winds. The large variability of the wind speed,

that is typically associated with small shape parameters, requires some larger scale
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I I Fjord DMI ERA-I
Time Span 1998-2010 1958-2010 1979-2010
Direction Condition, clockwise (degree) none 270-20 270-20
Speed Condition (m s- 1) >17.4 >14 >10
Mean number of events per year 7.8 i3.1 7.6 3.2 6.9 2.9

Table 3.2: Definitions of DWE in the three different data sets. Other definitions give
qualitatively the same results.

atmospheric variability and cannot be attributed to the topographic forcing alone.

Small shape parameters were also found in Coats Land, Antarctica [Renfrew and

Anderson, 2002]. For this region, it was found that winds are predominantly katabatic

40% to 50% of the time, while at other times the flow was due to other driving

forces such as a synoptic-scale low pressure system [Renfrew and Anderson, 20021.

A summary of some statistical parameters describing the wintertime winds in the

different data sets is given in Table 3.1. The shape parameter of the mean winds

is even smaller in the other two data sets (1.23 in the DMI station and 1.26 in the

fjord station), indicating that the skewness of the wind distribution is even more

pronounced. It is the long tail of high-speed winds, that I investigate in the rest of

this study.

To build a composite of DWE, I followed the general criterion that they be downs-

lope and strong. Due to the different locations and characteristics of the three data

sets, the specific definitions in each of them are, however, slightly different (Table

3.2). The identification of the wind events in ERA-I is based on the DMI station

location. This does not coincide with the location where ERA-I records the fastest

winds during DWE, but using this location results in a better agreement in terms of

the obtained wind events. However, alternative locations in Ammassalik give quali-

tatively the same results.

At the fjord station, wind speeds above 5 m s- 1 are usually only reached by

winds in the along-fjord direction. Winds from other directions are blocked by the
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mountains surrounding the fjord. To capture only the strongest winds, I define an

event as having a speed larger than the mean plus four standard deviations. For the

time period from 1998 to 2010, this speed condition is 17.4 m s-1. Requiring the

events to be at least 48 hours apart so as not to count an event twice, this results

in an average of 7.8 events per winter. The speed limit is arbitrary, but alternative

definitions do not change the results qualitatively, only the number of obtained events

differs.

In the other two data sets, the strongest winds have two preferred directions. Of

the two, downslope winds are parallel to the topographic gradient in Ammassalik.

Based on previous studies, I identified the winds with the other direction as barrier

winds which are directed along the coast [Moore and Renfrew, 2005, Petersen et al.,

2009, Harden et al., 2011]. In addition, I confirmed that most of the DWE identified in

the fjord data have the downhill direction in the other two data sets. Downslope winds

at the DMI station are southeastward (between 300 and 360 degree in geographical

coordinates), even though the winds have a clear north-to-south orientation in the

data from the fjord station. It is likely that the difference in direction of 0* to 600 is

due to differences in the local topographic gradient between the fjord and the DMI

station area.

In order to separate the downslope winds from the barrier winds, I apply a speed

and a direction condition to the winds in ERA-I and the DMI station data. Wind

directions need to be between 2700 and 20* (clockwise). The number of events ob-

tained this way is not sensitive to the direction condition because they naturally fall

into a very narrow direction range. Thus, a direction condition between 300* and

360* (or 180* to 20* which just filters out the barrier winds) gives qualitatively similar

results. The condition on speed, which is 10 m s- in ERA-I and 14 m s- 1 in the

DMI station, affects the number of DWE obtained more strongly. I chose the above

limits so that, I obtain approximately the same number of DWE in the common time

period which is about seven events per year. The comparatively smaller speed limit
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in ERA-I is likely related to the coarse resolution of the model. As I show below, the

DWE captured with these slightly different definitions have similar composites and

share about 70% of the obtained events. The wind events that are obtained by the

fjord station only, are recorded by the DMI station and ERA-I as either downslope

winds that are not fast enough to fulfill the condition on wind speed or as very strong

barrier winds. Moreover, the DWE obtained by ERA-I are also connected with the

SE events investigated in the previous chapter. Despite their different definition 78%

of the DWE recorded by ERA-I correspond to SE events, suggesting that they are in

large part equivalent.

3.5 Results

3.5.1 Characteristics

The seasonal distribution of events obtained is similar in all three data sets (Fig-

ure 3-4). The bulk of the events occurs between October and April with peaks in

November and February/March, and a large interannual variability (Figure 3-4). I

use all of the obtained DWE to build a composite of wind speed, sea level pressure

and temperature in each data set (except for sea level pressure from the fjord station

where it is not measured). Whenever I refer to wintertime wind events or winter

climatology I define wintertime as the months November through April. Figure 3-5

shows the evolution of these surface fields from one day before the time of maxi-

mum wind speed until one day afterwards. The origin (0 h) is defined as the time of

maximum wind speed and negative time means time before the wind speed reaches

its maximum. To derive the anomaly (of temperature and pressure), I subtract the

mean during the event. The peak intensity of the wind speed is largest in the fjord

station and smallest in ERA-I (Figure 3-5). The time between the initial increase

in wind speed and the return to low wind speed is about 20 to 30 hours in all three

data sets. Wind speeds above 10 m s1 are sustained for about 10 hours. As the
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wind speed increases, both the temperature and the pressure drop. The temperature

minimum is reached slightly after the time of maximum wind speed has passed while

the minimum in pressure occurs before the maximum wind speed is reached. Not

shown is the relative humidity evolution recorded by the DMI station, but its curve

resembles the temperature curve closely with a relative humidity drop of 20%. Also

not shown is the DMI station cloud cover evolution. I find that 40 hours before the

event the sky has a cloud cover of almost 80%. During the event the sky clears up by

more than 40%. About ten hours after the event, the cloud cover starts to increase

again. The climatological winter mean cloud cover is 70%.

A composite of the large-scale wind velocity distribution using ERA-I shows the

strong winds of -20 m s 1 occur inside the valley of Ammassalik, where the flow

converges (Figure 3-6). I note that ERA-I records the maximum wind speed not

directly at the fjord, where the two stations are. The wind speed remains large as the

flow crosses the coastline and still reaches -15 m s- over a large part of the Irminger

Sea. The corresponding sea level pressure field indicates that the flow is supported by

a synoptic-scale geostrophic flow associated with a cyclone located between Iceland

and east Greenland (Figure 3-6), which is in agreement with the results from the

previous chapter. Also shown is the ERA-I boundary layer height, defined as the

level where the Richardson number reaches a critical value Ric, = 0.25 [ECMWF,

2010]. DWE, and the associated cyclone, are associated with a significant thickening

of the boundary layer over the ocean and over Iceland. The boundary layer height

is a diagnostic for the impact that the air-sea interaction is having on the lower

troposphere, and a deep boundary layer can indicate a large heat flux from the ocean

to the atmosphere. The 2m-air temperature field (Figure 3-6) reveals that the air over

large parts of the Greenland ice sheet, and especially in the region from where the

winds originate, is significantly colder during wintertime DWE compared to the winter

climatology. To ensure that these results are not subjective to the specific definition

of the DWE, I built these composites in ERA-I with slightly different definitions and
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Figure 3-6: Composite of the ERA-I wind speed (a), and sea level pressure (b), tem-
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anomaly is the difference of the composite of the wintertime (November through
April) events to the winter climatology. The lines in the wind speed composite mark
the sections shown in Figure 3-7.

with the DWE identified with the DMI station or the fjord station. I found in each

case that the composites do not change appreciably.

Vertical sections from ERA-I across and along the composite flow (see Figure 3-6

for section location) reveal that it consists of a broad jet with speeds of up to 25 m

s-, a width of approximately 300 km and a height of about 2500 m (Figure 3-7).

The jet closely follows the topography as it flows downhill and spills over the ocean.

The potential temperature profiles indicate that the air is strongly stratified and the

relative humidity sections show that the jet carries air that is largely under-saturated
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with respect to water vapor. The along-section of specific humidity suggests that the

air over the ice sheet is much drier compared to the air over the ocean. As the air

passes over the ocean, its temperature and specific humidity content increase, which

is likely a result of the air-sea fluxes (Figure 3-7).

3.5.2 Dynamics

To quantify the forcing of the flow, I set up the momentum budget along a lin-

earized composite streamline section obtained from the ERA-I 10m-surface winds

during DWE (Figure 3-8), where 'linearized' here means that the section has no cur-

vature. The streamline section includes the location of the maximum wind speed

in ERA-I. I find that it adequately represents surface winds of different events and

that it coincides with the direction of the downslope topographic gradient. Follow-

ing Mahrt [1982], I partition the temperature, pressure and density field into a basic

state component and a component that is due to the gravity current. Next, I as-

sume that the pressure and temperature perturbations associated with the gravity

current are much smaller compared to those associated with the basic state, and I

neglect the influence of moisture on the buoyancy, which is reasonable for most grav-

ity flows [Mahrt, 19821. Under these assumptions, and using the hydrostatic and the

Boussinesq approximation, the momentum equation along the streamline section in

the downslope direction x can be written as [Van den Broeke et al., 2002, Van den

Broeke and Van Lipzig, 2003, van Angelen et al., 2011]:

&u' &u' Ou' '
+u'-| I cos (a) + v au + W - fv + FRes=at ax ay OZ'

9 y 1 0Pab (3.1)
-0 sin () - cos (a) g-y I /
0 00x po 2x

F + FN L + FC + Faes = FG + FT + FS. (3.2)
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Sections along and across the downslope flow obtained from ERA-I.
end points AB and CD are shown in Figure 3-6 The winds follow the

topography closely. They are dry and cold but become moister and warmer as they

cross the coastline.
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Figure 3-8: Left: Streamlines of the 10m-surface winds during DWE in ERA-I; the
gray line represents the linearized mean on which the momentum analysis is based on.
Right: Profile of the flow in the coordinate system used in the momentum analysis.

Here z' is the vertical coordinate perpendicular to the slope (positive upward),

w' is the velocity perpendicular to the slope, u' the downslope velocity, v is velocity

in the cross-slope direction y, t is time, 60 is the ambient (or basic state) potential

temperature, 6 is the temperature deficit, po is density, Pamb is the pressure in the

ambient atmosphere corresponding to 0, f is the Coriolis parameter, g is gravity,

and a is the positive angle of the slope with respect to the horizontal (Figure 3-

8). I define the temperature deficit as the difference between the temperature that

the ambient atmosphere would have at the same height and that of the boundary

layer (Figure 3-9). A positive temperature deficit means that the boundary layer

temperature is colder than that of the ambient atmosphere. I calculate it by linearly

extrapolating the potential temperature profile above some height (well above the

temperature deficit layer) downwards to the surface. I carefully investigated the

potential temperature profile along the section to make sure that the chosen level of

2000 m above the topography is reasonable. Small changes of this level affect the

results only marginally. 6 (z) is the vertically integrated temperature deficit from z

to zt where the temperature deficit vanishes:

Zt

0 (z) = J dz. (3.3)
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On the left hand side of equation (3.2) are the local acceleration Ft, nonlinear

advection FNL, the Coriolis force Fc and a residual force FRes. Following Van den

Broeke et al. [20021, I call these forces 'passive' since they only exist in the presence of

atmospheric motion [van Angelen et al., 2011]. FRe, includes friction and small-scale

processes that are parametrized in the underlying model. On the right hand side of

equation (3.2) are the active forces that drive the flow. These include the synoptic

or ambient pressure gradient force Fs, the thermal force FT and the gravitational

force FG. The ambient pressure gradient results from the synoptic-scale cyclone and

also includes the horizontal pressure drag that is typically associated with flow over

topography. The gravitational acceleration arises because of the presence of the po-

tential temperature deficit over sloping topography, whereas the thermal acceleration

is due to inhomogeneities of the temperature deficit along the direction of the flow.

It is also responsible for the sea breeze circulation and exists even when the slope

is absent. An increase (decrease) in the potential temperature deficit implies a local

deceleration (acceleration) of the surface flow.

Above the temperature deficit layer, the ambient pressure gradient Fs corresponds

to the full pressure gradient. Within the temperature deficit layer, it is obtained by

integrating the ambient potential temperature gradient downwards [Van den Broeke

et al., 2002, van Angelen et al., 2011]:

Inp(zt)

-_ a = -p z +R Jp dlnp, (3.4)
a x p ax P0 ax

lnp(z)

lnp(zt)
1 OPa b 1!Op (z z+Rg p e
S Z= I |z +R0 1 0 d lnp, (3.5)

a y p ay f o ( P yC
Inp(z)

where again hydrostatic balance has been used, R9 is the gas constant and cp the

heat capacity at constant pressure. Here, I use a zt of 2000 m above the topography. If

I chose zt to be 1700 m or 2300 m, the results do not change appreciably. I compute
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Figure 3-9: Composite analysis of the momentum balance during DWE in ERA-I

along the section shown in Figure 3-8. (a) Flow component along the section. (b)

Temperature deficit of the boundary layer with respect to the ambient atmosphere;
a positive temperature perturbation indicates that the air is colder than that of the

ambient atmosphere. (c), (d) and (e) show the thermal force FT, the gravitational
force FG and the ambient pressure gradient force with the Coriolis force subtracted

Fs - Fc. (f) The force resulting from non-hydrostatic effects FNH is small compared

to the ambient and gravitational force, indicating that it plays a minor role during
the events, and that the splitting of the total pressure gradient is reasonable. (g) and

(h) show the nonlinear advection and the residual which likely results from friction

and some parametrized gravity wave drag.
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the three active forces, the local acceleration, the Coriolis force and the nonlinear

force individually for each DWE in ERA-I and then take the composite (Figure 3-9).

I cannot close the momentum budget in ERA-I, since I cannot estimate the small-

scale turbulence that is parametrized in the underlying model and so I have to infer

the residual force from the other terms. Over the upper part of the slope, Fs is the

dominant accelerating force, but towards the end of the slope it is decelerating the

flow. FG is large and positive over the central part of the streamline section, where

the slope is steepest and the temperature deficit is largest. At the end slope, near the

coast, the thermal force is also weakly accelerating the flow. The local acceleration is

more than one order of magnitude smaller than the other terms, which is likely due to

the coarse temporal resolution of the ERA-I output. Evaluating the local acceleration

with the station data, I still find that it is one order of magnitude smaller than the

other terms. The advective terms (FNL) show that the flow is accelerating over the

upper and central part of the slope and decelerating near the coast. The cross-slope

component of FNL (not shown) is comparable to the along-slope component, which

confirms that the channeling in the valley is important (as indicated by Figure 3-

6). The magnitude of the residual force is largest at the surface, where friction is

impeding the flow. Above the surface, it is acclerating the flow over the central part

of the slope, and decelerating it near the end, suggesting that unresolved turbulent

processes are important for the flow field in these regions [Van den Broeke et al.,

2002, Outten et al., 20091.

Under non-hydrostatic conditions, the total pressure gradient force Fp includes

an additional term due to non-hydrostatic effects FNH. I cannot calculate this term

directly, so I infer its magnitude from the residual after splitting the total pressure

gradient: FNH = - FG - Fs - FT [Cassano and Parish, 2000]. Cassano and Parish

[2000] found that this term is insensitive to model resolutions ranging from 100 km

to 5 kin, which suggests that ERA-I provides a reasonable estimate. I find that the

magnitude of FNH is small compared to the dominant terms (Figure 3-9), indicating
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that non-hydrostatic effects play a minor role during downslope wind events and that

the estimate of Fs is realistic. Since FT has a similar magnitude compared to FNH, it

needs to be interpreted with care. Even so, a positive thermal acceleration near the

coast is consistent with previous studies (e.g. Heinemann [2003]).

In addition, there could be momentum transport in internal gravity waves [Gill,

1982, Durran, 1990]. Indeed, Doyle et al. [2005] observed large-amplitude moun-

tain wave breaking in Ammassalik during a DWE on 29 January 1997 that was also

obtained with ERA-I. During this event, I observe downward trending potential tem-

perature isopleths from the interior towards the sea in ERA-I (not shown), indicating

a katabatic condition and evanescent mountain waves. This suggests that ERA-I does

not resolve the complete wave dynamics, and it is possible that some gravity wave

drag is parametrized in FRes.

3.5.3 Impacts

Downstream buoyancy flux

The buoyancy loss at the surface of the ocean that occurs during intense winter

storms is a major driver of deep and intermediate ocean convection [Marshall and

Schott, 1999, Sathiyamoorthy and Moore, 2002]. DWE advect cold, dry air over the

ocean and, as such, are likely associated with large heat and ocean buoyancy fluxes.

To examine their impact I investigate the buoyancy flux associated with these events.

The buoyancy flux B is the sum of a thermal and a saline contribution, where

the thermal contribution includes the radiative and turbulent heat fluxes Q and the

saline contribution is tied to changes in surface water density due to precipitation or

evaporation [Gill, 1982]:

B= gQ+ (P-E),

Q=(Qs+QL+Qsw+QLw).
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Here, oz and 13 are the thermal and haline expansion coefficients for sea water

respectively, C, is its specific heat, g is the gravitational acceleration, po is a reference

density, and P and E are precipitation and evaporation. Qs is the sensible heat flux,

Q Lis the latent heat flux, Qsw is the heat flux due to the net shortwave radiation and

QLW is due to the net longwave radiation. All of these variables are obtained from

ERA-I and used to evaluate the buoyancy flux associated with DWE. I am using a

sign convention such that a positive heat flux corresponds to a heat gain of the ocean

and a negative buoyancy flux corresponds to a densification of the water at the ocean

surface.

Since deep and intermediate ocean convection is known to be intermittent and tied

to the occurrence of intense atmospheric forcing, I start by investigating the turbulent

fluxes, the total heat flux and the buoyancy flux for one of the stronger events which

took place on 28 December 2004. During this event, ERA-I shows maximum surface

wind speeds of 25.9 m s-1 and a total heat flux of up to -1000 W m- 2 over a large

part of the Irminger Sea (Figure 3-10). Both the sensible and the latent heat fluxes

contribute to the total heat fluxes with up to -500 W m- 2 . While the sensible heat flux

is strongest close to the coast and then decreases south of Iceland over the Irminger

Sea, the latent heat flux remains high over a very large area.

A composite of the heat and buoyancy fluxes during the wintertime (November

through April) DWE shows a similar structure but with reduced amplitude (Figure

3-11). I find that the majority of the buoyancy loss over the Irminger Sea during the

wind events is caused by the turbulent heat fluxes. Near the coast, there is a small

negative contribution to the buoyancy flux from the outgoing longwave radiation and

a small positive contribution from the incoming solar radiation. I note that there is a

large uncertainty associated with the radiative heat fluxes of reanalyses in the Arctic

[Walsh et al., 2009, Chaudhuri et al., 2014], but it is likely that they play a minor

role during DWE compared to the turbulent fluxes.

Mean turbulent heat fluxes during DWE are ~-400 W m- 2 which is of the same
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Figure 3-10: Snapshot of the sensible (a), latent (b) and total (c) heat fluxes from
ERA-I for an individual DWE that occurred on 28 December 2004. The sensible and
latent heat fluxes are the major contributors to the buoyancy loss (d) during this
wind event.
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Figure 3-11: Composite of the turbulent (a) and radiative heat fluxes (b) of the

wintertime (November through April) DWE. Again the turbulent heat fluxes are

the major contributors to the buoyancy loss (c) of the wintertime DWE in ERA-I.

(d) Composite of the ERA-I buoyancy flux evolution associated with all wintertime
DWE over the Irminger Sea box shown in (c). 0 days indicates the time of the

maximum wind speed. The climatological mean (November through April) is shown

for reference. The duration of the enhanced buoyancy loss is almost three days.
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order of magnitude as the turbulent heat fluxes that occur during tip jet events [VAge

et al., 2009, Vage, 2010, Pickart et al., 2003a]. However, the region of maximum

heat loss during tip jets is shifted southward compared to that during DWE as is the

cyclone that is forcing DWE. I note that the two types of wind events can potentially

be forced by the same synoptic system. Indeed, assuming that tip jets occur before

DWE and allowing for a time lag of 2 days, I find that 31% of DWE are preceded by

a tip jet (using the tip jet climatology from [VAge et al., 20091).

To quantify the buoyancy loss associated with DWE, I use the box shown in

Figure 3-11c. It covers a large part of the northern Irminger Sea, extends eastward

over the Reykjanes Ridge and includes the northern most part of the Irminger Gyre

in which convection is known to occur, as well as a part of the Irminger Current that

is connected to the Gyre (e.g. VAge et al. [20111, Lavender et al. [2000]). The area

captures a large signal of DWE but excludes most of the signal due to tip jets. Within

this area, I find that the buoyancy flux associated with a DWE lasts for almost three

days (Figure 3-11d). To estimate the buoyancy loss due to all 166 wintertime DWE

(BDWE) I integrate the buoyancy flux from 30 hours before each event (i.e. the time

of maximum wind speed) until 38 hours after each event over the box and sum all the

events. Then, I compare it to the total wintertime buoyancy loss over the 32 years

over the same area (Bcuim):

BDWE 19%.
BClim

Thus, summing the contributions from all DWE, I find that these wind events

account for one fifth of the net buoyancy loss during winter even though they only

span 9% of the time. I note that the buoyancy flux during DWE is due both to the

downslope wind and the connected low pressure system with the associated winds.
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Figure 3-12: Top: Satellite images of a specific event in the visible range (MODIS)

show how the ice is advected out of the fjord and away from the coast during the wind

event. Bottom: Composite of satellite-derived (AMSR-E) mean sea ice concentration

averaged during the week before the event, the day after the event, and the difference.

Note the different color bar for the difference.

Impact on sea ice

To investigate the impact of DWE on the regional sea ice cover, I visually inspect

MODIS visible images during individual events and analyze AMSR-E data for a

composite of wind events. MODIS satellite images indicate that, during individual

DWE, the sea ice is advected away from the coast, and the entire fjord - including

the ice m6lange - is cleared (e.g. Figure 3-12). Since cloud cover renders a thorough

analysis using the visible wave band difficult, I use the AMSR-E sea ice concentration

product (which is based on the 89 GHz channel) to determine the wind impact on

the ice. Comparison of the sea ice during individual events shows that the AMSR-E

satellite product is in good agreement with the MODIS satellite images.

Further analysis of the AMSR-E sea ice product shows that sea ice is normally

present along the southeast Greenland coast between January and May. During these

months and in the period from 2003 to 2010 (when AMSR-E is operating), I identify
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32 DWE from the fjord station data. I study the impact of these events on the sea

ice cover by comparing the mean sea ice distribution averaged during the week before

the event with the sea ice distribution from the day after the event (Figure 3-12).

The comparison clearly shows that during DWE ice is advected away from the coast.

To quantify the sea ice reduction, I calculate the mean ice concentration before and

after the wind event both inside the fjord and in a confined region of the surrounding

shelf (regions shown in Figure 3-12). I find that, on the day after the wind events, the

ice concentration inside the fjord is reduced by 29% while on the shelf it is reduced

by 26%.

3.6 Discussion and Conclusions

I have built a composite of DWE, and thereby generalized previous case studies

of individual events (e.g. Mills and Anderson [20031, Klein and Heinemann [2002],

Heinemann and Klein [2002]). Most of the DWE investigated here correspond to SE

events from the previous chapter. In the previous chapter, I have investigated the

large-scale characteristics and dynamics of the wind events. In this chapter, I have

described their local characteristics and dynamics, as well as their direct impacts. The

identification and description of DWE is based on three different data sets, including

two meteorological stations and the reanalysis product ERA-I. Despite the different

characteristics of the data sets, the results agree well. DWE predominantly occur in

winter and manifest themselves as strong winds in Ammassalik, including Sermilik

Fjord. The large-scale flow converges inside the Ammassalik valley and forms a broad

jet with peak wind speeds above 25 m s-1 and a height of 2500 m (in ERA-I). At

the surface inside Sermilik Fjord, the fjord station records the fastest winds with

speeds above 20 m s-'. This could be an indication of the importance of the local

topographic setting not fully resolved by ERA-I.

Moreover, I see evidence for a pronounced gravitational acceleration of the flow
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in all three data sets. There is a distinct surface air temperature drop inside Sermilik

Fjord indicating that cold (i.e. dense) air has been advected downslope, as is typical

for katabatic flows. Also, vertical profiles from ERA-I show that the air over the

ice sheet is strongly stratified, cold and dry, and the large temperature deficit over

the ice sheet results in a strong gravitational acceleration. Another indication of

the heat loss of the surface air and the stabilization of the boundary layer is the

decrease in cloud cover during DWE recorded at the DMI station. The importance of

the gravitational acceleration is further confirmed by an analysis of the momentum

budget for a section along the downslope flow in ERA-I, as over the central part of

the slope, the gravitational acceleration is one of the dominant driving forces.

All three data sets further show evidence of a larger scale synoptic forcing. Both

meteorological stations record a drop in pressure prior to the wind event, and ERA-I

sees a synoptic-scale cyclone between Iceland and Greenland such that the large-scale

geostrophic flow is approximately in the same direction as the downhill topographic

gradient. While the ambient pressure gradient accelerates the downslope flow over the

upper slope, the flow becomes super-geostrophic near the coast, where the ambient

pressure gradient is decelerating the flow. This deceleration is typical for flow over

topography, which results in a horizontal pressure drag that first accelerates the near

surface flow, but then decelerates it near the end of the slope where the isotherms rise

again [Durran, 2003]. Near the surface, an additional deceleration likely results from

the narrowing of the valley towards the coast, forcing the flow to move upwards.

Previous studies (e.g. Durran [19901) suggest that downslope wind storms can be

forced by mountain waves or a combination of katabatic flows and mountain waves

[Poulos et al., 2000, 20071. Gravity waves were also observed during a katabatic

wind event in West Greenland [Heinemann, 19991 and Doyle et al. [20051 observed

large-amplitude wave breaking during an individual DWE in Ammassalik. While

ERA-I does resolve waves, these are mostly evanescent (both in the composite and in

the event studied by Doyle et al. [2005]), which suggests that ERA-I only partially
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resolves the wave dynamics of DWE. Thus, while ERA-I provides a realistic large-

scale description of the events, further studies are needed to investigate the small-scale

dynamics associated with DWE in more detail.

During DWE cold, dry air that found above the ice sheet spills over the ocean

which results in a significant deepening of the boundary layer of the atmosphere and

in a large buoyancy loss of the surface ocean. I estimate that the buoyancy loss due

to the wintertime DWE and the associated cyclone is one fifth of the total wintertime

buoyancy loss over a large part of the Irminger Sea. Mean heat fluxes during DWE,

~-400 W m-2 , are comparable to those occurring during tip jet events, but they

cover a different part of the Irminger Sea which is further north [Pickart et al., 2003a,

Vige et al., 2009]. Peak heat fluxes can amount to -1000 W m-2. For comparison

with other convection regions Moore et al. [2002] find peak fluxes of about -500 W

m- 2 in the Weddell Polynya in Antarctica. Petersen and Renfrew [20091 use direct

observations to calculate heat fluxes over Denmark Strait and the Irminger Sea during

high wind speed conditions. They estimate the total heat flux to amount to -600 W

m- 2 , which is still less than what I find during extreme DWE. Moreover, the heat

fluxes during DWE cover a wide area, even reaching south of Iceland. This is likely

due to the large zonal extent of the cyclones at these latitudes. Most of the buoyancy

loss occurs over the Irminger Current which flows around the Irminger Gyre where

deep convection occurs (e.g. Vage et al. [20111, Pickart et al. [2003b], de Jong et al.

[2012]). Thus, DWE have a large potential for preconditioning or driving convection.

Finally, I find that DWE significantly reduce the coastal sea ice cover (Figure 3-

12). I estimate a 29% reduction of sea ice inside Sermilik Fjord and a 26% reduction

on the surrounding shelf compared to the mean sea ice concentration the week before

the event. The advection of sea ice offshore likely results in a faster melting of the sea

ice due to the warm water in the interior Irminger Sea [Sutherland et al., 2013] and

thus to a local freshening of the Irminger Sea. Considering that DWE could occur

all along the East Greenland coast, their combined offshore advection of sea ice could
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be substantial [Dodd et al., 20121. It is possible that this offshore advection of sea

ice could result in a significant freshwater transport into the interior. Assessing its

magnitude is not trivial because of the lack of ice thickness data but should be the

focus of future studies.

In addition, the removal of sea ice affects the energy balance of the surface water

since sea ice has insulating properties and influences the amount of sunlight reaching

the water surface. The removal of ice from Sermilik Fjord may explain why the sea

ice cover in Sermilik Fjord is often mobile, even in winter. Further, it has been found

that a dense ice cover (sea ice and icebergs) near outlet glaciers is important for the

glacier stability [Amundson et al., 20101 and that reductions in the ice cover correlate

with the glacier's retreat [Howat et al., 2010, Walter et al., 2012]. Thus, DWE in

Ammassalik and Sermilik Fjord could have an impact on the stability of Helheim

Glacier.
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Chapter 4

The role of wave dynamics and

small-scale topography for downslope

wind events in southeast Greenland

A modified version of this chapter is currently in press in the Journal of the

Atmospheric Sciences. The authors are M. Oltmanns, F. Straneo, H. Seo and G. W.

K. Moore. @American Meteorological Society. Used with permission.

4.1 Abstract

In Ammassalik, in southeast Greenland, downslope winds can reach hurricane

intensity and represent a hazard for the local population and environment. They

advect cold air down the ice sheet and over the Irminger Sea where they drive large

ocean-atmosphere heat fluxes over an important ocean convection region. Earlier

studies have found them to be associated with a strong katabatic acceleration over

the steep coastal slopes, flow convergence inside the valley of Ammassalik, and - in

one instance - mountain wave breaking. Yet, for the general occurrence of strong

downslope wind events, the importance of mesoscale processes is largely unknown.

89



Here, two wind events, one weak, one strong, are simulated with the atmospheric

weather research and forecasting (WRF) model with different model and topography

resolutions, ranging from 1.67 km to 60 km. For both events, but especially the strong

one, it is found that lower resolutions underestimate the wind speed because they

misrepresent the steepness of the topography and do not account for the underlying

wave dynamics. If a 5 km instead of a 60 km model resolution in Ammassalik is

used, the flow associated with the strong wind event is faster by up to 20 m s -. The

effects extend far downstream over the Irminger Sea resulting in a diverging spatial

distribution and temporal evolution of the heat fluxes. Local differences in the heat

fluxes amount to 20% with potential implications for ocean convection.

4.2 Introduction

Downslope winds in southeast Greenland can reach hurricane intensity, posing a

threat to the local population and environment [Rasmussen, 1989, Born and Boecher,

2000, Klein and Heinemann, 2002, Heinemann and Klein, 2002, Mernild et al., 20081.

They are especially pronounced within the valley of Ammassalik where the large-scale

synoptic flow is funneled by the topography. The wind events advect cold dry air over

the ocean and are associated with a large heat loss over the Irminger Sea, an important

ocean convection region. In the preceding chapter, I constructed a composite of strong

downslope wind events (DWE) using the ERA-Interim reanalysis (ERA-I) from the

European Center for Medium-Range Weather Forecasts (ECMWF) and local weather

stations. Compared to the weather stations, ERA-I underestimated the local wind

speed of DWE, never reaching the hurricane intensity that is sometimes observed in

the local town [Rasmussen, 1989, Born and Boecher, 2000, Mernild et al., 20081. This

suggests that the reanalysis does not resolve the full dynamics underlying these winds

events. The notion that a higher model resolution is necessary to accurately simulate

wind speed is in line with previous studies of tip jets and barrier winds in southeast
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Greenland [DuVivier and Cassano, 2013]. Thus, in this chapter I will investigate the

small-scale dynamics of strong downslope wind events across the southeast coast.

One possible mechanism by which downslope winds can be extremely accelerated

is due to mountain waves [Smith, 1985, Durran, 1986, Bacmeister and Pierrehum-

bert, 1988]. These develop when stratified air is forced over a topographic barrier.

According to the Eliassen-Palm theorem mountain waves are associated with a down-

ward momentum flux that is transferred to the topography by the cross-mountain

pressure drag [Eliassen and Palm, 1961, Durran, 2003]. When they attain sufficiently

large amplitude they can break and overturn. This results in a strongly divergent

momentum flux profile such that there is a significant deceleration of the mean flow

in the wave breaking region and acceleration of the downslope flow below. Indeed,

during one DWE in Ammassalik, dropwindsondes and aircraft measurements depict

the breaking of a large-amplitude mountain wave [Doyle et al., 2005]. While ERA-I

did reproduce this wind event, it did not resolve the mountain wave. This suggests

that model resolution affects the ability to resolve some of the leading order dynamics

and thereby influences the magnitude of the simulated wind speed.

Mountain waves and mountain wave breaking are not only associated with downs-

lope wind storms, but can influence atmospheric dynamics on many scales, including

the general atmospheric circulation and climate [Fritts and Alexander, 2003]. The

effects of wave drag and fluxes on the momentum balance play an important role

in determining the structure of the large-scale flow in the troposphere and lower

stratosphere [McFarlane, 1987]. Furthermore, the large vertical momentum fluxes

and turbulence facilitate the vertical mixing of water vapor, aerosols and chemical

species [D6rnbrack and Diirbeck, 1998], thus affecting the chemical properties of the

atmosphere. In addition, the clear air turbulence that develops in regions of moun-

tain wave breaking represents a significant hazard to aviation [Ralph et al., 1997,

Clark et al., 2000]. Encounters of aircraft turbulence were associated with mountain

waves also over west Greenland [Lane et al., 2009]. These potentially important con-
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sequences motivate examining mountain wave breaking with the general occurrence

of DWE in Ammassalik.

In this chapter, I will investigate the role played by processes that are unresolved

by the 80 km grid spacing of the reanalysis and how they interact with other terms

in the momentum balance. Specifically, I simulate two DWE, one weak, one strong,

with the weather research and forecasting (WRF) model using different model and

topography resolutions to study the small-scale dynamics in Ammassalik and their

effects on larger scales. Here, and in the following, I use the term 'small-scale' to

characterize processes that are resolved using a grid spacing between 5 km and 20

km. In numerical models, the energy in the highest resolved wave numbers tends to

be overly damped. Therefore, the model's effective resolution is defined as the scale at

which the model's kinetic energy spectrum decays relative to the observed spectrum

[Skamarock, 2004]. Previous stimulations with the WRF model have shown that the

effective resolution is ~7 times the grid spacing [Skamarock, 2004], and thus I expect

a model with a grid spacing of 5 km (60 km) to resolve processes on scales of 35 km

(420 km) which lie within the meso-3 (meso-oa) scale [Orlanski, 1975].

The questions that I will address in this chapter are therefore:

" What are the small-scale dynamics that can create winds of hurricane intensity

in Ammassalik?

" How important is the resolution of the model and that of the topography to

capture these dynamics?

" What are the large-scale conditions that result in strong wind events? Specifi-

cally, do the small-scale dynamics amplify only strong large-scale flows or also

weaker ones?

" How far does the influence of the small-scale dynamics extend on the large scale

(e.g. with regard to the heat fluxes)?

92



The chapter is separated into four parts. First, I describe the characteristics

of the two wind events and investigate how they are represented by different model

resolutions. In the second part, I study the dynamics by comparing individual driving

forces in the momentum balance and assess the role played by small-scale momentum

fluxes. I also consider the case in which the model is run at high resolution but with a

smoothed topography. The results indicate that the lower resolutions underestimate

the wind speed because they do not account for the underlying wave dynamics that

contribute to accelerate the downslope flow. When the topography is smoothed, the

cross-mountain pressure drag associated with the mountain wave is reduced resulting

in a smaller downward momentum flux and overall lower wind speeds even if the

model resolution is unchanged. In the third part, I analyze interactions between the

mountain wave and the gravitational acceleration and study how they are affected by

model resolution. Finally, I look at the evolution of the downslope flow and investigate

what the impact of using a higher model resolution for the downslope wind events is

on the larger scales of motions. I show that the downstream wind field is affected by

small-scale processes within the Ammassalik valley. The effects extend further out

over the Irminger Sea with consequences for the distribution and magnitude of the

ocean-atmosphere heat fluxes and thus - potentially - ocean convection.

4.3 Background

Physically, mountain wave induced wind storms can be understood in terms of

hydraulic theory. On the upstream side of the mountain, the flow is accelerated

because of the pressure gradient acceleration associated with the mountain wave.

When the wave breaks on the downslope side of the mountain, a hydraulic jump-like

phenomenon occurs and the flow transitions from a wave dominant (or subcritical)

regime to a supercritical regime. In the supercritical regime, the flow is further

accelerated by the gravitational acceleration [Durran, 19901. In hydraulic theory, the
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Froude number Fr = u describes the regime of a fluid with depth D and velocity

u. g is the gravitational acceleration. Froude numbers above (below) 1 correspond

to the supercritical (subcritical) regime. For a continuously stratified atmosphere, a

Froude number analog Fr = u is often defined to classify atmospheric flows. In this

case, H is the mountain height, N is the Brunt-Viisdli frequency, and u a suitably

defined upstream wind speed.

Mountain waves and gravity flows are not independent phenomena as they can

interact with each other. Based on idealized simulations, Poulos et al. [20001 find that

radiative cooling can enhance the mountain wave flow speed in the lee for Froude

numbers up to 0.75. For Froude numbers above -0.5 the gravity current can be

scoured such that the mountain wave flow penetrates to the surface while for Froude

numbers less than -0.5 the katabatic flow and the mountain wave couple, resulting

in a complex mutually interdependent evolution [Poulos et al., 2000, 2007]. While

mountain waves can influence the intensity, depth and local variability of katabatic

winds through turbulence and dynamic pressure perturbations [Mursch-Radlgruber,

1995, Jin et al., 1996, Poulos et al., 2000], the stability and reduced turbulence of

a lower stratified layer can in turn affect the dynamics of mountain waves [Scorer,

1967, Poulos et al., 20001. Thus, the effects of potentially unresolved mountain wave

processes in ERA-I during DWE could amplify through interactions with the gravity

current.

4.4 Data and Method

In order to compare the effect of using different resolutions, I simulate two wind

events with the WRF model (Version 3.5) [Michalakes et al., 2004, Skamarock et al.,

2005], one of which is weak and the other one strong compared to the composite

of DWE described in the previous chapter. The wind events, also seen by local

weather stations, were mainly identified with a condition on wind speed. Both events
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are associated with a wind and sea level pressure field whose general structure is

representative of the composite. The strong wind event occurred on 3 February 1999

with maximum surface wind speeds of 28 m s- 1 at 18:00 UTC in ERA-I, and the

weak one occurred on 9 April 2007 with maximum surface wind speeds of 21 m s-1

at 6:00 UTC in ERA-I (Figure 4-1). ERA-I obtained these wind speeds inside the

valley of Ammassalik near the coast, but not directly at the weather station location

where wind speeds of 32.5 m s- 1 and 16.5 m s-1 were observed during the strong and

weak wind event respectively (see Figure 4-1 for station location). Both wind events

are simulated on a 60 km resolution domain (WRF60) with two nests, one with a 20

km resolution (WRF20), and one with a 5 km resolution (WRF5), leaving all other

model parameters unchanged (Figure 4-1).

I run three simulations. In the first case, I use one-way nesting, which allows to

compare the effect of using four different resolutions within the inner most domain

boundaries. In the second case, I use two-way nesting such that feedbacks from the

WRF5 and WRF20 domains are allowed. In the third case, the nesting is again one-

way and I use a topography with a resolution of 60 km also in the WRF5 and WRF20

domains. It is obtained by linearly interpolating the 60 km resolution topography in

WRF60 to the additional grid points in the 20 km and 5 km domains. In each simula-

tion, I use 30 vertical sigma levels, the highest being at 50 hPa. The level distribution

(shown in Figure 4-3) is surface intensified to yield a good vertical resolution near

the surface. Physics parameterizations are specified in Table 4.1. They were chosen

based on current knowledge of their efficiency and accuracy as well as their suitability

under snow and ice conditions [Janjic et al., 2011]. The simulations are run for 24

hours, starting 12 hours before the time of maximum wind speed in ERA-I. ERA-I

provides the boundary and initial conditions. Due to the short simulation period of

24 hours, the initial conditions are the dominant factor influencing the dynamics and

internal model variability is less important. If I start the simulations six hours earlier

or use different aspect ratios for the domains, the results do not change appreciably.
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Figure 4-1: a) WRF simulation domains: The blue line delineates the 1.67 km res-
olution domain; b) Topography (m) in southeast Greenland including the valley of
Ammassalik. The white cross indicates the location of the DMI station location;

(c,d) SLP (hPa) and (e,f) wind speed (m s 1 ) for the weak event in ERA-I on 9 April
2007 and the strong wind event on 3 February 1999 respectively. The lines mark the

sections shown in Figures 4-3 and 4-4.
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Variable Scheme

Micro-Physics WRF-Single-Moment-Microphysics scheme class 3
(WSM3) [Hong et al., 2004]

Longwave Radiation Rapid Radiation Transfer Model (RRTM)
[Mlawer et al., 1997]

Shortwave Radiation Dudhia scheme [Dudhia, 1989]
Surface Layer Revised MM5 Monin-Obukhov scheme

[Jimenez et al., 2012]
Land-Surface Model Unified Noah land-surface model

[Chen and Dudhia, 2001]
Boundary-Layer YSU PBL scheme [Hong et al., 2006]
Cumulus Parametrization Kain-Fritsch cumulus convection scheme

I [Kain and Fritsch, 1990]

Table 4.1: WRF model physics specifications that are used for the three simulations.

As a 5 km horizontal resolution could potentially misrepresent non-hydrostatic

waves and alias energy into larger-scale hydrostatic waves [Reinecke and Durran,

2009], an additional simulation was carried out with a third nest with a horizontal

grid spacing of 1.67 km (WRF1.7) and 45 vertical levels. Most of the analysis is based

on the WRF60 and WRF5 domains. The 1.67 km resolution domain extends over

the central part of the Ammassalik valley and was only used for comparison with the

WRF5 domain to assess the importance of smaller scale non-hydrostatic waves that

can be unresolved in WRF5.

The reanalysis product ERA-I [Dee et al., 2011] from the European Center for

Medium-Range Weather Forecasts (ECMWF) has been described in detail in chapter

2. The data have a 6 hourly temporal resolution, 60 vertical levels in the model's

terrain following vertical coordinate and a horizontal resolution of approximately 80

km at the surface. A comparison between ERA-I and the 2011 reprocessed QuikSCAT

ocean wind vectors with an improved geophysical model function [Ricciardulli and

Wentz, 2011] during DWEs from 2000 to 2009, in the previous chapter, showed that

ERA-I captures the structure of the wind field well but underestimates the wind

speeds by -1 to 2 m s- 1 over the ocean in the region of the peak wind speeds. This
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is expected as DWE have a comparably small scale and very high wind speeds, two

conditions in which reanalyses often have problems [Renfrew et al., 2009b]. One

potential explanation for the different wind speeds is the coarse resolution of the

reanalysis. Thus, in the following I will investigate how strongly model resolution

affects the simulation of DWE.

4.5 Results

4.5.1 Characteristics

To test the influence of model resolution on the wind event characteristics, I first

investigate the surface wind field in WRF60, WRF20 and WRF5 in the one-way

nesting simulation at the time when they record the maximum wind speed. For this

purpose, I determine the location of the maximum wind speed in the three domains,

only requiring it to be within the boundaries of WRF5 and north of 64*N, and analyze

the wind speed evolution at this location (Figure 4-2). For both events, the location

where the maximum wind speed occurs is similar in WRF5, WRF20 and WRF60

(Figure 4-2). The higher the resolution is, the closer this location is to the coast.

Compared to the lower resolution domains, WRF5 has a finer structure (Figure 4-2).

The largest differences are seen near the coast in the southern part of the valley and

in the outflow region. The outflow onto the shelf is narrower in WRF5 with two

distinct minima in wind speed next to it. Thus, the differences in the obtained wind

speed between the domains occur not only over land, where the topographic resolution

likely has a strong influence on the surface winds, but are carried downstream over

the ocean. The differences are more pronounced for the strong wind event, but they

also exist for the weak one.

Next, I compare the evolution of the wind field in the different domains at the

location where they obtain the maximum wind speed. For the strong event, WRF5

obtains wind speeds that are -5 m s- 1 higher than in WRF20 and -10 m s- 1 higher
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Figure 4-2: (a) Surface wind speeds in the 5 km resolution domain (WRF5), 20 km
resolution domain (WRF20), and 60 km resolution domain (WRF60) for the strong
(top) and the weak (bottom) wind events (Figure 4-1) at the time when each of these
products records the maximum wind speed. The white cross indicates the location
where the maximum wind speed occurs in the respective simulation and the white
plus marks the location of the DMI station location. (b,c) Comparison of the wind
speed evolution in WRF60, WRF20 and WRF5 at their locations of maximum wind
speed, and the wind speed evolution in the 1.67 km resolution domain (WRF1.7) at
the location where WRF5 obtains the maximum wind speed. (d,e) Comparison of the
wind speed evolution in WRF5, WRF20 and WRF60 with the observed wind speed
at the DMI station location.
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than in WRF60. For the weak wind event, WRF5 also obtains higher wind speeds,

but the difference with WRF20 and WRF60 is smaller. The fastest winds reach speeds

of 45 m s- during the strong event and 30 m s- during the weak event. Also, WRF5

obtains a more rapid initial increase of the wind speed during the strong wind event

and a more rapid decrease after the maximum wind speed has been reached. Thus,

the wind speed time series in WRF60 has a broader and flatter temporal evolution

compared to WRF5, which could be related to both an overall different wind speed

evolution and the slight shift in location of maximum wind speed (Figure 4-2).

I also compare the surface wind fields between WRF1.7 and WRF5 at the time

when WRF5 obtains the maximum wind speed (not shown). Within the WRF1.7

domain, the distribution and magnitude of the surface wind speed is almost identical

to WRF5. The largest differences occur at confined locations in the outflow region

at the coast and are of the order of 2 m s-' for the strong event and 3 m s-1 for the

weak event. For both events, the wind speed evolution in WRF1.7 and WRF5 at the

location where WRF5 obtains the maximum wind speed agree very well (Figure 4-2),

and the locations where the maximum wind speeds are obtained are close to each

other.

At the location of the DMI weather station (just outside the WRF1.7 domain,

see Figures 4-1 (b) or 4-2 for station location), WRF5 agrees best with the observed

wind speed, especially during the strong wind event (Figure 4-2). For the weak

event, WRF5, WRF20 and WRF60 obtain similar wind speeds. All three domains

capture the low-frequency evolution of the wind event, but record a faster wind speed

drop off than is observed. A possible reason for the discrepancy between the model

and the observations is the sharp gradient in the wind speed field near the station

location such that a slight variation in the temporal evolution of the front can result

in very different wind speeds at the weather station. Other reasons could include

inaccuracies in the boundary conditions - despite the fact that the weather station

data is assimilated in the reanalysis - errors resulting from the interpolation to the
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station location, and a misrepresentation of the complex topography in this region.

In the following, I will mostly show results from the strong wind event. For the weak

event, the winds and its underlying driving forces are reduced, but the differences

between WRF5, WRF20 and WRF60 remain.

Vertical sections along and across the flow confirm that the wind speed is larger

the higher the resolution is (Figures 4-3 and 4-4). WRF5 resolves two distinct regions

of steep topography at the southwestern side of the valley, each associated with a wind

speed maximum of up to 60 m s-1 that intermingle in the coarser resolution domains

(Figure 4-3). The cross-sectional flow (represented by the arrows in Figure 4-3) is

entering the valley at both sides near the surface which is likely due to channeling by

the topography. There is more vertical and horizontal wind shear in the wind field in

WRF5 and a highly variable potential temperature field across the valley compared

to the coarser resolutions. In WRF20 this variability is strongly reduced and WRF60

almost does not see it at all. The differences between the domains are largest inside

and along the edges of the valley with differences of 10 to 20 m s-1. They do not only

occur near the surface where the different resolutions result in different representations

of the topography, but they also extend up higher into the troposphere. If the model

is run with a 60 km resolution topography everywhere, the wind speed in WRF5 is

still higher compared to WRF60, but reduced compared to the WRF5 domain with

the 5 km topography, especially near the surface. The potential temperature field in

WRF5 with the 60 km resolution topography (WRF5-Topo60 hereafter) is closer to

the one in WRF60 than to the one in WRF5 with the 5 km topography. This shows

that both small-scale topography and atmospheric structure play an important role

during the wind events.

Using a higher resolution has a large effect on the slope along the valley, especially

close to the coast (Figure 4-4). The biggest differences in the wind speed between

WRF5, WRF20 and WRF60 amount to -20 m s- and occur near the surface where

the slope is steepest. The potential temperature field in WRF5 suggests that the
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Figure 4-3: Comparison of the flow field and potential temperature in the 5 km

(WRF5), 20 km (WRF20) and 60 kn resolution domains (WRF60) across the section

CD in Figure 4-1. The filled contours show the component of the flow across the
section whereas the arrows represent the flow along this cross section. Only a few

arrows are shown. The reference arrow is representative of the horizontal direction
only. The vertical direction is rescaled according to the axis limits. WRF5-Topo6O

indicates the case where the model resolution is 5 km and the topographic resolution

is 60 kn. Black crosses overlaid on the temperature field indicate the positions of the

vertical model levels at selected locations across the valley.
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high wind speeds over the slope are associated with a steep mountain wave that is

underrepresented in WRF20 and largely smoothed out in WRF60 (Figure 4-4). In

the WRF5-Topo6O case the wind speeds are still higher compared to WRF60, but

again they are smaller compared to WRF5 with the 5 km topography, and the wave

in the potential temperature field is smoothed.

A comparison between WRF1.7 and WRF5 shows, that the representation of the

topography is similar in both domains, and over the slope the wind speed and potential

temperature profile in WRF5 and WRF1.7 agree well. The obtained isentropic slopes

are very similar, and the mountain wave over the slope has approximately the same

wave length of -50 km. The largest differences between WRF1.7 and WRF5 occur

downstream of the coastline, where WRF1.7 resolves larger vertical velocities that

are associated with a series of lee waves that are smoothed in WRF5. Such lee

waves are a typical signature of downslope wind storms with a lower stable layer.

They radiate energy away when the surface flow recovers towards ambient conditions

[Durran, 19901.

For the weak event, the overall wind speeds are smaller, but the profiles show

the same graduation in wind speed and isentropic slopes between WRF5, WRF5-

Topo60, WRF20 and WRF60. This suggests the existence of dynamical differences

both between different resolution domains, and between the smoothed and regular

topography simulations. I will investigate these differences in the next section.

4.5.2 Momentum balance

To study the dynamical differences, I evaluate each term in the momentum balance

for the downslope flow and investigate how it is affected by model resolution. To a

good approximation, the atmospheric lapse rate is linear between 2500 and 6000

m height. Below about 2000 m, the temperature gradient is larger and the near

surface air is significantly colder than above. Thus, I split the temperature into

an ambient part 0, which is obtained by linearly extrapolating the temperature
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Figure 4-4: Comparison of the flow field and potential temperature in the 1.67 kin

(WRF1.7) 5 km (WRF5), 20 kmn (WRF2O) and 60 km resolution domiains (WRF6O)

along the section AB in Figure 4-1. Shown is the component of the flow along the

section. The reference arrow is representative of the horizontal direction only. The

vertical direction is rescaled according to the axis limits. WRF5-Topo6O indicates the

case where the model resolution is 5 km and the topographic resolution is 60 km.
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m. c) Schematic of the coordinate system used for the analysis of the momentum
balance (Figure 4-6).

105



between 2500 m and 6000 m to the surface, and a temperature deficit part 6, which

is defined as the deviation from the linear temperature lapse rate such that a positive

temperature deficit indicates that the air in this layer is colder than the ambient

air at the same height. Using higher bounds for the definition does not change

the results. This procedure has also been applied by other studies on katabatic

winds [Mahrt, 1982, Parish and Cassano, 2001, 2003, van Angelen et al., 2011] and

I verified that that the splitting is meaningful for each time step and model domain

by confirming that the temperature lapse rate is approximately linear above 2500 m.

An example of this splitting can be seen in Figures 4-9 (a) and 4-10 (a) for different

time steps. I analyze the momentum balance along the same section AB that is

shown in Figures 4-1 and 4-5. This section goes right through the valley where the

wind speed is maximum and the slope steepest and thus, I expect this section to

show the largest differences between the resolutions. As in Chapter 3, I assume that

the temperature and pressure perturbations associated with the temperature deficit

layer are much smaller compared to those associated with the ambient atmosphere

(0 < 0o and p < Pamb, where p is the pressure due to the temperature deficit and

Pamb is the pressure in the ambient atmosphere corresponding to Oo). In addition, I

use the hydrostatic and the Boussinesq approximation. Under these approximations,

the momentum balance in the downslope direction x and in the model's vertical

coordinate (Figure 4-5) can be expressed as:

Bu' u' u' ,u'+ |/-, I/ cos (a) + v + W - - fv =t 

Ox ay Z (4.1)

1Z gP Iz +FRes,

Ft + FNL + FC = FG + FT + FS + FRes. (4.2)

po is density, f is the Coriolis parameter, g is gravity and a is the positive angle of
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the slope with respect to the horizontal. 0 (z) is the vertically integrated temperature

deficit from z to some arbitrary height zt, which is chosen above the boundary layer

where the temperature deficit vanishes:

Zt

0 (z) = Odz. (4.3)

In Equation 4.2 the total horizontal pressure gradient force (Fp) is split into an

ambient pressure gradient acceleration Fs, the gravitational acceleration FG, and the

thermal acceleration FT. The splitting between FT and FG arises from the rotation

of the coordinate system in the downslope direction. The gravitational acceleration

represents the acceleration due to the presence of a temperature deficit layer over

sloping terrain. The ambient pressure gradient acceleration describes the acceleration

due to pressure gradients in the ambient atmosphere, thus ignoring the deficit layer.

Mountain wave effects are included mostly in this term. The thermal acceleration is

due to temperature variations within the deficit layer. It is comparable to the coastal

sea-breeze effect [Estoque, 1961, Simpson, 19941 and exists even in the absence of the

slope.

I calculate Fs, FT, the local acceleration F, nonlinear advection FNL and FG ex-

plicitly at 21:00 UTC and infer sub-gridscale dynamics (FRe,) from the residual. The

ambient pressure gradient acceleration within the boundary layer can be calculated

using hydrostatic balance and integrating the ambient potential temperature gradi-

ent downwards [Cassano and Parish, 2000, Van den Broeke et al., 2002, van Angelen

et al., 20111. I verified that the flow is in hydrostatic balance by evaluating the ver-

tical momentum equation for the ambient and the full atmosphere in each domain

along the section AB. Even in WRF1.7, the hydrostatic terms are approximately one

order of magnitude larger than their difference and several orders of magnitude larger

than the advective terms and local acceleration. Thus:
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where R, is the gas constant and c, is the heat capacity at constant pressure.

Under non-hydrostatic conditions, the total horizontal pressure gradient within the

temperature deficit layer would consist of an additional term due to non-hydrostatic

pressure effects FNH = F- FT - FG - FS which can also include inaccuracies resulting

from the differentiation in Fp. I find that this term is approximately one order of

magnitude smaller than Fs and FG, which is consistent with the results from the

previous chapter. Moreover, it is insensitive to resolution which agrees with previous

studies on downslope winds [Cassano and Parish, 20001. In order to compare the forces

in WRF5 and WRF60 on the same scales, and to remove the high-frequency variability

associated with the mountain wave in WRF5, I smooth them over a distance of 120

km. Other filter sizes give the same result as long as they smooth out local variability

associated with the wave in WRF5. The forces are shown in Figure 4 - 6 apart from

the local acceleration which is negligible.

Qualitatively, the obtained forces during both events agree with the ones obtained

from ERA-I during the composite of DWE in the previous chapter, indicating that

the events are representative of the composite. I find that all forces have a larger

magnitude in WRF5 compared to WRF60. The biggest differences occur in the dom-

inant terms FG, Fs and FNL. Fs is initially accelerating the wind but as the flow

approaches the coast, it inhibits the surface flow. Both the acceleration and the decel-

eration are more pronounced in WRF5 than in WRF60 with differences above 20%.

The difference in the magnitude of FG is similarly large. In both domains, it is the

largest accelerating force over the central part of the slope. FNL is mostly responding
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to the other forces. It can be split into a horizontal along-slope, a horizontal cross-

slope and a vertical component. The horizontal components are large and positive

at the surface of the slope and negative above, whereas the vertical component is

negative at the surface and positive above (Figure 4-8). This is in line with previ-

ous studies which suggest that the horizontal momentum flux of the intense surface

flow is balanced by vertical advection of momentum [Durran, 1986, Bacmeister and

Pierrehumbert, 1988]. In these studies, however, the horizontal momentum advection

includes mostly the along-slope component. For both wind events here, I note that

the cross-slope horizontal component is similarly large (Figure 4-7), likely because of

confluence of the flow inside the valley. This stresses the importance of 3D effects for

the wind events.

FRe, has a similar magnitude in WRF5 and WRF60. It includes effects of subgrid-

scale turbulence that are parametrized in the model, numerical inaccuracies resulting

from the differentiation, as well as the local tendency of the momentum which is not

fully included in the local acceleration due to the coarse temporal sampling of three

hours. Since FR, has a similar magnitude in WRF5 and WRF60, there is little or

no parametrization of the nonlinear effects on scales between 5 and 60 km. Thus,

there is no gravity wave drag parametrization which is currently not supported for

simulations of this duration and resolution in the WRF model. Close to the surface,

where friction is important, FRe, is strongly decelerating the flow. Above the surface,

it is negligible except over the steepest part of the slope above the surface layer where

it is accelerating the flow. Since this region corresponds to a local minimum in wind

speed (Figure 4-4) the acceleration could result from drag by the faster flow around

it. The local acceleration (not shown) and the thermal acceleration are relatively

unimportant compared to the other forces, both in WRF5 and WRF60. For the

WRF5-Topo6O case (not shown), the magnitude of the forces is larger compared to

WRF60 (especially for FG, Fs and FNL) and smaller compared to WRF5.

Previous studies have explained strong surface wind speeds by large vertical mo-
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mentum fluxes associated with mountain waves [Durran, 1986, Bacmeister and Pier-

rehumbert, 1988, Durran, 20031. To directly assess the importance of momentum

fluxes on the scales not resolved in WRF60, I decompose the (unrotated) flow into a

mean and a wave component: u = i + u* and similarly for w. I define the mean as

a running mean over 120 km on the model levels and the wave component as devia-

tions of the flow from the mean. Thus, by definition, the wave component in WRF60

is negligible. In WRF5, WRF60 and WRF5-Topo6O momentum converges over the

slope above the surface (Figure 4-8). In WRF5 the wave component of the vertical

momentum flux (NL'z = w*a) can be almost twice as large as the mean component

(NLz = T!). The mean component of the vertical momentum flux in WRF5 also

has a larger magnitude than the total vertical momentum flux in WRF60, and thus

these wave processes have a large impact on the mean flow. In the WRF5-Topo6O

case, the magnitude of the total vertical momentum flux is reduced compared to

WRF5, but larger compared to WRF60. The wave component is very small despite

the 5 km model resolution, emphasizing the role of the topography in setting the scale

of the dynamics (Figure 4-8).

4.5.3 Mountain wave - gravity current interaction

The results from the previous section indicate that the driving forces of the downs-

lope flow have a different magnitude in WRF5 and WRF60 even on scales greater

than 120 km (Figure 4-6). Apart from the differences in the nonlinear advection, the

largest differences between the domains occur in the ambient pressure gradient and

the gravitational acceleration. Given the importance of the steep slope for the cross-

mountain pressure drag, the different representation of Fs in WRF5 and WRF60 is

expected. FG on the other hand depends only on the height difference of the two end

points of the part of the slope over which it is averaged as well as the temperature

deficit. Both quantities are not directly affected by the resolution when averaged

over the slope. Thus, the only way by which FG can attain a different magnitude in
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WRF5 and WRF60 is by nonlinear effects when the temperature deficit is increased

at exactly those locations where the slope is steeper in the higher resolution domain,

and by feedbacks with the other forces e.g. when a faster flow results in more cold

air advection which in turn intensifies the temperature deficit and FG.

Interactions between gravitationally driven flows and mountain waves have been

studied by Poulos et al. [2000, 20071 for different Froude number regimes. Using an

upstream wind speed of 30 m s- 1 for the strong wind event, a stability of N = 0.02

s- 1 and a mountain height of 3000 m, the Froude number is close to 0.5 for the strong

wind event. For the weak wind event, the upstream wind speed is -20 m s-1 and

N is comparable to the strong wind event, resulting in a Froude number of ~0.33.

The higher Froude number for the strong wind event is associated with a moun-

tain wave separation point that is shifted downhill. The mountain wave separation

point delimits the region where the mountain wave dominates the flow. According

to Poulos et al. [2000, 2007] the coupling of the katabatic wind with the mountain

wave downstream of the separation point can deepen the temperature deficit layer

by turbulence relative to the case without mountain waves. Indeed, for both wind

events, I find very deep deficit layers of more than 1000 m (e.g. Figure 4-9). Another

effect of mountain waves on katabatic flows arises from pressure perturbations that

are induced by the gravity waves above the temperature deficit layer [Poulos et al.,

2000, 2007]. I find this is true for both wind events, as the temperature deficit is

not distributed evenly over the slope. In WRF5 the temperature deficit increases

more quickly over the steeper parts of the slope which results in a larger gravitational

acceleration in WRF5 compared to WRF60 and the difference increases with time

as more cold air is advected onto the slope (Figure 4-9). Thus, the mountain wave

- katabatic wind interaction leads to a stronger gravitational acceleration in WRF5

compared to WRF60.

Poulos et al. [2007] suggested that mountain waves and katabatic winds can some-

times become indistinguishable and inseparable. Despite the close interaction between
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Figure 4-9: a) Evolution of the temperature deficit along section AB (Figure 4-1) at
three different time steps during the simulation of the strong wind event for WRF5
and WRF60. In WRF5 the temperature deficit intensifies faster, especially over
the steeper parts of the slope which results in a larger gravitational acceleration.
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difference between WRF5 and WRF60. The difference increases with time.
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them, I still note that the splitting of the total pressure gradient force into FG and

Fs is meaningful at each time step. As the simulation of the strong wind event pro-

gresses, a cold air pool forms at the end of the slope which extends deep into the

atmosphere. Thereby, Fs decreases and is decelerating the flow at the end of the

slope. The region where Fs is negative, shifts further upslope as more cold air is

advected downslope. Thus, there is a negative feedback between the stronger flow

and the decreasing ambient pressure gradient force (Figure 4-10) and this feedback is

more pronounced in WRF5. In summary, for the strong wind event the temperature

profile develops first large vertical gradients when the deficit layer intensifies and then

large horizontal gradients. The former process accelerates the flow as described by

FG and the latter decelerates the flow as described by Fs.

For the weak event, the gravitational acceleration is initially larger than the ambi-

ent pressure gradient acceleration. Since the Froude number is smaller, the katabatic

component of the flow is more pronounced [Poulos et al., 2000]. While the downslope

wind speed increases, a wave develops over the slope but it is shallower compared to

the strong wind event and the separation point is shifted upslope. The development

of the wave is associated with an increase of the ambient pressure gradient accel-

eration. Meanwhile, the temperature deficit layer mixes with ambient air and the

stratification and thus FG decrease (not shown). To summarize the evolution of the

differences in WRF5 and WRF60 for the strong and the weak wind events, I average

the forces over the ten lowest model levels between the distances of 50 and 300 km

over the slope (see Figures 4-9 and 4-10). The results are insensitive to the vertical

extent of the lower layer and the distance over which I average. For the strong wind

event, the magnitude of the forces is larger compared to the weak wind event and the

evolution diverges between WRF5 and WRF60. For the weak event, the differences

between WRF and WRF60 remain small (Figure 4-11).
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Figure 4-10: a) Evolution of the ambient temperature along section AB (Figure 4-
1) at three different time steps during the simulation of the strong wind event for
WRF5 and WRF60. The advection of strongly stratified air over the ocean results
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the pressure gradient force is seen further upslope with time and intensifies.
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4.5.4 Effects on larger scales

Next, I investigate how far downstream the effects of using a higher resolution

extend, and compare the evolution of the surface pressure, temperature, wind speed

and total turbulent heat fluxes in the simulations with the one- and the two-way

nesting. Thus, I compare these fields in -WRF60 from the simulation when feedbacks

from WRF5 and WRF20 are included with the one from the simulation that does

not allow for feedbacks (Figure 4-12). I do not expect the simulations to diverge

due to intrinsic model variability since they are still strongly controlled by the initial

conditions within the simulation period of 24 hours. Again, for the strong wind

event the differences are more pronounced compared to the weak one (not shown)

and they quickly increase with time. If feedbacks are included, the pressure is lower

in the outflow region of the Ammassalik valley and higher northeast of it over the

Irminger Sea. Near the East Greenland coast this results in a narrowing of the shape

of the low pressure system. In addition, the surface air in the outflow region of

the valley (Figure 4-2) is colder by -2 K, and the winds are faster by ~5 m s-

downstream of Ammassalik. This has consequences for the turbulent heat fluxes

which amount to 1000 W m- 2 and are up to 200 W m- 2 larger in the region of the

highest wind speeds and up to 200 W m- 2 weaker south of this region. Positive

heat fluxes indicate that heat is transferred from the ocean to the atmosphere. Thus,

differences between the one- and the two-way nesting simulations are not confined to

the valley in Ammassalik, but extend downstream over the Irminger Sea where they

result in a different spatial distribution and temporal evolution of the heat fluxes.

4.6 Discussion and conclusion

In this chapter, I have investigated the role of small-scale dynamics and steep

topography for strong downslope wind events (DWE) in southeast Greenland and

their downstream effects. Specifically, I have simulated a strong and a weak wind
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event with the WRF model in a 60 km (WRF60), a 20 km (WRF20) and a 5 km

(WRF5) resolution domain with a smoothed and a regular topography. I have found

that these different resolutions result in different representations of the wind field and

its underlying dynamics. The differences are present for both events, but they are

larger for the strong one. Since the boundary and initial conditions for the two events

from ERA-I, as well as the obtained forces, are representative of the composite, the

sensitivity to model resolution is likely a common feature of DWE. If the model is

run on a 5 km resolution grid but with a 60 km resolution topography, there are still

significant differences even though their overall magnitude is reduced. Thus, both a

high resolution model and high resolution topography are needed to simulate the full

extent of DWE.

The largest differences between the WRF5, WRF20 and WRF60 domain occur

at the southwestern side of the valley near the surface and over the slope inside the

valley (Figure 4-3). The first could be attributed to a stronger pressure gradient

build-up when the flow is dammed against the barrier, similar to barrier winds at

the coast [Moore and Renfrew, 2005, Petersen et al., 2009, Harden et al., 2011], but

here the barrier is represented by the southwestern side of the valley and rotation

is likely less important due to the smaller scale. There is a sharp turning of the

isobars inside the valley (Figure 4-1). Over the upper part of the slope the pressure

gradient is accelerating the flow, whereas it is decelerating the flow over the lower

part (Figure 4-6). Thus, the coarser representation of the topography and smaller

pressure gradients in the lower resolution domains are associated with a weaker flow

near the southwestern side of the valley and a reduced horizontal and vertical wind

shear. When the model is run on a 5 km resolution grid but with a 60 km resolution

topography, the flow field is similar to the one in the WRF60 domain which emphasizes

the role of the topography.

In addition, there is a steep mountain wave in WRF5 with the regular topography

near the end of the slope where the wind speeds are particularly strong (Figure 4-4).
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Previous studies suggest that mountain waves are associated with a large vertical

momentum flux that accelerates the surface winds [Durran, 1986, Bacmeister and

Pierrehumbert, 1988, Durran, 2003j. WRF60 does not resolve the full extent of the

vertical momentum transfer. If the 60 km resolution topography is used, the vertical

momentum flux in WRF5 is reduced, but still larger compared to WRF60 (Figure

4-8). The differences between WRF5 with the smoothed and regular topography are

solely due to the resolution of the topography. They likely arise because the vertical

momentum flux due to the cross mountain pressure drag is sensitive to the terrain

slope [Doyle et al., 2005]. The fact that the magnitude of the vertical momentum

flux in WRF5 with the 60 km resolution topography is still larger than in WRF60

emphasizes the role of small-scale model dynamics. I conclude that surface wind

speeds over the slope are sensitive to both model and topography resolution, but also

that these two are connected. A high model resolution is needed in order to simulate

the wave dynamics, but the strength of the wave dynamics depends on the terrain

slope.

Since the cross mountain pressure drag is sensitive to the terrain slope, differ-

ences in the obtained magnitude of the ambient pressure gradient Fs are expected.

The fact that the gravitational acceleration FG also attains a different magnitude in

WRF5 and WRF60 could be explained by interactions between FG and Fs, especially

during the strong wind event. Specifically, horizontal pressure gradient perturbations

induced by the mountain wave intensify the temperature deficit at exactly those loca-

tions where the slope is steepest, thus resulting in a larger gravitational acceleration

in WRF5 compared to WRF60 (Figure 4-9). Simultaneously, the downslope advec-

tion of stratified air leads to a cold air pool at the end of the slope, likely because

the air accumulates at the narrow valley outlet (Figure 4-10). This is associated

with a decrease of Fs that is larger in WRF5 and could result in a different wind

speed evolution in WRF5, WRF20 and WRF60 (Figures 4-2 and 4-12). Currently,

the WRF model does not support a gravity wave parametrization for simulations of

122



this duration and resolution, though these results suggest that future releases might

benefit from it. Since the wave drag can interact with the gravitational acceleration,

any parametrization would have to take this interaction into account.

The different evolution of the wind event in WRF5 and WRF60 is more pro-

nounced for the strong wind event than for the weak one. As Poulos et al. [2000]

suggest, this could be explained by the smaller Froude number for the weak wind

event which indicates that the katabatic component of the flow is more pronounced.

Since the gravitational acceleration is less sensitive to resolution when averaged over

the slope, the evolution of the weak wind event is more similar in WRF5 and WRF60.

Even a 5 km resolution could potentially misrepresent non-hydrostatic gravity

waves, and alias energy into longer wave-length hydrostatic waves [Reinecke and Dur-

ran, 2009]. Thus, I compared the flow and potential temperature field from WRF5 to

an additional domain with a horizontal grid spacing of 1.67 km and 45 vertical levels

(WRF1.7). I find that the surface and near surface winds in WRF5 and WRF1.7 are

in good agreement (Figures 4-2 and 4-4), and that WRF5 captures the steepness of

the topography. The largest differences between the two domains occur downstream

of the coast, where WRF1.7 resolves a series of lee waves that are smoothed in WRF5.

Since these lee waves do not affect the near surface wind field over the slope, I con-

clude that the 5 km resolution is adequate for the analysis in this study. Moreover,

the wind speed in WRF5 is in good agreement with observations from a local weather

station (Figure 4-2), indicating that the effect of non-hydrostatic waves is limited near

the surface and that the valley is wide enough to force primarily longer wavelength

hydrostatic waves. For steeper topography, faster flows and higher Froude numbers,

non-hydrostatic effects can become more important [Ulrich, 1991] and a separation

of the pressure gradient force might not be meaningful anymore. To simulate wind

events under such conditions, an even higher resolution is recommended.

The effects of resolving small-scale processes over the slope extend downstream

over the Irminger Sea (Figure 4-12). Thus, the faster downslope winds in WRF5 for
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the strong wind event do not only influence the local population and environment

in Ammassalik, but have further reaching climatic consequences. If feedbacks from

WRF5 and WRF20 are included in WRF60, even large-scale fields such as surface

pressure and temperature are affected. It is possible that the faster decrease of the

ambient pressure gradient also affects the larger-scale pressure distribution. This

could result in a diverging evolution of the synoptic situation. Additional studies

are required to investigate how sensitive the large-scale evolution is to small-scale

processes over steep topography.

Moreover, depending on whether the nesting in Ammassalik is one- or two-way,

the downstream wind field and heat fluxes over the Irminger Sea have both a different

distribution and magnitude with differences of up to -200 W m- 2 . Since the turbulent

heat fluxes depend on both wind speed and the air-sea temperature difference, the

discrepancy between the simulations is likely a consequence of the faster and colder

air in the WRF5 domain. This suggests that the differences arising from the narrower

and more intense outflow region from the valley extend beyond the WRF5 domain

boundaries, and that the temperature and wind speed differences concur in their effect

on the latent and sensible heat fluxes. Convection in the ocean depends on the air sea

heat exchange [Marshall and Schott, 1999], and changes in the spatial distribution

of the heat fluxes could result in shifts of the atmospheric forcing region relative to

the ocean convection centers. Thus, including or neglecting small-scale processes in

the Ammassalik valley in the model could have implications for the model's ability

to correctly force deep water formation.
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Chapter 5

Conclusion

This thesis was motivated by the bigger question of what the role of strong atmo-

spheric flows across Greenland's coast is for the surface energy balance over the ice

sheet and the heat fluxes over the subpolar North Atlantic and Nordic Seas. To tackle

this question, I started by carrying out the first comprehensive study of the large-

scale characteristics, dynamics, and influences of strong cross-coastal wind events over

Greenland. I showed that high-speed offshore winds are associated with large ocean

heat losses over major ocean convection regions and that onshore winds can result

in melting over the ice sheet or precondition melting later in the year. I found that

both types of wind events result from the interaction of large-scale atmospheric flows

with the high Greenland topography, and was able to connect previously identified

large-scale climate modes with the occurrence of these wind events and thus their

influences on the ice and ocean.

Amongst the downslope wind events that I investigated in Chapter 2, those in

southeast Greenland are unique. In this region, the flow, that originates in the far

north, is funneled from the vast ice sheet into the narrow valley of Ammassalik, where

it can reach hurricane intensity. This suggests that the cold air, which formed over the

northern ice sheet, is suddenly released during the wind events and spills out over the

ocean, where the cold and strong winds drive large heat fluxes. Thus, in Chapter 3, I
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focused on these unique wind events and studied their local characteristics, dynamics

and impacts in more detail. Thereby I showed that the local topographic forcing of

the valley and the large-scale synoptic forcing of the atmosphere reinforce each other

to create these high-speed wind events that have significant impacts on the coastal

sea ice cover and on the heat losses over the Irminger Sea.

By comparing weather station observations of the wind events in Ammassalik with

the reanalysis used in Chapters 2 and 3, I found that - even though the reanalysis

provided a reliable large-scale description of the wind events - it underestimated the

local wind speed inside the valley, suggesting that it did not resolve relevant dynamics

of the wind events. Therefore, in Chapter 4, I simulated the wind events with a higher

resolution atmospheric model. I showed that both a high model resolution and a high

topographic resolution are needed to simulate the large-amplitude mountain wave

and the associated vertical momentum flux that accelerates the downslope flow over

the steep slope in Ammassalik. Using a different resolution locally in the valley has

consequences for the distribution and evolution of the heat fluxes over a large area of

the Irminger Sea even far downstream of Ammassalik.

Thus, this study suggests that wind events across the coast (specifically the south-

east coast) have important consequences for the surface energy balance of the ice sheet

and the subpolar North Atlantic Ocean. Southeast Greenland is a key region where

the ice, ocean and atmosphere all interact with each other on a wide range of scales.

In this thesis, I have covered scales ranging from the atmospheric Rossby wave scale

(on the order of several 1000 km) to the mountain wave scale (on the order of 10

km). I have found that the large-scale synoptic forcing is an important component

of the forcing of strong downslope wind events in southeast Greenland, but a crucial

part of their dynamics occurs on smaller scales of less than 20 km. Therefore, the

results presented in this thesis contribute to the scientific understanding of ice-ocean-

atmosphere interactions around Greenland, and they will be useful for future studies.

In particular:
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" Investigations of the mass balance of the ice sheet will benefit from knowledge

of the onshore winds across the southeast Greenland coast, even if they occur

in winter when the temperature is below freezing. The influence of winter

circulation on melting later in the year has not previously been acknowledged.

" Knowledge of the offshore winds across the southeast coast can improve esti-

mates of the ocean heat fluxes, especially over the Irminger Sea, and thus is

relevant for appropriate simulations of deep water formation. Moreover, ice

sheet models might profit from including strong along-fjord winds and their

influences on the sea ice near floating tongue glaciers.

" The findings about the dynamics of the winds in Ammassalik can help to predict

the strong winds, and also provide useful information for the design of climate

models. Specifically, these models need to resolve dynamics on the small scales

of the local topography, or have adequate parameterizations that take the full

complexity of the flow into account.

Many questions still remain open:

" How far do small-scale processes over steep topography in key regions such

as southeast Greenland influence larger scales? Longer ensemble simulations,

covering larger domains, are needed to address this question.

" How will future climate change, e.g. a shift in the jet stream and mean wind

pattern, influence the distribution of melting over Greenland? What is the role

of the present and past atmospheric circulation for Greenland's current surface

elevation?

" Future warming of the subpolar North Atlantic ocean can affect the submarine

melt rate of outlet glaciers (e.g. Straneo and Heimbach [2013]), but also surface

melting through onshore winds across the southeast coast. How important will

these ocean contributions be for the mass balance of the Greenland ice sheet

127



when the temperature of the surface ocean continues to increase? Warming of

the subpolar North Atlantic can also result in a larger land-sea temperature

contrast and thereby affect atmospheric dynamics. Thus, Greenland is a region

of complex, inter-twined ice-ocean-atmosphere interactions and many of the

details are still unknown. More studies are needed to pin down individual pro-

cesses that contribute to the energy balance of the ice sheet, and to investigate

how they relate to larger scale climate variability.
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