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Abstract

Lithium-ion battery is a family of rechargeable batteries with increasing importance
that is closely related to everyone's daily life. However, despite its enormously wide
applications in numerous areas, the mechanism of lithium-ion transport within the
battery is still unclear, especially for phase separable battery materials, such as
lithium iron phosphate and graphite. Mathematical modeling of the battery dynam-
ics during charging/discharging will be helpful to better understand its mechanism,
and may lead to future improvement in the battery technology.

In this thesis, a new theoretical framework, the Cahn-Hilliard reaction (CHR)
model, is applied to model the bulk phase separation dynamics of the single inter-
calated particle in the lithium-ion battery. After a study of the efficient numerical
algorithm for solving nonlinear diffusion equations, we numerically investigate the
thermodynamics and electrokinetics of the 1D spherical CHR model with different
possible material properties in detail. We also extend the CHR model to 2D and
briefly study the effects of the surface electron-conducting coating layer.

We also work on the Marcus theory, which is demonstrated to be a better the-
oretical framework for heterogeneous electron transfer at the surface of intercalated
particles in the batteries. We provide simple closed-form approximations to both the
symmetric Marcus-Hush-Chidsey (MHC) and the asymmetric-Marcus-Hush (AMH)
models by asymptotic technique. By avoiding the numerical evaluations of the im-
proper integral in the old formulae, computing the surface reaction rate with the new
approximation is now more than 1000 times faster than before.

Thesis Supervisor: Martin Z. Bazant
Title: Professor of Chemical Engineering and Mathematics

3



4



Acknowledgments

First of all, I would like to express the most sincere appreciation to my thesis advisor,

Prof. Martin Z. Bazant, for all of his guidance, patience, inspiration and encourage-

ment throughout my PhD years. He provided me a great opportunity to freely pursue

any research project I am interested in, and his continued support and advise led me

to the right way. His enthusiasm and dedication to research also made a tremendous

impact on me.

I am also very grateful to Dr. Peng Bai, for his helps in understanding the electro-

chemical systems and studying the literature, as well as our countless discussions and

many collaborations on projects. The same thanks will go to Raymond Smith for all

discussions, collaborations and helps in writing, and Elisha Rejovitzky for discussions

on the elastic strain and 2D simulations of intercalated particles. I would also like to

acknowledge the support of my colleagues and friends in the Bazant groups.

I would like to extend my deepest appreciation to Prof. Lee DeVille, my under-

graduate thesis advisor. Our collaboration on the neural network paper starting from

2009 guided me into the magical world of mathematical research for the first time. It

is always an enjoyable time to work on this project. I would also like to acknowledge

Dr. Paul Albertus and Dr. Jake Christensen for the collaboration on the numerical

PDE algorithm project, which serves as the starting point and the foundation of my

thesis; Dr. Penghao Xiao and Prof. Graeme Henkelman for the collaboration on the

minimum mode optimization project. These results will not be possible without their

kindly helps.

I would like to thank all my friends in MIT, especially to Wenzhe Wei, Hongkai

Zhang, Ruixun Zhang, Xuwen Zhu and Zeyuan Allen-Zhu. We grumbled and laughed

together through the past four years, they made my experience in MIT really a

pleasant and unforgettable one.

Special thanks to National Science Foundation for financial supports. The NSF

Graduate Research Fellowship enables me to focus on my research during my four-year

scientific journey towards PhD.

5



Finally, my deepest gratitude goes to my parents, Xiaoyun and Zhi, for their

endless supports, understandings and loves. They are always my source of courage

and happiness. I am sure they will enjoy my work in this thesis, although they may

never really understand it. So I would like to dedicate this work to my loving parents,

without whom this work would not have been possible.

6



This doctoral thesis has been examined by a Committee of the
Department of Mathematics as follows:

Professor Martin Z. Bazant ..............

Professor of Chemical

..............................
Thesis Supervisor

Chairman, Thesis Committee
Engineering and Mathematics

Professor H ung C heng .................................................
Member, Thesis Committeer

Professor of Mathematics

Professor Steven G . Johnson ...........................................
Member, Thesis Committee

Professor of Mathematics



8



Contents

1 Introduction 25

1.1 Background of Lithium-ion Batteries . . . . . . . . . . . . . . . . . . 25

1.2 Previous Work on Battery Modeling . . . . . . . . . . . . . . . . . . 27

1.3 Marcus Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Thesis O utline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Efficient Conservative Numerical Schemes for 1D Nonlinear Spher-

ical Diffusion Equations with Applications in Battery Modeling 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 The Finite Volume and Control Volume Formulations . . . . . . . . . 39

2.2.1 The Finite Volume Method . . . . . . . . . . . . . . . . . . . 40

2.2.2 The Control Volume Method . . . . . . . . . . . . . . . . . . . 42

2.2.3 Time Domain Discretization . . . . . . . . . . . . . . . . . . . 46

2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Error Order Analysis . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Effects of Grid Point Positions . . . . . . . . . . . . . . . . . 50

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Phase Separation Dynamics in Isotropic Ion-Intercalation Particles 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Cahn-Hilliard Reaction Model . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . 60

9



3.3.2 Dimensionless equations . . . . . . . . . . .

3.3.3 Governing parameters . . . . . . . . . . . .

3.3.4 Simulation details . . . . . . . . . . . . . .

3.4 Solid Solution . . . . . . . . . . . . . . . . . . . . .

3.4.1 Repulsive forces . . . . . . . . . . . . . . .

3.4.2 Weak attractive forces or high temperature .

3.4.3 Capacity . . . . . . . . . . . . . . . . . . .

3.5 Phase Separation . . . . . . . . . . . . . . . . . . .

3.5.1 Strong attractive forces or low temperature

3.5.2 Voltage Plateau Estimation . . . . . . . . .

3.5.3 Butler-Volmer Transfer Coefficient . . . . .

3.6 Phase Separation with Surface Wetting . . . . . . .

3.6.1 Shrinking cores and expanding shells. . . .

3.6.2 Voltage efficiency . . . . . . . . . . . . . . .

3.7 Numerical Methods and Error Convergence . . . . .

3.7.1 Numerical Scheme . . . . . . . . . . . . . .

3.7.2 Error Convergence Order . . . . . . . . . . .

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . .

62

63

65

66

66

67

68

69

69

72

73

73

74

76

78

78

82

83

4 Two-Dimensional Cahn-Hilliard Reaction Model with Surface Electron-

conducting Coating 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 M odel Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 General Cahn-Hilliard Reaction Model with Surface Coating . 86

4.2.2 Reduction to Two-dimensional Model and Boundary Conditions 88

4.2.3 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Num erical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Constant voltage: phase boundary orientations . . . . . . . . . 91

4.3.2 Constant current: voltage and capacity . . . . . . . . . . . . . 93

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10



5 Simple Formula for Marcus-Hush-Chidsey Kinetics

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 Oxidation Rate for Positive Overpotentials . . . . . . . . . . .

5.3.1 Small reorganization energies, A < . . . . . . . . . . .

5.3.2 Large reorganization energies, A > . . . . . . . . . . .

5.4 Oxidation rate for negative overpotentials . . . . . . . . . . . .

5.5 Uniformly Valid Approximation . . . . . . . . . . . . . . . . .

5.6 C onclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.7 Sm all A Lim it . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.8 Large A Lim it . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Simple Formula for Asymmetric Marcus-Hush Kinetics

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Asymmetric-Marcus-Hush Model: Description and Clarification

6.2.1 Asymmetric-Marcus-Hush Model . . . . . . . . . . . . .

6.2.2 Clarification of the AMH Formula . . . . . . . . . . . . .

6.3 Closed form Approximation of AMH Theory . . . . . . . . . . .

6.4 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . .

6.5 C onclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Conclusions and Future Research

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . .

A Unification of Algorithms for Minimum Mode Optimization

A .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.2 Lanczos Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .

A.3 Dimer Method . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.4 Power Iteration Method with a Rayleigh Shift . . . . . . . . . .

A.4.1 Derivation of the shifted power iteration method . . . . .

11

97

97

98

103

103

104

104

105

109

110

111

113

113

114

115

116

119

121

122

125

125

126

129

129

131

. . . 133

. . . 135

. . . 136



A.4.2 Krylov Subspace of the Shifted Power Iteration Method . . . . 137

A.5 Num erical Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A .6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B Synchrony and Periodicity in Excitable Neural Networks with Mul-

tiple Subpopulations

B.1 Introduction . . . . . . . . . . . . . . . . .

B.2 Model definition . . . . . . . . . . . . . . .

B.2.1 Overview of model . . . . . . . . .

B.2.2 Mathematical definition of model .

B.2.3 Intuition behind definition . . . . .

B.2.4 Connection to stochastic model . .

B.3 Main theorem and analysis . . . . . . . . .

B.3.1 Main result . . . . . . . . . . . . .

B.3.2 Intermediate results . . . . . . . . .

B.3.3 Infinitely many big bursts . . . . .

B.3.4 Growth properties of stopped flow .

B.3.5 Contraction of the big burst map .

B.3.6 Proof of Main Theorem . . . . . . .

B.4 Numerical simulations . . . . . . . . . . .

B.5 Conclusion . . . . . . . . . . . . . . . . . .

141

. . . . . . . . . . . . . . . 141

. . . . . . . . . . . . . . . 143

. . . . . . . . . . . . . . . 143

. . . . . . . . . . . . . . . 144

. . . . . . . . . . . . . . . 146

. . . . . . . . . . . . . . . 148

. . . . . . . . . . . . . . . 151

. . . . . . . . . . . . . . . 152

. . . . . . . . . . . . . . . 153

. . . . . . . . . . . . . . . 156

. . . . . . . . . . . . . . . 158

. . . . . . . . . . . . . . . 164

. . . . . . . . . . . . . . . 165

. . . . . . . . . . . . . . . 167

. . . . . . . . . . . . . . . 169

12



List of Figures

2-1 Schematic of the physical model addressed in this paper. An electro-

chemical surface reaction (e.g., involving the insertion and removal of

Li from a metal oxide (M=Co, Ni, Mn, or others) ) supplies a spec-

ified flux of Li at the surface of a spherical particle in which radial,

one-dimensional, Fickian diffusion takes place. . . . . . . . . . . . . . 36

2-2 Measured values of the lithium diffusion coefficient in Li(NiI/ 3Mni/ 3Co1 / 3)0 2

(circles) and the fitting polynomial function in Eqn. 2.4 (curve) we use

for the numerical simulation. . . . . . . . . . . . . . . . . . . . . . . . 39

2-3 Concentration Distribution within the spherical particle. The curves

from bottom to top respectively represent the concentration distribu-

tions at time t = 0, 100 , 200 , 200 and 400 seconds simulation time

with a time step size of 5 seconds. . . . . . . . . . . . . . . . . . . . 49

2-4 Plot showing the relative error convergence order of three numerical

schemes in the spatial coordinate. The curve of finite volume method

with extrapolation method Eqn. 2.7 is shown by the dash line with

square marker, and the solid line with circle marker represents the

finite volume method with extrapolation method Eqn. 2.9. The dot

curve with diamond marker represents the control volume method.

The relative error is defined as the error of surface concentration over

the reference surface concentration. The total simulation time is 400

second with a time step of 5 seconds. . . . . . . . . . . . . . . . . . . 50

13



2-5 Plot of the relative error convergence order of three numerical schemes

in the time coordinate. The curve of the finite volume method with

extrapolation method Eqn. 2.7 is shown by the dash line with the

square marker, and the solid line with the circle marker represents

the finite volume method with extrapolation method Eqn. 2.9. The

dot curve with diamond marker represents the control volume method.

The relative error is defined as the error of surface concentration over

the reference surface concentration. The total simulation time is 400

second with a 101-uniform-grid-point mesh. . . . . . . . . . . . . . . 51

2-6 The surface concentration over time with 501 uniform grids (the ref-

erence solution, black solid curve), 21 non-uniform grids (grey dash

curve) and 21 uniform grids (grey dot curve) are shown in the top

subfigure (a), while the corresponding relative errors in surface con-

centrations over time with 21 uniform grids (grey squares) and 21 non-

uniform grids (black circles) are shown in the bottom subfigure (b).

We may see the performance from 21 non-uniform grid points is sig-

nificantly better than the outcome from 21 uniform grids. The RMS (

short for "root mean square") error for uniform grid is 55.73 while the

RMS error for non-uniform grid is only 4.48. We choose the parameter

a = -1.5 in Eqn. 2.26 for the non-uniform grid. . . . . . . . . . . . . 53

14



3-1 Constant current cycling of a spherical intercalation particle, composed

of a solid solution of lithium ions with repulsive forces (Q = -2).

Left: profiles of dimensionless concentration a(f) (local filling frac-

tion) at different mean compositions (average filling fraction, X) at

nondimensional current i/Io = 0.25. The vertical dimension in the

plots shows the concentrations, while the horizontal circle denotes the

hyperplane cut at the equator of the sphere. Right: voltage versus

state of charge (filling fraction) at different currents. The reference

current density 1o = 500 A/m 2 is the exchange current density when

particle is uniformly half filled. The eight voltage curves represent

I/Io = +0.01, +0.1, t1, 10. . . . . . . . . . . . . . . . . . . . . . . 67

3-2 Cycling of a high temperature solid solution with attractive forces (Q =

1) with other parameters from Fig. 3-1. . . . . . . . . . . . . . . . . . 68

3-3 Capacity C versus current with different gradient penalty constant r

in a solid solution ( = = 0). . . . . . . . . . . . . . . . . . . . . . 69

3-4 Dynamics of phase separation during ion intercalation (Q = 4.48).

Concentration distributions within the spherical particle are shown at

different currents - = 0.01 (top left), 0.25 (top right), 1 (bottom left)

and 4 (bottom right), where Io( = 0.5) = 500 A/m 2 . The x-axis

represents the nondimensional radial position f and the y-axis presents

the overall average filling fraction X of the whole particle, which can

be also seen as the time dimension. The warmer color in the figure

indicates a higher local filling fraction. . . . . . . . . . . . . . . . . . 70

3-5 Shrinking core dynamics of phase separation in an isotropic spherical

particle (f = 4.48 and no surface wetting). The vertical dimension in

the plots shows the concentrations, while the horizontal circle denotes

the hyperplane cut at the equator of the sphere. The nondimensional

current is I/I1 = 0.25 with Io( = 0.5) = 500 A/M 2 and X the overall

filling fraction of lithium ions. . . . . . . . . . . . . . . . . . . . . . . 71

15



3-6 Phase separating particle (( = 4.48) voltage vs. filling fraction plot

with different currents and two different reference exchange currents.

Both the charging and discharging curves are shown. The reference

current density io is the exchange current density which takes values

50 A/m2 (left) and 500 A/M 2 (right) when particle is uniformly half

filled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1

3-7 Comparison of the simulated voltage plateau from Fig. 3-6 (solid

curves) and the analytical approximation of Eq. (3.29) (dashed curves)

for I>0. ........ ................................. 72

3-8 Effect of the Butler-Volmer charge transfer symmetry coefficient a on

the voltage during battery discharging (left) and charging (right) with

|IIol = 0.1 and Io = 500 A/M 2 at half filling. . . . . . . . . . . . . . 74

3-9 Phase boundary motion during ion insertion in a spherical particle

with surface de-wetting (0 = -17.9, Q = 4.48) at different currents

= 0.01 (top left), 0.25 (top right), 1 (bottom left) and 4 (bottom

right)a nd 1 = 500 A/m 2 at half filling. The warmer color in the figure

indicates a higher local filling fraction. . . . . . . . . . . . . . . . . . 75

3-10 Concentration profiles (left) and voltage transients (right) for ion inser-

tion at currents i/i0 = 0.01, 0.25, t1 and 4 in a phase separating

spherical particle (f = 4.48 and surface de-wetting 3 = -17.9). . . . 76

3-11 Effect of a negative surface wetting parameter (0 < 0) on the voltage

during discharging at I/Io = 0.01 (left) and charging at I/Io = -0.01. 76

3-12 The gap of the charging and the discharging voltage when the particle

is half filled, X = 0.5, under several conditions including current, Q

and surface wetting. The Vc shown in the legend is the nondimen-

sional concentration derivative at the particle surface, which denotes

the surface wetting condition. . . . . . . . . . . . . . . . . . . . . . . 77

16



3-13 Error convergence test with the very small current density i/iO = 10-4,

while io = 500 A/m 2 and no surface wetting is assumed. The error

is defined as the 12 norm of the voltage vector difference from the

reference solution over the square root of length of this vector. The

error converges in second order as suggested by the figure on the left.

We also plot the error in voltage during ion intercalation of all these

grid point cases (solution from 11 points to 1001 points compare to

the reference solution from 3001 grids) in the right figure, where we

observe oscillations when the grid is coarse. . . . . . . . . . . . . . . . 83

3-14 Voltage prediction plot with different f using 21 grid points on the

left. We see more oscillations in larger (. The right hand side is the

concentration distribution with different f when the overall half filled.

Higher f2 value indicates a thinner phase boundary thickness. The

current density is set to be i/iO = 10-4, while io = 500 A/M2 and no

surface wetting is assumed in both of these simulations. . . . . . . . . 83

4-1 Quarter domain schematic of the 2D intercalation particle with con-

ducting surface layer model addressed in this paper. . . . . . . . . . 89

4-2 Concentration profile in the particle at half filled during a constant

voltage discharging at V = 3.0 V. The diffusivities in two directions are

Dx = I x 10-22 m2/s and DY = I x 10-14 m2 /s, while i. = KY= 3 x 10' 0

eV /m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4-3 Phase boundary orientation comparison of two half-filled particles dur-

ing a constant voltage discharging at V = 3.0 V. The diffusivity in y

direction is DY = 1 x 10- 14 m 2/s, x = 3 x 101 0 eV/m andI = 3x 101 1

eV/m for both. The diffusivity in x direction is Dx = 1 x 10-14 m2 /s

= D. (left) and Dx = 1 x 10-22 m2 /s < Dy (right), respectively . . . 93

17



4-4 Voltage curves of three constant current discharging processes with the

same bulk material properties but different surface coating diffusivities.

The C-rate for discharging is at 1, and the electron diffusion coefficients

De are at 1 x 10-14 m2 /s, 1 x 10-15 m2 /s and 1 x 10-16 m2 /s, respectively. 94

4-5 Concentration profiles within surface conducting layers of three con-

stant current discharging processes with the same bulk material proper-

ties but different surface coating diffusivities. The C-rate for discharg-

ing is at 1, and the electron diffusion coefficients D, are at 1 X 10-14

m2 /s, 1 x 10-15 m2 /s and 1 x 1016 m2/s, respectively. . . . . . . . . 95

5-1 Dimensionless Tafel plots of Butler-Volmer kinetics (BV) with charge

transfer coefficient a = 1 compared with Marcus (M) and Marcus-

Hush-Chidsey (MHC) kinetics with reorganization energy A (scaled to

the thermal energy kBT). The absolute value of the current I|I scaled

to the exchange current 1o is plotted on a logarithmic scale versus the

overpotential i scaled to the thermal voltage, kBT/e. The M and MHC

curves assume a typical value [42, 9] of the dimensionless reorganization

energy, A = 10 scaled to kBT. . . . . . . . . . . . . . . . . . . . . . . 100

5-2 Physical interpretation of MHC kinetics for the Faradaic reaction, 0

+ e- -+ R, at a metal electrode. In each panel, a parabola for the free

energy (or more precisely, excess electrochemical potential [15]) of the

reduced state (R, right) versus reorganization reaction coordinate in-

tersects a family of parabolae for the free energy of the oxidized state

plus the free electron (0 + e-, left), sampled from the Fermi-Dirac

distribution with electron energies, E, shown. (a) Exchange process

at zero overpotential, dominated by electrons near the Fermi level fol-

lowing Marcus kinetics. (b) Reaction-limited current at large negative

overpotential, dominated by lower-energy electrons below the Fermi

level undergoing barrier-less transitions. . . . . . . . . . . . . . . . . 101

18



5-3 Numerical evaluations of reaction rates k(A, T) according to three asymp-

totic approximations Eq. 5.13 (blue square), Eq. 5.14 (black circle) and

Eq. 5.17 (green diamond), together with the direct numerical quadra-

ture of the MHC integral 6.1 (red cross) for A = 0.1, 1, 10 and 30 and

1,q < 20. Each comparison is shown in both log scale (top) and linear

scale (bottom ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5-4 (a) Relative error of our simple formula Eq. 5.17 compared to numerical

quadrature of the MHC integral 6.1 for A = 0.1, 1, 10 and 30 and

IyA < 20. (b) Relative error of our formula for A = 10 compared with

the series approximation of Oldham and Myland 1162] with 1, 5 and

10 term s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5-5 Dimensionless exchange current k(A, r = 0) versus reorganization en-

ergy A for numerical quadrature of the MHC integral compared to the

uniformly valid approximation, Eq. 5.19, showing maximum 5% error

when 0.1 < A < 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6-1 Comparison of Butler-Volmer (BV), symmetric Marcus-Hush-Chidsey

(MHC), and asymmetric-Marcus-Hush (AMH) kinetics as a function

of applied overpotential. Note that at small overpotentials, the AMH

rates are well captured by BV with a / 1. However, for moderate

overpotentials, BV significantly over-predicts the rate. . . . . . . . . . 115

6-2 Numerical evaluation of the integrand in Eq. 6.2 with A = 60, y = 0.3

and T = 0. We see on the right that for x > 50, the integrand is dom-

inated by the growing cubic term, which results from series truncation

in the derivation of Eq. 6.2. . . . . . . . . . . . . . . . . . . . . . . . 117

6-3 Numerical evaluation of the integrand in Eq. 6.3 with parameters A =

1, y = 0.3 and 7 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6-4 Comparisons of the quadratic term and the cubic term in Eq. 6.3 within

the integral domain D with parameters A = 60, y = 0.3. The nondi-

mensional overpotential rl is chosen to be 40 (left) and -40 (right). . 119

19



6-5 Comparisons of asymmetric reaction rates by numerically evaluating

Eq. 6.3 and a direct calculation of the approximation in Eq. 6.6. Here,

A = 60 (roughly 1.5 eV at room temperature). . . . . . . . . . . . . . 121

6-6 Comparisons of asymmetric reaction rates by numerically evaluating

Eq. 6.3 and a direct calculation of approximation in Eq. 6.6. As in

Fig. 6-5, A = 60. The approximation values differ significantly from

the true values when 1rA > A . . . . . . . . . . . . . . . . . . . . . . . 122

A-1 The angle, in radians, towards the true minimum mode as a function

of iteration number (left) and a zoom in of the region of relevance for

the Lanczos, BFGS dimer, and CG dimer methods (right). . . . . . . 139

B-1 Different behaviors of the model. We fix M = 10, N = 1000, and plot

different dynamics of the model that correspond to different p. As we

increase p, we see the change from asynchronous and irregular behavior

to synchronous and periodic behavior. . . . . . . . . . . . . . . . . . 148

B-2 The meaning of the blue data: we fix a choice of a, and N = 1000, then

run the stochastic neuronal network described in this section. We plot

the burst sizes in light blue. For p large enough, we also plot the mean

and standard deviations of the burst sizes for all of the bursts larger

than one-tenth the size of the network. In red, we plot the deterministic

burst size (as a proportion of network size) in the deterministic limit

defined in Section B.3.2 below (in fact, we are plotting the function

s*(#) defined in Lemma 4. The result of Theorem 5 is that the dark

blue circles lie on the red curve, and that the error bars get small, as

N --+ oc. The numerics seem to verify this. . . . . . . . . . . . . . . . 151

B-3 Plots of the hybrid ODE-mapping system numerical simulation results

with 0 = 2.1 (left) and 3 = 2.5 (right). Both of them are with three

neuron populations. The neuron portions at energy level 1 over simu-

lation time are shown in the plots . . . . . . . . . . . . . . . . . . . . 168

20



B-4 Plots of neuron proportions after each burst iteration with # = 2.1

(left) and # = 2.5 (right). Both subfigures are for M = 3. For all

initial conditions, the population seems to converge after about four

bursts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B-5 Proportions of initial conditions that converge monotonically, converge

non-monotonically, or do not converge, for M = 5 and M = 10 sub-

populations. The parameters a and p are chosen at random and fixed.

For each /, we choose 10,000 initial conditions uniformly in the sim-

plex, and determine which proportion falls into each of three categories:

monotone convergent, non-monotone convergent and non-convergent.

We vary ,3 from 2.005 to 2.5. We see that all initial conditions converge,

but the montonicity of the convergence depends on 3. . . . . . . . . . 169

21



22



List of Tables

2.1 Parameter settings for the diffusion coefficient function in Eqn. 2.4. 38

2.2 Parameter settings for numerical experiments. . . . . . . . . . . . . . 49

3.1 Dimensionless variables in the CHR model. . . . . . . . . . . . . . . . 62

3.2 Parameter settings for LFP used in the numerical simulations, except

as otherwise noted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Parameter settings for LFP [48, 47, 2371 used in the numerical simula-

tions, except as otherwise noted. . . . . . . . . . . . . . . . . . . . . . 90

A.1 Steps to Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

23



24



Chapter 1

Introduction

1.1 Background of Lithium-ion Batteries

The revolutionary development of lithium-ion battery technology in recent decades

has already made a great impact on everyone's life [7]. As a light and compact

rechargeable energy storage device converting electrical energy and electrochemical

energy cyclically, the lithium-ion battery now supplies convenient power to numer-

ous cellphones, laptops, wearable electronics, electrical vehicles and many other de-

vices [181]. This "best battery technology anyone has ever seen" is now feeding the

power-hungry mobile world [2131. With sales numbers hitting about five billion in

2013, the commercial lithium-ion battery now has doubled the power density (by

weight) but also is more than 10 times cheaper than its ancestor in 1991, first intro-

duced to the market by Sony.

With atomic number only 3, lithium is the lightest member (relative atomic mass

of 6.94) among all alkali metals, the group with smallest electronegativity on the pe-

riodic table. Lithium has a standard electrode potential of about -3.04 V [204]. The

relatively high reservation of lithium carbonate also leads to a more-than-sufficient

availability and good affordability of this element [182]. All these features distinguish

lithium as a potential high-energy-density, high-voltage battery material.

In the 1970s, several researchers discovered that the alkali metals can be inserted

into some inorganic compounds reversibly [224]; this made the invention of a new
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family of rechargeable batteries possible. With two different intercalation materials

sitting in both electrodes separately, the lithium initially is intercalated into one

of them. During the charging or the discharging process, lithium is removed from

that electrode, A. The lithium-ion with one positive charge can transport internally

through the battery to the other electrode, B, while the electron needs to migrate

through the outer circuit, which creates the current. Once they reach the electrode B,

the lithium-ion and the electron can be seen as recombined to a neutral atom that then

inserts into the intercalation material in electrode B. If the intercalation processes

at both electrodes are reversible, the total reaction direction can be controlled by

adjusting the circuit voltage; thus the battery is rechargeable.

Following the first lithium-ion battery developed by Exxon with TiS2 as the cath-

ode material [2231, many intercalation materials have been discovered. Among them,

the olivine-type lithium iron phosphate (LiFePO 4 , LFP), nowadays a popular cath-

ode material for lithium-ion batteries, is a good example. Due to its outstanding

electrochemical properties, this material is already attracting much attention. In

spite of some disadvantages in its conductivity and high-current capability initially

reported [165], later advances in surface coatings and particle-size controlling pro-

cesses have improved it to a long-cycle-life, high-rate material, with a relatively low

cost and good environmental friendliness [231].

Although the lithium-ion battery is now considered "the most impressive success

story in modern electrochemistry in the past two decades," many big challenges have

yet to be faced [72]. For example, the cutting-edge commercial lithium-ion battery,

which supplies an energy density of about 250 Whkg', is now the bottleneck for elec-

tric vehicle and mobile electronic device developments. More than twice the current

lithium-ion battery energy density is required for an electric vehicle to match the 800-

kilometer range of a petrol tank [206]. To fulfill the requirement, we need to develop

a strategy that can significantly increase the battery energy density, while still main-

taining its current affordability, cycle life, and safety. Indeed, how to achieve this goal

is also seen as the most essential challenge in electrochemistry and electrochemical

engineering [82].
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Despite rapid development in battery technology, the growth of knowledge in

science underlying battery technology is not keeping pace [204]. Extensive efforts

have been put into searching for battery materials [142, 231]. However, the detailed

physics in the lithium-ion battery and its associated limiting processes have remained

largely unknown.

In many cases, microscopic battery material properties at the atomistic level are

available thanks to the ab initio calculations, as well as macroscopic experimental

measurements such as the current-voltage (IV) plots. Sadly the link between these

two scales is mostly missed. Therefore, it is crucial to develop a new model at the

continuum length-scale to bridge the information from the microscopic and the macro-

scopic scales to advance our knowledge about the lithium-ion battery system. Better

understanding of this system may help us to systematically optimize the battery de-

sign, moving away from the current trial-and-error approach, which could lead to an

improvement in battery performance.

Modeling this sophisticated electrochemical system mathematically involves a

large, coupled, highly nonlinear partial differential equation system to describe the

physics of all components and their interactions. The study of this model raises many

challenges and interesting questions for applied mathematicians.

1.2 Previous Work on Battery Modeling

Since 1962, John Newman and his coworkers have been developing a famous theoret-

ical framework named "Porous-Electrode Theory" [157, 156, 1551. Making only a few

simple assumptions, including the phenomenological Butler-Volmer charge-transfer

reaction at the electrodes, and simple spherical isotropic linear diffusions in active

electrode material particles, this elegant theory has achieved great success in model-

ing battery systems, including the first model of a full lithium-ion battery by Doyle,

Fuller and Newman in 1993 167]. This framework has since been extensively applied

to many different battery systems and it has demonstrated good agreement with

experimental data.
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Unfortunately, in 1997 came the discovery of the lithium iron phosphate by John

Goodenough's group [165], raising suspicion about one basic assumption in the porous-

electrode theory. In this work, Goodenough's group observed a stable voltage plateau

in the current-voltage plot at room temperature [165, 204], which strongly implies

the existence of lithium phase separation in lithium iron phosphate particles. This

evidence was later supported by other direct experimental observations 158, 232, 59, 5,

164, 46]. These obviously contradict the assumption of linear Fickian lithium diffusion

in cathodic particles in Newman's theory.

The "shrinking core" model was later proposed by Srinivasan and Newman to

resolve this conflict [191]. To enforce a core-shell structure in the LFP particle, which

was originally suggested by Goodenough's group, Srinivasan and Newman set the

concentrations of the lithium-rich region and the lithium-poor region to two fixed

constants. Then, by mass conservation, the sharp phase boundary location could be

easily calculated over time. By replacing the original linear Fickian diffusion with

this new shrinking core assumption, the adjusted porous-electrode theory provides

the only reasonable fit to the experimental data up to now [191, 52].

However, this solution is still far from the end of the story. In fact, several funda-

mental concerns are raised by this fitting result. The fitted diffusivity of LFP from the

adjusted porous-electrode model is significantly off from the ab initio calculation by

several orders of magnitude [133]. While the shrinking core model may be a good ap-

proximation in micro-sized LFP particles with high defect rates, experimental results

indicate that the phase separation dynamics are more complicated than the simple

core-shell structure enforced in the shrinking-core model [121, 38, 5, 59, 46, 158].

A more accurate and consistent approach to modeling electrochemical kinetics

with phase separation is based on non-equilibrium thermodynamics [15]. For reaction-

limited anisotropic ion-intercalated nanoparticles, the general theory can be reduced

to the Allen-Cahn reaction (ACR) equation for the depth-averaged ion concentra-

tion [188, 8], which has been applied successfully to predict experimental data, using

generalized Butler-Volmer kinetics and accounting for the coherency strain 148, 47, 15]

together with the surface wetting condition [47]. An important prediction of the ACR
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model is the dynamical suppression of phase separation [8, 48]. For large micron-sized

particles, solid diffusion limitation leads to a different limit of the general theory, the

Cahn-Hilliard reaction (CHR) model for bulk phase separation with heterogenous

surface reactions [188, 31, 15, 991.

In addition to the linear Fickian diffusion assumption, the validity of the phe-

nomenological Butler-Volmer(BV) kinetics on electrode surfaces in Newman's porous-

electrode theory is also in question. Recent experiments report that the physics-

based Marcus-Hush-Chidsey kinetics can perfectly explain the Tafel plots for any

rate, whereas Butler-Volmer prediction is valid only for low rates [9]. This indicates

the potential benefit of a paradigm shift in the porous-electrode type modeling of

kinetics in electrochemical systems away from the currently popular Butler-Volmer

scheme. A more detailed introduction to the Marcus charge transfer theory is pro-

vided in the following section.

1.3 Marcus Theory

Marcus theory is now a well-established transition state model of electron transfer,

named to honor Rudolph A. Marcus, who first developed this new theoretical frame-

work. His novel paper, first published in 1956 [136], explained the reaction rates of

electron transfer reactions in a homogeneous solution with "very little spatial overlap

of the electronic orbitals of the two reacting molecules in the activated complex" and

negligible structure change; this type of reactions is now also called the outer sphere

electron transfer reactions.

As electron transfer is the key component of any breaking or formation of chemical

bonds, after some successful fittings to experimental data [139, 140], the Marcus

theory has attracted great attention in chemical research. The original version of

this electron transfer theory (in homogeneous solutions), was soon generalized to

heterogeneous electron transfer reactions at electrodes [135, 137, 95]. Later, it was

also discovered that, after some modifications, the Marcus framework could accurately

predict Faradaic reaction kinetics for liquid electrolytes [42, 147, 95].
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Very recently, the Marcus theory has also been found to be applicable to model the

Faradaic reaction kinetics for solid electrolytes as well [15, 9J. This is the first and only

physics-based model for electron transfer kinetics at the electrode in battery systems.

Although the Marcus theory is rarely used and remains largely unknown in electro-

chemical engineering, it is now a potential practical alternative to the ubiquitous

Butler-Volmer equation, a phenomenological model, for improving the understanding

and engineering of electrochemical systems.

Several reviews and books have been published to summarize in detail the devel-

opment history [137], theoretical foundations [134, 12, 23, 117, 13], and chemical and

biological applications [195, 138, 83, 121 of the Marcus theory. The Marcus theory is

now the standard theoretical framework for studying electron transfer reactions. Due

to the great success of this theory, Rudolph A. Marcus was honored with the1992 No-

bel Prize in chemistry "for his contributions to the theory of electron transfer reactions

in chemical systems" [137].

1.4 Thesis Outline

In this thesis, the main focus is to address some essential mathematical problems

related to modeling the ion-intercalation dynamics, especially the lithium-ion charg-

ing/discharging systems. In addition, a study in the minimum mode optimization for

the transition states finding in the energy landscape is conducted, and a project in

modeling a multi-population stochastic neural network dynamics is presented (both

in the appendix).

Chapter 1 initiates a general background overview of lithium-ion batteries and

introduces the state-of-the-art of lithium-ion battery modeling. This chapter also

presents an outline of the major theme in each chapter.

Chapter 2 introduces a new numerical method that efficiently solves the one-

dimensional nonlinear spherical diffusion equations, which are the most computation-

ally intensive part within the traditional pseudo-2D framework for battery modeling.

This chapter focuses on a comparison of the formulation, accuracy, and order of
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the accuracy for two numerical methods of solving the spherical diffusion problem

with a constant or non-constant diffusion coefficient: the finite volume method and

the control volume method. Both methods provide perfect mass conservation and

second-order accuracy in mesh spacing, but the control volume method provides the

surface concentration directly, has a higher accuracy for a given number of mesh

points, and can also be easily extended to variable mesh spacing. Variable mesh

spacing can significantly reduce the number of points that are required to achieve a

given degree of accuracy in the surface concentration (which is typically coupled to the

other battery equations) by locating more points where the concentration gradients

are highest [239].

Chapter 3 studies the single-particle charging dynamics under the Cahn-Hilliard

reaction theory framework, which predicts transitions from solid-solution radial dif-

fusion to two-phase shrinking-core dynamics. This general approach extends previ-

ous lithium-ion battery models, which either neglect phase separation or postulate a

spherical shrinking-core phase boundary, by predicting phase separation only under

appropriate circumstances. The effect of the applied current is captured by gener-

alized Butler-Volmer kinetics, formulated in terms of diffusional chemical potentials,

and the model consistently links the evolving concentration profile to the battery

voltage. We examine sources of charge/discharge asymmetry, such as asymmetric

charge transfer and surface "wetting" by ions within the solid, which can lead to

three distinct phase regions. In order to solve the fourth-order nonlinear CHR initial-

boundary-value problem, a control-volume discretization is developed in spherical

coordinates based on the results in Chapter 2. The basic physics are illustrated by

simulating many representative cases, including a simple model of the popular cathode

material, lithium iron phosphate (neglecting crystal anisotropy and coherency strain).

Analytical approximations are also derived for the voltage plateau as a function of

the applied current [237].

Chapter 4 works on a two-dimensional Cahn-Hilliard reaction ion-intercalation

particle model coupled with a surface electron-conducting coating layer. Although

surface coating has been demonstrated to be a critical technique for performance
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improvement, of both the single charge cycle performance and the long-term life

capacity, the previous modeling of ion-intercalated batteries has not quantified this

effect. This chapter introduces a new possible source of transport limitation in the

high-rate battery operation, by linking the coating charge conductivity to other bulk

properties. This may help to explain the capacity lost in the battery system in high-

rate operation and large disagreement among fitting material properties in the battery

materials. A previous common assumption of the "depth-average approximation" in

the CHR battery particle modeling is also examined in this chapter.

Chapter 5 looks at a more general electron transfer theory, the Marcus-Hush-

Chidsey (MHC) model, at metal electrodes. This model is well known in electroana-

lytical chemistry as a successful microscopic theory of outer-sphere electron transfer

at metal electrodes, but it is unfamiliar and rarely used in electrochemical engineer-

ing. One reason may be the difficulty of evaluating the MHC reaction rate, which

is defined as an improper integral of the Marcus rate over the Fermi distribution of

electron energies. This chapter reports a simple analytical approximation of the MHC

integral that interpolates between exact asymptotic limits for large overpotentials, as

well as for large or small reorganization energies, and exhibits less than 5% relative

error for all reasonable parameter values. This result enables the MHC model to be

considered as a practical alternative to the ubiquitous Butler-Volmer equation for

improved understanding and engineering of electrochemical systems [241].

Chapter 6 extends the previous results in the Marcus-Hush-Chidsey (MHC) model

to a more complicated asymmetric Marcus-Hush (AMH) model. Recently, experi-

ments have shown that, for a number of electrode reactions, the "symmetric" MHC

theory requires two different reorganization energies to fit data. An asymmetric form

(asymmetric-Marcus-Hush, AMH) has recently been introduced that is able to cap-

ture full data sets with a single reorganization energy. However, the formula involves

an improper integral, which must be calculated numerically, potentially limiting prac-

tical use. By defining a region over which the formula applies and approximating a

minimally varying term as a constant over this region, we take advantage of similar-

ities with the symmetric electrode reaction form (Marcus-Hush-Chidsey, MHC), for

32



which there are a number of efficient calculation techniques. This enables the AMH

reaction model to approach the same ease of usability as the symmetric variant [240].

Chapter 7 summarizes all the progress made within this thesis in the electrochem-

ical system modeling area, and suggests some possible directions for future research

based on the current results.

Appendix A addresses theoretically the computational efficiency comparison prob-

lem for the minimum curvature mode calculation. Minimum mode following algo-

rithms are widely used for saddle point searching in chemical and material systems.

Common to these algorithms is a component to find the minimum curvature mode

of the second derivative, or Hessian matrix. Several methods, including Lanczos,

dimer, Rayleigh-Ritz minimization, shifted power iteration, and locally optimal block

preconditioned conjugate gradient, have been proposed for this purpose. Each of

these methods finds the lowest curvature mode iteratively without calculating the

Hessian matrix, since the full matrix calculation is prohibitively expensive in the

high-dimensional spaces of interest. Here we unify these iterative methods in the

same theoretical framework using the concept of the Krylov subspace. The Lanczos

method finds the lowest eigenvalue in a Krylov subspace of increasing size, while the

other methods search in a smaller subspace spanned by previous search directions. We

show that these smaller subspaces are contained within the Krylov space for which the

Lanczos method explicitly finds the lowest mode, and hence the theoretical efficiency

of the minimum mode finding methods is bounded by the Lanczos method. Numeri-

cal tests demonstrate that the dimer method combined with second-order optimizers

approaches but does not exceed the efficiency of the Lanczos method for minimum

mode optimization [2421.

Appendix B works on a cascading model of excitable neural dynamics and shows

that over a wide variety of parameter regimes, these systems admit unique attractors.

For large coupling strengths, this attractor is a limit cycle, and for small coupling

strengths, it is a fixed point. This chapter also shows that the cascading model

considered here is a mean-field limit of an existing stochastic model [61].
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Chapter 2

Efficient Conservative Numerical

Schemes for ID Nonlinear Spherical

Diffusion Equations with Applications

in Battery Modeling

2.1 Introduction

The modeling of battery systems in which an atom intercalates into solid particles

has received significant attention [15], especially with regard to the Li-ion and Ni/MH

chemistries [4, 67, 78, 207, 74, 751. A popular way to treat diffusion of an insertion

atom into a solid phase while avoiding the solution of a full two-dimensional (2D)

problem is to construct a pseudo-2D model, in which one dimension extends between

the two current collectors and a second dimension extends into the solid particles, with

a coupling between the two dimensions at the surface of the intercalation particles.

A schematic of the process of spherical diffusion and coupling at the particle surface

is shown in Fig. 2-1, where we assume that diffusion occurs in the radial direction in

an isotropic medium. Although more complex processes for solid intercalation have

been proposed for phase-separating active materials, such as LiFePO 4 [191, 52, 188,
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8, 48, 47, 151, here we focus only on the most common approximation of ID spherical

diffusion. This approximation is also invoked to model the diffusion impedance of

insertion batteries [1901.

Spherical Insertion Particle

Surface Reaction, such as:
Li+ + e-+ MO 2 ++ LiMO2

1 D Li diffusion

Figure 2-1: Schematic of the physical model addressed in this paper. An electro-
chemical surface reaction (e.g., involving the insertion and removal of Li from a metal
oxide (M=Co, Ni, Mn, or others) ) supplies a specified flux of Li at the surface of a
spherical particle in which radial, one-dimensional, Fickian diffusion takes place.

The concentration at the surface of the particle should be obtained accurately be-

cause it is used in the exchange current density for the interfacial reaction, where its

contribution is typically non-linear (a 1/2 power is typical) as well as in the calculation

of the equilibrium potential for the interfacial reaction, which is also typically nonlin-

ear [207]. The surface concentration affects the charge-transfer reaction rate and the

interfacial potential because it contributes to the activity of the intercalated ions. In a

general theory of electrochemical kinetics based on non-equilibrium thermodynamics

[15], the surface activity is also affected by concentration gradients [188, 81, elastic

coherency strain [481, surface "wetting" [471 and other non-idealities in solids. For

an isotropic spherical particle, it can be shown that the general Cahn-Hilliard reac-

tion model [15, 311, which allows for complex thermodynamics with phase separation,

reduces to the simple model considered here - spherical diffusion with concentration-

dependent kinetics - in the case of a solid-solution material, whose equilibrium state

is homogeneous [2381.

Several different methods have been employed for the solution of the 1D spherical
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diffusion problem, including Duhamel's superposition integral [67], diffusion length

method 12191, polynomial approximation 11941, PSS method [129, 243], penetration

depth method [189], finite element method [189], finite difference method [1741, and

finite volume method. Some methods are only valid under certain circumstance, for

instance, Duhamel's superposition integral can only handle the linear problem, re-

quiring the use of a constant diffusion coefficient. In practice solid-phase diffusion

coefficients often depend on both composition (i.e., local Li concentration) and tem-

perature, so the ability to solve the case in which the diffusion coefficient can vary is

very important. A review of existing methods for solving solid diffusion methods in

terms of their numerical performance and restrictions is given by Subramanian 1174].

Because each node point within the electrode is coupled to the ID spherical diffu-

sion problem, the total number of spatially distributed variables to be solved at each

timestep (i.e., states) in the model can be increased dramatically by the inclusion of

a finely meshed radial spatial dimension. For example, with 50 node points in each

electrode (and 20 in the separator), and six equations in the cell sandwich dimension,

adding a spherical diffusion dimension with 50 nodes points would increase the num-

ber of states in the model from 720 to 5720. This was the original reason for the use

of Duhamel's superposition integral (no additional states are added in the particle

dimension) 1671, and is the reason that significant work has been invested to find

efficient computational solutions to the non-linear ID spherical diffusion problem.

Among the numerical methods that are suitable for solving the solid diffusion

problem with a variable diffusion coefficient, the finite volume method is well known

for its perfect mass conservation. This property is a great advantage in long term

simulations in which a gain or loss of mass can significantly influence simulation

results. However, the finite volume method may not be as computationally efficient

as other methods such as the finite difference or finite element method. In this paper,

we will present another conservative numerical scheme, the control volume method,

which is both computationally efficient and simple to implement. To the best of our

knowledge, this method and its extension to non-uniform mesh spacing has not been

previously published for the spherical diffusion problem, and this work is therefore
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an important advance in the ability to solve the spherical diffusion problem with a

diffusion coefficient that depends on composition, temperature, or other factors, in a

conservative and efficient manner.

We can formulate the process of intercalation of a species into a spherical solid

particle with the 1D spherical diffusion equation and the Neumann condition at the

particle surface,

2&c 8 8c
2- ac= -(Dr2-) (2.1)at Or Or'

while the boundary condition is,

Oc 0, (2.2)
Or (r=O)

Oc
D= -j(t). (2.3)

Or (r=R8 )

The diffusion coefficient may be a function of concentration and spatial position, as

well as a function of temperature T and other quantities. All parameters in the partial

differential equations system in Eqn. 2.1 are with SI units.

In this work we set the diffusion coefficient to be a function of concentration alone,

and use a fit to measurements done on Li(Ni1/ 3 Mn1/ 3 Col/3)0 2 [2281,

D(c) = Dref (1 + 100(SOC)3),

cmax - C 0 theory (2.4)SOC=
Cmax practical

The values of the parameters used in Eqn. 2.4 are given in Table 2.1.

Table 2.1: Parameter settings for the diffusion coefficient function in Eqn. 2.4.
Parameter Name Notation Value Unit

Reference Diffusivity Dref 2.00 x 10-16 m 2/s
Maximum Concentration cmax 4.665 x 104 mol/ m 3

Theoretical Capacity Otheory 277.84 mAh/g
Practical Capacity Opractical 160 mAh/g

A plot of the function given by Eqn. 2.4 as well as the original measured data
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obtained by Wu et al. [228] are given in Fig. 2-2.
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Figure 2-2: Measured values of the lithium diffusion coefficient in
Li(NiI/ 3Mni/ 3Coi/ 3 )02 (circles) and the fitting polynomial function in Eqn.
2.4 (curve) we use for the numerical simulation.

2.2 The Finite Volume and Control Volume Formu-

lations

Before turning to the control volume method, for the sake of comparison we first

consider the finite volume method, which is a well-developed numerical discretization

method for partial differential equations, especially in the transport problem. The

finite volume method is well known for its robustness and efficiency in computations,

and most importantly, for its perfect mass conservation. In this section, we first

introduce the spatial discretization by the finite volume method, and next analyze

the error order of this method.
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2.2.1 The Finite Volume Method

Formulation of the Finite Volume Method

The basic idea for the finite volume method is to solve for the integral form of the

original PDE. We assume the diffusion coefficient function D(c) is globally Lipschitz

[1831, then integrate both sides of Eqn. 2.1 over the interval [ri, ri+1], to get,

OC 6i+1 + ei 2 Ci+1 - C- C2i + ZCZ 1 2 Ci - Ci- 1 +O r 2 )1 25
aVi= D( 2 t)r -D( - )r + O(Ar (2.5)
at 2 Ar 2 Ar

where V = } - r ) is the scaled volume of the shell between [ri, ri+ 1], and j is

the average concentration within this small volume. Since the volume 17r(ri - r3) is

always canceled with the surface area 47rr? by the same factor 47r, we will by default

use this scaled volume V = 1(r - r ) and scaled surface area r? without further

notation. Eqn. 2.5 holds for each shell, and in fact it gives the spatial discretization

of our original PDE system given by Eqn. 2.1.

We may also write each of the above discretized equations in the following matrix

form,

Mf = f(e), (2.6)

where Mf is a mass matrix with the volume of each shell on its diagonal and zero

elsewhere, f is the vector function with each item given by the left hand side of Eqn.

2.5, and Z is the vector of average concentration in each shell.

A disadvantage of this method for use in intercalation battery models is that

it computes volume-averaged concentrations rather than concentrations spatially lo-

cated at the node points. Thus, in order to obtain the surface concentration, which

determines the equilibrium potential that goes into the exponential of the kinetic

expression and is typically part of the exchange-current density, it is necessary to

extrapolate the concentration at the particle surface by,

Csurface = 3 N - N-1 (2.7)
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Error Order Analysis in Spatial Coordinates for the Finite Volume Method

In our system, we will demonstrate that this discretization method in fact achieves

second order accuracy in the spatial coordinate. We also show that the surface con-

centration converges in second order in mesh spacing. To demonstrate this point,

instead of proving directly that this finite volume discretization method is in sec-

ond order, we will derive another second order accurate method and show these two

methods are equivalent.

Let ci be the midpoint concentration of the interval [ri, ri+1] instead of the average

concentration within this shell. Then by Taylor expansion, we can easily get,

o fr+l Oc pr+l a ac
-(Vici + O(Ar 3)) =I r 2 -dr = -- (Dr2-)dr
at Jr* at Jr ar ar (2.8)

~~i ~ ~C +I C. 2 C.~~~ -C ii I-
D(c+2 + c/ c +1 - c. - D(c +- _ I - + O(Ar2

2 i+ Ar 2 ) Ar

Since this derivation is valid on each interval, the overall error of the above dis-

cretization method is of second order, O(Ar 2 ), for both sides of Eqn. 2.1. Thus, this

method is of second order accurate in space as desired.

Given that CN-1 and CN are second order accurate, the extrapolation of Csurface =
2UN-UN-1 is then obviously second order accurate by Taylor's expansion.2

Not surprisingly, Eqn. 2.8 is in exactly the same form as Eqn. 2.5, if we neglect

the error term. Therefore, these two discretization methods are equivalent. This

finishes our proof that the error of finite volume discretization in Eqn. 2.6 should

converge in second order in the spatial coordinate.

Instead of only using the average concentrations of the last two intervals to ap-

proach the surface concentration as proposed by Eqn. 2.7, we may use the average

concentration from all N intervals to achieve a more accurate surface concentration.

Let cleft be the nodal concentration on the left boundary of an interval [ri, ri+1], and

Cright be the concentration on the right node of the corresponding interval, then by

Taylor's expansion we have,

Cleft + Cright Cleft - Cright AL2T
Ci = t + + O(Ar2). (2.9)

2 6 ri+l
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Since we have N intervals in total, it gives us N constraints. Yet we have N + 1

unknown variables of nodal concentration, we may also use two Neumann boundary

conditions. Then by solving the least squares problem we can obtain the concentration

on each node, including the surface concentration. This may help us to gain a more

accurate surface concentration, but still in second order convergence. The effect of

this method will be shown in the numerical experiment section.

2.2.2 The Control Volume Method

We have discussed several advantages for using the finite volume method to discretize

our PDE system in the previous section, yet this method may not be ideal for our

specific spherical diffusion problem in a model of an intercalation battery. We are

essentially interested in the concentration at the surface of the particle, which is the

quantity that is coupled into the full set of battery model equations, but as mentioned

above, the finite volume method does not immediately provide this information. The

extrapolation step described above may take additional computation effort and in-

troduce new numerical error. Therefore, here we show the development of a new

numerical algorithm that keeps the advantages of the finite volume method while

avoiding the extrapolation step.

With this motivation, in this section we derive a new numerical discretization

method for our spherical diffusion equation, which we call the control volume method.

We will first introduce a basic version of this method, and provide the theoretical proof

of the error convergence order. Then a modified version is shown for better mass

conservation purpose, together with discussion of its accuracy order. We also show

the generalization to a non-uniform grid mesh of this modified control volume method.

While the finite-volume method can be used with variable mesh spacing, the extension

of the control-volume method to variable mesh spacing is more straightforward.

42



Derivation of the Control Volume Method

The control volume method is also a numerical scheme that discretizes the PDE

according to the integral form of Eqn. 2.1. We now mesh the spatial domain [0, R,]

uniformly with N points, denoted as rl, r 2, - - ,TN, while ri = 0 and rN = Rp. For

our convenience, we define Ar to be the distance between two nearby mesh points.

We denote ri + !Ar as rj+ and ri - !Ar as r_

If we integrate the left hand side of the equation over an interval centered at ri

(i # 1, 2 or N) with width Ar, [ri- , rj+ ], then we get,

+ -1Ar

r2-dr = (i r2cdr + r 2cdr). (2.10)
r i- r at at ri-Ar Jr %

The function f(r) = r 2c(r) takes values ryjcj-1 at the mesh point ri-1 and ryci

at the point ri. Then for any r in the sub-interval [ri-j, ri], by Taylor's expansion,

we can approximate the value of function f(x) by the following equation,

2 2
)rc ? - -1c_1 + O(Ar2). (2.11)f(r)=rjcj+(r-rj) Ar

Similarly, in the sub-interval [ri, ri+i], we apply the same technique and get,
2

(r) = r+ ci + (r - ri) + r i+ O(Ar2). (2.12)f~r)r~c+(rr~) Ar

Putting these two formulae back into Eqn. 2.10, we get,

ri+ Ar 2ac a 1 2 6 2 1 2
r dr = Ar (8r +1ci+1 + ri ci + -rjjci_ + O(Ar2 )). (2.13)

If we also integrate the right hand side of Eqn. 2.1 as we did for the finite volume

method, and equate the two sides, we obtain,

S1 2  62 12
Ar ( rji cji_+r ci + -ri+ci+1 + O(Ar2)) (2.14)

(Dci+1 + c 2ci+ - ci DC + Ci_1 c.- C2.2 (D( 2 r+ A -D( 2 )r? Ar + O(Arr2 -.
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Since the boundary condition is the Neumann condition, it can be easily handled

in this control volume method in the same way as the finite volume method.

From the error terms above, we see that this method is also second order accurate

in the spatial discretization. However, this method has two main problems. First

since we have no information about ci due to x1 = 0, then we have N - 1 unknown

variables but N equations, which shows the system is over-determined. Second, if we

sum up Eqn. 2.14 of each interval, we get,

N-1 1 2

(Z rici + -rNcN) + - (2.15)Ot 2 Ar
i=1

If we apply the constant flux for some time period At then relax the system to

make the concentration flat in the entire domain, the concentration increment should

be the same in the whole spatial coordinate. However, let Votai = limN (Zoo( j r +

Ir2)Ar = jr3 be the total particle volume, we have,

N-1 2

VtotaiAc $ (S rf + _rN)zc = -j A t. (2.16)
i=1

The concentration increment is always off from the true value for a certain percentage,

which violates the mass conservation law of our system.

Modification for Mass Conservation

In order to fix the problems described above, we replace rAr by the volume Vi of

the corresponding shell [ri-g, rr+). For example,

(ri + AL) 3 
- (r, _ r)3

- 2 2 -r Ar + -ArT. (2.17)3 12

Keeping the right hand side of Eqn. 2.14 unchanged, we then obtain,

S6 1
- IVi-ic-i + -1/ci + -1/+ 1 ci+1 + O(Ar3 ))Ot 88 8 (2.18)

= (D(Ci+1 + c Ci+1 - Ci - D(c+ c r + 2 c) - c'-1 + O(Ar2

2 A -r ( 2 - Ar
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Like Eqn. 2.14, this discretization scheme is also order Ar2

We can further write the new Eqn. 2.18 into a matrix form, which is similar to

the equation system Eqn. 2.6,
Dc

me-- = f(c), (2.19)
at

where c is the vector of concentration on each node point, and M, is a tri-diagonal

mass matrix as following,

1 2 0 0 --- 0 0 0

4'V1 V2 IV3 0 ... 0 0 0

0 1V2  V3 IV4 ... 0 0 0
MC= 8 8 8 (2.20)

0 0 0 0 - VN-2 VN-1 N

0 0 0 0 ... 0 {VN-1 VN

With this modification, we keep the second order spatial accuracy as the original

control volume method as shown by Eqn. 2.18, while we now have access to ci since

V1 $ 0. Furthermore, if we sum all the equations of each shell, we get,

N

SVi -Jr = 0. (2.21)

This satisfies the mass conservation condition exactly.

Non-uniform Grid Spacing

Since the boundary of each control volume is either at the center of the particle, sur-

face of the particle, or the midpoint of two nodes, we can still approximate the variable

c and its derivative at such a boundary in second order with only two nearby points.

This largely reduces the computation complexity and the implementation difficulty

of moving the above method from uniform mesh to non-uniform mesh compared to

other numerical methods such as finite volume or finite difference.

The control volume discretized formula for non-uniform mesh grids can be written

45



as the following,

0 1 6 1
(1Vi.ici_ 1 + 6Vici + 1 Vi+1ci+1)

ca t+ c 8r 8c c + 8 r + r c -c -(2 22)
=D( c'+1 + ci) rj+1 + ri 2Ci+1 - Ci - D(ci + c'-_1 ri + ri 1 -

2 2 ri+1 - ri 2 2 ri - ri_1

where Vi here is the volume of a small control volume ["'+, r+" +1] around the grid

point ri.

2.2.3 Time Domain Discretization

We have now introduced two different methods to discretize the spatial coordinate

of the PDE system in Eqn. 2.1. With the differential Eqn. 2.6 and Eqn. 2.19,

now we also need to seek for a time domain numerical discretization method to solve

this problem. In this section, we first prove the systems Eqn. 2.6 and Eqn. 2.19

are both ordinary differential equations, instead of differential algebraic equations,

as the former can be solved much more easily. Then we derive the formula for the

implicit time solver we used in solving both ordinary differential equation systems,

the Crank-Nicolson method.

Proof of ODE Systems

In order to prove the differential Eqn. 2.6 and Eqn. 2.19 are both ordinary differential

equations, it is sufficient to prove the mass matrices Mf and M, are both nonsingular.

The only assumption we make here is that the volume Vi is not zero for each i. The

mass matrix Mf is a diagonal matrix, with Vi # 0 on each diagonal entry by our

assumption. Then the statement that Mf is nonsingular follows immediately.

To prove that the mass matrix M, is nonsingular, we can write M, as a product
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of two matrices M1 and M2 ,

} 0 0 ... 0 0 0
1 6V1 0 .. 0 0
1 0 --- 0 0 0)
08 00 (0 V2 ... 0 0

0 6 1 0 0 0
M C 8 . =M 1 M 2 -

0 0 ... VN-1 0
0 0 0 0 ... 1

884 0 0 .. ' 0 VN
0 0 0 0 --- 0 8

(2.23)

M2 is nonsingular by the same proof as that Mf is nonsingular. By Gershgorin's

circle theorem [79], all eigenvalues of the matrix M1 are located within the circle

centered at 8 with radius ! on the complex plane. Therefore, 0 is not an eigenvalue

to the matrix M1 and M1 is also a nonsingular matrix. It follows that the product

of M1 and M 2, Me, is also nonsingular. This finishes the proof that the discretized

system Eqn. 2.19 is an ODE system.

The Crank-Nicolson Method

The Crank-Nicolson method is a combination of the forward and backward Euler's

methods that is used for solving ordinary differential equations with second order

accuracy in the time discretization. It is widely used to time-integrate the diffusion

equation in stable finite difference schemes [1921. The basic idea involves centered

differencing, similar to the control volume method developed above for the spatial

integration. Given an initial concentration profile ct and the time step size At, the

prediction of concentration profile ct+At at time t + At satisfies,

Ct+At - Ct I
M - = - (f(ct+At) + f(ct)), (2.24)

At 2

where M is the corresponding mass matrix.

It is equivalent to rewrite our problem in the following way. For each time step,
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we need to solve for ct+At such that,

t+At Ct+At - C t 1
(C = M - -(f (t+At) + f(cT)) = 0. (2.25)

At 2

To solve such a nonlinear algebraic system we employ Newton's method with an

initial guess ct+At = ct. We can reduce the computation cost by taking advantage of

the fact that the Jacobian matrix of function g with respect to ct+"t can be obtained

analytically [45I, thereby avoiding the need to calculate the Jacobians numerically in

each iteration. When the diffusion coefficient D is a constant, the vector function f

is then linear to the variable c'+N'. Therefore, it takes only one step to reach the

solution.

2.3 Numerical Results

In this section we will show the results from numerical experiments for both the finite

volume and control volume discretization methods coupled to the Crank-Nicolson

solver. The numerical convergence order in both space and time coordinates will

be demonstrated. We will also discuss the effects of the grid point locations on the

numerical error, from which we may see that by optimizing the grid point locations for

the diffusion coefficient function and parameter set we use here, we can considerably

reduce the number of grid points while maintaining the same or even achieving higher

accuracy.

In our numerical simulation, we select a parameter set that is typical for a lithium

ion battery cathode active material. We use the diffusion coefficient function shown

in Eqn. 2.4, and the choice of particle radius, surface flux and initial concentration

shown in Table 4.1. The surface flux value, j, in Table 4.1 corresponds to a C-rate

of about 4.3 C (corresponding to a full discharge in about 14 min), a rate that is

reasonable for a PHEV vehicle battery.

A typical concentration distribution profile during the intercalation of lithium is

shown in Fig. 2-3.
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Table 2.2: Parameter settings for numerical experiments.
Parameter Name Notation Value Unit
Particle Radius R, 5 x 10-6 m

Surface Flux j -5.35 x 10 5  mol/ m 2 /s

Initial Concentration Co 2 x 104 mol / m 3

Max Concentration Cm 4.665 x 104 mol / m 3
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Figure 2-3: Concentration Distribution within the spherical particle. The curves from

bottom to top respectively represent the concentration distributions at time t = 0,

100 , 200 , 200 and 400 seconds simulation time with a time step size of 5 seconds.

2.3.1 Error Order Analysis

As demonstrated analytically in the previous sections, we expect second order accu-

racy in space and time for both the finite volume and the control volume discretization

coupling to the Crank-Nicolson method.

Since we are mostly interested in the surface concentration in our simulation, we

define the error in terms of the accuracy of the surface concentration at the end of

our simulation. We use the solution from a very fine grid mesh (50001 points) as our

reference solution in the error convergence test.

It is clear from Fig. 2-4 that the finite volume method with two different extrapo-

lations and the control volume method are in the second order as expected. However,

for fixed grid numbers, the control volume method is more accurate than the finite

volume method by a factor of about 10. This shows one of the advantages of using
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the control volume method in the simulation.
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Figure 2-4: Plot showing the relative error convergence order of three numerical

schemes in the spatial coordinate. The curve of finite volume method with extrapola-

tion method Eqn. 2.7 is shown by the dash line with square marker, and the solid line

with circle marker represents the finite volume method with extrapolation method

Eqn. 2.9. The dot curve with diamond marker represents the control volume method.

The relative error is defined as the error of surface concentration over the reference

surface concentration. The total simulation time is 400 second with a time step of 5

seconds.

For the time dimension, similar to the way we conduct the spatial error conver-

gence test, we fixed the mesh size to be 101 uniform grid points and then varied the

time step sizes. In addition, we took the solution with very small time step size (0.002

s per step) and the same mesh (101 grid points) as our reference solution.

From Fig. 2-5, the slope of the log-log plot is 2, which indicates that for the given

mesh size, all three numerical methods are second order accurate in time, which is

consistent with our previous derivation of the Crank-Nicolson method.

2.3.2 Effects of Grid Point Positions

In the previous discussions of different numerical methods, we worked only with

a uniform mesh within the spatial domain. Due to the physics of the problem, a

Neumann boundary condition is required, such that the concentration in the region

closest to the particle surface should change more rapidly than the region closest to
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Figure 2-5: Plot of the relative error convergence order of three numerical schemes

in the time coordinate. The curve of the finite volume method with extrapolation

method Eqn. 2.7 is shown by the dash line with the square marker, and the solid

line with the circle marker represents the finite volume method with extrapolation

method Eqn. 2.9. The dot curve with diamond marker represents the control volume

method. The relative error is defined as the error of surface concentration over the

reference surface concentration. The total simulation time is 400 second with a 101-
uniform-grid-point mesh.

the center. Furthermore, we are particularly interested in the surface concentration

because of its use in other equations in our battery model. Therefore, it may be a

good idea to use a non-uniform spatial mesh with more grid points closest to the

surface, in order to achieve a better accuracy and/or a shorter simulation time.

Indeed, we find that the locations of the grid points have a significant influence

on the numerical accuracy. Instead of using a constant flux, now we apply a varying

flux by simulating a driving cycle. The driving cycle is composed of a series of surface

fluxes, each applied for a duration of 1 second, and represents a real-world load profile

applied in a vehicle application. The drive cycle we use consists of a period of city

driving with a relatively low average load, followed by a period of highway driving

with a higher average load, followed by a second period of city driving.

From Fig. 2-6, we see that with 21 grid points, if we increase the density near

the surface, we can achieve more than 10 times higher accuracy in the surface con-

centration than with the same number of uniform mesh grids, which means we may
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largely reduce the grid point number and keep the original accuracy by just changing

the mesh locations. The mesh point locations are given by,

logspace(0,a,10)-1
l0a - 1 ' (2.26)

where logspace(.) is a function in MATLAB that provides logarithmically equally

spaced points (in base 10) and a is some negative number we varied from 0 (uniform

grid in this case) to 4. The form of Eqn. 2.26 was chosen merely because it conve-

niently distributes most of the grid points near the particle surface, and is not the

result of an optimization or systematic study of grid point placement.

Fig. 2-6(a) shows the surface concentration as a function of time. The slope of the

surface concentration vs. time is a rough indicator of the average load on the particle.

The inset in Fig. 2-6(a) shows that 21 non-uniform grid points can provide a surface

concentration that is much closer to the converged solution (with 501 uniform grid

points) than 21 uniform mesh points. Root-mean-square (RMS) errors for the entire

simulation duration are also given in the legend of Fig. 2-6(a). Achieving an accuracy

in the equilibrium potential of the Li(NiI/ 3Mn1/ 3Co1/3)0 2 material in reference [228]

of 1.0 mV requires an accuracy in the surface concentration of about 10 mol/m 3 (for

all but the tail region below about 3.6V vs. Li). As accurate battery simulations

require highly accurate equilibrium potential values, achieving an RMS error in the

surface concentration that is below 10 mol/m 3 is desirable. Fig. 2-6(a) shows that

21 non-uniform grid points can reach such a target, while 21 non-uniform grid points

give an RMS error in the surface concentration that is far above that bound. 138

uniformly spaced grid points are required to match the RMS error of the 21 non-

uniform grid points, demonstrating a 6.57x reduction in the number of grid points is

possible for the parameters and drive cycle used here. Fig. 2-6(b) shows that while

the RMS error of the surface concentration with 21 non-uniform grid points is below

10 mol/m 3 , there are points in the drive cycle when the error is significantly higher,

demonstrating the need for a battery modeler to carefully select model parameters

(including number of mesh points and mesh point spacing) that give an accuracy
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Figure 2-6: The surface concentration over time with 501 uniform grids (the reference

solution, black solid curve), 21 non-uniform grids (grey dash curve) and 21 uniform

grids (grey dot curve) are shown in the top subfigure (a), while the corresponding

relative errors in surface concentrations over time with 21 uniform grids (grey squares)
and 21 non-uniform grids (black circles) are shown in the bottom subfigure (b). We

may see the performance from 21 non-uniform grid points is significantly better than

the outcome from 21 uniform grids. The RMS ( short for "root mean square") error

for uniform grid is 55.73 while the RMS error for non-uniform grid is only 4.48. We

choose the parameter a = -1.5 in Eqn. 2.26 for the non-uniform grid.

suitable for the modeling purpose.

The dramatic reduction in the number of required points while maintaining a high

accuracy provides inspiration to optimize the grid point location based on the particle

sizes, diffusion coefficient (including functional forms that describe the dependence of

the diffusion coefficient on concentration), and input flux profile 1174]. The goal is to
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allocate mesh points within the spatial domain while maintaining the same surface

concentration solution from the coarse, nonuniform grid and the very fine, uniform

grid. With this coarse mesh, we may significantly reduce the simulation time of this

spherical diffusion process.

2.4 Conclusion

By carefully comparing the finite volume and control volume methods as applied to

the 1D, non-linear, spherical diffusion problem, we have shown that the advantages

of the control volume method include directly obtaining the surface concentration

rather than obtaining a volume-averaged concentration, a higher solution accuracy for

a given number of node points, and a straightforward extension of the method to non-

uniform grid spacing that can significantly reduce computational time by selectively

placing grid points where concentrations gradients are highest.

We have quantified the errors in the surface concentration that comes from both

uniform and non-uniform meshes and compared the errors with an accurate solution.

Our results underscore the importance of understanding the impact of the numerical

solution technique for the solid transport process in order to achieve an accuracy

appropriate for the modeling purpose, as the surface concentration (or activity) de-

termines both the equilibrium potential and exchange current density typically used

in battery models. The control volume method can also be extended to solving

accurately more complex battery models [238], such as the fourth-order, nonlinear

Cahn-Hilliard reaction model [15], where the surface activity also depends on concen-

tration gradients and elastic stresses. extended to solving accurately more complex

battery models 1238], such as the fourth-order, nonlinear Cahn-Hilliard reaction model

[15], where the surface activity also depends on concentration gradients and elastic

stresses.
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Chapter 3

Phase Separation Dynamics in

Isotropic Ion-Intercalation Particles

3.1 Introduction

The discovery of lithium iron phosphate (LiFePO 4, LFP) as a cathode material

for lithium-ion batteries has led to unexpected breakthroughs in the mathematical

theory of chemical kinetics coupled to phase transformations [15]. Since its discovery

in 1997 as a "low power material" with attractive safety and economic attributes [165],

LFP has undergone a remarkable reversal of fortune to become the cathode of choice

for high-power applications [204, 109, 203], such as power tools and electric vehicles

[176, 236], through advances in surface coatings and reduction to nanoparticle form.

A striking feature of LFP is its strong tendency to separate into stable high density

and low density phases, indicated by a wide voltage plateau at room temperature

1165, 204] and other direct experimental evidence [58, 232, 59, 5, 164, 46]. Similar

phase-separation behavior arises in many other intercalation hosts, such as graphite,

the typical lithium insertion anode material, which exhibits multiple stable phases.

This has inspired new approaches to model the phase separation process coupled to

electrochemistry, in order to gain a better understanding of the fundamental lithium-

ion battery dynamics.

The first mathematical model on two-phase intercalation dynamics in LFP was
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proposed by Srinivasan and Newman [191], based on the concept of a spherical "shrink-

ing core" of one phase being replaced by an outer shell of the other phase, as first

suggested by Padhi et al. [165]. By assuming isotropic spherical diffusion, the sharp,

radial "core-shell" phase boundary can be moved in proportion to the current. This

single-particle model was incorporated into traditional porous electrode theory for

Li-ion batteries [67, 155] with Butler-Volmer kinetics and concentration dependent

diffusivity and fitted to experiments. The shrinking-core porous-electrode model was

recently extended and refitted by Dargaville and Farrell [52].

In recent years, the shrinking-core hypothesis has been called into question be-

cause different phase behavior has been observed experimentally 1121, 38, 5, 59, 46]

and predicted theoretically [15]. It has become clear that a more realistic particle

model must account for two-phase thermodynamics [89, 188, 123, 124, 238], crystal

anisotropy [188, 8, 202], coherency strain 148, 47] and reaction limitation in nanopar-

ticles [188, 8, 74]. In larger, micron-sized particles, the shrinking-core model may still

have some relevance due to solid diffusion limitation and defects (such as dislocations

and micro cracks) that can reduce coherency strain [188, 31, 51]. Moreover, diffusion

becomes more isotropic in larger particles due to the increased frequency of point

defects, such as channel-blocking Fe anti-site defects in LFP [133].

Regardless of the details of the model, fundamental questions remain about the

dynamics of phase separation driven by electrochemical reactions, even in the simplest

case of an isotropic strain-free spherical particle. When should we expect core-shell

phase separation versus pure diffusion in a solid solution? What other transient phase

morphologies are possible? How are reaction kinetics affected by phase separation?

Traditional battery models, which place artificial spherical phase boundaries and

assume classical Butler-Volmer kinetics, are not able to answer these questions.

In this article, we formulate a simple mathematical model that captures the es-

sential features of bulk phase separation coupled to Faradaic intercalation reactions

in a single solid nanoparticle. The model is based on a recently developed mathemat-

ical theory of chemical reaction and charge transfer kinetics based on nonequilibrium

thermodynamics [15], which we review in Section 3.2. In the case of an isotropic,
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strain-free spherical particle, the resulting Cahn-Hilliard reaction (CHR) equations

are formulated for Butler-Volmer (BV) kinetics and regular solution thermodynamics

in Section 3.3. The model predicts smooth concentration profiles limited by radial

diffusion with smooth voltage profiles versus state of charge in cases of solid-solution

thermodynamics (Section 3.4) and radial phase separation with a flat voltage plateau

in cases of two stable phases (Section 3.5), which are strongly affected by surface

wetting (Section 3.6). After summarizing the results, in Section 3.7 we present the

control-volume numerical scheme for the CHR model that allows us to accurately

solve this stiff fourth-order nonlinear initial-boundary-value problem.

3.2 Background

A systematic approach to describe chemical kinetics coupled to phase transformations

has recently been developed by Bazant [15], based on nonequilibrium thermodynam-

ics. The theory leads to a general reaction-diffusion equation of the form,

Oc- V . MiciV + Re (3.1)

where ci is the concentration, Mi the mobility, and Ri the volumetric reaction rate

of species i, assuming homogeneous kinetics. The diffusive flux (second term) and

the reaction rate (third term) are both expressed in terms of diffusional chemical

potentials,
6G

A= - (3.2)
6ci

defined as variational derivatives of the total free energy functional G[{ci}]. Physi-

cally, pu(x) is free energy required to add a continuum "particle" (delta function) of

species i to the system at position x. For the conversion of reactants {A,} to products

{Bp},

SrAr + ZspBP, (3.3)
r p
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assuming thermally activated kinetics, the reaction rate has the general variational

form,

R = - exp 6 - exp S - (3.4)
7t rkBT 6cr,( kBT Ecp)

where 'yt is the activity coefficient of the transition state and Ri = tsjR (+ for

products, - for reactants). A mathematical model of the general form (3.1) was

perhaps first proposed by Hildebrand et al. to describe nanoscale pattern formation

in catalytic surface reactions [102, 101] and corresponds to specific models for the

free energy (G) and the transition state (-yt). In the case of electrochemical reactions

involving ions and electrons, different assumptions that also account for electrostatic

energy lead to generalizations of the classical Butler-Volmer and Marcus theories of

charge transfer for concentrated solutions and solids [15].

The variational reaction-diffusion equation (3.1) unifies the Cahn-Hilliard and

Allen-Cahn equations from phase-field modeling in a general formulation of non-

equilibrium chemical thermodynamics for reacting mixtures. These classical equa-

tions, widely used in materials science and applied mathematics [10], are special

cases of Eq. (3.1) that correspond to rate limitation by diffusion,

Oc = V -McV I (Cahn-Hilliard) (3.5)
at 6c

or by linear reaction kinetics for a small thermodynamic driving force,

ac 6G-- = -k (Allen-Cahn) (3.6)
at 6c

respectively [188, 151. The general equation (3.1) can be applied to many problems in

chemical or electrochemical dynamics [15]. In the case of ion intercalation in Li-ion

battery nanoparticles, it has mainly been studied in two limiting cases.

For reaction-limited anisotropic nanoparticles, the general theory can be reduced

to the Allen-Cahn reaction (ACR) equation,

tr 6G '
-9 = R (ACR) (3.7)

at 6c
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for the depth-averaged ion concentration c(x, y) along the active surface where inter-

calation reactions occur, as shown by Bai et al. [8] and Burch [30], building on the

seminal paper of Singh et al. [188]. The ACR model has been applied successfully

to predict experimental data for LFP, using generalized Butler-Volmer kinetics and

accounting for coherency strain, by Cogswell and Bazant [48, 47, 15]. An important

prediction of the ACR model is the dynamical suppression of phase separation at

high rates [8, 481, as it becomes favorable to spread reactions uniformly over the par-

ticle surface, rather than to focus them on a thin interface between stable phases.

The ACR model has also been used to predict a similar transition in electrochemical

deposition of Li 20 2 in Li-air battery cathodes, from discrete particle growth at low

currents to uniform films at high currents [104].

For larger particles, the Cahn-Hilliard reaction (CHR) model,

-- +V-F=0, F=-McV - -n- F=R ( -6C (CHR) (3.8)&t 6ci' kLcJ

describes bulk phase separation driven by heterogenous reactions, which are localized

on the surface and described by a flux matching boundary condition [151. This general

model was first posed by Singh, Ceder and Bazant [188] but received less attention

until recently. For Butler-Volmer kinetics, Burch and Bazant [31, 30] and Wage-

maker et al. [218J solved the CHR model in one dimension to describe size-dependent

miscibility in nanoparticles. Dargaville and Farrell [51, 53] first solved CHR in two

dimensions (surface and bulk) for a rectangular particle using a least-squares based

finite-volume method [541 and examined the transition to ACR behavior with in-

creasing crystal anisotropy and surface reaction limitation. They showed that phase

separation tends to persist within large particles, similar to the shrinking core picture,

if it is not suppressed by coherency strain and/or fast diffusion perpendicular to the

most active surface.
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3.3 Cahn-Hilliard Reaction Model

In this work, we solve the CHR model with generalized Butler-Volmer kinetics for a

spherical host particle with the intercalated ion concentration varying only in the ra-

dial direction. Spherical symmetry is also the most common approximation for solid

diffusion in traditional Li-ion battery models [67, 239]. This simple one-dimensional

version of the CHR model is valid for large, defective crystals with negligible co-

herency strain and isotropic diffusion [188, 30, 51, 53]. It may also be directly ap-

plicable to low-strain materials such as lithium titanate [160], a promising long-life

anode material [234]. We simulate phase separation dynamics at constant current,

which sometimes, but not always, leads to shrinking-core behavior. Related phase-

field models of isotropic spherical particles, including the possibility of simultaneous

crystal-amorphous transitions, have also been developed and applied to LFP by Tang

et al. [201, 203], Meethong et al. [145, 144, 146], and Kao et al [110], but without

making connections to charge-transfer theories from electrochemistry. Here, we focus

on the electrochemical signatures of different modes of intercalation dynamics - volt-

age transients at constant current - which are uniquely provided by the CHR model

with consistent Butler-Volmer reaction kinetics [151. We also consider the nucleation

of phase separation by surface wetting [8], in the absence of coherency strain, which

would lead to a size-dependent nucleation barrier [47] and symmetry-breaking striped

phase patterns [60, 48].

3.3.1 Model formulation

Consider the CHR model (3.8) for a spherical, isotropic, strain-free, electron-conducting

particle of radius R, with a concentration profile c(r, t) of intercalated ions (num-

ber/volume). As first suggested by Han et al. for LFP [891, we assume the chemical

potential of the Cahn-Hilliard regular solution model [33, 34, 35],

= kBT ln c i + (m (22C) _ K V2C (39)
cm - C Cmn C2
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where kB is Boltzmann's constant, T the absolute temperature, Q the enthalpy of

mixing per site, , the gradient energy penalty coefficient, V, the volume of each

intercalation site, and cm = V-' is the maximum ion density. Although we account

for charge transfer at the surface (below), we set the bulk electrostatic energy to zero,

based on the assumption each intercalated ion diffuses as a neutral polaron, coupled

to an adjacent mobile electron, e.g. reducing a metal ion such as Fe3+ + e- -+ Fe2+

in LFP. (For semiconducting electrodes, imbalances in ion and electron densities lead

to diffuse charge governed by Poisson's equation in the CHR model [151.)

The mobility M in the flux expression (3.8) is related to the tracer diffusivity

D by the Einstein relation, D = MkBT. For thermodynamic consistency with the

regular solution model, the tracer diffusivity must take into account excluded sites

D = Do( 1 - -) = MkBT (3.10)

where Do is the dilute-solution limit, which leads to the "modified Cahn-Hilliard equa-

tion" [153]. This form also follows consistently from our reaction theory, assuming

that the transition state for solid diffusion excludes two sites [15].

At the surface of the particle, R = Rp, the insertion current density I(t) is related

to the voltage V(t) and surface flux density F(Rp, t), where F = FN is the radial

flux. By charge conservation, the current is the integral of the surface flux times the

charge per ion ne,

I = -neF(Rp, t), (3.11)

where e is the electron charge. Electrochemistry enters the model through the

current-voltage relation, I(V, c, It), which depends on c and y at the surface. Here,

we adopt thermodynamically consistent, generalized Butler-Volmer kinetics for the

charge-transfer rate [15], given below in dimensionless form.

We also impose the "natural" or "variational" boundary condition for the fourth-

order Cahn-Hilliard equation,

8c 8YS
-- (R, t) = c 2 &, (3.12)
ar M C
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where 7,(c) is the surface energy per area, which generally depends on ion concentra-

tion. The natural boundary condition expresses continuity of the chemical potential

and controls the tendency for a high or low concentration solid phase to preferen-

tially "wet" the surface from the inside [32, 47]. Together with symmetry conditions,

F(O, t) = 0 and - (0, t) = 0, we have the required four boundary conditions, plus the

current-voltage relation, to close the problem.

3.3.2 Dimensionless equations

To nondimensionalize the system, we will use several basic references to scale the

model, which include the particle radius R, for the length scale, the diffusion time

0 for the time scale, the maximum ion concentration cm for the concentration scale

and the thermal energy kBT for any energy scale. The dimensionless variables are

summarized in Table 3.1.

Table 3.1: Dimensionless variables in the CHR model.
c=- t = t f = r V = RDV F = F

C p2 Rp c

' = T = = RCmkBT = cmeDO cmeDIO
kBeV_ _ 

kB kB kBT RvcmkBT 9

With these definitions, our model takes the dimensionless form,

ft=n 
1 - c

aa -

F(0,

f2 rf

F= -(1 - 2

+ 0(1 - 2a) - 72a

)=0, -(1 ) =I

In order to relate the current to the battery voltage, we assume generalized Butler-
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Volmer kinetics [151,

I = io (e-a - eu--a)) (3.18)

i = -+?-e (3.19)

= Ba(1 a)1-ae((12c)--a) = (1 - )eap (3.20)

where I is the insertion current density (per area), Io the exchange current density,

a the charge transfer coefficient, ry the surface or activation overpotential, V the

battery voltage, and Ve the reference voltage for a given anode (e.g. Li metal)

when the particle is homogeneous at = 1. The derivation of this rate formula

assumes that the transition state for charge transfer excludes one surface site, has

no enthalpic excess energy, and has an electrostatic energy (1 - a) times that of

the electron plus the ion in the electrolyte. It is common to assume a = I, but2'

we will relax this assumption below. In equilibrium, r = 0, the interfacial voltage,

AV = V - Ve is determined by the Nernst equation, AZeq = -A. Out of equilibrium,

the overpotential, ?q(t) = AV(t) - AVeq(t), is determined by solving for the transient

concentration profile.

3.3.3 Governing parameters

Dimensionless groups are widely used in fluid mechanics to characterize dynamical

regimes [14], and recently the same principles have been applied to intercalation dy-

namics in Li-ion batteries 1188, 74]. The CHR model is governed by four dimensionless

groups, Q, R, / and I (or 1/) with the following physical interpretations.

The ratio of the regular solution parameter (enthalpy of mixing) to the thermal

energy can be positive or negative, but in the former case (attractive forces) it can

be interpreted as
- Q 2T (3.21)

kBT T'

i.e. twice the ratio of the critical temperature T, = -, below which phase separation2kBs

is favored, to the temperature T. Below the critical point, T < Tc (or (2 > 2) , the
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thickness and interfacial tension of the diffuse phase boundary scale as Ab = /K/CmQ

and 'Yb = KQCm, respectively [331, so the dimensionless gradient penalty

K A

Cmk=2= ( <A) (3.22)cakBT R R,)

equals (2 times the squared ratio of the interfacial width (between high- and low-

density stable phases) to the particle radius, which is typically small.

The parameter 3 is the dimensionless concentration gradient at the particle sur-

face, # = , which we set to a constant, assuming that the surface tension Y,(c)

is a linear function of composition. Letting Ay, = 9 be the difference in surface

tension between high-density (2 e 1) and low-density (d ~ 1) phases,

3 = - > (3.23)
Ab 'Yb

we can interpret / as the ratio of particle size to the phase boundary thickness times

the surface-to-bulk phase boundary tension ratio, . In cases of partial "wetting"

of the surface by the two solid phases, this ratio is related to the equilibrium contact

angle 0 by Young's Law,

cos 0 = (3.24)
7b

Partial wetting may occur in the absence of elastic strain (as we assume below), but

complete wetting by the lower-surface-energy phase is typically favored for coherent

phase separation because 'Yb < IAys1 [47]. In any case, for thin phase boundaries, we

typically have / > 1.

Finally, the current density is scaled to the diffusion current,

~I _ _I- - I (3.25)
3necmV/(TDA) necmDo

where V = !7rR3 is the volume of the sphere, necmV represents the maximum charge

can be stored in the sphere, A = 47rR2 is the surface area and rD = R2/DO is the

diffusion time into the particle. I = 1 is equivalent to that the particle can be
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fully charged from empty in 1 unit of diffusion time rD with this current density.

The exchange current has the same scaling. Rate limitation by surface reactions or

by bulk diffusion corresponds to the limits io < 1 or jo > 1, respectively, so this

parameter behaves like a Damkoller number [188, 74].

3.3.4 Simulation details

For a given dynamical situation, either the current or the voltage is controlled, and

the other quantity is predicted by the model. Here we consider the typical situation

of "galvanostatic" discharge/charge cycles at constant current, so the model predicts

the voltage V, which has the dimensionless form, V = . The electrochemicalkBT*

response is typically plotted as voltage versus state of charge, or mean filling fraction,

X f cdV (3.26)
r rcm

The reference scale for all potentials is the thermal voltage, kBT, equal to 26 mV at

room temperature.

In the following sections, we perform numerical simulations for the parameter

settings in Table 3.2, which have been fitted to experimental data for LFP [8, 48],

but we vary ( to obtain different dynamical behaviors, which may represent other

Li-ion battery materials. Owing to its small size, Rp = 100 nm, and relatively fast

solid diffusion, the particle is strongly reaction limited, since Io = 0.0226, allowing

us to focus on the novel coupling of reaction kinetics with phase separation [15]. In

this exercise, we initially neglect surface wetting (by setting # = 0) and coherency

strain, both of which are important for an accurate description of LFP [48, 47j. In

later sections, we also consider # > 0 and a # - for the more interesting cases of2

phase separation (f > 2). We employ a control volume method (described below)

for the spatial discretization of the system and the ode15s solver in MATLAB for the

time integration.
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Table 3.2: Parameter settings for LFP used in the numerical simulations, except as
otherwise noted.

Parameter Value Unit Parameter Value Unit
R1 x 10- 7  m Q 0.115 eV
r 3.13 x 109 eV/m Do x 10-12 m2 /s

c(r, 0) 10 mol / m3  Cm 1.379 x 1028 m-3
n 1 - a 0.5

Ve 3.42 V Io 500 A/M 2

3.4 Solid Solution

Our model predicts simple diffusive dynamics with slowly varying concentration and

voltage transients under "solid solution" conditions, where configurational entropy

promotes strong mixing. The regular solution model predicts that bulk solid solution

behavior occurs at all temperature if there are repulsive forces between intercalated

ions, Q < 0, or above the critical temperature T > T, for attractive ion-ion forces,

Q > 0. Here, we consider finite-sized particles and examine current-voltage transients

in both of these cases of solid-solution thermodynamics.

3.4.1 Repulsive forces

A negative enthalpy of mixing, Q < 0, reflects mean-field attraction between ions

and vacancies, or equivalently, repulsion between intercalated ions that promotes

homogeneous intercalation. Consider galvanostatic (constant current) charge and

discharge cycles with Q = -0.0514eV or f = -2. When the current is small, I < 1,

diffusion is fast, and the ions remain uniformly distributed inside the particle during

intercalation dynamics, as shown in Fig. 3-1. At high currents, I > 1 (not considered

here), diffusion becomes rate limiting, and concentration gradients form, as in prior

models of spherical nonlinear diffusion [67, 191, 2391.

Given the Butler-Volmer symmetry factor, a = 0.5, and assuming uniform com-

position, the total voltage drop between anode and particle surface is given by

fr="--A( ) - 2sinh-1 ~= , (3.27)
(2I0 ( ))
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Figure 3-1: Constant current cycling of a spherical intercalation particle, composed
of a solid solution of lithium ions with repulsive forces (O = -2). Left: profiles of
dimensionless concentration a(r) (local filling fraction) at different mean compositions

(average filling fraction, X) at nondimensional current i/Io = 0.25. The vertical
dimension in the plots shows the concentrations, while the horizontal circle denotes
the hyperplane cut at the equator of the sphere. Right: voltage versus state of charge
(filling fraction) at different currents. The reference current density Io = 500 A/rn2 is
the exchange current density when particle is uniformly half filled. The eight voltage
curves represent I/1. = 0.01, 0.1, 1, +10.

where V is the battery voltage, ye is the constant reference voltage for a given

anode, and 10(a) the exchange current density at the given concentration profile. The

simulated discharge curves in Fig. 3-1 fit this expression well and exhibit no voltage

plateau (a signature of phase separation discussed below). The model exhibits a

positive internal resistance, since the battery voltage decreases for I > 0 (discharging)

and increases for I < 0 (charging). According to Eq. (3.27), the voltage increment,

or overpotential, has two sources: concentration changes at the surface that shift the

Nernst equilibrium interfacial voltage (second term, concentration overpotential) and

Butler-Volmer charge-transfer resistance (third term, activation overpotential).

3.4.2 Weak attractive forces or high temperature

When the mixing enthalpy per site y is positive, there is an effective repulsion be-

tween ions and vacancies, or equivalently, an attraction between ions that promotes

phase separation into Li-rich and Li-poor phases. This tendency counteracted by

configurational entropy, which always promotes the mixing of ions and vacancies and

leads to homogeneous solid solution behavior at high temperature T. Below the crit-
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ical temperature, T < T, = , attractive forces overcome configurational entropy,

leading to stable bulk phase separation.

For T > Tc, the numerical results are consistent solid solution behavior. For

example, we use the same parameters in Table 3.2, except for the Q = 2.57 x 10-2

eV, or Q = 1, so the absolute temperature is twice the critical value, T/T = 2. As

shown in Fig. 3-2, the voltage varies less strongly with filling fraction, in a way that

resembles previous empirical fits of the flat voltage plateau (below) signifying phase

separation. There is no phase separation, however, and the concentration profile (not

shown) is very similar to the case of repulsive interactions in Fig. 3-1.

.--. 1/ = 0.01

.... 1 = 0.1

3.6

3.2-

3

0 0.2 0.4 0.6 0 .8 1
Filling Fraction X

Figure 3-2: Cycling of a high temperature solid solution with attractive forces (Q = 1)
with other parameters from Fig. 3-1.

3.4.3 Capacity

When the particle is charged or discharged at a high rate, the total capacity, defined as

the mean filling X reached when the voltage drops below some threshold on discharge,

will be significantly reduced. In a simple spherical diffusion model, by the scaling of

Sand's time t,~ [13, 17] and charge conservation, the total capacity C scales as,

C = It, ~ I. In our CHR model, we observe a different scaling of the capacity from

the numerical simulations. In a simple power law expression, C P, the exponent

-y depends on different conditions, such as wetting parameter 3, gradient penalty

constant K, and regular solution parameter Q. A sample of the scaling dependence
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on current with different r is shown in Fig. 3-3, where p ~ 0.5.

100

10
U * X=8.810-3 simulation

ic=8.8*10-3 fitting
E ic=8.8*104 simulation

x=-8.8-10 fitting

- x=4.4*104 simulation
- - - K=4.4*104 fitting

10
100 10 10

nondimensional I

Figure 3-3: Capacity C versus current with different gradient penalty constant K in

a solid solution (0 = 3 = 0).

3.5 Phase Separation

In some materials, such as LFP, the attractive forces between intercalated ions are

strong enough to drive phase separation into Li-rich and Li-poor solid phases at room

temperature, for T < Tc, or f > 2 in the regular solution model. Phase separation

occurs because the homogeneous chemical potential is no longer a monotonic function

of concentration. This has a profound effect on battery modeling that is predicted

from first principles by the CHR model.

3.5.1 Strong attractive forces or low temperature

In order to simulate a representative model, we again use the parameters in Table

3.2 but set the Q = 1.15 x 10-1 eV, or f = 4.48 > 2, which is a realistic value of the

enthalpy per site value in LFP [481. Very different from the uniformly filling behavior

in Fig. 3-1, phase separation occurs suddenly when the composition passes the lin-

early unstable spinodal points. The concentration profiles develop sharp boundaries

between regions of uniform composition corresponding to the two stable phases, as

shown in Fig. 3-4. The new phase appears at the surface and propagates inward, as
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shown in Fig. 3-5, once the surface concentration enters the unstable region of the

phase diagram.

i/i0 = 0.01 iA = 0.25 1
X J X i
C 090 0 0.9
0 .

" 0.5 0.5 .
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0 0.6 0 0.3 0.3
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Figure 3-4: Dynamics of phase separation during ion intercalation (Q = 4.48). Con-
centration distributions within the spherical particle are shown at different currents

} = 0.01 (top left), 0.25 (top right), 1 (bottom left) and 4 (bottom right), where
Io(a = 0.5) = 500 A/M2 . The x-axis represents the nondimensional radial position
f and the y-axis presents the overall average filling fraction X of the whole particle,
which can be also seen as the time dimension. The warmer color in the figure indicates
a higher local filling fraction.

After phase separation occurs, the CHR model for an isotropic spherical particle

predicts similar must account for t as the shrinking core model, but without empir-

ical placing a sharp phase boundary. Instead, the diffuse phase boundary appears

from an initial single-phase solid solution at just the right moment, determined by

thermodynamic principles, and there is no need to solve a moving boundary problem

for a sharp interface, which is numerically simpler.

The CHR model also predicts the subtle electrochemical signatures of phase sepa-

ration dynamics [15]. Without any empirical fitting, phase separation naturally leads

to a flat voltage plateau, as shown in Fig. 3-6. The constant-voltage plateau reflects

from the constant chemical potential of ion intercalation in a moving phase boundary

(in the absence of coherency strain, which tilts the plateau [48]). At high currents,
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Figure 3-5: Shrinking core dynamics of phase separation in an isotropic spherical
particle (Q = 4.48 and no surface wetting). The vertical dimension in the plots
shows the concentrations, while the horizontal circle denotes the hyperplane cut at
the equator of the sphere. The nondimensional current is I/I = 0.25 with I0 ( =

0.5) = 500 A/M 2 and X the overall filling fraction of lithium ions.

the initial charge transfer resistance, or activation overpotential, is larger, as signified

by the jump to the plateau voltage (derived below), and over time, solid diffusion lim-

itation, or concentration overpotential, causes the voltage to fall more rapidly during

discharging, or increase during charging.

3.8

3.7

3.6

=3.4
0

3.3

3.2

3.1

i= 50 A/m 2

- 1,-0.01 -. Avi .I

V--- = .251 .- /- 41

0 0. n 0.4 0.
Filing Fraction X

0.8

Figure 3-6: Phase separating particle (Q

i = 500 A/m
2

37 0. 0. 25 0. - 4

Filling Fractio X

= 4.48) voltage vs. filling fraction plot with

different currents and two different reference exchange currents. Both the charging
and discharging curves are shown. The reference current density io is the exchange
current density which takes values 50 A/m 2 (left) and 500 A/m 2 (right) when particle

is uniformly half filled.
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3.5.2 Voltage Plateau Estimation

As we see from Fig. 3-4-3-6, our model system always undergoes phase separation,

which leads to a voltage plateau. In the case without surface wetting, i.e. 3 = 0,

we can derive an accurate approximation of the voltage plateau valued, since the

concentration within each phase is relatively uniform, especially when the current is

not very large. Therefore, we may ignore the gradient penalty term rV2c, leaving

only the homogeneous chemical potential,

~In + Q(1 - 2a). (3.28)

The stable composition of each phase is approximately solves f = 0, where the

homogeneous free energy at these two concentrations takes its minimum. During

ion insertion, the surface concentration is approximately the larger solution a, of this

equation. In the case I > 0, given the nondimensional current - exchange current

ratio 1= , where Jo(a = is the exchange current when the concentration

2 throughout the whole particle. The plateau voltage is then given by

2kB

V Ve - 2kBT sinh 1  . (3.29)
e (4(1 - al)

At low currents, the agreement between this analytical approximation and the nu-

merically determined voltage plateau is excellent, as shown in 3-7.
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Figure 3-7: Comparison of the simulated voltage plateau from Fig. 3-6 (solid curves)
and the analytical approximation of Eq. (3.29) (dashed curves) for I > 0.
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The voltage plateau formula can be understood physically as follows. As a result

of our assumption of spherical symmetry, the intercalation reaction must proceed into

the outer "shell phase". In the case of lithiation, the shell has high concentration and

thus strong entropic constraints inhibiting further insertion that lower the reaction

rate, increase the overpotential, and lower the voltage plateau when phase separation

occurs. In contrast, when the phase boundary is allowed to move along the surface as

an intercalation wave 1188, 8, 48, 47], insertion occurs with higher exchange current

at intermediate concentrations, although the active area is reduced, which leads to

suppression of surface phase separation at high currents [8, 481.

3.5.3 Butler-Volmer Transfer Coefficient

In the preceding examples, we set the Butler-Volmer the transfer coefficient to a = 0.5

as in prior work with both CHR 18, 48] and diffusive [67, 191] models. This choice

can be justified by Marcus theory of charge transfer when the reorganization energy

is much larger than the thermal voltage [15, 13], but in battery materials this may

not always be the case. In our isotropic model, charge-transfer asymmetry (a $ 0.5)

mainly manifests itself via strong broken symmetry between charge and discharge in

the activation overpotential, as shown in the voltage plots of Fig. 3-8. A smaller

value of a leads to a lower voltage plateau while discharging (I > 0), but does not

much affect the voltage plateau during charging (I < 0).

3.6 Phase Separation with Surface Wetting

The wetting of a solid surface by two immiscible fluids, such as water and air, is

very familiar, but it is not widely appreciated that analogous phenomena also occur

when binary solids "wet" a fluid or solid surface and play a major role in nanoparticle

intercalation [47]. The only major difference is that coherent (defect-free) solid-solid

interfaces have much lower tension than solid-fluid interfaces due to stretched, rather

than broken, bonds. As a result, a stable contact angle cannot form, and one phase

tends to fully wet each surface in equilibrium (E) = 0, 7r), regardless of the bulk
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Figure 3-8: Effect of the Butler-Volmer charge transfer symmetry coefficient a on the
voltage during battery discharging (left) and charging (right) with JI/Iol = 0.1 and
Io = 500 A/m2 at half filling.

composition. The competition between different phases to wet a surface can promote

the nucleation of a phase transformation via the instability of a surface wetting layer.

In particular, the wetting of certain crystal facets of LFP particles by either LiFePO 4

and FePO 4 ensures the existence of surface layers that can become unstable and

propagate into the bulk, as a means of surface-assisted nucleation [47].

3.6.1 Shrinking cores and expanding shells.

In this section, we show that surface wetting characteristics have a significant effect on

the concentration profile and voltage during insertion, even in an isotropic spherical

particle. Mathematically, we impose the inhomogeneous Neumann boundary condi-

tion, 2(1, i)=i3, where, as described above, # > 0 promotes the accumulation of

ions at the surface, or wetting by the high density phase. In this case, during ion

insertion, the surface concentration will be always higher than the remaining bulk

region, if we start from a uniform low concentration. As a result, the surface hits

the spinodal point earlier than other places inside the particle, which means the Li-

rich phase always nucleates at the surface. In an isotropic particle, this leads to the

shrinking core phenomenon, as in the cases without surface wetting (#3 = 0) described

above.
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The case of surface de-wetting (0 < 0) is interesting because surface nucleation is

suppressed, and more than two phase regions can appear inside the particle. During

insertion, the surface concentration is now always lower than in the interior, espe-

cially when the current is small. Therefore, an interior point will reach the spinodal

concentration earlier than the surface, so the high-density phase effectively nucleates

somewhere in the bulk, away from the surface.

i/O = 0.01 I 0.25
X 1X 1
a
0 t

T0.5 E .
CuC

E0

0 0.5 1 00 0.5 1Position r Position r
iio 1 VIO 4

X X<0.6
0.8
0.6 0 -

LL 0.4 LL
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0 0.5 1 0 0.5 1
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Figure 3-9: Phase boundary motion during ion insertion in a spherical particle with
surface de-wetting (# = -17.9, Q = 4.48) at different currents - = 0.01 (top left),
0.25 (top right), 1 (bottom left) and 4 (bottom right)a nd Io = 500 A/M2 at half
filling. The warmer color in the figure indicates a higher local filling fraction.

As a result, there is an "expanding shell" at the same time as a shrinking core of

the low density phase. This unusual behavior is shown in Fig. 3-9 for # = -17.9

at several currents. The surface energy is y = -90 mJ/m 2 at maximum filing, if we

assume the -y is a linear function of concentration. A detailed demonstration of this

concentration dynamics is shown in Fig. 3-10. The middle Li-rich region expands

inward and outward simultaneously, it first fills up the Li-poor phase located at the

center, and finally it fills the whole particle.

Since the surface is always in the lower stable concentration after the initial phase

separation, which does not vary according to the surface derivative #, we should

expect the voltage has very weak dependence on the surface de-wetting condition.

The voltage - filling fraction plot in Fig. 3-11 confirms this intuition. When I < 0,

the strong surface de-wetting will make the surface concentration very closed to zero,
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Figure 3-10: Concentration profiles (left) and voltage transients (right) for ion in-
sertion at currents i/jo = t0.01, 0.25, 1 and +4 in a phase separating spherical
particle (0 = 4.48 and surface de-wetting / = -17.9).

which will make the chemical potential extremely sensitive to small perturbation in

concentration, therefore, we only show the results with relatively weak surface de-

wetting (0 > -10).
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Figure 3-11: Effect of a negative surface wetting parameter (# < 0) on the voltage
during discharging at I/Io = 0.01 (left) and charging at 1/10 = -0.01.

3.6.2 Voltage efficiency

In the limit of zero current at a given filling, the voltage given by the Nernst equation

has a unique value V(X) corresponding to thermodynamic equilibrium. When a cur-

rent is applied, energy is lost as heat due to various resistances in the cell, and there

is a voltage gap AV between charge and discharge at the same filling. The voltage
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efficiency is 1 - AV/V. To account for transient effects, we define the voltage gap for

a given current magnitude III as the voltage at half filling (X = 0.5) during galvano-

static charging starting from nearly full with I < 0, minus that during discharging

starting from nearly empty with I > 0.

In Fig. 3-12, we show how different parameters, such as the current, mixing en-

thalpy, and surface wetting condition affect the voltage gap. For our single particle

model with surface nucleation, the voltage gap vanishes at zero current, in contrast to

experiments 169] and simulations 168, 74] on porous multi-particle electrodes. There

is no contradiction, however, because the zero-current voltage gap is an emergent

property of a collection of particles with two stable states, resulting from the mo-

saic instability of discrete transformations (which can also been seen in an array of

balloons [68]).

0.4

.3 4 5- %T=-2, i0=500, Vc=0

.3 -.. - T=1, i0=500, Vc=0

0.3 - .. /.. T=4.48, i,=50, Vc=0
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Figure 3-12: The gap of the charging and the discharging voltage when the particle is

half filled, X = 0.5, under several conditions including current, f and surface wetting.

The Vc shown in the legend is the nondimensional concentration derivative at the

particle surface, which denotes the surface wetting condition.

In the case without surface wetting (3), the voltage gap is smaller for solid solu-

tions (Q < 2) than for phase separating systems (( > 2), since it is more difficult to

insert ions into the full stable state than into an intermediate concentration. With

strong surface de-wetting by the ions (1 < 0) and phase separation (0 > 2), however,

the gap can be even smaller than in the solid solution case without surface wetting,

because the persistence of the low density phase promotes easy intercalation. This
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is an important observation because it shows the possibility of improving the voltage

efficiency by engineering the solid-solid contact angle of the active particles.

3.7 Numerical Methods and Error Convergence

The CHR model is fourth-order in space and highly nonlinear and thus requires care

to solve numerically with accuracy and efficiency. Naive finite difference or finite

volume methods would be unstable or inaccurate. In order to obtain the solutions

above, we developed a new conservative numerical scheme to solve the CHR model

with second-order accurate discretization, described in this section.

3.7.1 Numerical Scheme

Great effort has been devoted for solving the Cahn-Hilliard equation numerically with

different boundary conditions, and several numerical schemes have been employed,

e.g. finite difference [44, 56, 187], finite element [11, 244, 227], spectral method [91],

boundary integral [571, level set [84], discontinuous Galerkin 1230] and multi-grid

methods [113, 226].

As our problem is associated with the flux boundary condition, the finite volume

method is a more convenient and suitable choice for discretization [30, 49, 541. Fur-

thermore, the finite volume method may be superior to other methods by its perfect

mass conservation and the capability for capturing the concentration shock during

phase separations.

The finite volume method handles the integral form of the Cahn-Hilliard equation.

Using the divergence theorem we may update the change of average concentration

within a small volume by calculating the difference of the inward flux and the out-

ward over the corresponding volume boundary. In the recent literature, two basic

approaches for estimating the concentrations and their derivatives at the boundary

have been developed.

Burch [30] uses the finite difference type technique to extrapolate the desired un-

known values with the known average concentration in each control volume. This ap-
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proximation method is highly efficient in low dimensional cases with a well-structured

grid. Cueto-Felgueroso and Peraire [49], Dargaville and Farrell [54] develop a differ-

ent least squares based technique, which is more suitable for high dimensions cases

with a un-structured grid. They use the concentrations and their partial derivatives

on the control volume boundaries to predict the centroid concentrations nearby, and

find the "most probable" boundary values (concentrations and derivatives) by least

square minimizing the prediction errors in centroid concentrations.

However, as in the model we are mostly focusing on the activities exactly on the

particle surface, the finite volume method can only provide us information about the

average concentration in the shell closed to the surface. It may take additional com-

putation cost to extrapolate the surface condition and this will introduce additional

error as well.

In order to avoid such extrapolation, we propose a numerical scheme that can

immediately provide information on the particle surface and still keep the benefits

of the finite volume method in conservation and shock toleration, which is inspired

by our numerical method for solving the ID nonlinear spherical diffusion problem

[239J. Similar to the finite volume method, our numerical scheme indeed handles the

integral form of the original PDE system. We work with dimensionless variables, but

drop the tilde accents for ease of notation. Since the phase boundary may propagate

to any location in the sphere, a non-uniform mesh may not be as helpful as the case

in normal nonlinear diffusion problem, so we use uniform grids.

Consider a N-point uniform mesh within the sphere, x1 , x 2, x 3, - , XN, while

X, = 0 is the sphere center and xN is right on the surface. Here we define that

Ax =x 3 i - xj, for any j E {1,2, ... , N - 1} and make cl, c 2 , c 3 , ,cN to be the

concentration on these grid points.

If we integrate the Eqn. 3.13 over a shell centered at a non-boundary grid point

xi with width Ax, which is equivalent to the volume V between [xi - 9, xi + L],

by divergence theorem we have,

f -dV =- V - FdV= n - FdS. (3.30)
Viat - v fav
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We can further write both sides of the above equation in the following form,

/2 AX

2c Ax Ax
47x -dx = 47r((x i ) 2 i_-(xi +i )2F .

at 2 2 2
(3.31)

while Fi_ i = F and Fi+ = F  .

The left hand side of the above Eqn. 3.31 can be approximated by,

2 c 09 0 3 147rx2-dx = -(_Vi_1C- + ViC +-V+ 1c+1  O(Ax3 )).
at d t8t 8 4 8 +

(3.32)

This can be also written in a matrix form for each small volume on each row,

/ X" +,6,

AX
fX2

X
2 A

X3 2x+
LA~-I

47rx2 dxat

4x 2 dx4 t

4f x 2 Le dxat

XTN-1+ Lx- X
EN-1-2
fXN Ax2 x1+2428ICdT

2N 7 a
/

M
at

Ci

C2

C3

CN- 1

CN- //

(3.33)

while M is the mass matrix,

3 V1

{V

0

0

0

8IV2

4 V2

1V2

0

0

0

{V3

V3

0

0

0

0

8V4

0

0

0

0

0

... IVN-2

0

0

0

0

4VN-1

8VN-1

0

0

0

4VN

4VN /

(3.34)

In fact, this is the major alternation of our method from the classical finite differ-

ence method. Instead of having a diagonal mass matrix in the finite volume method,

we hereby use a tri-diagonal mass matrix in our new numerical scheme. Since each

column of the this matrix sum to the volume of the corresponding shell, this indicates
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our method must conserve mass with a correct volume.

Before we approximate the flux F, we will give the approximation formula for the

chemical potential pi at each grid point xi. when i = 2, 3, ... , N - 1,

__- 2 Oc
-KV 2c = In * + Q(1 - 2ci) - ( 2

1 - ci xi ox
In 1 + Q(1 - 2ci)1 - ce

02 c
+ X 2 )

n ci + Q(1 - 2ci) - K(C_1 - 2xi + cj+1 + 2 c+ - ci-1 (Ax 2).
I - ci AX2 Xi 2Ax

For i = 1, by symmetric condition at the center and the isotropic condition,

V2ci = 32 and Vci = 0, then,

Ci 02c1  c 1  2c2- 2c,
l1 = ln +Q(1-2c1 )-3Kx = ln- +Q(1-2c 1 )-3K . +0 (AX2).

1 -, c X2 1 -Ci AX2

(3.36)

For i = N, since we have the boundary condition n - KVCN = , when ^ is

only a constant or a function of cN, we can assume a ghost grid point at XN+1, while

the concentration at this point satisfies VCN = cN+CN-1 = /, which is equivalent to

cN+1 = 2Ax/ + ON-1,

I~~ncN 2
AN = In l + (1 - 2CN) - K( 2

1- CN XN

2 0 N-1 - 2CN+ 2Ax/3

Ax
2 +O(AX 2)). (3.37)

With the chemical potential on each grid point, we can estimate the right hand

side of the Eqn. 3.31. For each midpoint of two grid points, the flux FjHA satisfies,

F+1 = -(1 ci + ci 1 ) ci + ci+1 Ii+ i - /i + O(Ax 2).
2 2 2 Ax

(3.38)

For center of the sphere, again by the symmetric condition we have

F = 0. (3.39)

And finally for the particle surface the flux is given by the current, which is also

our boundary condition.

F = -Fs.
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This finishes the discretization of the original partial differential equations system

to a time dependent ordinary differential equations system. We use the implicit

ode15s solver for the time integration to get the numerical solution.

3.7.2 Error Convergence Order

As we demonstrated in the derivation of this numerical method, the discretization has

no higher error than of the second order. Thus, we may expect the error convergence

order in the spatial meshing should be also in the second order. This will be confirmed

by the numerical convergence test.

In the error convergence test, we use small current density i/io = 10-4, while

io = 500 A/m 2 , this setting is to eliminate the effect that the difference in ending

simulation time. We will also assume no surface wetting in this test. As we are mostly

interested in the voltage prediction from this single particle ion-intercalation model,

we will define the error as the L2 norm of the difference in voltage comparing to the

standard curve, which will use the solution from very fine grid (3001 uniform grid

points in our case) as the reference solution.

The plot of error convergence is shown in the left half of Fig. 3-13, which is

consistent with our previous expectation. The absolute error in voltage shown in the

right hand side in the same figure signifies that we will have trouble with oscillations

after the phase separation if the grid is not fine enough.

As we see from Fig. 3-14, with 21 grid points, we may get different oscillation

sizes in the solutions, which is sensitive to the parameter f. While compares to

the concentration distribution on the right, a larger parameter Q leads to a smaller

interfacial width, we need a fine enough grid which is with the grid size smaller than

the interfacial width to capture the propagating shock without creating oscillations.

Therefore, in the choice of grid point number, we need to be careful about all

conditions such as the radius, f and rK in order to get the desired accuracy with good

stability, but without paying too much for the computation cost.
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Figure 3-13: Error convergence test with the very small current density i/i0 = i04,
while i0 = 500 A/rn 2 and no surface wetting is assumed. The error is defined as the 12
norm of the voltage vector difference from the reference solution over the square root
of length of this vector. The error converges in second order as suggested by the figure
on the left. We also plot the error in voltage during ion intercalation of all these grid
point cases (solution from 11 points to 1001 points compare to the reference solution
from 3001 grids) in the right figure, where we observe oscillations when the grid is
coarse.
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Figure 3-14: Voltage prediction plot with different Q using 21 grid points on the

left. We see more oscillations in larger Q. The right hand side is the concentration
distribution with different (2 when the overall half filled. Higher (2 value indicates a
thinner phase boundary thickness. The current density is set to be i/io = i04 , while

io = 500 A/mn2 and no surface wetting is assumed in both of these simulations.

3.8 Conclusion

In summary, we have studied the dynamics of ion intercalation in an isotropic spherical

battery intercalation particle using the heterogeneous CHR model with Butler-Volmer
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reaction kinetics [15]. The model predicts either solid solution with radial nonlinear

diffusion or core-shell phase separation, depending on the thermodynamic, geomet-

rical, and electrochemical conditions. The model is able to consistently predict the

transient voltage after a current step, regardless of the complexity of the dynamics,

far from equilibrium. Surface wetting plays a major role in nucleating phase sep-

aration. The simplifying assumptions of radial symmetry and negligible coherency

strain maybe be applicable to some materials, such as lithium titanate anodes or

defective lithium iron phosphate cathodes, while the basic principles illustrated here

have broad relevance for intercalation materials with complex thermodynamics and

multiple stable phases.
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Chapter 4

Two-Dimensional Cahn-Hilliard

Reaction Model with Surface

Electron-conducting Coating

4.1 Introduction

Surface modification of nanoparticles with a thin layer of carbon materials is one of

the most important techniques for making high performance battery materials [175,

233, 127, 129, 167, 108, 731. Such coatings not only can increase the electrical con-

ductivity of the porous electrode 1175, 105], but also prevent the nanoparticles from

coarsening during high-temperature annealing [245]. Carbon coating is one of the

most thoroughly studied surface modification methods, especially for lithium iron

phosphate [175, 39, 65, 20, 66, 229, 235].

In electrochemical reactions, carbon coating provides the pathway of electrons,

thus serving as an electron-donor or acceptor in reactions 1168, 9J. The potential

difference across the reaction interface enables such reactions, which would not be

possible under pure chemical conditions [251. It is easy to see that the properties of

carbon coating will affect the lithium intercalation dynamics by limiting the electron

supply. While making a high quality carbon coating on nanoparticles is still challeng-
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ing, most mathematical models have assumed ideal electron conductivity and solely

focused on the dynamics of lithium ions [220, 15].

Experimental results have revealed that the temperature of material annealing,

usually around 700 degrees Celsius, cannot carbonize the precursor with good electri-

cal conductivity [245]. Via an effective formula, assuming dilute solution and Ohm's

law [86], the estimated diffusion coefficient of the electrons is of the same order as that

of lithium in lithium iron phosphate (LFP). Furthermore, due to the low electrical

conductivity of the carbon coating, nano-sized carbon black needs to be added for

better connection with the current connector [2201. When working under high rate

conditions, places far away from this contact point may not be able to get electrons

to facilitate the intercalation of lithium ions, due to the transport limitation.

By coupling the transport process of electrons in the coating layer to the particle

bulk Cahn-Hilliard reaction (CHR) kinetics, we establish a new mathematical model

in this paper that takes account of both the particle bulk ion transport and the

surface coating layer electron transport. This new model enables us to quantitatively

analyze, for the first time, the surface coating effects at the battery dynamics on the

thermodynamics level, as well as better interpret the "depth-average approximation"

for the CHR models in the literature.

4.2 Model Description

4.2.1 General Cahn-Hilliard Reaction Model with Surface Coat-

ing

The lithium-ion intercalation dynamics is generally described by a generalized diffusion-

reaction equation, which takes the form,

Oc
-c = V - (McVy) + R, (4.1)

at

where c is the concentration of the lithium-ion, M the mobility, p chemical potential

of the ion, and R the volumetric reaction rate of lithium-ion. In this system, the
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reaction rate R is non-zero only at the boundary of the particle, which is due to the

nature of the intercalation process.

The mobility M of the ion can be related to a more well-accepted concept, the

diffusivity in the dilute-solution limit Do. By applying the Einstein relation, and the

assumption that the transition state of ion diffusion within the particle will exclude

two available sites for ions, we get,

M = Do 1 - - (4.2)
kBT Cm)

where kB is the Boltzmann constant, T the temperature, and cm the maximum pos-

sible ion concentration in the particle (or equivalently, the available intercalation site

concentration).

As first introduced by Han et. al. [89], and later developed by Bazant and cowork-

ers [15, 188, 31, 8, 48, 47, 237], the phase-field ion intercalation model based on

the nonequilibrium chemical thermodynamics suggests that the chemical potential p

obeys a generalized Cahn-Hilliard type regular solution model,

C ck - 2c V - (KVc)
P = kBT n - + Q 2 1(4.3)

Cm -C Cm C

where Q is enthalpy of mixing per site and K the gradient energy penalty tensor.

In fact, the four terms in the chemical potential expression represent the contribu-

tions from entropy, enthalpy, gradient energy penalty and the elastic stain effect,

respectively.

In the surface electron-conducting coating layer, we assume that the transport of

electron (polaron) satisfies the linear diffusion equation with reaction,

e= DeV 2Ce + Re, (4.4)
0t

where Ce is the concentration of electron, De the effective diffusivity of electron in the

coating and Re the volumetric reaction rate of electron. Due to the charge conserva-

tion restriction, along the particle surface R + Re = 0 must hold.
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At the particle surface, the reaction rate, or similarly the current density across the

particle-coating interface, is governed by the generalized Butler-Volmer equation [151,
1-c (al ( ( n (17 --____

io 1 - G-)a exp "')exp - ) exp
cm c/ kBT kBT kBT

(4.5)

where I is the surface current density, 1o the exchange current density, a, the activity

of electron, a the charge transfer coefficient, p the chemical potential at the particle

surface, and 2 the overpotential. Here we already assume that the number of electrons

involved in the electrode reaction n = 1.

The assumption of no charge accumulation within the carbon coating is enforced,

then by the charge conservation, total current I should equal to the integral of the

current density over all the particle-carbon coating surface,

JidS = I. (4.6)

4.2.2 Reduction to Two-dimensional Model and Boundary Con-

ditions

The computational cost of a full three dimensional simulation for the general model

system can be tremendously high, especially a shock wave is expected to propagate

across the whole particle. In order to study the dynamics of ion-intercalation, we will

reduce the system to a two dimensional one, and provide the boundary conditions to

close the system.

According to the 3D single particle simulation by Tang, Belak and Dorr [202],

the lithium ion concentration will mostly be uniform along the c-direction. Elastic

strain studies on the lithium iron phosphate particle also provide supports to this

statement [212, 48, 47]. This conclusion leads to an assumption that the c-direction

can be neglected, which results a two dimensional system [55].
In this work, the geometry of the particle-carbon coating system is assumed to

be in a "sandwich" shape. We assume that the intercalation particle is in the square

shape of size lp-by-l1, with two thin carbon coating layers on the upper edge and the

88



lower edge of thichness l. The ion can enter the coating layer only at four corners of

the coating, and ion intercalates into the particle through any surface other than the

coating layer-particle interface will be neglected. Within the coating layer, we assume

that the thickness of the coating is so small that the concentration is also uniform

along the depth direction (b-direction).

On the boundaries of the particle, we apply the variational boundary condition,

or the "surface wetting" condition,

ii - Vc = c 209Y, (4.7)

where hi is the normal unit vector of this boundary surface and 7, the surface en-

ergy per area. In this work, we will simply assume 7, be a constant independent of

concentration, which leads to a "no-wetting" boundary condition,

hi - Vc = 0. (4.8)

Due to the mirror symmetry of our model, we can only simulate a quarter of

the whole domain to obtain the full dynamics. Therefore, in the following parts, we

apply this symmetric condition and report the results from this quarter domain. A

schematic of this quarter domain is shown in Fig. 4-1.

V

Intercalation particle diffusion: = Doc(1-c)

k = I C+ f( - 2C V - (KVc) X
P~BTIn +fl(-2c) C2

Particle surface reaction: Butler-Volmer Equation

Surface layer diffusion: = De + Re

Figure 4-1: Quarter domain schematic of the 2D intercalation particle with conducting
surface layer model addressed in this paper.
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4.2.3 Simulation details

In the numerical studies, we follow the parameter setting in Table 4.1, which is con-

sistent with the previous ID Cahn-Hilliard system simulation [237]. We will neglect

the effect of heat generation during the charging/discharging, which makes itself an

isothermal system.

Table 4.1: Parameter settings for LFP [48, 47, 2371 used in the numerical simulations,
except as otherwise noted.

Parameter Value Unit Parameter Value Unit

4, 1 x 10- 7  m 1 x 10-9 m
Q 0.115 eV Cm 1.379 x 1028 m-3

c(x, y, t = 0) 1.379 x 1026 m-3 ce(x,t = 0) 1.379 x 1028 m-3
De 1 x 10-14 m2 /s a 0.5
Ve 3.42 V io 1.6 x 10-4 A/M 2

Q is set to be greater than 2kBT, which indicates a phase separation is always

favored in energy [237] at room temperature T.

The diffusion coefficients in two directions Dx and DY are known to be very

anisotropic in the lithium iron phosphate. While their fitting values to experiment

data significantly differs from the ab initio calculation by several orders of magni-

tude [191, 52, 150J, no value of them is widely accepted. We will vary these two pa-

rameters within some range and see observe how they affect the charging/discharging

dynamics.

Another source of anisotropy comes from the penalty tensor K, which controls

the interfacial thickness scale of the phase boundary during phase separation. In

this work, we assume K contains only diagonal non-zero components, ix and Ky. In

general, a larger K value will make the sharp phase boundary less favorable in energy.

As the initial concentration of electron in the surface coating ce(X, t = 0) and the

diffusivity of electron De are both unknown, we simply assume that ce(x, t = 0) = Cm

and De matches the magnitude of ion diffusivity in the ID CHR model [237] for an

initial exploration.
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4.3 Numerical results

In this section, we numerically study the phase separation dynamics of the coupled

2D Cahn-Hilliard reaction system given in Fig. 4-1. We mainly study how the phase

boundary orientation is affected by the different parameters D2, D, and K during the

constant voltage discharging processes. The study of surface carbon-coating effect on

the overall electrokinetics is also conducted in a constant current discharging setting.

In order to solve the coupled PDE system, we simply apply the standard finite

volume method to discretize the whole system into an ODE system. We then employ

the ODE15s solver in MATLAB to solve the obtained ODE system.

4.3.1 Constant voltage: phase boundary orientations

In previous modeling work [8, 48, 47], one important method for model complexity

reduction is called the "depth-average approximation", by which the concentration

with the same x-coordinate will be assumed to be equal. This approximation is made

according to the results from phase field simulation that the phase boundary always

aligns with the depth direction [145, 202].

Intuitively, this assumption should hold for small particles with a low Li/Fe anti-

site defect rate [1331, which leads to a significant difference between two directional

diffusion coefficients D. > D_. In this scenario, the diffusion in the y direction is so

fast that it should easily reach the quasi-equilibrium state, a uniform concentration

profile [188].

However, the result from a constant voltage discharging simulation shows an ex-

actly opposite profile. By setting D. eight orders larger than D2, the penalty tensor

in gradient isotropic i_ = K.; contrary to our expectation, the phase boundary is

perpendicular to our previous assumption, as shown in Fig. 4-2.

One possible way to interpret this phenomenon is by the Cahn-Hilliard chemical

potential function. When the concentration hits the spinodal decomposition point

during the discharging, it tends to attract ions from all nearby sites. Because of the

anisotropy nature of directional diffusivities, it is much easier for ions to move along
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Figure 4-2: Concentration profile in the particle at half filled during a constant voltage
discharging at V = 3.0 V. The diffusivities in two directions are D_ = 1 x 10-22 m2 /s
and DY = 1 x 10-14 m2 /s, while r,,, = ry = 3 x 10' eV/m.

the y direction than in the other direction. Meanwhile, although the concentration

changes considerably along each y axis channel, the Cahn-Hilliard chemical potential

function guarantees that the chemical potential still stays constant in that channel,

which is stable as a quasi-equilibrium state 1311. Therefore, the phase boundary will

be stable kinetically as being perpendicular to the fast-diffusion axis.

One further observation supports the above explanation. When we enlarge the

gradient penalty in the y direction, which makes it less likely to phase separate in

this direction, we do observe a desired phase boundary orientation. However, when

we decrease the diffusivity in the x direction, the boundary rotates 90 degrees again.

The comparison of two simulations is shown in Fig. 4-3.

Consequently, contrary to previous statements [188], a depth-average approxima-

tion is more likely to be valid for a more isotropic environment for ion diffusion,

which normally links to a high Li/Fe antisite defect rate or a bigger particle size. As

we neglect the elasticity in the particle, this factor can also determine the boundary

orientation, as reported [48, 47, 641.
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Figure 4-3: Phase boundary orientation comparison of two half-filled particles during
a constant voltage discharging at V = 3.0 V. The diffusivity in y direction is D. =
1 x 10-14 m2 /s, i, = 3 x 1010 eV/m and i, = 3 x 10" eV/m for both. The diffusivity
in x direction is Dx = 1 x 10-14 m2 /s = Dy (left) and DX = 1 x 10-22 m2 /s < D,
(right), respectively

4.3.2 Constant current: voltage and capacity

During a constant current charging/discharging, the ion-intercalated battery potential

drop from the open circuit voltage is generally interpreted as a result of the ion

transport limitation. In fact, even for the same battery material, fitting the voltage

curve by varying ion diffusivity in the particle bulk to different experimental data has

led to various orders of magnitude in their resulting values. While this should not

happen, since the ion diffusivity in the particle is a fixed material property under a

given certain condition, the cause of this disagreement is still unknown.

In fact, in the constant current simulations of the new 2D Cahn-Hilliard reaction

and surface coating model, we see that the coating property can dramatically change

the dynamical behavior in the discharging process. As shown in Fig. 4-4, when the

electron conduction in the surface coating layer is the rate-determining step for ion-

intercalation, De < Damzk, even while the bulk material properties may stay the same,

the voltage curve could shift significantly and a reduction in capacity be observed.

A comparison of concentration profiles within the surface conducting layers at the

moment of half-filled with different diffusivities is presented in Fig. 4-5. We observe

that the lithium reaches the transport limit only in the case De = 1 x 10-1 m2 /s,
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Figure 4-4: Voltage curves of three constant current discharging processes with the
same bulk material properties but different surface coating diffusivities. The C-rate
for discharging is at 1, and the electron diffusion coefficients De are at 1 x 10-14 m2 /s,
1 x 10-15 m2 /s and 1 x 10-16 m2 /s, respectively.

which corresponds to the significant capacity lost shown in Fig. 4-4. If one only fits

the bulk diffusivity to the experimental data, neglecting the surface coating electron

conduction, it will certainly lead to some misleading values of Dk.ul.

4.4 Conclusion

In this work, we proposed a two-dimensional Cahn-Hilliard reaction ion-intercalation

particle model, coupled with a thin electron-conducting coating layer on the particle

surface, with interface electron transfer reaction rate governed by the phenomeno-

logical generalized Butler-Volmer equation. Numerically studying the discharging

processes, we explored how the system dynamics depend on different material prop-

erties. We found that, under high rate situations, lithium intercalation is confined

within a region that is limited by electron transport. This surface coating layer sig-

nificantly affects the battery electrokinetics and could be an alternative reason for

the capacity loss at high rate situations, which has previously only be interpreted as

concentration polarization or transport limitation in the electrolyte.
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Chapter 5

Simple Formula for

Marcus-Hush-Chidsey Kinetics

5.1 Introduction

The microscopic theory of electron transfer [117, 13] has been developed and tested

in electroanalytical chemistry for almost seventy years since the pioneering work of

Marcus [136, 141, 1371. Although much of the early work focused on homogeneous

electron transfer in solution, the theory was also extended to heterogeneous electron

transfer at electrodes [137, 135, 95] and found to accurately predict Faradaic reaction

kinetics for both liquid [42, 147, 95] and, more recently, solid [91 electrolytes. For metal

electrodes, however, the theory is complicated by the need to integrate the Marcus

rate over the Fermi-Dirac distribution of electrons. This integral cannot be evaluated

in closed form in terms of elementary functions and has only been approximated (in

certain limits) by relatively cumbersome series expansions [162, 147, 1481.

Partly for this reason, despite its successes, the theory is rarely used and poorly

known in engineering. Instead, standard mathematical models are based on the phe-

nomenological Butler-Volmer (BV) equation [24, 1551, which has the appeal of a

simple analytical formula that fits many experimental measurements, even though

it lacks a clear physical basis. The goal of this work is to derive an equally simple

formula for the microscopic theory.
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5.2 Background

For the simple redox reaction, R ++ 0 + e-, the BV reductive and oxidative reaction

rates, are expressed as,

kB o) = -ex _

kBT J.

kB(7, a) = kB exp kB

where k"V is the rate constant, a the charge transfer coefficient, e the elementary

charge, q the applied overpotential, kB Boltzmann's constant and T the temperature.

The net reduction current is proportional to the difference in forward and backward

rates, I oc kred - kox, in the standard form of the BV equation. The ratio of forward

and backward rates satisfies the de Donder relation,

kred e7 (5.2)
kox kBT)

which is a general constraint from statistical thermodynamics for thermally activated

chemical kinetics 115, 184]. The BV model asserts that the reaction rate in either

direction follows the Tafel relationship, in which the thermodynamic driving force is

a constant fraction of the applied overpotential. This dependence is empirical but

can be justified by various phenomenological models [24, 13], where the electrostatic

energy of the (ill-defined) transition state of the reaction is an average of that in the

reduced and oxidized states, weighted by the charge transfer coefficient 1151.

In contrast, the microscopic theory of outer-sphere electron transfer focuses on

solvent reorganization prior to iso-energetic electron transfer [137, 117, 131. In the

simplest form of the theory, the free energy of the reduced and oxidized states has the

same harmonic dependence on a reaction coordinate for solvent reorganization (such

as local dielectric constant of the solvation shell), before and after electron transfer.
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For the same redox reaction above, the reaction rates take the form [195, 42, 15],

km o,,(AG) = km exp - , (5.3)
red/04 AkBT

where AG is the free energy change upon reduction, and A is the reorganization energy,

i.e. the free energy required to completely reorganize the local atomic configuration

of one state to the other state without charge transfer.

If the redox reaction occurs at an electrode, electrons in the metal electrode occu-

pying different energy levels around the Fermi level may all participate in the reaction,

which results in multiple intersections between two families of parabolae [135]. Al-

though this principle was first identified decades ago, the importance of incorporating

the Fermi-Dirac distribution of electrons/holes into the classical Marcus theory was

not widely recognized until Chidsey found perfect agreement between the modified

rate equation and the curved Tafel plot obtained from his seminal experiments on

redox active self-assembled monolayers (SAMs) [42]. The rate equation implemented

by Chidsey, now known as the Marcus-Hush-Chidsey (MHC) [95] or Marcus-DOS

model 176], can be written as,

kox/red( ) =A '0exp -A eq)2  dx (5.4)o 4AkBT 1 + exp(x/kBT)'

where A is the pre-exponential factor, accounting for the electronic coupling strength

and the electronic density of states (DOS) of the electrode. The first term in the

integrand is the classical Marcus rate for the transfer of an electron of energy x

relative to the Fermi level, and the second factor is the Fermi-Dirac distribution

assuming a uniform DOS. The reductive and oxidative reaction rates satisfy the de

Donder relationship, Eq. 5.2, as well as a "reciprocity relationship" noted by Oldham

and Myland [1621, kMHC() = HC

The three models are compared on a Tafel plot in Figure 5-1, which highlights

dramatic differences in the predicted rate for large overpotentials. While the BV rate

increases exponentially without bound along a traditional "Tafel line", the Marcus

rate reaches a maximum at the reorganization voltage (77 = A/e) and then decreases
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Figure 5-1: Dimensionless Tafel plots of Butler-Volmer kinetics (BV) with charge
transfer coefficient a = ' compared with Marcus (M) and Marcus-Hush-Chidsey
(MHC) kinetics with reorganization energy A (scaled to the thermal energy kBT).
The absolute value of the current IIl scaled to the exchange current 1o is plotted on a
logarithmic scale versus the overpotential r7 scaled to the thermal voltage, kBT/e. The
M and MHC curves assume a typical value [42, 9] of the dimensionless reorganization
energy, A = 10 scaled to kBT.

rapidly (as a Gaussian) along an inverted parabola. The latter is the famous "inverted

region" predicted by Marcus for homogeneous electron transfer [137]. The MHC

model predicts a curved Tafel plot that neither diverges nor decays, but instead

approaches a constant reaction-limited current.

The disappearance of the inverted region originates from the distribution of elec-

trons in the metal electrode, as shown in Fig. 5-2. When a positive free-energy barrier

is formed in the inverted region in response to the large overpotential, electrons below

the Fermi level (pe) with roughly unity Fermi factor follow a lower-energy parabola

that enables a barrier-less transfer, which dominates the overall reduction rate and

leads to a constant, non-zero limiting current [161, 88, 180]. More detailed compar-

isons between BV and MHC kinetics can be found in Appleby and Zagal [6], Chen

and Liu [40], and the enlightening review of Henstridge et al. [95].

Evidence is mounting that MHC kinetics are essential for the understanding

and engineering of important electrochemical interfaces. The MHC model has been

extensively used in the microscopic analysis of electron transfer at SAMs [42, 95]
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Figure 5-2: Physical interpretation of MHC kinetics for the Faradaic reaction, 0 +

e- -+ R, at a metal electrode. In each panel, a parabola for the free energy (or

more precisely, excess electrochemical potential [15]) of the reduced state (R, right)

versus reorganization reaction coordinate intersects a family of parabolae for the free

energy of the oxidized state plus the free electron (0 + e-, left), sampled from the

Fermi-Dirac distribution with electron energies, e, shown. (a) Exchange process at

zero overpotential, dominated by electrons near the Fermi level following Marcus

kinetics. (b) Reaction-limited current at large negative overpotential, dominated by

lower-energy electrons below the Fermi level undergoing barrier-less transitions.
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and electrochemical molecular junctions [1471. It could also be important for nano-

electrochemical systems working at large overpotentials, such as resistive-switching

memory [221] or integrated circuits with ultrathin gate dielectrics, where the BV

model predicts unrealistically large reaction rates [152]. Recent Tafel analysis of

Li-ion battery porous electrodes consisting of carbon-coated LiFePO 4 particles has

further verified MHC kinetics for electron transfer at the carbon-LiFePO 4 (solid-

solid) interface [9], contrary to all existing battery models, which assume BV ki-

netics. For simple outer-sphere reactions, the symmetric MHC model (considered

here) provides an excellent fit of the measured reaction rates [42, 9]. In other situa-

tions (with negligible double-layer Frumkin effects [26, 16, 22]), the asymmetric MH

model is required with different reorganization energies for the forward and back-

ward reactions [118, 200, 196], due to different inner-sphere (non-electrostatic, vibra-

tional) [93, 97] or outer-sphere (nonlinear solvation) [143, 119] force constants for the

reduced and oxidized states.

One possible reason MHC kinetics have been overlooked is the complexity of the

rate expression Eq. 5.4 as an improper integral that cannot be evaluated in terms of

elementary functions, like the BV equation. In order to avoid numerical quadrature,

there have been several attempts to derive simpler analytical approximations. Oldham

and Myland [162] recently obtained an exact solution involving sums of a function that

is a product of an exponential function and a complementary error function, which

leads to some convenient alternatives for limited ranges of the parameters. Migliore

and Nitzan derived another series solution by an expansion of the Fermi function [147],

which is mathematically equivalent to Oldham's solution [148]. As with any series

expansion, however, accuracy is lost upon truncation, and the approximations are not

uniformly valid across the range of possible reorganization energies and overpotentials.

In this paper, we derive a simple formula by asymptotic matching that accurately

approximates the MHC integral over the entire realistic parameter range. In the

following sections, we first perform asymptotic analysis of Eq. 5.4 for positive (oxi-

dation) and negative (reduction) overpotentials, then unify both cases by asymptotic

matching in a closed-form approximation, and finally demonstrate the accuracy of our
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formula compared to numerical quadrature and the recent series solutions. Complete

asymptotic series are derived in the appendices for large and small reorganization

energies, but only the leading-order terms are used in the main text to obtain our

uniformly valid formula.

5.3 Oxidation Rate for Positive Overpotentials

Without loss of generality, we neglect the prefactor A and begin by restricting i7> 0

for the oxidation rate. Eq. 5.4 can then be rewritten as,

k(A, 7) = j g(x; A, ,)f (x)dx, (5.5)

where the original integrand is separated to a Gaussian function g and the Fermi

distribution f,
g(x; A, q) exp -

4A (5.6)

f (X) =I
1 + exp(X)

For mathematical convenience, all quantities starting from Eq. 6.1 will be dimension-

less: x and A are scaled to kBT and 17 to kBT/e.

5.3.1 Small reorganization energies, A < 1

When A < 1, the Gaussian function g has a narrow peak at x = A - T. We will apply

the Laplace method [41], where we expand the function g around the point x = A -,q

by Taylor expansion, and then integrate all the terms separately. Derivations and the

full series solution can be found in Section 5.7. Here, we use the leading asymptotic

term of the integral,

k (A, f) cass , (5.7)1 + exp(A - rl)'

as our asymptotic approximation for cases of small A.
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5.3.2 Large reorganization energies, A >> 1

For an outer-sphere reaction, A is usually larger than 1, and the series solution given

in Eq. 5.23 may converge slowly. A more accurate approximation for the integral in

Eq. 6.1 in this limit is based on the observation,

lim 1 1 - H(x),a- +oo 1 + exp(ax)
(5.8)

where H(x) is the Heaviside step function defined to be H(x) = 0 for x < 0 and,

H(x) = 1 for x = 0 and H(x) = 1 elsewhere. This corresponds to the zero tempera-2

ture limit of the Fermi-Dirac distribution, which enables an accurate approximation

to the original integral [88],

k(A, r f) ~ g(x; A, rj) (1 - H(X)) dx = V'_erfc ,
(2 V/X

(5.9)

where erfc(-) is the complementary error function. The derivation of the correction

series to this approximation is available in Section 5.8.

5.4 Oxidation rate for negative overpotentials

Combining the de Donder relation and reciprocity relations for MHC kinetics [1621,

we obtain a symmetry condition

k(A rj))
' = exp (r),

k (A, -0/
(5.10)

which directly yields the leading-order approximation for r/ < 0.

using Eq. 5.7 and Eq. 5.10, we have,

k(A, rj) = exp(rq)k(A, -) + .exp(rT)
1 + exp(A + rj)

When A < 1, by

(5.11)
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And for the case of A > 1, by using Eq. 5.9 and Eq. 5.10, we obtain

k(A, rq) ~ v-xexp(T) erfe .+N) (5.12)

We thus obtain asymptotic approximations of the integral 6.1 for all 1, in the limit

A < 1,
2V2

k (A,) I exp(A -,q) for > 0Oand A«<1, (5.13)
for q < 0 and A < 1,

I + exp(A + 77)

and the limit A > 1,

v/A ierfc A-for rq > 0 and A > 1,
k (A, q) ~ 2(5.14)

v-exp(rq) erfc for q < 0 and A > 1.

5.5 Uniformly Valid Approximation

In order to get a closed form expression valid for all r, we multiply the q > 0 ap-

proximation by a function M( 7 ) that interpolates between the asymptotic limits,

M(rI) -+ 1 for 7 -+ oc and M(71) - e' for r7 --+ -oc. In order to make the expression

differentiable, we also introduce a function N(r1 ) to continuously approximate the

absolute value function,

k(A, r) ~ v/vM(r) erfc A .N(1?) (5.15)

Although it is possible to also construct a uniformly valid approximation for all A

in a similar way, we consider only the A > 1 approximation, which turns out to be

accurate even down to A ~ 0.1 and covers the physically relevant range for outer

sphere reactions. Below such small values of the reorganization energy, the barrier

to charge transfer is too small to justify the use of transition state theory, and MHC

kinetics break down.

For smooth M(rq) and N( 7 ), the uniformly valid approximation removes the dis-
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continuous derivative at y = 0 that would arise by naively patching the two asymp-

totic approximations for q > 0 and Tj < 0. The de Donder relation can also be

satisfied exactly if we require M(r) = enM(-q). These properties are satisfied by the

following simple choices for the interpolating functions

1
MWg = ,

1 + exp(-Ti)' (5.16)
N(r)= a+i- 2 ,

where a is an arbitrary constant, yielding the uniformly valid approximation

k(A, TI) erfc (5.17)1 + exp(-,q) 2 vA

A comparison between different approximations (small A limit, large A limit, and

uniform approximation) and the direct numerical integration of MHC for various A

values are shown in Figure 5-3. Remarkably, we find that Eq. 5.17 with a = 1+ VA

provides very accurate approximation to the MHC integral (Eq. 6.1) across the full

range of physical parameter values. The numerical results almost overlap everywhere,

as shown in Fig. 5-3.

Numerical evaluations of the relative errors of our simple formula 5.17 under differ-

ent choices of A are shown in Fig. 5-4, including a comparison with the series solution

by Oldham and Myland [162] for A = 10. It is clearly seen that our approximation

exhibits < 10% relative error even in the most extreme cases. For more relevant cases

for outer sphere reactions (e.g. A ~ 10) [9, 421, the relative error is less than 5% for

small overpotentials and vanishingly small at large positive or negative overpotentials.

Finally, we arrive at our main result. By subtracting the oxidation rate from the

reduction rate, I(A, r) = k(-I, A) - k(TI, A), we obtain a simple, accurate, formula for

the net reduction current (up to a constant pre-factor):

I(A,q) /7rv"7tanh () erfc (A - . (5.18)
\2/ 2 VA
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Figure 5-3: Numerical evaluations of reaction rates k(A, rq) according to three asymp-

totic approximations Eq. 5.13 (blue square), Eq. 5.14 (black circle) and Eq. 5.17

(green diamond), together with the direct numerical quadrature of the MHC inte-

gral 6.1 (red cross) for A = 0.1, 1, 10 and 30 and 1r/q < 20. Each comparison is shown

in both log scale (top) and linear scale (bottom).

107

5

1



100

10-2

10 - -

10-
--- A= 10

-20 -15 -10 -5 0 5 10 15 20

(a) 1
A. 10

10
10

10 -- new approximationl

-20 -15 -10 -5 0 5 10 15 203

(b) .

Figure 5-4: (a) Relative error of our simple formula Eq. 5.17 compared to numerical
quadrature of the MHC integral 6.1 for A = 0.1, 1, 10 and 30 and ni < 20. (b)
Relative error of our formula for A = 10 compared with the series approximation of
Oldham and Myland 11621 with 1, 5 and 10 terms.

This expression is almost as simple and efficient to evaluate as the BV equation,

while accurately approximating the MHC integral over the entire physical parameter

range. For example, on a dual-core processor using Python with Scipy, the evaluation

of Eq. 5.18 is only about four times slower than that of the BV equation, but about

1500 times faster than an efficient numerical quadrature of the MHC integral using a

subroutine from the Fortran QUADPACK library (with A = 10).

From Eq. 5.18, the exchange current (up to the same constant) is the forward or

backward rate in equilibrium,

Io(A) = k(A, 0) 2 erfc 1+\~, (5.19)

22v
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Figure 5-5: Dimensionless exchange current k(A, ? = 0) versus reorganization energy
A for numerical quadrature of the MHC integral compared to the uniformly valid
approximation, Eq. 5.19, showing maximum 5% error when 0.1 < A < 20.

which decays exponentially for large reorganization energies,

Io ~ exp A > 1. (5.20)

As shown in Fig. 5-4, the greatest error in our formula occurs at small over-potentials,

but as shown in Fig. 5-5, the accuracy is quite satisfactory even at q = 0 for a wide

range of reorganization energies.

5.6 Conclusion

In order to facilitate the application of the MHC kinetics in electrochemical engi-

neering, we derive a simple approximation by asymptotic matching that serves as a

practical alternative to the BV equation for electrochemical engineering. Our formula

improves upon classical asymptotic approximations 1161, 88, 180] and recent series

109



expansions [162, 147, 148] and provides the first uniformly valid approximation for all

reasonable choices of the reorganization energy and overpotential with less than 5%

error at small overpotentials and vanishing error at large overpotentials. A natural

next step would be to extend our formula for the general asymmetric Marcus-Hush

model with different reorganization energies for the reduced and oxidized states 11181.

These results could be conveniently used in classical battery models [1551 or new mod-

els based on non-equilibrium thermodynamics [151 for electrode phase transformations

limited by Faradaic reactions [9]. Switching from Butler-Volmer to Marcus-Hush ki-

netics could have dramatic implications for the understanding and optimization of

electrochemical systems working at high overpotentials.

5.7 Small A Limit

The Taylor series of the Fermi distribution function f defined in Eq. 5.6 around

X = A - q is,
00

f(x) = ( -A + f(n)(A - ). (5.21)
n=O

If we put this expression back to Eq. 6.1, we get,

k(A,0) = f(n)2

n=j (5.22)/- 1 (x -A i x)
J_00 2 AX(x - A + q)n exp - 4dA

For each n, the integral is exactly the n-th central moment of a normal distribution

with variance u = 2A, then the value for such an integration is,

f i (x - A + q)n exp (- dx

for n = 0,

= 0 for n is odd,

(2A) 2(n - 1)!! for n > 0 is even.

110



Therefore, the series for k(A, r) is,

k(A, r) = 2V'rA
n=O

f (2nl)(A - (5.23)

5.8 Large A Limit

For large A, we first rewrite Eq.

k(A, I) = 00

-+o

g(x; A,'q) (1 - H(x)) dx

(5.24)

g(x; A, n) (f (x) - 1 + H(x)) dx.

The first term on the right hand side of Eq. 5.24 can be exactly solved as shown in

Eq. 5.9, while the second half can be simplified to,

/+00J g(x; A, r7) (f(x) - 1 + H(x)) dx
- 00

= -2exp -
A_ 72

4A )

+00

exp
0o

sinh (A- )x
2A dx.

1 + exp(x)

If we define a new function h as,

sinh (X-'7)x
h (x) = 2A

1 + exp(x)'

since h(x = 0) = 0, its Maclaurin series is,

0 hn(
h(x) = h(")(0).

n==1

111

6.1 as,

(5.25)

(5.26)

(5.27)



We substitute this back to Eq. 5.25 and obtain,

Sg(; A, q) (f(x) - 1 + H(x)) dx/+COo
h(n)(0) +oo

n=1

, z2
X exp(- x)dx

4A

( n +1
2

(5.28)

)I
where F(-) is the gamma function. Thus, the MHC integral in Eq. 6.1 can be expanded

asymptotically as,

k(A, ) = v/X erfc ( <2)

h(n)(0) 2An F
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n+ 1)
(5.29)

= -2exp - 72

= -2exp (- 7) hfn) (0) 2n n+

- 2exp - 71)2 00

4A ) E
n=1



Chapter 6

Simple Formula for Asymmetric

Marcus-Hush Kinetics

6.1 Introduction

The microscopic electron transfer theory pioneered by Marcus [136, 137] and Hush [106,

107] has achieved great success in both homogeneous bulk reactions and heterogeneous

electrode reactions [141] in terms of predicting more realistic reaction rates than the

classical but phenomenological Butler-Volmer equation [13]. Marcus-Hush (MH) the-

ory is applied by assuming quadratic dependence of the free energy of the reactant and

product along a configurational reaction coordinate and relating the transition state

to the intersection of these parabolas. In application, there is a distinction between

solution phase approximations, in which simple analytical expressions can be used,

and electrode reactions. At electrodes, the electrochemical reactions must be repre-

sented as an integral over all electron energy levels according to a Fermi distribution,

leading to so-called Marcus-Hush-Chidsey (MHC) kinetics [134, 421.

The expression for MHC kinetics involves an improper integral requiring numerical

evaluation, which has led to the development of a number of simplifying approxima-

tions to facilitate its implementation [162, 148, 21, 241], including both extremely

accurate [21] and extremely simple [241] approaches. All these simplifying studies

have examined the "symmetric" MHC case of electrode kinetics [95] in which the re-
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actant and product parabolas have equal curvatures. However, "asymmetric" kinetics

have been reported in many experiments [118, 87, 96, 98, 199, 197, 120] in which the

symmetric MHC theory requires different reorganization energies to fit the cathodic

and anodic reactions.

In his classical paper in 1965, Marcus envisoned the possibility of parabolas with

different force constants and proposed an asymmetric theory in Appendix IV [135].

With the aid of numerical estimations, he further concluded that the asymmetric

factors in equation (A13) of [135] can be neglected for cases of relatively small driving

forces; while for cases of large driving forces, equation (A13) should be replaced

by equation (A14a) [135]. Using the electrochemical variant of Marcus's equation

(A14a), Compton and coworkers [119, 94, 118], has shown excellent agreement with

these experiments using a single reorganization energy (Fig. 1). However, like the

Marcus-Hush-Chidsey (MHC) model [42], this "asymmetric-Marcus-Hush" (AMH)

model involves evaluation of an improper integral, yet the new cubic term, apparently

cannot be easily obtained from Marcus's equation (A13), brings ambiguity in the

definition of the integral, thus making practical implementation challenging. And

unlike the symmetric case, the authors are unaware of simplifying expressions for

evaluating AMH kinetics.

In this paper, we study mathematical characteristics of the aMH model, confirming

Compton and coworkers' insights of the range of applicability of the AMH model. We

also propose a simple closed form approximation to the AMH model, which can be

easily implemented in engineering models with satisfying accuracy.

6.2 Asymmetric-Marcus-Hush Model: Description and

Clarification

In this section, we will first introduce the formula for the asymmetric Marcus-Hush ki-

netics. Then we will demonstrate some characteristics about the formula that lead to

a divergent result under certain situations, which leads to a modified model definition.
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Figure 6-1: Comparison of Butler-Volmer (BV), symmetric Marcus-Hush-Chidsey

(MHC), and asymmetric-Marcus-Hush (AMH) kinetics as a function of applied over-

potential. Note that at small overpotentials, the AMH rates are well captured by BV

with a 7 .. However, for moderate overpotentials, BV significantly over-predicts the

rate.

6.2.1 Asymmetric-Marcus-Hush Model

The symmetric Marcus model for electrode kinetics (MHC) assumes equal force con-

stants for reactants and products, and results in the following expression for the

reduction and oxidation rate constants:

kred/ox,,(A, il) = A / exp (-AGred/ox,s(X)) dx,
0 + exp(-Fx) (6.1)

AGred/ox,s(x) = 4 (1 t ,

where A is a pre-exponential constant factor, A is the dimensionless reorganization

energy, r1 is the dimensionless overpotential, x is the dimensionless integration vari-

able, and AGred/ox,, is the activation energy. When two signs are present, the top

refers to reduction and the bottom to oxidation. We note here that this overpotential

is defined as the departure of the electrode potential from the formal potential rather

than from the equilibrium potential; the latter is a common choice in engineering

applications [155, 151. The AMH model for electron kinetics takes into account the
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unequal inner-sphere reorganization energies by introducing a parameter, 'y, which

describes the difference between inner-shell force constants of oxidized and reduced

species in an electrochemical reaction. It is given by the following,

kred/ox,a(A, q, y) = A +00 exp (-AGred/ox,a(X)) 1 dx,
1 + exp(T-x)

A2 2- (6.2)

Note that when y = 0, this asymmetric formula reduces to the symmetric MHC

model. Importantly, Eq. 6.2 is restricted in applicability based on the truncation of

the approximating series by which it was derived [119]. Although the restrictions

in relevant parameter ranges vary system to system, conservative estimates require

'yj < 0.35, A >> 1, and jqI < 10 [1181. Nevertheless, A > 1 is typical for an asymmetric

reaction [119].

For the remainder of the analysis, we will focus only on the oxidation rate constant

and free energy, as the results are easily repeated for reduction. For ease of notation,

we refer to the oxidation rate constant and free energy barrier as simply ka and AGa.

6.2.2 Clarification of the AMH Formula

This AMH formula has already demonstrated good agreement with experimental data

in numerous studies [198, 119, 961 and is becoming increasingly important in under-

standing electrochemical systems, especially where symmetric MHC kinetics fails.

However, mathematically Eq. 6.2 does not converge in its current form. Therefore,

we modify the original formula, in agreement with observations made by Compton et

al. 11181. This change does not affect the results of previous studies and may enable

better understanding of this asymmetric kinetic theory.

As has been previously noted, the integrand in Eq. 6.2 is a function with a peak

similar to a Gaussian for small x, and numerical evaluation of the integral must be

done within some finite x range, typically 50 [94]. This integration limit is not solely

for computational speed; we will show that the integrand diverges as x goes to either
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positive or negative infinity unless -y is exactly zero (the symmetric MHC case).

The cause of the divergence of the integrand is that the nondimensional Gibbs

free energy barrier, LGa (x), is a cubic function of x when -y is non-zero. Depending

on the sign of -y, AGa(x) must tend to negative infinity at either x = oc or x = -00

with a speed of 0 (|x| 3). The second part of the integrand, (1 + exp(x))-, which

is related to the Fermi distribution, decays no faster than 0 (exp(-Ix)). Thus, the

integrand diverges at a rate of 0 (exp(X 3)), and the integral in Eq. 6.2 must diverge

for any -y = 0.

A numerical demonstration is provided in Fig. 6-2. For x within +50, the integrand

is nearly a Gaussian function with a peak close to zero. However, when x > 300, it

grows quickly and dominates the peak around zero.

1.2 X 1- 1114

100

X X0

d 0.8 W

10 
C

E0.6

0.4

0.2 1

0 10CF
-50 0 50 -200 -100 0 100 200 300 400

x x

Figure 6-2: Numerical evaluation of the integrand in Eq. 6.2 with A =60, -y = 0.3
andTI = 0. We see on the right that for x > 50, the integrand is dominated by the

growing cubic term, which results from series truncation in the derivation of Eq. 6.2.

In order to avoid the divergence in Eq. 6.2, instead of integrating over the whole

real number axis, we have to restrict the integral within a certain domain D, such

that the integrand has a peak within this domain, but takes small enough values on
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both boundaries. Thus, we can write the AMH model as,

/f A Y(\ 1ka(A, Y) = A exp (-AGax)) dx,
A( 1 + exp(x)

A~ (X -(x - A + V g) + \ / 1 , + X\

(6.3)
2 A

+16g

Unfortunately, the domain D has to be specified case by case according to the

parameter choices. In general, D = {x E R - 50 < x < 50} is a very good choice

as suggested by Compton's group [118], but a check of the validity of this integral

region needs to be done for any new parameter choices.

In addition, for small values of the nondimensional reorganization energy, A, the

peak domain D is not well separated from the "blow up region". A typical example is

shown in Fig. 6-3. In this case, the integral domain D cannot be clearly defined, and

the AMH model in Eq. 6.3 is out of its valid range.
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Figure 6-3: Numerical evaluation of the integrand in Eq. 6.3 with parameters A = 1,
y = 0.3 and r = 0.

In the following sections of our paper, we will always restrict our discussions to

the cases in which the integral domain D can be well defined.
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6.3 Closed form Approximation of AMH Theory

In this section, we present a closed form approximation for the domain-restricted

AMH formula, Eq. 6.3, based on some empirical observations of the integrand. A

mathematical reasoning on the validity of such an approximation is also discussed.

Because Eq. 6.3 already relies on an empirical restriction of parameter values, the

focus of this work is on providing a useful approximation formula for the applicable

parameter ranges rather than formally deriving a uniformly valid approximation.

Compared to the symmetric MHC theory, the asymmetric formula only differs by

the cubic term in AGa. Since the integral domain D normally consists of only a small

range of x, we may make some observations of the quadratic term and the cubic term

within this range.

0 .. .. .. .
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Figure 6-4: Comparisons of the quadratic term and the cubic term in Eq. 6.3 within
the integral domain D with parameters A = 60, -y = 0.3. The nondimensional over-
potential q is chosen to be 40 (left) and -40 (right).

Typically, the cubic term varies considerably less than the quadratic term within

the peak region of the integrand. Two examples are shown in Fig. 6-4. Therefore, one

possible choice for approximating Eq. 6.3 is to treat the cubic term as independent of

x over the integral domain D. This is mathematically equivalent to taking only the

first term of the Maclaurin series of the cubic term, and neglecting all higher order
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terms. Then we get,

AGa,(x) = (x A*rq)2 +y (+x X ( " )] + (6.4)
4A 4A 16 (6.4)

~ ZG,(x) + ( - +

where AG, is the corresponding free energy function of the symmetric MHC theory

in Eq. 6.1. Since the cubic term is independent of x, it can be moved out of the

integral. Then we obtain the approximated reaction rate,

ka(A, q, y) A exp -y [ - - 72 exp (-AG,(x)) 1 dx
t 4 \A/ 16Ji1 + expWx

= exp{-( 1 (7-) 2 k(A, ),

(6.5)

where k,(A, q) is the corresponding reaction rate of the symmetric MHC kinetics,

which can be approximated a number of ways as discussed above. For simplicity, we

apply our previous approximation for the symmetric MHC kinetics formula here and

finally obtain a closed form approximation for the AMH theory [241],

kred/ox,a(A, i7, 7) A exp -( 1 - I 2 Ap )erfI2
4 - 1 1 + exp(+ij) erf 2v'X

(6.6)

where the double sign corresponds to reduction (above) and oxidation (below). The

reduction and oxidation formulas differ only in the substitution of the reduction/oxidation

symmetric rate constant for k8 .

The approximation formula in Eq. 6.6 works well when |H| < 0.35, in agreement

with the valid region suggested by Compton and coworkers [118]. In addition, this re-

quires A > 1 because of the integral domain validation requirement. However, A > 1

is typical for an asymmetric reaction [119]. Very importantly, the absolute value of

the nondimensional overpotential q should not exceed the value of nondimensional

reorganization energy A, 1g| < A, consistent with Compton and coworkers' observa-

tions [118]. Finally, we consider the choice of the approximation for k,. We note that
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the approximation for symmetric MHC kinetics as used in Eq. 6.6 is less accurate for

large A and 7 ~ 0 12411. However, over the entire relevant parameter space, small

errors in q (< 15 mV) correspond to the same magnitude of error as introduced by

using the chosen uniformly valid approximation. Thus, it is unlikely that practical

applications will require more accuracy for the symmetric part. Nevertheless, more

accurate choices for k, can be implemented instead 121].

6.4 Numerical Study

In this section, we will numerically compare our approximation formula in Eq. 6.6

to the numerical integration of the original AMH formula in Eq. 6.3 with different

choices of y and r. We will also demonstrate limitations of this approximation in the

range of large rq.

10
--- new continuous approx

numerical integration y = -0.3
Y=.O100 .
1=0.3

10-

y = 0.3
1 = 0.0

1 0 20 y =-0.3

-60 -40 -20 0 20 40 60

Figure 6-5: Comparisons of asymmetric reaction rates by numerically evaluating
Eq. 6.3 and a direct calculation of the approximation in Eq. 6.6. Here, A = 60

(roughly 1.5 eV at room temperature).

In Fig. 6-5, we compare the numerically integrated results of the reaction rate

ka(A, r, y) to the approximated values obtained from Eq. 6.6. Even though the re-

action rate varies by about 20 orders of magnitude over this parameter range, the

approximations show good agreement with the numerical results, and accurately cap-

121



ture the effects of non-zero -y.

10 10
--- new continuous approx
-6- numerical integration

1 1 0 --- .....-. ..-.-.-.-.-.- -.- -.
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1 0350
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Figure 6-6: Comparisons of asymmetric reaction rates by numerically evaluating
Eq. 6.3 and a direct calculation of approximation in Eq. 6.6. As in Fig. 6-5, A = 60.
The approximation values differ significantly from the true values when Inj > A.

However, as mentioned in the previous section, this approximation loses its ac-

curacy when gj| gets larger than A. A numerical demonstration in Fig. 6-6 shows

that when 177 > A, the approximation can be several orders off from the true value.

Therefore, the application of approximation formula in Eq. 6.6 should be limited to

the range 1gq < A. Nevertheless, as noted by Compton and co-workers, the original

AMH formula is generally only accurate for 17| < A [118], so this restriction does not

further limit the use of the developed approximation.

6.5 Conclusion

The asymmetric Marcus-Hush (AMH) formula, which has recently been shown to

have excellent agreement with experimental results has been approximated with a

simple, closed form solution, suitable for implementation in practical and large-scale

engineering models. The new approximation relies on the observation that the in-

tegrand in the original expression can be approximated as having a nearly-constant

factor over relevant parameter regions and associated integration limits. Then, using
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a result from a previous study to approximate the remaining improper integral, we

conclude with the final, closed form result. As noted by Compton and co-workers,

the original AMH, when used for 1rqj < 1, is relatively similar to the Butler-Volmer

equation with a -, 1 [118], which provides an alternative to the formula presented

here. However, doing so neglects all curvature in the Tafel plot, which becomes signif-

icant even at moderate overpotentials (Fig. 6-1), so Eq. 6.6 (or Eq. 6.5) still provides

a practical, accurate approximation for AMH kinetics over the entire relevant range

of overpotentials.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

In the initial half of this work, we focused on the dynamical system of bulk ion trans-

port in intercalation particles. We first developed an efficient numerical algorithm for

solving the nonlinear diffusion equation, which is the core of single-particle battery

models in electrochemical engineering. This new numerical method enabled us for the

first time to study in detail the full phase separation dynamics of the Cahn-Hilliard

reaction model, which is a new theoretical framework for modeling the thermodynam-

ics and electrokinetics of a single intercalation particle, in one-dimensional spherical

geometry. We also extended this Cahn-Hilliard reaction model to a more complicated

two-dimensional case and explored the effects of the surface electron-conducting coat-

ing, since such a coating layer has been experimentally proven to be important in

battery performance.

In the second half of this thesis, we mainly worked on the Marcus electron trans-

fer theory, which can be applied to the modeling of heterogeneous electron transfer

at electrodes in batteries. Despite its huge successes in predicting many reaction

kinetics, it has remained unknown in electrochemical engineering, possibly due to

its complicated mathematical form. We started with the symmetric Marcus-Hush-

Chidsey model, and by applying several asymptotic techniques, we provided a more

practical simple closed-form approximation formula for this theory. Then we extended
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that result to a more complex asymmetric Marcus-Hush kinetics model. In addition

to providing a simple approximation formula, we were also able to mathematically

illustrate some reasoning about the model limitations given in the original literature.

7.2 Future research

For future research in this field, several possible exploration directions can be consid-

ered.

In the single-particle model, one important feature that has been neglected in this

thesis is the elastic strain. The elastic strain is already known to be important in

battery dynamics, but coupling the elastic equations to the Cahn-Hilliard reaction

model is, as yet, too difficult to solve numerically. A fast computational method

solving such a big system will be essential to study this model and facilitate fitting

the model outputs to experimental data.

The electron transport within the surface coating could also be better modeled. As

the current linear diffusion oversimplifies the charge-conducting process within this

region, future research should consider the electric field distribution and potential

drop within the coating layer.

As we now have good approximations to both symmetric and asymmetric Marcus

electron transfer theories, they should replace the current phenomenological Butler-

Volmer equation in the single particle surface electron transfer model. It would

be interesting to study the overall dynamical behavior of the single-particle sys-

tem with this more realistic surface reaction rate model, especially with high charg-

ing/discharging rates.

Furthermore, the current asymmetric Marcus-Hush charge transfer theory is sub-

ject to some mathematical ambiguities in its definition. It would be helpful to re-

derive this whole asymmetric model from the beginning to provide a more rigorous

foundation than its current form does.

Once we have all these new features in the microscopic single particle system

to accurately model the behavior at the particle level, we will be able to couple

126



that microscopic system to the macroscopic porous electrode theory to fully simulate

real battery dynamics. We believe that, one day, when we have better and better

microscopic single particle models, we will be able to replicate the experimental results

using the model without any data fitting.

127



128



Appendix A

Unification of Algorithms for

Minimum Mode Optimization

A.1 Introduction

An important challenge in chemical and materials science is the simulation of the dy-

namics of systems over long time scales. Most chemical reactions can not be simulated

directly with traditional molecular dynamics (MD) simulations due to the limited ac-

cessible time scales. However, using the harmonic approximation to transition state

theory 1222, 216], which is generally valid for solid state systems at moderate temper-

ature, any reaction rate can be determined from the reactant and transition states.

Once these states are located, the dynamics of rare-event systems can be evolved by

a kinetic Monte Carlo algorithm over time scales much longer than is possible with

MD. Thus the challenge of studying such chemical reactions can be transformed into

the task of searching for the saddle points (transition states) connected to a given

minimum (reactant). Due to the high dimensionality and expensive force evaluation

of chemical systems, great efforts have been made in developing efficient saddle point

searching algorithms. A family of these algorithms, called minimum-mode following

algorithms, employ the following evolution equation,

si = F(x) - 2(fTF(x))i, (A.1)
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where x is the position vector, -F(x) is the gradient of the potential energy surface

V(x), and i is the unit vector along the minimum curvature mode direction. We

denote H V2 V and ' as the unit eigenvector of H with the minimum eigenvalue.

When H has only one negative eigenvalue, the above equation reverses the force

along that eigenvector and converges to a first-order saddle point. The efficiency of

the algorithm relies on an efficient update of i.

In this paper, we focus on the f updating algorithms that avoid calculating the

Hessian matrix H, since it is typically too expensive to calculate directly for large

chemical systems of interest. We examine several existing methods for estimating ?,

including the Lanczos [125] method as used in the activation relaxation technique

(ART-nouveau) [132], the dimer method [92, 100, 112], Raleigh-Ritz minimization

[103] as used in the hybrid eigenvector following method [151], the shifted power

iteration method as used in gentlest ascent dynamics [70], and locally optimal block

preconditioned conjugate gradient (LOBPCG) [126]. Here, these methods are unified

into the same mathematical framework so that their relative theoretical efficiencies

can be understood.

This paper is structured as follows. In Sec. A.2 the Lanczos method is presented

and the essential idea of the Krylov subspace behind the algorithm. Another widely

used numerical scheme, the dimer method, is presented in Sec. A.3. We show that

the dimer method searches for the lowest eigenvector of the Hessian within the same

Krylov subspace as the Lanczos algorithm. In Sec. A.4 we present the power iteration

method with Rayleigh quotient shift. This method is shown to be a special restarted

case of the Lanczos algorithm for which the convergence rate is significantly slower

in high dimensional space. In Sec. A.5 we numerically compare the efficiency of the

Lanczos algorithm, the dimer method coupled with three different optimizers, and the

shifted power iteration method. Finally, we conclude in Sec. A.6 that the performance

of methods such as the dimer, which are limited to the same Krylov subspace as the

Lanczos method, do not exceed its efficiency for finding the lowest mode.
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A.2 Lanczos Algorithm

The Lanczos algorithm is a specialized Arnoldi iteration method of eigenvalue calcu-

lations for symmetric matrices.[125] Before discussing the Lanczos algorithm, we first

restate the minimum mode eigenvalue problem as a minimization problem in Theo-

rem 1, and then review the concept of the Krylov subspace and present the Lanczos

algorithm based on Krylov subspace projection and search. In this section, we assume

that the smallest eigenvalue has multiplicity 1.

Theorem 1. Given a symmetric matrix H E R"'x, v is the eigenvector associated

with the smallest eigenvalue A, if and only if v solves the minimization problem,

bT Hb
min .TO b (A.2)

bE=R"'\{o1 bib

Proof. Since H is a symmetric matrix, all eigenvectors vI, v2 ,.-- , V.. form an orthog-

onal basis of the space R' and all eigenvalues of H are real numbers. We can write

b = aivi, then we have,
bTHb __ i Aial (A.3)

bTb Z a?

This function takes its minimum value when b is equivalent to the eigenvector v.

Thus, v solves the minimization problem.

The other side of the statement follows from the uniqueness of the eigenvector

corresponding to the smallest eigenvalue. l

Remark 1. Such an optimal solution v must be unique also due to the uniqueness of

the eigenvector associates with the smallest eigenvalue.

Having transformed the eigenvalue problem to a minimization problem, the min-

imization problem can be solved as follows. We first solve the optimization problem

in a low dimension subspace, which can be done more easily than in the original

space R'. Then we consider the optimal solution in a space with one more dimension

to find a better solution. As we move to higher and higher dimensional subspaces,

this optimal solution will converge to the true solution. Here the low dimensional

subspace we will use is the Krylov subspace, IC, which is defined as in Remark 2.
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Remark 2. The n-th order Krylov subspace IC, generated by a square matrix H E

Rmxm and a nonzero vector v E Rm is defined as,

ICn = span{v, Hv, H2v, ... , H- 1 v}. (A.4)

When n is smaller than the rank r of the matrix H, K,, is a n dimensional space;

when n is greater or equal to r, Cn is an r dimensional space. The product Hv is

calculated by the following approximation,

Hv = F(x) - F(x + v)+ 0 (HvH2). (A.5)

To solve the minimization problem in the Krylov subspace, a set of orthogonal

basis is utilized. This basis can be obtained by the Gram-Schmidt process iteratively

as shown in Refs. [178, 208]. We define such a basis for a n-dimensional Krylov

subspace K, as Qn = [qi, q2, ... , qn E Rmxn. Therefore, any vector b E Ka can be

represented by, b = Qnr, where r E Rn. Then the minimization problem projected

on a Krylov subspace Kn can be solved, as shown in Theorem 2.

Theorem 2. Qnr solves the minimization problem on the Krylov subspace ICn

bT Hb
min , (A.6)

bEkn\{o} bTb

if r is the eigenvector corresponding to the smallest eigenvalue of the matrix QTHQu.

Proof. Since any vector b C ICn can be written as, b = Qnrb

bTHb _ (Qfrb)THQfrb _ r(QHQ)r(A7)
bT b (Qnrb)T (Qflrb) rb rb

By Theorem 1, the eigenvector r associated with the smallest eigenvalue of the matrix

QTHQn solves this minimization problem. Therefore, the vector Qnr solves the

original optimization problem in the space C. .

Remark 3. By construction of the orthogonal basis Q, the matrix QTHQn is an

upper Hessenberg matrix, e.g., an upper triangular matrix plus a nonzero first sub-
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diagonal. It is also symmetric since H is symmetric and Q, is an orthogonal basis.

These two properties confirm that the matrix QTHQ is tridiagonal.

Finally, the eigenvalue problem of a unknown matrix H is transformed to a itera-

tive series of calculations to find the smallest eigenvalue of a known low dimensional

matrix QTHQn, which can be done efficiently, for example, by the QR algorithm. In

theory, this scheme is guaranteed to converge if n grows to the rank of the matrix H,

but in practice, the convergence will be faster than this bound [177, 1151.

A.3 Dimer Method

The dimer method is another iterative algorithm for minimum mode finding [92].

With improvements in the implementation [171, 163, 100, 112], the dimer method has

become widely used in calculating chemical reaction rates with the forces evaluated

from self-consistent field methods.

We note that the Raleigh-Ritz optimization method used in hybrid eigenvector

following, as developed by the Wales group [151], is based upon the same finite-

difference gradient of the lowest eigenvector that is used in the dimer method. So while

the methods are described using different language and have some minor differences

in their implementation, they are equivalent for the purposes of this analysis. The

same approach was also used previously by Voter to construct a bias potential for the

acceleration of MD in his hyperdynamics method[217].

In this section, we present the dimer method within the same theoretical frame-

work as the Lanczos algorithm. Numerical comparisons have been previously made

between these two algorithms [163], but now, under this mathematical framework,

we can compare their relative theoretical efficiency.

In the dimer method, the minimum curvature mode is determined by rotating a

pair of images separated by a small distance |ljv according to the torque acting on

the dimer. The torque is the force difference divided by the distance, and thus has the

same form as Hv in Eq. A.5. Rotating along the torque direction is the mechanism

by which the dimer method finds the minimum curvature mode in a specific subspace
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of the Krylov subspace.

At each iteration, the new direction r that minimizes TTHr is found in the plane

spanned by {v, Hv}, assuming the simplest case in which the SD direction is taken

for the rotation plane. A second direction E is then constructed perpendicular to v

to form an orthogonal basis set Q2 = [v, E], reducing the optimization problem to

two dimensions,

e = Hv - (vTHv)v, (A.8)

A = QTHQ2= ( v (A.9)
(ETHv ()THE)

Here, calculating HE requires a second force evaluation, F(x + 6). The 2 x 2 matrix

A can then be diagonalized. The eigenvector T, which is expressed as T = riv + r2 E,

is then the starting point of the next iteration. Note that

HT = r1 Hv + r2HE, (A.10)

can be obtained without any further force evaluation since Hv and HE are already

known, as pointed out in Ref. [112J. The minimization is repeated in a sequence

of two dimensional spaces: span{v, Hv}, span{T, HT},- , where span{v, Hv} is the

Krylov subspace )C2. Also because

HT = (r, - r2(vTHv))Hv + r2H2v, (A.11)

T and Hr are in the Krylov subspace AD3 = span{v, Hv, H2v}. After the n-th iteration,

n force evaluations have been made, which is the same number as in the Lanczos

method. However, each two dimension space considered in the dimer method is a

subspace of I,+1. Therefore, the dimer method convergence is theoretically limited

by that of the Lanczos algorithm.

In previous descriptions of the dimer method, the above procedure was done by

finding a unit vector E R 2 to minimize i TA , which is exactly the dimer energy
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in Ref. [92]. The connection between minimizing the dimer energy and solving the

eigenvector problem of Eq. A.9 can be seen by expanding i by the unit eigenvectors

of A,
i TA? = (axiix + avsy)TA(a2i2 + asiy) = aXA2 + Y (A.12)

where Ax and A. are eigenvalues of the matrix A.

Theorem 3. The steepest descent dimer method is equivalent to the Lanczos algo-

rithm with restarts every two steps; its theoretical efficiency must be lower than the

Lanczos algorithm.

When the rotation plane is determined by algorithms based on the previous search

direction E, as in the conjugate gradient (CG) algorithm, the dimer method is more

efficient but remains under the limit of the Lanczos method. The Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm for updating E, as well as the limited memory

version (L-BFGS),[159] are even more efficient. When the initial Hessian is set as a

constant times the identity matrix (the standard case in practice), BFGS/L-BFGS

is also searching for the lowest mode in the subspace of IC,+, at iteration n. The

LOBPCG method performs the minimization in a three dimensional subspace, with

one extra direction that is a linear combination of the previous directions [126]. The

search space of LOBPCG is therefore still a subspace of the Krylov subspace, and its

theoretical efficiency also cannot exceed the Lanczos limit.

A.4 Power Iteration Method with a Rayleigh Shift

Another method for finding the lowest mode is the power iteration method, which

has been employed in some recent saddle point searching algorithms 170, 1791. In

this section, we present the motivation and mechanism of the power iteration method

with a Rayleigh shift, and prove the convergence of this method. Similar to the

dimer method, we demonstrate that the search space of this method is contained in

the Krylov subspace IC, for the minimization problem of Eq. A.2.
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A.4.1 Derivation of the shifted power iteration method

The power iteration method is an iterative eigenvector computation method which

can be described as,
Hvn

Vi+n =Hv (A.13)

where H is a square matrix with eigenvalues IAI > A21 IA 3 1 > -. In this scheme,

vi will converge to the eigenvector associated with eigenvalue A, as i - 00 [208].

We already know that all eigenvalues of our Hessian matrix H are on the real axis.

Moreover, if A is an eigenvalue of H associated with the eigenvector v, and I is the

identity matrix, then for any constant a E R, a - A is the eigenvalue of a new matrix

aI - H with eigenvector v. As a result, we can linearly shift the desired eigenvalue to

become the eigenvalue with greatest absolute value without changing the eigenvector.

Therefore, the power iteration method will converge to our desired eigenvector if we

find such a shift.

To pick an appropriate shift, a, we use the current maximum absolute value of

Rayleigh quotients at each iteration plus a small increment,

vfHv1 viHv2  vAHvnan = max{ , 1,T } + log n. (A.14)
viv1  i2 ve

The log n term is added to prevent the case where the shift exactly equals to An ,

even though this scenario is unlikely. With the dynamical update of the shift constant

an according to Eq. A.14, the modified power iteration method can be described,

_ (anI - H)vn
-n+ = .LH~~ (A.15)

11 (anI - H)VnT|

Theorem 4. The iterative algorithm shown in Eq. A.15 will converge to the eigen-

vector associated with the smallest eigenvalue of H, if this eigenvalue has multiplicity

1.

Proof. Let A, be the smallest eigenvalue and A2 the second smallest one, by our

assumption smallest eigenvalue has multiplicity 1, A1 < A 2 .

The Rayleigh quotient is bounded by the maximal absolute value of eigenvalues,
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which we assume to be L. Let v be the true eigenvector we want to obtain, then

the convergence rate of the v, depends on the ratio of two eigenvalues which is with

largest absolute values 1208]. The convergent rate is,

||Vn - V11 = O(9 ) - 0, (A.16)
k L + log k - A 2

as n -* oo, which proves the convergence of the algorithm. El

A.4.2 Krylov Subspace of the Shifted Power Iteration Method

While the convergence of the power iteration method with a Rayleigh shift is guar-

anteed in principle, the convergence is slow in practice. The resulting vo at the n-th

iteration from this method is located in the Krylov subspace Kn, which is defined

in Remark 2. We will prove this statement in Lemma 1 in order to conclude that

the shifted power iteration method will always converge slower than the Lanczos

algorithm.

Lemma 1. For any n > 0, vn E Kn, where I(n = spanr{vo, HvO, , Hnvo}.

Proof. We will prove this by induction.

When n = 1, v1 = (alI - H)vo = aivo + HvO E C1.

Given vn E /C, we can write Vn = i=O ciHivo. Then,

n

Vn+1 = (anI - H)Vn = (anI - H) 1 ciH'vo E An+i. (A.17)
i=O

Thus, the statement holds for any general n > 0. El

Since the eigenvalue problem can be taken as a minimization problem as shown

in Theorem 1, the power iteration solution is within the same Krylov subspace as the

Lanczos algorithm, with the same number of iterations. Therefore, the convergence

rate of the power iteration method is limited by the Lanczos algorithm.
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A.5 Numerical Test

In the previous sections, we have compared the theoretical efficiencies of the Lanczos

algorithm, dimer method, and the shifted power iterative method. We proved the

convergence rates of the later two methods are bounded by the Lanczos algorithm

due to the restriction of a smaller search space than Lanczos at each step. In this

section, we conduct a numerical comparison to demonstrate our results in practice.

The convergence rates of the algorithms are compared for Lennard Jones clusters

with 38 atoms. Geometry configurations are chosen randomly near saddle points

where the existence of one negative eigenvalue of the Hessian is guaranteed. A random

direction is used as an initial guess for each of the minimum-mode searches. More

details of the benchmark system are discussed elsewhere [43, 1]. The Lanczos method

is implemented with full reorthogonalization, which is faster by one step on average

than without reorthogonalization. The dimer method is implemented with three

optimizers for determining the rotation plane: SD, CG, and BFGS. The initial Hessian

for BFGS is taken as aI, where a is set to be 60 eV/ 2 and I is the identity matrix.

Other a values tested did not give significantly better results. When the rotation

direction from the BFGS become almost perpendicular (within 30) of the SD direction,

the BFGS is restarted with the initial Hessian. No parameters are needed for the other

methods. All the methods are implemented in the TSASE software [2, 3].

The angle between the estimated lowest mode and the true minimum mode is

plotted at each iteration in a typical run in Fig. A-1. Clearly the Lanczos method

is the fastest, while the shifted power iteration and the SD dimer are significantly

slower. The CG dimer and the BFGS dimer are marginally slower than Lanczos.

The similar convergence trends of these three methods indicates some commonality

between them.

The two slowest methods were not considered for further study, but for the three

competitive methods, 200 minimum mode searches were run at different cluster ge-

ometries for a more statistically significant comparison. A summary of the results

is presented in Table A.1. The convergence criteria is that the angle to the true
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Figure A-1: The angle, in radians, towards the true minimum mode as a function
of iteration number (left) and a zoom in of the region of relevance for the Lanczos,
BFGS dimer, and CG dimer methods (right).

Table A.1: Steps to Convergence.

Method N max N min N
Lanczos 25 54 13

BFGS Dimer 27 65 13
CG Dimer 29 80 13

minimum mode is smaller than 0.14, which corresponds to an overlap (dot product

of unit vectors) greater than 0.99. We did not observe any case in which the dimer

method converges faster than Lanczos, although in some cases they converge at the

same rate. Typically, the BFGS dimer is faster than the CG dimer when a reasonable

initial Hessian value, a, is chosen. These numerical results are consistent with our

theoretical conclusions.

A.6 Conclusion

In summary, we have presented three classes of minimum mode searching algorithms,

the Lanczos algorithm, dimer method, and the shifted power method, under the same

mathematical framework of minimization in the Krylov subspace. With a theoretical

139

A

E
E

:3E

0)C

- Lanczos
- BFGS dimer

- CG dimer
- SD dimer
- shifted power

iteration

50 100 150
Iteration number

- Lanczos
- BFGS dimer

- CG dimer

20 25 30



understanding of these methods, we can see the dimer and shifted power methods

are searching in a subspace of the Krylov subspace for which the Lanczos method

explicitly finds the minimum curvature mode. This leads to the conclusion that with

the same number of evaluations of the potential gradient, the Lanczos algorithm will

theoretically converge no slower than the other two classes of methods. The result of

this research can provide theoretical guidance for any future improvements to methods

for finding the minimum curvature mode. Key to methods that can outperform the

Lanczos algorithm will be the determination of subspaces that are outside of the

Krylov subspace.
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Appendix B

Synchrony and Periodicity in

Excitable Neural Networks with

Multiple Subpopulations

B.1 Introduction

The study of oscillator synchronization has made a significant contribution to the

understanding of the dynamics of real biological systems [29, 149, 130, 169, 85, 81,

50, 210, 71, 111, 211, 37, 90, 1661, and has also inspired many ideas in modern dy-

namical systems theory. See [193, 170, 2251 for reviews. The prototypical model

in mathematical neuroscience is a system of "pulse-coupled" oscillators, that is, os-

cillators that couple only when one of them "fires". More concretely, each oscillator

has a prescribed region of its phase space where it is active, and only then does it

interact with its neighbors. There has been a large body of work on deterministic

pulse-coupled networks [116, 80, 209, 214, 28, 205, 215, 36, 114, 169, 149, 185J, mostly

studying the phenomenon of synchronization on such networks.

In [62, 63], the first author and collaborators considered a specific example of a

network containing both refractoriness and noise; the particular model was chosen to

study the effect of synaptic failure on the dynamics of a neuronal network. What was
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observed in this class of models is that when the probability of synaptic success was

taken small, the network acted as a stationary process with a low degree of correlation

in time; when the probability of synaptic success was taken large, the system exhibited

synchronous behavior that was close to periodic. Both of these behaviors are, of

course, expected: strong coupling tends to lead to synchrony, and weak coupling tends

not to do so. The most interesting observation was that for intermediate values of the

coupling, the network could support both synchronized and desynchronized behaviors,

and would dynamically switch between the two. This was explained in [631 by showing

that the large network limit was, for certain parameters, multistable. Then, large but

finite networks switch stochastically between the attractors of the limiting system.

One unusual aspect of the large network limit, or mean-field system, of [62, 63] is

that it is a hybrid system: a system of a continuous flow coupled to a map of the phase

space. This system has piecewise continuous trajectories that jump at prescribed

times. This is due to the fact that the interneuronal connections in the model undergo

cascades, where the firing of one neuron can cause other neurons to fire, which cause

other neurons to fire, and so on, causing an avalanche of activity throughout the

network. This sort of neural activity has been observed experimentally in 118, 19, 186]

and a model of the type considered in this paper was matched to experimental data

in [77]. Since these cascading events are on the order of the size of the network, yet

happen quickly, they correspond to discontinuities in the dynamics, leading to the

hybrid character of the dynamics. Moreover, as we argue below, the model we consider

here is a prototypical model of cascading neuronal dynamics, and is in some sense the

simplest model possible of this type. The model we analyze here is a cascading version

of the three-state excitable network model analyzed in 1172, 173, 154] (although one

notes that the details of the analysis differ significantly).

In this paper, we consider a generalization of the mean-field model that allows

for several independent subpopulations with different intrinsic firing rates. We show

that this model has the property that for sufficiently small interneuronal coupling, the

system has a globally attracting fixed point, and for sufficiently large interneuronal

coupling, the system has a globally attracting periodic orbit. We also give bounds on
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the parameter ranges of validity for each of the two behaviors. Moreover, we make

the surprising observation that all of these attractors exist no matter how many

subpopulations exist, and how much their firing rates differ - in particular, we show

that the critical coupling parameter for the existence of a globally attracting limit

cycle does not depend on the firing rates, or relative sizes, of the subpopulations in

the network.

We also connect the model studied in this paper to the stochastic cascading neural

system considered in 1631. Since this result follows with only minor changes from the

theorems in [63], we present a short argument of the connection between the stochastic

model and its mean-field equation, but only for completeness.

B.2 Model definition

B.2.1 Overview of model

We consider a network of neurons which is coupled all-to-all and which all coupling

is excitatory. We also assume that the interneuronal coupling is much faster than

the other timescales in the system, so that the interaction between different neurons

happens in zero time. Each neuron can be in one of three states: "refractory", "ex-

citable", and "firing". Every refractory neuron will need an input to become excitable,

and then takes one more input to fire. We also assume that neurons have variable

firing rates.

We will assume that there is a finite number M of subpopulations of neurons, and

that different subpopulations have different firing rates; we will denote the fraction

of neurons in subpopulation m by am, and the firing rate of these neurons will be

denoted pm. For shorthand, we will say that the refractory neurons are at level 0,

and the excitable at level 1. We use the index k = 0, 1 to denote the state of a given

neuron, and m = 1, ... , M to index certain subpopulations. Thus we will denote the

proportion of neurons of type m that are refractory by xo,m, and the proportion that

are excitable by xlm.
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The interneuronal coupling will be determined by the parameter 3. The inter-

pretation of 0 is that whenever there is a proportion of neurons that are firing, they

will promote a fraction of neurons in the network through synaptic connections, and

3 represents the ratio of neurons being promoted to those currently firing. We also

assume that whenever neurons fire, we compute the entire cascade of firing until there

are no longer any firing neurons. Moreover, we assume that all neurons that fire are

set to the refractory state at the end of the cascade. Thus, the entire state of the

network will be determined by the vector Xk,m with k = 0, 1 and m = 0, ... , M, as

all of the firing neurons will be processed as soon as they fire.

B.2.2 Mathematical definition of model

Choose a natural number M. Let a = (a1, ... , aM) be any vector with 0 < am < 1,

and EZm am = 1, and let p E (R+)M. The domain of our dynamical system will be

D' := {X = {Xk,m} E R2M I XO,m + X1,m = am}.

We write y = yk(X) := Zm Xk,m, and write D" as the disjoint union D" = D"'3 0D3

where

D' :={x E D' I 3yi > 1}, D'3 = Da \ D' .
G Ic G

We will also write

= {X: yi =, 1}.

We now define a deterministic hybrid dynamical system ',P"A(t) with state space D'.

The system will be hybrid since it will have two different rules on complementary parts

of the phase space.

Definition 1 (Definition of L). Consider the flow defined by

d
dtkm )-- Pm/()(Ek-,m(t) - (k,m(t)), (B.1)
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where p( ) is the scalar function

1 1

a - ir r - mO dim

and we interpret indices modulo 2. More compactly, define the matrix C by

(B.2)1 (k,m),(k',m') = 6 m,m'(-1)1+k+k'Pm,

and (B.1) can we written = p( )L .

Definition 2 (Definition of G). Let us now

1, ... , M, plus a state that we denote as Q.
are given by

-1, z-=

Mz' 1, z

1, z-

0, else.

index R 2 M+1 by (k, m) with k = 0,1, m=

Define the matrix M whose components

(0, m), z' = (0, m),

(0, m), z' = (1, in),

(1, n), z'= Q

Define Pz as projection onto the zth coordinate, and

s(0) =inf s PQ (e*g) =}

and then define Ga'3( ) componentwise by

P(1,m)(Got'N()) = P(1,m)(e'3S'*w (B-3)(B.3)

P(Om) (Go'(0)) = am - P(1,m)(Go'(" )

Definition 3 (Definition of full system). We combine the above to define a hybrid

system for all t > 0. In short, the system uses flow given by L on the domain D""3,

and if the system ever enters the domain D",, it immediately applies the map G.

More specifically: fix p, 3. Define the flow map p(x, t) by

d
( t) = ( p((, 0) =
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Assume (O) E D3, and let

T1 = inf{p((0), t) ED' (B.4)
t>o

We then define

S(t) = p((0), t) for t e [0, Ti), ((Ti) = G ((0), Ti))

(Of course, it is possible that T1 = oo, in which case we have defined the system

for all positive time, otherwise we proceed recursively.) Now, given Tn < oo and

(Tn) E D' 3 , define

n+= inf { ((Tn), t - 7n) E DG'I}, (B.5)
t>Trn

and

((t) = p(F (T), t - Tn) for t E [Tn, Tn+1), (Tn+ 1) = G (Tn), Tn+ 1 - Tn))-

If Tn = oc then we define Tn+1 = oc as well. We call the times 71, 72 ,... the big

burst times, and we call s,( (Tn)) the size of the big burst.

Remark 4. We note that the definition given above is well-defined and gives a unique

trajectory for t C [0, oo) if and only if we know that G( ) G Dc for any E DG- We

will show below that this is the case. We will also see below that some trajectories

have infinitely many big bursts, and some have finitely many-this depends both on

parameters and initial conditions.

B.2.3 Intuition behind definition

This is no doubt a complicated description, but all of the pieces of this definition

can be well-motivated. We give an intuitive description of this justification now, and

make a connection to a stochastic model in Section B.2.4 below.

First consider an infinite network where each parent neuron firing gives rise to
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an independent random number of children neurons firing, and the expected number

of children per parent is /. Then assume that when a neuron fires, we recursively

compute all descendants of this initial neuron until the activity dies away. The ex-

pected number firing in the first generation is /, and the expected number firing in

the second generation is /2, etc. It is clear that the expected number of neurons

that fire in the entire cascade is Ej=- / = (1 - 0)-1, if this sum converges, i.e. if

/ < 1. Let us call this / < 1 case subcritical. If / > 1, then the expected size of

the cascade is infinite, and let us call this case supercritical.

Now consider the network defined above. Notice that a neuron is only primed

to fire if it is excitatory, and the total proportion of excitatory neurons is yi. Thus,

when a neuron fires, the proportion of neurons that are "available" is given by yi,

and the average number of children per parent is pyi, and so we should consider the

case /3yi < 1 as subcritical, and the cascade size is (1 - /y3)-'. This means that the

"force multiplier" of each neuron is p( ) as defined above, by which we mean if an

infinitesimal fraction of neurons enter the firing state, then the total size of the burst

that arises should be p( ) times this fraction. With / positive but subcritical, this

just "speeds up" the ODE by the multiplicative factor p().

If the state is supercritical (/y3 > 1), then the above argument implies an infinite

cascade. However, notice that yi will evolve during the cascading process as neurons

are drawn from the excitatory state into the firing state. To model this, we should

consider a system where neurons in the queue are being processed and thrown away

at rate 1, and this induces neurons to move from refractory to excitatory at rate /

times the proportion that are refractory, and from excitatory to firing at rate /3 times

the proportion that are excitatory. But notice the definition of M: this is exactly

what happens as the system evolves, and we stop the system when the proportion of

neurons in the queue is equal to the time that we have evolved - which is of course

equivalent to saying that if we are removing neurons from the queue at constant rate

1, then it is the first time the queue is empty. Then, all of the neurons that have fired

are then reset to be refractory, which is the same as saying that they are reinjected

at level zero.
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B.2.4 Connection to stochastic model

We now present a stochastic neuronal network model that generalizes the one consid-

ered in [62, 63]. The model has N neurons, each of which has an intrinsic firing rate

p,. Each neuron can be in one of three states: "quiescent", "excitable", and "firing",

which we denote as levels 0,1,2.

If there are no neurons firing, we promote the nth neuron in the network with

rate pn, i.e. we choose N independent random times Tn, where Tn is exponentially

distributed with rate pa, and define

T = min Tn, n* = arg min Tn,
n n

and then we promote neuron n* by one level and increment the time variable by T.

p= 1.00e-03 p = 2.00e-03
20 600

1L -
N 400

10] 200

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
t t

p = 3.00e-03 p = 4.00e-03
1000 100

500 500

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
t t

Figure B-1: Different behaviors of the model. We fix M = 10, N = 1000, and plot
different dynamics of the model that correspond to different p. As we increase p, we
see the change from asynchronous and irregular behavior to synchronous and periodic
behavior.

If there are neurons firing, we compute the effect of a cascade as follows: for each

neuron in the firing queue, we promote each other neuron in the network, indepen-

dently, with probability p. If any neurons are raised to the level of firing, we add

them to the queue, and we continue this process until the firing queue is empty. Note

that the probability of any neuron promoting any other neuron is the same, so it will
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not matter how we process the neurons in the queue (FIFO, LIFO, etc.). However,

if a neuron fires in a given burst, we temporarily remove it from the population until

the burst is completed, then reinsert all of the neurons that have fired back to the

quiescent state. This is a type of refractoriness, in that no neuron can fire more than

once in a burst.

Clearly, all of the interneuronal coupling in this model is through the parameter

p. The larger the value of p, the more tightly coupled the system is. What has been

observed for models of this type [62, 63, 77] is that when p is small, the typical event

size in the system is small, and the system is incoherent; conversely, when p is large,

the system is synchronous and periodic (see Figure B-1 for an example, but see other

references for more detail).

We can now consider a limit as N -a o for this system. Choose M a natural

number, and a, p as defined in the system above, i.e. pm > 0 for all m, 0 < am < 1

for all m and Zm am = 1. For each N, define a partition of N into M disjoint sets,

denoted by A( , and require that the firing rate of every neuron in A be pm. As

N -+ oo, assume that IA$ ( - amNJ < 1 for all m. (Note that amN is not in general

an integer, but we require that |AM| be as close to this number as possible.)

It is not hard to see that the description defines a stochastic process with param-

eters N, a, p, p, which we will denote as X,'"','' below. In the limit N -+ oc, we

will state the convergence theorem of the stochastic neuronal network to a mean-field

limit - the proof given there will work with some technical changes.

Theorem 5. Consider any x E D' n Q2M. For N sufficiently large, Nx has integral

components and we can define the neuronal network process Xv'"'p'p as above, with

initial condition X6N,ap - Nx.

Choose and fix e, h,T > 0. Let ("'P' 3(t) be the solution to the mean-field defined

in Definition 3 with initial condition "''aP-(0) = x. Define the times T1 , 72, ... at

which the mean field jumps, and define bmin(T) = min{s6((Tk)) -r < T, i.e.

bmin is the size of the smallest big burst which occurs before time T, and let m(T) =

arg maxk Tk < T, i.e. m(T) is the number of big bursts in [0, T].

Pick any 1 < bmin(T). For the stochastic process X/'"'"', denote by Tk
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(random) times at which the X['"''' has a burst of size larger than -yN. Then there

exists Co,1(e) E [0, oo) and w(M) ;> 1/(5M) such that for N sufficiently large,

P (m( ) - Tj > E) 5 Co(c) Ne--icN() (B.6)
j=1

Moreover, if we define T := ([0, T] \ U 7 T (T (N) T (N) + )), and

cp(t) = t - (T,(N) - T-) where j = maxjk: Tk

then

P sup N-1 Xt'"'K'' -- (alp"3 ((t)) > < Co(e)Ne-Cl()NW(M ). (B.7)
(tET

In summary, the theorem has two main conclusions about what happens if we

consider a stochastic neuronal network with N large. The first is that (up to some

technical details) the stochastic system is a fluctuation around the mean-field system

when N is sufficiently large. Recalling Figure B-1 again: we will show below that

the mean-field system has an attracting fixed point for 0 sufficiently small, and the

incoherent dynamics for small p correspond to fluctuations around this fixed point.

Conversely, we show that for 0 sufficiently large, the mean-field system has a limit

cycle, and the periodic dynamics for large p correspond to fluctuations around this

limit cycle.

In Figure B-2, we show numerically the convergence result in another way: in dark

blue, we plot the mean and standard deviation of the sizes of burst in the stochastic

model, and in red we corresponding quantity in the mean-field model, the function

s*(/3) defined in Lemma 4 below. We see that they match well even for N = 1000.

The guaranteed rate of convergence is subexponential due to the presence of the

w(M) power in the exponent, but note that the convergence is asymptotically faster

than any polynomial. Numerical simulations done for the case of M = 1 were reported

in 1621 show that w(1) seemed to be close to 1, and this closeness was uniform in K.

This suggests that the lower bound is pessimistic and that the convergence may in
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Figure B-2: The meaning of the blue data: we fix a choice of a, and N = 1000, then
run the stochastic neuronal network described in this section. We plot the burst sizes
in light blue. For p large enough, we also plot the mean and standard deviations
of the burst sizes for all of the bursts larger than one-tenth the size of the network.
In red, we plot the deterministic burst size (as a proportion of network size) in the
deterministic limit defined in Section B.3.2 below (in fact, we are plotting the function
s*(0) defined in Lemma 4. The result of Theorem 5 is that the dark blue circles lie
on the red curve, and that the error bars get small, as N -+ oo. The numerics seem
to verify this.

fact be exponential. However, the lower bound given in the theorem above seems to

be the best that can be achieved by the authors' method of proof. For the details

comprising a complete proof of Theorem 5, see [631.

B.3 Main theorem and analysis

The main result of this paper is to prove that for any M, a, and p, then for ,3

sufficiently small, the system has a globally attractive fixed point, and for / sufficiently

large, the system has a globally attracting periodic orbit.

It should be noted that the there is no clear a priori method of analyzing the

stability of the model considered here. As is well known, the analysis of hybrid

systems can be exceedingly complicated [27, 128]; questions just about the stability

of fixed points is much more complicated than in the non-hybrid (flow or map) case,

and stability of periodic orbits are more complicated still. As we see below, the state
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of the art technique for this kind of problem is very problem-specific; in general, one

contrives to construct some sort of Lyapunov function for the system, and this is what

we are able to do here.

B.3.1 Main result

We now state the main result of the paper.

Theorem 6. Choose and fix M, a, p, and consider the hybrid system aPI3(t) defined

in Definition 3. Then:

" For /3 < 2 and all M, the system has a globally attracting fixed point ".

" For any M > 1, there exists OM > 2 such that, for /3 > Om, the hybrid system

has a globally attracting limit cycle A'(t). This orbit "A'(t) undergoes

infinitely many big bursts. Moreover, lim supMO M/ log(V ) < 1.

We delay the formal proof of the main theorem until after we have stated and

proved all of the auxiliary results below, but we give a sketch here.

The main analytic technique we use is a contraction mapping theorem, and we

prove this in two parts. We first show that for any two initial conditions, the flow

part of the system stretches the distance between them by no more than 1+ 'i/2

(Theorem 7). We then show that the map G3 is a contraction, and, moreover, its

modulus of contraction can be made as small as desired by choosing / large enough

(Theorem 9). The stretching modulus of one "flow, map" step of the hybrid system

is the product of these two numbers, and as long as this is less than one we have a

contraction. Finally, we also show that for / > 2, there exists an orbit with infinitely

many big bursts (Lemma 6)-in fact, we show the stronger result that all initial

conditions give an orbit with infinitely many big bursts. All of this together, plus

compactness of the phase space, implies that this orbit is globally attracting.

We point out that several parts of the argument that seem straightforward at first

glance are actually nontrivial for a few reasons.
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First, consider the task of computing the growth rate for the flow part of the

hybrid system. Clearly etC is a contraction, since its eigenvalues are

{Om -- 2pi, -2P2, - - ,-2pml

and the vector in the null space is unique once a is chosen. (We use the notation 0 m

to denote M repeated eigenvalues at 0.) However, even though the linear flow et1

is contracting, and clearly Ietx - etLx'J < |x - x'J for any fixed t > 0, the difficulty

is that two different initial conditions can flow for a different interval of time until

the first big burst, and clearly we cannot guarantee that ettx and et'1x' are close at

all. For example, consider the extreme case where the flow etlx hits the set D3 at

some finite time, and the flow etCx' never does-then these trajectories can end up

arbitrarily far apart, regardless of the spectrum of L. For both of these reasons, we

cannot simply use the spectral analysis of L for anything useful and have to work

harder at establishing a uniform contraction bound.

Moreover, we point out another subtlety of hybrid systems, which is that the

composition of two stable systems is not stable in general. In fact, establishing sta-

bility properties for hybrid systems, even when all components are stable and linear,

is generally a very nontrivial problem (see, for example [122]). We get around this

by showing the subsystems are each contractions (i.e. we show that |1-|| 2 is a strict

Lyapunov function for the system), but needing to control every potential direction

of stretching adds complexity to the analysis.

B.3.2 Intermediate results

This section lists several intermediate results that we now quickly summarize. In

Lemma 2 we show that we can in practice ignore the scalar function p( ). In Lemma 3,

we show that the size of the big burst can be written as the root of a certain analytic

function. In Lemma 4, we show that for fixed parameters, the size of the big burst is

independent of where we enter D" 3 and derive some of the properties of the size of

the big burst when parameterized by 3.
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Lemma 2. Recall the equation (B.1), written as

d

If we replace the scalar function [( ) with any constant, this does not affect the

trajectories of the hybrid system whatsoever (although it does affect the speed with

which they are traced).

Proof. Since p( (t)) is a scalar function of time, we can remove it by the time change

T = pL()t, and then we have
d
dr

Clearly this does not affect the trajectories of the hybrid system and thus will not

affect any of the conclusions of Theorem 6. Thus w.l.o.g. we will drop A below. El

Since the flow has the form

d xo,m ~~- XO'm(B8-)=pm, (B.8)
dt x1'm -1im

the solution is

i'm 22)e =m + xi'm() - xOm(O) _2 t - -Xim()) e-2pmt, (B.9)

and of course Xo,m(t) = am - xi,m(t).

Lemma 3. If we define

M M

0"(x, s) = -s + 1 Xl,m (1 - e s 3 ) + 1 Xo,m (1 - e81 - si3e-0)
m=1 m=1 (B.10)

= -s +y (1 -eS 3 ) + yo -e-s - soe-o),

then

s3(x) = inf 0A(x, s).
s>O
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Proof. If O =3Mz, then writing this in coordinates gives

M

ZQ E Z1,m, 51,m = N0(,m - Zi,m), ZO,m = -0Z,m-
m=1

One can compute directly that

M M

ZQ(s) = zi,m(0) (1 - e-s-3) + zo,m(O) (1 - e-" - soe36 )
m=1 m=1

and thus zQ(s) = s iff 00(z, s) = 0. The remainder follows from the definition of

Lemma 4. s,(x) is constant on aD"'3, and its value depends only on /3. We write

s*(#) for its value on this set. s*(0) is an increasing function of /, and

lim s,(/) = 1.
03-+00

Proof. We see from (B.10) that 00'(x, s), and thus s3(x), depend on x only through

the sums yo and yi. By definition yo and yi are constant on &D"'3, and therefore

sG(.) is as well. On ID'#, yo = ( - 1)/0 and y1 = 1/, so on this set we can ignore

x and simplify 0 to

/3-1_
(s) = 1 - s - e-s" - s3e-/3 = 1 - s - ((/ - 1)s + 1)es"/. (B.11)

It follows from this formula that

00(o) = 0, 00(1) -Oe- < 0' ds (0) = 0, ds2 (0) = /(/ - 2).

If / < 2, then 0/A(s) is negative for some interval of s around zero, and thus s*(3) = 0.

If / > 2, then the graph 4'0(s) is tangent to the x-axis at (0, 0) but is concave up,

and thus positive for some interval of s around zero, and therefore s*() > 0. Since

0,3(1) < 0, it is clear that s*(#) < 1. Taking / large, we see that 4"(s) ~ 1 - s, so

that s*(/) ~~ 1 for / large.
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Finally, thinking of 013(s) as a function of both s and 1, we have

-- 0(s) = e-3 (1 - sf3 + 0(3 - 1)s) , 4a0(S) = e-,(# - 1)s2.

Since the second derivative of esfl&0/Os is always negative, this means that

ft'/0s can have at most two roots, and one of them is at s = 0. From the fact

that 0A(s) is concave up at zero, this means that the single positive root of 090"/0s is

strictly less than s,(/). From this it follows that O1)/Oss,=,,(3) > 0. It is clear from

inspection that A/&13#SS(,3) < 0, and from this and the implicit function theorem,

we have &s/&3 > 0. Li

Remark 5. By definition, a big burst occurs on the set D'), where yi ;> -1. Since

the flow has continuous trajectories, it must enter Dc'3 on the boundary oD"'3, and

note that on this set, formula (B.11) is valid.

We can further simplify the formula for Ga'O as follows:

GC"'(x) =a,, - e/3s*1(x) (13S'(X)XO,m + Xi,m), (.2
O'M (X)(B3.12)

Gaj,(x) = e-"() (OsO(X)XO,m + Xi,m).

Note that different subpopulations are coupled only through s*(x).

B.3.3 Infinitely many big bursts

In this section, we show that for 1 > 2, all orbits of '-P',(t) have infinitely many big

bursts.

Lemma 5.

Ga'/: D3'# - D-"

Proof. Let x C D3, and consider the flow i = 1Mz, with z(0) = x. Since

dzQ(s)/ds > 0 and zQ(0) = 0, we have that zQ(s) > 0 for s E [0, s,(x)). This

means that

d
-(zQ(s) - s) < 0,
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or
dr M

1> dzQ(s) = / z zi,m(5).
m=1

From this, it follows that
M1

ZG (X) <
m=1

and Ga'4(x) E D"'

It is apparent that the flow (B.8) has a family of attracting fixed points given by

xo,m = xi,m, and, moreover that xo,m + x1,m is a conserved quantity under this flow.

Therefore, if we assume that xo,m(t) + Xi,m(t) = am for some t, then this is true for

all t. Under this restriction, there is a unique attracting fixed point f''' given by

F ),m (FP ) Im 2

Lemma 6. If 3 > 2, then "'" E D'3 and every initial condition gives rise to

a solution with infinitely many big bursts. Moreover, the time it takes any initial

condition to enter D'"3 is uniformly bounded above.

Proof. Notice that
M M

,m~am=1 m=1

If / > 2, this is greater than 0-1; every initial condition will enter D""3 under the

flow. A stronger result is true: for any fixed /3> 2, and any initial condition x E D"'3

there is a global upper bound on the amount of time the system will flow until it hits

D"'3 . Let pmin = min_1 pm and note that the initial condition xo,m(0) < am for all

m. Then xo,m(t) = ame-Pmi, and we have

M M M

E XOm(t) E ame p'" < E ame-Pm'int = e-Pmint,

m=1 m=1 m=1

so that at some time less than t = p-' log(//( - 1)), we have yo = 1 -0-1 and thus

y= /1. By existence-uniqueness and using the fact that different m modes are
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decoupled in the flow, any other initial condition must reach this threshold at least

as quickly.

Since the only way for the hybrid system to have finitely many big bursts is that

it stay in the flow mode for an infinite time, we are done. L

B.3.4 Growth properties of stopped flow

The main result of this subsection is Theorem 7, from which we obtain an upper

bound on the maximal stretching given by the stopped flow.

Definition 4.

F " := xz E D ': im < for all m .

Lemma 7. For any 0 > 2, there exists n,(/) such that for any p > 0, and any

solution of the hybrid system ("'P'3(t) with initial condition "''',(0) E D"'3, we have

'P'O(t ) E F' for all t > Tn,(,).

Remark 6. In short, this lemma says that any initial condition will remain in F"

after a finite number of big bursts, and this number depends only on /3.

Proof. We will break this proof up into two steps: first, we will show that F0 is

absorbing; second, we will show that every initial condition will enter it after n,(/)

big bursts. Together, this will prove the lemma.

First assume that "'P'/3(t) E F', and let Tn be the time of the next big burst

after t. From (B.9), the (1, m) coordinate cannot cross am/2 under the flow, so

Q~P"3(Tn-) E F'. Let us denote x = "'P',(n-), and, recalling (B.12), we have

GMr(x) = e-"S*(X)(#s"(x)xo,m + Xi,m). (B.13)

This is a linear combination of xo,m E [am/2, am] and xi,m C [0, am/2], so we need

only check the extremes. If we take xo,m = am and x1,m = 0, then we have G"3(x) =

ze-zam for some z > 0, and supz>o ze-z = 1/e. Considering the other extreme

gives G;(x) = (z + 1)e-zam/2, and supz>O(z + 1)e-z = 1. In either case, we have

GId(x) < am/2 and we see that F' is absorbing.
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Now assume that "'P' 3 (0) V F'. Since # > 2, it follows from Lemma 6 that

a'P'I(t) has infinitely many big bursts. Let x = ,P',/3 (Ti-), noting by definition that

x E &D"'. Using (B.13) and Xl,m > am/2, XO,m <Xl,m,

GdC(x) < e--8(x()(/3s1(x) + 1)xi,m-

By Lemma 4 and again recalling that (z + 1)e-z < 1 for all z > 0, this means that

there is an h(/3) E (0, 1) with

['clp8(Ti) < h(O) -xi,.

If h(/)xi,m < am/2, then we are done. If not, notice that the flow generated

by L will make the (1, m) coordinate decrease, so it is clear that if "P' (t) Fa

for all t E [0, T,), then by induction "" 3 (T) < (h(I))nam. Choose n*(#) so that

(h(o))n*(#) < 1/2, and we have that " 3 '(T (,3)) < am/2 and thus 'aP'/(rf,()) E

F'".

Theorem 7. Choose any two initial conditions x(0), '(0) G F" n Dc"' , and define

TT as in (B.4). Then

erfx(0) - eL(0)| < 1 + 2 X(O) - i(o)II

i.e. for any two initial conditions, the distance at the time of the first big burst has

grown by no more than a factor of 1 + v7A/2.

Proof. Before we start, recall that the map crCx is nonlinear in x, because T itself

depends nonlinearly on x. Let 1 M be the all-ones column vector in RM. Let x(0) E

DC"' and consider a perturbation E = {Im} with Zm Em = 0, i.e. c E 11, and define

Y(0) by

im,i(O) = xm,i(0) + 6m, Ym,O(O) = xmO(0) - 6m.

Define T, i as the burst times associated with these initial conditions as in (B.4), and
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by definition, we have

M1

m=1

M
X( ,m -1,m -

m-1

Writing F = T+ 6 and using (B.9), we have

Xi,m(O)) e22Pm) _ X1,M(O)) e2Pm(T+ .

Since i - x = 0(E) and e-2, 6 = (1 + 0(6)), we can see from this expression that the

leading order terms in both e and 6 are of the same order. Thus, Taylor expanding

to first order in E and 6 and canceling gives a solution for 6:

6=- E Zee- 2pte

at
2 E pj ( - x1,j (0) ) e--2p 7'

+ 0(f2). (B.14)

We then have

i1,m(T + 6) - X1,m(r) Cme 2 pm -r

= me-2p., -

2pm - Xi,m(O)) 6e- 2pm-r

Cm Cie-2peT + Q(e2)

PMm - xi,m(O)) e-2pmr

Cm =

- xie(O)) e-2per

Since x(O) E F', cm > 0. It is then clear from the definition that cm < 1. Writing

this in matrix form in terms of c gives

3i,m(T + 6) - Xi,m(T)

3 2,m(r + 6) - X2 ,m(T)

X2,M (T + 6) - X2,M (T)

-MM

E1

62

: -2- O ( E 2 ) ,

E N

(B.16)
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where the matrix MM is defined as,

e- 2p17 - cl e- 2p1r -cie- 2P2T ... _cle--2pMr

MM = -c 2 e-2p'r e- 2P2T C2 e 2 p2r ' -C 2 e 2pMr , (B.17)

-cMe-2p1T -CNe- 2 P2- ... e-2pM - CNe 2pMr

or, more compactly,

(MM)ij = -cie-2pr + j-2pi

Thus, the map ercx has Jacobian Mm. Since MM has zero column sums, it is

apparent that 1TMM = 0 and thus 0 E Spec(MM). Since all of the nondiagonal

entries of MM are bounded above by one, the standard Gershgorin estimate implies

that all of the eigenvalues of VM MM lie in a disk of radius O(M) around the

origin, but this is not good enough to establish our result.

We can work out a more delicate bound: by the definition of Dc, we need only

consider zero sum perturbations, and so in fact we are concerned with MM restricted

to 1'. From this and the fundamental theorem of calculus, it follows that

erx(O) - e<() MM l11 2 |x(0) -

where 11-11 2 is the spectral norm of a matrix (q.v. Definition 5 below). Using the bound

in Lemma 8 proves the theorem. El

Definition 5. We define the spectral norm of a square matrix A by

11A112 = sup 2Ax12
X+'0 11 X 112

where ||-1|2 is the Euclidean (L2) norm of a vector.

The spectral norm of a matrix is equal to its largest singular value, and if the

matrix is symmetric, this is the same as the largest eigenvalue. In particular, it
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follows from the definition that

jAx||2 <; ||A|| 2 lIX112 -

Theorem 8. Let 1-L C RM denote the subspace of zero-sum vectors. Then MM: 1'M--

10 since it is a zero column sum matrix, and thus the restriction is well-defined. Then

MMil- <1 + - (B.18)
M2 2

Proof. Let us denote IM to be the M-by-M identity matrix and 1 M the all-one column

vector in RM. We will also define the matrix DM and vector dM by

dM = [e- 2ps, e-2P2s, ... , e-2PNS T

and DM is the matrix with dM on the diagonal, i.e. (DM)ij = ije-2

Any vector v E 1- is in the null space of the matrix liT, and thus (IM -

M-111T)v = v, and MM = MM(IM - M~111T) on 1-, so it suffices for our result to

bound the norm of MM(IM - Ml111T).

We can factorize

MM = (I - c1T)DM, (B.19)

where the components of c are given in B.15. To see this, we compute

((I - clT)DM)ij = (Dm)ij- (clTDM)ij = (Dm)ij- ci ' I 6k,je-2pjr

k

= 6ije 2PiT - cie 2PiT

Let us first write

MM = (I - clT)DM = (DM - DMclT + DMclT - ClTDM)

= DM(I - CT) + (DMclT - cdT
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where we use the relation 1TDM = dT, and then

MM(I-M-111T)= D (IC1T)(I- 1T)+(Dc1Tl-cdiT)(I-M-111T). (B.20)

We break this into two parts. Using the fact that iTi = M, we have

cT(IM - M-111T) = IMClT - M-IcTiT = ciT - CiT = 0,

and thus the first term can be simplified to

DM(I - ClT)(I - M-111T) (B.21)

= DM(I - MlllT) - DM(ClT)(IM - M-111T) = DM(I - M-111T).

Since the matrix M-111T is an orthogonal projection matrix with norm 1 and

rank 1, it follows that IM - M- 111T is also a projection matrix with norm 1 and rank

M - 1. By Cauchy-Schwarz, the norm can be bounded by

|DM(I - M-111T) 2 < ||DM12 IM - M-11T1 2 = |JDM1j2 < 1. (B.22)

(The last inequality follows from the fact that Dm is diagonal and all entries are less

than one in magnitude.)

For the second term in Equation (B.20) and noting that dTl = Zm din, we obtain

(DMc1T - cdT)(I - Ml11T)

DMciT - cdT - DmciT + dCT = C 1 - d .
M (M

This outer product is of rank 1, and thus it has exactly one non-zero singular value;

this singular value is the product of the L2 norms of the two vectors, and therefore

(Dmc1T - cdT)(IM - M-11T)1 2 = lIc11 2 d - M 2 2 *
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Using Equation (B.20), and the triangle inequality gives the result. El

B.3.5 Contraction of the big burst map

In this section, we demonstrate that Go', is a contraction for / large enough, and,

moreover, that one can make the contraction modulus as small as desired by choosing

/ sufficiently large.

Theorem 9. For any M > 1 and 6 > 0, there is a # 1(M, 6) such that for all

/3> /i(M, 6) and x, i E OD' ,

Ga'O(x ) - G"' 3(Y)|| < 6 |x - Y|.

In particular, by choosing 3 sufficiently large, we can make this map have as small a

modulus of contraction as required.

Proof. Let us define the vector E by

EM = im - xm.

Since x, Y are both in OD"'3, r L 1. It follows from (B.10) that VE0$3(s, x) = 0.

Recall from (B.12) that

Gxd(x) = e- "(x)(#s,3(x)xo,m - Xi,m),

and thus

VEGl"3(x) = e--3s*(X) (-3VEs(x)) (/s,3(x)xO,m - xi,m)

+ e~ls (x) (/VEXO,m - VEXl,m)

= e-38(x)(#s*(x)(-1) - 1),

so

VEGa'4(X) = -(e-f(x) (/3s 3(x)+ 1))1.
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Note that Lemma 4 implies that fsl(x) -+ oc as # -+ oc for any x. If we define the

function g(z) = e-z(1 + z), then it is easy to see that

0 < g(z) < 1 for z E (0, oo), lim g(z).
z-+OO

From this and the fundamental theorem of calculus, the result follows. El

B.3.6 Proof of Main Theorem

Finally, to prove the theorem, we will show that, under sufficient conditions on /, the

composition of the map and the flow is eventually a strict contraction for any initial

condition.

Definition 6. We define

wca P'O: D"3 D"'O

x -+G"'S3e-x),

where T is the first hitting time defined in (B.4).

Proof of Theorem 6. If we consider any solution of the hybrid system '2 'aP/(t)

that has infinitely many big bursts, then it is clear from chasing definitions that

~CfP(Tn) = (WC "3),v ~aP"3 (0).

.''P' 3 is the composition of two maps, one coming from a stopped flow and the

other coming from the map G. It follows from Theorem 7 that the modulus of

contraction of the stopped flow is no more than 1 + VMA/2 on the set F" whenever

/ > 2. It follows from Theorem 9 that we can make the modulus of the second flow

less than 6 by choosing #3 > 01 (M, 6). Let us define

OM 1 M, 1 I
I + VT / 2)
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and then by composition it follows that W aOPJ is a strict contraction on F'. From

Lemma 7, it follows that D"'3 is mapped into Fc in a finite number of iterations,

so that WIP-3 is eventually strictly contracting on D'"3 , and therefore W-'P'/ has a

globally attracting fixed point, which means that the hybrid system has a globally

attracting limit cycle.

Finally, we want to understand the asymptotics as M -+ oo. Choose any 0 <

m1 72 < 1. By Lemma 4, os,(O) > 7yo for / sufficiently large, and it is clear that

e-Z(z + 1) < e-t2z for z sufficiently large. From these it follows that for 3 sufficiently

large,

e-s* 3 (#3s*(#) + 1) < e1Y23.

From this we have that OM < ln(1 + vM/2)/17YY 2 and the result follows.

We have shown that OM is finite and determined its asymptotic scaling as M -+ 00.

It was shown in [63] that 31 = 2, and we can now show that this is the case as well

for M = 2, i.e.

Proposition 1. The computations in the proof of Theorem 6 imply that /32 is, at

most, the largest solution of the equation e-1"*(G)(/s*(/) + 1) < 2/3. Numerical

approximation of this root gives /3 e 2.48. However, in fact, 02 = 2.

Proof. In R2, 1' is a one-dimensional space spanned by (1, -1)T, and thus we need

only compute the eigenvalue associated with this vector. If we define v = M2 - (1, -1)T

and show IvI - v 21 < 2, then we have established the result. When M = 2, we can

write (B.17) as

M2 e 2pl - cie 2 plT c 2 P2T , (B.23)
_c2 e- 2p1T e- 2P2r - c2 e 2P2r

and thus
-2p _ c- 2pT + ce

2p2T

-c 2 e-2p1r _ e- 2p2T + c2 e- 2P2T
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Thus

V1 - v2 = e 2 1-(1 - c1 + c2 ) + e-2P2T (1 + c1 - c2 ).

Using c1 + c2 =1, this simplifies to

V1 - V2= 2c2e 2p1T + 2c1e-2P2r.

Since it is clear that v1 - v 2 > 0, we need to show that v 1 - v 2 < 2, or

2cie 2pT + 2c 2e2p2T < 2e(p1+p2)-r.

Writing A = p1(al/2 - x1,1(0)), B = p2(a2/2 - x1, 2(0)), this becomes

A+B < (B.24)
Ae2P27 + Be2 plr <

but this must be satisfied, since e2plr, e 2 P2r > 1.

Remark 7. We conjecture from numerical evidence (cf. Figure B-5) that, in fact,

f3M = 2 for all M.

B.4 Numerical simulations

In this section, we present some numerical simulations; we verify the existence of the

unique attractor whose existence is proven above and give evidence for the conjecture

that fM = 2 for all M.

We first numerically solve the hybrid ODE-mapping system, with M = 3 and

random ai, pi. The ODE portion of the hybrid system can be solved explicitly, and

we use MATLAB's f solve to determine the hitting times Ti. We plot the trace of the

system for / = 2.1, # = 2.5 for a single initial condition in Figure B-3. We observe

that each neuron population is attracted to a periodic orbit after several bursts.

To further demonstrate convergence, we also plot trajectories for the same pa-

rameters for various initial conditions in Figure B-4. We see that after three to four
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Figure B-3: Plots of the hybrid ODE-mapping system numerical simulation results
with 3 = 2.1 (left) and / = 2.5 (right). Both of them are with three neuron popu-
lations. The neuron portions at energy level 1 over simulation time are shown in the
plots.

bursts, the trajectories converge to the same periodic orbit.
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Figure B-4: Plots of neuron proportions after each burst iteration with / = 2.1 (left)
and /3 = 2.5 (right). Both subfigures are for M = 3. For all initial conditions, the
population seems to converge after about four bursts.

We also present some numerics verifying the conjecture in Remark 7, i.e. the

numerical evidence in B-5 suggests that OM = 2 in general, or, at least, it is much

less than the upper bound given in the main theorem. To check this, we choose

10, 000 initial conditions uniformly random in the simplex, and verified that all initial

conditions converged to the attracting limit cycle, for all / > 2. We also see that the
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eigenvalues of the map 7'",3 have a complicated dependence on /3: there seem to be

regions where this map has negative eigenvalues and some where it does not, which

can be detected by whether we converge monotonically to the limit cycle or not. But

it seems to always converge for any 3 > 2.

M=5 M =10
1 1

0.9 0.9

75 0.8 - 0.8-
8) 0

c 0.7 - 0.7
C C
.2 0.6 . 0.6
F i --- monotone convergence CO --- monotone convergence

3 0.5 s non-monotone converget , 0.5 non-monotone converge
but non-convergence E on r.

B. 0.4 CC)i 0.4

0.3 0.3

0 0.2- 0 0.2

C-0.1/a 
0.1

0 P

Figure B-5: Proportions of initial conditions that converge monotonically, converge
non-monotonically, or do not converge, for M = 5 and M = 10 subpopulations. The
parameters c and p are chosen at random and fixed. For each 3, we choose 10, 000
initial conditions uniformly in the simplex, and determine which proportion falls into
each of three categories: monotone convergent, non-monotone convergent and non-
convergent. We vary /3 from 2.005 to 2.5. We see that all initial conditions converge,
but the montonicity of the convergence depends onst t .

B.5 Conclusion

We generalized the mean-field model derived in of 162, 631 to the case of multiple

subpopulations with different intrinsic firing rates. We analyzed the limiting mean

field in the case where each neuron has at most two inactive states, and proved that for

sufficiently large coupling parameters, the mean-field limit has a globally attracting

limit cycle.

We point out a few similar results in the literature. A similar three-state model

was considered in 172, 173, 154] where the number of neurons in the analogous fir-

ing state affected the firing rates of all of the neurons in the system. The mean-field

model derived there was a delay system instead of a hybrid system, but that model

also exhibited the coexistence of a attracting periodic orbit and an attracting limit

169



cycle, similar to the case considered here. In a different direction, the complete char-

acterization of the dynamics of a network of interacting theta neurons was studied

in [131]. Again, this model exhibits the coexistence of macroscopic limit cycles and

fixed points, and the bifurcation structure discovered there was more complex, but

similar to the only found here (cf. Figure (8b) of 11311 and Figure B-2 of the cur-

rent paper). The model considered here is at first glance quite different from these

other two models, in that it explicitly incorporates cascades directly in the dynamics;

interestingly, it shows many of the same macroscopic phenomena.
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