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ABSTRACT

The generalized eigenvalue problem can be used to compute angles of
multivariable root loci. This is most useful for computing angles of

arrival. The results extend to multivariable optimal root loci.
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I. INTRODUCTION

The classical root locus has proven to be a valuable analysis and design

tool for single input single output linear control systems. Research is

currently underway to extend root locus techniques to multi-input multi-

output linear control systems. We contribute to this body of research by

showing that the generalized eigenvalue problem can be used to compute

angles of the multivariable root locus, and we show this method to be

particularly useful for computing angles of arrival to finite transmission

zeros. The generalized eigenvalue problem can also be used to compute

sensitivities of the multivariable root locus, as well as angles and

sensitivities of the multivariable optimal root locus.

Previous work on angles and sensitivities is contained in [1,2,3,4].

Our work follows most closely [1], where the standard eigenvalue problem is

used to compute angles.
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II. The Multivariable Root Loci

We consider the linear time invariant output feedback problem:

= Ax + Bu x e Rn , u e m (1)

y = Cx y e IRm (2)

u = -kKy . (3)

The closed loop system matrix and its eigenvalues, right eigenvectors, and

left eigenvectors are defined by:

A - A - kBKC (4)

(A - s I)x = = 1,..., n (5)

yH (AcisiI) = 0 i = 1,..., n . (6)1 cl i

Several assumptions are made about the system. We assume (A,B) is con-

trollable, (C,A) is observable, and K is invertable. We assume the

number of inputs and outputs are equal. We assume that at any point

of the root locus where angles and sensitivities are computed that the

closed loop eigenvalues are distinct. Finally, we assume that the system

is not degenerate in the sense that A,B, and C do not conspire in such

a way that P(s) loses rank for all s in the complex plane, where the

polynomial system matrix P(s) is defined as

A [sI-A B]
P(s) = 0 (7)

As the gain term k is varied from 0 to infinity the closed loop poles

trace out a root locus. At k=O the n branches of the root locus start

at the open loop eigenvalues. As k-+-, some number p < n-m of these branches
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approach finite transmission zeros, which are defined to be the finite

values of s which reduce the rank of P(s). Also as k+-, the remaining

n-p branches group into m patterns and approach infinity.

At any point on the root locus an angle can be defined. Consider

the closed loop eigenvalue si which is computed for some value of k. If

k is perturbed to k+Ak then s. will be perturbed to s+As.. As Ak+O then

Asi/Ak approaches the constant dsi/dk (if this limit exists). The angle

of the root locus at point si is defined to be

Ads 

i arg M- , (8)

where "arg" is the argument of a complex number. The angles of the root

locus at the open loop eigenvalues are the angles of departure, and the

angles at the finite transmission zeros are the angles of arrival. Figure

1 illustrates these definitions.

At any point on the root locus the sensitivity is defined to be

Si a -dk (9)

The sensitivities are used to approximately determine how far a closed

loop eigenvalue moves in response to a gain change. Suppose the gain

changes from k to k+Ak. Then the closed loop eigenvalue si will move

(approximately) a distance Ak Si in the direction 4i.
11
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III. The Generalized Eigenvalue Problem

The generalized eigenvalue problem is to find all finite X and

their associated eigenvectors V which satisfy

Lv = AMv, (10)

where L and M are real valued rxr matrices which are not necessarily full

rank. If M is full rank then it is invertible, and premultiplication by

M-M l changes the generalized eigenvalue problem into a standard eigenvalue

problem, for which there are exactly r solutions. In general there are

0 to r finite solutions, except for the degenerate case when all X in the

complex plane are solutions. Reliable FORTRAN subroutines based on

stable numerical algorithms exist in EISPACK [5] to solve the generalized

eigenvalue problem. See [6] for the application of this software to

a related class of problems. Also, see [7] for additional information on

the solution of the generalized eigenvalue problem.

Our first application of the generalized eigenvalue problem is to

compute the closed loop eigenstructure of a system. This has been done

before [12] but without specific mention of the generalized eigenvalue

problem. The more standard approach to computing the closed loop

eigenstructure is to use a standard eigenvalue problem, never-the-less

it is instructive to show that an alternative approach exists.

Lemma 1. The si, xi, and y. are solutions of the generalized

eigenvalue problems

A-siI B Li= 0 i=l,...,p (11)

_L i _ lj 
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A-s I B

[Yi Ti.] L l[ = o i = 1 P (12)

Proof. From (11) we see that

(A-s.I)x. - kBKCx. = 0, (15)
1 1 1

which is the same as (5), the defining equation for the closed loop eigen-

values and right eigenvectors. In a similar way (12) can be reduced to

(6), the defining equation for the left eigenvectors. This completes the

proof.

The generalized eigenvalue problem cannot be used to compute the

open loop eigenstructure (k=O), because the lower right block of the matrices

in (11) and (12) would be infinite. When k is in the range O<k<c then

the number of finite solutions is p=n. When k is infinite (more appro-

priately when l/k = 0) then the number of finite solutions is in the

range 0<p<n-m. The finite solutions (when k=-) are the transmission

zeros, and the x. and y. vectors are the right and left zero directions.
1 1

From Lemma 1 it is clear that as k+-o the finite closed loop eigenvalues

approach transmission zeros, and the associated eigenvectors approach

zero directions.

The solutions of the generalized eigenvalue problems contain two

vectors V. and n. which do not appear in the solutions of standard
1 1

eigenvalue problems. The importance of the Vi. vectors can be explained

as follows [8,91. The closed loop right eigenvector x. is constrained

to lie in the m dimensional subspace of IRn spanned by the columns of

(s.I-A)- B. Exactly where x. lies in this subspace is determined by
1 1

V., via x. = (s.I-A) BV.. This follows from the top part of (11). If
1 1 1 1
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the state of the closed loop system at time t=O is xO = axi, then the state

trajectory for time t>O is x(t) = axi exp(sit), and the control action

is u(t) = aVi exp(sit). This follows from the bottom part of (11). The

H. vectors play an analogous role in the dual system with matrices

T T T
S(-A , C , B ).

For our purposes, however, the vectors vi and i. are significant

because they can be used to compute angles of the root locus. This is

shown in the next section.
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IV. Angles

In theorem 1 we show how to compute angles on the root locus. The

eigenvalue problem is used for angles of departure, the generalized eigenvalue

problem for angles of arrival, and either for intermediate angles. For the

thintermediate angles the eigenvalue problem is preferable, since it is n order

instead of n+m order. However, when k is very large but not infinite,

then the generalized eigenvalue problem has better numerical properties [6].

Theorem 1. The angles of the root locus, for O<k<o and for distinct

Si, are found by

= arg | H O<k< (16)yBKCxi /

= arg O<k<oo i=l,... ,p (17)\ /
yixiarg H :~k~oo 1.,---,,P - (17)

Remark. The angles of departure are found using (16) with k=O, the

angles of approach are found using (17) with k- o. For k<-, p=n; and for

k=-- , O<p<n-m.

Proof. The proof of (16) is found in [1]. The proof of (17) is similar,

but uses the generalized rather than the standard eigenvalue problem. First

we show that

H -1
ds. Tl.K V.

dl = l l i=l,..., p . (18)
dk 2H

k Yii
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Rewrite the generalized eigenvalue problem (11) as

(L-s.M)v. = 0 i = 1,...,p (19)
1 1

where

L [-C -(kK) M= [ 0 i = [

Also, let

H HH
U. = [yi i] '
i 1i 

Differentiate (19) with respect to k to get

dv.rd(Ls N)] v + (L-siM) I = 0 (20)
dk ] i1 dk

H
Multiply (20) on the left by u. to get

u [dk(L-siM)]vi = 0. (21)

Subsitute for L and M, differentiate, and perform some algebra to arrive

at (18). The angle is the argument of the left hand side of (18), and since

arg(k 2 ) = 0, the result is (17). This completes the proof.

The following identities, which are obtained from (11) and (12),

can be used to pass back and forth from (17) and (18):

Cx. = -(kK) -lV (22)1 1

H H -1
YiB = ni (kK) . (23)

We see that when k-=c then Cx. = 0 and y.B = 0, which verifies that (16)1 1

cannot be used to compute angles of arrival, since 4i = arg(0) is not

defined.
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In [1] a limiting argument as k-o is used to derive alternate equations

for angles of arrival. These equations are more complicated because the

rank of CB must be determined. Using the generalized eigenvalue problem

eliminates the need to determine rank. We note that [1] contains some

errors that are pointed out in [31.
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V. Sensitivity

The Vi. and n. vectors are also useful for the calculation of

eigenvalue sensitivites. This is shown in Lemma 2. A separate proof

of this Lemma is not needed, since it follows from intermediate steps

in the proof of Theorem 1 (equation (25) follows from (18)).

Lemma 2. The sensitivities of distinct closed loop eigenvalues

to changes in k, for 0 < k < o, are found by

y BKCx.
= 0 < k < i = 1, ... p (24)

y x.
YiXi

S =_ ni Ki±S k
1 k2 j O < k < Xi=,...,p. (25)

YiXi

Equations (24) and (25) give the same answers for 0 < k < c. Even

though k appears only in (25), actually both (24) and (25) are dependent

H H
on k, since yi, xi, Ti, and Vi are all dependent on k.

11
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VI. Extensions to the Multivariable Optimal Root Locus

Our attention now shifts from the linear output feedback problem to

the linear state feedback problem with a quadratic cost function. As in

[10, 11], we show that the optimal root locus for this problem is a special

case of the ordinary output feedback root locus. We then show how to

compute angles and sensitivities.

The linear optimal state feedback problem is

x = Ax + Bu x e IR , u e Rm (26)

u = F(x) . (27)

The optimal control is required to be a function of the state and to

minimize the infinite time qudadratic cost function

00

J = f (xTQx + pu TRu)dt, (28)

0

where

Q = Q > 0

R =R T> 0

As usually done for this problem we assume that (A,B) is controllable

and (Q1/ , A) is observable.

Kalman [12] has shown (for p>O) that the optimal control is a

linear function of the state

u = -Fx , (29)

where
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F R-1BTP , (30)
P

and P is the solution of the Riccati equation

0 = Q + ATp + PA- 1 PBRBP (31)
P

The closed loop system matrix is

A = A - BF . (32)

As p is varied from infinity down to zero the closed loop eigenvalues

trace out an optimal root locus.

To study the optimal root locus we define a linear output feedback

problem with 2n states, m inputs, and m outputs.

A= . AT=
A-Q A l B

T - l
C = [O BT ] K = R 1

The closed loop matrix of this augmented system is

lA - - BR B

Z=A--p KC = -AT

which is often referred to as the Hamiltonian matrix. Its 2n eigenvalues

are symmetric about the imaginary axis, and those in the left half plane

(LHP) are the same as the eigenvalues of Ac9 in (32).

Define the closed loop eigenvalues, right and left eigenvectors,

H
for i=l,...,2n, respectively as si, zi, and w.. They can be computed using

an eigenvalue decomposition of Z. Alternatively, using Lemma 1, they are

solutions of the following generalized eigenvalue problems:



A - s.1 r.[ 1 I i = 0 i = 1,...., 2p (34)

fw niH A- s.I 1 O i = 1,...2p (35)

The number of finite generalized eigenvalues is 2p = 2n if p>0, and is

in the range 0<2p<2(n-m) if p=0.

The optimal root locus is the LHP portion of the regular root

locus of the Hamiltonian system. At p--c the n branches of the optimal

root locus start at the LHP eigenvalues of A, or the mirror image about

the imaginary axis of the RHP eigenvalues of A. As pt+, p of these

branches remain finite, where 0<p<n-m. The remaining n-p branches group

into m Butterworth patterns and approach infinity. Those branches that

remain finite approach transmission zeros, which are the finite LHP solu-

tions of (34) with p=0.

The angles and sensitivities of the optimal root locus can be

found by applying Theorem 1 and Lemma 2 to the Hamiltonian system. The

results are the following:

Theorem 2. The angles on the optimal root locus, for O<p<c and

for distinct si, are found by

1 0 H j BR-1B
0 < < p 

~i = arg H Z (36)

arg ..... 0 < p < 0 i = 1 ,...,p . (37)

1 1
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Remark. The angles of departure are found using (36) with p=-,

and the angles of approach by using (37) with p=O. For p>O, p = n; and

for p = 0, 0 < p < n-m.

Lemma 3: The sensitivities of distinct closed loop eigenvalues

to changes in p, for 0 < p < A, are found by

1 1 18 wp w. z i = p

S = 0 < p < O i = l,..., p (-39)
l w.z. --wizi

11

Remark. The computations for (36-39) can be reduced by using the

following identifies. First, from (34) and (35), it can be shown that

Vi = n.. Second, let s. be the RHP mirror image about the imaginary

- -H -iHaxis of si, and let z· = (xi, §) be the right eigenvector associated

wih1i-Teteetiasoaewtsi (1 1,i)
with s.. Then the left eigenvector associated with s .is w. = (- , .
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VII. Example

To illustrate Theorm 1 we define a system S(A,B,C) and plot root

loci for each of 3 output feedback matrices K. The system matrices

are:

-4 7 -1 13 0 1

A 0 3 0 2 B 1 0

4 7 -4 8 2 0

0 -1 0 0 -2 0

0 -5 2 -2

C i

'8 -14 0 2

The output feedback matrices matrices are

Case #1 Case #2 Case #3

1 [1 ° 0 50 

Case #2 is the same as used in [1]. The root loci are shown in Figure

2. The angles of departure and approach were computed and are listed

in Table 1.

The system has two open loop unstable modes that are attracted to

unstable transmission zeroes, so for all values of k the system is

unstable. The system has two open loop stable modes that are attracted

to -- along the negative real axis. One of the branches first goes

to the right along the negative real axis and then turns around. The

turn around point is called a branch point. The root locus can be

thoughtof a being plotted on a Riemann surface, and the branch points

are points at which the root locus moves between different sheets of the
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Riemann surface [14].

TABLE 1

Angles of Departure and Approach for Example 1

Case Angles of Departure Angles of Approach
-4+ 2i 1 2 1+ i

1 + 1730 00 1800 + 170°

2 + 149 0 180 + 121

3 + 135 0 180 + 144
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Case #1
_ . ., , .....i ,. .

as . -lo --5 ! 
~x -2

Case #2

Case#*3

Figure 2 Root Loci of a Linear System with Output Feedback
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VIII. Conclusion

The multivariable root locus has been a rich source of interesting

research problems. Using the generalized eigenvalue problem to compute

angles is one example of such a research problem. The ultimate value of

the multivariable root locus as a design tool, however, has yet to be

determined.



-21-

REFERENCES

1. Shaked, N., "The Angles of Departure and Approach of the Root Loci
of Linear Multivariable Systems," Int. J. Control, Vol. 23, No. 4,
pp. 445-457, 1976.

2. Postlethwaite, I., "The Asymptotic Behavior, The Angles of Departure,
and the Angles of Approach of the Characteristic Frequency Loci,"
Int. J. Control, Vol. 25, pp. 677-695, 1977.

3. Kouvaritakas, B., and J.M. Edwards, "Multivariable Root Loci: A
Unified Approach to Finite and Infinite Zeros," Int. J. Control,
Vol. 29, No. 3, pp. 393-428, 1979.

4. Yagle, Andrew E., "Properties of Multivariable Root Loci," Laboratory
for Information and Decision Systems, MIT, LIDS-TH-1090, June, 1981.

5. Garbow, B.S., et al., Matrix Eigensystems Routines - EISPACK Guide
Extension, Lecture Notes in Computer Science, Vol. 51, Springer-
Verlag, Berlin, 1977.

6. Laub, A.J., and B.C. Moore, "Calculation of Transmission Zeros Using
QZ Techniques," Automatica, Vol. 14, pp. 557-566, 1978.

7. Emami-Naeini, A., and L.M. Silverman, "An Efficient Generalized Eigen-
value Method for Computing Zeros," Proceedings of the 19th IEEE
Conference on Decision and Control, Albuquerque, New Mexico, pp.
176-177, 1980.

8. Moore, B.C., "On the Flexibility Offered by State Feedback in Multi-
variable Systems Beyond Closed Loop Eigenvalue Assignment," IEEE
Trans. Auto. Control, Vol. AC-21, No. 5, pp. 689-691, October 1976.

9. Karcanias, N., and B. Kouvaritakas, "The Use of Frequency Transmission
Concepts in Linear Multivariable System Analysis," Int. J. Control,
Vol. 28, No. 2, pp. 197-240, 1978.

10. Kalman, R.E., "When is a Linear System Optimal?" Trans. ASME J. Basic
Engr., Ser. A, Vol. 80, pp. 51-60, Mar. 1964.

11. Skaked, U., "The Asymptotic Behavior of the Root-Loci of Multivariable
Optimal Regulators," IEEE Trans. Auto. Control, Vol. AC-23, No. 3,
June 1978.

12. Kalman, R.E., "Contributions to the Theory of Optimal Control, " Bol.
Soc. Mat. Mexico, pp. 102-119, 1960.

13. MacFarlane, A.G.J., B. Kouvaritakas, and J.M. Edmunds, "Complex Variable
Methods for Multivariable Feedback Systems Analysis and Design,"
Alternatives for Linear Multivariable Control,NEC, Inc., pp. 189-228,
1978.



-22-

14. MacFarlane, A.G.J., and I. Postlethwaite, "The Generalized Nyquist

Stability Criterion and Multivariable Root Loci," Int. J. Control,

Vol. 25, No. 1, pp. 88-127, 1977.


