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Abstract The joint replenishment problem is a fundamental model in supply
chain management theory that has applications in inventory management,
logistics, and maintenance scheduling. In this problem, there are multiple item
types, each having a given time-dependent sequence of demands that need to
be satisfied. In order to satisfy demand, orders of the item types must be placed
in advance of the due dates for each demand. Every time an order of item types
is placed, there is an associated joint setup cost depending on the subset of
item types ordered. This ordering cost can be due to machine, transportation,
or labor costs, for example. In addition, there is a cost to holding inventory
for demand that has yet to be served. The overall goal is to minimize the total
ordering costs plus inventory holding costs.

In this paper, the cost of an order, also known as a joint setup cost, is a
monotonically increasing, submodular function over the item types. For this
general problem, we show that a greedy approach provides an approximation
guarantee that is logarithmic in the number of demands. Then we consider
three special cases of submodular functions which we call the laminar, tree, and
cardinality cases, each of which can model real world scenarios that previously
have not been captured. For each of these cases, we provide a constant factor
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approximation algorithm. Specifically, we show that the laminar case can be
solved optimally in polynomial time via a dynamic programming approach. For
the tree and cardinality cases, we provide two different linear programming
based approximation algorithms that provide guarantees of three and five,
respectively.

Keywords Inventory Management · Approximation Algorithm · Submodular
Function · Joint Replenishment Problem

1 Introduction

Inventory models with deterministic and non-stationary demand have a long
and rich history in supply chain management, beginning with the seminal pa-
per of Wagner and Whitin (1958). In these models, there are demands for
different item types that need to be satisfied before their respective due dates.
Ordering inventory in a time period results in setup costs, and holding in-
ventory before it is due results in holding costs. The main objective of these
models is to minimize the total setup costs and holding costs to satisfy all the
demand. Setup costs typically represent, among others, the use of machines,
trucks, and/or laborers. When multiple item types are ordered in the same pe-
riod, some of the ordering costs are typically shared among the different item
types. In most inventory management models, the economies of scale are tradi-
tionally captured by a joint setup cost structure, and the problem is generally
known as a joint replenishment problem (JRP). The JRP has been used in
many applications including inventory management, maintenance scheduling,
logistics, and transportation problems.

The most traditional JRP model uses the additive joint setup cost struc-
ture. In this model, there is a one-time setup cost if any item type is ordered,
in addition to an individual item setup cost for each item type ordered. The
additive joint setup cost structure has limited modeling power in some signif-
icant practical cases, yet there is a surprising lack of results for models with
more complex joint setup cost structures when demand is non-stationary. This
in sharp contrast to Queyranne (1986), Federgruen and Zheng (1992), and Teo
and Bertsimas (2001) who gave near-optimal algorithms for inventory mod-
els with a very general joint setup cost structure but with constant demand.
In this work, we consider several variations and generalizations of the deter-
ministic, non-stationary joint replenishment problem beyond the additive cost
structure that capture many interesting settings in practice. Since joint replen-
ishment problems with non-stationary demand are typically NP-hard, even for
the additive model (Arkin et al. (1989)), it is computationally intractable to
find optimal solutions quickly. However, we provide approximation algorithms
that can efficiently find solutions provably close to optimal, and in the worst
case are guaranteed to be within a small factor of the optimal cost. This factor
is known as the approximation ratio.

In the JRP models studied in this paper, there are multiple item types,
each with a sequence of demands over a discrete time horizon of finitely many
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periods. That is, for each item type there is a prespecified demand quantity
due in each time period. Each demand must be completely satisfied by an
order at or prior to its due date period, which means neither backlogging nor
lost sales are allowed. For each time period, one needs to decide which item
types to order, and how much to order. The joint setup cost, or ordering cost,
is a function of the specific set of item types included in the order, and does not
depend on the demand quantities ordered. For each unit of demand ordered,
there is a holding cost that depends on the item type, the time it was ordered,
and the due date of the demand point it will serve. Our holding cost structure
is general enough to also capture additional per unit production costs when an
order is placed. One can easily show that zero-inventory ordering policies are
optimal in this model, and thus every demand of a given item type is satisfied
by the latest order of that item type prior to its due date period. The goal is
to satisfy all the demands on time by a sequence of orders that minimizes the
total joint setup costs plus holding costs.

The joint setup cost function we study satisfies two natural properties
known as monotonicity and submodularity. The monotonicity property simply
means that as more item types are ordered, the total joint setup cost increases.
The submodularity property captures the economies of scale in ordering more
item types, i.e., the marginal cost of adding any specific item type to a given
order decreases as the given order increases. Under these assumptions, we re-
fer to this problem as the submodular joint replenishment problem. For the
submodular JRP, we show that a simple greedy algorithm achieves an approx-
imation ratio that is logarithmic in the total number of demands. In addition,
we also describe an integer programming formulation whose linear program-
ming relaxation can be solved efficiently and has a special structure for the
optimal solution. We then consider three special cases of the submodular JRP
with non-stationary demand that capture a wide range of applications. These
cases are called the tree JRP, laminar JRP, and the cardinality JRP, none of
which have any clear mathematical relation with the others.

In the tree JRP case, we are given a rooted tree where each node represents
a process that incurs a setup cost, and the leaves of the tree represent the
item types. The joint setup cost of ordering any subset of item types is the
total setup costs of all the nodes on the paths from the root to the leaves
corresponding to the item types being ordered. The tree JRP model captures
situations where each item type requires a chain of processes to be performed,
and several of those processes are shared by other item types. One application
of the tree JRP is in maintenance scheduling problems (Levi et al. (2011)) for
aircraft engines. Each module of the engine corresponds to a node in the tree,
and to get to a certain engine part requires removing all necessary modules.
The tree with only a root and leaves is identical to the additive joint setup cost
structure, and thus this problem is also NP-hard. We provide an approximation
algorithm that gives a solution guaranteed to be no more than three times the
optimal cost. Specifically, the algorithm is based on solving a linear program,
and then successively rounding the variables corresponding to the nodes in the
tree in a particular fashion. Specifically, we start by opening orders containing
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the root process, and work our way down the tree using a breadth-first search.
For each node, we round the corresponding variables to a time where there is an
order containing the process corresponding to its parent node, thus ensuring
that all necessary processes for an item type are accounted for when it is
ordered.

In the laminar JRP case, the joint setup cost function is specified through
a laminar family of subsets of item types, each with an associated setup cost.
The family can be modeled as a tree where the nodes correspond to subsets
of item types, and the children of each node must partition the corresponding
subset of item types belonging to that node. This captures situations where
there are machines (or laborers) with varying degrees of specialization. Any
two machines have the property that either they cannot make any of the same
item types, or that one machine has strictly more capabilities than the other.
The joint setup cost for ordering a subset of item types is simply the setup
cost of the cheapest collection of machines that is capable of producing all
the item types being ordered. For the laminar JRP, we are surprisingly able
to solve the problem to optimality with an efficient dynamic program. This
implies that this variant of the problem belongs to the class of problems P. The
subproblems of the dynamic program are finding the optimal cost of serving
the demands in a specific time interval, given that a specific machine will be
in use at the beginning of the interval. The correctness relies on our ability to
decompose the item types into groups based on which machines they can be
processed on.

Finally, the cardinality JRP is the case where the joint setup cost function
has the property that the cost of ordering a subset of item types is simply
a function of the cardinality of the subset of item types being ordered. The
submodularity in this case implies that the joint setup cost function is concave
in the cardinality of the subset of item types being ordered. A natural applica-
tion of this model is when all the item types are very similar, but vary in only
one aspect, such as color or size. Although the cardinality JRP is NP-hard,
which was shown indirectly in Arkin et al. (1989), we provide an efficient al-
gorithm with a worst-case approximation ratio of five. This algorithm is based
on an innovative iterative rounding procedure that uses the variables from a
linear relaxation of a novel integer programming formulation of the cardinal-
ity JRP. Our algorithm carefully builds up orders based on their size, while
ensuring that the cost of any particular order can be paid for using the primal
objective costs. The holding costs are accounted for using a property of the
respective dual linear program. Since the linear programming relaxation is of
exponential size, we also describe a nontrivial yet equivalent linear program of
a polynomial size.

1.1 Literature Review

Joint replenishment problems are infamous for being intractable, and thus
have been typically studied via the notion of approximation algorithms. When
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demand is assumed to be stationary and continuous, the additive JRP was
shown by Schulz and Telha (2011) to be as hard as integer factorization. For
this same problem, Roundy (1985) showed that “power-of-two” policies have
approximation ratios of 1.06 and 1.02, depending on whether the base planning
period is fixed or not. In Teo and Bertsimas (2001), an improved approximation
ratio of 1.04 was obtained for the additive JRP with fixed base planning peri-
ods. When the time horizon is finite, Segev (2013) and Nonner and Sviridenko
(2013) provide quasi-polynomial and efficient polynomial time approximation
schemes, respectively. In Federgruen and Zheng (1992), the results of Roundy
(1985) were generalized to the submodular JRP with constant demand. Other
stationary inventory models with submodular costs were considered in Feder-
gruen et al. (1992), Herer and Roundy (1997), and Viswanathan (2007).

The literature for the submodular JRP with non-stationary demand has
focused primarily on the additive joint setup cost structure, which was shown
to be NP-hard in Arkin et al. (1989). Nonner and Souza (2009) further showed
that this problem is APX-hard when holding costs are nonlinear with respect
to time, which is the case for the models we consider. Several heuristics for
the non-stationary additive JRP have been proposed with varying degrees
of theoretical performance guarantees in Veinott Jr (1969), Zangwill (1969),
Kao (1979), Joneja (1990), Federgruen and Tzur (1994), Levi et al. (2006),
and Stauffer et al. (2011). The current best approximation algorithms for the
additive JRP with non-stationary demand are due to Levi et al. (2008) and
Bienkowski et al. (2013), which have approximation ratios of 1.80 and 1.8791,
respectively. Becchetti et al. (2006) and Khanna et al. (2002) have considered
special cases of the tree JRP with assumptions on the holding cost structure.
Chan et al. (2002) show that zero-inventory policies are near-optimal for joint
replenishment problems with piecewise linear costs, however their conditions
do not imply submodularity.

Since this paper has been made available, there have been several related
results. For the submodular JRP, Shmoys and Tong (2013) provide an algo-
rithm with an approximation ratio that is logarithmic in the number of item
types. Also for the submodular JRP, Nagarajan and Shi (2015) provide an
algorithm with an approximation ratio that is logarithmic in the number of
time periods. Under certain assumptions on the holding costs, they show that
their approximation ratio is sublogarithmic. For the tree JRP, Pedrosa and
Sviridenko (2013) provide an algorithm with approximation ratio of two.

In Section 2, we give a precise mathematical description of the submodular
JRP along with a greedy approximation algorithm and an integer program-
ming formulation. We then consider the tree, laminar, and cardinality JRPs
in Sections 3, 4, and 5. Finally, we offer concluding remarks in Section 6.
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2 Submodular JRP

2.1 Model

In this section, we formally describe the submodular joint replenishment prob-
lem. There are N different types of items, or item types, each associated with
a known sequence of demands over a discrete finite planning horizon of T pe-
riods. These items types are denoted by the the set N := {1, . . . , N}. The
demand in a specific period t ∈ {1, . . . T} for an item type i ∈ N is denoted by
dit ≥ 0. Let the set D contain all the demand points (i, t) with dit > 0. Each
demand point (i, t) ∈ D needs to be served by an order containing item type
i placed no later than its due date t. There are no backlogging or lost sales.
In every period one must decide which item types to order, and how much of
each item type to order. The total cost of a solution is composed of the joint
setup costs for placing an order, and the holding costs for holding inventory
before demand is due.

The joint setup cost of an order is a function of the item types ordered,
and does not depend on the demand quantities ordered. For any given time
period and a subset of item types S ⊆ N , we let K(S) denote the joint
setup cost of ordering demand for item types in S in that time period. K(·) is
assumed to be nonnegative, monotonically increasing, and submodular. The
monotonicity assumption means that for every S1 ⊆ S2 ⊆ N , K(S1) ≤ K(S2).
The submodularity assumption means that for every pair of sets S1, S2 ⊆ N ,
K(S1) + K(S2) ≥ K(S1 ∪ S2) + K(S1 ∩ S2). This definition can be shown
to be equivalent to the following: for every set S1 ⊆ S2 ⊆ N and any item
type i ∈ N , K(S1 ∪ {i}) − K(S1) ≥ K(S2 ∪ {i}) − K(S2). This alternative
definition conveys more clearly the economies of scale interpretation of sub-
modularity, i.e., that the additional cost of adding an item type to a given
order is decreasing as more item types are included in the given order. Finally
we let hist be the cost of holding a unit of item type i from period s to t.
Thus, if demand point (i, t) is served by an order at time s, then this this in-
curs a holding cost of dith

i
st, which we conveniently denote by Hi

st. If dit = 0,
then Hi

st = 0 as well. We note that hist also allows us to easily capture a per
unit production cost for ordering a unit of item i in period s. We assume hist
is nonnegative and monotonically decreasing in s for a fixed i and t, which
means that holding inventory longer is always more costly. This assumption
implies that any demand point (i, t) is satisfied by the latest order before or
at time t containing item type i, i.e., zero-inventory policies are optimal. Thus
given a sequence of orders, the inventory allocation and holding costs can be
computed in a straightforward fashion. The goal is to satisfy all the demands
on time by a sequence of orders that minimizes the total joint setup costs plus
holding costs.

In Theorem 1, we provide an O(log(NT ))-approximation algorithm for the
submodular JRP. The proof relies on a reduction to the set cover problem,
which is similar in spirit to a reduction described in Svitkina and Tardos
(2010) for a facility location type problem.
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Theorem 1 There exists an O(log(NT ))- approximation algorithm for the
submodular JRP using the greedy algorithm for the set cover problem.

Proof We reduce the submodular JRP to the set cover problem. In the set
cover problem, there are m objects that need to be covered, and n subsets of
those objects that each have a different cost. The goal is to cover the m objects
using the cheapest collection of available subsets. Chvatal (1979) showed that
a simple greedy algorithm is an O(logm)-approximation algorithm to this
problem. The algorithm works by iteratively choosing the subset that has the
smallest ratio of its cost over the number of uncovered objects in the subset.

To model the submodular JRP as a set cover problem, we let each demand
point (i, t) be an object, which means there are at most NT in total. Recall
that D is the set of all demand points with a positive demand. The collection of
possible subsets we may use in the cover is denoted by U := {1, . . . , T} × 2D.
The cost of a subset (s, U) ∈ U , denoted by c(s, U), is simply the cost of
serving the demand points in U from time s in the submodular JRP. More
specifically, c(s, U) =∞ if U contains a demand point with due date before s.
Otherwise, if we let I(U) denote the subset of item types in U , then c(s, U) =
K(I(U)) +

∑
(i,t)∈U H

i
st. Notice that c(s, U) is a submodular function in U for

a fixed s due to the submodularity of K(·) and the fact that the holding costs
are separable.

Now we need to show that we can find a set (s, U) ∈ U whose ratio of c(s, U)
over the number of uncovered demand points is smallest. Since the number of
such possible sets is exponential, we cannot enumerate and thus need to define
an efficient procedure. To find the set to add to the cover, we first find the set
that has the smallest ratio for each time period s, and then choose the cheapest
among them. Let w(i,t) = 1 if demand point (i, t) is still uncovered and let it
be 0 otherwise. For a specific time period s, we aim to find a set U ∈ 2D that

minimizes c(s,U)∑
(i,t)∈U w(i,t)

. This optimization problem can be solved by finding

the minimum α for which there exists a set U ∈ 2D such that c(s,U)∑
(i,t)∈U w(i,t)

≤ α.

Equivalently, we can write this inequality as c(s, U) − α
∑

(i,t)∈U w(i,t) ≤ 0.
Since the left hand side of this expression is clearly submodular, we can find
a set U , if it exists, that satisfies this inequality for a given α by solving a
submodular minimization problem, which is known to be efficiently solvable
(Orlin (2009)). Doing a binary search over the possible values of α allows us to
find the minimum α efficiently, up to an arbitrarily close constant factor. (Note
that this increases the overall approximation guarantee by the same constant
factor.) Therefore, we can run the greedy algorithm efficiently and obtain an
O(log(NT ))-approximation algorithm. ut

2.2 Integer Programming Formulation

The following is an integer programming formulation of the submodular JRP.
The binary variable ySs is 1 if the subset of item types S is ordered in period
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s and is 0 otherwise. The binary variable xist is 1 if demand (i, t) is satisfied
using an order from period s and is 0 otherwise.

minimize
∑
S⊆N

T∑
s=1

K(S)ySs +
∑

(i,t)∈D

t∑
s=1

Hi
stx

i
st (IP)

subject to

t∑
s=1

xist = 1, (i, t) ∈ D (1)

xist ≤
∑

S:i∈S⊆N

ySs , (i, t) ∈ D, s = 1, . . . t (2)

xist, y
S
s ∈ {0, 1}, (i, t) ∈ D, s = 1, . . . t, S ⊆ N

We first argue that this is indeed a valid formulation for the submodular
JRP. Constraint (1) ensures that each demand (i, t) with dit > 0 is completely
served by an order at some time s ≤ t. Constraint (2) ensures that if any
demand (i, t) is served by an order at time s, then there must be a subset
ordered at time s that includes i. By submodularity, the optimal solution only
sets at most one y variable to 1 in any time period s. The natural LP relaxation
of (IP), denoted by (P), relaxes the integer constraints on the variables to
nonnegativity constraints.

The following lemma shows that there exists an optimal solution to (P),
such that in any given time period s, the set of ys variables that are positive
have a very special nested structure. Using this lemma, one can easily show
that for instances of the tree and cardinality JRPs, (P) is is as strong as the
polynomial-size LP relaxations that we construct for the tree and cardinality
JRPS in Sections 3 and 5, i.e., (P-T) and (P-C*). Moreover, this lemma may
be useful in future results on the submodular JRP.

Lemma 1 There exists an optimal solution (x, y) to (P) such that for any
given period s and any two subsets R ⊆ N and S ⊆ N , if yRs > 0 and ySs > 0,
then R and S are nested, i.e., either R ⊆ S or S ⊆ R.

Proof Given an arbitrary optimal solution (x̂, ŷ) to (P), we construct another
optimal solution (x, y) with the desired property. Fix a time period s. Let
Zis :=

∑
S:i∈S ŷ

S
s be the sum of the fractional number of sets ordered in period

s that contains item type i. Now consider the following auxiliary optimization
problem which has a variable rSs for every set S ⊆ N .

minimize
∑
S⊆N

K(S)rSs (AUX-s)

subject to
∑
S:i∈S

rSs ≥ Zis, i = 1, . . . , N (3)

rSs ≥ 0 S ⊆ N
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Recall K(S) is the joint setup cost of ordering the item types in S. Thus
(AUX-s) exactly captures the cheapest way to order the item types such that
the amount of i ordered is at least Zis. Since K(S) is a submodular function,
(AUX-s) is the dual of a polymatroid where the greedy algorithm finds an
optimal solution (see Bertsimas and Weismantel (2005)). Specifically, assume
without loss of generality that the items are indexed such that Z1

s ≥ Z2
s ≥

. . . ≥ ZNs and let S(i) := {1, . . . , i}. Then an optimal solution to (AUX-s) is

given by r
S(N)
t = ZNt , and r

S(i)
s = Zis − Zi+1

s for i = 1, . . . , N − 1, and rSs = 0
for all other S. Note that by construction S(i) has the desired nested property.
Thus, setting x = x̂ and ySs = rSs , where rSs is the optimal solution to (AUX-s),
gives a feasible solution to (P) where every demand is served in exactly the
same manner. Thus, the holding costs are identical for the two solutions, and
the joint setup costs of (x, y) are no more than that of (x̂, ŷ) since ŷSs gives a
feasible solution to (AUX-s). Therefore, (x, y) is also an optimal solution, and
in addition satisfies the desired nested property. ut

Now we consider the dual program of (P). Let Bit and List be the dual
variables corresponding to constraints (1) and (2) in (P), respectively. Then
the dual program of (P) is

maximize
∑

(i,t)∈D

Bit (D)

subject to Bit ≤ Hi
st + List, (i, t) ∈ D, s = 1, . . . , t (4)∑

i∈S

T∑
t=s

List ≤ K(S), s = 1, . . . , T, S ⊆ {1, . . . , N} (5)

List ≥ 0 (i, t) ∈ D, s = 1, . . . , t

Note that (P) contains an exponential number of variables and (D) con-
tains an exponential number of constraints. One can solve the dual using the
ellipsoid method, since there is an efficient separation oracle finding violated
constraints (if there are any) using submodular function minimization. From
the dual solution, a primal solution can then be found in polynomial time (see
Corollary 14.1g(v) in Schrijver (1998)). In Sections 3 and 5 we focus on special
cases of the submodular JRP that have polynomial-size LP relaxations. This
also allows us to give efficient LP-based approximation algorithms for these
cases.

3 Tree Joint Replenishment Problem

In this section, we consider the tree JRP, where the joint setup cost structure is
represented by a tree T with a root r. Specifically, there is a setup cost Kj > 0
associated with each node j in the tree, and each item type i corresponds to a
leaf in the tree. (Nodes with zero cost are avoided to simplify the discussion,
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Fig. 1 These two trees represent two examples of the tree joint setup cost structure. The
leaves are labeled according to the item type they represent and the root node is labeled
with an r. The number next to each node denotes the cost of that node. The left tree belongs
to the special case of an additive joint setup cost structure. In the right tree, the cost of
ordering item types 1 and 3 is 5+3+4+11+7 = 30.

but can easily be incorporated.) For every node j ∈ T , let path(j) denote
the unique path from node j to the root of the tree. The joint setup cost of
ordering a subset of item types S ⊆ N is then equal to

∑
j∈∪i∈Spath(i)Kj , i.e.,

K(S) is the setup cost of all nodes that belong to the paths from r to the
leaves corresponding to the set S. (See Figure 1 for an example.)

We note that the tree JRP generalizes the additive JRP since the additive
joint setup cost structure can be viewed as a tree. Specifically, there is a root
node connected to N leaves, one for each item type. The cost of the root node
is Kr and the cost of each leaf i is Ki. In the remainder of this section, we
advance the ideas of Levi et al. (2008) to describe a 3-approximation algorithm
for the tree-JRP via LP rounding.

The following is a natural IP formulation for the tree JRP. We define the
binary variable yjs to be 1 if the cost of node j is incurred in period s, and
0 otherwise. For convenience, we extend the notion of ordering item types to
ordering nodes in the tree, so yjs = 1 if node j is ordered in period s. The binary
variable xist is 1 if demand (i, t) is served from period s and 0 otherwise.

minimize
∑
j∈T

T∑
s=1

Kjy
j
s +

∑
(i,t)∈D

t∑
s=1

Hi
stx

i
st (IP-T)

subject to

t∑
s=1

xist = 1, (i, t) ∈ D (6)

xist ≤ yjs, (i, t) ∈ D, s = 1, . . . t, j ∈ path(i) (7)

xist, y
j
s ∈ {0, 1}, (i, t) ∈ D, s = 1, . . . t, j ∈ T

The correctness of (IP-T), and in particular for constraint (7), follows from the
fact that in order to place an order for item i, one has to pay

∑
j∈path(i)Kj .

If we relax the binary constraints in (IP-T) to nonnegativity constraints, this
gives us the LP relaxation which we denote by (P-T).
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Next we describe the dual of (P-T), which is used in the analysis of our
LP rounding algorithm. Let Bit and Lijst be the dual variables corresponding
to constraints (6) and (7) in (P-T) respectively. The dual of the (P-T) is then

maximize
∑

(i,t)∈D

Bit (D-T)

subject to Bit ≤ Hi
st +

∑
j∈path(i)

Lijst, (i, t) ∈ D, s = 1, . . . , t (8)

∑
i:j∈path(i)

T∑
t=s

Lijst ≤ Kj , s = 1, . . . , T, j ∈ T (9)

Lijst ≥ 0, (i, t) ∈ D, s = 1, . . . , t, j ∈ T

3.1 The LP Rounding Algorithm

We now show how to round an optimal solution to (P-T), denoted by (x, y)
to a feasible solution to the tree JRP problem with cost of at most 3 times
the optimal value of (P-T), thus obtaining a 3-approximation algorithm. Our
rounding procedure considers the nodes in the rooted tree one at a time,
starting at the root node. The nodes can be processed in any order, as long
as node j is processed last among all nodes in path(j) (i.e., the nodes on the
path from j to the root). Hence one can use, for example, a breadth first search
starting from the root node.

We first describe the processing of the root node, where we decide in which
time period to place orders. The rounding procedure is based on the values
of yr1, . . . , y

r
T , which are the variables corresponding to fractional orders of

the root node in (P-T). We place an order of the root node r in period s

if (
∑s−1
u=1 y

r
u,
∑s
u=1 y

r
u] contains an integer. Now for each node j, assume we

have already processed all other nodes in path(j), including the parent node

j′. We place a tentative order in period s for node j if (
∑s−1
u=1 y

j
u,
∑s
u=1 y

j
u]

contains an integer. Motivated by the fact that we can only order j if j′ has
been ordered, we place actual orders of j via a two-sided push procedure as
follows. If there is a tentative order of j at period s, then place an actual order
of j at the first order point of j′ in (s, T ] and place another actual order of j
at the latest order point of j′ ∈ [1, s] (if such orders of j′ exist). Notice that
by construction, the orders are synchronized. See Figure 2 for an example of
the rounding procedure. The pseudo-code for the algorithm is given below as
Algorithm 1.
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1 2 3 4 5 6 7 8 9
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j j

1 2 3 4 5 6 7 8 9
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1 2 3 4 5 6 7 8 9

r r rr
j' j' j'

(e)

Fig. 2 This figure demonstrates our LP rounding procedure for the first three successive
nodes of the tree, which we call node r (root), node j′, and node j. There are 9 time periods
in this example. In (a), each circle denotes an order placed for the root node. The values on
the intervals correspond to the values of yrt , i.e., yr1 = 1.0 and yr2 = 0.3. In (b), each dotted
circle denotes a tentative order placed for node j′. The values on the intervals correspond to

the values of yj
′

t . In (c), we do a two sided push for the tentative orders of j′, which results
in actual orders of j′ at periods 4, 7, and 9. In (d), the dotted circle denotes a tentative

order placed for node j. The values on the intervals correspond to the values of yjt . In (e),
we do a two sided push for the tentative orders of j, which results in actual orders of j at
periods 4 and 7.

3.2 Analysis

We first prove a structural lemma on the algorithm which is a key for the
subsequent performance analysis. We refer to (x, y) as the optimal solution of
(P-T) for the remainder of the section.

Lemma 2 For each node j and time interval of periods [s, t] where
∑t
u=s y

j
u ≥

1, the algorithm places an order for node j somewhere in [s, t].

Proof We first describe simple properties of the optimal solution (x, y). For a
given node j in the tree that is not a leaf, let C(j) be the set of children of
j. Then for each time period u, we know yju = maxk∈C(j) y

k
u or otherwise we

can lower the objective cost by decreasing yju while remaining feasible. It then
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Algorithm 1: LP Rounding Algorithm for the tree JRP

Solve (P-T) for (x, y)
For each possible s, place an order of the root node in period s if
(
∑s−1
u=1 y

r
u,
∑s
u=1 y

r
u] contains an integer

// Process in breadth first search order

for each node j do
For each possible s, place a tentative order of the node j in period s
if (
∑s−1
u=1 y

j
u,
∑s
u=1 y

j
u] contains an integer

for each time period s that contains a tentative order of j do
if ∃ an order of parent(j) in (s, T ] then

Place an order for node j at the earliest order point of
parent(j) in (s, T ]

if ∃ an order of parent(j) in [1, s] then
Place an order for node j at the latest order point of
parent(j) in [1, s]

Serve each demand point (i, t) from the latest order up to time t that
includes item type i

immediately follows that for each pair of nodes j and j′ such that j′ ∈ path(j),
and any time period u, we have that yju ≤ yj

′

u . Now we prove the lemma by
induction on path(j), starting from the root.

Base case (root node): For any time interval [s, t] where
∑t
u=s y

r
u ≥ 1, the

interval (
∑s−1
u=1 y

r
t ,
∑t
u=1 y

r
t ] must contain an integer. By construction of the

algorithm, an order for the root node must then exist somewhere in [s, t].

Inductive case: Consider node j and any time interval [s, t] where
∑t
u=s y

j
u

≥ 1. Let j′ be the parent of j. Since yj
′

u ≤ yju for any u, then clearly
∑t
u=s y

j′

u ≥
1. Using the induction hypothesis, we know there is an order for node j′ in
[s, t], namely at period u′. Also, by a similar reasoning as in the base case, we
know there is a tentative order for node j in [s, t], namely at period u. We
assume u′ was chosen to be the closest order of j′ to u that is in [s, t]. Now
since the algorithm opens order of j by a two sided push to the two closest
orders of j′ in opposite directions, then j will be ordered at u′ as well. Thus
we have proven the inductive case and the claim follows. ut

The correctness of the algorithm follows from Lemma 2 above. Specifically,
for each demand point (i, t), it follows from constraints (6) and (7) in (P-T)
that

∑t
s=1 y

i
s ≥ 1. By Lemma 2, there exists a time in [1, t] where all the

nodes in path(i) are ordered. This implies that the solution is indeed feasible.
Next we analyze the cost of the solution produced by the algorithm. We start
by considering the ordering cost. Since the number of orders made is at most
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b
∑T
u=1 y

r
uc for the root node and 2b

∑T
u=1 y

j
uc for all other nodes j (we make up

to two orders for every tentative order of j), the next lemma follows directly.

Lemma 3 The total ordering cost for the solution by Algorithm 1 is at most
2
∑T
s=1

∑
j∈T Kjy

j
s.

Finally we analyze the holding cost incurred by the solution constructed
by the algorithm. We show that the total holding cost incurred is at most∑

(i,t)∈D B
i
t, the optimal value of (D-T).

Lemma 4 The total holding cost for the solution by Algorithm 1 is at most∑
(i,t)∈D B

i
t.

Proof For any demand point (i, t), consider the set of orders s that serve (i, t)
fractionally in the optimal solution for (P-T), i.e., xist > 0. Let s1 be the earliest
of such orders and we define [s1, t] as the active interval for demand (i, t),
specifically xis1t > 0 and

∑t
s=s1

xist = 1. Since xis1t > 0, by the complementary
slackness conditions, the corresponding dual constraint must be tight, i.e.,
Bit = Hi

s1t+
∑
j∈path(i) L

ij
s1t. This expression, combined with the nonnegativity

constraints on Lijs1t, implies that Bit ≥ Hi
s1t. However, we also assume that the

holding cost Hi
st is monotonically decreasing in s. It follows that for any time

s in the active interval, we have that Bit ≥ Hi
st. Hence, it suffices to show

that there exists an order for i in the active interval for (i, t). However, by the
definition of active interval and constraints (6) and (7) in (P-T), we have that∑t
s=s1

yis ≥ 1. Thus, using Lemma 2 for the interval [s1, t] shows that there
exists an order of item i in the active interval of (i, t), as desired. ut

By Lemmas 3 and 4, and the fact that the optimal value of (P-T) and
(D-T) are both lower bounds on the value of the optimal solution to the tree
JRP, we obtain a 3-approximation for the Tree JRP as stated in Theorem 2.

Theorem 2 Algorithm 1 is a 3-approximation algorithm for the tree JRP.

4 Laminar Joint Replenishment Problem

In this section, we study the laminar joint replenishment problem. In this set-
ting, the joint setup cost function corresponds to a laminar family. A laminar
family F is a collection of subsets of {1, . . . , N} such that for any S1, S2 ∈ F ,
either S1 ∩ S2 = ∅, S1 ⊆ S2, or S2 ⊆ S1. Each subset F ∈ F represents a
machine (or laborer) that can produces the item types in F . The laminar JRP
captures situations where any two machines (subsets) either produce com-
pletely different item types, or one machine is strictly more capable than the
other. The joint setup cost of ordering any subset (machine) F ∈ F is κF ≥ 0,
i.e., κF is the cost of using the machine corresponding to F . In the laminar
JRP, the cost of ordering a set of item types S in any time period is the cost
of the cheapest collection of subsets in F whose union contains S. In Lemma
5 below, we show that the laminar JRP corresponds to a special case of the
submodular JRP.



The Submodular Joint Replenishment Problem 15

Lemma 5 The laminar JRP is a special case of the submodular JRP.

Proof We need to show that the joint setup cost structure for the laminar JRP
is monotonic and submodular. The joint setup cost K(S) of ordering a subset
of item types S in the laminar JRP corresponds to the cost of the cheapest
collection of machines that are capable of producing all the item types in S.
From this definition, monotonicity follows immediately.

We prove submodularity by showing that for any S1, S2 ⊆ N , K(S1) +
K(S2) ≥ K(S1∪S2)+K(S1∩S2). Let F 1

1 , . . . , F
1
i1

be the collection of machines
that corresponds to ordering S1, i.e., K(S1) = KF 1

1
+ . . .+KF 1

i1
. Similarly, let

F 2
1 , . . . , F

2
i2

correspond to the machines used to order S2. Now we show that
the collection of machines C = {F 1

1 , . . . , F
1
i1
, F 2

1 , . . . , F
2
i2
}, including duplicates,

can be allocated to satisfy orders of S1 ∪ S2 and S1 ∩ S2, and thus provide
an upper bound on K(S1 ∪ S2) + K(S1 ∩ S2). We allocate the machines in
decreasing order of size, with ties broken arbitrarily. Let F be the current
largest cardinality machine in C that has yet to be allocated. If there is an
item type in F that is not currently covered by the collection for S1∪S2, then
allocate F to the collection for S1∪S2. Otherwise, allocate F to the collection
for S1 ∩ S2.

By construction, the collection for S1 ∪ S2 covers all item types covered
by C, and therefore is a feasible cover for S1 ∪ S2. Now consider an item type
j ∈ S1 ∩ S2. We know there must exist machines F 1

j1
and F 2

j2
that contain

item type j. By the laminar property, either F 1
j1
⊆ F 2

j2
or F 2

j2
⊂ F 1

j1
. By

construction, we know that when the smaller of the two sets was processed,
it must have been allocated to the collection for S1 ∩ S2. Thus the allocation
procedure correctly partitions C into disjoint covers for S1∪S2 and S1∩S2. ut

A laminar family can be conveniently represented by a tree graph such as
in Figure 3, where every node corresponds to a subset F ∈ F . The graph can
be constructed iteratively in the following manner. First, create a node for
every subset F ∈ F that contains only 1 item type. Then, for k = 2, . . . , N ,
create a node for every subset F ∈ F of size k, and let this be a parent for all
subgraphs (subtrees) whose root currently corresponds to item types belonging
in F . Without loss of generality, we can always convert a laminar family to a
new laminar family that is represented by a connected binary tree graph.

Transforming the tree graph of the original laminar family into a connected
binary graph for a new laminar family can be accomplished without affecting
K(S). Given the original tree graph, we merge two disjoint subgraphs with
roots F1 and F2 via a new subset F = F1 ∪F2 with cost κF = κF1 +κF2 , that
serves as the parent of both subtrees. If a node F0 has more than 2 children,
we take two children F1 and F2 and create a new subset F = F1∪F2 with cost
κF = κF1

+κF2
that is the parent of both F1 and F2 and child of F0. If a node

F0 has only 1 child F1, we create a new subset F = F0\F1 with cost κF = κF0

that becomes the second child of F0. It is easy to see that repeating these
three operations iteratively transforms any graph into a connected binary tree
graph that corresponds to an equivalent cost structure. See Figure 3 for an
example of a converted graph.
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Fig. 3 These two graphs represent two laminar families that are equivalent. Each box
represents a machine that can produce the item types inside of it. The number to the right
of each box is the setup cost of the machine. The dashed lines denote which machines are
strictly more capable than the others. The left representation is a typical input to this
problem, and the right representation is a transformation to a binary tree graph. In both
representations, the cost of ordering any subset of item types is the cost of the cheapest
collection of machines containing those item types.

4.1 Dynamic Programming Formulation

We now describe a polynomial-size dynamic programming formulation to solve
the laminar JRP. We assume that the laminar family corresponds to a con-
nected binary tree graph for simplicity. For each node/subset F ∈ F , let c1(F )
and c2(F ) be its children nodes. If a node is a leaf, then c1(F ) = c2(F ) = ∅.
Let J(F, s, t) be the optimal cost of serving the demands from s to t for all of
the item types in F , given that the item types in F have already been ordered
at time s (i.e., there is a ‘free’ order of F at time s). For convenience, we create
a dummy time period 0, with di0 = 0 and Hi

0t =∞ for all i and t. Without the
dummy time period, an order of N would be placed at time 1 free of charge.
Thus, the optimal overall cost of the laminar JRP is J(N , 0, T ). (Note that
this expression assumes there is a given order of N at time 0, and thus we do
not charge for it.) The base case of the dynamic program is J(∅, s, t) = 0 for
all s ≤ t. Now we present the dynamic programming recursion for |F | ≥ 1,

J(F, s, t) = min
{ ∑
i∈F\{c1(F )∪c2(F )}

t∑
v=s

Hi
sv + J(c1(F ), s, t) + J(c2(F ), s, t),

min
u=s+1,...,t

{
κF + J(F, u, t) +

∑
i∈F\{c1(F )∪c2(F )}

u−1∑
v=s

Hi
sv+

J(c1(F ), s, u− 1) + J(c2(F ), s, u− 1)
}}

The first term in the outer min is the case where no additional orders of F
are placed between s+ 1 and t. (There is no need to place an order of F at s
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since we assume that the item types in F have already been ordered at s.) In
this case, we now know the holding costs for all the items in F\{c1(F )∪c2(F )}
since there are no more orders of F in [s, t]. Furthermore, the remaining cost
of serving the item types in c1(F ) and c2(F ) can be decomposed due to the
laminar property. By construction, the item types in c1(F ) and c2(F ) are cur-
rently ordered at s, so the respective costs are J(c1(F ), s, t) and J(c2(F ), s, t).
The second term in the outer min is the case where we place additional orders
of F between s+ 1 and t. If there are additional orders, then there must be an
optimal earliest additional order, which we denote by u. If the next additional
order occurs at u, then the cost decomposes into a setup cost κF for the order
at u, the remaining cost of serving F between u and t, i.e. J(F, u, t), and the
optimal cost of satisfying F between s and u− 1 if there are no more further
orders of F between s and u−1. Note that computing the last part of the cost
is computed in the same manner as the first term in the outer min.

In order to solve the complete dynamic program, we start at the leaves of
the binary tree and work up towards the root. At each node, solve the intervals
of length 0, 1, 2, and so on. Since F can have size at most 2N , there are at
most O(NT 2) values of J . Since each J is computed in O(T ) time, this gives
an overall runtime of O(NT 3). Based on this dynamic programming analysis,
we obtain the following theorem.

Theorem 3 There exists a polynomial-time dynamic programming algorithm
to solve the laminar JRP.

5 Cardinality Joint Replenishment Problem

In this section, we consider the cardinality JRP, where the joint setup cost
is a function of the cardinality of the subset of item types being ordered.
Specifically, we let g(k) be a monotonically increasing, concave function which
denotes the cost of ordering k item types in any given period. Thus the cost
of ordering the item types in S in any given period is K(S) = g(|S|). It is
relatively straightforward to see that the concavity of g(·) implies that K(·) is
submodular, and therefore the cardinality JRP is a special case of the submod-
ular JRP. Without loss of generality, we also assume that g(0) = 0. In Section
5.1, we describe different formulations for the cardinality JRP and some key
properties. In Section 5.2, we describe the LP-based approximation algorithm
for the cardinality JRP, and in Section 5.3 we prove that our algorithm has
an approximation ratio of 5. In Section 5.4, we derive a smaller, polynomial
size LP relaxation that may be more useful in practical applications.

5.1 Linear Programming Relaxations

The following is an IP formulation for the cardinality JRP. We let xist be 1 if
the demand point (i, t) is served from period s and 0 otherwise. The variable
zis is 1 if an order with item type i is placed in period s and 0 otherwise.
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Finally, the variable qks is 1 if there is an order in period s of size at least k
and 0 otherwise.

minimize

T∑
s=1

N∑
k=1

(g(k)− g(k − 1))qks +
∑

(i,t)∈D

t∑
s=1

Hi
stx

i
st (IP-C)

subject to

t∑
s=1

xist = 1 (i, t) ∈ D (10)

xis,t ≤ zis (i, t) ∈ D, s = 1, . . . , t (11)

qk+1
s ≤ qks k = 1, . . . , N − 1, s = 1, . . . , T (12)

N∑
i=1

zis =

N∑
k=1

qks , s = 1, . . . , T (13)

xist, z
i
s, q

k
s ∈ {0, 1}, (i, t) ∈ D, s = 1, . . . , t, k = 1, . . . , N

Lemma 6 (IP-C) is a correct integer programming formulation for the car-
dinality JRP.

Proof First, we show that there is a one-to-one correspondence between solu-
tions of (IP-C) and the cardinality JRP. Given a solution to (IP-C), we simply
order and serve demand according to the variables xist. Conversely, given a so-
lution to the cardinality JRP, we let xist be defined according to the solution.
For every s = 1, . . . , T , if there are k item types ordered in s, we let zis = 1 for
those k item types and otherwise set zis = 0. Also, we set q1s = . . . = qks = 1
and qk+1

s = . . . = qNs = 0. It is easy to check that all the constraints are
satisfied.

Now we just need to show that the cost of a solution to (IP-C) correctly
models the cost of a solution of the cardinality JRP. The holding cost is mod-
eled by the second term of the objective of (IP-C), and is clearly accurate
for some solution x. For a solution x, we know that (IP-C) sets as few of the
z variables as possible to 1 since this requires as few as possible q variables
to be 1. This property holds due to the fact that g(k) − g(k − 1) is always
nonnegative due to the monotonicity of g. Constraints (12) and (13) ensure
that if k item types are ordered in period s, then only q1s = . . . = qks = 1.
Thus the joint setup cost in this time period is exactly equal to g(k) due to
the telescoping sum. ut

Although (IP-C) is a correct and polynomial size formulation of the car-
dinality JRP, the LP relaxation exhibits poor properties. Specifically, one can
easily see that in an optimal solution to the LP relaxation of (IP-C), the vari-

ables q1s = . . . = qNs = 1
N

∑N
i=1 z

i
s due to the concavity of g(·). Ideally, we

would like an LP relaxation where the optimal solution has the intuitive prop-
erty that qs = (q1s , . . . , q

N
s ) is a permutation of zs = (z1s , . . . , z

N
s ). In order to

achieve this property, we add the following valid inequalities to (IP-C).
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∑
i∈S

zis ≤
|S|∑
k=1

qks , ∀S ⊂ N , s = 1, . . . , T (14)

Constraint (14) must be satisfied by any solution (q, x, z) for (IP-C) since if a
subset of item types S is ordered in a given period s, then clearly q1s = . . . =

q
|S|
s = 1 in order to account for the joint setup cost. Now define (P-C) to be

the the linear programming relaxation of (IP-C) with the valid inequalities
(14) included, which is given below.

minimize

T∑
s=1

N∑
k=1

(g(k)− g(k − 1))qks +
∑

(i,t)∈D

t∑
s=1

Hi
stx

i
st (P-C)

subject to

t∑
s=1

xist = 1 (i, t) ∈ D

xis,t ≤ zis (i, t) ∈ D, s = 1, . . . , t

qk+1
s ≤ qks k = 1, . . . , N − 1, s = 1, . . . , T

N∑
i=1

zis =

N∑
k=1

qks , s = 1, . . . , T

∑
i∈S

zis ≤
|S|∑
k=1

qks , ∀S ⊂ N , s = 1, . . . , T

xist, z
i
s, q

k
s ≥ 0, (i, t) ∈ D, s = 1, . . . , t, k = 1, . . . , N

In the next lemma, we show that there exists an optimal solution to (P-C)
which has the desired property that qs is a permutation of zs. The proof also
describes a technique to obtain such a solution.

Lemma 7 There exists an optimal solution to (P-C) such that for every s =
1, . . . , T , qs = (q1s , . . . , q

N
s ) is an ordered permutation of zs = (z1s , . . . , z

N
s ).

Proof Let (q, x, z) be an optimal solution to (P-C). For a given time period
s, assume without loss of generality that z1s ≥ . . . ≥ zNs . Further assume
that qs is not an ordered permutation of zs. From constraint (13), we can
choose the largest i such that qis > zis and the smallest j such that qjs <
zjs . Now define δ = min(qis − zis, z

j
s − qjs). We now consider a new solution

that decreases qis by δ and increases qjs by δ. Clearly this new solution still
satisfies constraints (10), (11), and (13). By the choice of i, we know that
qis > qis − δ ≥ zis ≥ zi+1

s ≥ qi+1
s . Similarly, by the choice of j we know that

qjs < qjs + δ ≤ zjs ≤ zj−1s ≤ qj−1s . Therefore, the new solution also satisfies
constraint (12). If j < i, then constraint (14) is also clearly satisfied. If i < j,

then checking constraint (14) reduces to checking that
∑i
k=1 z

k
s ≤

∑i
k=1 q

k
s is
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Fig. 4 This figure shows the half-weight intervals that are constructed for P i for a problem
with 9 time periods. The values on the time axis correspond to the values of zis. The par-
titioned rectangle above the time interval denotes the corresponding intervals, each with a
weight of 0.5, that would be added to P i; namely, (1, 2.5], (2.5, 4], (4, 4.5], (4.5, 5], (5, 7], and
(7, 10].

satisfied. By the choice of j, we know that for k < i < j, qks ≥ zks . Therefore the
constraint must still hold after reducing qis to qis − δ ≥ zis. Finally, we observe
that the cost of the new solution can only decrease since g(·) is a monotonically
increasing, concave function. Repeating this procedure will eventually result
in an optimal solution that satisfies the desired property. ut

We remark that although (P-C) has exponentially many constraints, it can
be solved in polynomial time via the ellipsoid method because there is a simple
and efficient separation oracle. In Section 5.2, we will use the optimal solution
to (P-C) as a basis for an LP rounding algorithm. In Section 5.4, we describe
an equivalent but polynomial size formulation of (P-C) which may be of more
practical use.

5.2 Algorithm

We now describe the LP rounding algorithm for the cardinality JRP. This
algorithm first finds an optimal solution to (P-C), which we denote by (q, x, z).
If necessary, we modify this solution to satisfy Lemma 7, which can be done
via the technique described in the proof. For each item type i, we define the
density/weight at any (fractional) time τ ∈ (1, T + 1] to be zibτc. Thus, the

weight of a time interval (a, b] for item type i is equal to (dae − a)zibac +∑bbc−1
s=dae z

i
s + (b − bbc)zibbc. Using this density to measure weights of intervals,

for each item type i we partition the time horizon (1, T + 1] starting from
time 1 into intervals with a weight of exactly 0.5, according to the following
procedure. Specifically, let P i denote the set of intervals we will generate for
item type i. Initialize a := 1. Now let b be a time in (a, T +1] where the weight
of (a, b] is exactly 0.5 (if such a b exists). Now add (a, b] to P i. Reset a := b
and repeat the procedure until no further intervals can be added. (Note that
there may be a portion at the end of (1, T + 1] that does not get added to P i.)
See Figure 4 for an example of this procedure.

Based on the previous interval partitioning procedure, let P denote the
set of all intervals generated using the previous procedure, across all N item
types, i.e., P = ∪i∈NP i. Sort the intervals of P by increasing values of the
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right endpoints of the intervals, with ties broken arbitrarily. Each interval in
P will result in an order of the corresponding item type somewhere in the
respective interval. These orders will occur over a series of N rounds. If an
interval generates or adds to an order in round k, then that interval will receive
a label of k. In the next paragraph, we describe precisely how to generate these
orders and labels.

In each round, we process all the intervals in P by increasing order of the
right endpoints. In round 1, for an interval (a, b], an order of the corresponding
item type is placed at b if there are currently no other orders in (a, b]. If such
an order occurs, then (a, b] is given label 1. For now, we assume orders can
be placed at any continuous time, and we defer rounding until the end. In
general, for labeling round k we process all intervals of P in increasing order
of the right endpoints. Let (a, b] in P be the current interval in consideration
for label k, and let i be the corresponding item type. If (a, b] already has a
label, then no action is required. If (a, b] does not have a label but there is
an order of size k in (a, b], then leave (a, b] unlabeled and do not modify any
order. If (a, b] does not have a label and there is no order of size k in (a, b], then
add item type i to the latest order of size k − 1 within (a, b] and assign label
k to (a, b]. (Note that when an order is placed in round 1, it always occurs at
the right endpoint since orders of size 0 exist everywhere.) Note that if (a, b]
has label k, then the size of the order after i was added was exactly k. Finally,
after all N labeling rounds are complete, we round every order at time τ to
dτ−1e. We refer to the orders before the rounding step as tentative orders. All
the demand points are then served myopically from the nearest available order
of the corresponding item type. The pseudocode for the algorithm is given as
Algorithm 2. See Figure 5 for an example of the algorithm.

5.3 Analysis

We now show that Algorithm 2 is a 5-approximation for the cardinality JRP.
Throughout this section, we refer to (q, x, z) as an optimal solution to (P-C)
satisfying Lemma 7. We first prove a pair of useful facts in Lemmas 8 and 9
that will allow us to bound the holding costs in Lemma 10.

Lemma 8 Each interval j ∈ P receives a label.

Proof Assume there exists (a, b] ∈ P of item type i without a label. Let k be
the size of the largest order in (a, b] after all the labeling rounds are complete.
Since (a, b] is unlabeled, then by construction the algorithm does not place
an order of item type i in (a, b]. Therefore, we know that k < N . Since (a, b]
was not labeled in round k, then the size k order (or another order of size k
in (a, b]) must have existed when (a, b] was processed in round k. Therefore,
during the (k+ 1)st labeling round of the algorithm, item type i contains only
orders of size at most k (with at least one of size k) and should have been
added to an order of size k in (a, b]. Thus, (a, b] would end up labeled during
round k + 1, which is a contradiction. ut
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Algorithm 2: Labeling Algorithm for cardinality JRP

Solve (P-C) for an optimal solution (q, x, z) that satisfies Lemma 7
// Generate intervals of P i

for i ∈ N do
For all τ ∈ (1, T + 1], let the density be zibτc
Initialize a:=1
Choose b, if it exists, so that the weight of (a, b] is 0.5 and add (a, b]
to P i

Repeat previous step with a := b until no more intervals can be
added to P i

Let P = ∪i∈NP i
Sort P by increasing values of the right endpoints
// Generate orders and labels

for k ← 1 to N do
Process P in increasing order of the right endpoints
for (a, b] ∈ P do

Let i be the corresponding item type for interval (a, b]
if (a, b] is unlabeled and 6 ∃ an order of size k in (a, b] then

Add item type i to the latest order of size k − 1 in (a, b]
Give label k to the interval (a, b]

Round every order at time τ to time dτ − 1e
Serve every demand point (i, t) from the latest order up to time t that
includes item type i

As in the analysis of the algorithm for tree JRP, we define the active interval
for demand point (i, t) to be [s1, t], where s1 is the earliest integer time period
s where xist > 0.

Lemma 9 Every demand (i, t) is served from its active interval.

Proof Consider a demand point (i, t) and its active interval [s1, t]. From fea-
sibility of (q, x, z) and the fact that xist ≤ zis, we know that there must be at
least one interval (a, b] ∈ P of item type i such that (a, b] ⊂ (s1, t+ 1]. This is
because the zi-weight of (a, b] is 0.5, while the zi-weight of (s1, t+1] is at least
1, which means the partition corresponding to item type i must contain an
interval strictly in (s1, t+1]. By Lemma 8, we know that there was a tentative
order of i at some time τ ∈ (a, b]. Therefore, τ ∈ (s1, t + 1] and since the
tentative order is rounded down in time to dτ − 1e, then there is an actual
order of i in [s1, t]. ut

Using Lemmas 8 and 9, we now bound the holding cost in Lemma 10.
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Fig. 5 This figure shows an example of the LP rounding algorithm. In (a), each rectangle
correspond to an interval in P . Each row of intervals corresponds to an item type. The
intervals were generated using the partition procedure depicted in Figure 4. The number in
each rectangle/interval corresponds to the label it was given using Algorithm 2. In (b), we
show how these labels correspond to orders. The number inside each circle denotes the item
type that was ordered. The height of each circle corresponds to its label. In (c), we show
how to round each order to an integral time.

Lemma 10 The total holding cost for the solution produced by Algorithm 2
is at most the optimal cost of (P-C).

Proof We bound the holding cost of our solution using the dual of (P-C).
Let Bit be the dual variables for constraint (10) and let List ≥ 0 be the
dual variables for constraint (11). Then we know the objective of the dual is
max

∑
(i,t)∈D B

i
t. Furthermore, we know the dual has constraints correspond-

ing to xist of the form Bit ≤ Hi
st + List for (i, t) ∈ D, s = 1, . . . , t. Now for each

demand (i, t) ∈ D, we bound the holding cost incurred by the algorithm by
Bit. By Lemma 9, (i, t) is served from an integer time s ∈ [s1, t], the active
interval of (i, t). From complementary slackness and the fact that xis1t > 0,
we know that Bit = Hi

s1t +Lis1t. Since Lis1t ≥ 0, then the holding cost paid by
(i, t) is Hi

st ≤ Hi
s1t ≤ Bit. This implies the holding cost of our solution is at

most the optimal cost of (P-C), since the sum of Bit over all demand points
gives the dual objective. ut

We now prove another pair of useful facts in Lemmas 11 and 12 that will
allow us to bound the ordering costs in Lemma 13.
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Lemma 11 For any time τ ∈ (1, T + 1] and k ∈ 1, . . . , N , there are at most
2 intervals in P that are both labeled k and contain τ .

Proof First we show that for any two intervals (a1, b1] and (a2, b2] in P such
that (a1, b1] ⊆ (a2, b2], their labels must be different. Let k be the label of
(a1, b1]. Observe that this implies that at the beginning of round k, (a1, b1]
contains an order of size k − 1. If (a1, b1] is processed first in P , then (a2, b2]
has an order of size k in it when it is processed in labeling round k and therefore
cannot receive label k. If (a2, b2] is processed first in P , then it must be the
case that b1 = b2 by the ordering of P . If (a2, b2] is already labeled, then it
must have a label smaller than k. Otherwise, (a2, b2] will be assigned a label
k and its corresponding item type is added to a size k − 1 order in (a1, b1]
by construction. However, this is a contradiction because when (a1, b1] is later
processed in round k, it cannot be labeled k since it contains an order of size
k.

Now assume for contradiction that there are three intervals (a1, b1], (a2, b2]
and (a3, b3] with label k, all of which contain a common time τ . Denote i1, i2,
and i3 as the corresponding item types of these intervals. From the previous
argument, we can assume that a1 < a2 < a3 < τ ≤ b1 < b2 < b3. Observe
that the order where i1 was added must occur in (a1, a2], or else there would
be a size k order in (a2, b2] when it was processed in the kth labeling round
and (a2, b2] would be skipped. Now consider the following two cases of where
i2 was ordered. If it occurs in (a2, b1], this implies that i1 was not ordered at
the latest possible order of size k−1. If the order of i2 occurred within (b1, b2],
this implies that (a3, b3] is skipped when it is processed in the kth labeling
round since there is an order of size k in its interval. Therefore, we cannot give
a label of k to (a2, b2], which is a contradiction. ut

Lemma 12 Let X and Y be vectors in RN such that X1 ≥ . . . ≥ XN and
Y 1 ≥ . . . ≥ Y N . Let Π be the set of all permutations of {1, . . . , N}. Then

maxσ∈Π
∑N
i=1X

iY σ(i) is exactly
∑N
i=1X

iY i.

Proof We prove this by induction over N , with a base case when N = 2. In the
base case, we know that (X1−X2)(Y 1−Y 2) ≥ 0 since X1 ≥ X2 and Y 1 ≥ Y 2.
Expanding this inequality implies that X1Y 1 + X2Y 2 ≥ X1Y 2 + X2Y 1 and
therefore the result holds for N = 2.

Now assume the result holds for N = k and we want to prove that it also
holds for N = k + 1. Let σ ∈ Π and choose i so that σ(i) = 1. Now focus on
two summands from the objective, namely X1Y σ(1) and XiY σ(i). Based on
the choice of i, we know that X1 ≥ Xi and Y σ(i) ≥ Y σ(1). From the base case,
we know that X1Y 1 + XiY σ(1) ≥ X1Y σ(1) + XiY 1. Therefore, if we switch
σ(1) and σ(i), the objective can only increase, and furthermore X1 and Y 1

are now matched in the objective. Now for the rest of the k summands (all
except X1Y 1), we apply the inductive hypothesis for N = k, and obtain the
desired result. ut

Using Lemmas 11 and 12, we now bound the ordering cost as described in
Lemma 13. The idea of the proof is to charge each interval the marginal or-
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dering cost it incurred in the algorithm. If an interval was labeled as k, then
this marginal cost is exactly g(k)−g(k−1). This accounting is done using the
zis variables, which directly ties to the objective of (P-C) by Lemma 7. Since
Lemma 11 bounds the number of times each label is used, this allows to bound
the number of times each zis variable, and therefore qis variable, is used.

Lemma 13 The total ordering cost for the solution produced by Algorithm 2
is at most 4 times the optimal cost of (P-C).

Proof Consider an arbitrary interval (a, b] ∈ P , and let k be its label and i be
the corresponding item type. By the definition of a label, when i was added
to a tentative order in the interval (a, b], it was the kth item type added.
Therefore, we would like to charge interval (a, b] a cost of g(k) − g(k − 1) to
account for its contribution to the overall ordering cost. To do this, it suffices
to charge 2zibτc[g(k) − g(k − 1)] for all τ ∈ (a, b]. This is enough to cover the

cost of g(k) − g(k − 1) since the zi-weight of the interval (a, b] is 0.5 (recall
the density at a time τ is zibτc). More generally, let l(i, τ) be the label of the

interval in P of item type i that contains τ (if it exists). (Note that if τ is
near the end of the horizon, there may be no interval in P of item type i that
contains τ and thus we can ignore i.) From the previous discussion, for each
τ ∈ (1, T + 1], we would like to charge

∑
i∈N 2zibτc[g(l(i, τ))− g(l(i, τ)− 1)] to

account for the total ordering cost of the algorithm. Next, we describe how to
bound this charging scheme by four times the optimal cost of (P-C).

For any time τ ∈ (1, T +1], we do the following analysis. Partition the item
types into two sets, Sτ and N\Sτ , such that for any two different item types
i, j in the same set, l(i, τ) 6= l(j, τ). In other words, all the item types in Sτ
have unique labels and all the item types in N\Sτ have unique labels. This
procedure is feasible due to Lemma 11. Now for all i ∈ N , we will assign a fake
label l′(i, τ). For all i ∈ N\Sτ , uniquely assign the unused labels of Sτ , i.e.
N\

⋃
i∈Sτ l(i, τ), as the fake labels of N\Sτ . Similarly, for all i ∈ Sτ , uniquely

assign the unused labels of N\Sτ , i.e. N\
⋃
i∈N\Sτ l(i, τ), as the fake labels of

Sτ . Then our charging scheme at time τ is upper bounded by

∑
i∈N

2zibτc[g(l(i, τ))− g(l(i, τ)− 1)]

≤
∑
i∈Sτ

2zibτc[g(l(i, τ))− g(l(i, τ)− 1)] +
∑

i∈N\Sτ

2zibτc[g(l′(i, τ))− g(l′(i, τ)− 1)]

+
∑

i∈N\Sτ

2zibτc[g(l(i, τ))− g(l(i, τ)− 1)] +
∑
i∈Sτ

2zibτc[g(l′(i, τ))− g(l′(i, τ)− 1)]

(15)

≤4

N∑
k=1

qkbτc[g(k)− g(k − 1)] (16)

The first inequality follows simply from adding nonnegative terms. For the
second inequality, by construction we know that all labels 1, . . . , N are used
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exactly once over the first two summations in (15), and exactly once over
the second two summations in (15) by construction. Since g(k) − g(k − 1) ≥
g(k + 1) − g(k), qkbτc ≥ qk+1

bτc , and qbτc is a permutation of zbτc (Lemma 7),

then the second inequality follows from applying Lemma 12 twice. Integrating
our upper bound on the charging scheme (16) over τ from 1 to T + 1 clearly
gives a total ordering cost of at most four times the optimal cost of (P-C). ut

Since the optimal cost of (P-C) is a lower bound on the total cost (Lemma 6),
combining Lemmas 10 and 13 proves our main theorem below.

Theorem 4 Algorithm 2 is a 5-approximation algorithm for the cardinality
JRP.

5.4 Polynomial Size LP Relaxation

Although constraint (14) of (P-C) allows us to prove Lemma 7 and therefore
Theorem 4, it makes the (P-C) formulation exponentially sized. Since our
algorithm for the cardinality JRP relies on using an optimal solution for (P-
C), for practical purposes we would like to be able to reformulate (P-C) using
only a polynomial number of constraints and variables. In order to do this, let

F ks = {qs ∈ RN , zs ∈ RN |
∑
i∈S

zis ≤
k∑
i=1

qis ∀S ⊂ {1, . . . , N} s.t. |S| = k}.

Based on the definition of F ks , we can describe constraint (14) in (P-C) by
(qs, zs) ∈ ∩N−1k=1 F

k
s for all s = 1, . . . , T . (Note that the subscript s in F ks is

used for notational convenience, and is technically not necessary.) Now observe
that the left-hand side of the constraints in F ks can be upper bounded by
maxS⊆N

∑
i∈S z

i
s. This maximization problem is equal to the following integer

program.

max

N∑
i=1

zisa
i s.t.

N∑
i=1

ai = k, ai ∈ {0, 1}, i = 1, . . . N (IP-k)

Let (P-k) be the linear programming relaxation of (IP-k) where the binary
constraints are replaced by 0 ≤ ai ≤ 1. Note (P-k) has integral optimal solu-
tions and is equivalent to (IP-k). By strong duality, (P-k) is also equivalent to
its dual program (D-k), which is

min kβs +

N∑
i=1

αis s.t. αis + βs ≥ zis, αi ≥ 0, i = 1, . . . N (D-k)
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Motivated by these observations, we define the polyhedron Gks by replacing
the LHS of the constraint of F ks with the dual objective in (D-k) and add the
corresponding constraints and variables.

Gks = {qs ∈ RN , zs ∈ RN , αs ∈ RN+ , βs ∈ R| kβs +

N∑
i=1

αis ≤
k∑
i=1

qis,

αis + βs ≥ zis, ∀i = 1, . . . , N}

In Lemma 14, we show that F ks = proj(qs,zs)G
k
s . (Again, note that the sub-

script s is used for notational convenience, and is technically not necessary to
define F ks and Gks .) Therefore, if we replace the constraints corresponding to
F ks in (P-C) with the constraints and variables of Gks , this results in an equiv-
alent and polynomial sized LP formulation that can be solved in polynomial
time, which we denote by (P-C*).

Lemma 14 For any k = 1, . . . , N − 1, F ks = proj(qs,zs)G
k
s .

Proof We first show that any (qs, zs) ∈ F ks is also in proj(qs,zs)G
k
s . Without loss

of generality, assume that z1s ≥ . . . ≥ zNs . Let βs = zks , αis = zis − zks for i ≤ k,

and αis = 0 for i > k. Then kβs +
∑N
i=1 α

i
s =

∑k
i=1 z

i
s ≤

∑k
i=1 q

i
k, where the

inequality holds by the constraint from F ks . Moreover, for any i we have that
βs + αis = max{zis, zks } ≥ zis by construction. Therefore, (qs, zs, αs, βs) ∈ Gks
and thus (qs, zs) ∈ proj(qs,zs)G

k
s .

Now we show that any (qs, zs) ∈ proj(qs,zs)G
k
s is also in F ks . Without loss

of generality, assume that z1s ≥ . . . ≥ zNs . Since (qs, zs) ∈ proj(qs,zs)G
k
s , there

exists αs and βs such that (qs, zs, αs, βs) ∈ Gks . We know that for any S such

that |S| = k,
∑
i∈S z

i
s ≤

∑k
i=1 z

i
s ≤ kβs+

∑k
i=1 α

i
s ≤ kβs+

∑N
i=1 α

i
s ≤

∑k
i=1 q

i
k.

The first inequality follows from the ordering of zs; the second inequality
follows from the second constraint in Gks ; the third inequality follows from the
nonnegativity of αs; and the last inequality follows from the first constraint in
Gsk. Thus, we have shown that (qs, zs) is indeed in F ks . ut

6 Conclusion

We believe that this work advances the existing research for an important class
of interesting inventory management problems with non-stationary demand.
The submodular JRP and the special cases we consider can capture a wide
variety of real world problems and allows for substantially more modeling
flexibility. Since most variants of the JRP are NP-hard, it is intractable to
compute the optimal solutions efficiently. Our algorithms are computationally
efficient and provide theoretical worst case guarantees. Moreover, we provided
strong and polynomial size LP formulations for the tree and cardinality JRP
which may be useful for solving the IP formulations in practice. One major
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open question which we have left unanswered is whether or not there exists a
constant factor approximation algorithm for the submodular JRP.
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