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Abstract

Identifying nonlinear relationships in large datasets is a daunting task particularly when the
form of the nonlinearity is unknown. Here, we introduce Network Maximal Correlation (NMC)
as a fundamental measure to capture nonlinear associations in networks without the knowledge
of underlying nonlinearity shapes. NMC infers, possibly nonlinear, transformations of variables
with zero means and unit variances by maximizing total nonlinear correlation over the underlying
network. For the case of having two variables, NMC is equivalent to the standard Maximal
Correlation. We characterize a solution of the NMC optimization using geometric properties of
Hilbert spaces for both discrete and jointly Gaussian variables. For discrete random variables,
we show that the NMC optimization is an instance of the Maximum Correlation Problem and
provide necessary conditions for its global optimal solution. Moreover, we propose an efficient
algorithm based on Alternating Conditional Expectation (ACE) which converges to a local
NMC optimum. For this algorithm, we provide guidelines for choosing appropriate starting
points to jump out of local maximizers. We also propose a distributed algorithm to compute
a 1-ε approximation of the NMC value for large and dense graphs using graph partitioning.
For jointly Gaussian variables, under some conditions, we show that the NMC optimization
can be simplified to a Max-Cut problem, where we provide conditions under which an NMC
solution can be computed exactly. Under some general conditions, we show that NMC can
infer the underlying graphical model for functions of latent jointly Gaussian variables. These
functions are unknown, bijective, and can be nonlinear. This result broadens the family of
continuous distributions whose graphical models can be characterized efficiently. We illustrate
the robustness of NMC in real world applications by showing its continuity with respect to small
perturbations of joint distributions. We also show that sample NMC (NMC computed using
empirical distributions) converges exponentially fast to the true NMC value. Finally, we apply
NMC to different cancer datasets including breast, kidney and liver cancers, and show that
NMC infers gene modules that are significantly associated with survival times of individuals
while they are not detected using linear association measures.

1 Introduction

Identifying relationships among variables in large datasets is an increasingly important task in sys-
tems biology [1], social sciences [2], finance [3], etc. While correlation-based measures capture linear
associations, they can fail to infer true nonlinear relationships among variables, which can often
occur in real-world applications [4]. One family of measures to infer nonlinear associations among
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variables is based on mutual information [5,6]. Although mutual information computes a measure
of association strength among variables, it does not provide functions through which variables are
related to each other. Moreover, reliable computation of mutual information requires an excessive
number of samples, particularly for large number of variables [7].
A classical measure to infer a nonlinear relationship between two variables is Maximal Correlation
(MC), introduced by Gebelein [8] and studied in references [9–12]. MC infers, possibly nonlinear,
transformations of two variables with zero means and unit variances by maximizing their pairwise
correlation. MC can be computed efficiently for both discrete [13] and continuous [14] random
variables. For discrete variables, under some mild conditions, MC is equal to the second largest
singular value of a normalized joint probability distribution matrix [13]. In that case, transfor-
mations of variables can be characterized using right and left singular vectors of the normalized
probability distribution matrix. Recently, MC has been used in different applications in information
theory [15–17], information-theoretic security and privacy [18–20], and data processing [21,22].
Many modern applications include large number of variables with possibly nonlinear relationships
among them. Using MC to capture pairwise associations can cause significant over-fitting issues
because each variable can be assigned to multiple nonlinear relations. Here we propose Network
Maximal Correlation (NMC) as a fundamental measure to capture nonlinear associations in net-
works without the knowledge of underlying nonlinearity shapes. In the NMC optimization, each
variable is assigned to at most one transformation function with zero mean and unit variance.
NMC infers optimal transformations of variables by maximizing their inner products over edges of
the underlying graph. For the case of two variables, NMC is equivalent to MC. The NMC defi-
nition does not assume a specific relationship among node variables and the graph structure. For
illustration, we consider this relationship in different NMC applications such as graphical model
inference. Furthermore, the NMC optimization can be regularized to have even fewer nonlinear
transformations to avoid over-fitting issues.
In this paper, we characterize a solution of the NMC optimization using geometric properties of
Hilbert spaces for both discrete and continuous jointly Gaussian variables. For discrete random
variables, we show that the NMC optimization is an instance of the Maximum Correlation Problem
(MCP) which is NP-hard [23–26]. In this case, using results of the Multivariate Eigenvector Prob-
lem (MEP) [23], we provide necessary conditions for a global NMC optimum. We also propose an
efficient algorithm based on Alternating Conditional Expectation (ACE) [13], which converges to
a local NMC optimum. We also provide guidelines for choosing appropriate starting points of the
algorithm to jump out of local maximizers. The proposed ACE algorithm does not require forming
joint distribution matrices which could be expensive for variables with large alphabet sizes. We
also propose a distributed version of the ACE algorithm to compute a 1-ε approximation of the
NMC value for large and dense graphs using graph partitioning.
For jointly Gaussian variables, we use projections over Hermitte-Chebychev polynomials to char-
acterize an optimal solution of the NMC optimization. Under some conditions, we show that the
NMC optimization is equivalent to the Max-Cut problem, which is NP-complete [27]. However,
there exist algorithms to approximate its solution using Semidefinte Programming (SDP) within
an approximation factor of 0.87856 [28]. In this case, we provide conditions under which an NMC
solution can be computed exactly. Using these results, under some general conditions we show that
NMC can infer the underlying graphical model for functions of latent jointly Gaussian variables.
These functions are unknown, bijective, and can be nonlinear. This result broadens the family of
continuous distributions whose graphical models can be characterized efficiently.
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In real-world applications, often only noisy samples of joint distributions are available. For this
case, we prove a finite sample generalization bound, and error guarantees for NMC. In particular,
under general conditions we prove that NMC is continuous with respect to joint probability dis-
tributions. That is, a small perturbation in the distribution results in a small change in the NMC
value. Moreover, we show that Sample NMC (i.e., NMC computed using empirical distributions)
converges exponentially fast to the NMC value as the sample size grows.
Moreover, we use the NMC optimization to characterize a nonlinear global relevance graph with a
certain complexity [29] and propose a greedy algorithm to infer such a nonlinear relevance graph
approximately. Finally, we apply NMC to different cancer datasets [30] including breast, kidney
and liver cancers and show that using the NMC network, we can infer gene modules that are
significantly associated with survival times of individuals while they are not detected using linear
association measures.

2 Maximal Correlation

In this section, we introduce notations and review prior work on maximal correlation.

2.1 Notation

Suppose X1 and X2 are two random variables defined on probability space (Ω,F , P ) taking values
in (X1,B1) and (X2,B2), respectively. The map Xi ∶ (Ω,F) → (Xi,Bi) generates the subalgebra
Fi = X−1

i (Bi) of F . Let PXi be the restriction of the measure P on Fi, i = 1,2. For discrete
variables, X1 and X2 are their finite support sets with cardinalities ∣Xi∣, for i = 1,2.

2.2 Definition and General Properties

A Pearson’s linear correlation coefficient between real-valued variables X1 and X2 is defined as

cor(X1,X2) =
E [(X1 − E[X1]) (X2 − E[X2])]√

var(X1)
√

var(X2)
,

where var(Xi) represents the variance of random variable Xi, for i = 1,2. Correlation-based mea-
sures capture linear associations between variables, ignoring possible nonlinear relationships.

Example 1 Suppose X1 is a Gaussian variable with zero mean and unit variance. Let X2 =X2
1 . In

this case, even though variables are strongly associated with each other, the correlation coefficient
between them is close to zero (see e.g. Figure 1-a). It is because these variables are related
through a nonlinear transformation. One way to capture such a nonlinear relationship between these
variables is to quantify maximum correlation between their, possibly nonlinear, transformations.
In this example, suppose φ1(X1) = α11X

2
1 + α12 and φ2(X2) = α21X2 + α22, where coefficients αij

are selected so that φi(Xi) has zero mean and unit variance, for both i = 1,2. In this case, the
correlation coefficient between transformed variables is one (see e.g. Figure 1-b), capturing a strong
nonlinear association between variables X1 and X2.

Maximal correlation (MC) between variables X1 and X2 which was introduced by Gebelein [8]
captures a nonlinear association between them by selecting, possibly nonlinear, transformation
functions φ1(X1) and φ2(X2) so that φ1(X1) and φ1(X1) have the highest correlation among all
other transformation functions with zero means and unit variances.
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Figure 1: (a) Samples of variables X1 and X2 with a nonlinear relationship consid-
ered in Example 1. (b) φ1(X1) and φ2(X2) are transformed variables, capturing the
nonlinear relationship between X1 and X2.

Definition 1 (Maximal Correlation) Maximal correlation between two random variables X1

and X2 is defined as

ρ(X1,X2) ≜ max
φ1,φ2

E[φ1(X1) φ2(X2)], (2.1)

subject to φi(Xi) ∶ Ω→ R is measurable1 , E[φi(Xi)] = 0, and E[φi(Xi)2] = 1, for i = 1,2.

For i = 1,2, let φ∗i (Xi) denote an optimal solution of (2.1). Maximal correlation ρ(X1,X2) is always
between 0 and 1, where a high MC value indicates a strong association between two variables [8].
The study of maximal correlation and other principle inertia components between two variables
dates back to Hirschfeld [9], Gebelein [8], Sarmanov [10], Rényi [11], and Greenacre [12]. Recently,
MC has been used in information theory and applied probability problems such as data processing,
inference of common randomness among others [10, 14, 22, 31, 32]. Unlike linear correlation, MC
only depends on the joint distribution of variables PX1,X2(⋅, ⋅), and not on their alphabets Xi.
Several works have investigated different aspects of optimization (2.1) for both discrete [13] and
continuous [14] random variables. In particular, the existence of an optimal solution for the MC
optimization and the uniqueness of such solutions have been investigated in [13]. Reference [14]
has used projections over Hilbert spaces to compute MC for Gaussian variables. We extend this
approach to derive existing MC results for discrete variables. In the next section, we use a similar
approach based on Hilbert projections to characterize network maximal correlation for both discrete
and jointly Gaussian variables.

Definition 2 For i = 1,2, we define a Hilbert space Hi as

Hi = {φi(Xi)∣φi(Xi) is measurable, E[φi(Xi)] = 0, E[(φi(Xi))2] < ∞},

where the product is defined as ⟨φi, φ′i⟩ ≜ E[φi(Xi) φ′i(Xi)].

Since every Hilbert space has an orthonormal basis (Theorem 2.4, [33]), we let {ψ1,i}∞i=1 and {ψ2,i}∞i=1
be corresponding orthonormal bases of H1 and H2, respectively. Consider the following optimiza-

1φi is a mapping from Xi to R and Xi is a mapping from Ω to Xi. Thus, we have φi(Xi) = φi ○Xi ∶ Ω→ R.
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tion:

max
ai,j

∑
i,j

a1,ia2,j ρij (2.2)

∞
∑
j=1

a2
i,j = 1, i = 1,2,

∞
∑
j=1

ai,j E[ψi,j(Xi)] = 0, i = 1,2,

where ρij ≜ E[ψ1,i(X1) ψ2,j(X2)].
Proposition 1 Suppose φ∗i (⋅) and a∗i,j are optimal solutions of optimizations (2.1) and (2.2), re-
spectively. Then, we have

φ∗i (x) =
∞
∑
j=1

a∗i,j ψi,j(x). (2.3)

Moreover, the joint probability distribution can be written as

PX1X2(x1, x2) = ∑
i,j

ρijψ1,i(x1)ψ2,j(x2).

Proof A proof is presented in Section 10.1.

Proposition 1 provides an alternative optimization (2.2) to solve the maximal correlation problem
(2.1). Selecting appropriate orthonormal bases for Hilbert spacesH1 andH2 is critical to obtaining a
tractable optimization (2.2). In the following, we use Proposition 1 to solve the maximal correlation
optimization for general discrete variables as well as for jointly Gaussian variables.

Example 2 (MC for Discrete Random Variables) Suppose X1 and X2 are two discrete ran-
dom variables with a joint probability function PX1,X2(⋅, ⋅). Let {1, . . . , ∣X1∣} and {1, . . . , ∣X2∣} be
alphabets of random variables X1 and X2, respectively. We choose the following orthonormal bases
for H1 and H2:

ψ1,i(x) = 1{x = i} 1√
PX1(i)

and ψ2,j(x) = 1{x = j} 1√
PX2(j)

.

By these selections of bases, we have

ρij = E[ψ1,i(X1) ψ2,j(X2)] =
PX1X2(i, j)√
PX1(i)

√
PX2(j)

.

Moreover, we have

E[ψi,j(Xi)] =
√
PXi(j), i = 1,2.

Thus, optimization (2.2) is simplified to the following optimization:

max ∑
i,j

a1,ia2,j
PX1,X2(i, j)√
PX1(i)

√
PX2(j)

(2.4)

∣Xi∣
∑
j=1

(ai,j)2 = 1, i = 1,2,

∣Xi∣
∑
j=1

ai,j
√
PXi(j) = 0, i = 1,2.
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According to Proposition 1, to solve MC optimization (2.1) it is sufficient to find an optimal solution
of optimization (2.4). In the following, we show that an optimal solution of optimization (2.4) can
be computed in a closed form using matrix spectral decomposition. Define the normalized joint
distribution matrix as

Q(i, j) ≜ PX1,X2(i, j)√
PX1(i)

√
PX2(j)

(2.5)

whose size is ∣X1∣ × ∣X2∣. Let

a1 ≜ (a1,1, a1,2, . . . , a1,∣X1∣)
T and a2 ≜ (a2,1, a2,2, . . . , a2,∣X2∣)

T

be coefficient vectors. Moreover, let
√

p1 ≜ (
√
PX1(1),

√
PX1(2), . . . ,

√
PX1(∣X1∣))

T
(2.6)

√
p2 ≜ (

√
PX2(1),

√
PX2(2), . . . ,

√
PX2(∣X2∣))

T

be vectors of square roots of marginal probabilities. Optimization (2.4) can be re-written as follows:

max aT1 Q a2 (2.7)
∥ai∥2 = 1, i = 1,2,
ai ⊥

√
pi, i = 1,2.

In the following, we show that optimal coefficient vectors a1 and a2 of optimization (2.7) are equal
to the left and right singular vectors of the matrix Q corresponding to its second largest singular
value. Moreover, the optimal value (the maximal correlation between two variables X1 and X2)
is equal to the second largest singular value of the matrix Q. To show this, we define random
variables Z1 and Z2 such that

P

⎡⎢⎢⎢⎣
Z1 =

a1,i√
PX1(i)

, Z2 =
a2,j√
PX2(j)

⎤⎥⎥⎥⎦
= PX1,X2(i, j),

where ∥a1∥ = 1 and ∥a2∥ = 1. Using the Cauchy-Schwartz inequality, we have that

aT1Qa2 = E[Z1Z2] ≤
√
E[Z2

1 ]E[Z2
2 ] = ∣∣a1∣∣ ∣∣a2∣∣ = 1.

Therefore, the maximum singular value of Q is at most one. Using (2.5), one can see that the right
and left singular vectors of Q with the singular value one are

√
p1 and

√
p2, respectively. Thus, the

feasible set of optimization (2.7) includes unit-norm vectors orthogonal to leading singular vectors
of Q. Thus, the optimal value is equal to the second largest singular value and optimal vectors a∗1
and a∗2 are left and right singular vectors corresponding to the second largest singular value.

Example 3 (MC for Jointly Gaussian Random Variables) This example is studied in ref-
erence [14] to compute MC between two Gaussian variables. In Section 6, we use a similar approach
to characterize network maximal correlation for jointly Gaussian variables.
Suppose (X1,X2) are jointly Gaussian variables with the correlation coefficient ρ. The k-th
Hermitte-chebychev polynomial is defined as

Ψk(x) = (−1)kex2 dk

dxk
e−x

2

. (2.8)
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These polynomials form an orthonormal basis with respect to Gaussian distributions. That is,

∫
∞

−∞
Hi(x1)Hj(x2)f(x1, x2)dx1dx2 = ρi1i=j , (2.9)

where f(x, y) is the joint density function of Gaussian variables with correlation ρ, and 1i=j is one
when i = j, otherwise it is zero. Let ψi,j to be the j-th Hermitte-Chebychev polynomial, for i = 1,2.
Using (2.9), we have

ρij = E[ψ1,i(X1) ψ2,j(X2)] = ρi1i=j .

Moreover, we have

E[ψi,j(Xi)] = 1j=0, i = 1,2, (2.10)

because all of these functions for j ≥ 1 have zero means over a Gaussian distribution. Therefore,
optimization (2.2) can be written as

max
∞
∑
i=0
a1,ia2,iρ

i (2.11)

∞
∑
j=0

(ai,j)2 = 1, i = 1,2,

ai,0 = 0, i = 1,2.

Since ∣ρ∣ ≤ 1, an optimal solution of optimization (2.11) is obtained when ∣a1,1∣ = 1, ∣a2,1∣ = 1, while
other coefficients are equal to zero. The signs of ai,1 for i = 1,2 are determined so that a1,1a2,1ρ = ∣ρ∣.
This leads to the maximal correlation ∣ρ∣ between two variables that is equal to the absolute value
of the correlation coefficient between them when the two random variables are jointly Gaussian.
Moreover, optimal transformation functions are

φi(Xi) = ai,1ψi,1 = ±Xi, i = 1,2,

where signs of variables are selected so that a1,1a2,1ρ = ∣ρ∣.

3 Statistical Properties of Maximal Correlation

In many applications, often only noisy samples of joint distributions are observed. In this section,
we prove a finite sample generalization bound, and error guarantees for maximal correlation of
discrete random variables. Specifically, under some general conditions, we prove that

� maximal correlation is a continuous measure with respect to the joint probability distribution.
That is, a small perturbation in the distribution results in a small change in the MC value.

� sample maximal correlation between two variables, computed using m samples from the joint
distribution, converges exponentially fast to the MC value, as m grows.

These properties establish maximal correlation as a robust association measure to capture nonlinear
dependencies between variables in real-world applications.
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Throughout this subsection we only consider discrete random variables and assume that all
alphabet elements xi ∈ Xi have positive probabilities (otherwise they can be neglected without loss
of generality). That is, if

δi ≜ arg min
xi∈Xi

PXi(xi), i = 1,2, (3.1)

then δ(P ) ≜ min{δ1, δ2} > 0. The empirical distribution of these variables using m observed samples
is defined as P (m)(x1, x2) = 1

m ∑
m
i=1 1{x(i)1 = x1, x

(i)
2 = x2}, where {x(i)1 , x

(i)
2 }mi=1 are i.i.d. samples

drawn according to a distribution PX1,X2 . The vector of observed samples of variable Xi is denoted
by xi = (x(1)i , x

(2)
i , . . . , x

(m)
i ). For any vector v = (v1, . . . , vp) ∈ Rd and p ≥ 1, we let ∥v∥p represent

the standard p-norm of the vector v defined as

∣∣v∣∣p = (
d

∑
i=1
vpi )

1
p

.

For p = 2, we drop the subscript if no confusion arises, i.e., ∣∣v∣∣ = ∣∣v∣∣2.

3.1 Continuity of Maximal Correlation

Let PX1,X2(⋅, ⋅) and P̃X1,X2(⋅, ⋅) be two distributions over alphabets (X1,X2) with the corresponding
MC values ρ and ρ̃, respectively. In the following, we show that if the distance between P and P̃ is
small (i.e., ∣∣P − P̃ ∣∣∞ ≤ ε), their corresponding MC values (ρ and ρ̃) are close to each other as well.

Theorem 1 Let ∣∣P − P̃ ∣∣∞ ≤ ε, for some ε > 0. Then, we have

∣ρ − ρ̃∣ ≤ 2
ε

δ2
D3/2, (3.2)

where D ≜ max{∣X1∣, ∣X2∣}, and δ ≜ min(δ(P ), δ(P̃ )).

Proof A proof is presented in Section 10.2.

The sketch of the proof is as follows: The normalized joint distribution matrix Q (2.5) can be
written as

Q =DX1(P )−
1
2PX1,X2DX2(P )−

1
2 , (3.3)

where DXi(P ) denotes a diagonal matrix whose diagonal is PXi , for i = 1,2. Since the matrix Q
is a continuous function of PX1,X2(⋅, ⋅), its singular values (and therefore its second largest singular
value) are continuous functions of P as well.

3.2 Sample Maximal Correlation

Let {xi1, xi2}mi=1 be i.i.d. samples drawn according to a joint probability distribution PX1,X2(⋅, ⋅).
Suppose P (m)(⋅, ⋅) denotes the empirical distribution obtained from these samples. Maximal corre-
lation computed using this empirical probability distribution is called Sample Maximal Correlation
and is denoted by ρm(X1,X2). In the following, we show that ρm(X1,X2) converges to ρ(X1,X2)
exponentially fast, as m→∞.
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Theorem 2 For any distribution P , and any ε > 0, P [∣ρm(X1,X2) − ρ(X1,X2)∣ > ε] → 0, exponen-
tially fast. More precisely, if

m ≥ 3
δ(P )2ε

√
D log (24

η
) ,

then,

P [∣ρm(X1,X2) − ρ(X1,X2)∣ > ε] ≤ η,

where D = max{∣X1∣, ∣X2∣}. The bound can also be written as

P [∣ρm(X1,X2) − ρ(X1,X2)∣ > ε] ≤
1
24

exp(−mδ(P )2ε

3
√
D

) .

Proof A proof is presented in Section 10.3.

The proof follows from the facts that maximal correlation is a continuous function of the input
distribution according to Theorem 1, and the empirical distribution converges exponentially fast
to the true distribution.

4 Network Maximal Correlation

4.1 Definition and General Properties

In this section, we introduce Network Maximal Correlation (NMC) as a fundamental measure to
capture nonlinear associations over networks. Let G = (V,E) be a graph with n nodes and ∣E∣
edges. The graph G is un-weighted, does not have self-loops, and can be directed or undirected.
Each node i is assigned to a random variable Xi. Here, we introduce NMC without assuming a
specific relationship among node variables and the graph structure. We discuss this relationship in
different applications of NMC in Sections 6, 7, and 8. NMC infers best nonlinear transformation
functions assigned to each node variable so that the total pairwise correlation over the network is
maximized.

Suppose X1, . . . ,Xn are n random variables defined on probability space (Ω,F , P ), where Xi

takes values in (Xi,Bi). The map Xi ∶ (Ω,F) → (Xi,Bi) generates the subalgebra Fi = X−1
i (Bi) of

F . Let PXi be the restriction of the measure P on Fi, i = 1, . . . , n. For discrete variables, X1 and
X2 are their finite support sets with cardinalities ni = ∣Xi∣, for i = 1, . . . , n.

Definition 3 (Network Maximal Correlation) Network maximal correlation among variables
X1, . . . ,Xn connected by a graph G = (V,E) is defined as

ρG(X1, . . . ,Xn) ≜ max
φ1,...,φn

∑
(i,j)∈E

E[φi(Xi) φj(Xj)], (4.1)

subject to φi(Xi) ∶ Ω→ R is measurable, E[φi(Xi)] = 0, and E[φi(Xi)2] = 1, for 1 ≤ i ≤ n.

The Optimization (4.1) maximizes total pairwise correlation over the network without distinguish-
ing among positive and negative correlations. In some applications, the strength of an association
does not depend on the sign of the correlation coefficient. In those cases, one can re-write the NMC
optimization (4.1) to maximize the total absolute pairwise correlations over the network as follows:
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Definition 4 (Absolute Network Maximal Correlation) Consider the following optimization:

max
φ1,...,φn

∑
(i,j)∈E

∣E[φi(Xi) φj(Xj)]∣ , (4.2)

subject to φi(Xi) ∶ Ω → R is measurable, E[φi(Xi)] = 0 and E[φ2
i (Xi)] = 1, for any 1 ≤ i ≤ n. We

refer to this optimization as an absolute NMC optimization.

Let φ∗i (⋅) be an optimal solution of the NMC optimization (4.1) (in Proposition 2 we prove the
existence of such solution). Then, an edge maximal correlation between variables i and j is defined
as

ρG(Xi,Xj) ≜ ∣E[φ∗i (Xi) φ∗j (Xj)]∣, (4.3)

where (i, j) ∈ E. Unlike maximal correlation formulation of (2.1), transformation functions in
optimization (4.1) are constrained by the network structure. Therefore, an edge maximal correlation
between variables Xi and Xj is always smaller than or equal to their maximal correlation, i.e.,

ρG(Xi,Xj) ≤ ρ(Xi,Xj).

Computation of maximal correlation for each edge independently results in two nonlinear functions
assigned to nodes of that edge. Therefore, if the network has ∣E∣ edges, it will result in inference of
2∣E∣ possibly nonlinear functions. In that setup, each node can be associated to different nonlinear
transformation functions which can raise over-fitting issues particularly for dense networks. On the
other hand, in the NMC formulation of (4.1), we assign a single function to each node in the graph.
Therefore, optimization (4.1) results in n possibly nonlinear functions.

Lemma 1 The NMC optimization (4.1) is equivalent to the following MSE optimization:

min
φ1,...,φn

1
2
∑

(i,j)∈E
E[(φi(Xi) − φj(Xj))2], (4.4)

where E[φi(Xi)] = 0 and E[φ2
i (Xi)] = 1, for any 1 ≤ i ≤ n.

Proof A proof is presented in Section 10.4.

Similarly to Definition 2, for i = 1,2, . . . , n, we define a Hilbert space Hi as

Hi = {φi(Xi)∣φi(Xi) is measurable, E[φi(Xi)] = 0, E[(φi(Xi))2] < ∞},

where the product is defined as ⟨φi, φ′i⟩ ≜ E[φi(Xi) φ′i(Xi)].
The following proposition shows the existence of optimal transformations of the NMC optimization
(4.1):

Proposition 2 Under the assumption that Hilbert spaces Hi’s are compact, there exist functions
φ∗i such that E[φ∗i (Xi)] = 0 and E[φ∗i (Xi)2] = 1 for 1 ≤ i ≤ n, that achieve the optimal value of
optimization (4.1).

Proof A proof is presented in Section 10.5.

The assumption that Hilbert spaces Hi’s are compact holds when Xi’s are discrete random variables
with finite support, or when Xi’s are jointly Gaussian random variables.

10



Let Pi denote the projection operation from the space Hj (for any j ≠ i) onto Hi, for any 1 ≤ i ≤ n.
According to Lemma 5 this projection can be characterized using conditional expectations a s
follows: For random variable φj ∈Hj , we have

Piφj = argminφi∈HiE [(φi − φj)2] = E[φj ∣Xi]√
E[φj ∣Xi]2

.

The following proposition characterizes optimal NMC transformation functions using projection
operators:

Proposition 3 Optimal transformation functions of NMC optimization (4.1) {φ∗i ,1 ≤ i ≤ n} satisfy

φ∗i =
∑j∈N(i)Pi φ∗j

∣∣∑j∈N(i)Pi φ∗j ∣∣
=

E[∑j∈N(i) φ
∗
j ∣Xi]

∣∣E[∑j∈N(i) φ
∗
j ∣Xi]∣∣

, (4.5)

where N(i) represents neighbors of node i in the graph G = (V,E).

Proof A proof is presented in Section 10.6.

Note 1 A similar approach can be used to characterize the absolute NMC optimization (4.2) by
introducing extra variables to represent correlation signs of edges:

max ∑
(i,j)∈E

si,jE[φi(Xi)φj(Xj)]

E[φi(Xi)] = 0, E[φ2
i (Xi)] = 1, 1 ≤ i ≤ n. (4.6)

In this case, similarly to Proposition (10.6), we can write

φ∗i =
∑j∈N(i) s

∗
ijPi φ∗j

∣∣∑j∈N(i) s
∗
ijPi φ∗j ∣∣

,

where

s∗ij = sign (E[φ∗i (Xi)φ∗j (Xj)]) .

Proposition 3 characterizes a property of optimal transformations of NMC (4.1) using projection
operations without explicitly computing the optimal NMC solution. In the following, we use or-
thonormal representations of the Hilbert spaces Hi and propose a constructive approach to solve
the NMC optimization.
Recall that {ψi,j}∞j=1 represents an orthonormal basis for Hi. Consider the following optimization:

max ∑
(i,i′)∈E

∑
j,j′
ai,jai′,j′ ρ

j,j′

i,i′ (4.7)

∞
∑
j=1

a2
i,j = 1, 1 ≤ i ≤ n,

∞
∑
j=1

ai,j E[ψi,j(Xi)] = 0, 1 ≤ i ≤ n,

where ρj,j
′

i,i′ ≜ E[ψi,j(Xi) ψi′,j′(Xi′)].

11



Theorem 3 Suppose φ∗i (⋅) and a∗i,j are optimal solutions of optimizations (4.1) and (4.7), respec-
tively. Then, we have

φ∗i (x) =
∞
∑
j=1

a∗i,j ψi,j(x). (4.8)

Proof A proof is presented in Section 10.7.

Similarly to the case of two variables discussed in Section 2.2, selecting appropriate Hilbert spacesHi

is critical to have a tractable optimization (4.7). In the following, we consider the NMC optimization
for discrete variables, while the Gaussian case is discussed in Section 6.

Example 4 (NMC for Discrete Random Variables) Suppose Xi is a discrete random vari-
able with alphabet {1, . . . , ∣Xi∣}. Similarly to Example 2, let ψi,j(x) = 1{x = j} 1√

PXi(j)
be an

orthonormal basis for Hi. Thus, we have

ρj,j
′

i,i′ = E[ψi,j(Xi) ψi′,j′(Xi′)] =
PXiXi′ (j, j

′)
√
PXi(j)

√
PXi′ (j′)

.

Therefore, optimization (4.7) is simplified to the following optimization:

max ∑
(i,i′)∈E

∑
j,j′
ai,jai′,j′

PXiXi′ (j, j
′)

√
PXi(j)

√
PXi′ (j′)

(4.9)

∣Xi∣
∑
j=1

(ai,j)2 = 1, 1 ≤ i ≤ n,

∣Xi∣
∑
j=1

ai,j
√
PXi(j) = 0, 1 ≤ i ≤ n.

Similarly to Example 2, we define the matrix Qi,i′ as

Qi,i′(j, j′) ≜
PXi,Xi′ (j, j

′)
√
PXi(j)

√
PXi′ (j′)

, (4.10)

whose size is ∣Xi∣ × ∣Xi′ ∣. Moreover, recall that for i = 1, . . . , n, we have

ai = (ai,1, ai,2, . . . , ai,∣Xi∣)
T

√
pi = (

√
PXi(1),

√
PXi(2), . . . ,

√
PXi(∣Xi∣))

T
.

Therefore, optimization (4.9) can be re-written as follows:

max ∑
(i,i′)∈E

aTi Qi,i′ai′ (4.11)

∥ai∥2 = 1, 1 ≤ i ≤ n,
ai ⊥

√
pi, 1 ≤ i ≤ n.

Optimization (4.11) is not convex nor concave in general. In Section 5.2, we show that this op-
timization is an instance of the standard Maximum Correlation Problem (MCP) proposed by
Hotelling [24,25]. By making this connection, we use established techniques of solving Multivariate
Eigenvalue Problem (MEP) to solve optimization (4.11).
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4.2 Statistical Properties of NMC

In this part, we investigate the robustness of NMC for discrete variables with finite support against
small perturbations of joint probability distributions of variable pairs. Moreover, we show that
sample NMC (i.e., NMC computed using empirical distributions) converges to the true NMC value
exponentially fast as the sample size increases. To simplify notation, suppose Pi,i′ is the matrix
representation of the joint probability distribution of variables Xi and Xi′ .

Theorem 4 Network maximal correlation is a continuous function of the joint probability distri-
butions Pi,i′ , for all (i, i′) ∈ E. Let ∣∣Pi,i′ − P̃i,i′ ∣∣∞ ≤ ε, for some ε > 0, and all (i, i′) ∈ E. Then, we
have

∣ρ̃G − ρG∣ ≤ ε∣E∣D
3
2

6
δ2
, (4.12)

where D = max{∣X1∣, . . . , ∣Xn∣}, and δ = min1≤i≤n (min{δ(PXi), δ(P̃Xi)}).

Proof A proof is presented in Section 10.8.

Next, we show that the sample NMC denoted by ρm(G) converges to the true NMC value ρG
exponentially fast, as the sample size m increases:

Theorem 5 Sample NMC converges to NMC, exponentially fast. Particularly, let δ = min1≤i≤n δ(PXi)
and D = max{∣X1∣, . . . , ∣Xn∣}. Then, for

m ≥ (24∣E∣2D3

ε2δ2
) log(8 max{∣V ∣, ∣E∣}

η
) , (4.13)

we have

P[∣ρm(G) − ρG∣ > ε] ≤ η. (4.14)

Proof A proof is presented in Section 10.9.

Note that for the case of having two variables, robustness bounds provided in Theorems 4 and 5 are
more loose compared to bounds provided by Theorem 1 and 2 owing to the generality of relaxations
used in NMC performance characterization.

4.3 Regularized NMC

In this section, we assume that all variables are real-valued (note that this is not a necessary condi-
tion for MC and NMC). The NMC optimization (4.1) results in n possibly nonlinear transformation
functions φ∗i (Xi) whose distances from original variables can be arbitrarily large (i.e., E[φ∗i (Xi) Xi]
can be arbitrarily small). In some applications, one may wish to have fewer than n nonlinear trans-
formation functions assigned to variables, or alternatively to control distances among transformed
and original variables. Here, we propose a regularized NMC optimization framework which pe-
nalizes distances among optimal transformation functions φ∗i (Xi) and the original variables Xi.
Suppose variables have mean zero and unit variance. I.e., E[Xi] = 0 and E[X2

i ] = 1.
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Algorithm 1 Alternating Conditional Expectation

Initialization: φ(0)
1 (X1), φ(0)

2 (X2) with mean zero.
for k=0,1, . . .

φ
(k+1)
1 (X1) = E[φ(k)

2 (X2)∣X1].
update: φ(k+1)

1 (X1) = φ
(k+1)
1 (X1)√

E[(φ(k+1)1 (X1))2]

φ
(k+1)
2 (X2) = E[φ(k)

1 (X1)∣X2].
update: φ(k+1)

2 (X2) = φ
(k+1)
2 (X2)√

E[(φ(k+1)2 (X2))2]

update: ρ(k+1) = E[φ(k+1)
1 (X1)φ(k+1)

2 (X2)]
end

Definition 5 (Regularized NMC) Regularized NMC among variables X1, . . . ,Xn connected
by a graph G = (V,E) is defined as the solution of the following optimization:

max
φ1,...,φn

(1 − λ) ∑
(i,j)∈E

E[φi(Xi) φj(Xj)] + λ∑
i∈V

E[φi(Xi) Xi], (4.15)

where E[φi(Xi)] = 0 and E[φ2
i (Xi)] = 1, for any 1 ≤ i ≤ n. 0 ≤ λ ≤ 1 is the regularization parameter.

Unlike MC and NMC, which only depend on the joint distributions of variables, the regularized
NMC depends on both joint distributions and alphabets of variables because of the regularization
term. Moreover, one can define regularized absolute NMC similarly to optimization (4.2).
Let optimal transformation functions computed by optimization (4.15) be φ∗i,λ. If λ = 0, φ∗i,λ = φ∗i ,
while if λ = 1, φ∗i,λ = Xi. By varying λ between 0 and 1, transformation functions vary from φ∗i to
Xi. Suppose

ρG,λ(X1, . . . ,Xn) ≜ ∑
(i,j)∈E

E[φ∗i,λ(Xi) φ∗j,λ(Xj)].

Therefore, ρG,0 = ρG and ρG,1 is the total linear correlations over the network. By the definition of
NMC, ρG,0 ≥ ρG,1.

5 Computation of MC and NMC

In this section, we first review an existing algorithm to compute MC and then introduce an efficient
algorithm to compute NMC. We also propose a parallelizable version of the NMC algorithm based
on network partitioning and show that its expected performance is ε-away from the true NMC
value.

5.1 Computation of Maximal Correlation

Given the joint distribution of variables, one can use Proposition 1 to compute the MC value and
optimal transformation functions. In particular, for discrete random variables, Example 2 shows
that a solution of optimization (2.1) can be characterized by the second largest singular value of
the normalized joint distribution matrix Q (2.5). Given samples of variables (i.e., {x(i)1 , x

(i)
2 }mi=1),

one can compute MC using the empirical joint distribution of variables Pm(⋅, ⋅). Robustness of MC
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computation using empirical distributions is discussed in Section 3. If alphabet sizes of variables
are large, forming the joint distribution matrix can be costly. An iterative approach to compute
maximal correlation without forming the joint distribution function is based on Alternating Condi-
tional Expectation (ACE) [13]. Briefly, at each interaction, the ACE algorithm computes optimal
transformation functions using conditional expectations, assuming that the other transformation
function is fixed (in a Gauss-Seidel manner [34]). If the correlation value does not increase by a
certain value, the algorithm terminates. We describe the steps of this algorithm in Algorithm 1.

Proposition 4 The sequence ρ(k) generated by Algorithm 1 converges to a local optimum of opti-
mization (2.1). Moreover, if starting points of Algorithm 1 are such that vectors

(φ(0)
1 (1)

√
pX1(1), . . . , φ

(0)
1 (∣X1∣)

√
pX1(∣X1∣))

and
(φ(0)

2 (1)
√
pX2(1), . . . , φ

(0)
2 (∣X2∣)

√
pX2(∣X2∣))

are not orthogonal to the span of the left and right singular vectors corresponding to the second
largest singular value of Q, then ACE algorithm 1 converges to the global optimum. Moreover, if
the Q matrix has unique singular vectors (left and right) corresponding to the second largest singular
value, optimal transformation functions are unique maximizers of optimization (2.1).

Proof See Theorems 5.4 and 5.5 of reference [13].

5.2 Computation of NMC

In this section, we first establish a connection between the NMC optimization (4.1) with Maximum
Correlation Problem (MCP) and Multivariate Eigenvalue Problem (MEP) ( [23–26]). Then, we
deploy techniques used to solve MEP and MCP in order to compute NMC. The Maximum Corre-
lation Problem (MCP), proposed by Hotelling [24, 25], is to find the linear combination of one set
of variables that correlates maximally with the linear combination of another set of variables. This
problem is defined as

max
bi

n

∑
i,j=1

bTi Ci,jbj

∣∣bi∣∣ = 1, 1 ≤ i ≤ n, (5.1)

where bi ∈ Rni and Ci,j ∈ Rni×nj . Optimization (5.1) is in the standard form of the MCP problem
[24,25]. Upon employing the Lagrange multiplier theory [34], the first-order optimality condition for
optimization (5.7) is the existence of real-valued scalars, namely, Lagrange multipliers λ1, . . . , λn,
such that the following system of equations is satisfied:

n

∑
j=1

Cijbj = λibi, 1 ≤ i ≤ n

∣∣bi∣∣ = 1, 1 ≤ i ≤ n. (5.2)

This system of equations is called Multivariate Eigenvalue Problem (MEP). We next establish the
connection between NMC and MCP. To that end, we define the following notation: For each i,
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since I∣Xi∣ −
√

pi
√

pi
T is positive semidefinite, we take its square root2 and write

I −√
pi

√
pi
T = BiBT

i ,

where I∣Xi∣ is a ∣Xi∣ × ∣Xi∣ identity matrix. Let bi ≜ Biai. Let UiΣiU
T
i be the singular value

decomposition of Bi where U (j)
i is the j-th column of Ui and σ

(j)
i is the j-th singular value of Bi.

We will show that only one singular value of Bi is zero which is equal to the singular vector
√

pi.
Without loss of generality, suppose σ1

i = 0, for all i. Define Ai a ∣Xi∣ × ∣Xi∣ matrix as follows:

Ai ≜
⎛
⎝
[U (2)

i , . . . , U
(∣Xi)∣
i ]diag

⎛
⎝

1

σ
(2)
i

, . . . ,
1

σ
(∣Xi∣)
i

⎞
⎠
[U (2)

i , . . . , U
(∣Xi∣)
i ]

T⎞
⎠
. (5.3)

Since σ(j)
i ≠ 0, for all 1 ≤ i ≤ n, and j ≥ 2, thus Ai is well-defined according to (5.3).

Theorem 6 The NMC optimization (4.11) can be re-written as follows:

max
bi

∑
(i,i′)∈E

bTi A
T
i (Qii′ −

√
pi

√
pi′

T )Ai′bi′ (5.4)

s.t. ∣∣bi∣∣2 = 1. (5.5)

Proof A proof is presented in Section 10.10.

Let C be a matrix consisting of submatrices Ci,i′ where if (i, i′) ∈ E,

Ci,i′ ≜ ATi (Qii′ −
√

pi
√

pi′
T )Ai′ , (5.6)

otherwise Ci,i′ is an all zero matrix of size ∣Xi∣ × ∣Xi′ ∣. Let b ≜ (bT1 , . . . ,bTn )T ∈ RM , where bi ∈ R∣Xi∣

and M = ∑ni=1 ∣Xi∣.

Proposition 5 The NMC optimization (5.4) can be written as follows:

max bTCb (5.7)
∣∣bi∣∣2 = 1, 1 ≤ i ≤ n.

Optimization (5.7) is in the standard form of the MCP problem [24, 25]. After showing that the
NMC optimization can be reformulated as the MCP, we use the existing techniques in the literature
to solve it. Several local maximizers exist for cases that finding a global optimum of optimization
(5.7) is computational difficult [23,35]. For example, an aggregated power method that iterates on
blocks of C was proposed by Horst [36] as a general technique for solving the MEP numerically.
Below, we summarize general algorithmic ideas to solve MCP:

(1) First, an efficient algorithm is used to solve MEP which is the necessary first order condition
for MCP. This step is studied in references [23,36].

(2) Next, a strategy is used to properly choose starting points of the algorithm or jump out of
the local minima of optimization (5.7). This step is studied in [26,37].
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Algorithm 2 Gauss-Seidel Algorithm for MEP

Input: C ∈ RM × RM .
Initialization: b(0) ∈ RM .
for k = 0,1, . . .

for i = 1, . . . , n
b̃(k)
i = ∑i−1

j=1Cijb
(k+1)
j +∑nj=iCijb

(k)
j .

λ
(k)
i = ∣∣b̃(k)

i ∣∣2.

b(k+1)
i = b̃

(k)
i

λ
(k)
i

end
end

An efficient algorithm to solve MEP: Algorithm 2 is a Gauss-Seidel algorithm [34] to solve
MEP which is proposed by [23]. This algorithm is essentially a variant of the classical power
iteration method (see e.g. [38]). Let

r(b(k)) = (b(k))
T
Cb(k),

λi(b) = bTi [Ci1, . . . ,Cin]b,

and
Λ(b) = diag(λ1(b)I∣X1∣, . . . , λn(b)I∣Xn∣).

Theorem 7 ([26]) Suppose the matrix C is symmetric. We have

a) The sequence {r(b(k))} generated by Algorithm 2 is monotonically increasing and convergent.

b) Let (Λ∗,b∗) be a solution of MEP. If b∗ is a local maximizer of (5.7), then for any i, we
have λi(b∗) ≥ σ∣Xi∣(Cii). Moreover, if b∗ is a global maximizer of (5.7), then for any i, we
have λi(b∗) ≥ σ1(Cii), where

σ1(Cii) ≥ ⋅ ⋅ ⋅ ≥ σ∣Xi∣(Cii)

are eigenvalues of the matrix Cii.

A strategy for avoiding local optimums of MCP: Let b∗ be a solution of MEP. Using Theorem
7, since Cii is a zero matrix, in order to have b∗ a global maximizer of optimization (5.7), we need to
have λi(b∗) ≥ 0. Based on this observation, we have the following strategy for choosing an starting
point for Algorithm 2. Let b̄ be a solution of (5.2) with the corresponding Λ̄. Suppose that there
exist an 1 ≤ i ≤ n such that λi < 0. Let w be the unit vector associated with the eigenvalue of
λ̄iI∣Xi∣. Now let

b̂ = b̄ − q,

2Square root of a symmetric positive semidefinite matrix A is defined as
√
A = UΣ1/2UT where A = UΣUT .
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Algorithm 3 Network ACE to compute NMC
Input: G, X1, . . . ,Xn,
Initialization: φ(0)

1 (X1), . . . , φ(0)
n (Xn) with mean zero.

for k = 0, . . .
φi(Xi) = φ(k)

i (Xi), 1 ≤ i ≤ n
for i = 1 ∶ n

φ∗i (Xi) = E [∑j∈Ni φj(Xj)∣Xi]
update: φi(Xi) = φ∗i (Xi)√

E[φ∗i (Xi)
2]

end
φ
(k+1)
i (Xi) = φ∗i (Xi), 1 ≤ i ≤ n
ρ
(k+1)
G = ∑(i,j)∈E E [φ(k+1)

i (Xi)φ(k+1)
j (Xj)]

end

where q is a vector where qi′ = 0 for all i′ ≠ i and qi = 2wT b̄iw still satisfies ∣∣b̂i∣∣ = 1 for all
i = 1, . . . , n and gives r(b̂) = r(b̄) − 4λi(wT b̄i)2 > r(b̄). We repeat this process until we have λ̄i ≥ 0
for all i = 1, . . . , n. Note that this is not a sufficient condition for the global maximizer of (5.7) and
is only a necessary condition as Theorem 7 shows. After repeating this procedure, the condition
given in Theorem 7 holds. We then call upon Algorithm 2 to produce yet a better solution for
(5.7).

Based on Algorithm 2, we introduce an algorithm to compute NMC using alternating condi-
tional expectation. We prove that the proposed algorithm converges to the local optimum of the
NMC optimization (4.1). We then use a strategy explained in this section to jump out of local
maximizers. At each iteration of the algorithm, we update transformation functions as follows:
Suppose at iteration r, transformation functions are φrj . If we fix all variables except the transfor-
mation function of node i, an optimal solution of φr+1

i can be written as the normalized conditional
expectation of functions of its neighbors (see Proposition 3). In each update, the objective function
of the NMC optimization increases or stays the same.

Proposition 6 The sequence {ρ(k)G }∞k=0 generated by Algorithm 3 converges to a local optimum
solution of NMC optimization (4.1).

Proof A proof is presented in Section 10.11.

Figure 2 illustrates the convergence of the ACE algorithm to compute NMC of six jointly Gaussian
variables connected over a complete graph (for more details, see Example 5).

Proposition 7 The computational complexity of each iteration of Algorithm 3 is

O(nDdmax + ∣E∣), (5.8)

where dmax is the maximum node degree and D = maxi ∣Xi∣.

Similarly to Algorithm 2 for solving MCP, Algorithm 3 finds a local optimum solution. Once the
algorithm terminates, using Theorem 7 and the strategy provided in the previous section, if the
convergence point does not satisfy the necessary conditions for a global optimum, we update the
starting point of Algorithm 3 and run it again to reach a yet better solution.
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Figure 2: An illustration of the convergence of the ACE algorithm 3 to compute NMC
over a complete graph connecting six jointly Gaussian variables.

Note that we can use a similar algorithm to Algorithm 3 to compute regularized NMC of Definition
5. The objective function of the regularized NMC optimization (4.15) can be written as follows:

∑
i∈V

E[φi(Xi) ((1 − λ) ∑
j∈N(i)

φj(Xj) + λXi)] (5.9)

Thus, to compute the regularized NMC, one can use a similar ACE Algorithm 3 with the following
updates for transformation functions:

φ∗i (Xi) = E[(1 − λ) ∑
j∈N(i)

φj(Xj) + λXi∣Xi]. (5.10)

If variables are continuous and we only observe samples from their joint distributions, empirical
computation of conditional expectations in Algorithm 3 may be challenging owing to the lack
of sufficient samples at each point. One way to overcome this issue is to discretize continuous
variables by quantizing them. However, this approach can introduce significant quantization errors.
An alternative approach to compute empirical conditional expectations at point x0 ∈ R is to use
all samples in its B neighborhood (i.e., x0 − B/2 ≤ x ≤ x0 + B/2). By using this approach, the
computation of empirical conditional expectations in Algorithm 3 can be written as follows:

φ∗i (Xi = xi) = E[ ∑
j∈N(i)

φj(Xj)∣xi −B/2 ≤Xi ≤ xi +B/2]. (5.11)

We use this approach in our ACE implementations to compute NMC for continuous variables. If
the graph G = (V,E) is sparse (i.e., ∣E∣ = O(n)), Proposition 7 shows that the NMC computation
can be performed efficiently in linear time complexity with respect to the number of nodes in the
network. However, if the graph is dense or the number of nodes in the network is large, this
computation may be expensive. In the following, we propose an approach to compute NMC using
parallel computations.
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5.3 Parallel Computation of NMC

For large and dense networks, exact computation of NMC may become computationally expensive
(Proposition 7). For those cases, we propose a parallelizable algorithm which approximates NMC
using network partitioning. The idea can be described as follow. For a given graph G = (V,E),

(1) Partition the graph into small disjoint sets,

(2) Estimate NMC for each partition independently,

(3) Combine NMC solutions over sub-graphs to form an approximation of NMC for the original
graph.

Definition 6 An (ε, k)- partitioning of graph G = (V,E) is a distribution on finite partitions of
V so that for any partition {V1, . . . , VM} with non zero probability, ∣Vm∣ ≥ k, for all 1 ≤ m ≤ M .
Moreover, the probability that an edge falls across partitions is bounded by ε: for any e ∈ E,
P[e ∈ Ec] ≤ ε, where Ec = E ∖⋃m(Vm × Vm) is the set of cut edges. The probability is with respect
to the distribution on partitions.

Definition 7 A graph G is poly-growth if there exists r > 0 and C > 0, such that for any vertex
v in the graph,

∣Nv(d)∣ ≤ Cdr,

where Nv(d) is the number of nodes within distance d of v in G.

Reference [39] describes the following procedure for generating an (ε, k)− partitioning on a graph:

1. Given G = (V,E), k, and ε > 0, we define the truncated geometric distribution as follows:

P[x = l] = { ε(1 − ε)l−1, l < k,
(1 − ε)k−1, l = k. (5.12)

2. We then order nodes arbitrarily 1, . . . ,N . For node i, we sample Ri according to distribution
(5.12) and assign all nodes within that distance from node i to color i (distance is defined
as the shortest path length on the graph). If a node has already colored, we re-color it with
color i.

3. All nodes with the same color form a partition.

Proposition 8 If G is a poly-graph, then by selecting k = Θ( rε log r
ε ), the above procedure results

in an (ε,Ckr) partition.

Proof See reference [39].

Next, we use an (ε, k)-graph partitioning to approximate NMC over large graphs using parallel
computations. Consider the following approach:

(1) Given an (ε, k)- partitioning of G, we sample a partition {V1, . . . , VM} of V .
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(2) For each partition 1 ≤m ≤M , we compute NMC over Gm = (Vm,E ∩ (Vm ×Vm)), denoted by
ρ̂Gm .

(3) Let ρ̂G = ∑Mm=1 ρ̂(Gm) be an approximation of ρG.

In the following, we bound the approximation error by bounding boundary effects:

Theorem 8 Consider an (ε, k)- partitioning of the graph G. We have,

E[ρ̂G] ≥ (1 − ε)ρG, (5.13)

where the expectation is over (ε, k)- partitions of graph G.

Proof A proof is presented in Section 10.12.

6 NMC Application in Inference of Nonlinear Gaussian Graphical
Models

In this section, we discuss an application of NMC to infer graphical models for nonlinear functions
of jointly Gaussian variables. Suppose (X1, . . . ,Xn) are jointly Gaussian variables with zero means
and unit variances. Let ρi,i′ be the correlation coefficient between variables Xi and Xi′ . Let ψi,j
to be the j-th Hermitte-Chebychev polynomial (2.8), for 1 ≤ i ≤ n. Recall that these polynomials
form an orthonormal basis with respect to Gaussian distribution (see Example 3 and reference [14]
for convergence details). We have

ρj,j
′

i,i′ = E[ψi,j(Xi) ψi′,j′(Xi′)] (6.1)

= ρji,i′1j=j′ ,

where 1j=j′ is equal to one if j = j′, otherwise it is zero. Moreover, using the definition of Hermitte-
Chebychev polynomials (2.8), we have

E[ψi,j(Xi)] = 1j=0, 1 ≤ i ≤ n. (6.2)

because all of these functions for j ≥ 1 have zero means over a Gaussian distribution. Therefore,
optimization (4.7) can be written as

max ∑
(i,i′)∈E

∞
∑
j=2

ai,jai′,j ρ
j
i,i′ (6.3)

∞
∑
j=2

(ai,j)2 = 1, 1 ≤ i ≤ n.

In general, solving optimization (6.3) is NP-complete. We establish this by identifying that one
instance of this optimization is simplified to the max-cut problem which is NP-complete [27].

Theorem 9 Let si ∈ {−1,1} for 1 ≤ i ≤ n. Let G = (V,E) be a complete graph. Suppose

∑
i′≠i

(1 − sisi′)ρi,i′ ≥ 0, ∀1 ≤ i ≤ n,

∑
i′≠i

sisi′ρi,i′ ≥ ∑
i′≠i

ρ2
i,i′ , ∀1 ≤ i ≤ n.

Then, a∗i = (0, si,0, . . . ,0), for 1 ≤ i ≤ n is a global maximizer of optimization (6.3).
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Proof A proof is presented in Section 10.13.

Proposition 9 Under assumptions of Theorem 9, the NMC optimization (4.1) is simplified to the
following max-cut optimization:

max ∑
i≠i′

sisi′ ρi,i′ (6.4)

si ∈ {−1,1}, 1 ≤ i ≤ n.

Moreover, for all 1 ≤ i ≤ n, we have φ∗i (Xi) = s∗iXi, where φ∗i and s∗i are optimal solutions of
optimizations (3) and (6.4), respectively.

Proof A proof is presented in Section 10.14.

Note 2 Under the conditions of Theorem 9, one can compute the strength of the nonlinear rela-
tionships among variables by solving multiple pairwise MC optimization (2.1). However, one needs
to solve optimization (6.4) to compute the signs of covariance coefficients.

In general, Max-Cut optimization (6.4) is NP-complete [27]. However, there exist algorithms
to approximate its solution using Semidefinte Programming (SDP) with approximation factor of
0.87856 [28].

Corollary 1 Let φ∗i (Xi) be an optimal solution of NMC optimization (3). Under assumptions of
Theorem 9, if

∑
i′≠i

ρi,i′ ≥ ∑
i′≠i

ρ2
i,i′ , ∀1 ≤ i ≤ n, (6.5)

then, φ∗i (Xi) =Xi.

Intuitively, the assumptions of Corollary 1 considers jointly Gaussian variables with correlation
coefficients that are mostly positive. However, the covariance matrix can have negative values as
well. We will show that this assumption is critical in graphical model inference of nonlinear jointly
Gaussian variables. Suppose (X1, . . . ,Xn) are jointly Gaussian variables with the covariance matrix
ΛX . Without loss of generality, we assume all variables have zero means and unit variances. I.e.,
E[Xi] = 0 and E[X2

i ] = 1, for all 1 ≤ i ≤ n. Let JX be the information (precision) matrix [40] of these
variables where JX = Λ−1

X . Define GX = (VX ,EX) such that, (i, j) ∈ EX if and only if JX(i, j) ≠ 0.

Theorem 10 (e.g., [40]) If (i, j) ∉ EX , then

Xi�Xj ∣{Xk, k ≠ i, j} (6.6)

where � represents independency between variables.

Theorem 10 represents a way to explicitly model the joint distribution of Gaussian variables using
a graphical model GX = (VX ,EX). This result is critical in several applications involved with
Gaussian variables which requires computation of marginal distributions, or computation of the
mode of the distribution. These computations can be performed efficiently over the graphical model
using belief propagation approaches [40]. Moreover, Gaussian graphical models play an important
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role in many applications such as linear regression [41], partial correlation [42], maximum likelihood
estimation [43], etc. In many applications, even if variables are not jointly Gaussian, a Gaussian
approximation is used often in practice, partially owing to the efficient inference of their graphical
models.
In the following, under some conditions, we use the NMC optimization to characterize graphical
models for functions of latent jointly Gaussian variables. These functions are unknown, bijective,
and can be linear or nonlinear. More precisely, let Yi = fi(Xi), where fi ∶ R → R is a bijective and
differentiable function. Our goal is to characterize a graphical model for variables (Y1, Y2, . . . , Yn)
without the knowledge of fi(⋅) functions. Consider the following NMC optimization:

max ∑
(i,i′)

E[gi(Yi) gi′(Yi′)], (6.7)

E[gi(Yi)] = 0, 1 ≤ i ≤ n,
E[g2

i (Yi)] = 1, 1 ≤ i ≤ n.

Suppose g∗i (⋅) represents an optimal solution for optimization (6.7). Define the matrix Λnmc such
that Λnmc(i, j) = E[g∗i (Yi)g∗j (Yj)]. Moreover, let Jnmc = Λ−1

nmc. Define Gnmc = (Vnmc,Enmc) such
that, (i, j) ∈ Enmc iff Jnmc(i, j) ≠ 0. The following theorem characterizes the graphical model of
variables (Y1, . . . , Yn).

Theorem 11 Suppose Xi’s satisfy the conditions of Corollary 1. If (i, j) ∉ Enmc, then

Yi�Yj ∣{Yk, k ≠ i, j}. (6.8)

Proof A proof is presented in Section 10.15.

Under the conditions of Corollary 1, Theorem 11 characterizes the graphical model of variables
Yi’s that are related to latent jointly Gaussian variables Xi’s through unknown bijective functions
fi’s. The family of distributions considered in Theorem 11 is broad and includes many Gaussian
distributions as well as distributions whose variables are bijective functions of Gaussian variables.
Graphical models characterized in Theorem 11 can be used in computation of marginal distribu-
tions, computation of the mode of the joint distribution, and in other applications of estimation
and prediction similarly to the case of Gaussian graphical models. Note that Theorem 11 only
considers fi functions that are bijective and differentiable. If these functions were not bijective,
the feasible set of optimization (6.7) is in fact smaller than the feasible set of the original NMC
optimization (4.1) over Gaussian variables.

Example 5 Consider six jointly Gaussian variables X1,...,X6, each with unit variance and mean
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Figure 3: (a) Relationships among latent jointly Gaussian variables Xi and their non-
linear observations Yi. (b) Relationships among latent jointly Gaussian variables and
inferred transformations using the NMC optimization.

zero. We observe Yi = fi(Xi) where,

Y1 = f1(X1) =
⎧⎪⎪⎨⎪⎪⎩

10X1, if X1 ≥ 0,
1
10X1, otherwise,

(6.9)

Y2 = f2(X2) = e20X2 ,

Y3 = f3(X3) = −X3,

Y4 = f4(X4) =X3
4 ,

Y5 = f5(X5) =
⎧⎪⎪⎨⎪⎪⎩

e20X5 , if X5 ≥ 0,
−e−20X5 , otherwise,

Y6 = f6(X6) =X5
6 .

The functions fi(⋅) remain unknown for the inference part. Relationships among original, observed
and NMC variables are depicted in Figure 3. Then, we use φ∗i (Yi) to infer the underlying covariance
and precision matrices according to Theorem 11. As it is illustrated in Figure 4, covariance and
precision matrices computed using observed variables Yi show significant errors compared to the true
networks owing to the existence of extensive nonlinear relationships. However, inferred covariance
and precision matrices using the NMC optimization closely approximate the true covariance and
precision matrices, respectively (Theorem 11). Small errors in covariance coefficient estimation in
this example are owing to computation of the NMC solution using empirical distributions according
to the ACE algorithm 3.
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Figure 4: For six nonlinear functions of jointly Gaussian variables described in Ex-
ample 5, panel (a) plots covariance matrix errors before and after NMC. Using NMC,
estimated covariance coefficients among variables are close to true ones. Panel (b)
plots precision matrix errors before and after NMC. Using NMC, estimated elements
of the precision matrix are close to true ones.

7 NMC Application in Inference of Nonlinear Relevance Graphs

Relevance graphs (RG’s) play an important role in many applications including systems biology,
social and economic sciences as they characterize variable pairs with highest observed similarities
[29]. Let X1,...,Xn be n random variables with zero means and unit variances. Consider a similarity
measure S(Xi,Xj) between variables Xi and Xj . If the similarity measure between variables Xi

and Xj is independent of other variables, the resulting graph is called a pairwise relevance graph
(PRG).

Definition 8 Consider the following optimization:

G∗
S = arg max

G=(V,E)
∣E∣=k

∑
(i,j)∈E

S(Xi,Xj). (7.1)

Then, G∗
S = (V,E∗) is called a pairwise relevance graph (PRG) of variables X1, ..., Xn, with k

edges, corresponding to the similarity measure S(⋅, ⋅).

PRG’s can be inferred efficiently in practice. In the following, we highlight two examples of such
graphs:

Example 6 If S(⋅, ⋅) is a correlation-based similarity measure (e.g., S(Xi,Xj) = ∣E[XiXj]∣), the
optimization (7.1) results in a correlation-based PRG. This graph only captures the top k linear
associations among variables, ignoring nonlinear ones.

Example 7 If S(⋅, ⋅) is a mutual information-based similarity measure (i.e., S(Xi,Xj) = I(Xi;Xj)
where I(.; .) represents the mutual information function [5]), optimization (7.1) results in an MI-
based PRG which captures nonlinear associations among pairs of variables. However, it does not
provide explicit forms of such nonlinear relationships.
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Algorithm 4 Inference of a global relevance graph using NMC
Input: X1, . . . ,Xn

Initialization: E = {}, F∗1 = F1, . . . ,F∗n = Fn
for r = 1 ∶ k do

let {i, j, φ∗i , φ∗j } = argmaxE[φi′(Xi′)φj′(Xj′)]
subject to: {i′, j′} ∈ G ×G ∖E, φi′ ∈ F∗i′ , φj′ ∈ F∗j′
update graph: E = E ∪ {(i, j)}
update: run Algorithm 3 on G
For i ∈ E, let φ∗i be the output function
update function sets: For i ∈ E let F∗i = {φ∗i }

end for
run Algorithm 3 on G to obtain ρG∗(X1, . . . ,Xn)
Output: E,ρG∗(X1, . . . ,Xn), φ∗i (Xi), . . . , φ∗n(Xn)

If the similarity measure depends on all variables, the resulting graph is called a global relevance
graph (GRG). A global relevance graph can capture system level properties of observed depen-
dencies among variables. However, inference of a GRG is computationally challenging in general.
Below, we introduce an NMC-based global relevance graph that captures observed nonlinear as-
sociations among variables and also provides explicit nonlinear transformation functions through
which variables are associated.

Definition 9 The NMC-based GRG of variables X1, ..., Xn, with k edges is defined as

G∗
NMC = arg max

G=(V,E)
∣E∣=k

ρG(X1, . . . ,Xn), (7.2)

where ρG is defined in (4.1).

Optimization (7.2) is combinatorial since it requires computation of NMC over all graphs with k
edges. However, unlike MI-based GRG’s, the required sample size to have a reliable computation
of G∗

NMC does not increase with the size of the network. Below, we propose a greedy algorithm to
find an approximate solution for optimization (7.2). Suppose at iteration r, the inferred network
is G = (V,E) whose nodes are assigned to transformations φri . At this iteration, for each non-
connected pair of nodes, we wish to add the corresponding edge to the network, compute NMC,
and finally select the edge with the highest NMC increase. However, this is computationally
expensive as it requires NMC computation multiple times. Instead, at this iteration, we add an
edge to the network with the highest correlation of its node transformations inferred in the last
iteration. Then, we update all transformation functions by applying the ACE algorithm 3. We
repeat this procedure explained in Algorithm 4 till the inferred network has a certain number of
edges. Algorithm 4 starts from a graph with no edge and gradually populates it until the inferred
graph has k edges. Alternatively, one can start with a complete graph and remove interactions with
lowest nonlinear correlations iteratively. Because NMC is more efficient to run over sparse graphs
(Proposition 7), the former has lower computational complexity than the later.
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Figure 5: (a) Examples of nonlinear gene modules defined in Section 8, as a group of
genes that is enriched in the NMC network but not in the linear one. (b) Survival
time plots for corresponding nonlinear cancer modules of panel (a). For each inferred
nonlinear cancer module, we partition individuals to two equal-size groups based on
their average gene expression ranks in that module. We then perform a standard
survival time analysis for each module and compute its associated log-rank p-value to
determine its association with individual survival times in the considered cancer type.

8 Inference of Nonlinear Gene Modules in Cancer

Cancer is a complex disease involving abnormal cell growth with the potential to invade or spread
to other parts of the body [44]. Different studies have shown associations of micro RNA patterns in
different human cancers [30, 45]. In this section, we use NMC algorithms to infer gene modules of
different cancer types that are detected over the nonlinear association network and not in the linear
one. To perform these experiments, we use normalized RNA sequence counts from TCGA data
portal for 24 cancer types at the gene level. We use processed the data provided in reference [30].
For each cancer type, first we select top 500 highly-variant genes based on their normalized variances
[46]. Then, for each cancer, we compute both linear and nonlinear associations among genes. To
compute NMC, we assume that conditions of Theorem 9 holds. That is, we assume that input
data comes from, possibly nonlinear, functions of some latent jointly Gaussian variables satisfying
conditions of Theorem 9. These functions are unknown and bijective. In general, this assumption
is less restrictive than the assumption that input variables are jointly Gaussian.
In this application, we wish to infer the strength of associations among genes in different cancers.
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Figure 6: (a) Examples of nonlinear gene modules defined in Section 8, as a group of
genes that is enriched in the NMC network but not in the linear one. (b) Survival
time plots for corresponding nonlinear cancer modules of panel (a). For each inferred
nonlinear cancer module, we partition individuals to two equal-size groups based on
their average gene expression ranks in that module. We then perform a standard
survival time analysis for each module and compute its associated log-rank p-value to
determine its association with individual survival times in the considered cancer type.

To compute an NMC association network, according to Note 2, we compute multiple MC’s among
gene pairs using Algorithm 1. Moreover, we infer a linear association network by computing all
pairwise correlations among gene expressions. We then select 5% of interactions among genes in
the NMC network with largest nonlinear association increases compared to their linear association
strengths. To have the same linear and nonlinear network densities, we select top 5% of interactions
in the linear association network as well.
Next, we partition each network to k groups using a standard spectral clustering algorithm based
on the modularity transformation [47]. We use k = 10 in all cases as it leads to dense and large
clusters. We define a gene module as a group of genes that are densely connected to each other
in the network. We compute a p-value for each gene module in the network by permuting the
network structure and comparing the density of the module in the original network with the ones
in permutated networks. We only consider gene modules with p-values less than 0.05. A gene
module is called nonlinear if it is present in the NMC network but not in the linear one. Figures 5
and 6 demonstrate examples of inferred nonlinear gene modules in different cancer types.
For each inferred nonlinear module in a cancer type, we partition individuals to two equal-size
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groups based on their average gene expression ranks in that module. We then perform a standard
survival time analysis for each module based on Kaplan-Meier procedure to estimate survival func-
tion [48], and compute its associated log-rank p-value to determine its association with individual
survival times in the considered cancer type [49]. We perform Benjamini and Hochberg multiple
hypothesis correction [50] over the computed p-values of different nonlinear modules. For nonlinear
modules with corrected p-values less than 0.05, we do further permutation analysis as follows: we
randomly select the same number of genes as in the considered module, and compute its associ-
ated survival time p-value. If the corrected p-value of the nonlinear module is less than p-values
of permutated modules at least in 95% of cases, we declare that nonlinear module as significantly
associated with individual survival times in that cancer type.

Figures 5 and 6 illustrate examples of nonlinear gene modules for Breast Cancer (BRCA1),
Glioma Cancer (GBMLGG), Liver Cancer (LIHC), and Kidney Cancer (KIPAN). These gene mod-
ules are significantly associated with survival times of individuals while they are not detected using
linear association measures. Several references [51–55] have hypothesized that complex nonlinear
relationships among genes may play important roles in cancer pathways. Our proposed NMC al-
gorithms and inferred nonlinear gene modules can be used in discovering such complex nonlinear
relationships in different cancer types. However, further experiments should be performed to de-
termine the involvement of these nonlinear gene modules in different cancers, which is beyond the
scope of this paper.

9 Conclusion

In this paper, we proposed Network Maximal Correlation (NMC) as a fundamental measure to
capture nonlinear associations over networks without the knowledge of underlying nonlinearity
shapes. We showed that NMC extends the standard Maximal Correlation to the case of having large
number of variables, by assigning each variable to a single transformation function, thus avoiding
over-fitting issues of using multiple MC optimizations over network edges. We also introduced a
regularized NMC optimization which penalizes total distances of inferred nonlinear transformations
from original variables. One can use other standard regularization techniques to further restrict
inferred nonlinear functions in practical applications.
One of the main contributions of this work is providing a unifying framework to compute NMC
(and therefore, MC) for both discrete and continuous variables using projections over appropriate
Hilbert spaces. Using this framework, we established a connection between the NMC optimization
with the MCP and MEP for discrete random variables, and with the Max-Cut problem for jointly
Gaussian variables. Using these relationships, we provided efficient algorithms to compute NMC in
different cases. To compute NMC for continuous random variables with general distributions, one
can use the proposed optimization framework by choosing appropriate orthonormal basis for Hilbert
spaces. For example, we used projections over Hermitte-Chebychev polynomials to characterize an
optimal solution of the NMC optimization for jointly Gaussian variables.
Compared to other nonlinear association measures such as mutual information (MI), NMC has two
main advantageous: first, unlike MI-based measures that only compute the strength of associations
among variables, NMC characterizes nonlinear transformation functions through which variables
are related to each other. These inferred, possibly nonlinear, functions can be used in different
applications such as regression. As an example, a nonlinear regression framework [56] can be
efficiently designed using transformations of variables. Second, for the case of having large number
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of variables, a reliable computation of conditional MI requires an excessive number of samples which
often is not available in practice. Here, we showed that NMC can be reliably computed in practice
and provided a finite sample generalization bound and error guarantees.
NMC can be used in different areas to characterize nonlinear relationships, modules, and pathways
among variables. Here, as an example, we applied NMC to different cancer datasets including
breast, kidney and liver cancers, and showed that using NMC networks, we can infer nonlinear
gene modules that are not detectable using linear association measures while they are significantly
associated with survival times of individuals. Similarly, NMC can be applied to infer nonlinear gene
interactions, modules and pathways in different types of biological networks such as regulatory [57]
and PPI [58] networks. Moreover, NMC can be used over social/economic networks to characterize
belief/behaviour variations of individuals/entities through their interactions over the underlying
networks [59]. We believe that the proposed NMC framework and algorithms can make a significant
impact in many areas of network sciences, statistics, information theory, systems biology, social
sciences, and beyond.

10 Proofs

10.1 Proof of Proposition 1

Let {ψ1,i}∞i=1 and {ψ2,i}∞i=1 be the corresponding orthonormal bases of H1 and H2 in Definition 2.
We can represent functions φ1(X1) and φ2(X2) in terms of the basis functions as follows:

φ1(x1) =
∞
∑
i=1
a1,iψ1,i(x1),

φ2(x2) =
∞
∑
i=1
a2,iψ2,i(x2),

for two sequence of coefficients {a1,i}∞i=1 and {a2,i}∞i=1. Thus, the constraint E[φi(Xi)2] = 1 in opti-
mization (2.1) would be translated into ∑∞

j=1 a
2
i,j = 1 and the constraint E[φi(Xi)] = 0 is simplified

to ∑∞
j=1 ai,jE[ψi,j(Xi)] = 0, for i = 1,2.

Moreover, we have

E[φ1(X1)φ2(X2)] =
∞
∑
i,j=1

a1,ia2,j E[ψ1,i(X1)ψ2,j(X2)]. (10.1)

Thus, maximal correlation optimization (2.1) can be re-written as follows:

min ∑
i,j

a1,ia2,j E[ψ1,i(X1)ψ2,j(X2)] (10.2)

∞
∑
j=1

a2
i,j = 1, i = 1,2,

∞
∑
j=1

ai,j E[ψi,j(Xi)] = 0, i = 1,2.

Moreover, {ψ1,iψ2,j}i,j forms a basis for co-variate L2 functions of X1 and X2 including the joint
distribution function PX1X2(⋅, ⋅). Therefore, we have

PX1X2(x1, x2) = ∑
i,j

ρijψ1,i(x1)ψ2,j(x2). (10.3)
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Using equation (10.3), we have

ρij = E[ψ1,i(X1)ψ2,j(X2)]. (10.4)

Using (10.4) in optimization (10.2) leads to optimization (2.2). This completes the proof.

10.2 Proof of Theorem 1

We use the following lemma in the proof of Theorem 1.

Lemma 2 (a) Let P and P̃ be the matrix form of two joint probability distribution on (X1,X2),
such that PX1,X2(x1, x2) = [P ]x1,x2 and P̃X1,X2(x1, x2) = [P̃ ]x1,x2. We bound the difference
between Q and Q̃, by the difference between P and P̃ , as follows:

∣∣Q − Q̃∣∣2 = ∣∣DX1(P )−
1
2PDX2(P )−

1
2 −DX1(P̃ )−

1
2 P̃DX2(P̃ )−

1
2 ∣∣2 ≤

1√
δX1(P )

∣∣P ∣∣2∣∣DX2(P )−
1
2 −DX2(P̃ )−

1
2 ∣∣2 +

1√
δX1(P )

1√
δX2(P̃ )

∣∣P − P̃ ∣∣2

+ 1√
δX2(P̃ )

∣∣P̃ ∣∣2∣∣DX1(P )−
1
2 −DX1(P̃ )−

1
2 ∣∣2. (10.5)

(b) Furthermore, we have

∣∣Q − Q̃∣∣2 ≤
1√

δX1(P )
√
D∣∣DX2(P ) −DX2(P̃ )∣∣∞

1
2δX2(P, P̃ )3

+ 1√
δX1(P )

1√
δX2(P̃ )

√
D∣∣P − P̃ ∣∣∞

+ 1√
δX2(P̃ )

√
D∣∣DX1(P ) −DX1(P̃ )∣∣∞

1
2δX2(P, P̃ )3/2

, (10.6)

where D = max{∣X1∣, ∣X2∣},δX2(P, P̃ ) = min{δX2(P ), δX2(P̃ )}, and δX1(P, P̃ ) = min{δX1(P ), δX1(P̃ )}.

Proof We have

∣∣Q − Q̃∣∣2 ≤ ∣∣DX1(P )−
1
2PDX2(P )−

1
2 −DX1(P̃ )−

1
2 P̃DX2(P̃ )−

1
2 ∣∣2 ≤

∣∣DX1(P )−
1
2PDX2(P )−

1
2 −DX1(P )−

1
2PDX2(P̃ )−

1
2

+DX1(P )−
1
2PDX2(P̃ )−

1
2 −DX1(P̃ )−

1
2 P̃DX2(P̃ )−

1
2 ∣∣2 ≤

∣∣DX1(P )−
1
2P ∣∣2∣∣DX2(P )−

1
2 −DX2(P̃ )−

1
2 ∣∣2 + ∣∣DX2(P̃ )−

1
2 ∣∣2∣∣DX1(P )−

1
2P −DX1(P̃ )−

1
2 P̃ ∣∣2 ≤

∣∣DX1(P )−
1
2P ∣∣2∣∣DX2(P )−

1
2 −DX2(P̃ )−

1
2 ∣∣2+

∣∣DX2(P̃ )−
1
2 ∣∣2∣∣DX1(P )−

1
2P −DX1(P )−

1
2 P̃ +DX1(P )−

1
2 P̃ −DX1(P̃ )−

1
2 P̃ ∣∣2 ≤

∣∣DX1(P )−
1
2P ∣∣2∣∣DX2(P )−

1
2 −DX2(P̃ )−

1
2 ∣∣2 + ∣∣DX2(P̃ )−

1
2 ∣∣2∣∣DX1(P )−

1
2 ∣∣2∣∣P − P̃ ∣∣2+

∣∣DX2(P̃ )−
1
2 ∣∣2∣∣P̃ ∣∣2∣∣DX1(P )−

1
2 −DX1(P̃ )−

1
2 ∣∣2. (10.7)

For any distribution PX1,X2(⋅, ⋅), we have

∣∣DX1(P )−
1
2 ∣∣2 = max

X1∈X1

1√
PX1(X1)

= 1√
δX1(P )

(10.8)
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and

∣∣DX2(P )−
1
2 ∣∣2 = max

X2∈X2

1√
PX2(X2)

= 1√
δX2(P )

. (10.9)

By substituting (10.8) and (10.9) in (10.7), we obtain

∣∣Q − Q̃∣∣2 ≤
1√

δX1(P )
∣∣P ∣∣2∣∣DX2(P )−

1
2 −DX2(P̃ )−

1
2 ∣∣2 +

1√
δX1(P )

1√
δX2(P̃ )

∣∣P − P̃ ∣∣2

+ 1√
δX2(P̃ )

∣∣P̃ ∣∣2∣∣DX1(P )−
1
2 −DX1(P̃ )−

1
2 ∣∣2. (10.10)

This completes the first part of the lemma. Furthermore, for a joint probability distribution matrix
P (⋅, ⋅), we have ∣∣P ∣∣∞ ≤ 1 and ∣∣P ∣∣1 ≤ 1. Moreover, we have

Lemma 3 For a given m × n matrix, A, we have

∣∣A∣∣2 ≤
√
m∣∣A∣∣∞,

and

∣∣A∣∣2 ≤
√
n∣∣A∣∣1.

Therefore, using Lemma 3, we have ∣∣P ∣∣2 ≤
√

∣X2∣∣∣P ∣∣1 ≤
√

∣X2∣ and ∣∣P ∣∣2 ≤
√

∣X1∣∣∣P ∣∣∞ ≤
√

∣X1∣.
Using this, we obtain the following:

∣∣Q − Q̃∣∣2 ≤
1√

δX1(P )
√
D∣∣DX2(P ) −DX2(P̃ )∣∣∞

1
2δX2(P, P̃ )3

+ 1√
δX1(P )

1√
δX2(P̃ )

√
D∣∣P − P̃ ∣∣∞

+ 1√
δX2(P̃ )

√
D∣∣DX1(P ) −DX1(P̃ )∣∣1

1
2δX1(P, P̃ )3/2

, (10.11)

whereD = max{∣X1∣, ∣X2∣}, δX2(P, P̃ ) = min{δX2(P ), δX2(P̃ )}, and δX1(P, P̃ ) = min{δX1(P ), δX1(P̃ )}.
This concludes the proof.

Now we prove Theorem 1. Let Q and Q̃ be the corresponding normalized distribution matrices of P
and P̃ , respectively. Suppose the joint distribution on (X1,X2) is according to P . Using Example
2, we have ρ(X1,X2) = σ2, where σ2 is the second largest singular value of the matrix Q. Similarly,
maximal correlation under the joint distribution P̃ is σ̃2, where σ̃2 is the second largest singular
value of the matrix Q̃. Moreover, we have

Theorem 12 Let A1 and A2 be two matrices of the same size. We have

∣σ(1)
i − σ(2)

i ∣ ≤ ∣∣A1 −A2∣∣2, (10.12)

where σ1
i and σ2

i are the i-th largest singular values of A1 and A2, respectively.
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Proof See e.g. reference [60].

Using Theorem 12 and part (a) of Lemma 2, we have

∣σ2 − σ̃2∣ ≤ ∣∣Q − Q̃∣∣2 ≤
1√

δX1(P )
∣∣P ∣∣2∣∣DX2(P )−

1
2 −DX2(P̃ )−

1
2 ∣∣2 +

1√
δX1(P )

1√
δX2(P̃ )

∣∣P − P̃ ∣∣2

+ 1√
δX2(P̃ )

∣∣P̃ ∣∣2∣∣DX1(P )−
1
2 −DX1(P̃ )−

1
2 ∣∣2. (10.13)

Furthermore, using part (b) of Lemma 2, we have

∣σ2 − σ̃2∣ ≤
1√

δX1(P )
√
D∣∣DX2(P ) −DX2(P̃ )∣∣∞

1
2δX2(P, P̃ )3/2

+ 1√
δX1(P )

1√
δX2(P̃ )

√
D∣∣P − P̃ ∣∣∞

+ 1√
δX2(P̃ )

√
D∣∣DX1(P ) −DX1(P̃ )∣∣∞

1
2δX2(P, P̃ )3/2

. (10.14)

Let δ = min{δX1(P ), δX1(P̃ ), δX2(P ), δX2(P̃ )} and D = max{∣X1∣, ∣X2∣}. Since, ∣∣P − P̃ ∣∣∞ ≤ ε, we
have

∣σ2 − σ̃2∣ ≤
ε

2δ2
D

√
D + ε

δ

√
D + ε

2δ2
D

√
D ≤ 2

ε

δ2
D

√
D. (10.15)

This completes the proof.

10.3 Proof of Theorem 2

Using Lemma 2 and union bound, we have

P [∣σ2(Qm) − σ2(Q)∣ > ε] ≤

P [ 1
δX1(P ) ∣∣DX2(P (m))−

1
2 −DX2(P )−

1
2 ∣∣2∣∣P ∣∣2 >

ε

3
]

+ P [ 1
δX1(P )

1
δX2(P (m))

∣∣P (m) − P ∣∣2 >
ε

3
]

+ P [ 1
δX2(P (m))

∣∣DX1(P (m))−
1
2 −DX1(P )−

1
2 ∣∣2∣∣P (m)∣∣2 >

ε

3
]

≤ P [∣∣DX2(P (m))−
1
2 −DX2(P )−

1
2 ∣∣∞ > ε

3
δX1(P ) 1√

D
]

+ P [∣∣P (m) − P ∣∣∞ > δX1(P )δX2(P (m)) ε
3

1√
D

]

+ P [∣∣DX1(P (m))−
1
2 −DX1(P )−

1
2 ∣∣∞ > δY (P (m)) ε

3
1√
D

] (10.16)

where D = max{∣X1∣, ∣X2∣}. Moreover, we have
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Theorem 13 Let P be a probability distribution over alphabets X . Also, let P (m) denote the
empirical probability distribution of X, obtained from m i.i.d. samples, {xi}mi=1, drawn according to
P . We have

P [∣∣P (m) − P ∣∣∞ > ε] ≤ 4e−mε
2

. (10.17)

Proof See e.g. references [61,62].

Using Theorem 13, we have

P [∣∣P (m)(X2) − P (X2)∣∣ ≥
1
2
δX2(P )] ≤ 4e−m( 1

2
δX2

(P ))2 .

This occurs with probability less than η/2 if m ≥ 1
4
− log η/2
( 1
2
δ)2 . Moreover, given ∣∣P (m)(X2) −P (X2)∣∣ ≥

1
2δX2(P ), we obtain δX2(P (m)) > 1

2δX2(P ). We also have

P [∣σ2(Qm) − σ2(Q)∣ > ε]

= P [∣σ2(Qm) − σ2(Q)∣ > ε ∣ ∣∣P (m)(X2) − P (X2)∣∣ ≥
1
2
δX2(P )]P [∣∣P (m)(X2) − P (X2)∣∣ ≥

1
2
δX2(P )]

+ P [∣σ2(Qm) − σ2(Q)∣ > ε ∣ ∣∣P (m)(X2) − P (X2)∣∣ ≤
1
2
δX2(P )]P [∣∣P (m)(X2) − P (X2)∣∣ ≤

1
2
δY (P )]

≤ P [∣σ2(Qm) − σ2(Q)∣ > ε ∣ ∣∣P (m)(X2) − P (X2)∣∣ ≤
1
2
δY (P )] + P [∣∣P (m)(X2) − P (X2)∣∣ ≥

1
2
δX2(P )] .

Let m ≥ 1
4

− log η
2

( 1
2
δ)2 to make the second term less than or equal to 1

2η. Next, we choose m sufficiently

large so that the first term is no greater than 1
2η. Using (10.16), we have

P [∣σ2(Qm) − σ2(Q)∣ > ε ∣ ∣∣P (m)(X2) − P (X2)∣∣ ≤
1
2
δX2(P )]

≤ P [∣∣DX2(P (m)) −DX2(P )∣∣∞ > ε
3
(2δX2(P )3) δX1(P ) 1√

D
]

+ P [∣∣P (m) − P ∣∣∞ > δX1(P )1
2
δX2(P ) ε

3
1√
D

]

+ P [∣∣DX1(P (m)) −DX1(P )∣∣∞ > (2δX1(P )3) 1
2
δX2(P ) ε

3
1√
D

] .

Now using Theorem 13, each term on the righthand side goes to zero exponentially fast. Moreover,
we have P[∣σ2(Qm) − σ2(Q)∣ > ε] ≤ 12e−me

2
, where

e = min{ ε
3
(2δX2(P )3) δX1(P ) 1√

D
,δX(P )1

2
δX2(P ) ε

3
1√
D
, (2δX1(P )3) 1

2
δX2(P ) ε

3
1√
D

},

which is equal to ε
3δ

4 1√
D

. Therefore, in order to have P[∣σ2(Qm)−σ2(Q)∣ > ε ∣ ∣∣P (m)(X2)−P (X2)∣∣ ≤
1
2δX2(P )] ≤ η

2 , it suffices to have

m ≥
log 12

η
2

ε
3δ

4 1√
D

.

Therefore, overall it suffices to have m ≥ log 24
η

ε
3
δ4 1
√

D

. This concludes the proof.
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10.4 Proof of Lemma 1

Consider the following MSE optimization. We have

min
φ1,...,φn

1
2
∑

(i,j)∈E
E[(φi(Xi) − φj(Xj))2]

=∣E∣ − max
φ1,...,φn

∑
(i,j)∈E

E[φi(Xi)φj(Xj)].

Therefore, the NMC optimization (4.1) is equivalent to the following MSE optimization:

min
φ1,...,φn

1
2
∑

(i,j)∈E
E[(φi(Xi) − φj(Xj))2], (10.18)

where E[φi(Xi)] = 0 and E[φ2
i (Xi)] = 1, for any 1 ≤ i ≤ n.

10.5 Proof of Proposition 2

Let

Fi = {φi ∈Hi ∶ E[φi] = 0, E[φ2
i ] = 1} .

Now consider the function defined on F1 × ⋅ ⋅ ⋅ × Fn, as

R(φ1, . . . , φn) = ∑
(i,j)∈E

E[φi(Xi)φj(Xj)].

Below, we show that R is continuous and F1 × ⋅ ⋅ ⋅ × Fn is a compact subset of a finite dimensional
space.
For any 1 ≤ i ≤ n, first we show Fi is compact. Since Fi is a subset of compact space Hi, it suffices
to show that it is closed. This evidently follows from the definition of the norm on Hi, which is√
E[(φi − φ′i)2]. Since F1 × ⋅ ⋅ ⋅ × Fn is the product of finitely many compact sets, therefore, it is

compact as well.
Next we show R is continuous. Since R has finitely many arguments, it suffices to show that it is
continuous with respect to each argument. Let 1 ≤ i0 ≤ n. We have

R(φ1, . . . , φn) = ∑
j∈N(i0)

⟨φi0 ,Pi0φj⟩ + ∑
(i,j)∈E, i≠i0, j≠i0

⟨φi, φj⟩

= ⟨φi0 , ∑
j∈N(i0)

Pi0φj⟩ + ∑
(i,j)∈E, i≠i0, j≠i0

⟨φi, φj⟩ ,

where Pi denotes the projection operation from the space Hj (for any j ≠ i) onto Hi. Moreover, we
can employ on Weierstrass Extreme Value Theorem that says every continuous real-valued function
on a compact space attains its extreme values. Since ⟨φi0 ,∑j∈N(i0)Pi0φj⟩ is continuous with respect
to φi0 , the function R ∶ F1 × ⋅ ⋅ ⋅ × Fn → R is continuous. Thus, function R attains its maximum on
F1 × ⋅ ⋅ ⋅ × Fn , which complete the proof.
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10.6 Proof of Proposition 3

For a given 1 ≤ i0 ≤ n, we have

∑
(i,j)∈E

⟨φi, φj⟩ = ∑
j∈N(i0)

⟨φi0 ,Pi0φj⟩ + ∑
(i,j)∈E, i≠i0, j≠i0

⟨φi, φj⟩

= ⟨φi0 , ∑
j∈N(i0)

Pi0φj⟩ + ∑
(i,j)∈E, i≠i0, j≠i0

⟨φi, φj⟩

≤ ∣∣ ∑
j∈N(i0)

Pi0φj ∣∣ + ∑
(i,j)∈E, i≠i0, j≠i0

⟨φi, φj⟩ ,

where the last inequality that follows from Cauchy-Schwartz inequality becomes an equality if and
only if we have φ∗i0 = c∑j∈N(i0)Pi0φ∗j , for some constant c > 0. Since we have ∣∣φ∗i0 ∣∣ = 1, we obtain

φ∗i0 =
∑j∈N(i0)Pi0φ∗j

∣∣∑j∈N(i0)Pi0φ∗j ∣∣
,

which completes the proof.

10.7 Proof of Theorem 3

Since any Hilbert space has an orthonormal basis (Theorem 2.4, [33]), let {ψi,j}∞j=1 be the corre-
sponding orthonormal basis of Hi for 1 ≤ i ≤ n. Therefore, we can represent φi(Xi) in terms of the
basis as follows:

φi(xi) =
∞
∑
j=1

ai,jψi,j(xi).

The constraint E[φi(Xi)2] = 1 translates into ∑∞
j=1 a

2
i,j = 1 and the constraint E[φi(Xi)] = 0 trans-

lates into ∑∞
j=1 ai,jE[ψi,j(Xi)] = 0 for 1 ≤ i ≤ n. Moreover, for any i and i′ we have

E[φi(Xi)φi′(Xi′)] = ∑
j,j′
ai,jai′,j′E[ψi,j(Xi)ψi′,j′(Xi′)],

The network maximal correlation can be found by solving the following optimization problem.

max ∑
(i,i′)∈E

∑
j,j′
ai,jai′,j′ E[ψi,j(Xi)ψi′,j′(Xi′)]

∞
∑
j=1

a2
i,j = 1, 1 ≤ i ≤ n,

∞
∑
j=1

ai,j E[ψi,j(Xi)] = 0, 1 ≤ i ≤ n,

Moreover, since {ψi,jψi′,j′} is a basis for functions of Xi and Xi′ (with the corresponding inner
product), we can write the joint density function as

PXiXi′ (Xi,Xi′) = ∑
j,j′
ρj,j

′

i,i′ ψi,j(Xi)ψi′,j′(Xi′).

Using this equation, we have E[ψi,j(Xi)ψi′,j′(Xi′)] = ρj,j
′

i,i′ , which completes the proof.
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10.8 Proof of Theorem 4

Let P and P̃ be two distributions over (X1, . . . ,Xn). We shall compare the solution of the two
following optimization problems.

max
ai

∑
(i,i′)∈E

aTi Qi,i′ai (10.19)

∣∣ai∣∣2 = 1, 1 ≤ i ≤ n,
ai ⊥

√
pi, 1 ≤ i ≤ n,

and

max
ai

∑
(i,i′)∈E

aTi Q̃i,i′ai (10.20)

∣∣ai∣∣2 = 1, 1 ≤ i ≤ n,
ai ⊥

√
p̃i, 1 ≤ i ≤ n.

Let ρG and ρ̃G be the optimal solution for (10.19) and (10.20), respectively. For any (i, j) ∈ E,
suppose ∣∣P − P̃ ∣∣∞ ≤ ε. Also, suppose δ = min1≤i≤n (min{δXi(PXi), δXi(P̃Xi)}). Let the optimal
solution of optimization (10.19) be a∗i . Based on this solution, we shall construct a feasible solution
for optimization (10.20) and then evaluate its objective function.
For any i, let

bi =
(a∗i +

√
p̃i < a∗i ,

√
pi −

√
p̃i >)

∣∣a∗i +
√

p̃i < a∗i ,
√

pi −
√

p̃i > ∣∣
.

We claim this set of vectors is feasible for optimization (10.20). First note that the norm of each
bi is one. We next show that each bi is orthogonal to

√
p̃i.

< bi,
√

p̃i >=
1

∣∣a∗i +
√

p̃i < a∗i ,
√

pi −
√

p̃i > ∣∣
(< a∗i ,

√
p̃i > + < a∗i ,

√
pi −

√
p̃i > ∣∣

√
p̃i∣∣) = 0,

where the last equality follows from ∣∣
√

p̃i∣∣ = 1. We now plug in the feasible solution bi into the
objective function of optimization (10.20).

ρ̃G ≥ ∑
(i,i′)∈E

bTi Q̃ii′bi′ = ∑
(i,i′)∈E

bTi (Q̃ii′ −Qii′)bi′ + (bTi − a∗Ti )Qii′bi′ + a∗Ti Qii′ (bi′ − a∗i′) + a∗Ti Qii′a
∗
i′

= ρG + ∑
(i,i′)∈E

bTi (Q̃ii′ −Qii′)bi′ + (bTi − a∗Ti )Qii′bi′ + a∗Ti Qii′ (bi′ − a∗i′) . (10.21)

We now bound each term on the right hand side of equation (10.21). Using Lemma 2, for any i, i′,
we have

∣bTi (Q̃ii′ −Qii′)bi′ ∣ ≤ ∣∣Q̃ii′ −Qii′ ∣∣2 ≤
3
2
ε

δ2
D3/2.
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We also have

∣ (bTi − a∗Ti )Qii′bi′ ∣ ≤ ∣∣bTi − a∗Ti ∣∣2∣∣Qii′ ∣∣2∣∣bi′ ∣∣2 = ∣∣bTi − a∗Ti ∣∣2

≤
∣∣
√

p̃i < a∗i ,
√

pi −
√

p̃i > ∣∣2
1 − ∣∣

√
p̃i < a∗i ,

√
pi −

√
p̃i > ∣∣2

+max{
∣∣
√

p̃i < a∗i ,
√

pi −
√

p̃i > ∣∣2
1 − ∣∣

√
p̃i < a∗i ,

√
pi −

√
p̃i > ∣∣2

,
∣∣
√

p̃i < a∗i ,
√

pi −
√

p̃i > ∣∣2
1 + ∣∣

√
p̃i < a∗i ,

√
pi −

√
p̃i > ∣∣2

},

where we use the following basic inequality

∣∣ a + ε
∣∣a + ε∣∣2

− a∣∣2 = ∣∣ ε

∣∣a + ε∣∣2
+ a( 1

∣∣a + ε∣∣2
− 1) ∣∣2

≤ ∣∣ ε

∣∣a + ε∣∣2
∣∣2 + ∣∣a∣∣2∣

1
∣∣a + ε∣∣2

− 1∣

≤ ∣∣ε∣∣2
1 − ∣∣ε∣∣2

+max{∣ 1
1 − ∣∣ε∣∣2

− 1∣, ∣ 1
1 + ∣∣ε∣∣2

− 1∣},

where we used 1 − ∣∣ε∣∣2 ≤ ∣∣a + ε∣∣2 ≤ 1 + ∣∣ε∣∣2 to obtain the last inequality. Therefore, we have

∣ (bTi − a∗Ti )Qii′bi′ ∣ ≤ 2
∣∣
√
p̃i < a∗i ,

√
pi −

√
p̃i > ∣∣2

1 − ∣∣
√
p̃i < a∗i ,

√
pi −

√
p̃i > ∣∣2

.

We shall now bound the term ∣∣
√

p̃i < a∗i ,
√

pi −
√

p̃i > ∣∣2. Using Cauchy-Schwartz, we have

∣∣
√

p̃i < a∗i ,
√

pi −
√

p̃i > ∣∣2 ≤ ∣∣
√

p̃i∣∣2∣∣a∗i ∣∣2∣∣
√

pi −
√

p̃i > ∣∣2 ≤
ε

2δ1/2
D3/2,

where we use the fact that ∣pi(j)−p̃i(j)∣ ≤ εD and ∣
√

p̃i(j)−
√

pi(j)∣ ≤ ∣pi(j)−p̃i(j)∣ 1
2δ1/2

. Plugging
in this inequality and choosing ε sufficiently small to guarantee ε

2δ1/2
D3/2 ≤ 1

2 , we obtain

∣ (bTi − a∗Ti )Qii′bi′ ∣ ≤ 2
ε

δ1/2
D3/2,

which leads to

ρ̃G ≥ ρG − ∑
(i,i′)∈E

4
ε

δ1/2
D3/2 + 3ε

2δ2
D3/2

= ρG − ε∣E∣D
3
2 ( 4
δ1/2

+ 3
2δ2

) .

Similarly, we have

ρG ≥ ρ̃G − ∑
(i,i′)∈E

4
ε

δ1/2
D3/2 + 3ε

2δ2
D3/2

= ρG − ε∣E∣D
3
2 ( 4
δ1/2

+ 3
2δ2

) .

Combining the previous two relations, we obtain

∣ρ̃G − ρG∣ ≤ ε∣E∣D
3
2 ( 4
δ1/2

+ 3
2δ2

) ≤ ε∣E∣D
3
2

6
δ2
,

which completes the proof.
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10.9 Proof of Theorem 5

Using Theorem 13 for any (i, i′) ∈ E, we have

P[∣∣P (m)
i,i′ − Pi,i′ ∣∣∞ > γ] ≤ 4e−mγ

2

.

Therefore, using the union bound, we obtain

P[∩(i,i′)∈E1{∣∣P (m)
i,i′ − Pi,i′ ∣∣∞ < γ}] = 1 − P[∪(i,i′)∈E1{∣∣P (m)

i,i′ − Pi,i′ ∣∣∞ > γ}]

≥ 1 − ∑
(i,i′)∈E

P[1{∣∣P (m)
i,i′ − Pi,i′ ∣∣∞ > γ}] ≥ 1 − 4∣E∣e−nγ2

.

On the other hand, we have

P[δ(P (m)
i ) ≥ δ

2
] ≥ P[∣∣P (m)

i − Pi∣∣∞ ≤ δ
2
] ≥ P[∣∣P (m)

i,i′ ∣ − P (m)
i,i′ ∣∞ ≤ δ

2D
]

≥ 1 − P[∣∣P (m)
i,i′ − P (m)

i,i′ ∣∣∞ > δ

2D
] ≥ 1 − 4e−m( δ

2D
)2 .

Therefore, using the union bound, we obtain

P[∩i∈V 1{δ(P (m)
i ) ≥ δ

2
}] ≥ 1 − 4∣V ∣e−m( δ

2D
)2 .

By applying the union bound once more, we have

P[∩(i,i′)∈E1{∣∣P (m)
i,i′ − Pi,i′ ∣∣∞ < γ} ∩i∈V 1{δ(P (m)

i ) ≥ δ
2
}] ≥ 1 − 4∣V ∣e−m( δ

2D
)2 − 4∣E∣e−mγ2

.

Therefore, for a given η > 0 for m ≥m0, where n0 is the smallest solution of

η ≥ 4∣V ∣e−m( δ
2D

)2 + 4∣E∣e−mγ2

,

with probability at least 1 − η, we have

∣ρm(G) − ρG∣ ≤ γ∣E∣D3/2 24
δ
.

We let ∣ρm(G) − ρG∣ ≤ ε and find γ as

γ = ε

∣E∣
δ

24
D−3/2.

We plug this into the equation for m0 to find

η ≥ 4∣V ∣e−m( δ
2D

)2 + 4∣E∣e−m( ε
∣E∣

δ
24
D−3/2)

2

.

This leads to

m0 ≥
⎛
⎝

1
min{( δ

2D)2, ( ε
∣E∣

δ
24D

−3/2)2}
⎞
⎠

log(8 max{∣V ∣, ∣E∣}
η

)

≥ (24∣E∣2D3

ε2δ2
) log(8 max{∣V ∣, ∣E∣}

η
) .
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10.10 Proof of Theorem 6

To prove Theorem 6, first we prove the following Lemma:

Lemma 4 NMC optimization (4.1) can be written as follows:

max
(i,i′)∈E

∑
(i,i′)∈E

E[(φi − φ̄i)(φi′ − φ̄i′)] (10.22)

var (φi) = 1, 1 ≤ i ≤ n,

where φ̄i and var (φi) represent the mean and the variance of the random variable φi.

Proof Denote the optimum value of optimization (10.22) by ρ̃G. Let φ∗i be an optimal solution
of (4.1). The set of functions φ∗i for i = 1, . . . , n is feasible for optimization (10.22) and therefore
we have ρG ≤ ρ̃G. On the other hand, let φ∗∗i be an optimal solution of optimization (10.22). Let
φ̃i = φ∗∗i − φ̄i∗∗. The set of functions φ̃i for i = 1, . . . , n is feasible for optimization (4.1). Thus, we
have ρG ≥ ρ̃G. Therefore, we have that ρG = ρ̃G.

Let ai = φi/
√

pi. We have

1 = var(φi) = E[φ2
i ] − (E[φi])2 = ∣∣ai∣∣22 − (ai

√
pi)2 = aTi (I −√

pi
√

pi
T )ai.

We next show that the matrix I −√
pi

√
pi
T is positive semidefinite and the only vectors in its null

space is 0 and
√

pi. This is because

xT (I −√
pi

√
pi
T )x = ∣∣x∣∣22 − (x√pi)2 ≥ 0, (10.23)

where we use Cauchy-Schwartz and ∣∣√pi∣∣22 = 1 to obtain the last inequality (10.23). This inequality
becomes an equality if and only if x = 0 or x = √

pi.
Now consider the objective function of optimization (10.22). We have

E[(φi − φ̄i)(φi′ − φ̄i′)] = E[φiφi′] − φ̄iφ̄i′

= aTi Qii′ai − (aTi
√

pi)(aTi′
√

pi′) = aTi (Qii′ −
√

pi
√

pi′
T )ai′ .

Therefore, optimization (10.22) (which is equivalent to the NMC optimization (4.1) according to
Lemma 4) can be written as,

max
ai

∑
(i,i′)∈E

aTi (Qii′ −
√

pi
√

pi′
T )ai′ (10.24)

aTi (I −√
pi

√
pi
T )ai = 1, 1 ≤ i ≤ n.

For each i, since I − √
pi

√
pi
T is positive semidefinte. Thus, we can write I − √

pi
√

pi
T = BiBT

i .
Let bi = Biai. Thus, constraints of optimization (10.24) can be written as bTi bi = ∣∣bi∣∣22 = 1.
We next write ai as a function of bi. Note that since Bi is not invertible, there are many choices
for ai as a function of bi characterized as follows: Let UiΣiU

T
i be the singular value decomposition

of Bi. The vector
√

pi is the singular vector corresponding to singular value zero (σ(1)
i = 0).

ai = ([U (2)
i , . . . , U

(∣Xi)
i ]diag(1/σ2

i , . . . ,1/σ
(ni)
i )[U (2)

i , . . . , U
(∣Xi)
i ]T )bi + αi

√
pi = Aibi + αi

√
pi,

(10.25)
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where U (j)
i is the j-th column of Ui, σ

(j)
i is the j-th singular value of Bi, and αi can be any scalar.3

Below, we show that all choices of ai according to (10.25) lead to the same objective function of
optimization (10.24):

aTi (Qii′ −
√

pi
√

pi′
T )ai′ = bTi A

T
i (Qii′ −

√
pi

√
pi′

T )Ai′bi′

+ bTi A
T
i (Qii′ −

√
pi

√
pi′

T )αi′
√

pi′

+ αi
√

pi
T (Qii′ −

√
pi

√
pi′

T )Ai′bi′

+ αi
√

pi
T (Qii′ −

√
pi

√
pi′

T )αi′
√

pi′

= bTi A
T
i (Qii′ −

√
pi

√
pi′

T )Ai′bi′

+ bTi A
T
i Qii′αi′

√
pi′

+ αi
√

pi
TQii′Ai′bi′

+ αiαi′(1 − 1)

= bTi A
T
i (Qii′ −

√
pi

√
pi′

T )Ai′bi′

+ bTi A
T
i

√
piαi′

+ αi
√

pi′
TAi′bi′ = bTi A

T
i (Qii′ −

√
pi

√
pi′

T )Ai′bi′ .

Therefore, the NMC optimization (4.1) can be written as

max
bi

∑
(i,i′)∈E

bTi A
T
i (Qii′ −

√
pi

√
pi′

T )Ai′bi′

∣∣bi∣∣2 = 1.

This completes the proof.

10.11 Proof of Proposition 6

We use the following lemma in the proof of Proposition 6.

Lemma 5 Let X and Y be two random variables such that E[X] = E[Y ] = 0. The solution to the
optimization

max
φ

E[φ(X)Y ]

E[φ(X)] = 0

E[φ(X)2] = 1,

is φ(X) = E[Y ∣X]√
E[(E[Y ∣X])2]

.

3Since Bi is symmetric it has a set of ∣Xi∣ orthonormal eigenvectors and can be written as

Bi =
∣Xi ∣

∑
j=1

vjσ
(j)
i vTj .

Let bi = ∑∣Xi ∣

j=2 βjvj and ai = ∑∣Xi ∣

j=1 αjvj . From bi = Biai, we obtain that αj = βj/σ(j)i for j ≥ 2, where α1 can be any
scalar.
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Proof We have

E[φ(X)Y ] = E [φ(X)E[Y ∣X]] ≤ 1
2
(E[E[Y ∣X]2] + E[φ(X)2]) ,

where we use E[E[Y ∣X]] = E[Y ] = 0 to derive the last equality. Note that the inequality becomes
an equality if and only if φ(X) = E[Y ∣X], which completes the proof.

At each iteration of Algorithm 3, we fix all the functions except one of them and then find the
optimum of that function. We show that the objective of optimization (4.1) increases at each
step of Algorithm (3). Since the objective is bounded, the convergence follows. Without loss of
generality, we show that by fixing all functions for random variables X2, . . . ,Xn and updating the
corresponding function of random variable X1, the objective of optimization (4.1) increases (or does
not change). We have

argmaxφ1(X1) ∑
(i,j)∈E

E[φi(Xi)φj(Xj)]

=argmaxφ1(X1)E

⎡⎢⎢⎢⎢⎣

⎛
⎝ ∑j∈Ni

φj(Xj)
⎞
⎠
φi(Xi)

⎤⎥⎥⎥⎥⎦
,

where E[φ1] = 1 and E[φ2
1] = 1. Using Lemma 5, the update of φ1(X) is

φ1(X1) =
E [(∑j∈N(i) φj(Xj)) ∣X1]

E [(E [(∑j∈N(i) φj(Xj)) ∣X1])
2]
.

This concludes the proof.

10.12 Proof of Theorem 8

For any realization of the partitioning, consider NMC over all sub-graphs Gm (1 ≤ m ≤ M) and
denote the corresponding functions by φ̂i for 1 ≤ i ≤ n. We have

ρG = ∑
(i,j)∈E

E[φ∗i φ∗j ] = ∑
(i,j)∈E∖Ec

E[φ∗i φ∗j ] + ∑
(i,j)∈Ec

E[φ∗i φ∗j ]

=
M

∑
m=1

∑
(i,j)∈Em

E[φ∗i φ∗j ] + ∑
(i,j)∈Ec

E[φ∗i φ∗j ]

≤
M

∑
m=1

ρ̂Gm + ∑
(i,j)∈Ec

E[φ∗i φ∗j ]

= ρ̂G + ∑
(i,j)∈E

1{(i, j) ∈ Ec}E[φ∗i φ∗j ].

Therefore, by taking expectation over the partitioning, we obtain

ρG ≤ E[ρ̂G] + ερG,

which gives us

(1 − ε)ρG ≤ E[ρ̂G].

This completes the proof.
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10.13 Proof of Theorem 9

Consider the following optimization:

max
ai

∑
(i,i′)∈E

K

∑
j=2

ai,jai′,j ρ
j
i,i′ (10.26)

∞
∑
j=2

(ai,j)2 = 1, 1 ≤ i ≤ n.

where we only consider 2 ≤ j ≤ K. We prove Theorem 9 for any K ≥ 2. Thus, since ρKi,i′ → 0
as k → ∞ for all i ≠ i′, Theorem 9 holds. Let Λ be the matrix of correlation coefficients where
Λ[i, i′] = ρi,i′ . Diagonal elements of Λ are all zero, as we ignore self-loops. Define

x = [a1,1, a2,1, . . . , an,1, a1,2, . . . , an,K]T . (10.27)

Moreover, define A0 as an nK × nK matrix composed of K2 blocks of size n × n where its m-th
diagonal block is equal to −2 Λ.m, where A.m[i, j] ≜ A[i, j]m. Off-diagonal blocks of A0 are all
zeros. Moreover, define Ai for 1 ≤ i ≤ n as an nK×nK matrix where Ai[m i,m i] = 1 for 1 ≤m ≤K,
otherwise it is zero. Therefore, optimization (10.26) can be re-written as the following standard
quadratic optimization:

min
x

1
2
xTA0x (10.28)

1
2
xT Ai x − 1

2
≤ 0, 1 ≤ i ≤ n.

Note that equality constraints of optimization (10.26) are replaced by inequality ones in optimiza-
tion (10.28). This is because, since ρ2

i,i′ ≥ 0, optimal solutions of optimization (10.28) occur in the
boundary of its feasible set. Optimization (10.28) is a non-convex quadratic minimization prob-
lem with quadratic constraints. Reference [63] characterizes necessary and sufficient conditions for
global minimizers of a generalized form of optimization (10.28). Let

x̄ = [s1, s2, . . . , sn,0, . . . ,0]T , (10.29)

where si ∈ {−1,1}, for 1 ≤ i ≤ n. According to reference [63], to have x̄ as a global minimizer of
optimization (10.28), we need to have

(
n

∑
i=1
λiAi +A0)x̄ = 0 (10.30)

and
n

∑
i=1
λiAi +A0 ⪰ 0, (10.31)

where λi ≥ 0, and A ⪰ 0 means that A is a positive semi-definite matrix. Using definitions of A0,
Ai, and x̄, equation (10.30) is satisfied iff

λi = 2∑
i′≠i

sisi′ρi,i′ ≥ 0, 1 ≤ i ≤ n. (10.32)

43



Using (10.32) and Gerschgorin’s circle theorem, if

∑
i′≠i

(1 − sisi′)ρi,i′ ≥ 0, ∀1 ≤ i ≤ n, (10.33)

∑
i′≠i

sisi′ρi,i′ ≥ ∑
i′≠i

ρ2
i,i′ , ∀1 ≤ i ≤ n, (10.34)

conditions (10.31) are satisfied. Thus, x̄ is a global minimizer of optimization (10.28). This com-
pletes the proof.

10.14 Proof of Proposition 9

Under assumptions of Theorem 9 and using the definition of Hermitte-Chebychev polynomials
(2.8), we can restrict the feasible set of optimization (3) to the set of functions φi(Xi) = siXi where
si ∈ {−1,1} for all 1 ≤ i ≤ n. Moreover, we have

E[φi(Xi)φi′(Xi′)] = sisi′ρi,i′ .

Furthermore, E[siXi] = E[Xi] = 0, and E[(siXi)2] = E[X2
i ] = 1. This completes the proof.

10.15 Proof of Theorem 11

We re-write optimization (6.7) as follows:

max ∑
(i,i′)

E[gi(fi(Xi)) gi′(fi′(Xi′))], (10.35)

E[gi(fi(Xi))] = 0, 1 ≤ i ≤ n,
E[gi(fi(Xi)2] = 1, 1 ≤ i ≤ n.

Define φi(Xi) = gi(fi(Xi)) for 1 ≤ i ≤ n. Since fi’s are bijective and differentiable, feasible regions
of optimizations (10.35) and (3) are equal. Under the assumptions of Corrolary 1, φ∗i (Xi) = Xi.
Thus, g∗i (fi(Xi)) =Xi. Thus, according to Theorem 10, if (i, j) ∉ Enmc, then,

Xi�Xj ∣{Xk, k ≠ i, j}. (10.36)

Since Yi’s are bijective functions of Xi’s, this completes the proof.
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[46] W. Huber, A. Von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron, “Variance stabiliza-
tion applied to microarray data calibration and to the quantification of differential expression,”
Bioinformatics, vol. 18, no. suppl 1, pp. S96–S104, 2002.

[47] M. E. Newman, “Modularity and community structure in networks,” Proceedings of the Na-
tional Academy of Sciences, vol. 103, no. 23, pp. 8577–8582, 2006.

[48] E. L. Kaplan and P. Meier, “Nonparametric estimation from incomplete observations,” Journal
of the American statistical association, vol. 53, no. 282, pp. 457–481, 1958.

[49] J. M. Bland and D. G. Altman, “The logrank test,” BMJ, vol. 328, no. 7447, p. 1073, 2004.

[50] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful
approach to multiple testing,” Journal of the Royal Statistical Society. Series B (Methodolog-
ical), pp. 289–300, 1995.

[51] G. S. Bailey, A. P. Reddy, C. B. Pereira, U. Harttig, W. Baird, J. M. Spitsbergen, J. D.
Hendricks, G. A. Orner, D. E. Williams, and J. A. Swenberg, “Nonlinear cancer response
at ultralow dose: a 40800-animal ed001 tumor and biomarker study,” Chemical research in
toxicology, vol. 22, no. 7, pp. 1264–1276, 2009.

47



[52] X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced
nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers in surgery
and medicine, vol. 39, no. 9, pp. 747–753, 2007.

[53] J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. Chuang, X. Li, P. Macklin, S. Wise, and V. Cristini,
“Nonlinear modelling of cancer: bridging the gap between cells and tumours,” Nonlinearity,
vol. 23, no. 1, p. R1, 2010.

[54] L. Nagel and R. Rohrer, “Computer analysis of nonlinear circuits, excluding radiation (can-
cer),” IEEE Journal of Solid-State Circuits, vol. 6, no. 4, pp. 166–182, 1971.

[55] J. G. Wagner, J. W. Gyves, P. L. Stetson, S. C. Walker-Andrews, I. S. Wollner, M. K. Cochran,
and W. D. Ensminger, “Steady-state nonlinear pharmacokinetics of 5-fluorouracil during hep-
atic arterial and intravenous infusions in cancer patients,” Cancer research, vol. 46, no. 3, pp.
1499–1506, 1986.

[56] D. M. Bates and D. G. Watts, Nonlinear regression: iterative estimation and linear approxi-
mations. Wiley Online Library, 1988.

[57] J. Hasty, D. McMillen, F. Isaacs, and J. J. Collins, “Computational studies of gene regulatory
networks: in numero molecular biology,” Nature Reviews Genetics, vol. 2, no. 4, pp. 268–279,
2001.

[58] J. Oncley, E. Ellenbogen, D. Gitlin, and F. Gurd, “Protein–protein interactions,” The Journal
of Physical Chemistry, vol. 56, no. 1, pp. 85–92, 1952.

[59] B. Golub and M. O. Jackson, “Naive learning in social networks and the wisdom of crowds,”
American Economic Journal: Microeconomics, pp. 112–149, 2010.

[60] L. Mirsky, “Symmetric gauge functions and unitarily invariant norms,” The quarterly journal
of mathematics, vol. 11, no. 1, pp. 50–59, 1960.

[61] L. Devroye, “The equivalence of weak, strong and complete convergence in l1 for kernel density
estimates,” The Annals of Statistics, pp. 896–904, 1983.

[62] D. Berend and A. Kontorovich, “On the convergence of the empirical distribution,” arXiv
preprint:1205.6711, 2012.

[63] V. Jeyakumar, A. M. Rubinov, and Z. Wu, “Non-convex quadratic minimization problems
with quadratic constraints: global optimality conditions,” Mathematical Programming, vol.
110, no. 3, pp. 521–541, 2007.

48




