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ABSTRACT

Chaotic mixing of highly viscous fluids is common in many biological and industrial processes.
This study aims to gain insight about the properties of such common processes by examining one
particular case of viscous, chaotic mixing: the rotor-oscillator flow. For some couplings of the
rotor motion with its oscillation, this flow has been shown to have coherent islands of fluid parcels
surrounded by a sea of chaos. Through finite-time Lyapunov exponent (FTLE) analysis, a roughly
optimal coupling was found. The parameters that describe this coupling are the nondimensional
oscillation amplitude c = 0.125 and frequency 2 = 0.47. In order to understand more about the
mixing of slow-moving, highly viscous fluids, these values can and will be explored
experimentally and through braid theory to further examine the regions of coherence in this
generally chaotic flow.

Thesis Supervisor: Thomas Peacock
Title: Associate Professor of Mechanical Engineering
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1. Introduction

Many biological and industrial processes rely on the effective mixing of slow-moving,

highly viscous fluids.' In order to improve upon these existing processes and perhaps engineer

new mixing devices, a more comprehensive understanding of high viscosity chaotic flows needs

to be attained. The study of such flows begins by exploring mixing environments that can be

described completely analytically. The rotor-oscillator flow is one particular example of a mixing

pattern whose governing equations have been derived and can be easily tested experimentally. The

flow, as it is explored in this study, is generated by a long, slender rotor that rotates with a constant

angular velocity and oscillates longitudinally within a wave tank. The experimental set-up for this

flow is shown in Figure 1.

oscillator

fluid
system

rotor
Figure 1: Diagram of the rotor-oscillator flow. The slender rotor spins with constant
angular velocity and oscillates longitudinally within the tank.2
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Hackborn, Ulucakli & Yuster were the first to explore the rotor-oscillator flow, but their

work focuses on a slightly different version of the flow than is used in this study.1 However, from

these equations, Weldon et al.3 went on to determine the analytical solution for the rotor-oscillator

situation depicted in Figure 1. Both the Hackborn et al. study and later work that focuses on braid

theory by Filippi2 revealed that certain couplings of the rotor angular speed with its oscillation

created an interesting flow environment that was dominated by chaotic mixing but contained some

islands of coherence. These islands are common of highly viscous chaotic flows and are defined

by Kaper & Wiggins to be regions in a flow where particles cannot enter or leave.4 Islands are

common to highly viscous chaotic flows. 4 The results of these previous works are presented in

Section 2 of this study. This unique flow with coherent islands surrounded by a sea of chaos may

be both analogous to observed viscous flows and a valuable source of inspiration for future mixing

devices.

This study focuses on the use of finite-time Lyapunov exponents (FTLE) in distinguishing

between chaotic regions of the flow and coherent ones. This analytical method is outlined in

Section 3. For many different couplings of the rotor speed with its oscillatory motion, FTLE fields

were generated and visually examined to identify the pairing that produces the desired flow

behavior. Section 4 discusses the results of these trials and the optimum coupling that was found.

In the future, these parameters will be tested experimentally and examined using braid theory to

determine both the success of the FTLE analysis and the true physical properties and potential

applications of the rotor-oscillator flow.
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2. The rotor-oscillator flow

The flow examined in this study is called the rotor-oscillator flow. It was first characterized

both theoretically and experimentally by Hackborn et al. This flow is generated in an

incompressible fluid by two moving elements: a rotor and an oscillator. It is a two-dimensional

Stokes flow, meaning it is dominated by viscous rather than inertial forces. The authors derived

the governing equations of the flow field under these assumptions and ran physical experiments to

confirm the success of their theoretical work. While their efforts are the basis for the numerical

work in this study, we use a slightly modified version of their equations, originally derived by

Weldon et al. to reflect the experimental setup depicted in Figure 1. The results of these studies

are the motivation for the parameter exploration in this work.

2.1 The Hackborn, Ulucakli & Yuster analytical solution

In the flow explored by Hackborn et al., the rotor is a cylinder of radius a rotating at an

angular speed o. This rotor lies at a position (c, 0) between two infinite parallel plates occupying

x = h and x = -h, and it extends infinitely in the z-direction. The oscillator is the plate at x = h; it

translates in the y direction with velocity given by Vcos(at). The stream function of this flow is V/.

Using the following nondimensionalization:

x y C ta2z
- _-) x, - - y, - ->__ C, - -> P,- t, '
h h h a2 w h2

and under the assumptions that the flow is in fact a Stokes flow and that the radius of the

rotor is zero, the authors determined the governing equations to be

dx al dy O +/+ C-- - -.-- , -+(1 + X) COS(At). (2)
dt ay' dt ax
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They define this nondimensional stream function to be

1
Vp = -log[F(x,y)] + G(x, k) cos(ky) dk, (3)2 fo

with

1 - 2ey/2 cos 1(x - c) + e"
F (x, y) =2 (4)

1 + 2ey/2 cos [(x + c)] + elly

and

G 2[tanh(k) cosh(kx) - x sinh(kx)]cosh(kc)
sinh(2k) + 2k

(5)
2[coth(k) sinh(kx) - x cosh(kx)]sinh(kc)

sinh(2k) - 2k

In these nondimensional governing equations, there are three important parameters: c, A,

and c. The parameter, c, is simply the nondimensionalized position of the rotor. A is the

nondimensional frequency of the oscillation of the plate. e is the nondimensional velocity

amplitude of velocity of this oscillation, which is directly proportional to the displacement

amplitude by a factor of A. These two parameters are given by

h 2 a (6)
a = &6j

and

Vh

2a2 o (7

The work of Hackborn et al. focuses on the impact of these two parameters on the behavior of the

rotor-oscillator flow.
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2.2 Experimental flow considerations

The theoretical analysis of the rotor-oscillator flow relies on four important assumptions

that Hackbom et al. needed to account for and test in their physical experiments. The first

assumption is that the flow must be a Stokes flow, meaning the Reynolds number, Re, must be

much less than one. In this particular flow, the authors define this flow parameter to be

Re = (8)
V

where v is the kinematic viscosity of the fluid. For a given selection of A and c, the rotor angular

velocity, co, and the true frequency and amplitude of oscillation, a and V/a respectively (or V for

the velocity amplitude of oscillation) are constrained by the assumption of Stokes flow. The

experimental apparatus is limited in its range of executable o, a, and V, and thus some selections

of A and -, will not be experimentally feasible.

The second assumption is that the radius of the rotor is zero. Hackborn et al. found that the

non-zero radius, a, of the real rotor did cause a significant difference between the theoretical and

experimental flows for a given parameter set. This effect was amplified for larger rotor radii. They

found, however, that even though the two flows were different, the theoretical flow generated for

the nondimensional parameter c = 0.54 was nearly the same as the experimental flow generated

for c = 0.49. By making this correction (c = 0.54) in their theoretical trials, they were able to

reliably explore the parameter space computationally before testing experimentally.

The third assumption is that the plates are infinite. The end walls of the wave tank naturally

limit the reality of this assumption, but Hackborn et al. found that their setup with wall ratio 4:1

did not create a flow significantly different from the theoretical flow with infinitely long walls.

The reality of the fourth and final assumption (that the flow continues infinitely in the z direction)

is also limited by the wave tank. In the theoretical flow, the potential effects of having a top and
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bottom fluid surface (constraining the flow in the z direction) were not accounted for. The authors

found, however, that these physical limitations did not cause significant differences between the

experimental and theoretical flows.

2.3 The modified rotor-oscillator flow

Our study focuses on an adaption of the rotor-oscillator flow that was original studied by

Weldon et al. The adaptation accounts for the difference between the Hackborn et al. experimental

apparatus and the apparatus that will be used to experimentally test the results of this study. The

primary difference between the two is that in this study, the oscillator is no longer the plate at x =

h; it is the rotor, now translating with velocity Vcos(at) while still continuing to rotate at angular

speed c>. The governing equations 3 that reflect this physical difference are

dx aOi(x, y + Esin(At)) dy ap(x, y + E sin(At))

dt ay' dt ax

where the nondimensional stream function, velocity amplitude of the oscillation, and oscillation

frequency (V/, c, and I respectively) are still defined by Equations (3)-(7).

These governing equations are natural based on the same four assumptions that Hackborn

et al. made, and we need to take similar care in testing and accounting for any differences these

might cause in the future experimental trials of this study. First, our physical flow must also meet

the criteria Re << 1. This flow number is still given by Equation (8), but in our case, h will reflect

the dimensions of our own wave tank. Given the capabilities of our experimental system

(limitations on the setting of rotor angular velocity, frequency of oscillations, and amplitude of

oscillations), we will also be constrained in the range of parameter values (A and e) we will be able

to experimentally observe. Like Hackborn et al., any result we find in our theoretical trials must

satisfy these criteria or else we will not be able to support it with experimental data.
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Filippi's work was performed on the experimental apparatus this study's results will be

tested on. Her work showed that the same correction (c = 0.54) should be made to the theoretical

trials to be able to accurately represent the experimental flow that will result in the tank with c =

0.49. Our study therefore uses c = 0.54 in all numerical trials, to ensure that the results will reflect

the physical flow when it is tested. Filippi also found that neither the finite dimensions of the

rectangular tank (2.5:1) nor the top and bottom surfaces caused significant discord between her

theoretical and experimental results. These findings suggest that our study can, in fact, be

translated and tested in the experimental system available to us.

2.4 Historical results

In their work, Hackbom et al. studied the rotor-oscillator flow using Poincard maps and

found that there were some parameter values for which the resulting flow was generally chaotic

with islands of coherence; this was not the objective of their work and thus was not explored further

in their study. Filippi discovered this same result and found, using braid theory, that a sparse

number of particles could be used to identify this qualitative behavior. This study aims to use

finite-time Lyapunov exponent (FTLE) fields to examine the rotor-oscillator flow with the

intention of identifying a parameter set for which the flow exhibits clear islands of coherence

surrounded by a sea of chaos.

3. Finite-time Lyapunov exponents (FTLE)

Unlike the works of Filippi and Hackbom et al., this study focuses on the analysis of finite-

time Lyapunov exponents (FTLE) fields to examine the rotor-oscillator flow. The FTLE of a given

point in a flow is a single number indicating how sensitive the trajectory of a particle starting at
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that point is to its initial conditions; it is thus a measure of how chaotic the flow is expected to be

at that point.

In this study, the FTLE is calculated at a particular point (xy) in a flow by numerically

advecting four particles from positions 5 Ao: (x+zx/2, y), Bo: (x-Ax/2, y), Co: (x, y+Zy/2), and Do:

(x, y-Ay/2). In these numerical trials, Ax and Ay are taken to be 10-5. The particles were advected

over a time window, At, using Equation (9) and the Runge-Kutta method with time step 0.1. Given

Equation (9)'s dependence of the parameters X and c, the positions Af, Bf, Cf, and Df of the particles

after advection will also depend on these parameters. From these final particle positions, the

gradient of the flow map at the original point, VFAt(x, y), is calculated by this relation: 5

[XAJ - XBf XCf - XD 1
VFAt(x, y) = _f yx . YD 1  (10)

Ax Ay .

This gradient is itself a measure of how much the particle trajectory from (x, y) is influenced

by small displacements, but it is not yet a good measure of chaos given its matrix format and its

basis in the Cartesian frame. 4 The next step towards calculating the FTLE is to compute the right

Cauchy-Green strain tensor, CAt (x, y), by the following relation:5

CAt = VFTVF (11)

This strain tensor provides a new measure of chaos that is no longer rooted in the Cartesian

frame, and its largest eigenvalue, 2(where 0 < Ai < A2), measures the magnitude of the maximum

divergence of two particles in the flow starting near point (x, y) over the time window At. Note that

Ai and {2 are eigenvalues of the Cauchy-Green strain tensor, whereas A is the nondimensional

frequency of oscillation in the flow. The finite-time Lyapunov exponent (FTLE) for the time

window A t is then computed as follows: 5
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FTLE = 1log42). (12)
2At

The FTLE represents how divergent the flow field is at (x, y). Higher FTLE values represent higher

sensitivity to initial conditions, and likely more chaotic flow.

In this study, FTLEs are calculated for 100,000 points on a grid of positions in the relevant

domain of the rotor-oscillator flow that is realizable with the available experimental system (x

ranging from -I to 1 and y ranging from -2.5 to 2.5). The FTLEs are then mapped to a color gradient

and plotted by their position in the domain. Given the dependence of the FTLE value on At, the

maximum FTLE and thus the color scale are also primarily dictated by the time window selected

for the trial. Figure 2 shows an example of an FTLE map created in this study for the rotor-

oscillator flow when c = 0, meaning it is steady with no oscillatory motion.

0.12

2 0.1

1 "0.08

0 0.06

-1 0.04

-2 50.02

-1 -0.5 0 0.5 1 0
x

Figure 2: A steady flow FTLE field. The color map of the FTLE values for the rotor-
oscillator flow when c = 0 taken over a 120 unit time window.

The warmer colors represent areas of higher FTLE, more chaotic regions, while the cooler colors

represent areas of lower FTLE, less chaotic, more coherent regions. This steady case has two areas

of very low FTLE that seem to constitute coherent islands, in what resemble two butterfly wings
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centered near (0, -1) and (0, 1). These wings are surrounded by areas of generally low FTLE values.

By generating FTLE maps for different parameter sets, this study aims to detect these coherent

islands, regions of low FTLE, but islands that are surrounded by a chaotic sea, high FTLE values

that fill the nearby domain. FTLE maps are an easily digested, visual tool that will allow the desired

flow behavior to be identified.

4. Results

In this study, FTLE fields were generated for nondimensional frequencies, A, ranging from

/60 to 4w and velocity amplitudes of oscillation, c, from 0.005 to 1. FTLE values were calculated

for a grid of particles of resolution 0.01 for the relevant domain of the flow (x ranging from -1 to

1 and y ranging from -2.5 to 2.5). Trials were performed for several different time windows, but

much of the comparisons were performed for FTLE fields calculated over a 120 unit time window.

Of the different parameter sets that were tested, the FTLE field for A= 0.4w and E= 0.125 had the

clearest coherent islands that were nested in a generally chaotic flow.

4.1 Trials with varying frequency of oscillation

With E = 0.125, FTLE fields were generated for ten different nondimensional frequencies

of the oscillation, , ranging from /60 to 4w. Small frequencies on the order of 0.1 and large

frequencies on the order of 10 both seemed to exhibit coherent behavior similar to the steady flow

case shown in Figure 2. At intermediate frequencies on the order of 1, the flow appeared to be

overall chaotic. In the transition from intermediate and large values of the nondimensional

frequency, an FTLE field was observed that matched the desired characteristics, regions of low

FTLE surrounded by overall high FTLE regions.
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For small values of A on the order of 0.1, the rotor-oscillator FTLE field resembles that of

the steady state flow (where e is 0). Figure 3 compares the FTLE field for A equal to (a) X/30 and

(b) z/60 for a 120 unit time window. The steady flow case is presented in Figure 2.

.12 0.12

2 .1 2 0.1

1 10.08 1 0.08

S0 0.06 -0 0.06

-1 0.04 .1 0.04

-2 .02 -0.02

-1 -0.5 0 0.5 1 Io -1 -0.5 0 0.5 1 o
x X

(a) (b)
Figure 3: FTLE fields for small A. The color maps of the FTLE values for the rotor-
oscillator flow with c = 0.125 over a 120 unit time window. The frequencies of oscillation
are (a) A = 7/30 (~0.10) and (b) = 7r/ 6 0 (-0.05).

All three of these FTLE fields are populated with areas of low FTLE outside of the region

surrounding the rotor centered at (0.54, 0). This suggests that the flow is generally coherent rather

than chaotic. Like the steady flow, there appear to be coherent islands that make up the two

butterfly wings again centered near (0, -1) and (0, 1), but still, they are not surrounded by a sea of

chaos. The flow with slower oscillations, A equal to x/60, has clearer regions of low FTLE and

more closely resembles that of the steady flow. This result is expected because slowing down the

oscillations infinitely should essentially produce the steady state flow.
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For large values of A on the order of 10, the rotor-oscillator flow also exhibits ordered flow

that has qualitative similarities to the steady state flow. Figure 4 shows the FTLE field for A equal

to (a) 27 and (b) 47. Recall again that the steady state flow is depicted in Figure 2.

0.12 0.12

2 .1 2 .1

1 0.08 1 0.08

0 0.06 0 .06

-1 0.04 -1 0.04

-2 0.02 -2 .02

-1 -0.5 0 0.5 1 0 -1 -0.5 0 0.5 1
x x

(a) (b)
Figure 4: FTLE fields for large 2. The color maps of the FTLE values for the rotor-
oscillator flow with E = 0.125 over a 120 unit time window. The frequencies of oscillation
are (a) 2 = 27 (-6.28) and (b) 2 = 47r (-12.57).

Like in the low frequency and steady state cases, the two butterfly wings appear near (0, -1) and

(0, 1). Similarly, outside of the flow near the rotor, the FTLE field is all low valued, meaning the

flow is generally coherent. The difference between these FTLE fields and those of small A is

primarily evident in the flow near the rotor. For 2= 4r, this area is much more chaotic than it was

in the (near) steady state cases. However, for A = 2w, the area near the rotor is mostly composed of

low (near zero) FTLE values.

We do not believe this reflects the true behavior of the flow for these parameters but is

instead an artifact of the time-step used to approximate the particle trajectories through the Runge-

Kutta method. The error of this approximation method is larger for larger time steps and for faster

moving regions of the flow. This hypothesis was tested by generating the FTLE field for these
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same parameters but with a time-step of 0.01 rather than 0.1. The

Figure 5.

result of this trial is shown in

0.12

2 0.1

1 0.08

0 0.06

-1 0.04

-2 i0.02

-1 -0.5 0 0.5 1 10
x

Figure 5: An FTLE field for A= 27 with R-K time step = 0.01. The color map of the FTLE

values for the rotor-oscillator flow with c = 0.125 and 2 = 27 over a 120 unit time window
but using 0.01 as the Runge-Kutta time step rather than 0.1.

These improved FTLE calculations suggest that near the rotor there is a more uniform, relatively

chaotic flow rather than a completely coherent region. Note, however, that there remains an

interesting crescent moon shaped region of low FTLE contained in this area, which may or may

not also be a result of approximation error. This trial is a reminder that the Runge-Kutta time-step

can serve an important role and needs to be considered when conclusions are drawn from the

generated FTLE fields.

A "sea" of chaos only seemed to appear at intermediate frequencies of oscillation, those of

order 1. Figure 6 shows the FTLE field for A equal to 0.2r.
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.0.12

0.1

0.08

0 0.06

-1 0.04

-2 0.02

-1 -0.5 0 0.5 1 [0
x

Figure 6: An FTLE field for intermediate . The color map of the FTLE values for the
rotor-oscillator flow with c = 0.125 and A = 0.27r over a 120 unit time window.

This flow has consistently high FTLE values engulfing the entire region of active flow, including

the region where previous trials have shown clear butterfly wings. The flow appears to be generally

chaotic, but the coherent islands are no longer prominent.

These results suggest that the flow transitions from being generally coherent at low

frequencies, to being generally chaotic at intermediate frequencies, and back to being coherent at

high frequencies. This study aimed to identify a value of A for which the flow exhibits regions of

coherence, like the butterfly wings in Figure 2, surrounded by a large chaotic region like that seen

at the intermediate A equal to 0.27r in Figure 6. This study examined FTLE fields for frequency

values in these two transition regions (low to intermediate values and intermediate to high values).

The FTLE field for A equal to 0.47 was generated and is shown in Figure 7.
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,0.12

0.1

1 0.08

0 0.06

-1 0.04

-2 0.02

-1 -0.5 0 0.5 1 [0
x

Figure 7: An FTLE field for A = 0.4z. The color map of the FTLE values for the rotor-
oscillator flow with e = 0.125 and A= 0.4z over a 120 unit time window.

This FTLE field falls in the frequency transition from intermediate to high values, and it does show

regions of coherence among regions of completely chaotic mixing. In addition to the butterfly

wing areas of coherence observed in previous trials, this field shows a region of low FTLE centered

near (0, 0). The presence of this third coherent island makes this parameter set particularly unique;

this nondimensional frequency value, { = 0.4r, shows the qualitative pattern desired in this study.

4.2 Trials with varying amplitude of oscillation

In order to further explore the parameter space, trials were run for each of these ten

frequencies where FTLE fields were generated for eight nondimensional velocity amplitudes of

oscillation, e, ranging from 0.005 to 1. In general, the smallest amplitude values lead to near steady

state flows, as may be expected given the rotor is almost stationary for E near zero. The largest

amplitude values lead to combinations of coherent and chaotic regions that are not easily

distinguished and defined. This section will discuss only the effects of changing amplitude on the
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FTLE fields at the frequency of interest, 2 is 0.4r, even though the other frequencies were also

examined.

Figure 8 shows FTLE fields for two representative values of e: one low (e = 0.01) and one

high (c 1). A third intermediate value of e (= 0.125) is presented in Figure 7.

0.12 0.12

20.1 20.1

1 10.08 1 0.08

0 0.06 00.06

-1 0.04 .1 0.04

-2 0.02 -2 0.02

-0.5 0 0.5 10 -1 -0.5 0 0.5 1 i0
x x

(a) (b)
Figure 8: FTLE fields for varying e. The color maps of the FTLE values for the rotor-
oscillator flow with 2 = 0.47 over a 120 unit time window. The velocity amplitudes of
oscillation are (a) c = 0.01 and (b) c = 1.

As expected, the lowest amplitude flow depicted in Figure 8 (a), on the order of C equal to 0.01,

shows the familiar, relatively coherent flow characteristic of the steady flow. It does appear more

chaotic than the steady flow chaos, but it has lost the most of the chaotic sea this study aims to

detect. The largest amplitude flow depicted in Figure 8 (b), on the order of E equal to 1, has many

regions of high and low FTLE near each other. Defined regions and shapes of coherence are not

easily identifiable in this case. The FTLE field for c equal to 0.125 (order 0.1) better exhibits the

desired flow characteristics than low or high valued amplitudes and in fact, with A= 0.47r, is the

parameter pair that best showed coherent islands surrounded by a generally chaotic flow.
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4.3 Further trials with optimum parameters

Finally, to further justify the selection e = 0.125 and ) = 0.4r, a

unit time window. The resulting FTLE field is shown in Figure 9.

-2I

-1 -0.5 0 0.5 1
x

trial was run over a 500

.025

0.02

0.015

0.01

0.005

0

Figure 9: Trial of optimal parameters for a long time window. The color map of FTLE

values for the rotor-oscillator flow with c = 0.125 and A= 0.47r over a 500 unit time window.

Even examining trajectories of particles over 100 periods of oscillation (calculating the FTLE for

this time window) does not suggest that the particles in the islands begin to diverge significantly.

The islands appear to be roughly the same size they were when the FTLE field was examined for

the 120 unit time window (shown in Figure 7). The surrounding region, however, appears to

become more uniformly chaotic. Important to note however, that all of these FTLE values are quite

small compared to those observed in a smaller time window, a natural result given the dependence

of the FTLE on At. Still, the overall result of this long time window trial supports the given

parameter value selection in producing the desired flow behavior.

More importantly, however, trials were run using a reduced time step for the Runge-Kutta

particle advections. Figure 10 (b) shows the result of a trial with time-step 0.01 for the selected
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optimal parameters and a 120 unit time window. For direct comparison to the analogous trial with

time-step 0.1, the FTLE field in Figure 7 is again presented in Figure 10 (a).

0.12 0.12

2 0.1 2 0.1

1 1.08 1 10.08

0 0.06 >, 0 W.0. 06

-1 |0.04 -1 0.04

-2 0.02 -2 0.02

-1 -0.5 0 0.5 1 0 -1 -0.5 0 0.5 1 i0
x x

(a) (b)
Figure 10: FTLE fields for optimal parameters with varying R-K time step. The color map
of the FTLE values for the rotor-oscillator flow with c = 0.125 and A = 0.47c over a 120 unit
time window using (a) 0.1 and (b) 0.01 as the Runge-Kutta time step.

These two FTLE fields are qualitatively the same everywhere except in the region near the rotor.

As with the trials in Figure 4 (a) and Figure 5, the smaller time-step appears to have reduced the

error in particle trajectories in this region, producing an FTLE field that more closely resembles

the coherent behavior expected near the rotor. The overall flow behavior, chaotic with coherent

islands, is not notably changed by this improved FTLE analysis (by reducing the time-step by a

factor of 10).

A trial was then performed with an even smaller Runge-Kutta time-step: 0.01. This FTLE

field was only generated for a 60 unit time window in order reduce the computational resources

required to perform such fine analysis. The resulting FTLE field is shown in Figure 11 (b), while

the analogous one for a 60 unit time window and a time-step of 0.1 is shown in Figure 11 (a). Both

trials were still run using e = 0.125 and A = 0.47r.
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Figure 11: A second trial using optimal parameters and varying R-K time step. The color
map of the FTLE values for the rotor-oscillator flow with e = 0.125 and ,.= 0.47 over a 60
unit time window using (a) 0.1 and (b) 0.00 1 as the Runge-Kutta time step.

Again, the two FTLE fields display the same qualitative behavior, including three coherent islands

surrounded by a generally chaotic flow. The area near the rotor again appears to more closely

resemble the expected behavior in this region for the trial with a finer time-step. Both of these

reduced time-step trials support the selection of e = 0.125 and A = 0.4w as optimal parameters for

creating a generally chaotic flow that contains isolated coherent regions.

4.4 Comparison to historical data

The resulting parameter choices (e = 0.125 and A = 0.47) of this exploratory study agree

with Filippi's work on this same flow. Her work used Poincard maps to identify the qualitative

flow behavior this study aims to detect. She then employed braid theory to detect these regions

from a sparse experimental data set. The rough results of that study propose that c = 0.125 and A

= 2.5 (slightly more than 0.4r, or 1.26) give the same qualitative behavior that this study aims to

detect. The result of the FTLE field generation for Filippi's parameters is depicted in Figure 12.
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Figure 12: An FTLE field for the Filippi parameters. The color map of FTLE values for
the rotor-oscillator flow with c = 0.125 and A = 2.5 over a 120 unit time window.

The result shows similar islands of coherence surrounded by chaos as this study's selected

parameters (shown in Figure 7). However, this study's result shows an interesting third coherent

island near (0, 0) and surrounding flow is more chaotic than in the Filippi case. The FTLE analysis

performed in this study visually reveals the qualitative behavior of the rotor-oscillator flow and

lead to the identification of parameter values (e = 0.125 and A = 0.4n) for a flow that contains

coherent islands surrounded by a sea of chaos.

4.4 Experimental parameter equivalents

The identified nondimensional parameter values, E = 0.125 and 2 = 0.47r, correspond to

physically feasible experimental parameters. The experimental apparatus that these results will be

tested on has walls a distance, 2h, of 0.1 m and a rotor radius, a, of 0.0015 m. From these physical

values and a combination of the Equations (6) and (7), the displacement amplitude of oscillation,

V/a, for these nondimensional parameters is computed to be approximately 0.0099 m, which falls

within the dimensions of the apparatus. 6 An experimentally feasible angular velocity can then be
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chosen, and using Equation (6), the frequency (and period) of oscillation, a (and T), can be

computed. Table 1 shows these calculations for several feasible angular velocities, as well as the

corresponding Reynolds numbers for flows with these parameters, where the kinematic viscosity

is taken to be 1.36 Pa-s from the properties of the fluid previously used in the experimental

apparatus by Filippi.

Table 1: Potential experimental parameters.6 The experimental parameters (rotor angular velocity,
W, oscillation period, T, and Reynolds number, Re) that correspond to the nondimensional
parameters e = 0.125 and .. = 0.4r.

w (RPM) T (min:sec) Re (rad)

200 4:25 0.045
600 1:28 0.135
800 1:06 0.180

These three potential angular velocities will produce a flow with a Reynolds number small enough

for the experimental flow to feasibly match the theoretical flow. 5 Also, the corresponding

oscillation frequencies, a, for these values of co are feasible within the experimental parameters.

Setting the rotor velocity to be 200-800 rpm, the corresponding period of oscillation to be

approximately between 1 and 4.5 minutes, and the displacement amplitude of oscillation to be

0.0099 m should yield an experimental flow that is generally chaotic with three islands of

coherence.

5. Conclusions

For some values of the nondimensional parameters e and {, the rotor-oscillator flow field

contains islands of coherence that are surrounded by a sea of chaotic mixing. Through the analysis

of FTLE fields for different parameter sets, e = 0.125 and A = 0.47 was the set that suggested the

best realization of this particular flow behavior. A was chosen to be 0.471 as it lies in the transition
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from highly chaotic flow (observed at intermediate values of A on the order 1) to highly coherent

flow (observed at large values of A on the order 10). e was chosen to be 0.125 as it also lies in a

transition from highly coherent flow at e = 0(0.01) to highly chaotic flow at e = 0(1). The analysis

was performed for several different time windows and Runge-Kutta time-steps, and the results

agree with the parameters Filippi had discovered in her work, which identified these regions using

braid theory.

The most important next step in this study is testing these theoretical parameters with our

experimental apparatus. The physical parameters that correspond to this A and e pair were

computed and found to be feasible with the available experimental system. To execute this flow

experimentally, the rotor velocity should be set in the 200-800 rpm range; the oscillation period

should correspondingly be set in the 1-4.5 minute range; and the displacement amplitude of

oscillation should be 0.0099 m. The theoretical rotor-oscillator flow for e = 0.125 and A = 0.47C

shows promise that the coming experimental trials and following braid theory analysis will in fact

reveal a flow with coherent islands in a sea of chaotic mixing.
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