
DESIGN AND I MPLEMENTAT ION

OF AN EXAMPLE OPERATING SYSTEM

by

JOHN DANI EL DeTREVI LLE

S.B., University of South Carolina
(1970)

SUBMI TTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCI ENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1972

Signat
Signature of Authort

Department of E\4t ical

Signature F
Certified by A q . a

Accepted b
Chairman

-- 'p

ure Redacted
Engineering, May 17, 1972

edacted
,1 The, iF)Supervi sor

nature Redacted
A

D ar t ee o agraa tuens

'Archives

(JUN 271972)

-1-

S
*

4

A

1,

4

A

DESIGN AND IMPLEMENTATION
OF AN EXAMPLE OPERATING SYSTEM

by

John Daniel DeTreville

Submitted to the Department of Electrical Engineering on May
17, 1972, in partial fulfillment of the requirements for the
Degree of Master of Science.

ABSTRACT

In software courses dealing with the principles'of
design of operating systems for digital computers, it is
useful to be able to give the students a case-study of a
specially-designed example operating system. The design and
implementation of such an example operating system is
presented in this thesis, along with guidelines for its use
in a classroom environment.

The body of this thesis, then, is concerned with the
details of the example operating system as designed and as
implemented on the IBM System/360. The system consists of
two major sections: a nucleus, which performs the basic
operations of process management, memory management, and
device management, and a top-level supervisor, which
utilizes the features provided by the nucleus. These
sections are presented from various viewpoints, and then the
details of the operation of their composite modules and
routines are given in increasing level of detail. Effort is
made in this presentation to split the functions of the
system, and particularly of the nucleus, into parts along
the same manner in which these functions are typically split
in computer science courses.

These sections also serve as the primary documentation
of the example operating system.

An appendix serves to illustrate the use of the example
operating system in the classroom. General guidelines are
presented, and then a number of typical homework assignments
for the students, based on the workings of the example
operating system, are outlined, along with information on
their teaching value.

THESIS SUPERVISOR: John J. Donovan
TITLE: Associate Professor of Electrical Engineering

-2-

Acknowledgements

ACKNOWLEDGEMENTS

Well, first off, I have to thank Professor John

Donovan. He was the one who first suggested this topic to

me; he has continued to offer helpful suggestions as

supervisor.

Throughout the thesis work, Stuart Madnick worked

closely with me, and was very understanding concerning

delivery slippages for the system and for the documentation.

Fellow graduate students Jerry Jolinson and Leonard

Goodman were forced to sit through several expositions of

the principles of the operating system and should be thanked

for this.

Plus which, thanks to everyone else who's had a part in

this thesis.

This thesis was
time-sharing system; the
RUNOFF program.

edited on the Project
final copy was produced

MAC Multics
using the

Work reported herein was supported (in part) by Project
MAC, an M.I.T. research program sponsored by the Advanced
Research Projects Agency, Department of Defense, under
Office of Naval Research Contract Number Nonr-4102(01).
Reproduction of this document, in whole or in part, is
permitted for any purpose of the United States government.

-3-

Table of Contents

TABLE OF CONTENTS

Title page - - - - - - - - - - - - - -

Abstract - - - - - - - - - - - - - --

Acknowl edgements - - - - - - - - - - -

Table of Contents - - - - - - - - - -

Chapter 0, Goals of the System - - - -
Technical Acknowledgements

Chapter 1, Overview of the System - -

Chapter 2, Modules of the System - - -
Process management, lower
Memory Management module
Process Management, upper
Device Management module
Supervisor Process module
User program - - - - - -

Chapter 3, Details of Operation - - -
Databases - - - - - - - -
Routines - - - - - - - -

Traffic controller - -
Primitives - - - - - -
Device handlers - - - -
1/0 interrupts - - - -

Supervisor process - -

User program

Appendix A, Classroom use - - - - - -

Appendix B, The IBM System/360 - - - -

References - - - - - - - - - - - - - -

modu 1 e-

modu 1 e

- 1

-2

-3

-4

-5
-7

-8

11
13

16
17
19
21
22

23
24
36
39
42
60
64
66
70

71

84

87

-4-

Chapter 0
Goal s

-5-

CHAPTER 0

GOALS OF THE SYSTEM

The topic a

Implementation of an

pedogogical aid in

to use this system a

at M.I.T. on the

system meets a large

f this thesis is the design and

example operating system for use as a

computer science courses. It is intended

s an example in 6.802, a course taught

principles of operating systems. This

number of pedogogical goals.

It is a simple operating

students to learn. This

systems as OS/360 or rMultics,

pedogogical.

system,

is in

whose

making it easy for the

contrast to such other

main purpose is not

It is a small operating system, as operating systems

go. In its present form, it occupies about 1500 cards

(three-quarters of a box) of assembly-language code. It does

not include language processors or utility programs, but

instead implements a basic system nucleus which provides

such features as multiprocessing, dynamic memory allocation,

device management, etc., to which any top-level supervisor

and associated programs could be easily fitted. These basic

features are the ones of the most importance in a course on

Chapter 0 -6-
Goals

operating systems.

This implementation does include a simple top-level

supervisor to provide processing of the job streams. Thus,

the operating system is complete, in that students could

imagine it being used for some real-world application. (Such

an application for this system would be controlling a large

number of real-time devices, with additional background

computing.)

Lastly, this operating system is explicitly designed in

a modular manner, which is not often the case in real-world

operating systems. In particular, the relevant sections for

processor management, or memory management, or device

management, can easily be separated from the rest of the

system. This is important in a classroom environment since

these functions are usually taught separately from each

other. In real-world systems, some of this modularity is

usually sacrificed for performance.

-7- Technical acknowledgementsChapter 0
Goals

TECHNICAL ACKNOWLEDGEMENTS

Most of the features of this operating system were

first intr

papers in t

idea of a

(here, the

Dijkstra C

semaphore.

communicati

elucidated

the termi

introduced

(Cor 65),

The view of

management

oduced els

he field, o

system i

nucleus and

Dij 68),

The form of

on comes

the concept

nology and

by Saltzer

from which

the operat

modules,

e

r

m

where, and are here taken from

from other operating systems.

plemented in various discrete 1

other

The

evels

top-level) has been best expressed by

who also introduced the concept of a

the message system for interprocess

from Hansen (Han 70), who also

of a system nucleus. A great part of

concepts in process control were

(Sal 66) and implemented in Multics

several ideas in this area were taken.

ing system as a group of resource

and the specific breakdown in this

respect, comes from Donovan (Don 72).

Additi

operating

:3)), CTSS

onally, several key points were taken from such

systems as OS/360 (both MFT (IBM :2) and MVT (IBM

(Cri 65) and IBSYS (IBM :1).

Chapter 1
Overview

OVERVIEW OF THE SYSTEM

The example operating

system for the IBM System/360.

instruction set, and both st

types of external devices can

standard system support is

and line printers (user prog

routines for non-standard devi

system is a multiprogramming

It requires the standard

ore and fetch protection. Any

be supported, but currently

provided only for card readers

rams can provide their own

ces, however).

The example operating system currently runs under

control of a System/360 simulator, which simulates

environment with 32K-bytes of storage, two card readers,

four line printers.

the

an

and

Memory allocation for user programs is in the form of

variable-length partitions (although not relocatable; the

System/360 hardware will not allow this). Users can specify

the amount of storage required in terms of 2K-byte

increments from 2K-bytes upwards. The system currently

requires about 6K-bytes for its own routines; the rest of

memory is available for user programs.

The system

streams coming

is capable of supporting multiple job

in from different input devices (here,

-8-

Chapter 1 -9-
Overview

readers), with the output being directed to different output

devices (here, printers). Each job stream consists of a

number of jobs, stacked in order.

A job consists of a $JOB card, followed by an object

deck, followed by optional data. The format of the $JOB

card is:

$JOB, core,name=devtype, name=devtype,...

as in:

$JOB, 8K,FI LEA=IN, FI LEB=OUT

The "core" field gives the amount of core required for

the job (in the example, 8K). The "name=devtype" field can

be repeated any number of times (including zero). The "name"

gives the name by which the user program can reference this

device (these names are up to the user, and very flexible,

device-independent referencing of devices is provided) while

the "devtype" tells the type of device to be assigned. There

are currently three possibilities for this field.

The type "IN" specifies the system input unit (here,

the card reader). The type "OUT" specifies the system output

unit (here, the line printer). The type EXCP indicates a

non-standard device, for which the user will supply his own

handler routine. Currently, the $JOB card can contain at

Chapter 1 -10-
Overview

most one reference to IN, one reference to OUT, and one

reference to EXCP.

The object deck, which immediately follows the $JOB

card, has the same format as the standard OS/360 object

deck. External references are not allowed, however. The

object deck gives the text to be loaded into the user's

partition, and specifies the starting point; relocation is

performed during loading.

Following the object deck is the card input data to the

user program, if there is a reference to "IN" on the $JOB

card.

The user's program may specify parallel processing to

take place within it, and there are features to control

this, along with flexible facilities for communication

between different parallel execution paths of the program.

The system automatically schedules the various user programs

in the system, and their parallelly-executing sections, in

such a way as to tend to maximize the use of the CPU and the

data channels.

Chapter 2 -11-
Modules

MODULES OF THE SYSTEM

As described in chapter 0, the example operating system

is implemented in two levels: a nucleus and a top-level

supervisor. However, for clarity, we can split the system

down more finely to view it as being implemented in a number

of layers. One property of this layered construction is

that each successive layer, from the bottom up, depends only

on the existence of those layers existing below it, and does

not directly depend on higher layers (this feature being of

importance for pedogogical reasons).

The five layers (or "modules") of the example operating

system are:

Process Management, lower module (lowest)
Memory Management module
Process Management, upper module
Device Management
Supervisor Process module (highest)

(where, of course, the user program depends on all of

these). A few features of this breakdown are of note.

First, the functions of process management have been

split into a lower module and an upper module, one on either

side of memory management. This is because certain parts of

Chapter 2 -12-
Modules

process management (those in the upper module) depend on

memory management routines, but memory management itself

depends on certain process management routines, thus placing

these in a lower module below memory management.

As shown, the supervisor process module depends on

process management (both modules), memory management, and

device management. The dichotomy between the nucleus and the

top-level supervisor is not as clear In this breakdown as

when it was presented in chapter 0; however, the modules

below the supervisor process module may be viewed as the

nucleus, and the supervisor process module itself as the

currently-implemented supervisor.

Finally, it will be seen from the discussion that

follows that the supervisor process module and the user

program itself operate in very nearly the same environment.

This is an unusual aspect of this operating system, and

comes from the nucleus vs. top-level supervisor breakdown.

Process man., lowerChapter 2
Modules

PROCESS MANAGEMENT,

LOWER MODULE

This module of process management provides processor

multiplexing, and additionally provides basic primitive

operations for inter-process synchronization. This module

may be viewed as the "multiprogramming support" module.

This module provides the basic

process may be viewed as the executi

certain constraints (e.g., within a

for a more precise definition,'

Multiprogramming allows these

independently, in parallel with each

support for processes. A

on of a program within

certain area of memory);

see Saltzer (Sal 66).

processes to run

other.

The "traffic controller" section of this module

schedules and runs processes which are eligible to run (a

process in the system is usually eligible to run unless it

is waiting for the completion of some external event (e.g.,

it might be waiting for the completion of an input/output

operation; alternatively, it might be in the action of

synchronizing with other processes: see below for the

relevant primitives). Processes are schedled by the traffic

controller in a round-robin fashion (see the writeups on the

traffic controller in chapter 3 for more details on this)

-13-

Chapter 2
Modules

-14- Process man., lower

and run until they become temporarily ineligible to run, as

described above, or until a certain amount of time passes

(in this system, fifty milliseconds), called the quantum of

time, after which the process is eligible to continue

running later.

In either case, the traffic controller then selects

another process and causes it to begins running.

This module also provides basic primitives for the

synchronization of processes. These primitives are called

the "P" and "V" operations (as named by Dijkstra (Dij 68)).

Their operation is as follows.

Both the

which has an

has two possib

greater than

value. If the

process issui

signal from

ineligible).

process execut

The "V"1 o

"P" and "V" operations act on a "semaphore",

associated integer value. The "P" operation

le effects. If the value of the semaphore is

zero, it causes one to besubtracted from that

value of the semaphore is zero or less, the

ng the "P" operation begins to wait for a

another process (thus becoming temporarily

This signalling will be caused by another

ing a "V" operation on the semaphore.

peration also follows one of two possible

courses of action. If there are no processes currently

waiting as a result of performing a "P" operation on this

semaphore, it adds one to the value of the semaphore. If,

Chapter 2 -15- Process man., lower
Modules

however, there are processes waiting, a signal is sent to

one of then to stop waiting.

The "P" and "V" operations, together with semaphores,

have several useful applications. For example, a semaphore

with initial value one can be associated with some data base

to serve as a lock on that data base. If all processes

accessing that data base perform a "P" operation on the

associated semaphore before acessing the data base, and

perform "V' operations on that semaphore afterwards, it may

be seen that only one process can ever access the data base

at any one time, thus insuring the integrity of that data

base.

Chapter 2 -16- Memory man.
Modules

MEMORY MANAGEMENT MODULE

This module performs the operations necessary for

dynamic allocation and freeing of memory. It provides

routines which will on request allocate a block of memory of

a given size and of a given address-alignment (e.g., on a

double-word boundary), or which will on request free a block

of memory of a given size at a given location. To

accomplish this, the module keeps a list of "free" storage,

taking from or adding to this list as requests are

processed. Communication with this module is by means of

explicit calls.

The memory management module uses the process

management lower module in the following respect. If there

should ever come a request to allocate memory which cannot

be satisfied (i.e., there is currently no such contiguous

block of memory free) the allocation routine must wait until

some other process frees some memory. The basic

synchronization primitives provided by the process

management lower module are used for this (for more detail,

see the appropriate writeups in the next chapter).

Chapter 2 -17- Process man., upper
Modules

PROCESS MANAGEMENT,

UPPER MODULE

This module provides routines for the control of

processes (e.g., their creation and deletion within the

system), and also provides a sophisticated inter-process

communication routine with buffered messages. Communication

with this module is in the form of explicit calls.

Firstly, this module provides routines for the control

of processes. Most importantly, there are calls by which

processes of a given name may be created and started to run

at a given location, with certain register contents passed

to It as arguments, and there are calls by which a process

within the system may be stopped and destroyed. At this

level, of course, it is entirely possible to ignore the

existence of the traffic controller, in that we may view all

processes, say, as continually running; this view, if taken

by this module, would be perfectly consistent.

This module also provides a method by which messages

may be sent between processes. There is a call saying to

send, to a process of a certain name, the k-character

message "such-and-such"; there is also a call saying to read

the next message waiting to be read, which returns the text

Chapter 2
Modules

of

of

wa

-18- Process man., upper

the message and the name of the sender. Messages may

arbitrary length and any number of messages may

iting to be read by a process.

be

be

As may be seen from the above, this is the level at

which we introduce the concept of the "name" of a process.

Names are chosen at process-creation time and are used to

reference processes within this upper module. This module

also introduces the concept of a group (see chapter 3) which

is the set of processes associated with a job within the

system.

This upper module depends directly on both the process

management lower module and the memory management module. It

used the "P" and "V" primitives to provide synchronization

between the sender and the receiver in message processing.

Also, since this module runs in the process of its caller,

there is an implicit dependency on the traffic controller.

The memory management module is called to allocate or free

space needed to store system information concerning

processes, of to provide temporary buffers for message

processing.

Chapter 2 -19- Device man.
Modules

DEVICE MANAGEMENT MODULE

This module provides the routines necessary to issue

the appropriate input/output commands to external devices.

Unlike those before, but like all higher levels' (the

supervisor process module and the user program), this module

runs in a separate process (in this case, one per (group,

device) pair). Communication with this process is by

messages sent to it, and the status of the result is

returned via messages which it sends back.

The routine, when created, is provided with sufficient

information to issue input/output instructions. Its major

purpose is to issue these and then, after an interrupt

occurs, interpret the status information available for the

construction of a return message.

This module depends directly on the process management

lower module in that it uses semaphores as locks against two

processes simultaneously attempting to access the same

device (here, the semaphore is a lock on a block of

information held about the device) and to wait for an

interrupt (by performing a "P" operation on a semaphore with

initial value zero, in order to wait until another routine

in this module, which is entered upon interrupts, performs a

Chapter 2
Modules

"V" operation on this

-20- Supervisor

semaphore).

Chapter 2 -21- Supervisor
Modules

SUPERVISOR PROCESS MODULE

This module serves as the top-level supervisor, It uses

the features provided by the previous modules to create an

interface for processing of user jobs. This module runs in

a number of separate processes, one per job-stream (thus one

per group).

Its purpose is to, for each job in sequence, allocate a

partition for it to run in (the size being specified on the

$JOB card) and create and start processes for Interface to

the device module (see chapter 3 for more details). It then

loads the user's deck Into the partition and creates and

starts a process in that partition. At this point, the

supervisor process can stop running for a moment and wait

for a message signalling completion to come from the user

program. When completion is signalled, the supervisor

process cleans up (i.e., destroys any processes It might

have created for this job, and frees the partition

allocated), and goes on to the next job.

User programChapter 2
Modules

THE USER PROGRAM

The user program runs in the partition of memory

allocated for it by the supervisor process. There is at

first one process in which it runs, but there is the ability

to create others to run in parallel. When the job is

completed, there are primitives provided by which the user

program can signal either successful completion.

The user program can, of course, use the facilities of

any of the other modules in the system.

-22-

Chapter 3 -23-
Details

CHAPTER 3

DETAILS OF THE OPERATION

OF THE EXAPIPLE OPERATING SYSTEM

This chapter goes into detail on the organization of

the data bases of the system and the operation of the

modules. First, we will examine the databases.

Chapter 3 -24- Databases
Details

DATABASES

This section presents all the major data bases present

in the system, explaining their structure and their use.

The descriptions here consist of a PL/-style structure

declaration, followed by details on each of the fields.

PROCESS CONTROL BLOCK

The Process Control Block (PCB) stores the information

associated with a process. There is one PCB for every

process in the system. The PCB is defined approximately by:

declare
1 pcb based (pcbptr) aligned,
2 name char (8),
2 next_pcbthis-group ptr,
2 last_pcbthisgroup ptr,
2 next_pcball ptr,
2 last_pcb_ all ptr,
2 stopped bit (1),
2 blocked bit (1),
2 interruptsavearea like (save_area),
2 message-semaphore_common like (semaphore),
2 message-semaphore-receiver like (semaphore),
2 first_message ptr,
2 nextsemaphorewaiter ptr,
2 insmc bit(1),
2 stopwaiting bit (1),
2 stoppersemaphore like (semaphore),
2 stoppeesemaphore like (semaphore),
2 faultsave-area like (save_area),
2 memory_allocator_save_area like (save_area),
2 memory_freersave-area like (save_area);

Chapter 3 -25- Databases
Details PCB (contd.)

where the fields are as follows.

"Iame": this field contains an eight character field

giving the name for this process. A name is supplied for a

process by the process that creates it; these names are used

to reference processes in calls to the process management

upper module routines.

"next Dcb this group": is a pointer to the next PCB in

this group. The set of processes in the system is divided

into a number of mutually-exclusive subsets known as groups;

the processes in each group are chained together in a

circular list. This pointer is the forward pointer in that

circular list. All names within a group are unique, and

naming of processes is always relative to a group.

"last Dcb this group": the backward pointer for the

circular list of the PCB's in this group.

"next ocb all": in addition to their being chained

together in the above-mentioned group-oriented fashion, all

PCB's in the system are independently linked into a single

circular list. This is for the purposes of the process

management lower module (in particular, the traffic

controller) which is not concerned with groups (these being

Chapter 3 -26- Databases
Details PCB (contd.)

an upper-module concept within process management). This

pointer is the forward pointer within this chain.

"last Dcb all": the backward pointer for the chain of

all PCB's.

"Stopped": this bit is zero when the associated process

is not stopped, and one when it is. A process is not

considered runnable by the traffic controller if it is

stopped. When a process is first created, it is in the

stopped state, and may be started by some other process

performing a "start process" primitive for it. A non-stopped

process may be stopped by another process performing a "stop

process" primitive for it, usually as a prelude to

destroying it.

"blocked": this bit is zero when the associated process

is not blocked, and one when it is. A process which is

blocked is not considered runnable by the traffic

controller. A process is normally not blocked, but can go

blocked if it performs a "P" operation on a semaphore with

non-positive value. It will be waked up (made to go

non-blocked) whenever some other process performs a "VI'

operation on the semaphore (for a more precise statement of

how this is performed, see the writeups on semaphore

structure and on the functioning of the "P" and "V"1

primitives).

Chapter 3
Details

-27- Databases
PCB (contd.)

"interrupt save area": a save area. Its format is given

below in the save_area section, and its purpose is described

below in the routines section.

"messave semaphore common": this is a semaphore with

initial value of one. Whenever a routine is entered to send

a message to this process or to read a message sent to this

process, this semaphore is used as a lock on the message

chain pointed to by first_message, during the period when

the message chain is being searched or modified.

"messaze semaphore receiver": this semaphore is used to

regulate a process receiving messages. Its initial value is

0. Whenever a message is sent to this process, the sending

process performs a "VI" operation on this semaphore, thus

adding one to its value. Whenever an attempt is being made

to read a message sent to this process, there is first a "P"

operation performed on this semaphore. Thus, if there are

no messages currently readable, the "read message" routine

will wait until there are.

"first message": this is a pointer to the first message

waiting to be read by this process. See the writeup on

message format for information on the structure of the

message chain. If there are no messages readable by this

process (i.e., if the value of the "message semaphore

receiver" is zero), the value of this pointer is

Chapter 3
Details

Databases
PCB (contd.)

meaningless.

"next semahore waiter": all processes currently

waiting on a single semaphore are chained together in a

linear list. The head of this list is pointed to by a field

in the semaphore, and the PCB's in the list are linked

together by this field. The length of the list (see the

writeup on semaphore format) is taken to be the maximum of

zero, and the negative of the value as stored in the

semaphore.

"in sma": this bit is zero if the process is not in an

smc section, and one if it is. The term "smc" stands for

"system must complete". If a process is in an smc section,

an attempt to stop that process will wait until that process

leaves the smc section. There are primitives to enter and

leave an smc section.

"stoD waiting": this bit is zero, if there is no stop

request waiting for this process for when it leaves any smc

section it may be in, and one if there is. This bit is set

by the "stop process" primitive.

"stoDper semaphore: this semaphore is used to wait on

stopping a process in an srnc section. The process

attempting to do the stopping performs a "P" operation on

this semaphore, which has an initial value of zero, whenever

-28-

Chapter 3 -29- Databases
Details PCB (contd.)

it notices that the process that it is trying to stop has

the "in smc" bit set on. When the process to be stopped

attempts to execute a "leave smc" section primitive and

notices that the "stop waiting" bit is on, it performs a V"

operation on this semaphore, and then a "P" operation on the

"stoppee semaphore" (described next).

"stoDnee semaphore": this semaphore, which has initial

value of zero, is used to stop a process which has had a

stop postponed until it left an snc section. It performs a

"P" operation on this semaphore, thus blocking itself until

the stopping process can execute another stop request.

"fault save area": a save area. Its format is given

below in the save-area section, and its purpose is described

below in the routines section.

"memory allocator save area": a save area. Its format

is given below in the save_area section, and its urpose is

described below in the routines section.

"memory freer save area": a save area. Its format is

given below in the save_area section, and its purpose is

described below in the routines section.

Chapter 3
Details

-30- Databases

RUNNI NG

This

being run

whenever

current)

is a pointer to the PCB of the process currently

. It is set by the traffic controller, and is used

it is necessary to access the PCB for "this" (the

process.

NEXTTRY

This is a pointer to the PCB of the process that the

traffic controller will next try to schedule after it is

next entered. This pointer is set by the traffic controller

to be the same as the "next pcb all" pointer in the PCB

pointed to be RUNNING, but may be modified by the execution

of a V operation (see the writeup on the V operation for

more deatils).

NEXTTRYMOD I F IED

This is a bit which is zero

modified since being set by the

if it has.

if NEXTTRY has not been

traffic controller, and one

Chapter 3
Details

-31- Databases

SAVE AREA

Whenever system routines need save

the conditions appertaining when it

they can be restored upon exit, it uses

areas in the PCB. These save areas look

declare
1 savearea based (savearea-ptr),
2 oldpsw like (psw),
2 oldregisters(0:15) like (register),
2 next_savearea ptr,
2 temporary(3) bit(32);

where the fields are used as follows:

"old sw": this is the old psw

routine.

areas for storing

was entered, so that

one of the four save

like:

upon entry to the

"old resisters": these are the old general-purpose

registers upon entry to the routine.

"next save area": this pointer

Appendix A, Minor Flaws section, as

is currently unused. See

to why.

"temporarv": this is a temporary storage area of

words. It is used mainly to contruct argument lists,

must be held in storage, for calling other routines.

three

which

If a

-32-Chapter 3
Details Sa

routine ever needs more than three words of

uses these three words to contruct a call

allocator.

Databases
ve area (contd.)

temporaries, it

to the memory

S EMA PHOR ES

Semaphores are used for basic,

synchronization of processes. They can be accessed

"V" operations, or their value field may be

directly. Their format is as follows:

low-l evel

by "P" or

examined

declare
1 semaphore based (semaphore-ptr),
2 value fixed (31,0),
2 first_waiter ptr;

where the fields are used as follows:

".value": is the val

always subtracts one

always adds one. The ini

non-negative.

ue of the semaphore. A "P" operation

from this value, and a "V" operation

tial value of the semaphore must be

"first waiter": for semaphores with negative values,

this is the pointer to the first in a list of PCB's chained

together by their "next semaphore waiter" pointers, where

the length of the list is the magnitude of the value. A "P"

operation on a semaphore with non-positive value places the

Chapter 3
Details

-33- Databases
Semaphores (contd.)

PCB for its process at the end of the list, whereas a "V"

operation on a semaphore with negative value modifies this

pointer to in essence take the first PCB off the list (after

which it receives a wake-up): thus we have a FIFO queue.

FREE STORAGE BLOCK

All of free storage (storage which can be given to

allocate requests) is chained together in free storage

blocks. All free storage blocks are chained together in

order of increasing size. No two free storage blocks are

ever adjacent in memory: rather, these two would be

collapsed together into a single larger block.

Whenever an allocation Is requested (see the routine

writeups for more information) a block is unlinked from the

free storage list, and the remainder or remainders is linked

back onto the list. When a block is freed, it is linked back

onto the list, after collapsing any adjacent blocks.

The format of a free storage block (FSB) is:

declare
1 freestorageblock based (fsbptr),
2 next ptr,
2 size fixed (31,0),
2 unused (freestorage_block.size-8) char(1);

Chapter 3
Details

-34- Databases
FSB (contd.)

where:

"next": a pointer

ascending-size-order chain

the chain, this field contai

to

of

ns al

the next

FSB's. For

1 zeros (nul

FSB in the

the last FSB in

1).

"Size": this field contains the size of this FSB. The

size is stored in bytes, but all FSB's contain an integral

number of words (since all requests to the memory management

module (all calls are made by the system) specify that the

allocated area is to be on a doubleword boundary).

"unused": this field fills out the remainder of the

block and contains nothing of importance.

FREE STORAGE BLOCK POINTER

This pointer (FSBPTR) points to the first free storage

block in the ascending-order-of-size chain. If there are no

blocks in the chain, this pointer contains all zeros (null).

FREE STORAGE BLOCK SEMAPHORE

Chapter 3 -35- Databases
Details FSB semaphore (contd.)

This semaphore, with initial value one, controls access

to the free storage list by serving as a lock. Any memory

management routine, upon entering a section where it

examines or modifies the free storage list, does a "P"

operation on this semaphore, thus ensuring the integrity of

this data base, and does a "V" after it stops using this

data base.

MEMORY SEMAPHORE

This semaphore, with initial value zero, controls

waiting for memory. If a process attempts to allocate memory

but is unable, it performs a "P" operation on this

semaphore, thus blocking itself. When it reawakens, it

reattempts the allocation, again possibly blocking itself,

until the request can be satisfied.

A sequence of "V" operations is performed on this

semaphore whenever a block of memory is freed. The number of

"V" operations performed is equal to the number of processes

waiting on the semaphore at that time.

Chapter 3 -36- Routines
Details

ROUTINES

We now discuss the details of the composite routines of the

system. As Chapter 2 divided the realm of the example

operating system into the modules of process management

(with a lower module and an upper module), memory

management, device management, the top-level supervisor, and

user programs, so we can here divide the set of system

routines. Here, though, the distinction will be on how they

gain control. The following are brief expositions of this

division. A detailed explanation of the operation of each of

these groups follows in subsequent sections.

The traffic controller, which forms part of the lower

module of process management, constitutes the first case.

It gains control whenever a timer runout trap is detected,

whenever a "P" operation is performed on a semaphore with

non-positive value, or whenever control is specifically

relinquished to it (this last is a special case: see the

following documentation for its use).

The synchronization primitives "P" and "V", which form

the remainder of the lower module of process management,

together with all of memory management and all of the upper

module of process management, form the second case. ? hese

Chapter 3
Details

-37- Routines

routines gain control by virtue of a specific call (here, by

means of the SVC instruction). They are passed an argument

list and perform requested functions.

Device management is

gaining control. ihe dev

reside in a special process

originally created by

communication with them

primitives provided by the

split between two methods of

ice-handling routines themselves

, one per (group, device) pair,

the top-level supervisor, and

is by means of the message

upper module of process control.

One function, though, performed by process management

is the fielding and handling of input/output interrupts. The

routines for doing this are invoked whenever such an

interrupt occurs, run for a very short time in the process

of whoever was running at the time of the interrupt, just

long enough to store status information and wake up the

process waiting for that interrupt, before returning to the

processing of the interrupted process.

The supervisor process module runs in a special set of

processes, one for each job stream. It is initially created

and started at IPL (Initial Program Load) time, and passed

arguments by the IPL routine concerning its operation.

-38-Chapter 3
Details

Routines

Finally,

processes of

supervisor.

the user's program runs

its own, being started

in

by

a process or

the top-level

Traffic controllerChapter 3
Details

DETAILS OF THE TRAFFIC CONTROLLER

The traffic

process-oriented

as it were.

controller serves the purpose of creating a

environment. It runs "between processes",

The traffic controller performs the basic task of

processor multiplexi

various processes

said to be runnable

of the PCB are off.

ng, sharing the machine's CPU among

runnable at

if both the "s

When a process

any one time. A

topped"

Is ent

the

process is

and "blocked" bits

ered,

its quantum of time is consumed (a timer ru

to occur 50 ms. after a process is ente

wait for synchronization with another

operation is performed on a semaphore

value), or it specifically relinquishes

traffic controller via a special call (th

to routine XPER, for which see below; this

used by the IPL routine, to start the sy

the input/output interrupt handler, in the

to schedule a special process quickl

nou t

red),

proce

w I t h

cont

is is

ent

stem

case

y fo

t runs until

trap is set

it needs to

ss (a "P"

non-positive

rol to the

an SVC call

ry is only

going, or by

of needing

r real-time

response. See the appropriat e sections for each of

All entries to the traffic controller transfer

immediately to routine GETWORK. This routine runs with all

these).

-39-

I

Chapter 3 -40- Traffic controller
Details

interrupts off, in key 0 (thus allowing it to access any

part of memory). The old registers and PSW of the process

just left are stored in the PCB's "interrupt save area".

Beginning with the process pointed to by cell NEXTTRY,

it searches through all PCB's in the system, going through

the pcb.nextpcb_all chain, finding the first PCB which is

neither stopped or blocked. If there does exist such a one,

the traffic controller resets cell RUNNING to point to that

PCB, resets cell NEXTTRY to point to the next PCB in the

"all" chain, sets the timer to interrupt in 50 milliseconds,

and then proceeds to call a standard system service routine

to reload the registers and PSW from the interruptsave_area

in the PCB pointed to by the new RUNNING, thus beginning to

run this new process.

If all PCB's in the "all" chain are stopped or blocked,

the traffic controller loads a PSW with location set to

GETWORK, but with the wait state set on. As the section on

input-output interrupts explains, when such an interrupt

occurs, the old PSW's wait bit is set off before it is

reloaded. Thus, the traffic controller hereby waits until an

input-output interrupt occurs before it has another try at

scheduling (since there can be, in this situation, no

processes can be runnable until such an interrupt occurs,

Traffic controllerChapter 3
Details

although t

afterwards).

instead of

process with

relates) th

System/360

efficient o

infinite loo

of several s

here is always one runnable immediately

The traffic controller utilizes the wait state

scheduling, say, an ever-present, ever-runnable

an infinite loop in it, since (as chapter 1

is system is really run under the control of a

simulator; this simulator is vastly more

n simulating the wait state than it is for

ps running, for at total, with a simulated time

econds for even a small job stream.

-41-

Chapter 3 -42- Primitives
Details

REQUEST-DRIVEN ROUTINES

PROVIDING SYSTEM PRIMITIVES

This section includes those routines which are entered

due to a request for a system primitive function. These are

invoked by the SVC instruction which, on the System/360,

provides for a one-byte operand; this byte is used to store

an mnemonic for the operation to be performed. A list of the

allowable mnemonics, their function, the routine which

processes them, and the save area which they use (I stands

for the interrupt save area, F stands for the fault save

area, MA stands for the memory allocator save area, and MF

stands for the memory freeer save area; note that these

names as used here are archaic and no longer really relate

to the function performed by the save area: Appendix A

(Fixing Minor Flaws section) has further information on

this).

(in process control, lower module)

P the "P" synchronization primitive rout. XP (1)

V the "V" synchronization primitive rout. XV (1)

PrimitivesChapter 3
Detail s

(in memory management)

allocate a block of memory

free a block of memory

l ink a block onto the FSB chain

(in process management, upper module)

C create process

D destroy process

H halt job and signal supervisor

I insert a PCB into the chain

J remove a PCB from the chain

N find a PCB given its name

R read message

S send message

Y start process

Z stop process

. enter traffic controller

I enter smc section

, leave smc section

? abnormally terminate this job

The save areas are so assigned tha

modules calling on one another, no

overlaid. Note also that the calls whi

rou t.

rout.

rout.

rout.

rout.

rout.

rout.

rout.

rout.

rout.

rout.

rout.

rout.

rout.

XC (F)

XD (F)

XH (F)

XI (I)

XJ (I)

XN (MF)

XR (F)

XS (F)

XY (MF)

Xz (I)

XPER(I)

XEXC(I)

XCOM(I)

XQUE(I)

t, in the course of

save area is ever

ch might cause the

A

F

B

rout.

rout.

rout.

XA

XF

XB

(MA)

(MA)

(MF)

-43-

PrimitivesChapter 3
Details

controller

I save area,

to be entered

the same as

(namely XP and

the traffic

XPER) both

controller

All of these routines run in key 0, allowing arbitrary

memory references, overriding the protection mechanism.

Routines XP, XV, XB, XI, XJ, XN, XZ, XPER, XEXC, XCOM, and

XQUE operate with interrupts off, while the others operate

with interrupts on. The advantage to having interrupts off

is the assurance that no other processes can run while that

routine is in operation.

All routines which operate

XA, XF, XB, XC, XD, XR, XS, XY,

routine upon entry and the XCOM

to assure that a process will not

some important system lock set.

Only some of these routin

the user. These are the XC, XD, X

XQUE routines; the rest are

routines (there is a check for

testing if the key under which t

with

and

rout i

be de

es are

H, XN,

usable

this

he call

interrupts

XZ) call

ne upon exi

stroyed whe

on (namely

the XEXC

t. This is

n it has

callable direct]

XR, XS, XY, XZ,

only by the sy

on entry, done

er was operating

0, indicating a system procedure, or non-zero, Ind

user procedure. Only these routines listed,

primitives in the process management upper module,

y by

and

stem

by

was

icating a

which are

are safe

traffic

use the

itself.

Chapter 3 -45- Primitives
Details

for the user to call; allowing a direct call to the others

could allow a breach of security.

When an SVC instruction is executed, there is an

automatic transfer to a special SVC-handling routine. This

routine looks up the mnemonic for the operation, stores the

registers and old PSW in the appropriate save area, then

transfers to the appropriate routine (the SVC handler

operates under key 0). If the called routine needs to call

another service routine, it again uses the SVC-style call.

Arguments are passed in an area pointed to by register

2. Any returned values are placed in this argument list. A

return is effected by reloading the old registers and old

PSW.

Following is a description of the purpose and

functioning of the above-mentioned routines.

Primi tivesChapter 3
Details

ROUTINE XP

This routine implements the "1p" primitive.

register 2 is assumed to point to a semaphore

subtracts one from the value, and then returns

is non-negative.

Upon entry,

The routine

f the result

if the result was positive, however, then the PCB for

this process is inserted at the end of the list of processes

waiting on this semaphore. See the writeups on the "first

waiter" field in the semaphore, and the "next semaphore

waiter" field in the PCB for more information. It then sets

the "blocked" bit in the PCB to one, keeping the process

from being scheduled to be run until a wakeup is sent to it

by the XV routine (see below). Control then transfers

directly to the traffic controller.

ROUTINE XV

This routine implements the "V" primitive. Upon entry,

register 2 is assumed to point to a semaphore. The routine

adds one to the value of that semaphore. If the value is now

greater than zero, it returns.

If the value is zero or less, that

were processes waiting on the semaphore.

means that

The first is

there

taken

.

i

Chapter 3 -47- Primitives
Details Routine XV (contd)

from the list (see the references referenced in the XP

writeup) and a wakeup is performed for that process, setting

its "blocked" bit to a zero, allowing the process to be

scheduled once again.

To allow the target process to be scheduled soon, the

XV routine typically sets the NEXTTRY pointer used by the

traffic controller to point to the target PCB, and sets the

"nexttry modified" bit to a one. This is not done, however,

when that bit is already a one. Thus, if one process wakes

up a large number of others in the course of its execution,

the first to be awakened is the first to be run after the

current one.

The XV routine then returns.

ROUTINE XA

This routine serves to allocate a block of memory. On

entry, register 2 is assumed to point to an argument list,

which contains the size of the block desired, expressed in

bytes, and supplied by the user, and then a power of two,

indicating what type of boundary the allocation is desired

on (for example, an argument of eight would indicate that

doubleword alignment was desired), and then a fullword space

Chapter 3
Details

-48- Primitives
Routine XA (contd.)

into which the routine returns the address of the allocated

area.

The routine first does a

semaphore". It then goes through

it finds a block large enough to

The routine calculates which pa

relinked onto the free storage

overlap on either side of the a

area is selected as close to the

possible with the specified ali

breakage) and performs this

primitive. The address of th

into its place in the argument 1

a "V" operation on the "fsb semaphore",

P" operation on the "fsb

the free storage list until

contain the requested area.

rts of that block need to be

list (i.e., those which

llocated area: the allocated

beginning of the block as

gnment, in order to minimize

relinking using the "B"

e allocated area is inserted

ist and the routine performs

and then returns.

If, however, there is no way to satisfy the request

(i.e., the routine reaches the end of the free storage list

without finding a suitable block) then the routine does a

"V" operation on the "fsb semaphore", and then does a "P"

operation on the "memory semaphore". As explained in the

writeup for this semaphore, this has the effect of waiting

until someone frees some memory. The routine, after waiting,

returns to the beginning and re-attempts the allocation.

Chapter 3 -49- Primitives
Details

ROUTINE XB

This routine performs the function of linking a block

of storage onto the free storage list, with the assumption

that compacting of the new area with existing FSB's is not

possible (thus XB can be called directly from routine XA).

On entry, it assumes that register 2 points to an argument

list, which contains the size of the area to be freed,

measured in bytes, and the address of the area.

Since this routine is called only by those routines (XA and

XF) that have already done a "P" on the "FSB semaphore",

this routine does not need to worry about database

interference from other processes.

The routine searches through the free storage list to

find the point at which the new block should be inserted,

and then performs the relinking, formatting the new block to

look like a FSB. It then returns.

ROUTINE XF

Chapter 3
Details

-50-

This routine performs freeing

whenever compacting of the new area

be necessary. On entry, it assumes

to an argument list, which contains

be freed, measured in bytes, and the

The routine first does a "P" operation on the "fsb

semaphore", to lock the free storage list. It then searches

through the free storage list to see if these are any FSB's

defining a region of memory contiguous with the one being

freed. If there are, they are removed from the free storage

list, and the address and size of the block being freed are

recomputed. When the end of the list is reached, the

routine does a "B" operation, calling routine XB, to link

the block onto the free storage list.

The routine then examines the value of the "memory

semaphore" to determine how many processes are waiting for

memory to be freed, and then performs that number of "V"

operations on the "memory" semaphore (obviously, since the

XB routine is called only the XA and XF routines, performing

these wakeups here is sufficient). The routine then returns.

ROUTINE XC

Primitives
Routine XF (contd.)

of areas of storage,

with current FSB's might

that register 2 points

the size of the area to

address of the area.

-51-Chapter 3
Details

Primitives
Routine XC (contd.)

This routine performs the "create process"

entry, register 2 is assumed to point to an

consisting solely of a name for the process to

function. On

argument list

be created.

The routine first checks that the name is not already

used in this group. If it is, an error routine is entered

(calling routine XQUE). If not, however, the routine calls

routine XA to allocate an area for the new PCB. The new PCB

has the name stored into it, the stopped bit turned on, the

blocked bit turned off, the semaphores set to their initial

values (as noted in their writeups), and the "in smc" bit

turned off. It then calls the Xl routine to link this PCB

into the two chains. The routine then returns.

ROUTINE XD

This routine performs the "destroy process" function.

On entry, register 2 is assumed to point to an argument list

consisting solely of a name for the process to be destroyed.

The process to be destroyed must have been previously

stopped using the "stop proces s" primitive (routine XZ).

The routine uses the XN routi

address of the PCB for the process to

is no such process, an error routine

ne to determine the

be destroyed (if there

is entered, calling

Chapter 3 -52- Primitives
Details Routine XD (contd.)

routine XQUE). This process must be in the stopped state. A

"P" operation is performed on the "message semaphore

common", thus keeping other processes from sending messages.

Then all messages waiting to be read by this process are

gone through, and their storage freed. Finally, routine XJ

is called to unlink the PCB from the two chains, and the

storage for the PCB is freed (all freeing here is done by

the XF routine), and this routine returns.

ROUTINE XH

This routine performs the "halt this job" function. It

takes no argument list.

The sole processing performed by this routine is to

send a message (via routine XS) to process "*IBSUP" (see the

writeup on the supervisor process module) stating that the

job should be halted now, and that normal conditions

pervade, and then perform a "P" operation on a standard

semaphore, used just for this purpose, that no "V' operation

is ever performed on (this being done after the value of

that semaphore is set to zero). Thus, the XH routine never

returns.

Chapter 3
Details

-53- Primitives

ROUTINE XI

This routine performs the function of chaining a PCB

into the two PCB chains. On entry, register 2 is assumed to

point to a PCB.

The PCB is

following the PCB

this-group chain

running process.

chained onto the

for the running

immediately fol

The routine then

all-PCB chain immediately

process, and onto the

lowing the PCB for the

returns.

ROUTINE XJ

This

from the

contain a

rout i ne

two PCB

pointer

The PCB

links. This

up to the cal

performs the function of removing a PCB

chains. On entry, register 2 is assumed to

to the PCB.

is removed from the two chains by modifying the

routine does not free the storage; that is left

ler. It then returns.

Chapter 3 -54- Primitives
Details

ROUTINE XN

This routine serves the function of finding a PCB for a

process, given the name of that process. On entry, register

2 points to an argument list consisting of a name and an

area into which it returns a pointer to the PCB.

The routine looks along the "next pcb this group"

chain, starting with the PCB for the running process, until

it finds a PCB containing the desired name, upon which case

it stores the pointer in the argument list and returns, or

until it finds that there is none such, in which case it

stores zeros in the argument list and returns.

ROUTINE XR

This routine performs the "read message" function. On

entry, register 2 points to an argument list containing an

area for the name of the sender, a number giving the size of

the area supplied to receive the text, followed by that

area.

-55-Chapter 3
Details

Primitives
Routine XR (contd.)

The routine first performs a "P" operation on its

"message semaphore receiver" semaphore, which serves to wait

until a message has arrived. The routine then does a "P"

operation on the "message semaphore common" semaphore, to

lock the message chain (both of these semaphores are the

ones in the current process's PCB, of course). Then, the

first message is taken off the message list, the name of the

sending process is found and placed into the argument list,

and then the text is moved into the receiving area, being

truncated or padded with blanks as necessary. Then the size

field in the argument list is modified to contain the number

of signifigant characters transmitted. Finally, the storage

for the message in the message list is freed, and the

rout ine does a "V" on "message common semaphore" and

returns..

ROUTINE XS

This routine performs the "send message" function.

entry, register 2 points to an argument list containing

name of the destination process, a count for the number

characters in the text, followed by the text itself.

On

the

of

The routine first finds the PCB

given name: if there is none such,

for the process by the

it enters an error

Chapter 3 -56- Primitives
Details Routine XS (contd.)

routine (by calling routine XQUE). If there is, the routine

d s a "P" on the "message semaphore common" semaphore in

that PCB, after allocating a region of memory large enough

to hold the message block. Then that message block is moved

down onto the end of the message list (the length of the

message list being determined by the value of that PCB's

"message semaphore receiver" semaphore), and filled with the

sender's name, the count of the text, and the text itself.

The routine then does a "V" operation on the "message

semaphore common" semaphore, then a "V" on the "message

semaphore receiver" semaphore, then returns.

ROUTINE XY

This routine serves to start a process that is in the

"stopped" state. On entry, register 2 contains a pointer to

an argument list consisting of the name of the process to be

started, an address in memory at which the process should

start running, and a pointer to a block of 16 words

specifying the registers which should be loaded for that

process in the beginning (this is the method of passing

arguments to newly-created processes).

The routine first gets a pointer to the PCB of the

process of the given name (if there is none such, an error

-57-Chapter 3
Details

routine is entered, calling routine

that PCB's "interrupt save area"

and a PSW with the address specified

of the PSW identical to the ol

routine was called). The "stopped"

turned off, and the routine returns.

Primitives
Routine XY (contd.)

XQUE). It then stores in

the registers specified,

(and with the remainder

d PSW existing when this

bit in the PCB is then

ROUTINE XZ

This routine performs the "stop process" operation. On

entry, register 2 points to an argument list, consisting

solely of the name of the process to be stopped.

The routine first gets a pointer to the PCB of the

process of the given name (if there is none such, an error

routine is entered, calling routine XQUE). If that PCB's "in

smc" bit is off, the routine simple turns the "stopped" bit

on and returns.

If, however, the "in smc" bit is on, then the "stop

waiting" bit is turned on, and a "P" operation is performed

on the "stopper semaphore". When the process next begins to

run (see the writeups on these data bases), the process to

be stopped has left the smc section, and the stop can be

performed normally.

Chapter
Details

3 -58- Primitives
Routine XZ (contd.)

There is one exception to the above. It is not allowed

for a process whose name does not begin with an asterisk

(this lack of an asterisk being used by the supervisor

process module to indicate user processes) to stop processes

whose names do begin with asterisks (the presence of an

asterisk similarly being used to indicate system processes).

ROUTINE XPER

This routine serves to

controller. It simply causes a

transfer to the

transfer to routine

traffic

GETWORK.

ROUTINE XEXC

This routine serves to notify

about to be entered. The routine sets

its PCB on, and then returns.

that an

the " in

smc section

smc" bit

ROUTINE XCOM

This routine serves to notify that an smc section is

being left. It turns the "in smc" bit to zero. Then, if the

is

in

Chapter 3 -59- Primitives
Details Routine XCOM (contd.)

"stop waiting"bit in the PCB is off, it returns.

If, however, the "stop waiting" bit is one, then it is

reset to zero, a "V" operation is performed on the "stopper

semaphore", and a "P" operation is performed on the "stoppee

semaphore" (see the writeups of these data bases for more

information).

ROUTINE XQUE

This routine serves to abnormally terminate a job. It

operates the same way that the XH routine operates (see

above) but with a message that an error has occurred.

Chapter 3 -60- Device handlers
Details

DEVICE-HANDLING PROCESSES

To provide for the control of external devices, there

is a special process for each (job, device) pair. This

process is created by the supervisor process, and passed

arguments (through registers, when it is started) giving the

address of the external device which it controls. It is

started running in a routine for handling its type of

device, and receives requests in the form of messages; it

sends messages back when the requested input/output

operation has been completed, these messages containing

information on the result of the request. There are three

such routines: one for reader, printer, and user-supplied

handler-interface.

READER HANDLER

This routine controls card readers. When first entered,

in its process, it has the unit control block address in

register 3, and the protection key to be used held in

register 4. The routine then goes into a loop reading

messages. If the messages are not of the form "READxxxx",

where xxxx represents a four-byte binary storage address,

the message is rejected and another message is read.

-61-Chapter 3
Details

Device handlers
Reader handler (contd.)

If, however, the

performs a "P" operation

to keep other processes

iterim. The routine then con

(see the channel command bl

format). The operation sp

request, with the address

received. The count is ei

controlling chaining, special

Then a CAW is constructed, w

the key being the key pa

operation is done on the

message is correct, the

on the "user semaphore" in

from using the device

structs a channel

ock writeup for

ecified in the CC

as specified in

ghty characters,

interrupts, etc.

ith the address of

ssed originally.

"CAW semaphore",

contr

its

W is

the

and a

set t

the

Then

the rr

routine

the UCB,

for the

ol block

special

a "read"

message

11 flags

o zero.

CCW, and

a "P"

achi ne's

location for the CAW is loaded, the "start i/o" instruction

for the appropriate reader is issued, and a "V" operation is

done on the "caw semaphore".

Then a "P" operation is done on "wait semaphore" on the

UCB, thus waiting until an interrupt occurs. The status as

stored by the interrupt routine is then examined. If it

indicates successful or unsuccessful completion of the

request, the process examines the card, as described below.

If, however, the operation has not completed, the process

goes back to wait some more.

The process now examines the process name of its

invoker. If the name starts with an asterisk, it is assumed

to be part of the supervisor process module (see the section

Chapter 3 -62- Device handlers
Details Reader handler (contd.)

on the supervisor process module for naming conventions) and

a message reading either "YES" or "NO", depending on the

success of the request, is returned. However, if the name of

the invoking process does not start with an asterisk, it is

assumed to be a user process, and the situation is more

complicated.

First, if the card just read in was a $JOB card, this

indicates the end of the data for this program. Thus, a "NO"

message is sent back to the caller, after the card is saved

in a special area and the user's copy is zero'd out. Then

the process enters a loop wherein it answers all user

requests with a "NO" until It gets a system request, at

which point it stores the card in the specified area and

returns the message "YES".

Otherwise, the message "YES" or "NO" is returned as for

a ssystem request.

PRINTER HANDLER

This routine handles output for printers. Its operation

is directly analogous to that of the reader handler.

Messages are of the form "PRINxxxx", where xxxx represents

the address to be printed from.

-63-Chapter 3
Details

Device handlers
Printer handler (contd.)

There is no data checking based on process name.

EXCP HANDLER

This routine handles the interface for those devices

where the user wishes to provide his own input/output

routine. The method of initialization and operation is

similar, but the messages sent to it are of the form

"EXCPxxxxcccccccc", where xxxx represents the unit address

and cccccccc represents the channel command word to be used.

There is a UCB for EXCP devices (one per group) but it does

not contain a unit address.

When an interrupt occurs for an EXCP device, the EXCP

interface returns a message of the form "ssssssss", where

ssssssss is the status returned by the device and the

channel. (Thus, the routine having called the EXCP process

will be the next to be scheduled, since this is the only

"V"-causing operation performed here. This fact, coupled

with the fact that EXCP UCB's have the "fast processing

required" bit on, provides for very fast processing of EXCP

interrupts.)

1/0 InterruptsChapter 3
Details

INPUT/OUTPUT INTERRUPTS

The iointerrupt routine performs handl

input/output interrupts occurring after an

request. The routine operates (essentially)

process was running when the interrupt occurred.

performs a small number of operations, and then

the normal processing of that process.

ing of the

input/output

in whatever

The routine

returns to

First, it finds the UCB for the device causing the

interrupt (see the writeup on Channel Command Blocks for how

this is done). It then OR's the new status information with

the status information as stored in that UCB (the structure

of the System/360 is such that this is meaningful) and then

performs a "V"1 operation on the "wait semaphore" in that

UCB. Normally, the routine returns at this point by

reloading the old registers and old PSW (the old PSW has

been modified by this point to turn off the wait bit if it

might be on: for the signifigance of this, see the Traffic

Controller writeup).

If, however, the "fast processing required" bit in the

UCB is on, the routine used the XPER routine to transfer

into the traffic controller to run a new process (see the

writeups for the "wait semaphore" and the "fast processing

required" bit, along with the writeup on the XV routine, for

-64 -

Chapter 3
Details

-65-

more information). Since the NEXTTRY field has

modified to point to the PCB for the device

does indeed provide fast processing.

I/0 Interrupts

usually been

handler, this

Chapter 3 -66- Supervisor
Details

DETAILS OF THE SUPERVISOR PROCESS

The supervisor process, which serves in this system in

the general capacity of the top-level supervisor, serves to

provide processing of the job stream, giving structure to

the system as the interface between the user jobs and the

nucleus. There is one supervisor process per job-stream,

created by the IPL routine (see below). Since these are

created in separate groups, there is no communication

between them; they are invisible to each other.

The supervisor processes, as was mentioned above, are

created by the IPL routine. This is the routine that is

entered upon an IPL (initial Program Load). The IPL routine

runs free of the rest of the system; most particularly,

there is no point in the IPL routine, until the very end, at

which the traffic controller can be logically entered.

(Thus, there is a flag set such that if the traffic

controller does get entered during this period, before the

IPL routine makes an explicit transfer to it, the system

will stop cold. Such a transfer could be caused by too

little core, for example.)

The IPL routine first sets up a PCB for itself, in a

permanently-allocated area, and sets pointers RUNNING and

Chapter 3 -67- Supervisor
Details

NEXTTRY to point to that PCB, as well as all the chains

within the PCB. Next, all available memory (not used by the

system) is placed on the free list, and the protection keys

associated with all of memory are set to zero.

Other PCB's are now created, one for each supervisor

process, and each in a group by itself (thus the "create

process" primitive cannot be directly used here); each

process is named "*IBSUP". Then there is a call to "start

process" for each of these processes, starting them in the

Job Stream Processor routine, with register 3 pointing to an

argument list containing a pointer to the UCB for the reader

and a pointer to the UCB for the printer for this job stream

(all UCB's are stored in a permanently-assigned part of

memory), and register 4 containing the protection key which

should be used for user programs in this job stream. Then

the IPL routine modifies its PCB to read "stopped", and only

then does it transfer (via routine XPER) to the traffic

controller, to begin running the supervisor processes.

Upon entry, the supervisor proces.ses first create and

start processes called "*IN" and "*OUT", passing them a

pointer to their UCB's in register 3, and their protection

key in register 4. Then it begins to sequentially process

each job in turn.

Chapter 3 -68- Supervisor
Details

Upon reading a $JOB card, the first card of each job,

the supervisor process first sends it to the printer. It

then determines the amount of memory required and then

allocates that amount, lying on a 2K boundary (because of

the protection hardware), and sets the key associated with

that area to the one to be assigned to the user program (as

sent by the IPL routine). It then creates a process called

USERPROG, which will become the process that the user

program first begins to run in.

The process then scans the device assignment fields,

these fields being of the form name=devtype. (Note that

"name' cannot begin with an asterisk ("*"): see below.) For

each of these, it creates a process called "name" and starts

that process in an interface routine for that "devtype". For

"devtype" either IN or OUT, the routine used is one that

reads messages from the user process, sends them unchanged

to process "*IN" or "*OUT", as appropriate, waits for a

reply from that process, and then sends that reply to the

original calling process. For "devtype" being EXCP, the

interface routine is the one described earlier in this

chapter under the Device Handler heading.

The supervisor module then begins to read the user's

object deck into his partition of core. Relocation is

performed as necessary. When this is. completed, the process

Chapter 3 -69- Supervisor
Details

USERPROG's PCB has its blocked bit temporarily turned on.

Then the supervisor process starts the user process at the

specified location, and then modifies the PSW so that it

will run in user mode under the specified key. Then the

blocked bit is turned off and the user process can start to

run.

At this point, the supervisor process starts to wait

for a message to be returned. This can be either a "success"

or a "failure" message. In either case, the content of the

message is printed on the printer, and the supervisor

process destroys all of the processes created for or by the

user job, frees the partition of memory allocated, and goes

to the next job.

Whenever there are no more jobs to be run, the

supervisor process enters an infinite loop reading messages

(which it will never get).

Chapter 3
Details

-70- User programs

DETAILS OF USER PROGRAMS

User programs run in a process or process of their own.

They start out, as was mentioned above, in one process

called USERPROG. However, more processes may be created;

free creation of subsidiary processes is encouraged. User

processes cannot have names starting with an asterisk ("*"),

nor can they destroy a process whose name does begin with an

asterisk. Thus, the supervisor is protected against the

user.

There are two routines, XH and XQUE, which signal

success and failure, respectively. XH Is usually called by

the program, wheras XQUE is usually called by a system

routine invoked by the user, upon detection of an error

condition (XQUE can take an argument In the form of an

English-language message). Both of these routines send a

message to the supervisor process and then block themselves.

Appendix A
Classroom use

-71-

USE OF THE EXAMPLE OPERATING SYSTEM

IN THE CLASSROOM ENVIRONMENT

This

course on

There are

operating system was designed for its use in a

the principles of design of operating systems.

two categories of such use.

First, it can be presented, either whole or piecemeal,

to the students for their examination as a case study. When

learning about the generalized aspects of operating systems,

it is useful be able to tie each of these down by seeing how

a real operating system has handled such problems.

The second category of use, however, is the more important.

After the students have studied the example operating system

and become familiar with its workings, they can be assigned

problems concerned with adding new features not included in

the original version.

Thus, one assignment may be to add a facili

detection and prevention of memory-allocation

(such a facility not currently being provided).

easier to have students add such features to an

ty for the

deadlocks

It is much

existing

Appendix A -72-
Classroom use

operating system than to have them program, as it were, in a

vacuum, since their additions can easily be checked out by

running test cases which would cause, say, memory-allocation

deadlocks, and noticing whether the desired actions are

taken. Without an example operating system available, the

analogue is to construct a special grading program which

calls the students' programs as subroutines, providing them

with a pseudo-environment similar to (but not identical to)

the environment these programs would have embedded within a

real system. Provision of this type of facility becomes

quite difficult when there is of necessity a dependence on

timing (in device management, for example) or on the

behavior of the programs running on the system at the time

(with respect to some aspects of memory management and other

modules).

There has yet been little direct experience with this

system in the classroom in this regard, so there is little

information yet available. on how best to do this. Some

knowledge may be gotten from (Cor 63), a report on the CAP

classroom-oriented assembler used in 6.251 at M.I.T. in the

early sixties; certain aspects of this text are analogous

with respect to assignments given to the students.

Appendix A
Classroom use

These assignments may be broken down into

categories.

-73-

a few

Appendix A -74- Fixing minor flaws
Cl,assroom use

FIXING MINOR OPERATIONAL FLAWS

PRESENT IN THE EXISTING SYSTEM

This category includes assignments dealing with having

the students correct a minor flaw in the system, which is

not really critical, but which possibly has tricky aspects.

Currently, after using the "stop process" primitive

(routine XZ), the stopped process cannot be restarted by the

"start process" primitive (routine XY), since the stopped

process might be in the middle of the "leave smc section"

primitive (routine XCOM) stopped waiting on a semaphore

which no other process will ever access (at to why, see the

appropriate documentation). An assignment to test for such a

condition in the "start process" routine would test the

students' basic understanding of the system and its data

bases.

Currently, semaphores are not usable directly by user

programs (although messages can be utilized to provide the

same operational capability). This is because certain system

information, a pointer to the PCB of the first process

waiting on the semaphore, is stored in the semaphore itself.

Therefore, if a semaphore could be stored in the user's

partition, this pointer's integrity could not be guaranteed.

Appendix A
Classroom use

-75- Fixing minor flaws

Thus, the

call the

pass only

partition

arguments.

facility

synchroniz

point for

user's req

semaphore

requests.

apart fro

awareness

implemente

system currently allows only system

"P" and "V' routines, and these call

system semaphores,

routines to

ing routines

stored outside of any user's

and accessible only by system routines, as

The students could be assigned to provide a

usable by the user's programs for semaphore-type

ation. Basically, it would have to have an entry

creating semaphores in a system area , at the

uest, and passing back a name for the created

to be used in future pseudo-P and pseudo-V

The basic thing the students would get from this,

m gaining a familiarity with P and V, would be an

of the problems of memory allocation, as

d within this system, since full records will have

to be kept of what name is associated with what semaphore,

and also of what semaphores were allocated by the user's

programs, so that these can be freed at the end of the job.

This bookkeeping serves to get the student down into the

details very quickly.

The system

One assignment

expect another

USER:username,

which this work

as now implemented performs no accounting.

is for the students to modify the system to

field on the $JOB card, of the form

where username is the name of the user to

is to be charged. At the end of the job, an

Appendix A
Classroom use

-76- Fixing minor flaws

accounting tailsheet is printed containing the username, the

resources used, and the total cost. As an adjunct to this

problem, the students could be given basic information on

what a 370/155 and its peripheral devices cost per month,

what paper supplies cost, what an operator costs per hour

and what types of functions he must perform for each job,

and then asked to develop various pricing schemes

implementing various goals for the installation at which

this pricing scheme would be implemented. The paper by

Nielson (Nie 70) is a helpful collateral reading in this

regard.

And then there are small bugs noticed in the system

during its development but left in

the student. These serve probab

category. As an example, it is

interrupt might be pending when

traffic controller because of,

operation on a semaphore with value

is scheduled and begins running,

runout trap right off, even though

process. This is perhaps not crucia

inelegant: it tends to undermin

process is. A simple test will corr

for

ly

PO

say

0.

it

it

I

e

ect

possible problems for

best in the warm-up

ssible that a timer

process goes to the

I, performing a "P"

When the next process

will get the timer

was meant for the last

but it is certainly

the notion of what a

this one.

Another inelegancy in the system is caused by the large

Appendix A
Classroom use

-77- Fixing minor flaws

number (4) of save areas in the PCB; these save areas

together take up the vast majority of the PCB's space. (A

bit of history is perhaps in order here: during the

development of the system it was decided that perhaps

certain modules might neeed to call each other recursively,

or at least in very complicated

whereby any system routine

automatic storage, in the PL/I

the memory allocator would be

needed space for its save are

allocator called the memory

own space in the PCB, since it

being unable to call back on th

routine needed space, since a t

any time, even in the middle o

routines

coul

the

into

cal

save

that

so

r emo

themselves

d allocate an

automatic region

that region, f

s; this explains

area, which

this facility w

deeply imbedded

ved from the PCB

needed

au toma

they

a sa

tic

wou1

pat

cou 1

styl

nece

a i

free

terns. Thus,

d allocate

e, was add

ssary to do

n the PCB.

er, which th

couldn't all

e allocator.

imer runout

f memory mana

ve area, for

area. After t

d move their

reeing that part

the "next save

of the

area"

a facility

a block of

ed. However,

this, thus it

The memory

us needed its

ocate its own,

The timer runout

could occur at

gement. And the

use before they

he allocation of

old save area

PCB up for other

pointer in the

currently unused. The problem here

no longer needed,

hat not one of the

The student could

certain amount of rethinking, devise a

is

but the scheme was

save areas coul.d be

possibly, with a

new method for save

Appendix A
Classroom use

-78- Fixing minor flaws

areas which does not use up quirte so much memory.

These small "warm-up" problems are not terribly

important as a whole, but have their pedogogical uses in

getting the students used to working on the system.

Appendix A -79- Major modifications
Classroom use

MAJOR MODIFICATIONS TO EXISTING MODULES

This category includes those changes to the system

only modifications to the now-present structure,

have major impact to the system, and are

pedogogically.

Currently, if the processes running i

start to request memory to the extent of

ability of the memory allocator to provide

no process freeing memory, a deadlock will b

processes in the system might well be

processes, either waiting for other pro

memory, or waiting for processes which

waiting for memory. This can seriously

performance, if it does not stop the systerr

could be assigned one of two types of projec

be to detect that all processes in the syst

blocked, and that no-one is runnable or

runnable (because there are no input-ou

currently being performed). This test,

performed by the traffic controller as z

similar test which it currently perfo

throw a randomly-selected job off

detection of a deadlock situation

which are

but which

important

n the system all

surpassing the

it, and there is

e reached. All

waiting on other

cesses to free

are themselves

degrade system

cold. A student

ts. One would

em are currently

will ever be

tput operations

which would be

n extension to a

rms, would cause it

the system. Here,

is easy, but

to

the

the

Appendix A
Classroom use

modifications

-80- Major modifications

to the system will cause problems. Currently,

the method to throw a job off the system has as part

sending a message to the supervisor process in

The problem here is that sending a message requi

to be allocated. The amount required here is

words, but would be very likely to be impossible

if we were ever to find ourselves in this p

pedogogically more important problem is that we

the traffic controller, the most basic part of

calling on the supervisor process, a section of

very far removed from it. This is a definite p

its

r es

jus

to

osI t

wou1

the

the

of it

group.

memory

t a few

satisfy

ion. A

d have

system,

system

roblem from

the viewpoint of

non-obvious.

modularity, and its resolution

Another possible student assignment associated with

memory-allocation deadlocks would be to detect partial

deadlocks. It might be that with five job streams into the

system, four of them are involved in a deadlock while the

fifth has a long compute-bound program running, which has no

current use for programs which use the memory allocator.

When it completes its compute-bound section, it might free

enough memory to allow the others to run, but it more likely

will get caught in the same deadlock. An important, but

intellectually difficult assignment would be to extend the

traffic controller to detect this type of deadlock coming

is

Appendix A
Classroom use

Major modifications

on, and deal with it as in the first deadlock problem

mentioned above (of course, all of the problems noted in

reference to that problem still apply). The specifics of

such detection would, of course, depend on the instructor;

there is certainly no easy, general solution.

Another mod

dealing with

device-allocatio

one reader and

assigned is dete

certainly not

(particularly si

on the system o

simple moreover

An assignment to

be a good one

Moreover, a rea

gained if, say,

whenever there

ification of

deadlocks,

similar

would

complexity, and also

be to improve the

n procedure. Currently, each job can request

one printer, where which device is to be

rmined before the request is made. This is

the most efficient manner of proceeding

nce there are twice as nany printers present

n which we run as there are readers!) but is

completely avoids the problem of deadlocks.

the students to improve the situation would

to test their knowledge of deadlocks.

1 improvement in system performance might be

a reader used by a job were to be released

were no more cards to be read for that job,

thus allowing a then-created supervi

process the next job (this would

supervisor process).

sor process to begin to

change the status of the

-81-

Appendix A -82- Major additions
Classroom use

MAJOR ADDITIONS TO THE EXISTING SYSTEM

There is finally the category of major additions of new

features to the system. These can, of course, take on any

form. A few representative ones are considered below.

One assignment would be to add routines to the system

to handle other types of devices, such as disk. This

assignment in itself might be of small teaching value, but

it lays the way for further assignments. The modifications

would come in the Job Stream Processor and in the device

management routines.

If there were disk management, there could then come an

assignment to, let us say, optimize the order of requests

coming in to the disk by a modification to the disk

management module. Here can be clearly seen the advantage of

having a real operating system on which to base

modifications: there is no need to write a clumsy

disk-environment simulator.

Once there is disk management, furthermore, there is

the possibility of adding a file system. Specifics of this

might vary, but it might be noticed that, from the user's

viewpoint, the fields on the $JOB card make easy provision

Appendix A -83- Major additions
Classroom use

for this.

With disk management and a simple file system (perhaps

even none at all, for simple versions) we can perform input

and output spooling. And with spooling, addition of various

job scheduling algorithms becomes a practical assignment.

Exact details here, of course, are best left to the

instructor.

Appendix B -84-
System/360

APPENDIX B

THE IBM SYSTEM/360

This appendix explains the structure of the IB

System/360 to a degree suitable to allow a reader who is

unfamiliar with the System/360 to understand the terminology

used in this thesis.

The System/360 is a general-purpose, stored-program

digital computer. Its words are 32 bits long and its bytes

are 8 bits long. Internal character coding is in EBCDIC, a

variant of BCD.

Addressing of data fields is by a 24-bit address giving

the beginning byte's address. Each 2K-byte block of memory

can have a protection key from 0-15 associated with it, used

as described below.

The main processor state register is the Program Status

Word (PSW). It stores the following.

The instruction counter, which is the address of the

byte following the current instruction.

The program/supervisor mode switch. This bit is used to

distinguish between program mode, where certain priviledged

instructions may not be executed, and supervisor mode, where

Appendix B
System/360

-85-

all instructions may be executed. The instruction to reload

the complete PSW is a priviledged instruction, as are

instructions to reload sensitive sections of the PSW, or to

reset storage keys, or to perform input/output.

The program protection key. This key is used in

conjunction with the storage protection keys mentioned

above. If it is zero, the program may access any part of

attached memory; if it is non-zero, he can access only those

sections of memory with a matching key.

A running/waiting flag. This bit indicates whether the

program is in running state (normal) or in wait state. A

program in wait state is not in execution, but is rather

waiting for the occurrence of whatever interrupts are

enab 1 ed.

Interrupt flags. These fl

inhibit, or delay interrupts,

the flags, and the nature of the

Other fields, not important

age are

depending

device.

here.

used to allow,

on the setting of

Input/output is performed by means of the "start i/o"

instruction, which specifies the device address to be used.

This instruction sends to the channel the Channel Address

Word (CAW), a word stored in a permanently-assigned address

of memory. The CAW contains the protection key to be used

by the operation, and contains the address of the first

Appendix B -86-
System/360

Channel Command Word (CCW) the channel fetches the CCW's,

which contain the operations to be performed, along with

flags to control such options as command chaining or special

interrupts.

Input/output interrupts occur when the appropriate bit

in the PSW allows them, or wait until it does. They store a

Channel Status Word (CSW) which indicates the status of the

request. Then, as on other interrupts, the old PSW is

stored, and a new PSW, stored in a permanently-assigned

location, is loaded (thus effecting a transfer).

References

REFERENCES

(Cor 63) Corbatd, F.J., Poduska, J.W., and Saltzer, J.H.,
Advanced Computer Programming: A Casa Study of_ a
Classroom Assembly Progra..m, M.I.T. Press,
Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1963.

(Cor 65) Corbat6., F.J., jet al.,.
Man-Machine System,"
FJCC), pp. 185-247.

"A
AFI PS

New Remote
Conf. Proc.

Accessed
22 (1965

(Cri 65) Crisman, P.A., ed., lb& Compatible Time-Sharing
System: A Programmer's Guide, (second edition),
M.I.T. Press, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1965.

(Dij 68) Dijkstra, E.W., "The Structure
Multiprogramming System," Comm.
1968), pp. 341-346.

of the
ACM 11,. 5

'THE'
(May,

(Don 72) Donovan,
Computer

(Han 70) Hansen, P.
System,"
238-241.

(IBM :1) IBM System
Qprating
(iBSYS),
c28-6248-7

J.J., Systems
Science Series,

B., "The Nucleus
Comm. ACM JA,

Programming,
1972.

of

Reference Library, J
System, Version I
ile Number 7090-

1966.

McGraw-Hill

a Multiprogramming
(April 1970), pp.

3 7090-7094 IubSYS
3_, System Monitor
36, Form Number

(IBM :2) IBM System Reference Library, IBM Sv
Operating System, Planning for Multipro
Witha Fixed Number of Tasks, Version HL
Hi), File Number S360-36, Form c27-6939-0.

(IBM :3) IBM System Reference Library, iBM Sy
M.V.T. Control Program Logic Summar., Fil
S360-36, Form Y28-6658-0.

stem/360
r ammi n

stem/360
e Number

Nielson, N.R.,
Resources --
13, 8 (August,

"The
Is Pr
1970),

Allocation of Computer
icing the Answer?", Comm. AIQU
pp. 467-474.

(Sal 66) Saltzer, J.H., "Traff
Computer System," M.I
(Available as Project

c Control in
T. Ph.D. Thesi
MAC Technical

a Multiplexed
s, June, 1966.
Report TR-30.)

(Nie 70)

-87-

