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ABSTRACT

Ultramicrotomy is the process of cutting specimens into submicron-thickness slices for
subsequent imaging using a scanning electron microscope (SEM). Ultramicrotomes, devices
that employ this process, have incorporated oscillations into this process to reduce the
damage done on each slice. Extensive research has been made in trying to identify the
appropriate settings: frequency, amplitude of cut, and feed speed, to maximize the
reduction of this damage. Currently, however, there exists no research that tries to
understand why the introduction of oscillations provides such a reduction in damage. To
understand the mechanics behind oscillatory orthogonal cutting, specifically in
ultramicrotomy, the frequency response of a compliant mechanism must be understood.
The frequency response of a complaint flexural stage driven by piezoelectric actuator was
measured. Using a Linear Variable Differential Transformer (LVDT) and a dynamic signal
analyzer via LabView, the frequency response of the stage was measured from 100Hz to
10000Hz. A model was then fitted to the measured response. Using this model, a
comparison between a simulated-reference response of the position of the stage to the
output response of the model showed that a controller was required to minimize the error
in the position of the stage.
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Chapter 1: Introduction

1.1 Introduction
The objective of this research is to understand the mechanics of oscillating orthogonal cutting in

ultramicrotomy. Current research details an improvement in the surface quality and minimization

in the damage of the sliced tissue when utilizing oscillating orthogonal cutting. However, there

exists no literature detailing the mechanics behind oscillating orthogonal cutting. Understanding

the mechanics behind these processes will enable engineers to reduce cutting forces and

permanent surface deformation, while improving surface quality in the devices that implement

ultramicrotomy, in order to successfully image brain samples volumes of 1 cubic cm. These

improvements will become a stepping-stone to achieving a complete human brain map via serial

sectioning. This research seeks to understand the dynamics of a compliant flexural stage that can

be utilized in understanding the mechanics behind oscillatory cuts. This research lays the

foundation in using compliant flexural stages in oscillatory cutting and provides the path for

continued research into more complicated systems, as well as understanding the dynamics of

such cuts.

1.2 Background

1.2.1 Introduction To Final Product
Figure 1, is a simple graphical representation of what this research sought to explore. A

compliant flexural stage of mass, m, is oscillating at a frequency,fo, and an amplitude, A.

Utilizing a dynamic signal analyzer and test data, we sought to determine frequency response of

the system, and how to utilize this response to design a flexural stage driven by a piezoelectric

actuator that can be used to study the mechanics of oscillatory cuts. Once the frequency response

was measured, a model was fitted to the response. A comparison between a simulated-reference
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response for the position of the stage and the output response of the model showed that a

controller is required in reducing the error of the system.

Figure 1: Drawing of the Device

I
Figure 2: Image of Final Device
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1.2.2 Current Technology & Specific Motivation
Ultramicrotomy is the process of cutting specimens into submicron-thickness slices for

subsequent imaging using a scanning electron microscope (SEM). Ultramicrotomy is

schematically similar to orthogonal cutting, and the process of taking multiple cuts on an

ultramicrotome in series is known as serial sectioning. After each layer is cut, the freshly cut

block face is imaged in an SEM; this process is repeated until the entire specimen has been sliced

and imaged. Each slice is then "stacked up," and reconstructed using software, giving a three-

dimensional representation of the specimen and the interconnections between the neurons.

10
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Figure 4: Process of Ultramicrotomy

Currently, commercial products such as the Gatan 3View use ultramicrotomy serial sectioning to

image the neural paths within the brain for volumes as large as 0.01 mm'. This machine

implements an oscillating diamond blade to reduce the surface damage, cutting forces, and

permanent deformation involved in the cutting process. Understanding, the mechanics behind

oscillatory cuts can help in developing ultramicrotomes that are able to image volumes of brain

larger than 0.01 mm', as well as higher quality slices. Such improvements could lead to

breakthroughs in the understanding of the brain and as well as the diseases that afflict, which can

result in new medical treatments that can aid the greater population.

Figure 5: Three commercial ultramicrotomes sold in the market.
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1.2.3 Larger Picture
Although the main motivation for understanding the mechanics behind such cutting process

stems from trying to improve existing ultramicrotomes, this research has implication beyond this

area. Oscillatory cutting process is not only used in slicing of brain samples in ultramicrotomy,

but as well as in surgical tools in the medical field, and, metal cutting processes involved in

several industries. Considering the medical field alone, various surgical tools, such as surgical

bone saws, employ oscillatory cuts when being operated. Understanding the mechanics these

cuts could lead to surgical tools that provide minimal damage to patient tissue during surgery,

thus minimizing patient's recovery time, and saving millions of dollars in care and treatment.

Metal cutting processes are a large component in several manufacturing industries, including

aeronautical, automotive, and electrical. With each of these industries outputting large volumes

of products a day, small improvements in the metal cutting processes involved could lead to

millions of dollars saved in energy consumption and material conserved. This research aims to

give designers a new tool that aids in the design of devices that employ oscillatory cuts in order

improve existing practices.

1.3 Prior Art
Very little work has been done in understanding the mechanics behind oscillatory cutting in

ultramicrotomy. Most of the research involving such oscillatory cuts incorporates oscillations

into ultramicrotomy to reduce the cutting artefacts in each slice: compression, crevasses and

chatter. Compression is the shortening of the slice's length parallel to the cutting direction,

resulting in an increase in the thickness of the slice with minimal change across the length

perpendicular to the cutting direction. Crevasses are a system of fractures penetrating the slice

from one side. Chatter is the periodic variation of the thickness of the slice along the cutting

12



direction[I]. These cutting artefacts create inconsistencies in the tissue slices that diminish the

accuracy provided by the 3D representation of the scanned tissue samples. According to the

research done by Daniel Studer, Ashraf Al-Amoudi, and Kasim Sader, incorporating

oscillations varying from 2kHz-4OkHz with a stroke of 20nm - 400nm minimizes any chatter and

crevassesi I] seen in the slice, and reduces compression by 15%[2]. In addition, research headed

by Hongyan Gu characterized the complete removal of chatter when cutting at a frequency

higher than 25 kHz and a cutting speed of greater than 0.2 mm/s (cutting speed is the velocity at

which the sample was feed into the oscillating blade)[3]. In most biological practices, the

understanding of the mechanics behind oscillatory cuts is not critical as long as the

improvements are seen during the process of ultramicrotomy. This could explain the limited

amount of research in trying to understand oscillatory cutting processes.
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Chapter 2: Fundamentals of Oscillatory Oblique Cutting

2.1 Orthogonal Cutting
Simple orthogonal cutting is a metal cutting process representative of the cutting mechanics in

many machining operations, such as turning, planing, and facing. In orthogonal cutting, as metal

approaches the edge of the tool, it deforms by shear. As the material shears, it plastically

deforms, creating chips that flow up the orthogonal plane, the face of the tool 14]. Given the good

approximation of orthogonal cutting for the major cutting edges in many machining operations,

several models have been created in order to understand the mechanics behind this cutting

process. Each of these models is an idealized case for the cutting process in orthogonal cutting,

and each holds its own limitations.

2.2 Merchant's Model
Merchant's model is an idealized model of the orthogonal cutting that represents the formation of

chips through the concentration of a shearing process across the primary shearing plane. In this

model, the material is considered to be homogenous via the following assumptions[4]:

1. The tool is perfectly sharp and there is no contact along the clearance face.

2. The shear surface is a plane extending upward from the cutting edge by and angle, 4.

3. The cutting edge is a straight line extending orthogonal to the direction of motion and

generates a plane surface as the work moves past it.

4. The chip does not flow to either side (i.e. plane strain).

5. The depth of cut is constant.

6. The width of the tool is greater than that of the workpiece.

7. The work moves relative to the tool with uniform velocity.

8. A continuous chip is produced with no built-up edge.

9. The shear and normal stresses along shear plane and tool are uniform.

14
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Figure 6: Figure of merchant's model for orthogonal cutting with primary shear plane, tool, and chipl4l

The model, however, fails when the workpiece is soft and not prestrain hardened before

cutting, or when the radius of the tool is of significant size relative to the undeformed chip

thickness. In these two cases, the shear plane becomes either a pie-shaped zone or an

undefined shear zone[4].

(a) (b) (c)

Figure 7: Graphical Representation of the three primary shear zones experienced in metal cutting. A) Merchant's model
for the primary shear plane. B) Pie-shaped shear zone seen when cutting soft and prestrained materials. C) Undefined
shear zone seen in metal cutting when tool has radius that significantly large relative to depth of cut[4I.
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2.2.1 Shear
In Merchant's model, the primary shear plane is defined by the shear angle, q, which is the angle

from the straight line extending from the cutting edge. This angle can be defined using the

cutting ratio, r, the ratio of the depth of cut, t, to the chip thickness, t. Given that there is no

change in the density of the material when cut, the volume of the undeformed chip equals the

volume of the chip. Thus, the cutting ratio can be defined as follows:

__ t
r= =

This is assuming that the ratio of the width of cut and the depth of cut, t, are greater than or equal

to five. By looking at the geometric relationships between the workpiece, the chip, and the

primary shear plane, the relationship between the cutting ratio and the shear angle is defined as

follows:

r = ABsink) [2]
ABCOS((P-a)

Thus, the shear angle can be defined as follows:

tan(p = rsa [3]

16



Chip

B C
Tool

Figure 8: Pictorial Representation of the geometric relationship between shear angle and the cutting ratio. a is the rake
angle, the angle from the tool face to the normal from the workpiece[4].

At the primary shear plane, the shear strain, y, experienced by the workpiece is defined by ratio

of the infinitesimal shear over the infinitesimal section of material of height Y.

Figure 9: Pictorial representation of the shear strain that occurs in orthogonal cuttingl4j.

Given the geometric relationships between the sheared infinitesimal piece of material at the

primary shear plane and tool point shown in Figure 7, the shear strain becomes:

y = = tan(k - a) + cot [4
A~Y[4

17



Where the a is the rake angle, # is the shear angle, and ly is the thickness of the shear zone.

2.2.2 Forces & Stresses
Two forces are present during orthogonal cutting: a force, R, at the interface between the tool

face and the chip, and a force, R', at the interface between the workpiece and the chip along the

shear plane. These forces can be broken down into a set of three components acting along the x

and y directions (FP and FQ, respectively), as well as normal and perpendicular to the two

interfaces of the chip (Fs and Fc respectively). Translating these forces to the point of the tool,

the composite cutting force circle is created where the R is the diameter of the circle. Thus, the

shear and friction forces, and the coefficient of friction at the two interfaces of the chip can be

defined as functions of the geometric relationships of the this diagram, and Fp and FQ.

Figure 10: Merchant's Composite Circle[41.

Given this, the mean shear and normal stresses on the shear plane can be defined as functions of

the same geometric values and the forces from the composite cutting circle in Figure 8. Thus, the

mean shear stress and the normal stress can be defined as follows, where A, is the area of the

shear plane:

18



As = bt

Fs _ (FpcosO-Fsin)sinp [6]
As bt

_ Ls = (FpCOSCP+FQSin )sin(P [7
As bt

2.2.3 Velocity Relations
In orthogonal cutting there are three velocities of importance: the velocity of the tool relative to

the work, V, the velocity of the chip relative to the tool, Vc, and the velocity of the chip relative

to the workpiece along the shear plane, Vs. When considering the kinematic principles of the

chip, these three velocities form a closed velocity diagram, shown in Figure 9.

Figure 11: Pictorial Representation of the velocity diagram|4I.

From the geometric relationship between these three velocities, the chip velocity and the shear

velocity are defined as follows:

C csin~k -

19



V = cosa V
cos(+)-a) [9]

2.2.4 Strain Rate
Using these three velocities, the strain rate can be defined as the ratio of shear per thickness of

the shear zone per unit time along the shear plane, which is equivalent to the ratio of the shear

velocity per unit thickness of the shear zone.

s= s = V 
[10]AyAt -AY

By substituting equation 9 into the equation above, the strain rate is defined by the shear angle,

the rake angle, and the velocity, V, and the thickness of the shear zone.

2.2.5 Energy Approach
In orthogonal cutting, the energy consumed per unit time is defined by the product of Fp and the

velocity, V.

U = Fv []

Dividing this total energy by the velocity, V, the depth of cut, b, and the width of cut, t, the total

energy per unit volume of metal removed, otherwise known as the specific energy, u, can be

defined as follows:

U = U = F [12]Vbt bt [2

The specific energy is an intensive value that quantifies the resistance of the material during the

cutting process. Most of this energy is consumed along the primary shear plane and the tool face.

U = Us + UF [13]

The shear energy per unit volume is defined as follows:

us s Vs = ZT. Vsn' [14]

20



The energy expended via friction per unit volume is defined as follows:

F FVc [15]
Vbt

2.3 Oblique Cutting
Oblique cutting is a variation of orthogonal cutting in which the cutting edge of the tool is at

some angle, i (inclination angle), from the direction of motion of the workpiece. This form of

cutting models the mechanics in cutting processes involving scissors, oscillating blades, and

scythes. In oblique cutting, the slice-push ratio, , a ratio of the blade displacement to the

displacement of the workpiece, is a critical parameter in minimizing the cutting forces involved

in such cuts. The slice-push ratio is obtained via the following: a) an orthogonal blade driven

sideways and down, b) when a blade is driven down workpiece at an inclination angle, c) when

the blade is driven down the workpiece at an inclination angle while moving in the same

direction parallel to the cutting edge[5].

h 

I

If

-ik

(C)

Figure 12: Three situation of oblique cutting from which the slice-push ratio existsl5l
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2.3.1 Cutting Forces
Focusing on case a in Figure 11, a blade of angle, 0, experiences two displacements, a

movement, dh, parallel to the cutting edge and a displacement, dv, perpendicular to the

blades cutting edge.

Blade

.v- dh
Cos 0/

dh dr

dv

Figure 13: Pictorial representation of the displacements seen in an orthogonal blade moving parallel and normal
to the cutting edge of the blade[5].

The resultant displacement of the offcut over the face of the tool can be defined using the

geometric relationships in Figure 11. Since the slice-push ratio is defined as the ratio of

these two displacements, the resultant displacement can be written using the slice-push

ratio.

dr = (dh)2 + (cos6) 2 + [16]

In oblique cutting, the two forces involved are Fv and H, and act parallel to the dv and dh,

respectively. During this cutting process, the work done for each increment of movement is

defined as the sum of the work expended in both directions of motion:

22



W =Vdv+ Hdh [17]

This incremental work is the amount of work required via fracture, which is defined as

Rwdv, where R is the specific work for surface separation of the material and w is the width

of the cut. As a result, the incremental work can be redefined as follows:

W = Vdv + Hdh = Rwdv [18]

When looking at the interface between the chip and the tool, the resultant force of friction

is acting in the same direction as the resultant displacement. Thus, the frictional work

expended for each displacement dr, is as follows, where p is the coefficient of friction and N

is the normal force acting on the tool face:

[19]
Wf = Ndr

By substituting for dr and N, the force normal to the cutting edge, the incremental frictional

work is redefined as follows:

W = pVJ(scosO) 2 +1dv [20]
f cosO(sinO+pcosO)

In equating the external and internal incremental works, the forces, Fv and H are defined as

follows:

Rw (1g-(y {oV ) (cos6(sinO+jysinO)) [2 1]

H RwV

Rw Rw [22]
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2.3.2 Reciprocating Blades
When dealing with reciprocating blades, the oscillations are defined as follows:

h = Asin(wt) [23]

During the reciprocation of the blade, as the workpiece is being feed to the tool, the slice-push

ratio changes in value. At the end of each oscillation the slice-push ratio become zero as the

blades comes to rest, and reaches a maximum value during the middle of the stroke. As result the

forces Fy and H become dependent on the oscillation of the blade. With this in mind the, slice-

push ratio, and the forces Fy and H can defined as follows:

h = Asinowt
V V [24]

FV 1

Rw AA(sntoo 2 [25]
S (1+sin&)t)2 -(2y +sinutcos (cose(sine+ysine))

H _ F sint [26]
Rw Rw v

24



Chapter 3: Compliant Structures
Compliant structures are a wide subset of mechanical systems that utilize the elasticity of

systems to actuate systems small displacements via an applied force. A compliant flexural

mechanism is a single-pieced structure that incorporates flexures to provide motion in the desired

directions, while providing constraints in all others. These types of systems are favorable in

precision engineering because they allow for frictionless-movement for a controlled and limited

range. These systems can be found in many several systems, including atomic force microscopes

and optical equipment, and are a big area of interest in precision engineering[6].

3.1 Compliant Flexural Systems
Compliant flexural systems utilize the elastic deformation in beam bending to provide the

desired motions. These systems are comprised of four components, an actuator the compliant

stage, the flexures, and ground, as seen in Figure 13.[7]

1

IT 2

Flexure h

L

Figure 14: 1) Pictorial Representation of the four components that comprise a complaint structure. 2)
Cantilevered Beam used to model flexure deflection[7].

Ground is the portion of the system that is fixed to the rest of the system by means of an

attachment mechanism, rivets, bolts, etc. This component of the mechanism should not

experience any movement with respect to the stage. The stage is the component of the system

that desired object is secured. The flexures are the elastic beams of the system that deflect when

25



a force is applied in the desired direction, but restrict motion in all others. The actuator is the

device that provides the force.

To understand the relationship between the deflection of the system and the force applied,

the entire system can be simplified to a mass attached to a spring connected to ground, as

seen in Figure 14.

X-

0

Figure 15: Mass-Spring model used to model complaint
flexural structures.

The spring represents the deflection of the flexure and the mass is the mass of the stage and the

desired object. When the actuator applies the force, the mass will move some displacement

dependent on the stiffness of the spring, k. Assuming a Newtonian spring, there is a positive

correlation between the force and the displacement, as seen by the following:

F = kS [27]

To find the stiffness of the idealized spring, the bending experienced the flexure must be

characterized. In this simple model, the flexure of Figure 13 is a cantilevered beam grounded at

one end and free to move at the other. Assuming a rectangular cross sectional area, the deflection

at the tip of the flexure is given by the following[8]:

26



s FL [28]
3EI

-1 [29]

E is the young's modulus of the material the flexure is composed of. The stiffness of the flexure

can be derived by rearranging S:

k 3E
0 L[30]

All compliant flexural systems can be simplified into a mass and spring model. The math

however, will vary depending on the complexity of the system.

3.2 Piezoelectric Actuators
When utilizing compliant flexural systems, the selection of the actuator is a critical step in

the design of the system. For small-scale systems, due to limitations in space, a small

actuator that can provide sufficient force to move stiff stages is required. Piezoelectric

actuators are often the choice of actuators for such systems. There are several types of

piezoelectric actuators, including stacks, plates, or benders, as shown in Figure 15.

27



Figure 16: Different Piezoelectric actuators available in the market. 1) Stacked Piezoelectric actuator. 2) Plate

Piezoelectric Actuator. 3) Bender Piezoelectric Actuator[7].

When an electric field is applied to the material of the actuator, the actuator experiences a

displacement and a force along with it. Focusing on a stacked piezoelectric actuator, the

blocking force produced by such an actuator is positively correlated to the displacement

the actuator experiences and is defined as follows [9]:

Fblock = kPAL [31]

AL, is the change in the length of the piezoelectric actuator and kp, is the stiffness of the

actuator itself, and is defined as follows:

k = [32]

A =wt [33]

E is the young's modulus of the material the actuator is made out of and, w, L, and t are all

geometric properties of the system itself, as shown in Figure 16.
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Figure 17: Diagram of Stacked Piezoelectric Actuator Geometry[71.
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Chapter 4: Assessment of Design and Theory

4.1 Vibrating Flexural Stage Design

4.1.1 Design Specifications
A flexural stage that oscillated at a frequency,f,, and an amplitude, A, was explored as a

possible design to incorporate oscillations in ultramicrotomes. In order for the stage to run

properly it needed to adhere to the requirements in Table 4.1.

Table 1: Comparison of the Desire design specifications to the actual design specifications.

Driving Frequency 1000-2000 Hz 1000-2000 Hz

SUMO in1,54 NI n 63 7
Stiffness in Z 21.5 N/micron 16.5 N/micron

Natra FTqily 200 0 Hz 5270 Hz

4.1.2 Linear Stage Design
To arrive to the optimal flexural design, FACT was implemented. By defining the freedom

space as a single line and the constraint space as five planes normal to the freedom space,

the following two concepts were conceived [10].

Figure: Final two concepts developed from
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Concept 2 was chosen as it was found to provide the same stiffness for a smaller flexure

length, implying an overall smaller stage. This is desirable, as it allows for easier

implementation of such a design in actual microtomes where space is limited. Concept 2

consisted of a set of four parallel flexures, parallel to each other. The flexure geometries

will all be the same, resulting in all eight flexures having the same stiffness. When modeling

the design as a mass-spring model, the mass is attached to two sets of parallel springs on

each side of the mass. Each of the parallel spring contains two springs in series.

A

B

Figure 18: Mass-spring model of concept 2 design.

The overall stiffness of the spring was found to be:

ka=kb =k+k [34]

1 +1 & 1 +1 [35]
k1  ka kb k 2  ka kb

Keq = k1 + k2  [36]

Given that all eight flexures have the same stiffness, the overall stiffness of the flexure is 2k.
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4.1.3 Characterization of Actuator Performance
A stacked piezoelectric actuator was chosen to actuate the stage as it has a low enough slew

time to operate at given drive frequency and can provide the desired amplitude range. The

specific stacked piezoelectric actuator chosen was the TS18-H5-104 actuator from Piezo

Systems, Inc. This actuator provides 14.5 microns of free deflection and a blocking force of

840 N. For the stage to be driven a total of ten microns, the force that the actuator produces

at such a displacement needs to be known[11]. From Figure 19, the force at a 10-micron

displacement ranges from 172-345 N. However, with actuator experiencing displacement

variations of 1 micron, the minimum force produced for a 9-micron deflection is used

throughout the design of the stage. This force is 119 N.
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4.1.4 Dynamic Design
Literature has shown that a frequency range of 2000Hz -20000Hz improved the quality of

slices in ultramicrotomy. Thus, a maximum range of 2000Hz was chosen as it is within the

aforementioned range, yet was feasible to design around given the limitations of the

piezoelectric actuator. At 2000Hz, the actuator is able to respond to the voltage at which it

is being driven. The stiffness of the stage must be chosen such that the flexure can respond

at the desired frequency when driven by the actuator. Simplifying the flexural stage into a

mass-spring model, as shown in Figure 20, the dynamics of the mass can characterized

using Newton's Second law and Hooke's Law. The damping was ignored, as the damping

found within most metals is negligible.

x0

Figure 20: Simplified mass-spring model of concept 2.

ZF = ma and Fk = kx [37]

Fp - Fk = ma [38]

F = MR + kx [39]

Given that this is the second order differential equation for an un-damped system, the

position of this equation becomes:
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x(t) = Acos(wt) where & = J [40]

With the amplitude, A, being 10 microns, and the frequency, W, being 2000Hz, for a single

oscillation the position, x (at t =0.0005s), of the stage will be 0 microns. The mass of the

stage, m, is 0.0569 kg. Thus, k can be found by moving around the solution as follows:

k = m 7 [41]

Plugging in these values gives a stiffness of 0.5N/micron. With this stiffness being two

orders of magnitude lower than the maximum stiffness of the actuator (-80N/micron), the

output force of the actuator will be used in determining stiffness of the flexure.

For a 10-micron displacement, the output point force used is 119N. For the stage to operate

within the given design requirements, the stiffness must be within 0.5-80N/micron. In

operating the stage at the desired amplitude, a 10-micron offset is required. As such, the

stiffness of the stage must not be such that piezoelectric actuator is unable to provide

sufficient force to displace the stage an additional 10 microns. The stiffness, however,

cannot be so low that unforeseen errors via machining/installation will cause the stiffness

to be below the minimum threshold of 0.5N/microns. Thus, a stiffness of 5N/microns was

chosen, as it provided a force of 50 N onto the stage, while still being 10 times larger than

the minimum threshold accounting for any errors that might occur.
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4.1.5: Flexural Stage Design

40 0

200

7!$T 1cw 47 All Dimension in
mm

25.4

Figure 21: Final Design of Stage Design Values presented are valued measured post-fabrication

Figure 21, shows the final stage design with the critical part features labeled. The exact

stiffness (-4.69 N/micron) of the system was determined via finite element analysis. Slots

where machined into the sides of the stage to allow for installation of a sensor and actuator.

4.1.6: Actuator Connection
Installation of the actuator required that the actuator experienced no shear during

operation of the stage, as any shear would cause the PZT material fail. As a result, rounded

ends were attached to the end of the actuator to ensure that if any shear were to occur the

ballpoint contact would allow rolling at the intersection. For the stage to operate within the

required specifications, it was determined that a 10-micron offset with a stiffness of

5N/micron was required. To introduce the 10-micron offset into the system, steel plates

are introduced at both ends of the actuator. Since the rounded tips introduce Hertzian

deformation, it is important to characterize such deformation. For a ball-to-plate contact

the Hertzian deformation is defined as follows:
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1

(9F2E) 6 (9F2)3[42]
\2Re~e

where Ee = 106 GPa & Re = 1000 mm

With a 10-micron offset and a stiffness of 5 N/micron, the maximum force required by the

actuator during one oscillation is 100 N. Thus, a maximum 6.78 microns of Hertzian

deformation is expected to occur. Figure 22, is a pictorial representation of the actuator

assembly.

MA.A: Length of

-o4-

D: Thickness of
Glue

Thickness of Plate

Figure 22: Pictorial Representation of Actuator Assembly.

In determining the thickness of the steel plates, the following variables in Figure 22, along

with the Hertzian deformation were used. The thickness of the bonding agent was used

experimentally to be 79 microns. Compression experienced by the bonding agent was

neglected as the molecular composition of the epoxy prevents the material from

compressing for small thicknesses; these results were verified experimentally as well.

Thus, the following relationship was determined:

C + 0.01mm = A + 2B + 2D - 2 6 Hertz [42]
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Solving for D, the plate thickness required was 0.989 mm. Figure 23, shows the final

assembled actuator.

Figure 22: Final assembled actuator installed into stage.

4.2 Dynamic Behavior
With a final stage design at hand, the electromechanical system was modeled as shown in

Figure 23. The force, Fp, is proportionally related to the voltage, e, applied to the actuator

via a constant Kp.

F=Kpe

IA

Mechanical

EU V{k V

E
Component Co

Figure 23: Simplified Model of the Electromechanical system
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Using Hooke's Law and Newton's second law, the position of the mass, can be characterized

as follows:

EF = ma [43]

Fk = kx [44]

F - F- Fpiezo = ma [45]

FP = my + (k + kp)x [46]

Given the relationship of the actuator force to the voltage, e, the force of the actuator can be

defined as follows:

F = Kp(V - KpRi) [47]

Plugging this relationship into the differential equation for the un-damped second order

system becomes a damped, as shown:

KPV = mA + K2Rk + (k + kp)x [48]

where a) = k+kp & , = Kp R [49] [50]
m 2mwn

With Kp = 6.67 N/V (from manufacture), R = 100 ohms, k = 5N/micron, kp = 80 N/micron,

and m = 56.9 g, the expected frequency of the system is that of damped second order

system, with resonance approximately at the natural frequency, indicated by the peak on

the magnitude plot and phase drop of 180 degrees at the natural frequency. This response

is shown in Figure 24.
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Figure 24: Expected frequency response of system
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Chapter 5: Validation of Design

5.1 Instrumentation and Setup
In order to measure the frequency response of the system, an MHR 025 Linear Variable

Differential Transformer (LVDT) with a Schaevitz ATA 2001 LVDT signal conditioner is

used to measure the position of the stage during operation. To properly measure the

response, the signal conditioner was calibrated via calibration setup consisting of Thorlab

25mm stage, LVDT holder, and a core couple. Figure 25, shows the assembled calibration

setup.

Figure 25: Assembled Calibration Setup

A calibration constant was measured by sweeping through a core displace of +/- 100

microns, and recording the output voltage. The output voltage was then plotted against the

core displacement. A line of best fit was applied to the data, in order to obtain the

calibration constant (slope of the line). This calibration constant was found to be 1350

microns/V.
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Figure 26: Comparison of Output Voltage to Core Displacement.

To measure frequency response of the system, a dynamic signal analyzer (DSA) on LabView

was used. The DSA measures the frequency response of the system by inputting a

sinusoidal input at given amplitude and varying frequencies, and comparing it to the output

signal measured. The DSA was set to vary the frequency of the input signal from 100Hz to

10000Hz with amplitude of 10V (corresponding to 1.5 micron displacement), sampling

data at sampling rate of 20000Hz. A National Instruments myRIO is used to interface the

from the signal conditioner to the DSA on LabView. Figure 27, shows the test setup used.
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Figure 27: Final Test Setup of Stage with LVDT sensor and signal conditioner
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Chapter 6: Results & Discussion

6.1: Experimental Results
The measured frequency response is shown in Figure 28. Comparing the expected

frequency response to the measured response, the expected damping of the system is much

higher than what is measured. In addition, the system experiences higher order resonances

occurring after the first peak that was not modeled in the expected response. Thus, a new

model was created to provide to better approximate behavior of the system.
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Figure 28:Comparison of Expected Response to Measured Response
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To characterize the fitted model, a series of pairs of poles and zeros were placed in series of

each. Each pair of pole and zero is defined as follows:

Gpole = 1
21 _)S2+Lf[51]
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Gzero 2)s2 + 2s +1 [52]

The natural frequencies were determined from the measured frequency response. The

damping ratio was iterated until the model fitted the measured response. In addition to

these poles and zeros, the +2 slope before the first resonance frequency indicates that two

zeros are present at the origin of the s-plane. Finally, a gain of 2.25x108 is added to align

the measured magnitude response to the fitted response. The fitted model is compared to

the measured response in Figure 29. The fit provides an approximately good fit to the data.

There seems to be some deviation of the fit from the measured response in the phase

response. This deviation is caused by the low signal-to-noise ratio created by the small

voltage output of the signal conditioner. Because the minimum voltage the myRIO could

read was -1 mV, the output voltage of the signal conditioner (ranging ~ +/- 5mV)

produced a very low signal-to-noise ratio when read by the myRIO.

The transfer function of the model consists of three pairs of zeros and four pairs of poles,

and is shown as follows:

2.25*1 o 8s 2 (2.5*10-7 s2+7.5*10- 5s+1)(6.2 SE10~8 s2+4.5*10-5s+1)(2.77*10~8s2+3* 10~ 5 s+1))
Gpit = ((*10-6)S2+0.0001s+1)(1.11*10-6S2+7.33*10-5s+1)(4*10-8s2+4*10-ss+1)(2.04*10-8s2+7.414*10-SS+1) [53]
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Figure 29: Comparison Fitted Model to Measured Response

Using the fit, an input sinusoidal response is simulated on Matlab. The simulated response

has a frequency of 2000Hz and amplitude of 10 microns. When introduced, the output

response of the system produces a sinusoidal output response with amplitude several of

orders of magnitude smaller than the input response. This correlates with the measured

response; at a frequency of 2000Hz, the magnitude of the system is approximately 1.3x10 3 ,

such a magnitude will drastically reduce the output of the system for any given input. In

addition, the system does not reach steady state until -0.02 seconds, at which the system

behaves like the reference signal. The system, however, at this frequency is stable as

indicated by the nyquist plot of the loop transmission, shown in Figure 31.
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Figure 31: Nyquist plot of fitted model.
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For the stage to be used in oscillatory cutting, the system needs a controller that increases

the magnitude of the system at the desired driven frequency, while still maintaining a

phase margin above zero (> 45 degrees to account for any unforeseen disturbances in the

system that might shift operating frequency) and a high enough crossover frequency (at

least an order of magnitude higher than 2000Hz to ensure that bandwidth of system is

sufficiently high enough). It should also be noted that the measured response is very noisy,

possibly creating responses in the system that do not exist. To improve on the data, the

output of the signal conditioner needs to be amplified to higher voltage to obtain better

results from the DSA from LabView. This can be done by means of a more sensitive LVDT or

use of capacitance that produces output signals in volts for micron-level displacements.
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Chapter 7: Conclusion
A flexural stage was designed with a stiffness of 4.69N/micron. The measured frequency

response of the system indicates three resonance peaks at 1000Hz, 3000Hz, and 5000Hz.

The stage met all of the desired design requirements. A fitted transfer function was shown

to provide a good model of the measured frequency response, deviating slightly at higher

frequencies. Using the fitted model, a simulated response was introduced and the output

response of the system was shown to have the same frequency, but the amplitude was

several orders of magnitude smaller. A controller is needed in order to improve the

performance of the device.

7.1 Future Work

7.1.1: Characterization of Flexural Stage Design
This research only dealt with measuring the frequency response of a flexural stage that

characterized the desired performance for a stage in use in ultramicrotomy. In order to

integrate this flexural stage design into ultramicrotomy, a smaller unit must be built and

studied. Further characterization of the model's response to external disturbances, must be

studied to ensure that stage can perform to desired specifications.

7.1.2: Implementation of a Controller
Given the performance of the system, a controller needs to be designed to improve the

performance of the system. Thus, amplification of the output signal from the signal

conditioner needs to be implemented in order to provide a more accurate measured

response.
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