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Abstract

The Korean-to-English machine translation subsystem of CCLINC (Common Coalition
Language System at Lincoln Laboratory) 1s being developed at the Information Systems
Technology Group, MIT Lincoln Laboratory This thesis focuses on the development of
a sub-module of the Korean understanding system, namely, the tokenizer and a rule-based
part-of-speech tagger The development of the morphological analyzer on the Military
Communications Messages Data Set, the Combat Briefer’s Course Manual Data Set, and
the Naval Operations Message Domain are discussed at length Experimentation on these
data sets show a need for multiple tokenization and numeric tokenization The motivations
for developing a Rule-Based Part-of-Speech tagger are discussed, as well as the experi-
mentation of this tagger on the Military Communications Messages Data Set Finally, pos-
sible future work on the Part-of-Speech Tagger and the Tokenizer are discussed.
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Chapter 1

Introduction

1.1 General Background

For over forty years, the United States military has been working jointly with the
Republic of Korea’s armed forces While bilingual translators have been used to handle
the exchange of information between the two armed forces, the scarcity of translators, as
well as the long latency of human translation, has motivated the United States military to
develop a machine translation system To this end, the Information Systems Technology
Group at Lincoln Laboratory has been developing the Common Coalition Language Sys-
tem at Lincoln Laboratory (CCLINC) under DARPA sponsorship Refer to [Weinstein et
al 1997] Using an interlingua approach to machine transiation, the English-to-Korean
subsystem of CCLINC successfully translates a broad range of military communications
messages and briefings In addition to the English to Korean translation system, the Infor-
mation Systems Technology Group has also been developing 2 Korean to English machine
translation system My research has been to develop specific submodules of this transla-
tion system, the morphological analyzer and a part-of-speech tagger The morphological
analyzer accepts Korean sentences, and tokenizes the particies from their respective root
words The tokenization routine enables the system to have a compact representation of
the lexicon and grammar, mmproving the system efficiency The morphological analyzer
has been tested on several different military corpuses, and 1s fairly robust Part-of-speech
tagging applies to the output of the morphological analyzer This routine produces the
part-of-speech sequence of the input sentence, enabling the understanding system to uti-

lize the grammar rules defined in terms of part-of-speech rather than words themselves



Since the grammar rules defined 1n terms of part-of-speech can recognize a broader range
of grammatical patterns than the grammar defined 1n terms of words, 1t will enable the sys-
tem to improve the parsing coverage Regarding the application of part-of-speech tagging
technique to English-to-Korean subsystem of CCLINC, refer to [Lee et al 1997],[Wein-

stein et al 1997], and [Park, 1998]

My thesis includes research on both the part-of-speech tagger and the morphological
analyzer However, the morphological analyzer was developed for a much greater period

of time, and this thesis will reflect that

1.2 Machine Translation

Since the early development of computers, there has been much study 1n the develop-
ment of machine translation While there have been no fully effective solutions, the Infor-
mation Systems Technology Group at Lincoln Laboratory has been able to make

substantial advances 1n developing a machine translation system

Most machine translation systems use one of three different approaches direct, trans-
fer, and interlhingua [Weinstein et al  1997], [Hutchins and Somers 1992] A direct trans-
lation system produces a word-for-word translation This approach is neffective, as the
grammar 1n two different languages 1s almost never the same For instance, a direct trans-

lation system would translate a sentence 1n the following manner

cip-eyse cassta (I slept at home)



home-at slept

In the above example and throughout the entire thesis, the Korean forms are given
Yale Romanized Hangul [Martin 1992}, a representation of Korean text in a phonetic
form that uses the Roman alphabet However, our tokenizer used a different convention
As long as the convention 1s consistent throughout the entire system, though, the actual
representation does not truly matter Thus, when we show examples of output from the

tokenizer, we will use the morphological analyzer’s own convention

While this may be of some use to a user, 1t 1s not difficult to imagine that the transla-
tion would oftentimes be inaccurate A transfer approach involves some intermediate form
of analysis, then performs a word-for-word translation While a transfer translation system
produces an output superior to that of the direct translation system, this approach still
lacks proper syntax and meaning 1n the output sentence The interlingua approach 1s fun-
damentally different from the other types of approaches Instead of a bilingual, word-for-
word transfer, the input language 1s translated nto a language- independent meaning rep-
resentation called the interlingua This iterlingua 1s then used to generate the output lan-
guage While the interlingua approach presents 1ts own set of difficulties, 1t 1s a highly
modular method, from the meaning representation, the interlingua can be translated into
any language that has a generation module The object of my research, the CCLINC sys-
tem, uses this mterlingua approach Because of this, we needed to develop solely the
Korean language understanding module, and did not need to duplicate much work that had

already been done for the English to Korean translation system

1.3 CCLINC System



Based on the interlingua approach, the machine translation part of the Speech-to
Speech Translation System operates by translating the input language nto a meaning rep-
resentation, called Semantic Frame [Tummala, et al., 1995], from which the output lan-
guage 1s generated In specific terms, we use TINA [Seneff 1992] and GENESIS [Glass et
al 1994], the language understanding and generation systems developed by the MIT Lab-
oratory for Computer Science under DARPA sponsorship The advantages of the ILT
method are numerous, with the most important one being its modularity If an understand-
ing module is developed for one language, that language can be translated into any other
language that has a generation module Also, 1f one language has a generation module, any
language that has an understanding module can be translated into that language without
the need to extensively re-write a complete translation system The tianslation system 1s

basically independent of the specific pairs of languages being translated

C41 Info &
Displays
Understanding Understanding
7~ ~N_—Y
Semantic Frame
English text or speech Korean text or speech
CCLINC
Generation Generation
Other Languages

Figure 1-1: Graphical Description of CCLINC



1.4 Thesis Goals and Results

For my thesis, I set out to accomplish two distinct goals First, I was to develop a mor-
phological analyzer for the Korean language understanding module The Korean language
differs from the English language in that oftentimes, a particle attached to a root word
determines the role the root word plays in a sentence For instance, a word with an
attached subject marker will play the role of the subject in a sentence Since the particle
can be attached to any noun phrases, and helps to identify the grammatical function
[Fromkin and Rodman 1988] of the preceding phrases, tokenization of the particle
enables the system to have a much simpler lexicon and grammar The necessity for the

morphological analyzer 1s covered 1n greater depth later in Chapter 2 of this thesis

In addition, I also set out to develop a part-of-speech tagger for the Korean under-
standing module The part-of-speech tagger allows the understanding module to deal with
a sentence containing unknown words or constructtons When an unknown word 1s
encountered during translation, the word 1s replaced with 1ts corresponding part of speech
tag The grammar of the understanding module would then be augmented to handle the

part-of-speech tags directly, resulting in an increased parsing coverage, see [Lee et al

1994] for the details

The morphological analyzer was trained on several different domains The first was
the Military Communications Messages (ARMYCOM) domain, on which a very basic
tokenization algorithm was developed. The Military Communications Messages were pro-

vided to us by CECOM via the University of Pennsylvamia For other work utilizing the



same set of data for Korean parsing, see [Park 1994], [Eged:i et al 1994], and [Dorr.
1997] The ARMYCOM domain was divided 1nto five parts of about 20 sentences each
The morphological analyzer would then be run on the first set, and the results would be
analyzed Any mis-tokenizations would then be corrected by augmenting the morphologi-
cal analyzer Once this was complete, the morphological analyzer would be trained on the

next set of approximately 20 sentences

Another domain tnat we traned the morphological analyzer on was the COBC
domain These were sentences taken from the Combat Briefer’'s Course manual This
domain consisted of nearly 200 sentences and were of a slightly different nature than the
ARMYCOM domain Again, the morphological analyzer was trained on this domain
using a stmilar technique as on the ARMYCOM domain Upon coming across the COBC
data, we decided that our basic tokenization algorithm required augmentation by imple-
menting a multi-stage tokenization scheme This domain allowed us to develop a multiple

morphological analyzer that could more accurately tokenize each word

Finally, we traimned the morphological analyzer on the MUC-II domain MUC-II cor-
pus 1s a collection of naval operational report messages from the Second Message Under-
standing Conference, which were collected and prepared by the center for Naval Research
and Development (NRaD) to support DARPA-sponsored research in message urderstand-
ing, [Sundheim 1989] Lincoln Laboratory utilized these messages for DARPA-sponsored
machine translation research About 300 sentences long, this domain allowed us to deter-
mune 1f our analyzer was prepared to deal with untrained data, and to detect flaws still in
the design This domain allowed us to detect the less evident flaws in the translation sys-

tem, and to make the tokenization algorithm even more robust

13



The part-of-speech tagger was trained on the ARMYCOM domain. The basis for the
part-of-speech tagging was the RULE-BASED Part-of-Speech tagger developed by Eric
Bnil, [Brll. 1992] and [Brill 1996], both at the University of Pennsylvania and at the

Spoken Language Systems Group at MIT Laboratory for Computer Science

This was a system designed to tag any language By training the tagger on a manually
tagged corpus, the system would develop configuration files that would e.ther tag a word
directly, or 1n the case of an unknown word, would be able to tag the unknown word from
the cues based on prefixes, suffixes, infixes, and adjacent word co-occurrences The big-
gest challznge 1n applying the tagger system to the Korean language lied in choosing the
set of tags, which will achieve the highest tagging accuracy and reduces the ambiguity of
the particular word to be tagged Developing a set of unambiguous tags was a challenging

task

In Ch 2, I will discuss some of the basic features of Korean, and the motivation for
developing a morphological analyzer Ch 3 will be dedicated to explaining the basic struc-
ture of the Korean understanding module, the tokenization algorithm behind the morpho-
logical analyzer, as well as the process by which the analyzer was trained and developed
Ch 4 will describe the motivations for developing a part- of-speech tagger, the algorithm
behind the tagger, and the training of the part of speech tagger Ch 5 will summarize the

results of this thesis



Chapter 2

Motivations for the Development of a Morphological Ana-
lyzer

2.1 Characteristics of the Korean Language

The morphological rules of a language determine how morphemes combine to form
new words [Fromkin, Rodman; 1988] The morphemes of a language are the basic units of
meaning, or the most elemental unit of grammatical form. In the English language, certain
morphemes change the meaning of a word For 1nstance, the morpheme “ly”, added as a
suffix to nouns, creates an adjective to modify other nouns, such as 1n “love” vs “lovely”
Suffixes 1n Korean often play an important role in 1dentifying the grammatical function
(e g subject, object, indirect object) of the word to which they are suffixed English deter-
mines the grammatical position of a word by either 1ts order, or by special words preced-
ing the word Korean, however, differs in that often times there are particles attached to the
end of a word to determine 1ts grammatical position The following example clearly 1llus-

trates this point

mari-ka sakwa-lul cohahanta
Mary-Nom Apple-Acc Like
“Mary likes apples”

Thus, 1in Korean, the ka, lul, and ta all serve to denote the grammatical function of the

word to which they are suffixed

The Korean language 1s distinguished from the English fanguage in many other ways

as well Certain subtle meanings do not even have a direct translation into English, an



example being that of the honorific forms of speech As 1s expected, the basic grammar of
the two languages 1s very different English 1s characterized by a Subject-Verb-Object
order, whereas the word order in Korean 1s Subject-Object-Verb Other differences

between the two languages include

1 The verb comes at the end of a clause.

sunhee-ka youlee-eykey [chak han kwen]-ul cwuessta
SunHi-nom YuRi-dat book one CL-acc gave
“SunHi gave a book to YuR1”

2 Modified verb endings denote negation

sunhee-ka youlee-eykey [chak han kwen]-ul an cwuessta
SunHi-nom YuRi-dat book one CL-acc did not give
“SunHi1 did not give a book to YuR1”

3 Noun phrases are followed by postpositions

sunhee-ka youlee-eykey [chak han kwen]-ul an cwuessta
SunHi-nom YuRi-dat book one CL-acc gave
“SunHi1 did not give a book to YuR1”

4 Modifiers precede the word that 1s modified
EePun sunhee-ka youlee-eykey [chak han kwen]-ul cwuessia
Pretty-ad) SunHi-nom Yuri-dat book one CL-acc gave

“Pretty SunH1 gave YuR1 a book ”

[Yang, D, 1996]

The most 1nteresting aspect of these differences lie 1n the postpositions that follow
noun phrases Postpositions are very similar to prepositions in English, with one obvious

difference being that they follow the noun phrase to be modified rather than precede it. In

16



addition, they assist 1n identifying the role of a word 1n a given sentence While the condi-
tion that the verb comes at the end of a sentence 1s strictly observed in most cases, there 1s

a great degree of freedom regarding the position of subject and object, as 1llustrated below.

a sunhee-ka youlee-eykey [chak han kwen]-ul senmwuihayssta
sunhee-nom youlee-dat book one CL-acc gave as a present
‘Sunhee gave a book to Youlee as a present’

b sunhee-nom [chayk han kwen]-acc youlee-dat senmwulhayssta
¢ youlee-dat sunhee-nom [chayk han kwen]-acc senmwulhayssta
d youlee-dat [chayk han kwen]-acc sunhee-nom senmwulhayssta
e. [chayk han kwen]-acc sunhee-nom youlee-dat senmwulhayssta
f [chayk han kwen]-acc youlee-dat sunhee-nom senmwulhayssta

These examples 1llustrate that for a sentence the verb of which takes three arguments,
namely, subject, object and indirect object, all six different permutations of the three argu-
ments are allowed. This has been referred to as “scrambling” Refer to [Lee 1993] for an

extenstve discussion on the scrambling phenomenon in the Korean language

While by themselves, postpositions have no meaning, when they follow a noun phrase,
they provide a relationship between their noun phrase and other words 1n the sentence.
Postpositions come 1n many different flavors Whereas many of these postpositions have a
distant English equivalent, several have no equivalent English word or particle One such
postposition 1s ka, which 1s one of the subject markers For example, the sentence “Mary

drove a car” would be written in Korean as

mary-ka cha-lul molass-ta
Mary-nom car-acc drove-declarative
“Mary drove the car”



Clearly, the postposition “ka” define’s the noun “Mary”s role as the subject Another
type of postposition that 1s entirely unique to the Korean language are the senter.ce mark-
ers For example. the “ta” at the end of the previous sentence denotes that this 1s a declara-
tive sentence If the “lass-ta” at the end of the sentence were changed to “lul-ka”, the
sentence would mean “Would Mary drive a car?”. A change of the sentence marker creates

a completely different sentence types such as declarative, imperative, interrogative, etc

Thus, by changing the suffix of a Korean word, we can get dramatically different
meanings for a the same word This poses a unique hardship on the translation system,

from which arises our motivation to develop the morphological analyzer

2.2 Motivation for the Development of a Morphological Analyzer

For any given noun or verb, the translation system should be able to understand the
meanings of the word plus any of the many particles that can be attached Thus, a simple
personal noun such as “Mary” can end up taking several different meanings depending on
the postposition To make matters worse, words can oftentimes take more than one postpo-
sition For 1nstance, cip means “house” 1n Korean To express “to the house” 1n Korean,
one would say cip-ulo To say “from the house” we would say, cipulobuthe If cip were
used as a subject, we would say, cip-1 or cip-un, depending upon what context the subject
was being mentioned If one was to include all of these different forms of “house” 1nto the
lexicon (the words of a language, 1n our case, our system’s vocabulary), the size of the lex-

1con would be staggering Most nouns can be formed with these particles, giving an 1dea



of the mefficiency of creating a lexicon that includes all the diffeient forms of a noun
Also, most verbs can have particles attached to them as well, which makes morphological

ana]y51s even more important

To this end, we developed the morphological analyzer The overall morphological ana-
lyzer includes a pre-processing stage which takes Korean characters and romanizes them,
in addition, this step removes parentheses, quotations, commas, and periods that were
deemed to be unnecessary 1n the translation Next, the analyzer includes a “tokenizer”,
which takes words, and strips off the particles attached to 1t, thereby splitting the word up

mnto 1ts basic “tokens” Thus,

cipulo (“to the house™)
would become

cp ulo

where cip denotes house, and ulo 1s the particle that denotes “to” Thus, instead of hav-
ing all the combinations of the noun cip and all the particles listed 1n table 2-1 1n the lexi-
con, we need only a single entry specifically for “house” All the particles listed 1n table 2-

I would have their own entries, and couid be analyzed separately from their root words

Even though the development of a good pre-processor 1s important for the scalability
of the system to various types of mput, my work entirely deals with the development of the
tokenizer, primarily due to time constraints With this tn mind, we proceeded to develop

the morphological analyzer
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Chapter 3

The Development of the Morphological Analyzer

3.1 General Background

As we have shown, a given word 1n the Korean langnage can have several particles
suffixed to 1t to denote 1ts grammatical function in a sentence Including i the lexicon all
instances of nouns and/or verbs with those particles suffixed to them 1s highly uneconomi-
cal, especially given that the meaning of each particle 1s regular and predictable Thus, we
developed this tokemizer to break up a word 1nto 1ts base noun or verb, and the modifying
token (See Appendix 1 for the complete code of the tokenizer) The theoretical portion of
this development included researching various Korean textbooks for all the possible parti-
cles, and developing conditions for our tokenizer If the tokenizer saw, for example ulo at
the end of a word, 1t would tokenize the preceding word and the particle. However, most
languages contain exceptions from the general rule, and Korean had a fair number of these
exceptions To account for these, we empirically determined what the exceptions are by
examining the data No Korean textbook listed every single one, and we had to experiment
with the data we had to find them While this may seem simple, exceptions seemed to crop
up 1n just about every single new data set we tokemzed An example will clanify this
greatly ttala means “follow” However, the particle la can alse be added to the end of a
word to establish its grammatical function Our tokenizer algorithm would, then, split up

ttala

into

tta la

20



considering Ra to be a particle, when 1n this case, 1t was not (Again, as we demonstration
actual output, we use the tokenizer’s romanization convention ) While our empirical
research gave us a good 1nsight into what the major exceptions were, there were always a
few that escaped detections, and became obvious only when a new data set was processed

by the tokenizer

The development of the morphological analyzer began with a basic seed program that
my thesis supervisor, Dr Young Suk Lee, provided This seed program consisted of an
algorithm to read in words, tokenize endings, and then write 1t back into a file. My task
was to take the basic particles that this seed program would recognize, and then extend 1t
to be more robust and general. By using Korean textbooks, we determined what particles
existed, and extended the code to recognize these particles, and to strip them off. By read-
ing 1n about 600 Korean sentences, with lengths varying from 5 to 20 words each, and ana-
lyzing the output, we found the inconsistencies, redundancies, and exceptions that needed
to be taken into account As of now, we have 80 general rules implemented 1nto our token-

1zer, with 26 exceptions

As we developed the tokenizer, we needed to decide exactly what particles needed to
be tokenized from their root words Our guidelines consisted of three rules First, if a word
with a particle attached could be translated into more than one English word, then we
would tokenize the ending For instance, cip-ulo would have been one word 1n any of our
data sets, but 1n English, 1t would translate to “to the house” Thus, ulo was tokemized from
the root word Second, if a particle attached to the end of a word had no English equiva-
lent, then we would tokenize 1t For instance, fa follows many verbs and acts as a sentence

marker However, there 1s no word that 1s an equivalent in the English language Thus, we

21



decided this particle would be tokenized Finally, we usually tokenized only particles such
as postpositions, which are typically closed class items. The reason 1s that closed class
items are bounded in number and their occurring positions are highly predictable Open
class items such as nouns are not bounded 1n number and their occurrences are not regular,
and therefore tokenization of open class items will resuit in a lot more conditions and side
effects than tokenization of closed class items These rules helped us determine which

words were to be tokenized, and which words were not

3.2 The System Architecture of the Korean Language Understanding
Module

The Korean Language understanding module starts with a romanization algorithm In
performing our translation, our first stage 1s pre-processing of the data, so that our transla-
tion system can perform the necessary tasks While 1t would be advantageous to our trans-
lation system 1f we had a programming language that would recognize Korean characters,
no such programs currently exist Thus, having an effective romanizer has been important
My thesis supervisor provided an excellent romanizer that has performed flawlessly
While many different methods of romanization exist, as long as one stays consistent, there
seems to be no real problem in choosing any method over another In addition, ancther
module 1n the pre-processor stripped the text of any punctuations and parenthesis, as they

were deemed unnecessary for the translation

The domains that we trained our morphological analyzer on were provided to us in the

onigmmal Hangul (Korean characiers) Our morphological analyzer takes romanized

22



Hangul, and splits up words so that the basic word and the attached morpheme, or “token”,
can be separated A specific part of the morphological analyzer, the tokenizer, performs
this 1mportant task. This output 1s then sent to the next stage, the grammatical analysis
module The grammatical analysis portion of the Korean understanding module takes the
pre-processed, tokenized sentences, and outputs an interlingua representation, called the
semantic frame Currently the Korean grammar module of the Korean-to-English transla-
tion system 1s capable of handling all of the Military Communications Messages on which
my tokemizer was trained, and 1s defined 1n terms of words Since the grammar, the rules of
which are defined 1n terms of words, 1s not easily generalizable to new types of mnput, we
need to find a way of generalizing the grammar rules to cover sentences on which the sys-
tem has not been trained The Korean part-of-speech tagger I discuss in detail in Chapter 4
will become the basis for the grammar generalization by enabling the system to take part-
of-speech sequence, rather than the word sequence, as input to the parser. Regarding the
improved parsing coverage by adopting part-of-speech tagging technique in the English
analysis module of the English-to-Korean subsystem of CCLINC, refer to [Weinstein et al

1997] and [Lee et al 1997]

To output English, we have an English language generator, that takes interlingua,
which we call semantic frame/common coalition language in our system, as the input
From there, 1t generates the equivalent statement 1n English This generator has already
been extensively developed for the English to Korean translation work While the develop-
ment of an English generator for English to Korean translation might not seem obvious,
the English generator was used to verify the accuracy of the translation -- a para-phrased
version of the meaning representation was translated back to English for the benefit of the

developers who did not understand Korean. This same generator will be used n our trans-
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lation system Figure 3-1 shows the process flow of the Korean-to-English system of

CCLINC

Korean
Text Input

English
Text Output

Language Language
orphologicall gl Understanding—-/ Semantic Generation
nalyzer with TINA Frame with GENESIS

. ;

Korean Analysis

Word Grammar English Generation
Grammar/Lexicon

Figure 3-1: Process Flow of English-to-Korean Translation

3.3 The Military Communications Messages Data (ARMYCOM Data)

The data sets we used for our empirical research came from various sources The first
was called the “Military Communications Messages” It consisted of approximately 122
sentences, which were broken up 1nto 5 data sets of about 20 sentences each We ran our
tokenizer on a data set, analyzed the output, made the necessary corrections to the token-
1zer, then proceded to analyze the next data set While we hoped for 100% accuracy 1n our
tokenization, we achieved at least 95% accuracy 1n all our data sets by the time we com-
pleted our modifications to the tokenizer Accuracy was measured by counting the total
number of words that required tokenization and then counting the number that were misto-

kenized. Errors generaliy fell into two categories The first category consisted of situations
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where the tokenizer failed to recognize that a particle should be tokenized, and would not
take any action The second category consisted of situations where the tokenizer tokenized
letters that were not supposed to be tokenized By adding up the errors, and dividing by
the total number of words that required tokenization, we had a measurement for accuracy
After the entire first data set was analyzed, we took data from the Combat Briefer’s Course
Manual, a set that contained approximately 192 sentences. This entire data set was run
through our now rather robust tokenizer, and the output analyzed This was followed by
the MUC-II data set. The analysis of the first data set proved to be an interesting challenge
that was extremely fruitful. The first data set gave us a chance to develop the rules that
behind the development of the tokenizer In addition, 1t gave us a basic framework that we
had a chance to build upon Finally, our first motivations for multiple tokenization came

from the words 1n this data set.

This first data set was broken up nto 5 subsets of approximately 22 sentences each
Each subset was nputted to the tokenizer, and the output was then analyzed Our method
of development was excruciatingly simple The theoretical aspect consisted of researching
through a Korean textbook, “Korean for International Learners” [Ihm, Hong, Chang,
1988] Noting all the morphemes that could arise, we added them into the conditions for
the tokenizer The empirical method consisted of training the tokenizer on piece of new
data Statistics were taken for the outputted data. and the tokenizer would be trained on the
data so that the accuracy rate would be much higher Then, new data would be inputted
into the tokenizer The same procedure was performed on the next subset, and continued
until the final subset was done Modifying the tokenizer was a simple 1ssue, a copy of the
code (Appendix I) shows that 1t compares the end of each word to different tokens If a

match 1s found, 1t splits the word from the token Modifying the tokenizer was basically an
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1ssue of adding 1f-then statements. The only major modification that was necessary was
adding multiple tokenization The need for this become apparent soon after the first subset

was analyzed

Our tokemzer took each word and checked 1t once to see 1f a token was attached to the
end If it found a matching token, 1t would add a space between the basic word and the
token at the end If 1t did not find a match, it would do nothing to the word In any case,
our tokenizer would go onto the next word, regardless of whether it had found a match or
not However, Korean words can have several layers of tokens just like English (e g un-
precedent-ed), and we decided that positing three levels of tokenization would be enough
in designing a tokenizer which 1s both efficient and accurate Furthermore, 1n the three lev-
els of tokens, certain particles can come only 1n certain positions To clanify this, T will
present an example “pudaytulloputheey” has these three levels of tokens “puday” i1s a
word meaning “unit”, “tul” 1s the plural marker, “loputhe” 1s a postpositional particle, and
“ey” 1s the possessive marker The original tokenizer would only recognize the “ey” and
would give an output of “pudaytulloputhe ey” whereas we desired an cutput of “puday tul
loputhe ey” Of course, an 1f-then statement could have been inserted to recognize this par-
ticular combination of tckens, but using that method, we would have had to insert if-then

statements to account for all such combinations, which would have been too numerous to

include Instead, we opted to do multiple levels of tokenization

At first glance, multiple tokenization seemed to be a trivial matter The tokenization
conditions were separated into three different groups, each corresponding to the tokeniza-
tion level upon which 1t would work The first group would tokenize the outermost token

The sccond would do the middle one, and the third routine would do the innermost How-
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ever, when this algorithm was implemented, several memory bugs occurred, and caused a
segmentation fault whenever the tokenizer was run Tracking down these elusive bugs
took about two weeks In the meantime, the tokenizer was inefficiently implemented by
using a script that would call three separate if-then statement routines, more conditions

were added or removed as necessary to each stage of tokenization

The actual analysis of the tokenizer output and modifications was a long and, at times,
tedious process. I was given a seed program by my supervisor, which I proceeded to mod-
ify This seed program was about 150 lines long Running the seed program on the first
subset garnered a 52% accuracy By modifying the tokenizer to deal with the improperly
tokenized words. we produced an output that was 95% accurate The other 5% lied 1n the
fact that we did not yet possess the ability to do multiple levels of tokenization While we
worked on the multiple stages of tokenization, we 1gnored this 5% error, and corrzcted

everything else that needed to be corrected

Proceeding onto the next data sets, we encountered nothing serious enough to dictate
that we modify the entire tokenizer program as we did for multiple tokenization. The task
merely including appending conditions, and dealing with other, relatively mrnor, prob-
lems The second data subset gave us a 57% tokenization accuracy when we applied our
tokenizer that was optimized for the first subset By appending more conditions to the

tokenizer, the accuracy on the second data subset was raised «0 95%

The third data subset produced a couple of new problems. The tokenizer that was opti-
mized for both data subsets | and 2 produced a 71% accuracy when run on the third data

subset However, after extensive modifications, we could only reach 90% accuracy The
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main reason for this problem lied in the problem of exceptions and ambiguities, as noted
previously. As such, we began to list every single exceptions and tried to find a pattern to
each (1.e , were there specific vowels before certain exceptions? Would a consonant before
a suspect particle give clues to its status?) In most cases, no such patterns were discovered,

and individual exceptions were put into the conditions of the tokenizer

We then moved onto data subset four, where we discovered that the tokenizer opti-
muzed for the previous three subsets produced an accuracy of 84% No new problems were
discovered in this set, but the need for multiple tokenization and exception/ambiguity res-
olution was seen even more clearly 1n this set By modifying the tokenizer once more, we
reached a 93% accuracy Finally, the last data subset was perhaps the most heartening. The
tokemizer needed almost no modifications, as 1t gave a 92% accuracy rate on the first pass
The fifth data subset merely strengthened the need for the multiple tokenization scheme as
well as, again, the problems with ambiguities, since most of the errors arose from these

two causes In table 3-1, we summarize our results.

Data Set Challenges Untrla:g:lcligcr;med
ARMYCOM Subset#1 52%/95%
ARMYCCM Subset #2 57%/95% o
ARI\IYCOM Subset #3 Exceptions, Ambiguities 71%/90%
ARMYCOM Subset #4 Muluple Tokens Issue 84%1/95%
ARMYCOM Subset #5 Same as #3 and #4 92%1/93%

Table 3-1: Summary of ARMYCOM data
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With the fifth data subset complete, we returned to the entire data set and re-ran the
tokemzer. We wanted to nsure that the added conditions did not have any unwanted side
effects on the previous data sets When we performed this experiment, we learned that our
tokenizer was overzealous, at times, with tokenizations While 1t still did not properly per-
form multiple tokenization, the tokenizer would split up words that had no need to be split
up Again, we looked for patterns that could be found, but there really were none, and we

merely included exceptions for all the common words that were being mistokenized

With this complete, we proceeded to work full-speed on the multiple tokenization
1ssue As described above, 1t was a frustrating process that was hampered by memory bugs
in the code At first glance, the multiple tokenization system seemed to be simple Instead
of running the tokenizer just once through the entire data set, we made three separate sub-
routines, tokenizel, tokenize2, and tokenize3, that contained morphemes that could only
be in certain positions The main program in our tokenizer merely called each tokenize
routine sequentially. Some memory mismanagement problems made this stage of develop-
ment difficult However, once multiple tokenization was perfect, we proceeded onto the

next big data set.

3.4. The Combat Briefer’s Course Manual Data Set

While the ARMYCOM domain was broken up into 5 separate sets and then analyzed,
1t was decided that the tokenizer was developed enough to attack the second data set with-
out the need for breaking up the data set This second set, taken from the Combat Briefer’s

Course Manual, had 192 sentences to be tokenized Our developmental methods were the
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same as for the Mihtary Communications Messages. However, we had already done a
fairly thorough job of implementing new morphemes through our theoretical training
methods. Thus, our focus on the development of the tokenizer for this stage was based
mainly on the same empirical method as we used in the ARMYCOM data set run the
tokenizer on the data set, take statistics, train the tokemzer (1 € , add more conditions), and

run 1t on the same data set once more and garner trained-data statistics

Our first pass on this data set, which was also our first experience with multiple token-
1zation, was a heartening experience. The statistics were excellent, our tokenization rate
was approximately 90% on the untrained data Most of the 10% of the failures were
accounted for by repeat failures on three words, tfala, neyci and sikan None of these
words should have been tokenized, but because of their endings, they were. Multiple
tokenization was the key factor in improving the tokenization accuracy, without which
would have been at least 10% lower Instances of multiple tokenization included, kuyss I
ta, seypyek 5 s1 ey Once we trained the tokenizer on this new data, we reached an accuracy
level of approximately 95% The remaining 5% resulted from certain parts of the data that
were not taken into account during training, and were inadvertently 1ignored In addition,
some of the errors resulted from the increased number of ambiguities developing from the
double tokenization scheme Improving this statistic was our primary goal in tokenizer

development

3.5 The Numeric Tokenization Subroutine
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As we trained the tokenizer on the COBC domain, we realized that we required an
algorithm to separate numbers from words For instance, 177puday means “177th Unit”
This example alone does not indicate a problem, but when we consider that the lexicon
will have to have every single instance of <number> + puday 1n order to properly translate
a given text, it 1s immediately obvious that tokenizing numbers from words 1s a necessity.

Thus, we proceeded te develop a “numeric” tokemizer

Our needs for the numeric tokenization algorithm was different from that of the regu-
lar tokemization algorithm Whereas the original tokemzation algorithm merely checked to
see 1If the last few characters matched a pattern, the numeric tokenizer needed to check
every single character 1n a word to determine 1f that character was a number. Thus, a

whole new algorithm needed to be written

The development of this algorithm was straightforward, we wrote code that cycled
through every character 1n a word, and when it detected a number followed by an alpha-
betic character, or an alphabetic character followed by a number, a space was inserted
between the two characters In addition, we had to determine at which stage of the tokeni-
zation algorithm that this new routine should be placed Should 1t go before, in between, or
after tokemze 1, tokenize2, and tokenize3? In the end, we decided that the exact placement
did not really matter as the tokemize* routines and this numeric routine did different
things, and would not nterfere with each other. Thus, I placed the numeric routine before

the tokenize routines solely to make editing the numeric routine easier

I checked that the numeric routine was performing properly by first, creating my own

data set of various random numbers and characters that were strewn together Next, I ran
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this routine on the COBC and ARMYCOM domains I encountered no problems with any
of the domains that I tested this routtne on Satisfied with the results, I decided to continue

onto the next domain

3.6 The Naval Operations Message Domain (MUC-II Data)

We decided to attempt to train the tokenizer or a final data set For this task, we chose
the MUC-II domain The MUC-II domain is unique 1n that the sentences are highly tele-
graphic The sentences 1n the two previous domains were grammatically complete The
MUC-II domain, however, was more concise, and this domain had sentences 1n which par-
ticles that were not completely necessary were dropped For instance, this sentence (from

the ARMYCOM data set -- in the tokenizer’s romanization convention)

ChoiGeun Eut JiHuiGoan BoGo Ga PilYoHa Da (The most recent report 1s needed)
would have been written 1n the MUC-II data set as

ChoiGeun JiHuiGoan Bogo PilYoHam

Thus, all the tokens that are not absolutely necessary are dropped 1n the MUC-II data
set This presented a new style of writing that our tokenizer had not dealt with before, and
we encountered a couple of major challenges In addition, this domain was much larger
than previous domains It was over 300 sentences long, and provided a plethora of data on

which to train our tokenizer
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First, the tokenizer was not prepared to deal with the endings that did not have the reg-
ular sentence markers, such as fa, ka, la, etc. Instead, the MUC-II data set had sentences
that would end 1n a nominalized form However, there were patterns such as, toim, ham,

and um that recurred frequently. Thus, we implemented this change into our tokemizer

In addition, the tokemizer was too general when 1t dealt with the morpheme ki
Whereas the previous domains had limited instances of this morpheme, the MUC-II
domain had many words that had this morpheme at the end Unfortunately, while kz can be
a postposition, 1t can also mean “ship” when attached to the end of a word As discussed
earlier, we did not want to tokenize two nouns, only particles Thus, this tokenization of ki
went against our goals, and was considered an error As the MUC-II domain had many

instances of this ambiguity, our tokenizer’s imtial performance was lackluster at best

We determined that the k: that served as a postposition usually after the morpheme ha,
which comes at the end of most verbs. With this in mind, we made a simple change to our
tokenizer, such that k&1 would be tokenized only after this morpheme, this solution resulted
1n a dramatic improvement 1n the accuracy of the tokenizer whereas prior to this change
we netted a 72% accuracy rate, this modification alone netted us a 83% accuracy rate Oth-
erwise, this domain was relatively straightforward and simple to train the tokenizer on.
And 1t has given us a more robust tokenizer prepared to deal with yet another style of writ-

ing that could be encountered 1n Korean to English translation

3.7. Major Technical Challenges and Integration of the Tokenizer into

the Korean-to-English Subsystem of CCLINC
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The development led to very few technical challenges. The only major difficuity hed
in the fact that our original seed program analyzed the data only once Unfortunately,
Korean does not exclusively have single morphemes at the end of a sentence Korean suf-
fixes come 1n many categories Subject markers, object marker, postpositions are all exam-
ples of these suffixes However, for our purposes, we came up with three types of
categories, these categories can be determined from there respective position at the end of
a word For instance, a suffix in category 1 can only come right after the base word A suf-
fix 1n category 2 can come right after the word, or after a suffix 1n category 1 Finally, a
category 3 suffix can either come right after the word, right after a category 1 suffix, or

right after a category 3 suffix

Our original tokenizer could recognize each suffix, but 1f a word contained more than
one category of suffixes, 1t would only recognize the outermost one, separate 1t from the
word, and continue onto the next word For example, a word like, pwudaytulloputhe needs
to be tokenized as* pwuday 1ul loputhe (meaning, “from the units”) Our original tokenizer
would only recognize the loputhe, and split only that off from the basic word, pwuday
(“unmit”) However, if the original was pwudaytul, 1t could recognize that tul (plural
marker) was a token to be split off from the word, and would do 1t flawlessly. Our first pro-
posal was to attempt to implement all such combinations, 1t seemed as 1f only a few suf-
fixes came 1n combinations However, as work on the ARMYCOM data continued, 1t was
apparent that there were too many different combinations to implement them all into our

if-then statements A need for a multiple-stage tokenization procedure was then estab-

lished
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Our 1f-thcn statements 1n our original tokenizer were then broken up 1nto the three cat-
egories that we discussed. Each were placed 1n their own subroutines, with category 1 suf-
fixes being n “tokenize!l”, and so forth The main program was modified to call each of
these tokenize subroutines in order While seemuingly a simple matter, our simple seed pro-
gram had grown to over 700 hnes of code. Wading through this amount of code was a new
experience for me, and took longer than needed. Table 3-2 lists the categories and the
tokens that comprise them Again, this 1s 1n the romanization convention of the tokenizer,

instead of the Yale convention .

Tokenize Subroutine Mo

Particles

tokenizel (outermost
tokens)

Myeon, InGa, nGa, Reul,
Neun, GeoNa, Myeo,
Doim, Eum, Eui, Ga, Eun,
RaDo, EuNa, nHan, Eul, I,
Goa, Jim, Ham, Im, EuNa,
Do, Go

tokenize2 (middle tokens)

EuRoBuTeo, HanTeSeo,
RoBuTeo, EGeSeo,
NeunDe, DalRa, Ggali,
HanTe, BuTeo, Gali, Jung,
EuRo, Malu, MaDa,
BoDa, ESeo, EGe, Goa,
Da, Ge, Ga, E, Ro, Oa, De,
N1

tokenize3 (1nnermost
tokens)

BeonlJjai, Nyeon, Neun,
DoRog, JuGi, Ueol, Beon,
1Ya, Geub, Ya, Deul, Seo,
J1, Yeo, Bun, IEox, Eox, Ix,
Go, 11, S1, 1, Eo

Table 3-2: Stages of Multiple Tokenization

Since our tokenizer was well-developed, we decided to integrate 1t into the larger

translation system The coding was a relatively simple 1ssue once the segmentation faults
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were dealt with The small tokenizer built into the translation system was a single subrou-
tine, 1ts coding was 1dentical to each of the subroutines tokenizel, tokemize2, and
tokenze3. To integrate the new multi-stage tokenizer, I replaced the this subroutine with
one that called each tokenize subroutine in order The tokenizer was easily introduced to

the entire translation system

3.8. Remaining Problems

Our tokenizer needs further development in many ways There are several ambiguities
that have st1ll not been resolved As of now, we have exceptions in our 1f-then conditions
for specific words such as these However, in many cases, we have three or four exceptions
that are 1n a given 1f-then statement It 1s likely that the number of exceptions will grow A
good method of finding a general rule to these exceptions needs to be found to ensure con-
sistent tokenization In addition, as was evidenced by the MUC-II domain, new exceptions

can show up at any time

In addition, there are many cases in which a decision needs to be made whether token-
1zing a given word 1s necessary For instance, when we dealt with the morpheme ki, we
had to decide whether there would be a great advantage to tokenize this morpheme 1n all
cases. Indeed, there are several examples where ki could mean “ship” when attached to a
different noun In the end, we decided this morpheme would be tokenized only when 1t
was used as a postposition This decision was based on the fact that there were not enough
different nouns that ki could follow to necessitate adding this complexity to the tokenizer

However, 1n other cases, the decision 1s more difficult, and requires more thought. This 1s

36



another problem that needs to be dealt with as we analyze more data sets, n a case-by-

case basis

These problems are paramount 1n our future work on the tokenizer In addition, we
must ensure that any new tokens discovered 1n future analyses will be included into the
tokenizer By running the tokenizer on new data sets and training the tokenizer to work
properly on these data sets, I believe we can have a working tokenizer that will be highly

accurate, and will be an effective part of our translation system
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Chapter 4

An Application of the Rule-Based Part-of-Speech Tagger
to the Korean Language

4.1 Background

The English to Korean translation system encountered difficulties when 1t relied on
domain specific grammar rules As vocabulary items were a part of the grammar rules, 1f
the transiation system encountered a new word that had not been seen before, parsing
would fail [Weinstein et al , 1997] In order to handle this problem, the group decided to
implement a two stage parsing scheme, where the first stage would continue to use
domain-specific grammar rules, 1f this failed, the system would go to the second stage, and
replace the unknown with 1ts part of speech. By using generalized grammar rules, the

parsing could be completed

Currently, the Korean analysis grammar 1s defined 1n terms of words For 1nstance, the
word for “ship” will be recognized by the grammar rule which 1s rewritten by the word for
“ship” 1tself Unfortunately, if the word for “yacht™ 1s used n the input sentence, and there
1s no grammar rule which 1s rewritten as the word for “yacht”, the system cannot parse the
sentence contamning the word for “yacht” However, the part-of-speech tagging technique
used for the English-to-Korean translation system [Weinstein et al 1997] and [Lee et al
1997] can be applied to the Korean understanding module Instead of defining the gram-

mar rules i terms of specific words, the grammar rules will be defined 1n terms of part-of-
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speech, making the translation system much more robust, as well as making the develop-

ment of grammar much more efficient

In this same spint, we decided to adapt part-of-speech tagging to the Korean to
English translation system We used the same rule-based tagger developed by E Brill
[Brill, 1992] that was used for the English to Korean translation system This tagger 1s ver-
satile 1n that 1t 1s not language specific The tagger can be trained on any language 1n the
same manner The tagger operates 1n two stages First, the words are tagged as 1f they were
standing alone In other words, the most likely tag 1s assigned to the word Next, the tagger

uses contextual clues to improve the accuracy of the tags.

The training of the system operates in two stages as well First, rules are learned to
predict the most likely tag for an unknown word For instance, in English, 1f a word ends
in “ed”, then 1t 1s most likely a past tense verb In some cases, one tag will suffice for a
word, no matter whau the context, and the word will always be tagged in that manner
Next, rules are learned to use contextual clues to improve the tagging accuracy For
instance, 1n English, a word changes from a verb to a noun if the preceding word is a
determiner The details of training the tagger are similar to this outhine A large, manually
tagged corpus, 1s assumed to exist Given this, the corpus 1s split up into two sets- the first
set 15 used to learn rules to predict the most likely tag for an unknown word. The second
set 1s used to develop rules based on contextual clues. Training scripts that are available

along with the tagger are used to train the tagger

4.2 Training the Rule Based Tagger on the Korean Language
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We decided to use the ARMYCOM data set to train the tagger for the Korean lan-
guage In order to do so, we had to produce a set of tags that were Korean specific For
example, the English trained tagger had sets of tags such as nouns (NN), verbs (VBZ), and
adjectives (JJ) that would readily transfer to Korean However, theie were many parts of
speech 1n the Korean language that had no English equivalent Thus, new tags needed to
be developed for these words and particles. This was, perhaps, the most difficult part of
developing the Korean Rule Based Part-of-Speech Tagger To come up with these new
tags, we consulted “Korean Grammar for International Learners”, which has served as our
reference text throughout our research Table 4-1 lists the tags we apphed to the various

particles

Tags Description
JJ Adjective
RB Adverb
NN Noun
FW Foreign Word
SYM Symbol
VB Verb, base form
VBD Verb, past tense
VBN Verb, gerund
VBZ Verb, past participle
VBF Verb, present tense
SCM Subordinate Clause Marker
PM Plural Marker
CM Case Marker

Table 4-1: List of Tags and Their Description
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Tags Description
SM Sentence Marker
PPM Postpositional Marker
DPN Demonstrative Pronouns
PRP Personal Pronouns
™ Tense Marker

Table 4-1: List of Tags and Their Description

With this, we manually tagged the ARMYCOM corpus We ran the scripts and rou-
tines that created the lexicon and contextual rules However, we did not have a chance to
test and train these rules on a new corpus Below are samples of our tagged corpus (again,
we are using the translation system’s romanization, as this 1s actual text used 1n our sys-

tem)

1/CD Geub/JJ JoHang/NN 103/CD JeonUiJiUeonDaiDai/NN E/PPM GoanHan/PPM
SangHoang/NN YoCheong/NN

{Speedy }/FW MoDeun/JJ YeoDan/NN Eur/CM (JiHuiGoan/NN BoGo/NN | TongSin/
NN EungDab/NN) Eul/CM EodGo/VB Sip/VB Da/SM

BoGo/NN Eul/CM DaSy/RB Hai/VB Dal/VB Ra/SM

JiHu1Goan/NN BoGo/NN Ga/PPM IbSuDoin/JJ YullHan/JJ BuDaiNN Eun/CM 149/
CD I/VB Da/SM

Future work for the tagger should include testing 1t on the COBC data set and then
training 1t on the same corpus. I believe the COBC data set 1s the next logical step as 1t 1s
stmilar to the ARMYCOM corpus and will prove to be a decent challenge for the tagger
Once this 1s complete, the MUC-II data should be used to train the tagger. I believe this

will be a greater challenge. as its very nature 1s different from the other two sets

41



Chapter 5

Future Work and Conclusions

5.1 Futuare Plans

To this point, we have available a pre-processor that romanizes Korean characters and
takes out all the unnecessary punctuations to facilitate the translation analysis. We have
also developed a fairly robust tokenizer that has been proven to work on two data sets that
total about 300 words Our future work begins with continuing the development of the
tokenizer. As has been demonstrated by the MUC-II data set, training on over 300 sen-
tences did not provide enough training to avoid common hazards I believe, however, that
an extremely robust tokenizer can be developed by continuing to train the tokenizer on

new domains

This tokemzer will then be used as part of the greater Korean language understanding
module. We have already modified it and inserted the tokenizer to run with the TINA/
GENESIS translation system Thus future goals would be to continue training the tokeni-
zation algorithm The main thrust of the development should be to find patterns in excep-
tions, such that the tokenizer would be less dependent on individual exceptions In
addition, the tokenizer needs to be re-evaluated on the ARMYCOM domain, in order to
determine what, 1f any, side effects are present from 1its constant evolution. While the
tokenizer has been re-evaluated on the COBC w...ain, no such experiment has been done
on the ARMYCOM domain The previous domains, thus, could always serve as a check,

to determine 1f any negative side effects were introduce by new conditions.
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In addition, the part of speech tagger needs to be evaluated on a new domain, and then
trained. I believe that new tags will be necessary as training continues, and old tags may
need to be re-evaluated As such, I believe a correctly functioning part of speech tagger

will be an important part of the entire translation system

5.2 Conclusion

The Speech-to-Speech Translation System has demonstrated that 1t 1s possible to
translate military text from English to Korean The versatility of the SSTS lies 1n the fact
that 1t uses InterLingua Text (ILT) to perform these translation By developing a robust
Korean understanding module, 1t 1s possible to translate Korean text into Englhish with a
fairly high degree of accuracy. As of now, we have developed a fairly robust morphologi-
cal analyzer While 1t 1s not yet perfect, I believe that continual improvements will eventu-
ally result 1n a tokenizer that can be over 90% accurate on any new domain The part of
speech tagger will require far more work Continued training of the tagger 1s necessary for

a robust system

While machine translation 1s a challenging area, these routines should assist 1n devel-
oping an effective Korean to English translation system Though translation across a gen-
eral domain s difficult, I believe this translation system will be of great assistance to

translations 1n the military domain
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Appendix A

The Tokenization Algerithm

Included below 1s the entire code for the tokenization algorithm

/*
* (c) Copyrnight 1996-1997 Massachusetts Institute of Technology Lincoln

* Laboratory Speech Systems Technology Group All Rights Reserved
*/

/* Prototype Korean Tokenization Program */

/* Seed program wiitten by Young-Suk Lee, 9/22/97 */
/* Modified extensively by Philip D. Kim 9/97-5/98 */
#include <stdlib h>

#include <stdio.h>

#include <string h>

#define LINE_LENGTH 1000

nt

string_to_list_of_tokens(char *string, char **array, int entry_point,
int maxn, char *delimiters),

char *rokenize(char *sentence);
char *tokenize2(char *sentence);
char *tokenize3(char *sentence);
char *numeric(char *sentence),
void

main(int argc, char *argv[])

{

nt 1, nsentences,
char Line[LINE_LENGTH],
FILE *1fp, *ofp,
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char *newLine,

char *outputl;
char *output2;
char *numout,

ifp = fopen(argv[1], “r”);

if ("ifp) {

fprintf(stderr, “No nput file %s\n”, argv[1]);
return;

}

for (1=0, (fgets(Line, LINE_LENGTH, ifp) '= NULL); 1-++);
fclose(ifp),

nsentences =1,

ifp = fopen(argv[1], “r”),

ofp = fopen(argv([2], “w”);

1if (lofp) {

fprintf(stderr, “No output file %s\n”, argv[2]),
return,

}
while (fgets(Line, LINE_LENGTH, ifp) '= NULL)

{

numout = numeric(Line),
outputl = tokenize(numout);
output2 = tokenize2{outputl),

newLine = tokenize3(output2),

1++,

if (1 == nsentences)

break,

fprintf(ofp, “%s\n”, newLine),
}

return,

)

int
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string_to_list_of_tokens(char *string, char **array, int entry_point,
it maxn, char *delimiters)

{

nt 1,

char *string_copy,
char *token,

string_copy = strdup(string),

token = strtok(string_copy, delimiters);

if (token == NULL) {

array[entry_point] = NULL,

free(string_copy),

return (0);

}

array[entry_point] = strdup(token),

for (1 = entry_point + 1, ((token = strtok(NULL, delimiters)) '= NULL), 1++) {
if (1 >= maxn) {

fprintf(stderr, “string_to_list_of_tokens array too small! \n”);
break,

}

array[1] = strdup(token),

}

free(string_copy),

return (1 - entry_point),

}

char *numeric(char *sentence)
{
char preceding, detect, curient, next;
int printdetect, pdkdetect,
char *tokenized,
int ichar = 0, ochar =0,
int sentlen,

sentlen = strlen(sentence),
tokenized = calloc(strlen(sentence)+100, sizeof(char)),

preceding = sentence[ichar++],

if(aichar < sentlen) current = sentence[ichar++],
tokenized{ochar++] = preceding;
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while(ichar < sentlen && (next = sentence[ichar++]) '= \0’)
{
if((preceding >= ‘0’ && preceding <= ‘9’) &&
((current >= ‘A’ && current <= ‘Z’) |l
(current >= ‘a’ && current <= ‘z’)))

{

detect = * °, printdetect = 1,
}
else printdetect = 0,
if(((preceding >= ‘a’ && preceding <= ‘z’) |l
(preceding >= ‘A’ && preceding <= ‘Z’)) &&
(current >= ‘0’ && current <= ‘9”))

{
detect = * ¢, pdkdetect = 1,

}
else pdkdetect = 0,

if ((printdetect) Il (pdkdetect))
{
tokenized[ochar++] = detect,
tokenized[ochar++] = current,

}

else tokenized[ochar++] = current,

preceding = current,
current = next,
}
sprintf(&tokenized[ochar], “%c”, next),
/* print{(“%s\n”, tokenized), */
return(tokenized),

}

char *
tokenize(char *sentence)

{

char *romanHangul, *stringCopy,
char *words[100],
char *word, *stem, newSentence[1000],
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int nwords, 1, wordLength, sentLength;

sentLength = strlen(sentence) + 1,

stringCopy = (char *) calloc(sentLength + 3, sizeof(char)),
strcpy(stringCopy, sentence),

/* stringCopy = ks2sshr(sentence), */

newSentence[0] = \0’;

nwords = string_to_list_of_tokens(stringCopy, words, 0, 100, “ \n”),
for (1 =0, 1 < nwords, 14++) {

word = words[1],

wordLength = strlen(word);

if ((wordLength > 6) && !strcmp(&word[wordLength - 5], “Myeon™)) {

word[wordLength - 5] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ *),

strcat(newSentence, “Myeon”),

strcat(newSentence, “ ),

} else 1if ((wordLength > 6) && 'strcmp(&word[wordLength - 4], “InGa”)) {

word{wordLength - 4] = \0’;

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “In”),

strcat(newSentence, “ *),

strcat(newSentence, “Ga”),

strcat(newSentence, “ ),

} else if ((wordLength > 5) &&
'strcmp(&word[wordLength - 3], “nGa”)
&& stremp(word, “NuGunGa”)) {

word[wordLength - 2] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Ga”),

strcat(newSentence, ** ),

} else if ((wordLength > 5) &&
Istrcmp(&word[wordLength - 4], “Reul)) {

word[wordLength - 4] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ *),
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strcat(newSentence, “Eul”),

strcat(newSentence, “ *);

} else if ((wordLength > 5) &&
Istrcmp(&word[wordLength - 4], “Neun”)) {

word[wordLength - 4] = \0’;

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Eun’);

strcat(newSentence, ““ ),

}else 1if {((wordLength > 5) &&
Istrcmp(&word[wordLength - 5], “GeoNa”)) {

word[wordLength - 5] = \0’;

strcat(newSentence, word),

strcat(newSentence, “ *),

strcat(newSentence, “GeoNa”),

strcat(newSentence, “ ),

}

else if ((wordLength > 5) && !strcmp(&word[wordLength - 4], “Myeo”)) {

word[wordLength - 4] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Myeo”),

strcat(newSentence, “ *),

Jelse if ((wordLength > 4) && 'strcmp(&word[wordLength - 4], “Doim”™)) {

word[wordLength - 4] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Doim”),

strcat(newSentence, “ ),

j

else if ((wordLength > 4) &&
Istrcmp(&word[wordLength - 3], “Eum”) &&
strcmp(word, “DaEum”)) {

word[wordLength - 3] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ *“),

strcat(newSentence, “Eum”),

strcat(newSentence, “ *),

} else 1f ((wordLength > 4) && !'strcmp(&word[wordLength - 3], “Ew™)) {

word[wordLength - 3] = \0’,
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strcat(newSentence, word),
strcat(newSentence, ),
strcat(newSentence, “Eu1”),
strcat(newSentence, “ );
} else 1f ((wordLength > 3) &&
('strcmp(&word[wordLength - 3], “aGa”) I
Istremp(&word[wordLength - 3], “eGa”) Il
Istrcmp(&word[wordLength - 3], “1Ga”) lI
Istrcmp(&word[wordLength - 3], “oGa”) Il
Istrcmp(&word[wordLength - 3], “uGa”))) {
word[wordLength - 2] = \0’,
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Ga”),
strcat(newSentence, “ “);
} else if ((wordLength > 4) &&
('strcmp(&word[wordLength - 4], “bEun”) li
Istrcmp(&word[wordLength - 4], “dEun”) i
'strcmp(&word[wordLength - 4], “gEun”) Il
'strcemp(&word[wordLength - 4], “hEun™) Il
Istremp(&word[wordLength - 4], “mEun™) |l
'strcmp(&word[wordLength - 4], “nEun”) Il
Istrcmp(&word[wordLength - 4], “sEun”) |l
Istrcmp(&word[wordLength - 4], “IEun”))
&& (stremp(word, “HogEun”))) {
word[wordLength - 3] = \0’,
strcat(newSentence, word).
strcat(newSentence, ““ ©);
strcat(newSentence, “Eun’);
strcat(newSentence, “ ),
} else 1f ((wordLength > 4) && 'stremp(&word[wordLength - 4], “RaDo”)) {
word[wordLength - 4] = \0”,
strcat(newSentence, word),
strcat(newSentence, “ *);
strcat(newSentence, “RaDo”};
strcat(newSentence, “ *),
} else 1f ((wordLength > 4) && 'stremp(&word[wordLength - 4], “EuNa”)) {
word[wordLength - 4] = \0’,
strcat(newSentence, word),
strcat(newSentence, * ™),
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trcat(newSentence, “EuNa”);
strcat(newSentence, “ ©);
} /* Maybe we don’t even need this condition */
/*
else 1f ((wordLength > 4) && 'stremp(&word{wordLength - 4], “Doin”)
&& stremp(word, “JeobSuDoin™)) {
word[wordLength - 4] = ‘\0’;
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Doin”),
strcat(newSentence, “ );
}*
else if ((wordLength > 4) && !'strcmp(&word[wordLength - 4], “nHan”)
&& stremp(word, “GoanHan”)) {
word[wordLength - 3] = \0’,
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Han”),
strcat(newSentence, “ ),
} else if ((wordLength > 4) &&
Istrcmp(&word{wordLength - 3], “Eul™)) {
word[wordLength - 3] = \0’;
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Eul),
strcat(newSentence, “ ),
} else 1f ((wordLength > 3) &&
('stremp(&word[wordLength - 2], “sI”) Il
Istrcmp(&word[wordLength - 2], “bI”) I
Istrcmp(&word{wordLength - 2], “dI”) Il
Istrcmp(&word[wordLength - 2], “gI™) Il
Istrcmp(&word[wordLength - 2], “mI”) Il
Istremp(&word[wordLength - 2], “nI”) Il
'stremp(&word[wordLength - 2], “1I”))) {
word[wordLength - 1] = \0’,
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Ga”),
strcat(newSentence, “ *);
} else if ((wordLength > 3) &&
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!strcmp(&word[wordLength - 3], “Eun”)

&& strcmp(word, “HogEun”)) {
word[wordLength - 3] = \0’;
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Eun”),
strcat(newSentence, “ ),

} else 1f ((wordLength > 3) && !strcmp(&word[wordLength - 3],
strcmp(word, “GyeolGoa™)) {

word[wordLength - 3] = \0’,
strcat(newSentence, word),
strcat(newSentence, “ *),
strcat(newSentence, “Goa”),
strcat(newSentence, “ *),
Jelse 1f ((wordLength > 3) && !strcmp(&word[wordLength - 3], “Jim™)) {
word[wordLength - 3] = \0’,
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Jim”),
strcat(newSentence, ““ ),
telse if ((wordLength > 3) && !stremp(&word[wordLength
word[wordLength - 3] = \0’,
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Ham”),
strcat(newSentence, “ ),
telse 1f ((wordLength > 2) && 'stremp(&word[wordLength - 2], “Im™)) {
word[wordLength - 2] = \0’,
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Im”),
strcat(newSentence, “ *“);
} else 1if ((wordLength > 2) &&
strcmp(word, “GeuReoNa”) &&
Istrcmp(&word[wordLength - 2], “Na”)
&& stremp(&word[{wordLength - 4], “EuNa”)) {
word[wordLength - 2] = \0’,
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Na”),
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strcat(newSentence, “ ),
} else if ((wordLength > 2) &&
strcmp(word, “GangDo”) &&
strcmp(word, “JeongDo”) &&
Istrcmp(&word[wordLength - 2], “Do”)) {
word[wordLength - 2] = \0’,
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Do”),
strcat(newSentence, “ ),
} else if ((wordLength > 2) && 'strcmp(&word[wordLength - 2], “Go”)
& & strcmp(word, “BoGo”)
& & stremp(word, “GeuR1Go”)
&& stremp(word, “ChamGo”)
& & stremp(word, “ChangGo”)
& & ((wordLength > 8)
&& stremp(&word[wordLength - 8], “GyeongGo™))) {
word[wordLength - 2] = \0’,
strcat(newSentence, word),
strcat(newSentence, “ ‘),

13 9
strcat(newSentence, “Go”),

strcat(newSentence, “ ),

} else {
strcat(newSentence, word),
strcat(newSentence, “ ),

}

}
free(stringCopy),
return (strdup(newSentence)),

}

char *
tokenize2(char *sentence)

{

char *romanHangul, *stringCopy,

char *words[100],

char *word, *stem, newSentence[1000],
nt nwords, 1, wordLength, sentLength,

sentLength = strlen(sentence) + 1,
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stringCopy = (char *) calloc(sentLength + 3, sizeof(char));
strcpy(stringCopy, sentence),
/* stringCopy = ks2sshr(sentence), */

newSentence[0] = \(’,

nwords = string_to_list_of_tokens(stringCopy, words, 0, 100, “\n”),
for (1 =0, 1 < nwords, 1++) {

word = words[1],

wordLength = strlen(word);

if ((wordLength > 9) && 'strcmp(&word[wordLength - 9], “EuRoBuTeo”)) {
word[wordLength - 9] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ *),

strcat(newSentence, “EuRoBuTeo”):

strcat(newSentence, “ ),

} else if ((wordLength > 8) && 'strcmp(&word[wordLength - 8], “HanTeSeo0”)) {
word[wordLength - 8] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “HanTe”);

strcat(newSentence, “ ),

strcat(newSentence, “Seo”),

strcat(newSentence, “ ),

} else if ((wordLength > 7) && 'strcmp(&word[wordLength - 7], “RoBuTeo™)) {
word[wordLength - 7] = \0’.

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “RoBuTeo”),

strcat(newSentence, “ ),

} else if ((wordLength > 6) && 'strcmp(&word[wordLength - 6], “EGeSeo™)) {
word[wordLength - 6] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “EGe”),

strcat(newSentence, “ ),

strcat(newSentence, “Seo”),

strcat(newSentence, “ ),

} else if ((wordLength > 6) && 'strcmp(&word[wordLength - 6], “NeunDe”)) {
word[wordLength - 6] = \0’,

54



strcat(newSentence, word),

strcat(newSentence, “ “);

strcat(newSentence, “NeunDe”);

strcat(newSentence, “ *);

} else if ((wordLength > 5) && 'strcmp(&word[wordLength - 5], “DalRa”)) {
word[wordLength - 5] = \0,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Dal”),

strcat(newSentence, “ ),

strcat(newSentence, “Ra”),

strcat(newSentence, “ ),

} else 1if ((wordLength > 5) && 'strcmp(&word[wordLength - 5], “EoSeo0)) {
word[wordLength - 5] = \0’°,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “EoSeo”);

strcat(newSentence, “ );

} else if {((wordLength > 5) && 'strcmp(&word[wordLength - 5], “Ggal1”)) {
word[wordLength - 5] = \0’,

Sut,at\ncwoentenuc, wunu;,

strcat(newSentence, “ ),

strcat(newSentence, “Ggal1”),

strcat(newSentence, “ ),

} else 1if ((wordLength > 5) && 'strcmp(&word{wordLength - 5], “HanTe”)) {
word[wordLength - 5] = \0’,

strcat(newSentence, word),

strcat{(newSentence, “ ),

strcat(newSentence, “HanTe”);

strcat(newSentence, “ ),

} else if ((wordLength > 5) && 'strcmp(&word[wordLength - 5], “BuTeo”)) {
word[wordLength - 5] = \0”,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “BuTeo”),

strcat(newSentence, “ ),

} else if ((wordLength > 4) && 'strcmp(&word[wordLength - 4], “Gal1”)) {
word[wordLength - 4] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ “),
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strcat(newSentence, “Gal1”);
strcat(newSentence, ““ ),

Jelse 1f ((wordLength > 4) && !strcmp(&word{wordLength - 4], “Jung”) &&
stremp(word, “GongJung™)) {

word[wordLength - 4] = \0’,

strcat(newSentence, word);

strcat(newSentence, “ ),

strcat(newSentence, “Jung”);

strcat(newSentence, “ ‘),

} else if ((wordLength > 4) &&
Istrcmp(&word[wordLength - 4], “EuRo0”)) {

word[wordLength - 4] = \0’;

strcat(newSenteince, word),

strcat(newSentence, “ ),

strcat(newSentence, “EuRo”),

strcat(newSentence, “ ),

} else 1f ((wordLength > 4) &&
Istrcmp(&word[wordLength - 4], “Malu”)) {

word[wordLength - 4] = \0’;

strcat(newSentence, word),

strcat(newSentence. “ *),

strcat(newSentence, “MalJu”),

strcat(newSentence, “ ),

} else 1f ((wordLength > 4) &&
Istrcmp(&word[wordLength - 4], “MaDa”)) {

word[wordLength - 4] = \0’;

strcat(newSentence, word);

strcat(newSentence, “ ),

sticat(newSentence, “MaDa”),

strcat(newSentence, “ ),

i e'se 1f ((wordLength > 4) &&
!Istrcmp(&word[wordLength - 4], “BoDa”)) {

word[wordLength - 4] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ *),

strcat(newSentence, “BoDa”),

strcat(newSentence, “ ),

} else if ((wordLength > 4) && 'strcmp(&word[wordLength - 4], “ESe0”)) {

word[wordLength - 4] = \0’,

strcat(newSentence, word),
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strcat(newSentence, “ ),
strcat(newSentence, “ESeo”);
strcat(newSentence, “ ),

} else 1t ((wordLength > 3) && 'strcmp(&word[wordLength - 21, “Ra”) && stremp(word,
“GeRilRa™)) {

word[wordLength - 2] = \0’,

strcat(newSentence, word);

strcat(newSentence, “ ),

strcat(newSentence, “Ra”),

strcat(newSenternce, “ ),

} else 1f ((wordLength > 3) && 'strcmp(&word[wordLength - 3], “EGe™)) {
word[wordLength - 3] = \0’;

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “EGe”),

strcat(newSentence, “ *);

} else 1f ((wordLength > 3) && 'strcmp(&word[wordLength - 3], “Goa™)) {
word[wordLength - 3] = \0’;

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Goa”),

strcat(newSentence, “ *);

} else 1f ((wordLength > 3) && !'strcmp(&word[wordLength - 2], “Da”)) {
word[wordLength - 2] = \0’;

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Da’"),

strcat(newSentence, “ ),

} else 1if ((wordLength > 3) && 'strcmp(&word[wordLength - 2], “Ge”’) && strcmp(word,
“MosHaGe")) {

word[wordLength - 2] = \0’;
strcat(newSentence. word),
strcat(newSentence, “ ),
strcat(newSentence, “Ge”),
strcat(newSentence, “ ),
} else 1f ((wordLength > 2) &&
Istrcmp(&word[wordLength - 2], “Ga”)
& & strcmp(word, “NuGunGa”)
&& stremp(word, “PyeongGa™)) {
word[wordLength - 2] = \0’;
strcat(newSentence, word),
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strcat(newSentence, * ¢),

strcat(newSentence, “Ga”),

strcat(newSentence, “ *);

} else if ((wordLength > 2) &&
Istremp(&word[wordLength - 2], “N1”)
&& stremp(word, “AN1")) {

word[wordLength - 2] = \0°,

strcat(newSentence, word),
strcat(newSentence, “ *);
strcat(newSentence, “Nr1”);
strcat(newSentence, “ ¢),

} else 1f ((wordLength > 2) && 'strcmp(&word[wordLength - 1], “E”)
&& stremp(word, “DE”)) {

word[wordLength - 1] = \0”,

strcat(newSentence, word),

strcat(newSentence, ),

strcat(newSentence, “E”),

strcat(newSentence. “ )},

} else if ((wordLength > 2) &&
Istrcmp(&word[wordLength - 2}, “Ro™)
&& stremp(word, “HoiRo”)

&& strcmp(word, “ DaiRo”)

&& strcmp(word, “ EuR0”)) {
word[wordLength - 2] = \0’,
strcat(newSentence, word),
strcat(newSentence, * ¢),
strcat(newSentence, “Ro”),
strcat(newSentence, “ ),

} else if ((wordLength > 2) && 'strcmp(&word[wordLength - 2], “Oa”)
&& stremp(word, “NaOa™)) {

word[wordLength - 2] = \0”,

strcat(newSentence, word),

strcat(newSentence, “ ),
strcat(newSentence, “0Oa”),
strcat(newSentence, “ ),

} else 1if ((wordLength > 2) &&
Istremp(&word{wordLength - 2], “De”)
&& stremp(word, “NeunDe”)) {

word[wordLength - 2] = \0’;

strcat(newSentence, word),
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strcat(newSentence, “ *‘);
strcat(newSentence, “De”),
strcat(newSentence, “ *),

} else {
strcat(newSentence, word),
strcat(newSentence, “ ),

}

}

free(stringCopy),
return (strdup(newSentence)),

}

char *
tokenize3(char *sentence)

{

char *romanHangul, *stringCopy,

char *words[100];

char *word, *stem, newSentence[1000],
nt nwords, 1, wordLength, sentLength;

sentLength = strlen(sentence) + 1,

stringCopy = (char *) calloc(sentLength + 3, sizeof(char)),
strepy(stringCopy, sentence),

/* stringCopy = ks2sshr(sentence), */

newSentence[0] = \0’;

nwords = string_to_list_of_tokens(stringCopy, words, 0, 100, “\n”),
for 1 =0, 1 < nwords, 1++) {

word = words[1],

wordLength = strlen(word),

if ((wordLength > 8) &&
Istrcmp(&word[wordLength - 8], “BeonlJja1”)) {

word[wordLength - 8] = \0’;

strcat(newSentence, word),

strcat(newSentence, “ “),

strcat(newSentence, “BeonlJjar”),
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strcat(newSentence, “ ),
} else 1if ((wordLength > 5) &&
('stremp(&word[wordLength - 6], “ONyeon”) lI
Istrcmp(&word[wordLength - 6]. “1Nyeon”) Il
Istrcmp(&word[wordLength - 6], “2Nyeon”) Il
Istrcmp(&word[wordLength - 6], “3Nyeon”) I
Istrcmp(&word[wordLength - 6], “4Nyeon”) li
Istrcmp(&word[wordLength - 6], “SNyeon”) Il
Istrcmp(&word[wordLength - 6], “6Nyeon”) Il
'strcmp(&word[wordLength - 6], “7Nyeon”) |l
'stremp(&word[wordLength - 6], “8Nyeon™) ||
'strcmp(&word[wordLength - 6], “ONyeon”))) {
word[wordLength - 5] = \0’;
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Nyeon”),
strcat(newSentence, “ ),
} else 1f ((wordLength > 5) &&
Istrcmp(&word[wordLength - 4], “Neun”)) {
wordf{wordLength - 4] = \0’;
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Neun”),
strcat(newSentence, “ ),
} else if ((wordLength > 5) &&
Istrcmp(&word[wordLength - 5], “DoRog™)) {
word[wordLength - 5] = \0’,
strcat(newSentence, word),
strcat(newSentence, “ *),
strcat(newSentence, “DoRog™),
strcat(newSentence, “ ),
} else 1if ((wordLength > 4) && 'strcmp(&word[wordLength - 4], “JuG1™)) {
word[wordLength - 4] = \0’;
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Ju”),
strcat(newSentence, ““ *),
strcat(newSentence, “G1”),
strcat(newSentence, “ ),
} else 1f ((wordLength > 4) && ('strcmp(&word[wordLength - 5], “OUeol”) Il
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!strcmp(&word[wordLength - 5], “1Ueol”) Il
Istrcmp(&word[wordLength - 5], “2Ueol”) II
Istrcmp(&word[wordLength - 5], “3Ueol”) Il
Istrcmp(&word[wordLength - 5], “4Ueoi™) |l
Istrcmp(&word[wordLength - 51, “5Ueol”) i
Istrcemp(&word[wordLength - 5], “6Ueol”) II
'strcemp(&word[wordLength - 5], “7Ueol”) Il
Istrcmp(&word[wordLength - 5], “8Ueol”) Il
'strcmp(&word[wordLength - 5], “9Ueol”))) {

word[wordLength - 4] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Ueol”),

strcat(newSentence, “ %),

} else if ((wordLength > 4) && 'strcmp(&word[wordLength - 4], “Beon™)) {

word[wordLength - 4] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Beon”);

strcat(newSentence, “ *),

} else 1f ((wordLength > 4) && !stremp{&word[wordLength - 3], “1Ya”)) {

word[wordLength - 3] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Ya”),

strcat(newSentence, “ ),

} else if ((wordLength > 4) && 'strcmp(&word[wordLength - 4], “Geub”)) {

word[wordLength - 4] = \0’,

strcat(newSentence, word},

strcat(newSentence, “ ),

strcat(newSentence, “Geub”),

strcat(newSentence, “ *),

} else 1f ((wordLength > 4) && 'stremp(&word[wordLength - 2], “Ya™)) {

word[wordLength - 2] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSenience, “Ya”),

strcat(newSentence, “ ),

} else if ((wordLength > 4) && 'stremp(&word{wordLength - 4], “Deul”)) {

word[wordLength - 4] = \0’,
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strcat(newSentence, word),

strcat(newSentence, “ *),

strcat(newSentence, “Deul”);

strcat(newSentence, ““ *“);

} else if ((wordLength > 4) &&

Istrcmp(&word[wordLength - 4], “HaGz”) Il
Istrcmp(&word[wordLength - 4], “GaG1”))
{

word[wordLength - 2] = \0’;

strcat(newSentence, word),

strcat(newSentence, *“ *),

strcat(newSentence, “Gr1”),

strcat(newSentence, ““ *),

} else 1f ((wordLength > 4) && !strcmp(&word[wordLength - 3], “Seo™)) {

word[wordLength - 3] = \0’,

strcat(newSentence, word),

strcat(newSentence, ““ *),

strcat(newSentence, “Seo”),

strcat(newSentence, ““ *),

} else 1f ((wordLength > 3) && 'strcmp(&word[wordLength - 2], “I1”)
&& strcmp(word, “Ggal1”)

&& stremp(word, “Galr’”)
&& stremp(word, “Gil1”)
&& stremp(word, “TamJi™)) {

word[wordLength - 2] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “I1”),

strcat(newSentence, ““ *“),

} else 1if ((wordLength > 3) && 'strcmp(&word[wordLength - 3], “Yeo”)

&& stremp(word, “UiHaYeo™)) {

word[wordLength - 3] = \0’,

strcat(newSentence, word),

strcat(newSentence, ““ *),

strcat(newSentence, ‘“Yeo”),

strcat(newSentence, ““ *),

} else 1f ((wordLength > 3) && ('strcmp(&word[wordLength - 4], “OBun”) ||
'strcemp(&word[wordLength - 4], “1Bun”) |l
'strcmp(&word{wordLength - 4], “2Bun”) |l
Istrcmp(&word[wordLength - 4], “3Bun”) |
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'strcmp(&word[wordLength - 4], “4Bun”) Il
Istremp(&word[wordLength - 4], “SBun”) |l
Istrcmp(&word[wordLength - 4], “6Bun™) |l
Istrcmp(&word[wordLength - 4], “7Bun”) Il
Istremp(&word[wordLength - 4], “8Bun”) Il
Istrcmp(&word{wordLength - 4], “9Bun™))) {

word[wordLength - 3] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Bun”),

strcat(newSentence, “ ‘),

}

else 1f ((wordLength > 4) && 'strcemp(&word[wordLength - 4], “IEox™)) {

word[wordLength - 4] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “I”),

strcat(newSentence, “ *),

strcat(newSentence, “Eox”),

strcat(newSentence, “ *),

}else if ((wordLength > 3) && !strcmp(&word{wordLength - 3], “Eox™)) {

word[wordLength - 3] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Eox”),

strcat(newSentence, “ ‘),

} else if ((wordLength > 3) && 'stremp(&word[wordLength - 2], “Ix™)) {

word[wordLength - 2] = \0’,

strcat(newSentence, word);

strcat(newSentence, “ ),

strcat(newSentence, “Ix”),

strcat(newSentence, ““ ),

} else 1f ((wordLength > 2) && 'strcmp(&word[wordLength - 2], “Go”)
&& stremp(word, “BoGo”)
&& stremp(word, “GeuR1Go™)

& & stremp(word, “ChamGo”)) {

word[wordLength - 2] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),

strcat(newSentence, “Go”),
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strcat(newSentence, “ *‘);

} else if ((wordLength > 2) && ('strcmp(&word[wordLength - 3], “0I1”) }i
Istrcmp(&word{wordLength - 3], “111”) II
Istrcmp(&word[wordLength - 3], “2I1”) Il
Istrcmp(&word[wordLength - 3], “311”) Il
Istremp(&word[wordLength - 3], “411”) Il
Istrcmp(&word{wordLength - 3], “5I1”) Il
Istrcrnp(&word{wordLength - 3], “611”) Il
Istrcmp(&word[wordLength - 31, “711”) |l
'strcmp(&word[wordLength - 3], “811"") lI
Istrcmp(&word[wordLength - 3], “911"))) {

word[wordLength - 2] = \0’,

strcat(newSentence, word),

strcat(newSentence, “ ),
strcat(newSentence, “I1”),
strcat(newSentence, “ ),

} else 1if ((wordLength > 2) && ('strcmp(&word[wordLength - 3], “0S1”) Il
Istrcmp(&word[wordLength - 3], “1S1”) Il
!strcmp(&word[wordLength - 3], “2S1”) i
Istrcmp(&word[wordLength - 3], “3S1”) I
Istrcmp(&word[wordLength - 3], “4S1™) Il
Istremp(&word[wordLength - 3], “5S1™) |l
Istremp(&word[wordLength - 3], “6S1”) i
'strcmp(&word[wordLength - 3], “7S1”) Il
Istremp(&word[wordLength - 3], “8S1”) Il
Istrcmp(&word[wordLength - 3], “9S17))) {

word[wordLength - 2] = \0’,

strcat(newSentence, word),

stricat(newSentence, “ *),
strcat(newSentence, “S1”’),
strcat(newSentence, ““ *),

} else if ((wordLength > 2) &&
'strcmp(&word[wordLength - 1], “T”)

& & stremp(word, “Sal”)) {
word[wordLength - 1] = \0’;
strcat(newSentence, word),
strcat(newSentence, “ ‘),
strcat(newSentence, “I”’),
strcat(newSentence, “ ),

Jelse if ((wordLength > 2) &&
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Istrcmp(&word[wordLength - 2], “Eo™)

&& stremp(word, “BaGguEo™)) {
word[wordLength - 2] = \0’;
strcat(newSentence, word),
strcat(newSentence, “ ),
strcat(newSentence, “Eo”),
strcat(newSentence, “ ),
} else {
strcat(newSentence, word),
strcat(newSentence, “ ),
}
}

free(stringCopy),
return (strdup(newSentence)),

}
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