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Abstract

In this thesis, we will study three topics related to Springer theory (specifically, the
geometry of the exotic nilpotent cone, and two-block Springer fibers), and stability
conditions for category O.

In the first chapter, we will be studying the geometry of the exotic nilpotent cone
(which is a variant of the nilpotent cone in type C introduced by Kato). In [13],
Bezrukavnikov has established a bijection between A', the dominant weights for an
arbitrary simple algebraic group H, and O, the set of pairs consisting of a nilpotent
orbit and a finite-dimensional irreducible representation of the isotropy group of the
orbit (as originally conjectured by Lusztig and Vogan). Here we prove an analogous
statement for the exotic nilpotent cone.

In the second chapter (which is based on joint work with Rina Anno), we study the
exotic t-structure for a two-block Springer fibre (i.e. for a nilpotent matrix of type
(m + n,n) in type A). The exotic t-structure has been defined by Bezrukavnikov
and Mirkovic for Springer theoretic varieties in order to study representations of
Lie algebras in positive characteristic. Using techniques developed by Cautis and
Kamnitzer, we show that the irreducible objects in the heart of the exotic t-structure
are indexed by crossingless (m, m + 2n) matchings. We also show that the resulting
Ext algebras resemble Khovanov’s arc algebras (but placed on an annulus).

In the third chapter, we study stability conditions on certain sub-quotients of category
O. Recently, Anno, Bezrukavnikov and Mirkovic have introduced the notion of a
“real variation of stability conditions” (which are related to Bridgeland’s stability
conditions), and construct an example using categories of coherent sheaves on Springer
fibers. Here we construct another example, by studying certain sub-quotients of
category O with a fixed Gelfand-Kirillov dimension. We use the braid group action
on the derived category of category O, and certain leading coefficient polynomials
coming from translation functors.



Thesis Supervisor: Roman Bezrukavnikov
Title: Professor



Acknowledgments

First and foremost, I would like to thank my advisor, Roman Bezrukavnikov, without
whose guidance this work would not have been possible. His patient support and
enthusiasm has made me feel at home in the mysterious, and often daunting, world
of representation theory; and his ideas have been a constant source of inspiration for

me.

Secondly, I would like to thank several other mathematicians for their help over the
years. To begin with, I am grateful to the other two members of my committee,
Pavel Etingof and David Vogan, not only for their guidance, but also for organizing
seminars which contributed to the vibrant atmosphere at MIT. I would also like to
express gratitude for many indispensable conversations with Catharina Stroppel, Ivan
Mirkovic, Ben Webster, Peter Tingley, Joel Kamnitzer, Mikhail Khovanov, Ben Elias,
Ivan Losev, and Geordie Williamson. A special thanks to Anthony Henderson and
Alex Molev from Sydney, who first introduced me to representation theory when I

was an undergraduate student.

I’ve learnt much of the mathematics that I know from discussions with my colleagues
in the maths department. I would like to thank Tsao-Hsien Chen, Galyna Dobrovol-
ska, Chris Dodd, Giorgia Fortuna, Gus Lonergan, Eric Marberg, Dinakar Muthiah,
Sam Raskin, Laura Rider, Danielle Rosso, Bhairav Singh, Yi Sun, Roman Travkin,
Wuttisak Trongsiriwat, Mitka Vaintrob, Michael Viscardi, Qi You and Gufang Zhao.
I am especially indebted to my co-authors Peter Tingley and Rina Anno. I’'m also
grateful to the MIT Mathematics staff (especially, Barbara Peskin, Michele Gallerelli,

and Galina Lastovkina) for creating a wonderful working atmosphere.

In addition to those mentioned above, I'd like to thank all my friends that have been
there with me through thick and thin; in particular - Michael Andrews, Cesar Cuenca,
Jethro van Ekeren, Simon Fang, Derek Feng, Hang Gao, Alisa Knizel, Martina Lanini,
Alex Moll, Jing Ni, Diwakar Pattabiraman, Jose Rodriguez, Ananth Shankar, Jose
Simental, Padma Srinivasan, Xin Sun and Siddharth Venkatesh. I’ve really enjoyed

my time as a student here, and it wouldn’t have been the same without all of you.

5



Last but not least, I would like to thank my parents and my relatives for their endless
support and encouragement; my debt to them is something that I can’t adequately

express in words.



Contents

1 Equivariant coherent sheaves on the nilpotent cone 11
1.1 Introduction . . . . . .. . .. . ... 11
1.1.1 Motivation . . . . .. ... ... 12

1.1.2 Summary ofresults . . . . . ... ... ... ..., ...... 13

1.2 Geometry of the exotic nilpotent cone . . . . . . ... ... ... ... 14
1.21 Recollections . . ... .. ... ... ... ... ... ..... 14

1.3

1.4

1.5

1.2.2 Resolutions of special orbit closures and some subvarieties of 9 15

1.2.3 Vanishing higher cohomology of dominant line bundles on 9 . 17

1.2.4 Global sections of dominant line bundleson 9 . . . . . . . .. 19
A quasi-exceptional set generating D*(Coh®(9)) . .. ... .. ... 21
1.3.1 Recollections . ... . ... ... .. ... .. .. ..., 21
1.3.2 MainResults . ... ... ... ... ... .. .. ... ..., 23
The perverse coherent t-structure . . . . . .. ... ... ....... 27
1.41 Recollections . ... .. ... ... ... ... ... .. ..., 27

1.4.2 Comparing the quasi-exceptional and perverse coherent t-structures

on DP(Coh®(M)) . . . . .. 28
Further directions . . . . . . . . ... ... .. .. 29
1.5.1 An explicit combinatorial bijection . . ... ... ... .. .. 29
1.5.2 Canonical bases in equivariant K-theory . . .. ... ... .. 30

7



2 Exotic ¢-structures for two-block Springer fibres 33

21

2.2

2.3

2.4

2.5

2.6

Introduction . . . . . ... oL 33
2.1.1 Motivation: . . .. ... 34
2.1.2 Summary . . ... .. e e e 34
Two-block Springer fibres . . . . . . . . ... ... ... ... ... 37
2.2.1 'Transverse slices for two-block nilpotents . . . . . . .. .. .. 37
Tangles . . . . . .. 42
231 Affinetangles . . . . . ... ... . 42
232 Framedtangles . ... .. ... ... .. ... ..., 45
Functors associated to affine tangles . . . . . . ... .. ... ..... 47

2.4.1 Cautis and Kamnitzer’s representation of the oriented tangle

calculus . . . . . . ... 47

2.4.2  Constructing functors ¥(a) : D, — D, indexed by linear tan-
glesscupsandcaps . . ... ... ... ... 49

2.4.3 Constructing functors ¥(«a) : D, — D, indexed by linear tan-

gles: crossings and the framing . . .. ... ... ... ..., 50
2.4.4 Checking the tangle relations . . . . ... ... ... ..... 53
2.4.5 Functors ¥(a) : D, — D, indexed by affine tangles . ... .. 56
The exotic t-structureon D,, . . . . . . . . . . ... ... 28
251 e 58

2.5.2 Irreducible objects in the heart of the exotic t-structure on D,, 61

253 TheExtalgebra. ... .. ... ... ... .. ......... 62
Further directions . . . . . . . .. ... .o oL 65
2.6.1 Decategorification . . . .. . ... ... Lo L. 65
2.6.2 Applications to modular representation theory . . . . . . . .. 66
2.6.3 Categorifying invariants for affine tangles . . . . . . . . .. .. 66

8



3 Stability conditions for subquotients of category O 69

3.1 Introduction . . . . . . .. .. ... 69
3.1.1 Real variations of stability conditions . . . . . . .. .. .. .. 70
3.1.2 Summary . . ... .. e e e e e e e e e 71

3.2 Subquotients of category O. . . . . . .. ... L. 71
3.2.1 Gelfand-Kirillov dimension and leading coefficients. . . . . . . 71
3.2.2 Braid group action on derived category of Op. . . . . . .. .. 76
3.2.3 Thecentral chargemap . . ... ... .. ... ........ 77
324 Mainresult . . .. .. .. L Lo e 77
3.2.5 Describing leading coefficients in terms of the character . . . . 78

3.3 Filtration of the heart corresponding to adjacent alcoves . . .. . .. 82



10



Chapter 1

Equivariant coherent sheaves on the
nilpotent cone

1.1 Introduction

Let H be a simple algebraic group; denote by b its Lie algebra and N C b its nilpotent
cone. Let A™ denote the set of dominant weights for H, and O denote the set of
pairs (O, L), where O is a H-orbit on N, and L is a finite-dimensional irreducible
representation of the isotropy group G” of the orbit O, where z € O. Using geometric
methods, in [13], Bezrukavnikov shows that there is a canonical bijection between A*
and O (a result that was previously conjectured by Lusztig and Vogan).

Now let G = Sp2,(C), and 9 be Kato’s exotic nilpotent cone, defined as follows:
N := C™ x {z € End(C™) | z nilpotent, (zv,v) =0V v € C*"}

The main purpose is to establish an exotic analogue of Bezrukavnikov’s bijection, i.e.
a bijection between A, the dominant weights for G, and O, the set of pairs (O, L),
where O is a G-orbit on 1, and L is a finite-dimensional irreducible representation
of the isotropy group G of the orbit O, where (v,z) € O.

The exotic nilpotent cone was originally introduced by Kato in [36] to study multi-
parameter affine Hecke algebras, via the equivariant K-theory of the exotic Steinberg
variety (following techiques used by Kazhdan, Lusztig and Ginzburg in the case of
one-parameter affine Hecke algebras). The G-orbits on 9 are proven to be in bijection
with Q,,, the set of bi-partitions of n (and thus also with irreducible representations
of the type C Weyl group). In [37], Kato explicitly realizes this bijection via an exotic
Springer correspondence; this correspondence is somewhat cleaner than the type C
Springer correspondence since there are no non-trivial local systems on G-orbits in

.

In [3], Achar and Henderson make precise conjectures describing the intersection
cohomology of orbit closures in the exotic nilpotent cone. These have now been
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proven independently by Shoji-Sorlin (see Theorem 5.7 in [50]); and by Kato (see
Theorem A in [38], Theorem A.1.8 in [39] and Remark 5.8 in [50]). The work of
Achar, Henderson and Sommers in [5] studies special pieces for M, which turn out to
have the same number of I, points as Lusztig’s special pieces for the ordinary nilpotent
cone. These results all demonstrate a strong connection between the exotic nilpotent
cone and the ordinary nilpotent cone of type C; the present work draws another
parallel between the geometry of the exotic nilpotent cone 91 and the geometry of the
ordinary nilpotent cone N of type C.

1.1.1 Motivation

One motivation for the Lusztig-Vogan conjecture (in the case of the ordinary nilpotent
cone) comes from the theory of two-sided cells in affine Weyl groups. So let W C
W,z be the finite and affine Weyl groups, respectively. Let us make the following
definitions:

Wi = {w e Wy | l{ww') > l(w) V' € W}
'w=whH!

Above W7 is the set of minimal length right coset representatives of W in W,y;.
Note that W7 can be naturally identified with A (the set of all integral weights); it
can be shown that the intersection W/ nf W =f W/ corresponds to AT, the subset
of dominant weights. For each dominant weight A € A™, consider the two-sided ¢,
Kazhdan-Lusztig cell which the corresponding element of YW/ lies in.

In [43], Lusztig associates a nilpotent orbit e. to each two-sided cell ¢ in Wess. Thus
for each dominant weight A, using Lusztig’s construction applied to the cell ¢,, we
obtain a nilpotent orbit O,. The Lusztig-Vogan conjecture now asserts that the fibers
of this map A — (@, can be naturally identified with irreducible representations of
the stabilizer of the orbit O,.

In fact, we can make the following stronger conjecture. Let X. denote the canonical
basis in the Grothendieck group of the Springer fiber K°(B,) (where e = ¢.), consid-
ered as a set. Then X, carries an action of the centralizer Z(e.). Conjecturally, the
elements in the two-sided cell ¢ are in bijection with pairs consisting of an orbit of
Z(e.) on X, x X, and an irreducible representation of the stabilizer Z(e,).

It can be shown the set X, has a distinguished element, z., fixed under the action
of Z(e.). Under this bijection, one expects that the elements of ¢ Y W/ should be
matched up with pairs where the orbit of Z(e.) on X, x X, is (w., x.); thus, the
Lusztig-Vogan conjecture would follow as a consequence.

Another motivation for the conjecture comes from the theory of Harish-Chandra
modules; see the Introduction to Achar’s thesis, [1] for a detailed exposition.

Bezrukavnikov’s proof of the Lusztig-Vogan conjecture in [13] involves studying a
certain t-structure on the category D?(Coh®(N)). Letting St be the Steinberg va-
riety, it is well-known that the Grothendieck group of C = D?(Coh®*"(St)) can be
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identified with the affine Hecke algebra, Hl,s;. There are two natural projections
p1, D2 : St — N; thus we get two natural maps

Rp1., Rpa. - DY(Coh®*C"(St)) — D*(Coh®*C" (N))

It can be shown that, on the level of Grothendieck groups, the maps Rp;., Rps. are
identified with the natural maps H,zy — Happ/EH,yss, and Hopp — Happ/Hagsé,

where
£= Z (—1)l(w)Tw

weW

We have a natural projection map 7 : D*(CohS(N)) — D*(CohS(N)), under which
the latter category is identified with Hyp/(EH,ss + Hapr€). In Corollary 1 of [12],
it is proven that the irreducible objects in the heart of the t-structure constructed
in [13] categorify the images of certain canonical basis elements in H,s;. For a more
precise statement, see Proposition 1.5.2.

1.1.2 Summary of results

Below we describe the main results of this chapter in more detail.

Section 2: After recalling some of the basic properties of the exotic nilpotent cone,
and some results of Achar, Henderson and Sommers on resolutions of special or-
bit closures, here we study the cohomology of dominant line bundles on the exotic
Springer resolution 9. We closely follow the methods developed by Broer in [21], [25]
that prove analogous results in the case of the ordinary nilpotent cone N. Defining
Ox(A) == p*Og/p()\) where p : ! — G/B is the projection, we first prove that
H{(N,0 #(A)) = 0 using a theorem of Grauert-Riemenschneider. By using the ad-
ditivity of the Euler characteristic along with Borel-Weil-Bott, we then compute the
structure of H(N, O())) as a G-module.

Section 3: First we recall the theory of quasi-exceptional sets (following Section 2
of [13]). Given a triangulated category C, two ordered set of objects V = {V;|i €
I}, A = {A;]i € I} are said to constitute a dualizable quasi-exceptional set if they
satisfy certain conditions. From a quasi-exceptional set generating a category C,
one obtains a t-structure on C whose heart is a quasi-hereditary category with simple
objects also indexed by I. Letting C = D*(Coh®(N)), define V := Rm(’)ﬁ()\)[g%m]
where 7 : 91 — 9 is the resolution of singularities. Then the main result is that
V = {VilX € A*} and A = {V,,a|A € AT} constitute a quasi-exceptional set
generating D®(Coh®(M)). The results of Section 2 are needed to prove this claim.

Section 4: After recalling some of the theory of perverse coherent sheaves (developed
by Deligne and Bezrukavnikov), in this section we compare the t-structure constructed
on D®(Coh®(N)) with the perverse coherent t-structure corresponding to the middle
perversity. We first prove that V) is a perverse coherent sheaf for all A € A (this
essentially follows from the fact that = : N — MNis semi-small). We then deduce that
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the quasi-exceptional t-structure coincides with the perverse coherent t-structure.
Since the simple perverse coherent sheaves are indexed by O, the bijection between
simple objects and co-standard objects in the heart of the t-structure on D®(Coh%(M))
gives the required bijection © : O «» A™T.

Section 5: We comment on some open questions relating to this construction. First,
one may ask for an explicit combinatorial description of the construction ©. One may
also try to extend some results regarding canonical bases in equivariant K-theory,
proved by Bezrukavnikov in [12], to the exotic setting.

We remark that there are a few differences between the proof of the bijection O <+ A*
for N, and the bijection @ <+ A* for 9. First, while the canonical line bundle on
the Springer resolution A is trivial, the canonical line bundle on the exotic Springer
resolution N is the anti-dominant line bundle Og(—¢; —--- —¢€,). As a result, for the
proofs in Section 3, we use the twisted Weyl group action on A, w- X = w(A+0) — 6
with 0 = %(61 + ---+ €,) instead of the ordinary action.

Second, in the case of the ordinary nilpotent cone N, the proof that the image of
the functor Rm, : D°(Coh*(N)) — Db Coh¥(N)) generates D®(Coht(N)) (see
Lemma 7 in [13]) uses the Jacobson-Morozov resolution of orbit closures in A. In
the case of 91, the resolutions of an arbitrary orbit closure O, , are (to the best of
our knowledge) not known. However, resolutions of special orbit closures have been
recently developed in [5], and these are sufficient to prove the corresponding result in
the case of the exotic nilpotent cone. However, there may be an easier proof of this
result (Proposition 1.3.15) without appealing to the results of [5].

1.2 Geometry of the exotic nilpotent cone

1.2.1 Recollections

Here we recall the definition and basic properties of Kato’s exotic nilpotent cone,
following [36] and Section 6 of [3].

Definition 1.2.1. Let V be a 2n-dimensional C-vector space with a symplectic form
(-,-), G = Sp(V) be the associated symplectic group, and g = sp(V) be the associated
symplectic Lie algebra. Define s C gl(V) as below (note s & sp(V) = gl(V)):

s = {z € End(V)|(zv,v) =0V v eV}

If N denotes the set of nilpotent endomorphims in gl(V), we define the exotic nilpo-
tent cone to be 1 =V x (s NN).

Proposition 1.2.2. The orbits of G on M are in bijection with the poset Q, of
bipartitions of n. Under this correspondence, given (u,v) € Q,, the orbit Q,, , consists
of (v,z) € M such that the Jordan type of T acting on the subspace E*v C V is pU p,
and the Jordan type of x acting on the quotient V/E®v is vUv. Here E® denotes the
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centralizer of  in End(V), and for a partition X = (A1, Aa,---), AU X denotes the
partition (A1, A1, A2, Ao, -+ ). The closure ordering for G-orbits on N corresponds to
the natural ordering on Q,, (i.e. (u,v) > (¢, V') if 3o cic; (i +15) 2 D01 cics (i + V)
and iy + Zlgigj(ﬂi +v) > Wiy1 + Zlgigj(/i; + 1))

Proof. We refer the reader to Theorem 6.1 of [3] and [36] for the statement regarding
orbits; see also Corollary 2.9 in [3] and Theorem 1 in [53]. For the statement regarding
orbit closures, see Theorem 6.3 in [3]. a

After fixing a Cartan subgroup T' C G and a Borel subgroup B C G, let (Vds)™ C 0N
denote the sum of the strictly positive weight spaces in the G-module V @ s; note
that it is a B-module.

Definition 1.2.3. Let 91 =G xp(V@s)*, and let 7 : 9 — M be the map given by
7(g, (v,s)) = (gv,gsg™?). Then 7 is a resolution of singularities; accordingly we call
M the exotic Springer resolution.

1.2.2 Resolutions of special orbit closures and some subvari-
eties of N

In this section, for each orbit O, , (with (u,v) € Q,), using resolutions of “special”

~

orbit closures constructed in [5], we will construct a subvariety 6;, C 9 with a
map 7y, : 6;, — O, whose fibres are acyclic. The need for this construction is
to prove Lemma 1.3.14 (an exotic analogue of Lemma 7 from [13]). We start by
recalling Achar-Henderson-Sommer’s construction of resolutions for “special" orbit
closures from [5]; for more details see Sections 2 and 5 of [5].

Remark 1.2.4. We will use C-distinguished partitions in the following; alternatively
one may use B-distinguished partitions (see [5]) instead.

Proposition-Definition 1. Let Q¥ C Q, denote the subposet consisting of bi-
partitions (u,v) satisfying p; > v; — 1, v; > pipr — 1. If Pa, is the poset of par-
titions of 2n with the natural order, let PS, C P,, denote the subposet consisting
of partitions where each odd part occurs with even multiplicity. Define the map
®C : 9, — PS by sending the bi-partition (u,v) to the partition obtained from
the composition (2p1,2v1,2p0,21s,--+) by replacing successive terms (2s,2t) with
(s +1t,5+t) if s <t Define also the map O : PS, — QF: given A € PE,, ob-
tain the composition \' by first halving any even parts, and replacing any string of
odd parts (2k +1,--- 2k + 1) by (k,k+1,--- ,k,k + 1); then let ®°(\) = (p,v)

!/ /

where p = (A, A, -+ ), v = (A, Ny, ---). Then the maps ®C and @Clgg give an
isomorphism of posets Q€ ~ PS . For (u,v) € Qn, denote (u,v)¢ = ®¢(®C(u,v)).

Definition 1.2.5. Let (p,v) € Qu, A = ®°(u,v). A Mfiltration (which we also
refer to as a (u, v)-filtration) of V is a sequence of subspaces (V>,)qcz, satisfying the
following:
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L4 Vza g V2a~1
hd Vél-a = VZG

o dimVy, =3, max([2i=¢7,0) := A, for a > 1

For (v, z) € M, say that a Mfiltration is “C-adapted” to (v, z) if v € V»q and z(V5,) C
V5442 for all a.

Proposition 1.2.6. If (v,z) € Q,,, then there is a unique (u, v)-filtration (Vs4)acz
that is C-adapted to (v, ).

Proof. See Theorem 5.5 of [5]. d

Definition 1.2.7. Fix a specific (v, z) € 0,,, and the corresponding (u, v)-filtration
(V>a)acz- Let P C G be the parabolic subgroup stabilizing this isotropic flag. Define:

550 = {z € 5|z(V5e) C Voura}

With this choice, it follows that V>; @ s>, is a P-submodule of V @ s; let 6(:/)/0 =
G Xp (V21 &) 522).

Proposition 1.2.8. The image of the natural map G xp (V51 ®552) = M is O, e,

—

and this map my, e @ Qe — O, ,)c is a resolution of singularities. Further,
T(uw)C 18 an isomorphism restricted to W&IV)C(@“’,,).

Proof. See Theorem 5.7 in [5]. a

Note that the definition above of Oy, ,)c, and the definition in Section 2.1 of 9 are not
entirely canonical (they depend on choices of (v,z), and a Cartan T, respectively).
This is slightly inconvenient as we now want to relate the two varieties; the easiest
way to fix the problem is via the equivalent, canonical descriptions below.

Lemma 1.2.9. Let B’ C P be a Borel subgroup.

N {O0CViC---CV,C---CVp =V),(0,5) €N |
dimV; =i,V; = Vi (RS V",SV.H_l QVL}

2n—v)

Opure = {(V21), (v,2) € N | (V) is (1, v)-adapted to (v, )}
MNDOG xXp (Vz] @522) ~ {((()CV1 c---CcV,cC--- CVQH=V),(’U,8)) eNn I
(Vy,) s (i, v)-adapted to (v,z)}

Definition 1.2.10. Let O,, = G x5 (Vs; ® 535) N7~ 1(0,.,) be a subvariety of 9.

Corollary 1.2.11. Consider the natural map 6, : @“\u — Q.. The fibres of 6,,,
over a point in Q,, are flag varieties for the Levi subgroup of P, and consequently
have vanishing cohomology in degrees greater than 0.

16



Proof. By construction, the fibres of 8,,,, are the same as the fibres of the composite
map G xp (Vo1 ®5>2) = G Xp (V51 @ 552) = O,,,. The second map has singleton
fibres over Q,, by 1.2.8, and the first map has fibres P/B’ ~ L/LN B’ where L is the
Levi subgroup of P. The cohomology vanishing for the structure sheaf follows from
Borel-Weil-Bott. d

Example 1.2.12. Let n = 6, u = (13),v = (3). Then replacing successive terms
(2s,2t) of the sequence (2,6,2,0,2,0) with (s +¢,s +t) if s < ¢, we have ®°(u,v) =
A=(4,4,2,1,1) € PS. Then N = (2,2,1,0,1,0), so (1, )¢ = ®°(A) = ((2,12),(2)).
Using Definition 125, V24 = O,dlm V23 = dim Vzg = 2,d1m VZl = 5,d1m VZO =
7, dim VZ—I = dim VZ_Q = 10,V2_3 =V. Thus:

Opue =G xp (Vo1 @552) = {(0C V33 C V5 C V5 CVy 2 CV),(v,7)]
v E VZl, zV C VZ_Q, LT)VZ_Q - V_>_1, .’L’VZQ - Vzg, $V23 = 0}

Proposition 1.2.8 now implies that the fibres of the map 7, ,c : Oy .)c = O,)e
over Q,, are singletons. To check this, it suffices to compute the fibre of 7, ¢ over
the following point (v,z) € O, ,:

1 0 1
(o) (%6 )
0 01
0 0
1 0
1 0
"Slo |7 0
0 0
0 01
0 01
0 01
\ 0 \ 0/

We have dim (Im (z?) & Cv)
Im (z%) ® Cv, V5 = (Im (22
have dimension 2, V53 = Im(z
as expected.

5; since Im (z?) @ Cv C V3, it follows V5, =
v)t. Since Im(z®) C V>3 and both vector spaces

3L, Hence 7!

&b
3, Voo =1Im (z (uwyc (v, @) is a single flag,

1.2.3 Vanishing higher cohomology of dominant line bundles
on N

Definition 1.2.13. Denote by p : 91 — G/B the natural projection. Let At C
A denote respectively the dominant weights, and weight lattice of G. For A €
A7, let Cy be the 1-dimensional representation of B where the torus T acts by A.
Given a B-representation V, denote Lg,5(V) for the sheaf of sections of the vector
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bundle G xp V; in particular define O¢/p(A) = Lg/(C}). Following Borel-Weil,
H°(G/B,O0g,p()\)) = Vy is the dual of the finite dimensional irreducible G-module
with highest weight A. Denote Og(A) = p*Og/p(N).

Lemma 1.2.14.
Vi =V,

Proof. On page 116 of [33], it is proven that V}* is isomorphic to V(—oA) (here 0 € W
is the unique element of W which sends A to —A; here A is the set of roots). In type
C it is easy to check that one can find o € W, such that oA = —A for all A € A. The
conclusion follows. [

Theorem 1.2.15. For A € A+, HY(M, O5(\)) = 0 for i > 0.

Recall the following theorem of Grauert-Riemenschneider in Kempf’s version (see [40],
Theorem 4, and also [46], Theorem 3.4).

Proposition 1.2.16. Let U be an algebraic variety, and wy be the canonical line
bundle. If there is a proper generically finite morphism U — X, where X is an affine
variety, then H'(U,wy) = 0 for i > 0.

Lemma 1.2.17. Let U =G xg (V@ s)T @ Cy). Then H(U,wy) =0 fori > 0.

Proof. In accordance with 1.2.16, it suffices to find an affine variety X with a proper,
generically finite map U — X. Let X' = (V& s)* @ Vi, and define 7 : U — X’ by
7(g, (z,y)) = (9z, gy) where g € G,z € (V&s)*,y € Cy C Vy. The map 7 is proper
as we can factorize it as follows (note G/B is projective):

G xp ((V®5)+@C)") — G Xp ((V@S)@V){) ~
G/Bx((Ves)oVy) > (Vos)oVy

Let X = im{w); we claim X has the required property. Note that the map U — X
generically has singleton fibres over a point (s,0) € X, with s € (V@ s)*. Since it is
also proper, its fibres are generically finite, as required. |

Denote the natural projection py : G xp (V@& s)* & Cy) — G/B, where X =
A+ +e

Lemma 1.2.18. We have an isomorphism wy ~ p;;Oc/p(A).

Proof. Since py : U — G/B has fibre (V ®s)* @ C,,, we have a short exact sequence
of vector bundles on U (noting Q¢ ~ Lg/p(u)):

0— pZ}ﬁG/B(u) — QU — p*UEG/B((VGB 5)+ [$3) C)‘/)*) — 0
Since wy = A*(Qy), it now follows that wy ~ pjLg/p(V) where:

V=APue (Vos)m ©Cy)") =) @ AP(Ves)™) ®Cy
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Noting that, as B-modules, u has weights ¢; — ¢; for ¢ < j, ¢; + ¢;, and 2¢;; and
(V@ s)* has weights ¢; — ¢; for i < j, €; + €;, and ¢; we can conclude that V =
Ceitote, ® C5, = C3, as required. O

Proof of Theorem. Using the above two Lemmas, we compute as follows (for 7 > 0):

0=H'(U,wy) = H'(G x5 ((V© 5)" @ Cx),p;La/8(C3))
= H(G/B, Lg/s(C; @ S(Va s)** @ C})))
= @ H'(G/B, La/s(C5® F(V © )" ® S(C5)))
320
= P H'(G/B, Lo/5(Cin  S'(V @ 5)™))
3,n>0
= @ HY(G xp (V& 5)*,p"La/p(Coiny))

n>0

Taking the n = 0 summand in the above gives the desired result. a

Corollary 1.2.19. We have Hi (M, wg) =0 fori> 0.

Proof. First we calculate that wg = Og(—€; — - -+ —¢€,) . Following the method used
in the proof of Lemma 1.2.18, we have the short exact sequence:

0 — p*Lg/p(u) = Q5 = " Lga(VIs)™) -0

So it follows that wg = A*P(Q5) = p*La/s(V), where V = AMP(u) @ APP((Vs)t*) =
Ce,+-+e, using above calculations. Thus wg ~ Og(—€1 — -+ — €,), as required.

Now note that the proof of Theorem 1.2.15 actually holds under the weaker assump-
tion that M’ = A+ ¢; + --- + ¢, is dominant; since A = —e; — - - - — €, satisfies this
hypothesis, the result follows. O

1.2.4 Global sections of dominant line bundles on 91

In this section, we will use the results of the previous section to compute the global
sections of dominant line bundles on 9. Given a coherent sheaf £ on G/B, since
H'(G/B, &) acquires the structure of a G-module, we adopt a convenient abuse of
notation whereby H'(G/B, ) denotes the corresponding element of K (Rep(G)); de-
note x, to be the image in K(Rep(G)) of the irreducible module with highest weight
A. We will also need the following notation.

Definition 1.2.20. Let p/,p: A — Z denote the Kostant partition function in types
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B and C respectively, defined as follows:
1

o ( == e T e ~ 2P "
! 7
Hi<j(1 —efimG)(1 — esite) 1,1 — e2) = %P(U)e

Denote p € At to be the half-sum of the positive roots. Also for y € A, denote
conv(y) to be the intersection of A with the convex hull of the set {wu | w € W}
in A ®z R (here W denotes the Weyl group of G). Denote also conv’(\) be the
complement of {wA|lw € W} in conv()).

Theorem 1.2.21. For A\, € AT,

dim Homg(V,,, H(0, O5(N)) = ) _ sgn(w)p (w(i + p) = (A + p))

weWw

Proof. Using Theorem 1.2.15 and the additivity of the Euler characteristic, we can
compute that:

HO(R,05(0) = Y _(-1)'H' (R, 05(N) = Y (~1)*H*(G/B, La/p(C; @ S(V @ 5)*)))

>0 i>0

= Zp'(u) Z(—l)iHi(G/B, £G/B(C;+p))

HEA >0

Above we have used the filtration of S((V @ s)**) by 1-dimensional B-modules,
where C}, occurs with multiplicity p’(u). We continue using Borel-Weil-Bott The-
orem, which states Y. H(G/B, L5/5(C})) = sgn(w)Xuw(r+p)—p, Where w € W is
the unique Weyl group element such that w(\ + p) — p € A*; this implies that

Yiso( 1) HY(G/B, La/B(Ciy,)) = sgn(w)x, for p € AY & p=w ™ (u+p)— (A+p).
The result now follows:

HMO0z(\) = > sgn(w)p'(w™ (n+p) — (A + p))xs

weW,u€A+

= Z Xu Z sgn(w)p' (w(u + p) — (A + p))

neAt weW

Recall also the Weyl character formulae (see e.g. [33]):

Proposition 1.2.22. For p € A", let mz denote the multiplicity of the weight X in
V.. Then

m,, = ZW sgn(w)p(w(p + p) = (A+ p))
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Proposition 1.2.23. Homg(V,, Ho(M, Oz(A))) = 0 unless A € conv(p).

Proof. From Definition 1.2.20, first note the following identity:

H(l +e)O _p(wer) =Y p(u)e

HEA ueEA
Pwy= >, pu-Y )
SC{1,-n} i€S
dim Homg (V,,, H(, O5(N)) = Y sgn(w)p(w(p + p) = (A + p))

weW

= Y sgn(wpwp+p)—A+> e+p)
weW,SC{1, n} €S

— Z m2+2ies €;
SC{1,-- ,n}

It is well-known that m), = 0 unless A € conv(u) (since m), = 0 unless A < y, and
m,’; = m:‘j"‘ for w € W). Since A € AT, it then follows that for the above quantity to
be nonzero, A € conv(u). |

1.3 A quasi-exceptional set generating D°(Coh% (1))

1.3.1 Recollections

For the reader’s convenience, in this section we give a summary of the results in
Section 1 of [13] (see also [47]) regarding quasi-exceptional sets and quasi-hereditary
categories that will be relevant to us in the next section.

Let C be a triangulated category; for Cy, Cs € C, denote
Hom*(C4, Cs) = @,Hom(C}, Ca[n])

(and Hom<°(Cy,C,) = ®,Hom(Cy, Co[n))). Given two sets S;, S, of objects in C,
define §;xS5 to be the set of objects X for which there is a distinguished triangle S; —
X — Sy — S1[1]; the axioms of a triangulated category imply that this operation is
associative. Given a set of objects S in C, define (§) = SUS* SUS*S*SU---.
Then (U;S[é]) is the smallest strictly full triangulated subcategory containing S.

Definition 1.3.1. Let I be a totally ordered set. A dualizable quasi-exceptional set
in C consists of a subset V = {V;|i € I}, and its dual A = {A;|i € I}, satisfying the
following properties:

e Hom*(V,,V;)=0ifi < j.
e Hom<°(V;,V,) = 0 and Hom(V;,V,;) = C for all i € I.
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e Hom(A;,V;)=0ifj >4

o A; ~ V,(mod C/C.;), where C; is the smallest strictly full triangulated sub-
category containing the objects {V;|j < i}, and C/C; is the Verdier quotient
category.

Remark 1.3.2. In many examples that arise in practice (including the one discussed
below), there is a contravariant exact involution “dual” on the category which sends
A; to V;. However, this isn’t part of the definition.

Proposition 1.3.3. Suppose that {V;|i € I} generate C. Then C has a unique t-
structure (C=°,C=<%) such that V; € C2°,A; € C=°. It is given by C2° = ({V,[d],i €
1,d < 01),C<0 = ({Aifd),i € I,d > 0}).

Proof. See Proposition 1 in [4]. O

We define a quasi-hereditary category in preparation for the next result, which shows
that the heart of the above t-structure is quasi-hereditary.

Definition 1.3.4. Suppose an abelian category .4 has simple objects {S;}, indexed
by a totally ordered index set I. Then we say that A is quasi-hereditary if it satisfies
the following properties:

e For each simple S;, there is an object A; with a non-zero morphism « : A; — S,
known as its “standard cover”, such that:
— ker(a;) € A
— Hom(A;, S;) = Ext'(4;,5;) =0 for j <.
e For each simple S;, there is an object B; with a non-zero morphism 3; : S; — B;,
known as its “costandard hull", such that
— coker(;) € A;.
- HOHI(Sj, Bz) = Extl(Sj,Bi) =0 fOI‘j < 7.

Denote by 750, 7<¢ the truncation functors associated to the above t-structure. Let
AL = 150(As), Vi = 7<0(V;) be objects in the heart of the t-structure.

Proposition 1.3.5. There ezists a morphism 0; : A, — V;, such that S; := im(0;) is
a simple object in C2° N C=C. Each simple object in CZ° N C=P is isomorphic to S;
for some i. The map A, — S; is a standard cover of S;, and the inclusion S; — V,
is a costandard hull for S;. Thus C2° N C=Y is a quasi-hereditary category.
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1.3.2 Main Results

Following the techniques in [13], we may now prove analogous results about 1 by
applying the results in Section 1.2. However, we will need to use the following twisted
action of W on A instead of the usual one:

Definition 1.3.6. Let § = %(61 +e+---+¢€,). Given w € W, A € A, defined the
twisted action w - A = w(A +6) —

Definition 1.3.7. Let D*(Coh®(91)) denote the derived bounded category of G-
equivariant coherent sheaves on 9. For A € A, define AJ, = R7,04()\)[d], where
d = ‘—ﬁ—"2—‘2. Given S C A, denote by Dg to be the smallest strictly full triangulated
subcategory of D?(Coh®(M)) containing the objects AJy for A € S.

Lemma 1.3.8 (Grothendieck-Serre Duality). The (equivariant) dualizing sheaf on
M is isomorphic to wg[2d]; the functor S : DP(Coh®(M)) — DP(Coh®(MN))P of
Grothendieck-Serre duality is an anti-autoequivalence satisfying S(AJy) = AJ_x_2.

Proof. Since H i(‘Yl, wg) = 0 for i > 0 using 1.2.19, the equivariant dualizing sheaf on

M is isomorphic to wg[2d]. Since wg ~ Oz(—€1 — -+ — €,) (again from 1.2.19), we
have

RHom(Oz(M\)[d],wg[2d]) = Oz(—A — €1 — - - — €,)[d]

Recalling that by definition, S(F) = RHom(F,DC), where DC is the equivariant
dualizing sheaf; and that Grothendieck-Serre duality commutes with Rx, since 7 is
proper, the result follows. 0

Definition 1.3.9. For i € A, let conv(u) denote the intersection of the convex hull of

the set {w-pjw € W} in A®zR with A, and denote by Eé\rﬁ)o(y) to be the complement
of {w - ulw € W} in conv(w).

Proposition 1.3.10. For w € W, AJ,.\ = AJ\(mod D 550(y))-

Proof. Let a be a simple root for G (i.e. a € {€1 — €2, - , €41 — €, 26, }); let a =
if a # 2¢,, and @ = ¢, if @ = 2¢,. By induction on the length of the word w € W, it
suffices to prove that AJ) ~ AJ,, .\(mod ijo(l\)), for A satisfying (\, &) =n > 0.
Let P, be the minimal parabolic in G corresponding to the root «; denote by p,
the projection G/B — G/P,. Since G is simply connected, we may choose X' € A
such that (X, &) = n—1. Define Vx = p, .0}, Oc/p()\’) to be the G-equivariant vector
bundle on G/ B with a filtration whose subquotients are Og/g(X),- -, Og/B(XN —(n—
1)a). Let (V@s)} be the P,-submodule of (V@s)* obtained by taking the sum of all
weight spaces excluding the weight space corresponding to &. Let My = Gx s(Vs)t,
and o : My — I be the embedding of this divisor. Let 7, : My = G x5 (V@ 8)F —

G xp, (V@ s)f denote the projection, whose fibres are isomorphic to P'. Since
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(A =X —a,a) = —1, the restriction of p*Vy(A — X — «) is isomorphic to the sum of
several copies of Op1(—1) when restricted to any fibre of m,. Thus we have:

Tax(Ogz @ D" VW)(A =X —a)) =0
r.(Og, ® ' (VW)(A = X = a)) =0

Under the embedding of the divisor iy, O(Ma) = Oz(—a) (see Lemma 1.3.11 for a
proof of this statement), giving us the exact sequence:

0 = Og(—a) = O5 = taxO5, — 0

Since . (O, @ p*(Vx)(A— X —)) = 0, tensoring this exact sequence with p*Vy (A~
N — «a) and taking direct image under 7, we have:

TP V(A =N —a+a) 2mpVv(A— XN —a)
Case 1: Suppose a # 2¢,. Then a = a, so:
T V(A = X) = mp V(A = X — )

Since Vy (A—X’) has a filtration whose quotients are Og/p(A), -+ ,Og/(A— (n—l)a) ,
we find that 7,p*Vy (A-X)[d] € [AT\_(n-1)al* - -*#[AT,]. Since AJA (n=1)a> -y AJr_q €
D w00 this implies m.p*Vx (A — X )[d] o~ AJ a(mod Do (y). Similarly, we find
that m.p*Vy (A — XN)[d] € [ATa_na] *- - % [AT 4], and hence TP V(A= XN —a)[d] ~
AJ)_no(mod 9%0(/\)) Comparing, the required identity follows (note s,-A = A—na

in this case): AJ,, \ ~ AJ,(mod D__o o ). Case 2: Suppose a = 2¢,; then a = ¢,
S0:

TP V(A =X —€,) 2 mp Vy(A — X = 2¢,)

Note that sac,-(A—€,) = A—2ne,. Similarly to the above, since m,p*Vy (A=X—¢,)[d] €
[AJr—@n-1)e,|*: - *[ATr_c,], we find mp™ Vi (A= N —€,)[d] ~ AJs—, (mod D50, 1)
Since m,p*Vn(A — N — 2€,)[d] € [AJr-one,] * -+ * [AJr 2], we find 7, p* V(A —
XN — 2¢,)[d] =~ AJx_2ne,(mod Do e )) Comparing, we see that AJ, ., =
AJs,  (r—e,)(mod D (/\_en)). Replacing A — €, by A, we get the result. O

conv

Lemma 1.3.11. We have O(9,) = Oz(—a).

Proof. By definition, 91 is the total space of the vector bundle Le/p((V@s)t). Con-
sider the pull-back line bundle £ = p*Lg,5((V®s)") on N; denote by 7 the canonical
section of (9, £). The surjection of B-modules (V@ s)* — (V@ s)*/(Vds)t ~ Cs
gives a map Lg/p(V @ s)t — Og/p(—a), and hence a map ¢, : £ - Ogz(—a). Let
Ta € I‘(‘ﬁ, Oz(—a)) denote the image of 7. Then by construction M, is the zero set
of the section 7,. It follows that Og(—a) = (’)‘ﬁ(d’ﬁa) for some d € Z*; but since
Pic(‘ft) = A we find d = 1, as required. a
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Proposition 1.3.12. 1. For A € A*, Hom(AJy,AJ)) = C and Hom<°(AJy,AJ,) =
0.

2. For A € A*, we have Hom®*(AJ,, AJ)) =0 if A ¢ conv(p).

3. For A\, p € A*, X\ # p, we have Hom®*(AJ ., AJy) = 0.

Proof. (1) By Theorem 1.2.15, AJ, is concentrated in a single degree, so we have
Hom<°(AJ,, AJ,) = 0. Since 91 has an open, smooth G-orbit, and map ¢ : AJy —
AlJ, is determined by its restriction to the open orbit, where it must be a scalar,
it follows that Hom(AJ,, AJ,) = C. (2) Fix A. Assuming that for all 4/ € At N
coNnvO(u), Hom*(AJ,/, AJ,) = 0; it suffices to prove that Hom*(AJ,, AJ,) = 0. First
assume £ € AY also. Noting that V, ® Og/s € Coh®(G/B) has a filtration where the
subquotient Og/p(A) occurs with multiplicity m;\“ if the weights of V,, are v4,--- , 14
it follows that:

V,, ® Onld] = 10" (Vs ® Ogyp)ld] € [ATI] % [ATZH ] 5 - - % [ATTH]

Given A, B € D*(Coh®(M)), we view Hom*(A, B) as an element of D(Vectc). It
follows now that:

Hom*(V,, ® On[d], AJ))
€ [Hom"(AJ™ | AJ,)] * [Hom* (AT AJ,)] * - - - * [Hom® (AT, AJ,)]

All y; € conv(u); by the induction hypothesm if v; € conv®(u) C c/o?ﬂao(ﬂ), then
Hom®*(AJ,,, AJ,) = 0; thus, for Hom* (AJ"‘ ,AJ)) # 0, we require v; = wy for

some w € W (note m;;* = 1 in this case). Either wy € conv’ (), or wp = w - pu.
In the first case again we have Hom*(AJ,,, AJ,) = 0 by the induction hypothesis.
In the second case, by Proposition 1.3.10, AJy., ~ AJ,(mod D0 ), and by the

induction hypothesis, Hom®(A,, AJ) = 0 for any A, € Do () We may conclude

Hom*(AJy.., AJy) = Hom*(AJ,,AJ,). To summarize, Hom*® (AJ:,’:'},AJA) is either
0 or Hom®*(AJ,, AJ,). So re-writing the above:

Hom*(V, ® On[d], AJ)) € Hom*(AJ,,AJ)) * --- * Hom*(AJ,, AJ,)

However, using Theorems 1.2.15 and Proposition 1.2.23, note that (since A € conv(u) —
X € conv(p)):

Hom’(V,, ® Om[d], AlJ,) = Homg(V,‘, R'F(AJ,\[—d])) =0
= 0 € Hom*(AJ,,AJ,) * --- *x Hom®*(AJ,, AJ))

Using Lemma 5, on page 12 of [13], we now conclude that Hom*(AJ,, AJ,) = 0.
Finally, as stated above, Hom®*(AJ,.,, AJ)) = Hom*®(AJ,, AJ,) = 0; since any
weight i/ € A is of the form w- u for some p € A*, this removes the initial assumption
that © € A* and completing the proof of the statement. (3) If A\ ¢ conv(u), then
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A ¢ conv(wp - ), and the result follows from the previous part. So suppose that
A € conv(p), ie. that A+ 6 € conv(u + 6); then u ¢ conv(—A — 26). Recalling
Lemma 1.3.8, from the previous part we deduce the required statement (noting that
wp - p=wo(p +6) — 0 =—pu — 26 since w) = —\):

Hom®(AJ o, ., AJy) = Hom*(S(AJ}), S(AJ,,.,)) = Hom®(AJ_s_s9, AJ,) = 0

O

Lemma 1.3.13. Db(Cth(‘ST)) is generated as a triangulated category by the objects
Oz(A) for A € A.

Proof. Tt is well-known that Coh®(G/B) ~ Rep(B), and is generated as a category
by O¢/p()). Since p : N — G/B gives 9 the structure of a G-equivariant vector
bundle over G/B, using Lemma 6 in [13] (see also the last paragraph in page 266 of
[29]), the required result follows. O

Lemma 1.3.14. The image of the functor Rm, : D*(Coh®(M)) — DP(CohC(M))
generates D®(Coh®(MN)) as a triangulated category.

Proof. Let © denote the triangulated subcategory of D®(Coh®(91)) generated by the
image of Rm,. It suffices to show that any F € Coh®(M) lies in ®. Given this
statement, it will then also follow that F[i] € D; since {F[i]|F € Coh®(N),i €
Z} generates D®(Coh®(M)), it would then follow that ® = DY(Coh%(91)). We
proceed by induction on the dimension of the support to show that an arbitrary
F € Db(Coh®(M)) lies in D. Tt suffices to construct an F € DP(CohC(MN)), and a
morphism ¢ : F — Rm,F such that the cone G of ¢ has smaller support than F
(since G € D by induction, and Rm,F € D, it would follow that F € D). Suppose
that (D),“, is open in the support of F, for some (u, v) € Q,. Denote the inclusion
tyw : O, < M. Let F' = (rou,,)*F € Coh®( 0,.). We claim that F = 1,,,.F'
has the required property. First construct the map ¢ as the composition of the map
F — (motuy)sF' (coming the adjointness of (rot,,)* and (7 o¢,,).), W1th the map
(7m0 1u,)eF — Rru(tymF’) = Ru,F. Since the fibres of the map 7 o byw @u y =N
over the orbit O, are acyclic (see Corollary 1.2.11), the projection formula gives
that ¢ is an isomorphism when restricted to O, ,. Thus the cone of ¢ is supported
on O,, \ 0,,, and has smaller dimension. a

Proposition 1.3.15. The category D*(Coh®(MN)) is generated as a triangulated cat-
egory by the objects {AJ\|\ € AT}.

Proof. By applying the previous 2 lemmas, we find that (after a shift), D*(Coh®())
is generated by the objects {AJ)|A € A}. The result will follow once we establish
that Dgapyna+ = Dazmp(y) for each A € A*. Suppose that this is true for all X' €

AT N c/o?ﬁo(/\), then it follows that D oy n+ = Doy But since Ay, =

AJx(mod D0y qp+) by Proposition 1.3.10, it follows that AJwa € DGmynats
the result now follows. O
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Definition 1.3.16. Denote Ay =V, ..

Theorem 1.3.17. Fiz any total order < on A", such that A € conv(p) = A X p.
Then the sets V. = {V A € AT}, and A = {Vyea|\ € AT}, respectively, are a
quasi-exceptional set generating D*(Coh®(MN)), and a dual quasi-exceptional set.

Proof. By definition (see section 3.1), we must check the following:

e To check that V is quasi-exceptional, note that Hom®*(V,,Vy) = 0if A < X
(and are distinct), since in this case A’ ¢ conv()\) and we may apply Proposition
1.3.12; this proposition also implies that Hom<%(V,, V) = 0 and End(V,) = C.

e To check that A is a dual quasi-exceptional set, note Hom*(A,, V) = 0 for
A =< X using Proposition 1.3.12 (in fact, it is true provided A # X’); and that
Ay =~ V,(mod D<) using Proposition 1.3.10.

e Using Proposition 1.3.15, one notes that V generates D?(Coh®(91)).

a

Definition 1.3.18. Let ©22% D%<0 denote the positive and negative subcategories
corresponding to the t-structure on D%(Coh®(M)) given by the quasi-exceptional set
{Vilx e AT}

1.4 The perverse coherent t-structure

1.4.1 Recollections

For the reader’s convenience, this section is a brief summary of some of the results in
[11] (see also [9]) that we will need in the following section. Let X be an algebraic
variety with an action of an algebraic group G; we will recount how to construct the
“perverse coherent" t-structure on D®(Coh®(X)).

Definition 1.4.1. Let X' denote the set of generic points of closed G-invariant
subschemes in X. For z € X*?, let d(z) denote the Krull dimension of the subscheme
T. A perversity function p is a function X*® — Z; associated to p define the dual
perversity function p’ by p'(z) = —dim(z) — p(z). The function p is “monotone"”
(resp. “strictly monotone") if p(z) > p(x) (resp p(z’) > p(z)) V 2’ € T, and (strictly)
“co-monotone" if p’ is (strictly) monotone.

Definition 1.4.2. Define D»<0 DP20 ¢ Db(Coh®(X)) via:
F € DP20iff vz € X' i (F) € DZ*®(O, — mod)
F e DPS0iff Vo € X' i3 (F) € DP@(O, — mod)
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Theorem 1.4.3. If the perversity function p is monotone and co-monotone, then
(DP=0 DP=%) defines a t-structure on D*(Coh® (X)), which we call the perverse co-
herent t-structure.

Proof. See Theorem 1 in [11]. O

Proposition 1.4.4. Suppose that the perversity function is strictly monotone and co-
monotone and G acts on X with finitely many orbits. Then the irreducible objects in
the heart P = DP=0 DP20 of the perverse t-structure are parametrized by a G-orbit
O on X, and an irreducible G-equivariant vector bundle £ on O; the corresponding
object is denoted ji.L[p(O)]. Further, P is Artinian.

Proof. See Corollaries 4 and 5 in [11]. O

1.4.2 Comparing the quasi-exceptional and perverse coherent
t-structures on D?(Coh®(9))

Since all orbits in the exotic nilpotent cone have even dimension, we may consider the
perverse coherent ¢-structure on D®(Coh®(91)) arising from the middle perversity (i.e.
for the orbit 0, , C N, p(0,,) = —M?ﬂil); let D720 ©P<0 denote the negative and
positive subcategories as defined above, and let P = DP2% N DP<0 denote the core
of this ¢-structure. The goal of this section is to prove that the perverse coherent
t-structure on D°(Coh®(M)) coincides with the t-structure arising from the quasi-
exceptional set V.

Proposition 1.4.5. AJ), € P for all A € A.

Proof. Using Lemma 1.3.8, S(AJ,) = AJ_,_,—.._,, and the perverse coherent ¢-
structure is self-dual with respect to Grothendieck-Serre duality, it suffices to prove
just the first of two conditions defining the perverse coherent t-structure (here tgen 0 :
(Op)gen — I denotes the inclusion of the generic point of the orbit O, ,):

tgen o (AT) € DFO(((Oy,)gen) — mod)
tgen o (BT Og(A)) € DZHOH(((0),,,)gen) — mod)

Note first that 7 : 92 — N is a semi-small resolution of singularities, i.e. dim (7)) <
zcodim(0,,) = p(0,,) + d. Note also that from [32], Chapter 3, Corollary 11.2, if
f: X — Y is a projective morphism of Noetherian schemes, such that dim(f~(y)) <
r for all y € Y, then for i > r, R f,F = 0 for all F € Coh(X). Since ¢* is an

gen,u,v
exact functor, the required result follows. O

Proposition 1.4.6. The perverse coherent t-structure on D®(Coh®(R)) coincides
with the quasi-exceptional t-structure corresponding to the set {V |\ € A}.

28



Proof. Above we have proven that V, € D729 so it follows that V,[d] € DP2° for
d < 0. Since D%2° is generated by the objects V[d], it follows that D920 C DP20,
Since the above proof also gives us Ay € DP<0 it follows that A,[d] € DP=° for
d > 0; hence D2=° C DP=0, It now follows from the axioms of a t-structure that we
have equality in the above inclusions, i.e. two t-structures coincide. a

Definition 1.4.7. Let O denote the set of pairs (O,,,V) of an orbit and an irre-
ducible representation V' of the isotropy group G+, where v,, € O,,.

Proposition 1.4.8. The irreducibles in P are indexed by O. The bijection between
costandard objects and irreducible objects in P gives a bijection © : A = (O \@, L)
between At and Q.

Proof. The irreducible objects in the heart P of the perverse coherent t-structure
are parametrized by an irreducible G-equivariant vector bundle £ on an orbit Q,,,,
with the corresponding perverse coherent sheaf being given by jg*ﬁ[-—%ﬂ’l]. If
z € Q,,, then O,, ~ G/G%; and the irreducible G-equivariant vector bundles are
given by G Xg=V, where V' is an 1rreduc1ble representation of the isotropy group G*.
Let ICo,, v = ju(G xg= V)[— d‘m(O dim(@)]  Thus, using Proposition 1.3.5, we obtain
the desired conclusion. O

We deduce from the above that this bijection has the following properties:

Corollary 1.4.9. The above bijection has the following properties, any of which
uniquely characterize it.

HO?TI.(ICOA(I)’)‘(?),L/\, V)\) 75 0

There exists a morphism 1Cq s A@ D V. whose cone lies in ® — PO’

Hom(V o2, IC@,\(x),A(a)vLA) # 0.

There exists a morphism V., — [Cp D 2@ L whose cone lies in ® —— comP )’

ICO A1) 22D € gcomﬂ(,\)

1.5 Further directions

1.5.1 An explicit combinatorial bijection

Thus far we have constructed an abstract bijection between © and A using geometric
techniques. One may ask whether it is possible to give a combinatorial description
of this bijection. In the case of the bijection established in [13] for a simple algebraic
group H between O and A™, an explicit combinatorial description has been given
by Achar in [2] (see also [1]). While partial progress has been made in [1] to give a
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combinatorial description of the Bezrukavnikov’s bijection in type C, outside of type
A a complete explicit description of the bijection is, to the extent of our knowledge,
not known.

One may give an explicit description of O as follows using work of Sun, [52]. Given
(i, v) € Qu, pick (v,z) € O,,. Following [52], the Levi component K®:*) of G is
given as follows. Following Notation 3 on page 5 of [52], denote y = (j,*),v = (k,*)
(such that for each h, either j, > jni1,kn > kpi1, or both), and define J = {h|j, >
I, kno1 > kn} Let ny, =mny, if h ¢ J and n; =ny, — 1if h € J. Then Theorem
3.10 in [52] states that:

K0 =] Span;, (C)
heJ
Thus we can deseribe © as {(5,0) € QM = Ahiesnds = (Wran A >
A AL € Zso}. It would be interesting to give a combinatorial description of the
constructed bijection © : @ +> A*, following the techniques used by Achar in [1] and

[2].

1.5.2 Canonical bases in equivariant K-theory

Consider the setup in the case of the ordinary nilpotent cone, A for a simple algebraic
group H. In [10], an exotic t-structure is constructed on the category D?(C'oh®(N))
(and also on D*(CohS*C*(A))). Denote by 7, A, ©, etc., the analogues of the 7, A, ©,
etc, in the above setting (with the nilpotent cone N of a simple algebraic group H,
instead of the exotic nilpotent cone ). It is proved in Section 2.4 of [10] that:

Proposition 1.5.1. The functor R, is t-exact with respect to the ezotic t-structure
on DY(Coh®(N)), and the perverse coherent t-structure on D*(Coh®(N)). The ir-
reducible objects in the exotic t-structure on N are indered by A; denote them by
{E,\l/\ c A} Then R?T*(EA) =0 ZfA ¢ —A+, and Rﬂ'*(E,\) = IC@(ng) ZfA € —-A+.

Recall that the Steinberg variety is defined to be St := A xyA. It is well-known that
the equivariant K -theory of the Steinberg variety gives us the affine Hecke algebra
H associated to the simple algebraic group H (i.e. K¢*C"(St) = H; see Theorem
7.2.5 in [29]). The two projection maps pr,,pr, : St = N xxy N — N give maps
pry,, Pro, - K€ (St) — K<€ (N), while the map 7 : N' = A induces the map
w, » KOC(N) —» KC<C*(N). T‘e projection p : St — N now induces a map
p, : K€ (St) = KE<CY(N). In K& (N), it was conjectured by Ostrik ([45]),
that one has a canonical basis consisting of IC coherent sheaves indexed by O, while
in K%< (St) = H one has the Kazhdan-Lusztig bases {Cy,|w € W,;;}, where W,/
is the extended affine Weyl group. This was proven by Bezrukavnikov in [12] and
[13]. The following statement is proven in Corollary 1 of [12]:

Proposition 1.5.2. Let Wc{;} denote the set of minimal length representatives of 2-
sided cosets of the finite Weyl group Wy, in Wy, Then if w ¢ Waffi?, p+(Cy) =0,
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while if w € W;‘}’;, then p,(Cy) is the class of an irreducible IC coherent sheaf in
K GxCx ( N)

One may ask whether the above story carries over to the set-up of the exotic nilcone,
N. First, we expect that an analogue of Proposition 1.5.1 holds in the exotic setting.

Define the exotic Steinberg variety to be St := N L X 9. Denote by 1, the Hilbert
nullcone of the representation V¥ @ 5, and let My == G xp (V2 @ 5)*; then we
have a resolution map m : My — M,. Kato proves in Theorem 2.8 of [36] that
KGx(C)? (‘.TAI; X o, ‘JA’(;) = IFI[, a multi-parameter affine Hecke algebra associated to
G (see Definition 2.1 in [36]). Using the techniques employed in Section 2 of [36],
we can give a similar description of K*C*(St). From Section 4, we have a basis
of K¢*C*(M), indexed by O, consisting of IC coherent sheaves. The natural map
p : St — 9 now induces a map p, : K€ (St) = KE>C*(M). It would be interesting
to construct a Kazhdan-Lusztig type basis of H, satisfying the properties similar to
that specified in Proposition 1.5.2.

Another interesting question is to see whether Achar’s results (see [4]), a version of
the result proven in [13] but in positive characteristic, continue to hold for the exotic
nilpotent cone.
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Chapter 2

Exotic t-structures for two-block
Springer fibres

2.1 Introduction

Let G be a semi-simple Lie group, with Lie algebra g, flag variety B and nilpotent cone
N. Tt is well-known that there is a natural map 7 : T*B — N which is a resolution of
singularities (known as the Springer resolution). Given e € N, let B, = 7~ (e); these
varieties are known as Springer fibers, and are of special interest in representation
theory. For instance, in type A, Springer showed that the top cohomology of a
Springer fiber can be equipped with a representation of the Weyl group, and further
realizes an irreducible representation.

This special case when G = SL(m + 2n), and the nilpotent e has Jordan type (m +
n,n), is easier to understand, and has been studied extensively. In [51], Stroppel and
Webster study the geometry and combinatorics of these “two-block Springer fibers"
and investigate connections with Khovanov’s arc algebras. In [48], Russell studies the
topology of these varieties, and describes a certain basis in the Springer representation.

In [16], Bezrukavnikov and Mirkovic introduce “exotic t-structures" on derived cat-
egories of coherent sheaves on Springer theoretic varieties, in order to study the
modular representation theory of g. These exotic t-structures are defined using a
certain action of the affine braid group B,s; on these categories, which was defined
by Bezrukavnikov and Riche (see [18]).

Here we will study exotic t-structures for two-block Springer fibers (ie. for a nilpotent
of Jordan type (m+n,n) in type A), and give a description of the irreducible objects
in the heart of the t-structure. First we will give some motivation for studying exotic
t-structures; then we describe the contents of this chapter in more detail. This chapter
is joint work with Rina Anno, and is based on her earlier pre-print [6].
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2.1.1 Motivation:

Let k be an algebraically closed field of characteristic p with p > h (here h is the
Coxeter number). Let A € by be integral and regular; and let e € A/ (k) be a nilpotent.
Let Mod/?*(Ux) be the category of modules with generalized central character (), e).
Theorem 5.3.1 from [17] (see also Section 1.6.2 from [16]) states that there is an
equivalence:

D*(Cohs, , (gk)) =~ D*(Mod!**(Ux)) (21)

Further, it is proven that the tautological t-structure on the derived category of
modules, corresponds to the exotic ¢-structure on the derived category of coherent
sheaves.

Lusztig’s conjecture states that there is a natural identification between K°(Ug —
mod}) and K°(Coh(B,)), under which the classes of the irreducible objects in the
former category are mapped to certain canonical bases elements in the latter. To
define the canonical basis, one needs to work in the category K°(Coh® (B.)).The
canonical bases in question is characterized by the property that it is the unique
basis (up to sign) which is invariant under a certain bar involution, and is orthogonal
under a certain Ext pairing.

These conjectures are proven (for p sufficiently large) in Section 5 of [16]. A certain
equivalence between these categories and perverse sheaves on the affine flag variety
for the Langlands dual group plays a vital role here.

2.1.2 Summary

Two-block Springer fibers: In this section, we recall the definition and some prop-
erties of two-block Springer fibers, and define the categories that we will be studying.
Let m > 0 be fixed; and let n € Z>y vary. Consider the Lie algebra g = sl,,5,, and
denote the nilpotent cone of sl,s, (the variety consisting of nilpotent matrices of
size m + 2n) by N,,. Denote by z, the standard nilpotent of type (m + n,n):

[ \

1

5 0 0 000 0
“n T 1

1

\00~--000-~0/
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Let B,, be the flag variety for GL,,5,. The Springer resolution is T*B,:

B,={(0CViC- C Viyon = C™?) | dim V; = 1}
T'B, = {(0 cVic---C Vinton = Cm+2n,$) | T € s5lpyon, 2V, C ‘/i—l}

The natural projection 7, : T*B,, — N, is a resolution of singularities. The two-block
Springer fiber is the variety

an = W‘;l(zn) = {(0 - ‘/1 c---C Vm+2n) € Bn I zn‘fz - ‘[5_1}

The Mirkovic-Vybornov transverse slices S,, C g is a variant of the Slodowy slice.
The following variety is of interest, since it is a resolution of S, NN .

U, = 11(S,) C T*By
={(0CViC - CVpy2n =C™ ) | x € S, 2V; C Vi1)}

Let D,, = D®(Cohg, (U,)) be the bounded derived category of coherent sheaves on
U,, which are supported on B, . These are the categories that we will be studying.

Affine tangles: In this section, we recall the definition, and some properties, of affine
tangles.

Definition. Let p,q be positive integers of the same parity. A (p,q) affine tangle
is an embedding of p—;—‘i arcs and a finite number of circles into the region {(z,y) €
C x R|1 < |z| < 2}, such that the end-points of the arcs are:

(1, 0)7 (CP? 0)’ Ty (Cg_170): (2: 0)7 (2CQ) O)a T (24:11_17 0)

in some order (where () = e%).

Definition. Let ATan be the category with objects {k} for £k € Zx¢, and the
morphisms between p and ¢ consist of all affine (p, ¢) tangles (up to isotopy).

The above definition is consistent, since a (p,q) affine tangle «, and a (g,r) affine
tangle 3, then S o« is a (p,r) affine tangle.

We recall the well-known presentation of this category using generators and relations.
The generators consist of “cups", g5, which are (n — 2,n) tangles; “caps", f:, which
are (n,n — 2) tangles, “crossings", t(1),#(2) and rotations r,, r’,, which are (n,n)
tangles. The relations are listed in Definition 2.3.7. In this paper we work with the
category AFTan of affine framed tangles that has additional generators w? (1) and

wt(2) that twist the framing of the ith strand.

Functors associated to affine tangles:

Definition. Let AFTan,, be the full subcategory of AFTan, containing the objects
{m + 2n} for n € Z>,. A “weak representation" of the category AFTan,, is an
assignment of a triangulated category C, for each n € Zsy, and a functor ¥(a) :
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D, — D, for each affine framed (m + 2p, m + 2¢) tangle «, such that the relations
between tangles hold for these functors: ie. if 8 is an (m + 2¢, m + 2r)-tangle, then
there is an isomorphism ¥(8) o ¥(a) ~ ¥(B o ).

The main result of Section is a construction of a weak representation of AFTan,,
using the categories D,, above. To do this, we mimic the strategy used by Cautis and
Kamnitzer in [27], where they construct a weak representation of the category OTan
of oriented (non-affine) tangles, using slightly larger categories.

The exotic t-structure on D,: In this section, we recall the definition of exotic
t-structures (introduced by Bezrukavnikov and Mirkovic in [16]), and describe how
they are related to the action of affine tangles constructed above.

Let Bys; be the affine braid group. As a special case of the construction in Section
1 of [16] (see also Bezrukavnikov-Riche, [18]), we have an action of B,s; on D, (ie.
for every b € B,ss, there exists a functor ¥(b) : D, — D,, and an isomorphism
U(b1by) = W(by) 0 U(by) for by, by € Bysy). It turns out that B,s; can be identified as
a subgroup of the monoid of (m + 2n, m + 2n)-tangles; and under this identification,
the action of B, s, coincides with the action constructed above.

Let B;;; C B,ss be the semigroup generated by the lifts of the simple reflections 3,
in the Coxeter group W ac}‘}” Bezrukavnikov-Mirkovic’s construction in [16] specializes

to give an exotic {-structure on D, which is defined as follows:

DZ° = {F | RT(¥(b™")F) € D>(Vect) V b € B}, }
D% = {F | RT(¥(b)F) € D="(Vect) V b € B/}

We also prove that the “cup” functors ¥(g!) are exact with the exotic ¢-structures,
and send irreducible objects to irreducible objects (Theorem 2.5.6).

Irreducible objects in the heart of the exotic t-structure on D,: In this sec-
tion, we give a description of the irreducible objects in the exotic t-structure on D,,,
and compute the Ext spaces between them.

Let Cross(n) be the set of affine (m, m+2n) tangles, where the m inner points are not
labelled, the m + 2n outer points are labelled, and whose vertical projections to C do
not have crossings. For every a € Cross(n) we have a functor ¥(a) : Dy — D,; let
¥, = ¥(a)(C) (here C € D*(Vect) ~ Dy). We show that that {¥,|a € Cross(n)}
constitute the irreducible objects in DY (Proposition 2.5.10).

We also prove that for 3 € Cross(n), Ext®(¥,, ¥s) is given by the below formula.
Here A denotes a complex in D°(Vect) concentrated in degrees 1 and —1; and & is
the (m + 2n,m) affine tangle obtained by “inverting" «. An a (m,m) affine tangle vy
with no crossings is said to be “good" if it has no cups or caps, and w(~y) denote the
number of circles present. In Theorem 2.5.15, we prove that
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Bxt*(U,, Uy) = A&(&B)[_pn]  if & o B is good
B 0 otherwise

We also give a conjectural description of the multiplication in the algebra

Ext'( P Vo)

a€eCross(n)

Further directions: In the equivalence (2.1), the heart of the exotic t-structure is
identified with an abelian category of modules over Ug having a fixed central char-
acter. Thus the simple objects that we have classified in the heart of the exotic
t-structure will correspond to irreducible representations with that fixed central char-
acter. In future work, we plan to study these modules (e.g. compute dimensions, and
give character formulaes) by using our description of these exotic sheaves.

Using techniques developed by Cautis and Kamnitzer, we can show the Grothendieck
group of the category D, can be naturally identified with V{%"’U"", the m-weight
space in V®™2" (here V = C2, considered as an sl, representation). By looking at
the images of the functors ¥(«) in the Grothendieck group, we obtain a map

¥ : {(m + 2k, m + 2)-affine tangles} — Hom(lfl®m+2k, V[‘g’m+21

m] m]

We expect that this map will coincide with a well-known invariant for affine tangles,
and that the images of the irreducible objects V¥, in the Grothendieck group will
be the canonical basis (or perhaps the dual canonical basis). Inspired by Khovanov’s
construction in [41] and [28], we also expect that it will be possible to give an alternate
categorification of 1, using categories of modules over the Ext algebras controlling
D,, (which closely resemble Khovanov’s arc algebras).

2.2 Two-block Springer fibres

2.2.1 Transverse slices for two-block nilpotents

Fix m > 0. For n € Zx, let 2, be the standard nilpotent of Jordan type (m + n,n).
Let S, C sl,,2, denote the Mirkovic-Vybornov transverse slice to the nilpotent z,
(see section 3.3.1 in [44]):

Sn = {Zn + Z Qimtn,i + Z biem+2n,i}
1<i<m+2n i€{1,- ,n,m+n+1, ,m+2n}
Definition 2.2.1. Denote by N, the nilpotent cone for sl s,. Let B, denote the
complete flag variety for G Ly,12,(C), and for 0 < k < m+ 2n define the varieties Py,
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as follows: ~
Pk,n: {(OC ic---cV,C---C Vm+2n=(cm+2n)}'

Then the varieties T*B,,, T*Py » can be described as follows:

T*By={(0 C V1 C - C Vingon = C™", 1) | 2 € Slnyan, 2Vi C Vi)
T*Pk,n: {(OC% C .- C‘//\k C - CVm+2n:Cm+2n),$ |
T € slpyon, tVip1 C Vioq, 2V, C Viog for i # k, k4 1}
Pick a basis ey, ..., €mntni1, f1,-- -, fapr of C™T242 50 that z,116; = €1, Zny1fj =
fi—1 (where we set e = fo = 0).
Lemma 2.2.2. For any x € S,y such that dim(Ker ) = 2, we have Ker z =

Ce; @ Cf1, and there is a natural isomorphism ¢y : TV pongn =~ C™F22,

Proof. By the construction in [44, section 3.3.1] we can assume that ze; = e;—1 +
Gimint1 + Cifmi1 f 1 < m+1, Te; = ;01 + @imint1 if ¢ > m+ 1, and zf; =
fj——l + bj6m+n+1 + djfm+1- Then we have:

x( S et Y ujfj)=

1<i<m+n+1 1<j<m+1

Z /\z‘+16«i+( Z a;A; + E ijj) €mtn+1

1<i<m+n 1<i<m+n+1 1<j<m+1

+ Vj+1fj+< doowhit ) dJ”’j) St

1<j<m 1<i<m+1 1<j<m+1

So zv = T’(ZlgigmmH Aie; + ZISjS"Hl I/jfj) = 0 implies that \; = v; = 0 for
i,7 > 1, i.e. that v € Ce; @ Cfy. If zv =0 it follows that a; =b; =¢; = d; = 0. So:

TViniant2 ={ Z )\iei+( Z i1 + Z bj+1Vj) Emtn+1t

1<i<m+n 1<i<m+n 1<j<n
E wifi + ( E Cip1 i + E dj+11/j> fn+l}
1<j<n 1<i<m 1<5<n

Let us denote by 7, , the following map:

Cm+2n+2 — ( @ C@i@ @ ij)@(Ce,,n+,,_+1€BCfn+1) — ( @ Cei@ @ (ij)

1<i<m—+n 1<j<n 1<i<m+n 1<5<n

denote the natural projection map. The following map is an isomorphism:

(b;zr = P)/m,n'acvm+2n+2 : xvm+2n+2 — @ (Cei D @ ij

1<i<m+n 1<j<n
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Proposition 2.2.3. For every 0 < k < m+2n+2 we have Spi1 X1, 9010 T Prnt1
Sn X5(m+,2" T*Bn.

Proof. By definition:

Sn+l X sl 2nt2 T*Pk,1:+l ={(0 - Vl c---C ",’;c c---C Vm+2n+2) I
T € Spy1y Vi1 C Vi, Vi C Vi for i #£ k, k+ 1}

Sp Xstpson TBr = {(0 C Wy C -+ C Wippon = C™**M) |y € S, yW; C W;_1}

Since z € S,.4+1, the Jordan type of x is a two-block partition, and dim(Ker(z)) < 2;
but zVj41 C Vik—1 so we must have £Vi;; = V1. Consider the flag (0 C V; C --- C
Vi1 = 2Vip1 C 2Viy2 C -+ C Vipi2n42). Recall the isomorphism ¢, : Vi o042 —
C™?" from Lemma 2.2.2 and denote by ®(z) € End(C™*?") the endomorphism
induced on C™**" by the action of z on V,,on42. Construct a map o : Spi1 X, 2012
T*Prpn+1 = T*B, as follows:

C\C(O C ‘/]_ C tet C Vm+2n,$) ==
=((0 C ¢=(V1) C -+ C ¢u(Vie1) = Ga(2Vit1) C @o(aViya) C --- C C™"), B(z))

We claim that o gives the required isomorphism Sp1 Xs, 15000 T Prnt1 = Sn Xt ion
T*B,,. First we check that ®(z) € S,. From the argument in Lemma 2.2.2, ®(z)e; =
€i—1Fip1€mantCip1fnifi <n, B(z)e; = ei_1+aiv16min if i > n,and ®(2)f; = f1+
Cj+1€m+n+djs1 fo. Thus ® gives a bijection between {z € S, 1NN, 1| dim(Ker z) =
2} and S, N N,. It follows that o has image S, Xsi,, ., T*B, and that « is an
isomorphism onto its image, as required. a

Definition 2.2.4. Under the Springer resolution map m, : T*B, — N, let B,, =
T (2n). Let Un = Sp Xstnygn T By; define D, = D®(Cohg, (U,)) to be the bounded
derived category of coherent sheaves on U,, supported on B,, .

Next we will prove an extension of Proposition 2.4 in [27] to the case of two-block
nilpotents. Consider a 2(m + 2n)-dimensional vector space V;,,, with basis

€1,.-- ;6m+2n;f1a ey fm+2n

and a nilpotent z such that ze; = e;_1, zf; = fi-1. Let Wy, ,, C V},,, denote the vector
subspace with basis e, ..., €min, f1,. . -, fn, 0 that z|w,, . has Jordan type (m-+n,n);
we will identify W, ,, with V,,10,. Let P : V,, , — W,,, , denote the projection defined
by Pe; =¢;if i <m+mn, Pe,=0if¢>m+n; Pf,=f,ifi <n, Pfi=f;ifi > n.
Following Section 2 of [27], define:

Ym—}—Zn = {(Ll Cc---C Lm+2n C V;n,n)l dlmL, = 7:, ZL.i C L'i—l};
Um+2n = {(Ll c---C Lm+2n) S Ym+2nIP(Lm+2n) = me,n}-
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Definition 2.2.5.

1
Syl,, ___{ a az -+ Gpmin by 112 e by }
1
\ Ci C2 - Cm+n dl d2 cte dn /

Note that we have S, C S], and U, C 5] Xa,,,,, T*Bn. The following lemma
(generalizing Proposition 2.4 in [27]) gives a map ¢, : U, — Y,,12,, identifying U,
with a locally closed subvariety of Y, 2,.

Lemma 2.2.6. There is an isomorphism U,,i0n >~ S, Xat, 0, T*Bn.

Proof. Given (Ly C -+ C Lyyon) € Upgon, since P : Lyio, — Wy, is an iso-
morphism, we have a nilpotent endomorphism z = PzP~! € End(V,,12,) (here
we identify W,,, and Vj,40,). If P7le; = €; + v/, where ¢/ lies in the span of
Cmtntls " > Cma2ns fadls " * s fmaon, then 2P le; = e;_; + v"” where v” is in the span
of €miny " »€mton-1, fns-** » fmi2n—1. Hence PzP~le; = ze; € span(e;_1, €min, fn)s
and similarly zf; € span(fi_1, €min, fn); 50 ¢ € S,,. Thus we have a map « : Uy y0, —
S! X stpian ] "B given by a(L1, - -, Linya,) = (PzP7Y, (P(L1), P(La),- - - , P(Lm+2s)))-

For the converse direction, from the below Lemma 2.2.7 we know that given x € S/, N
N, there exists a unique z-stable subspace L,,42, C Vinn such that PL, 0, = Wi,y
and PzP~! = z; call this subspace L., 9, = O(z). We have an isomorphism P :
O(z) =~ Wynn. Thus given an element ((0 C V4 C -+ C Vipy24),Z) € S, Xety 00 T By
let B(xz) = (0 C P7'V; C P, C --- C ©,). It is clear that @ and 3 are inverse to
one another. O

Lemma 2.2.7. Given x € S, N\ N,, there ezists a unique subspace L, 2, C Vi
with P Ly yon = Wi n, such that 2Ly, 9, C Liypion and PzP™! = .

Proof. Since PLy, o, = Wy, to specify the subspace Ly, 2, it suffices to specify

éz‘ = P”l(ei) =¢; + Z agk)€m+n+k + Z Cz('l).fn-f-l

1<k<n 1<i<m+n
r - k l
fi=P7f) =f;+ Z b§ et + Z dﬁ)fnﬂ
1<k<n 1I<i<m+n

Suppose for 1 <i < m+n,1 <j <n,ze; = €i-1+0imintCifn, Tf; = fj-1+bjemin+
d;fn; then the identity PzP~! = z is equivalent to oV = a;, ¢V = c, bg'l) = b; and

7 1
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dgl) = dj. The statement 2L,, 2, C Ly, i-6. 26,2 fJ € Lpyy0n, 1S equivalent to
saying that:

28; = €;_1 + 0iémin + Cifn
2fj = fj-1+bi€myn +d;fn

Expanding the above two equations:

k 1 k
€1+ Z ag )em+n+k—1+ Z Cg)fn+l—1 = €1+ Z a'z(_)lem+n+k

1<k<n 1<i<m+n 1<k<n
+ E , 1, 1 ntl T Qi (em+n + E am+nem+n+k + E , m+nf n+l)
1<Ii<m+n 1<k<n 1ILI<m+n
k 4 .
Ci (fn + E : b em ik + E dfz)fn+t> ;
1<k<n 1<i<m+n
(k) 0]
f.’i—l + E : bj €mtntk-1 T E dj Jrti-r =
1<kLn 1<l<m+n
f] 1+ E 1em+n.+k + § : 1fn+l
1<k<n 1<l<m+n
b; (l)
+ €m+tn t+ am+'nem+n+k + m+'nf n+l
1<k<n 1<i<m+n
k l
d; (fn + E bg; ) emtn+k T E dr(z)f'n+l> .
1<k<n 1<i<m+n

Extracting coefficients of e,,,+x and f,4; in the above two equations gives:

a£k+1) (k) ¥ aa o® + b, b(}c+l) b(k) + b a'®) + d;p®)

m+n m+n
D = cgw + aic,  + cid®, d(‘“’ d‘” +bel,, + did®

Consider the matrix coefficients (z*),, for 1 < p,¢ < m + 2n. It follows by in-
duction that we have az(k) = (z"')mm,i,bgk) = (:ck)m+,,‘m+n+j,c§l) = (:vl)m+2nyi,d;l) =
(# )mt2nmintj- Indeed, the case where k = I = 1 is clear; and the induction step
follows from expanding the equation (z"*1),, = >, <w<m 1o (T )uw(@)wo for u = m+n

and ©u = m + 2n.

Using the above recursive definition of a ,bgk), El) ,d(l)

o™ = p™ = ¢ and ™Y = d§m+n+1) = 0. Thus we must show that

(" gy = (@™ ) ionp, = 0 given 1 < p < m + 2n. Using the equation

, it remains to prove that
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(I.‘r-’_l)uv = ZlSwSm—l—2n(x)U1U($T)7“'L” we Compllte that:

($n+1)'rn+n,p = ($n+2)7n+n—1,p == (xm+2n)l,p =0

(-’Em+n+1)m+2n,p — (l'm+n+2)m+2n—1,p [ — (xm+2n)m+n+l,p =0

This completes the proof of the existence and uniqueness of a z-stable subspace
Lyion C Vipn With PLyyyo, = Wy, and P2zP71 = 7. O

2.3 Tangles

2.3.1 Affine tangles

Definition 2.3.1. If p = ¢ (mod 2), a (p, ¢) affine tangle is an embedding of 2? arcs
and a finite number of circles into the region {(z,y) € C x R|1 < |z| < 2}, such that
the end-points of the arcs are (1,0), (¢,,0),---,(¢¢7,0),(2,0),(2(4,0),- - -, (2¢F1,0)

2mi

in some order; here (, = e’* .

Remark 2.3.2. Given a (p,q) affine tangle o, and a (g, r) affine tangle 5, we can
compose them using scaling and concatenation. This composition is associative up
to isotopy. The composition 3o « is a (p,r) affine tangle.

Definition 2.3.3. Given 1 < ¢ < n, define the following affine tangles:

e Let g’ denote the (n — 2,7n) tangle with an arc connecting (2¢¢,0) to (2¢+1,0).
Let other strands connect ((¥_,,0) to (2¢*,0) for 1 < k < i and (¢*_,,0) to
(2¢k+2,0) fori+1 <k <n-—2.

e Let f% denote the (n,n — 2) tangle with an arc connecting (¢?,0) and (¢t 0).
Let other strands connect (¢¥,0) to (2¢* ,,0) for 1 < k < ¢ and (¢*,0) to

™o

(2¢k2 0)fori+1<k<n-—2.

e Let ¢! (1) (respectively, t{(2)) denote the (n,n) tangle in which a strand connect-
ing (¢%,0) to (2¢5™,0) passes beneath (respectively, above) a strand connecting
(¢¥1,0) to (2¢¢,0). Let other strands connect (¢*,0) to (2¢*,0) for k # 4,1+ 1.

n

e Let r, denote the (n,n) tangle connecting (¢J,0) to (2¢**,0) for each 1 < j <
n, and let r/, denote the (n,n) tangle connecting ({7,0) to (2¢J71,0) for each
1<j<n

Definition 2.3.4. Define a linear tangle to be an affine tangle that is isotopic to a
product of the generators g°, ¢, (1) and t%(2) for i # n.

n'n

Remark 2.3.5. Linear tangles can be moved away from the half-line e *R>o where
€ is a small positive number. If we cut the annulus 1 < |z| < 2 by that line and apply
the logarithm map, linear tangles turn into the usual tangles that live between two
parallel lines.
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Lemma 2.3.6. Any affine tangle is isotopic to a composition of the above generators.

Proof. For a curve in C, define its affine critical point as a point where this curve is
tangent to a circle with center at 0. We can adjust a tangle within its isotopy class
so that its projection onto C has a finite number of transversal crossings and affine
critical points. We can also assume that no two of these points lie on the same circle
with center at 0. Cut the projection of the tangle by circles with center at 0 into
annuli so that each annulus contains only one crossing or affine critical point. We
can further adjust the tangle so that we have a tangle inside each annulus, and by
construction these tangles have to be g, f, or ¢ (p), possibly composed with a power
of r,. a

Definition 2.3.7. Let ATan (resp. Tan) denote the category with objects k for
k € Z>o, and the set of morphisms between p and ¢ consist of all affine (resp. linear)

(p, q) tangles.

In the category ATan we record the following relations between the above generators;
herelet 1 <i:<n—-1,1<p,g<2)k>2:

1. (Reidemeister 0) fi o git! = fitlo gi =id

2. (Reidemeister 1) f o ti£1(2) o gi = fi o ti*!(1) 0 g} = id

3. (Reidemeister 2) t: (1) ot} (2) = t1(2) ot} (1) = id

4. (Reidemeister 3) #:(1) o #:+1(1) o £% (1) = #:1(1) o £1,(1) o £51(1).

5. (Cup-cup isotopy) git5 o g = ghys 0 g5

6. (Cap-cap isotopy) fit*=2o fi , = fio fith

7. (Cup-cap isotopy) gst*%o fi = fi g0 géi’éagn fik=t = fitk o gl

8. (Cup-crossing isotopy) g, o ti%52(g) = ti*(q) o g, gi+* o ti,_,(q) = ti(q) 0 g&

9. (Cap-crossing isotopy) f o t5%(q) = t;757%(q) o f2, fit* o ti(q) = ti_,(q) o fit*
10. (Crossing-crossing isotopy) tﬁl(p) o titk(q) = ti+*(q) o £ (p)
11. (Pitchfork move) ¢ (1) o git? = t:+1(2) 0 g, :(2) 0 git! = ti*1(1) o gi.
12. (Rotation) r, o7, =1, o1, = id

i+1

13. (Cap rotation) r!,_,o0 fior, = fi¥! fr-tor2 = f}

14. (Cup rotation) 7/, 0 g}, 01,2 = g5, 720 g1 = g}

15. (Crossing rotation) 7/, o t' (q) o r, = t&(q), 2 o t77Y(q) o r2 =t} (g).
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By Lemma 4.1 from [27], any relation between linear tangles can be expressed as a
composition of the relations (1)-(11) above. We can generalize that to affine tangles:

Proposition 2.3.8. Any relation between affine tangles can be expressed as a com-
position of the relations (1)-(15) above.

Proof. First, let us reduce any relation to a composition of relations (1)-(11) involving
gh, fi, ti(p) for 1 < i < n (for the definition of g%, f*, t"(p) see the proof of Lemma

2.3.6). Then, we can express the relations (1)-(11) involving ¢Z, f", t"(p) using
relations (1)-(15), by a direct computation.

Let us call an isotopy linear if it fixes a segment of the form [({, 0), (2¢, 0)] for some (.
Note that a linear isotopy is a composition of elementary isotopies (1)-(11) (possibly
involving g7, f, t*(p)) since the points where the tangle intersects [(¢,0), (2¢, 0)] stay
fixed. Now, if two affine tangles are isotopic, then they are also isotopic through a
composition of two linear isotopies, which completes the proof. O

For our purposes, it will be more convenient to replace the relations (13)-(15) by the
equivalent set of defining relations below.

Definition 2.3.9. Let s, denote the (n,n)-tangle with a strand connecting ({;,0) to
(2¢;,0) for each j, and a strand connecting ((;,0) to (2¢;, 0) passing clockwise around
the circle, beneath all the other strands.

Lemma 2.3.10. The following relations are equivalent to the relations (13)-(15)
above.

® 5100, =005, 3,5, 50 fn=fiosn, spoti(p) =th(p)osy,

o P losmotn(2)os ot 1(2) = fr!

n

o snotr(2)osnotr (2 ogrt =gi!

Proof. It is straightforward to check that the above relations are satisfied. It suffices
to now use the identity 7,, = s"ot?"!(2)o- - -otl(2), and Proposition 2.3.8, to show that
the above three relations imply equations (13)-(15) above (given relations (1)-(11)):

P20 fpomn =ty s(1) o ot;75(1) o (sp-
=ty 5(1) o+ 0t775(1)
=ty 5(1)o--otp75(1) 0 f 0

D toflost ot (2) o 0tl(2)
i teetepemi e eal)
" H2) o+ 0 tl(2) = fiH

70 gnotua=ty(1)o -0t (1) o (s}) o g 0osn 30 t75(2) 01 _n(2)
=tp(1)o---otp (1) o(s)) o sy og, 0 hTH(2) 0ty 5(2)

n—2

= t’}t(l) ©---0 tz_l(l) o g;; © tz:g(z) O n—2(2) = g:1,+1
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75,0 tﬁ,(fI) or, = t}l(l) .- otﬁﬁl(l) o (32)—1 o t;(q) os”o t2"1(2) oo t}l(Z)
=t o0t Y1) oti(q)ot™(2) o---0t:(2) =t (q)

mlorl=frloglot? (2o --0tl(2)ostot? (2)o---0tl(2)
=frlosot? 2o st ot™ 1 (2) o tP (1) 0t 2(2) o---0th(2)
021200 tl(2)
= frlot" (1) otP2(2o---0tr(2) 0t (2 o---0tl(2) =

rRognt=t(1)o---oth (o (sp) ot,(1)o---0tn (1) o (sp) T ogn™
=t,(1) 0" ot" Dotr(D)o---otn?(1) o tn™(2)

oty l(1) sp) ot (1) o (sp) T ogn !

=t,(1)o- ot" Doti()o---otp (M) otr (2 ogrt =gy

e oty (g)orh = (t,(1) ooty (1) o (sp) ) o tn7H(g) 0 (S” ot (2) o 0t(2))®
= (tn(D ooty (1) oty g) o (177 (2) 0 -+~ 0 £,(2))* = 1;,(q)

a

2.3.2 Framed tangles

All preceding constructions may be carried out for framed tangles. Define the gener-
ators §i (resp. fi resp. £ (l), resp. ) as tangles g, (resp. fi, resp. ti(l), resp. r)
with blackboard framing. Introduce new generators % (1) and @%(2), which corre-
spond to positive and negative twists of framing of the ith strand of an (n,n) identity
tangle.

Definition 2.3.11. Define a framed linear tangle to be a framed affine tangle that
isotopic to a product of the generators &, fi, (1), % (2) for i # n, and ¥ (1), %% (2).

Definition 2.3.12. Consider the category AFTan (resp. FTan), with objects & for
k € Z>o, and the set of morphisms between p and g consist of all framed affine (resp.
framed linear) (p, q) tangles.

The relations for framed tangles are transformed as follows:
1. fi o gz+1 id = fz+1 o g;
2. (Reidemeister 1) f o #E(1) o g = wé (1)
3. £4(2) o i (1) = id = £ (1) o £1(2)
4. (1) o (1) o #(1) = FH(1) o B(1) 0 £51(2)
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~it-k ~i-k—2
5' gw7+2 o gn - gn+2 o gn

fitk— £ _ i ritk
6. f n+2 f fn+2
z+k 2 1 ~i+k Fitk—2 __ fitk
7' o f n+2 o gn+27 gn, f f +2 ° g’n+2

8. g oty ()=t () o gy, gtk oty (1) = (1) o gitk

9. fioli () =152 W) o fi ol (D) =T ()0 fit
10. (1) o £tk (m) = €35 (m) o 5 (1)
1L (1o gt =8 (2)0gh, (2ot =11 (1) oy,
12. fof, =id =7 0T,
13. # _,ofiof,=fitl i=1,...,n—2 frlo(f,)?=f
14. ¥ 0gh oty o= i=1,...,n=2 (f)ogr =g
15. #, 0 th(l) o fn = 5F1(1);  (7))2 0t Y (1) o (Ffa)? = EL(0)

We have the following additional relations for twists:

16. wi(1)ow’(2) =1id, w:(l)owi(k)=wi(k)ow(l), i+#j
17. (k) o gy, = Wy (k) o gp,  Wi(k) o ?J% = g3, 0w F(k), i # 5,5+ 1
18. fiowi (k) = fiodit (k), @i(k)o fi= flowi ™ (k), i #j,j+1
19. @i (k) ol = Wit (k) oy, wi(k)otl =t owi(k), i#j,j+1
20. £ o (k) = fiowitl(k), wi(k)ofi=1 owi(k), i#£j,j+1
21. Wi (k) o P, = Fpowi N (k), w,(k)or, =7 owti(k)

Note how the Reidemeister 1 move (2) is the only relation between the non-twist
generators that differs from the relations in ATan.

Proposition 2.3.13. Any isotopy of affine framed tangles is equivalent to a compo-
sition of elementary isotopies (1)-(21).

Proof. There is a forgetful functor from the 2-category of framed tangles and their
isotopies to the 2-category of non-framed tangles and their isotopies, which forgets
the framing. Thus, for every isotopy there is a composition of relations (1)-(15) (in
ATan) which differs only in framing, and that can be ruled out by the commutation
laws (16)-(21) (in AFTan) of twists with all other generators. a

Lemma 2.3.10 still holds in this context, after replacing s;, by its “framed" version 3.
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2.4 Functors associated to affine tangles

Definition 2.4.1. Recall that AFTan (resp Tan, FTan) has objects {k} for k € Z>,,
and the set of morphisms between {p} and {q} consists of all framed affine (resp.
framed linear) (p,q) tangles. Define the category AFTan,, (resp. Tan,,, FTan,,)
to be the full subcategory of AFTan (resp. Tan,FTan) with objects {m + 2k} for
k € Z>y.

Definition 2.4.2. A “weak representation" of the category AFTan,, is an assignment
of a triangulated category Cy for each k € Z>o, and a functor ¥(«) : C, — C, for each
framed affine (m + 2p, m + 2¢)-tangle, so that the relations between tangles hold for
these functors: i.e. if 8 is an (m + 2q, m + 2r) tangle, then there is an isomorphism

U(B) o ¥(a) ~ ¥(Boa).

Similarly one can define the notion of a “weak representation" of the categories
Tan,,, FTan,,. The goal of this section is to construct a weak representation of
AFTan,, using the categories Dj.

In [27] Cautis and Kamnitzer construct a weak representation of the category of
oriented tangles. We are going to adapt their construction to our setting of framed
tangles, and then generalize it to the category AFTan,, of affine framed tangles.
The relations between the generators for oriented tangles are mostly the same as the
relations we use here, with a notable exception of Reidemeister I move.

2.4.1 Cautis and Kamnitzer’s representation of the oriented
tangle calculus

Let D, = D?(Coh(Y;n12,)). In section 4 of [27], Cautis and Kamnitzer construct a
weak representation of the category OTan,, of oriented tangles using the categories
D,. In fact, Cautis and Kamnitzer construct a weak representation of the full category
OTan (which gives a weak representation of the subcategory OTan,,). Also, Cautis
and Kamnitzer deal with the C*-equivariant derived categories; but we will omit this
C*-equivariance as we do not need it. In this subsection we are going to recall their

construction, altered so that it becomes a weak representation of FTan.

Recall the definition of Fourier-Mukai transforms (see [35] for an extended treatment).
Here all pullbacks, pushforwards, Homs and tensor products of sheaves will denote
the corresponding derived functors.

Definition 2.4.3. ([35]) Let X,Y be two complex algebraic varieties, and let m : X x
Y — X, : X XY — Y denote the two projections. For an object 7 € D*(Coh(X x
Y')), define the Fourier-Mukai transform ¥ : D?(Coh(X)) — D®(Coh(Y)) by ¥+ (F)
7o (7] F @ T). The object T is then called the Fourier-Mukai kernel of ¥

Il

Definition 2.4.4. ([27]) Define the subvarieties X¢ ., C Y40, and Z% .., C
Yiiion X Yoy, as follows:
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b Xvin+2n = {(Ll CLyC---C Lm+2n)| Lipy = Z_I(Li—l)}-
hd Z:;n-}-.’!n = {(L7LI) € Y;n+2n X Ym+2n| Lj = L; v .7 # Z}

The map j : X! 12, — Ymion is an embedding of a divisor. Note that there
is a natural surjection p : X! ... — Yoyo.-2 defined by p(Ly, Lo, , Lipion) =
(L1, -+ yLi—y,2Liy2,- -+ . ZLym12,); thus we may also view X' +on, @S a subvariety of

Yoinaon—2 X Yoion. Let V be the tautological vector bundle on Y, corresponding
to the vector space L;; let E = V;/V;-1 denote the quotient line bundle.

The following two definitions are based on [27], but not identical to the definitions
there:

Definition 2.4.5. Define the following Fourier-Mukai kernels:

:mﬂ = Oxi . @ m3E; € DY(Coh(Ymyzn-2 X Yimian)),
o = Oxi  ® mrESY € DY(Coh(Yyan X Yinion—2))
Trpan(1) = Oz , € D*(Coh(Yoni2n X Ymizn))
m+2n( )= Ozjn+2n ® 7:&111 & W’Q*Ez € D*(Coh(Ymiyon X Ymion))
Definition 2.4.6. Define the functors

’Tin+2n = le(g;in+2n) = ‘Ilgl : Dn—l — Dn

m+2n
ﬁ?nun = ‘I’(f:nﬁn) =V Fion - Dy — Doy
T:n+2n(1) (t:n+2n(1)) ‘1’7‘;}1” a* '511 — '571.
T:n+2n( ) ‘I’(tm+2n(2)) ‘I’ T yan(@ : 5n — 57»
Wiian(1) = W(W},45,(1) = [-1] : D = D,
Wiion(2) = W (@hi0,(2) = [1] : D = D,

Note that the difference with the definition in [27] is that we only use two kinds of
twists T'(1) and T(2) where they use four, and our twists differ from their twists by a
shift. The reasons for this change are, first, that there are only two different crossing
generators in the category FTan while there are four in OTan; second, this is the
change that turns the oriented tangle relations into the framed tangle relations (see
Proposition 2.4.8 below); and third, it gives us the skein relation in a nice form of
an exact triangle Id — \I'(tz (2)) — ‘I!(gn o f!) in the spirit of Khovanov’s homology
construction as described in [42] (see Lemma 2.4.7 below).

It is easy to see that é’}n ron D,._1 — D, admits the following alternate description:
Gt som(F) = 1@ F @ &) for F € D,_,. Similarly, the functor Fi ton D, —
D,_1 admits the following description: Fm won(G) = p(*G ® &) for G € D,.
The following calculation of the left and right adjoints to é,;n+9n, and an alternative
description of the functors Tm +2n(l), " 4an(2), from [27] will be of use to us.
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Lemma 2.4.7. We have (Gi,,,,)" = +2.n[ 1] and (G¥, )" = F? +2n[1] Also,
for F € Dy, there are distinguished triangles G, +2n(Gm i) FF 5 F 2 TE o, (F
and Tm+2n(1)f - F - G +2n(Gm+2n)L'

Proof. This follows from Lemma 4.4, and Theorem 4.6 in [27]. O

Recall that any framed linear tangle can be expressed as a composition of the above
generators, and that any relation between linear tangles can be expressed via the
relations (1)-(11), (16)-(20) in Definition 2.3.12. Hence defining functors ¥(a) for each
(m + 2p, m + 2q)-tangle a, which are compatible under composition, is equivalent to
defining functors for each of the generators, satisfying the relations (1)-(11), (16)-(20)
(up to isomorphism).

Proposition 2.4.8. The functors W(f% 5 ), U(gi o), Ut on (D)), U(wh, 0 (1)) sat-
isfy the relations (1)-(11), (16)-(20). Thus, given a linear (m + 2p, m + 2q) tangle,
«, written as a product of generators, we can define fI"(a) by composition (and up to
isomorphism, the result does not depend on the choice of decomposition as a product
of generators). This gives a weak representation of FTan,, using the categories D,,.

Proof. By Theorem 4.2 in [27], we know that the functors G ovoms B rons Thvon (D[],
and T? r +2n(2)[—1] satisfy the relations in the category OTan that differ slightly from
the relations (1)-(11). The relations (1), (3)-(11) are identical for OTan and FTan,
and they hold for the functors G, +2ns Fi +on) T +2n(l) *+2n(2) as well since every
relation has the same number of each type of crossings on both sides, so after shifting
every type 1 crossing by [1] and every type 2 crossing by [—1] the relations still hold.
The oriented Reidemeister move I relation

~7in+2n o T:nﬂ—:!}.?n(l)[]'] o Gm+2n ~ Id >~ Ft m+2n ° :ni-l}"’n(z)[ 1] © Gm+2n

is exactly the relation (2) for G o, Fi o0 Tt o (1), Th 0n(2), and W o (1):

Frz;t+2n Trznia—lZn(l) © G;i’n+2n = [_1] = m+‘>n(1)
rln+2n © T:r;’:432n(2) o Gm+2n = [1] - VVZ +2n( )
The relations (16)-(20) are straightforward. O

2.4.2 Constructing functors ¥(«) : D, — D, indexed by linear
tangles: cups and caps

In the previous section we constructed a weak representation of the category FTan
of framed tangles using the triangulated categories D, = D%(Coh(Y,42,)). Our
next goal is to construct a weak representation of the category AFTan of affine
framed tangles using the categories D, = D?(Cohg, (U,)). The open embedding
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in : Up — Yinyon induces a functor i, : D, — ’15n for each n, thus one may hope to
“lift" the functor ¥(a) : D, — D, to a functor ¥(a) : Dp, — D,. In more precise
terms, we aim to construct a functor ¥(a) such that i, o ¥(a) = ¥(a) o ipe. Note
that this isomorphism together with the isomorphism ¥(8 o ) ~ U(B) o ¥(a) does
not yet imply the isomorphism ¥(8 o ) ~ ¥(8) o ¥(a), so we will need to prove the
latter separately along with our construction of ¥(«), employing an argument similar
to one in [27].

Define the variety X,,; := Sy Xai, 100 T*Pin Xp,,, Bn:

Xn,i == Sn xslm+2n T*Pi,n xPi‘n Bn :{(0 C ‘/1 c---C Vm+2n), x |
T € Sny @V C Vg, 2V; C ViV 5}

We have a P!-bundle Tnyi - X‘n,i — Sn X slmtan T*Pi,n ~ Sn—-l Xslmion_2 T*Bn_] = U;,,h
and the embedding of the divisor j.; : X,; = Sp Xsi,,0, T*Br = U,. Thus we can
view X, ; can be viewed as a subvariety of U,,_; x U,. Let V; denote the tautological

vector bundle on S, Xg,,,. 7B, corresponding to Vj; and define the line bundle
gk = Vk/vk—l‘

Definition 2.4.9. Define the following Fourier-Mukai kernels:

tion = Ox,.; ® m3€; € DY(Coh(Un—y x Uy)),
Frton = Ox,,, @ mELL € D¥(Coh(Uy, x Up-1))

Definition 2.4.10. Define the functors:

Grusan = Y(Ghs2a) = Ygi , i Dpo1 = Dy
FTin-l—?n = ‘I,(f'rin+2n) = ‘I’f;‘n_,_% : Dy = Dy

Remark 2.4.11. A priori, the functor G, maps D*(Coh(U,_,)) to D*(Coh(U,)).
However, it is easy to see that G, ,, maps the subcategory D,_; = D*(Cohg,  (U,_1))
of D*(Coh(U,-1)) to the subcategory D,, = D*(Cohg, (U,)) of D*(Coh(U,_1)). Sim-
ilarly F},,,, maps D, to D,_;.

It is easy to see that G!,,,, : D,—1 — D,, admits the following alternate description:
Gt ron(F) = Jnn (), F Q&) for 7 € D,,_;. Similarly, the functor Fiion Dy — Dy
can be expressed as follows: F},,5,(G) = Tl ,G®E ) for G € D,,. We will define
the functors W(#!,,,,(1)) and ¥(t:,,,,.(2)) in the next section, by proving an analogue
of Lemma 2.4.7 above.

2.4.3 Constructing functors ¥(a) : D, — D, indexed by linear
tangles: crossings and the framing

Recall the definitions of spherical twists and spherical functors from [8]:
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Definition 2.4.12. Suppose we have two triangulated categories C and D, and a
functor S : C — D, with a left adjoint L : D — € and a right adjoint R : D — C.
Assume that the categories C and D admit DG-enhancements, and the functors S,
R, and L descend from DG-functors between those (this holds for Fourier-Mukai
transforms between derived categories of coherent sheaves, see [8] Example 4.3). Then
the four adjunction maps for (L, S, R) have canonical cones, and we can define these
cones to be the twist T5(1), the dual twist Ts(2), the cotwist Fs(1), and the dual
co-twist Fg(2):

SR —id —» Ts(1);  Ts(2) —id — SL;
Fs(1) —»id — RS; LS — id — Fs(2).

Definition 2.4.13. The functor S is called spherical if the following four conditions
hold:

1. Ts(1) and Ts(2) are quasi-inverse autoequivalences of D;
2. Fs(1) and Fs(2) are quasi-inverse autoequivalences of C;

3. The composition LTs(1)[—1] — LSR — R of canonical maps is an isomorphism
of functors;

4. The composition R — RSL — Fg(1)L[1] of canonical maps is an isomorphism
of functors. '

Theorem 2.4.14. ([8]) Any two conditions in Definition 2.4.18 imply all four.

The usual way to prove that a functor is spherical is to use condition (2) and one of
the conditions (3) and (4). We are going to focus on functors for which a stronger
version of (2) holds:

Definition 2.4.15. A spherical functor S : C — D is called strongly spherical if
Fs(1) = [-3].

It turns out that if we use strongly spherical functors and their adjoints and twists
to construct weak representations of FTan,,, the only relations we need to check are
the Reidemeister 0 move and the commutation relations between non-adjacent cups
and caps; all relations involving crossings follow automatically.

Theorem 2.4.16. Suppose we have a triangulated category Cp, o1 for each k € Zsy;
and for each k > 1, 1 < i < m+ 2k, a strongly spherical functor St o : Cutok—2 —
Croyok. Let LE o be its left adjoint; R o, be its right adjoint; T, (1) its twist,
and T}, . (2) its dual twist. If the following conditions hold:

1. an+2kL:ﬁ2k [-1] ~id

341 %
2. S7n+2k+25m

~ Qi itl-2
+2k = Statont2omiar for 1> 2
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o itl-2 _ 1i ~ T i+l i i+H-2 i+l i
8. Spvak © Linyor = Linyory2 © Sivort2r Smaok © Lonyor = L vokyo © Spvorge for
[ > 2.

then assign:

® U(ghion) = Sppary U(Fsor) = Dol =1 = Ry (1]
o U(th, 04(1)) = To (1), U814 01(2)) = T1 1 (2)
o U(wy,, (1)) = [=1], U(w}, 10 (=1)) = [1]

These functors will give a weak representation of FTan,,.

Proof. Let us check that the relations (1)-(11), (16)-(20) from Definition 2.3.12 hold
for the above choice of functors.

The Reidemeister move 0, cup-cup isotopy and cup-cap isotopy relations hold by the
assumptions of the theorem, and the cap-cap isotopy relation follows immediately
from the cup-cup isotopy relation and the fact that caps are adjoint to cups up to
a shift. The cap-crossing isotopy, cup-crossing isotopy and crossing-crossing isotopy
relations follow then from the above relations and the definition of a twist. The
Reidemeister move II relation T7 o (1)T7 0. (2) = id > T2, 5 (2)T7, 5 (1) follows
from the fact that S; ., are spherical functors, hence T7 .. (l) are equivalences of

categories. The commutation relations with twists (16)-(20) hold because all exact
functors commute with shifts.

The remaining less trivial relations are Reidemeister move I (2), Reidemeister move
III (4) and the pitchfork move (8). For simplicity of notation assume that & = 3 and
denote Y¢ ¢ by Y;, where T stands for L, R, T(1) or T(2).

Reidemeister move I: L,7(1)S5[—1] ~ [1]. We have an exact triangle
L2S1R1Ss — LsSs — LoTi(1)Ss
by the definition of T7(1) and another exact triangle
id[2] — L»Ss — id

since S, is a strong spherical functor. Note that the composition of maps LsS; R1.52 —
L>S5 — id from these two exact triangles is in fact the adjunction counit for the pair
of L,S5; and its right adjoint R;S>. By the assumptions of the theorem, LsS; is
an equivalence, so this composition is an isomorphism. Therefore by the octahedral
axiom we have LyT}(1)Ss ~ id[2], ged.

Pitchfork move: T1(1)S; ~ T5(2)S;. Consider the following diagram:

S1R1Ss S, T1(1)Ss

| |

Sl [—1] —_— SQLQSI[_].} — T2(2)Sl
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where the rows are exact triangles and the two vertical morphisms are induced by the
isomorphisms R;S;[1] ~ id and its dual id ~ L,S;[—1]. The diagram commutes (again
because the adjunction maps for (L,S;, R, S2) are compositions of adjunction maps for
(L1, S1, Ry) and (Ls, S2, R2)), therefore there is an isomorphism 73(1)Ss ~ T5(2)S),
qed.

Reidemeister move III: T;(1)75(1)T1(1) =~ T»(1)T1(1)T2(1). This follows from [8],
Theorem 1.2, since L;S; are equivalences of categories, so the maps L;S;R;S; — id
have zero cones.

O

2.4.4 Checking the tangle relations

We will apply the above Theorem with Cpy2r = Dy, and Si o = G op. So we
will need to prove that G}, ,,, : Dno1 — D, are spherical functors, and check the 3
relations from Theorem 2.4.16. To do this, we will imitate the techniques that Cautis
and Kamnitzer use to prove Theorem 2.4.8.

Lemma 2.4.17. Recall that we have the inclusion of the divisor j,; : Xn; = U,, as
well as the P'-bundle m; : Xpi = Up_1.

1. We have Oy, (X.;) ~ €51 ®&;

s % -1 Sk -1 -1, -1
2. We have wx,, ® jn wy, = Jni(Ei1 ® &) 2wy, , @ mwy,

3. We have (G},2,)" = Frp2,[~1], and (Ghpon)™ = Fropanll].
Proof. For the first two statements, see the argument used in parts (i) and (ii) of
Lemma 4.3 in [27]. The third statement follows from the first two using the argument
in Lemma 4.4 in [27]. O

For future use, we will need the following Lemma (which is an adaptation of Lemma
5.1 of [27] to our setting).

Lemma 2.4.18. For i # j, the varieties X,,; and X, ; intersect transversely inside
U,.

Proof. We will view U, (and X,;, X, ;) as a subvariety of G x® n, and compute
tangent spaces to X, ; and X, ; at points in X, ; N X,, ; to show transversality.

Given (g,z) € G xP n; first we will calculate the tangent space T{; ) (G xZ n). Given
X, € g,X, € n, a curve through (g,z) in G x n with tangent direction (g - X3, X3)
is (g - exp(eX;),z + €X,). Infinitesmally, (g - exp(eX1),z + €X2) = (g,7) in G xZn
provided that X; € b (ie. exp(eX;) € B), and

exp(eX1)(x + eXa)exp(—eX;) ~ x
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Discarding non-linear powers of ¢, the latter translates to = + e(Xs + [X3,2]) = z, ie.
X3 = —[Xy,z]. Thus the kernel of the map g & n = T(y4)(G x 1) = T(4)(G xF n) is
the subspace {(X, —[X,z])|X € b}, so:

gdn
{(X7—[Xw$]) IX € b}

Tig0)(G x B n) ~

Suppose (g,z) € G xP n lies in U,; or equivalently, that & := gzg™' € S,. Now
given (X1, X2) € Tg.0)(G x B n), we have that (X, X,) € T(4,z)(Ur) when the curve
(g9-exp(eX1), z+€X>) lies in U,,. precisely when g-exp(eX;)(z+€eX2)exp(—eX;)-g7' €
S, (infinitesmally). Discarding non-linear powers of ¢, this is equivalent to saying that

g-(z+e(Xo+[X,2]) g7 €8,

Since gzg™' € S, this is equivalent to Xo+[X1, ] € g71-C,-g (recall that S,, = z,+C,
where C,, is a vector subspace). Thus:

{(X1,X2) €g@On| Xp +[X5,3] € g7'Crg}
{(X,-[X,z]) | X € b}
{(X,)Y)egd(C,|[X,Z] +Y €g-n}
g-bd0

Tigz)(Un) =~

~

For the last isomorphism, use the substitution X = —gX,97',Y = g(Xo+[X1,x])g7 .
Recall from the discussion in Section 1.4 of [44] that the map 7 : gdC,, — ¢,7(X,Y) =
[X,Z] + Y is surjective. Hence:

dim(7y .(U,)) = dim(n) + dim(C,,) — dim(b)

In particular, this shows that U, is smooth. Now suppose that (g,z) € X,,; N X, ;.
It is clear that X, ; = U, N (G x® n%), where n' C n is the nilradical of the minimal
parabolic corresponding to 7. The above argument is valid after replacing n with n?,
and we obtain:

{(X,)Y) € g0 Co|[X, 3] +Y €g-n'}

,I'(g,a:)(Xn,i) i g b0

{(X,)Y)eg®Cu|[X, 3] +Y € g -0/}

g-b®0
Using the surjectivity of m, it is clear that T\, ,)(X,;) and T(44) (X, ;) are distinct
co-dimension 1 subspaces in T{g+)(Uy,). Hence T(g4)(Xni) + T(g.0)(Xnj) = T(g,0)(Un),
and X, ; and X, ; intersect transversely in U,,. O

Tig.2)(Xnj) =

Corollary 2.4.19. The following intersections are transverse:

1. 7 (X)) Ny (X, ;) inside U,y x U, X U,y for i # j.

2. 7Ti_21 (X.,,,,i) N 71';31 (—X’n+1,j) inside Un——l X (]n X Un+1~
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Proof. Both statements follow using Lemma. 5.3 from [27]; for the first, we also need
Lemma 2.4.18. a
Now we can show that the functors G%,,, sa.tisfy the conditions of Theorem 2.4.16.
Proposition 2.4.20. We have F: ,, 0 G} o, ~[-1] & [1].

Proof. This is an analogue of Corollary 5.10 from [27], and can be proved using the
same arguments (see the proofs of Proposition 5.8 and Theorem 5.9 in [27]). O
Corollary 2.4.21. The functor G, +2n : Dn-1 = D, is a strongly spherical functor.
Proof. The first condition from Definition 2.4.13 states that we should have a triangle

id = (G, 0,)%GE 15, — [—2], ie. a triangle id — F},,.Gé . ..[-1] — [-2]. This
follows from Proposition 2.4.20.

The second condition states that the natural map (G?, ,.)% — (Gi  5,)5[—2] is an
isomorphism; this follows from Lemma 2.4.17, since (G, ., )% = F¢, 0. [—1], (G 15,)F =
F7:1+2n[1] d

Proposition 2.4.22. Fi ., oGitl, ~id~ FHl, oG ..

Proof. This follows from the argument used in Proposition 5.6 of [27] (here one has
to use the first statement from Corollary 2.4.19). a

Proposition 2.4.23. The following relations hold:

i i Giti-2
Gm+2k+2 0 Gy ior = Ghvor oGy, for 1> 2.
i+l—2 i i+l i i+H-2 . i
- Gk O F o ™ m+2k+2Gm+2k+27 G0 Foior = F, m+2k+2Gm+2k+2 forl>2

Proof. This follows from the argument used in Proposition 5.16 of [27] (here one has
to use the second statement from Corollary 2.4.19). a

Now we have verified the conditions of Theorem 2.4.16, so we introduce the twists
T:, 2. (1) and construct a weak representation of FTan,,.

Definition 2.4.24. Define the functors T7,,,,(1) and T, ,,.(2) via the distinguished
triangles:

77:n+2‘n( Tn+2n)R id — Trirz-f-?n(l)a va't+2n(2) —id — Gin+27z(Gﬁn+27l)L
Theorem 2.4.25. The assignments
\Ij(g:n+2'n,) = Gm+2n7 lII(-)‘l'f'fn+2'n.) m+2n

le(tm-lQn( )) = m+‘7n(1) ‘I,(tm+2n(2)) +2n(2)
lll(wm_}_.zn(]_)) = [_1]7 \If(wm-i»-?n(_l)) = [1]

give Tise to a weak representation of FTan,, using the categories Dy. O
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2.4.5 Functors ¥(a) : D, — D, indexed by affine tangles

At this point, we have constructed a functor V() : D, — D, for each framed linear

(m + 2p,m + 2q)-tangle . To extend this construction to framed affine tangles, it

suffices to construct a functor ¥(s["*3") : D,, — D, satisfying the relations in Lemma

2.3.10. Define S,(F) = F ® &40, and let ¥(s*T2") := S,. The relations that we
must check are the following:

Proposition 2.4.26. The following identities hold, where 1 < i < m+2n—2,1 <
p< 2

7 12
b Sﬂ—l o Fm+2'n = Fm+2n 0 Sﬂ
b3 ~ Y
hd Sn © G7n+2n — Gm+2n O On—1

L4 Sn o Trl;1+2n(p) = T:'rb+2n (p ) © Sﬂ'

m~+2n—1 m+2n—1 m+2n—1 ¢ m+2n—1
o Koy oS, 0T isy (2)oSpo0 Toion (2) = Fiby

m-+2n—1 m+2n—1 m+2n—1 ., r~ym+2n—1
d Sn © Tm+2n (2) © Sn © Tm+2n (2) ° Gm+2n - Gm+2n

Proof. The first three identities are clear. To prove the fourth identity, we calcu-
late as follows (the last identity is proved similarly). Let Q € D,; since we have
— -~ 2n—1,L n— o 2n—

Tt 1 (2)Q ={Q = Grign oGy (Q)} ~ {Q — Gritn o Fifon Y (Q)1]}
(by Lemma 2.4.17 part 3), we compute:

Grion o Pt Q@ Enlan)

= Gﬁigz_l © (7T71=7n+27l—1*(i:,m+2n~l(Q oY gr_r—zi?n) Y 8;_1‘_27‘))

=~ Z'n,m+2n—1*[gmHn—l ® ”:;,,m+2-n—17rn,m+2n—1* (i;,m+2n—1 Q® ‘S;zim)]
Toion1(2) 0 8a(Q) = {Q ® Eban — Grilin H o Fpitn ™ (Q ® €,.1,,) 11}

m+2n—1 m+2n—1 -3 ok
Fm+2n o S'm—}-Zn © Tm+2n (2) o m+2n(Q) =~ {7Tn,m+2n.—1*(gm+2n ® ln,'m+2n—l Q) —
_9 o .
71-77-:"71-4-2"—1*(5’114—27; & zn,m+2n_13n,m+2n—1*
* -2 ck
(8m+2nv1 ® ﬂn,m+2n—-1ﬂ-n,‘m+2‘ﬂ*1*(8m+2n. ® z-n,m-!—Zn—l Q))) [1]}
Note that we have an exact triangle Op, (=X, mi2n—1)[—1®F = i} 1 yon_1inmi2n—10F —

F, and that Oy, (—Xpmi2n-1) = Emton_1 ® Emtan- This gives us the following exact
triangle, where we abbreviate R = T, 120-1+(Epron @ inmion_1 Q)"

-1 *
Tn,m+2n—1x (Sm-l—Zn ® 7rn,m+2'n—1R)
_9 " . *
- 7r7",m+2n-1*(8m+2n & 7’71,m+2n—]ZTL,'m+2‘n—1*(8’""4'2‘"»—1 ® Trn,m+27z—lR))

_92 *
- 7rn,7n+2n*1*(gm+2n ® 8m+2n—1 ® 7r'n,,m+'271—17?’)
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We claim that 7 m2n—14(Emton ® T mmi2n—1R) = 0. This implies that the second and
third terms in the above triangle are isomorphic; so continuing the above computation
(and using the isomorphism 7, ;m42,—1.(A ® T maon-18) = B ® Tnmion-—1.A4):

F;nig: ! o m+2n Tm—:-227?_ (2) o ‘m+2n(Q) {Trn rn+2n—l*( +2n by zn m+2n— IQ)
T, m+2n— 1*( m+2n ® €m+2n—1 Y ’R'n m+2n—17n, m+2n—1*( +2n ® 7’n m+2n— IQ))[ ]}

= {71' n m+2n—1*( +2n ® iy, ;m+2n— 19) = Tn,m+2n— 1+(Em m+2"n ® Emran-1)
® T m+2n—1*( +2n ® zn m+2n— IQ)[l]}

Here note that since 7, my2n—1 18 proper, m, n4+2n—1« commutes with the functors of
Grothendieck-Serre duality on the categories Db(Coh (X, m42n-1)) and D¥(Coh(U,,_1)).
We have wx, . o0 1 = Emt2n1 ® Elan, and wy, , ~ Oy, _, since U,_; is symplectic.
Thus (noting dim(X,, mi2n-1) = dlm(U ~1) +1):

7rn m+2n— 1*( +2n ® gm—}—?n 1)[ ] — 7rn,'rn+2n—l*(RHom(‘gm-f-?n) wXﬂ,m+2n_1)) [1]

=~ Rﬂom(ﬁn,m+2n—1* (gm+2'n) 3 wUn,l ) = 7Tn,m+2n—1* (8m+2n)v

Consider the locally free sheaf £ on U,_1 = S, Xs1,,9. T Pmt2n—1,m+2n cOrrespond-
ing to Ker(z); it is clear that the associated P! bundle is X, mion-1 (ie. P(E) ~
Xn.m+2n—1)- Under this identification, the vector bundle &,,,2, on U,_; is isomorphic
to the relative O(1) on P(£). Therefore, 7, mi2n—14(Emson) =~ €. Returning to the
above computation:

FnTié?r?_lo mi2n © Tian ~1(2) 0 m+2n(Q)’”

{7Tn m+2n— 1*( +2n ® ?‘n m+2n— IQ) = Tnm42n— 1*( +2'n ® 7’n ,m+-2n— IQ) ® Ker(z) }

A\
Note that from the exact sequence 0 — £\, — T mian—1Ker(z)Y — Enton1 — 0,
we have an exact triangle £.3,, ® i 40,12 = Enton ® T myon_1(Ker(2))Y ®
. —1 — .
inmton-12 = Emyon | RE2 4o @ mron—1 Q Taking the push-forward under 7, m+2n~1
gives us the exact triangle 7, ion—14(&,, +2n ® iy 420 19) = Tamizn-14(E, +”n ®
Zn,m—{-Qn—l Q) ® (Ker( )) — Tn, m+2n—1*( m+2n— 5._+2n ® 7’71 m+2n—1 Q) Thus:

{ﬂ-n,’m‘f*zﬂ—l*(g_?lﬂn ® Z: ;m+2n—1 Q) - 7r”l m+2n—1x (57;—2{-2n ® 7’:7. m+2n— IQ) ® KBT(Z)V}

=~ Ty mton—1e(Emtanct © Emtan ® inmion-12) = Tomizn-1:(Enton ® in mi2n-19)
~ m+2n—1 Q
m+2n
In the second equality above we have used the fact that the line bundle £}, ; ®
EL o, is trivial when restricted to the divisor X, ;n42,—1. Using the fact that /201 ~
F”ng,’l“lT,Z‘fgf ![1] (Reidemeister I move), we conclude that F/" 2"~ 108, o T 2n=1(2)0

K ome1 m+42n m+2n
Sy o Frvfan—l o Tri2n—1(1), as desired.

The proof of the last relation is similar. 0

To summarize:
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Theorem 2.4.27. The assignments

lI’(gvrin-b—2n) m-|-2n’ qj(-ﬁm+2n) = fn+2n
U(tmron(1) = Trgan(1), ¥ (th120(2) = Tri2n(2)

\I;('wm+2n(1)) [ ] ( m+2n( 1)) - {1]
U(smizn) =

gtve rise to a weak representation of AF Tan,, using the categories Dy. O

2.5 The exotic t-structure on D,

2.5.1

First we recall that the construction of the exotic ¢-structure on D,, from [16] is given
by the following. Let B,;; denotes the braid group attached to the affine Weyl group
Wass = W ix A, where W is the Weyl group of g = sl,,42,, and A is the weight lattice.
Let BS}’}‘ C Bqyys denote the braid group attached to the W ff‘?‘ =W x Q where @) is
the root lattice. Denote by Baf ; C BS}’}‘ denote the semigroup generated by the lifts
of the simple reflections 5, in the Coxeter group W(SP}‘

Using Bezrukavnikov and Mirkovic’s construction (see Sections 1.1.1 and 1.3.2 of
[16]), there exists a weak action of the affine braid group B,ss on D,, (i.e. for every
b € B,;y, there exists a functor W(b) : D,, — D, such that U(b1by) =~ ¥(bh;) o U(bs)).
This action is related to that from the previous section using the following result,
which is easy to check.

Lemma 2.5.1. B,s; can be identified with the group of all bijective (m + 2n, m + 2n)
affine tangles (i.e. where each strand connects a point in the inner circle with a point
in the outer circle). Under this identification, the action of Bass on D, coincides with
the action coming from Theorem 2.4.27. O

Following Bezrukavnikov and Mirkovic (see section 1.5 of [16]), the exotic ¢t-structure
on D,, is defined as follows:

D20 = {F | RT(¥(b"1)F) € D=*(Vect) V b e Baff}
D0 = {F | RT(¥(b)F) € D=°(Vect) ¥ b € B}, ,}

By definition, the functors that correspond to positive braids are left t-exact, and
the functors that correspond to negative braids are right t-exact. In particular, the
functor R, that corresponds to the braid r, that is both positive and negative (since
it has no crossings) is t-exact.
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Proposition 2.5.2. The functor G, ton : Dno1 — Dy, is t-ezact with respect to the
ezotic t-structures on the two categories.

To prove this, we will need the following two lemmas:

Lemma 2.5.3. Given b € B\ 17 considered as a bijective (m +2n — 2,m + 2n — 2)-
tangle, there exists bijective (m +2n—2,m+2n— 2) tangles €;(b), n:(b) € B, such
that b © fm+2n = m+2n o E’l(b)) b- o f:;n.+2n = m+2n o ﬂz(b) 1‘

Proof. Using the cap-crossing isotopy relation (9), we may define €t iom2) =
ni(tm+2n 2) tjm+2n lf] > Z and e'L( m+2n— 2) (t?m+2n 2) tjm+2n lf] <i—2. Also
define €(t4,, 9,_2) = 1i(t%, 12n_2) to be the ta.ngle with a strand connecting ((x,0) to
(2¢,0) for k # ¢ — 1,4, and a strand connecting ((;—1,0) to (2(i42,0) that passes
beneath a strand connecting ((;42,0) to (2¢;_1,0). It is straightforward to check that
with this definition, €;(), .0, o) = 7 (t,, 1on_s) € By,

Given b € B, choose a decomposition b = 2 pon—o(1)0t2 0 (1) o- -0tk o H(1);
clearly €;(b) = fz(tm+2n—2(1)) 0+ 0 €t on2(1)) and ni(b) = nt(tm+2n— (1))o---0
i (L 0n_o(1)) satisfy the required condition. a

Lemma 2.5.4. Given F € D2°,G € D=0, we have RT((Gta)RF) € D2°(Vect)
and RT((Gl,12.)*G) € DY( Vect)

Proof. Let F € D2°. Since:
Gt M (Empan—1]) = Fpin  Emion = Tomazn—1s (0 mion_10v,) = Ou,_,
we have that: |
RE((Grion™)RF) = RHom((Gri3n ™) Emanl 1), (Grion HFF)
~ RHom (Epi2q(—1], Gatan (Giin )R F)

2 RI(E420[1] ® GRITH G F)

We will prove that &£,,,[1] ® G:ﬁié;:‘l(G,'gig;}‘ )EF € D2° which will imply the

n

first statement of the lemma. Since Gﬁiglﬁ is strongly spherical and (Glton—1)l ~
(GKSZ‘])RPL it suffices to prove that €1, ® Guion (G ) F ~ 630, ®

G-l (Grisn- R F(2] € D271, We have a distinguished tnangle T 1 (2)F —
F = Gﬁigx I(G;’:“ﬁggz_l)Lf ; and hence a distinguished triangle &}, QT2 1(2)F —
> - o o @ Gton=l(Grsn—1)LF. The functor £, ,, ® - corresponds to the braid
smion which leaves the first m + 2n — 1 vertices in place, and winds the last vertex
counter-clockwise around the circle underneath the other strands. Using the iden-

tity r,",figz = spin o ¢t (2) o -+ -t} 10n(2), We see that the functors &), ® -

and o @ Tian=1(2) are left exact since they correspond to negative braids. Thus

o o @T 2 (2).7-' ,Emion®F € DZ°, using the long exact sequence of cohomology
we obtain that £, ® G~ (Gisn1)LF € D271, as required.
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The proof of the second half of the lemma follows the same logic. Let G € D=0, First
we show that (G}, ,5,)"& ~ Oy, ,. By definition, FJ,,,.& ~ m,1.(i% 6 ® E71).
Since the map 7,1 : X,,1 — U,_1 is a P! fibre bundle, we have T 1w, , [dim X, 1] o
wy,_, [dim U,_;]. Since U,_; is a symplectic varietv, wy, , ~ Ou,_,; 80 Ty, 1*CUX,,1 ~
Ov,_,[—1]. We will show that wx, , ~ iy ;£:®@&; "; it will then follow that (G2, ,,) & ~
Fl 0.61(1) ~ Taiawx, , [1] = Oy, _,, as claimed. Under the embedding of the divi-
SOr i1 @ Xpn1 <> Uy, the adjunction formula gives wy, , =~ iy ;(wy, ® Oy, (X)) =~
it 10y, (Xn1).

It then follows that:

RF((G'}n‘FQn)Lg) RHom((G}n+2n)L£17 (Gm+"n)Lg)
= RHOHI(El, Gm+‘2n(Gm+2n)Lg)
= RF(SI ® Gvn+2n( :’r:igz_l) g)
The functor £; ' ® - is right exact as it corresponds to the positive braid s}, ,,, that
leaves the last m + 2n — 1 vertices in place, and winds the first vertex counter-
clockwise around the circle underneath the other strands. Using the exact triangle

T} on(2)F = F = GL o (Grton 1)’“}" we deduce G}, o, (Git2n=1)L is right exact
since T}, 5,(2) is right exact. Thus £ @G, 5, (Giin~LG € DSO) as required. [

Now we are ready to prove Proposition 2.5.2.

Proof. The functors G*, +2m are conjugate by the t-exact, invertible functor R,; thus

it suffices to prove that G}, is left t-exact, and that G/nT5""! is right ¢-exact, or

equivalently that (G}, ,,)" is right t-exact and (Grt2"")% is left t-exact

Let F € D5°. To prove that (G}, ,,)" is right ¢-exact, we must show that (G%,,,,)tF €
DY

RE(Y(0)(Gryy00) " F) € D=°(Vect) V b € B, (2.2)

By Lemma 2.4.17 we have (G}, ,,)" ~ F},,.[1] and by Lemma 2.5.3 we know

that for any positive braid b there is a positive braid €;(b) such that W(b)F., ., =~
F} .Y (€ (D)), so (2.2) is equivalent to

RU((Gyy20) " (i(b)F) € D=°(Vect) ¥ b € B, (2.3)

The braid ¢;(b) is positive, so ¥(e;(b))F € D=0, and (2.3) follows from Lemma 2.5.4.

The proof that (GIr5»~1)E is left t-exact follows analogously from Lemmas 2.5.3 and
2.54. O

Definition 2.5.5. Let D2 denote the heart of the exotic t-structure on D,,.

The following theorem is the main result of this section:
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Theorem 2.5.6. The functor G, sends irreducible objects in D3_, to irreducible
objects in DY.

Proof. This follows from Proposition 2.5.2 and the Theorem in Section 4.2 of [16]. O

2.5.2 Irreducible objects in the heart of the exotic t-structure
on D,

Definition 2.5.7. Let an affine crossingless (m,m + 2n) matching be an affine
(m, m + 2n)-tangle whose vertical projection to C has no crossings, with the black-
board framing. Let an unlabelled affine crossingless matching (m, m + 2n)-matching
be an affine crossingless matching where the m inner points are not labelled. Let
Cross(n) be the set of all unlabelled affine crossingless matchings.

We will describe the irreducible objects in the heart of the exotic t-structure on D,
using the functors constructed in the previous section.

Lemma 2.5.8. We have |Cross(n)| = (™+*").

Proof. 1t suffices to construct a bijection between unlabelled affine (m, m+ 2n) cross-
ingless matchings and assignments of m +n plus signs and n minus to m + 2n labelled
points on a circle. Given such an assignment of pluses and minuses to the points
(2,0), (2Cm42n,0), - -+ , (2¢F37~1,0), for each minus, move anti-clockwise around the
circle and connect the minus to the first plus such that the number of pluses and
minuses between these two points is equal. After connecting the m remaining pluses
on the outer circle to the m unlabelled points on the inner circle without crossings,
we have our desired unlabelled affine (m, m + 2n) crossingless matching. O

Lemma 2.5.9. Let a be any affine (m, m + 2n)-tangle, from which we obtain « by
forgetting the labelling on the inner circle. Then the isomorphism class of the functor
V() depends only on o.

Proof. It is easy to check ¥(r,,) is isomorphic to the identity on Dy; the result follows.
a

Thus given a € Cross(n), we obtain a functor ¥(a) : Dy — D,. Let ¥, = ¥(a)v
denote the image of the 1-dimensional vector space v in Dy ~ D®(Vect) under the
functor ¥(a).

Proposition 2.5.10. The irreducible objects in the heart of the exotic t-structure

on D, are precisely given by Vo, as o ranges across the (™7>") unlabelled affine
(m, m + 2n) crossingless matchings.
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Proof. 1t follows by induction that every affine crossmgless (m,m + 2n) matchmg
can be expressed as a product g,z 5,0+ 0 g,y 0 gyio. Thus ¥, ~ Gin 9,0+ 0
G2, ,0 G ,v; by Proposition 2.5.6, \Ifa is an irreducible object in the heart of the
exotic t-structure. It will follow from the arguments in the next section that these
irreducible objects are distinct. Since K°(D2° N DY) ~ K9(D,) ~ K%Coh(B,,)),
and K°(Coh(B,,)) has rank (""‘;2"), these constitute all the irreducible objects in the
heart of the exotic ¢t-structure on D,,. O

2.5.3 The Ext algebra

The goal of this section is to describe the space Ext®( @ V,). Let m > 0
aeCross(n)

(the m = 0 is handled in [6]). Note the following description of the right adjoint

functor to ¥(v), where v is an affine (m + 2p, m + 2¢q) tangle. Denote by ¥ the affine

(m 4+ 2g, m + 2p) tangle obtained by inverting ~.

Lemma 2.5.11. The right adjoint to ¥ () is ¥(¥)[p — gl
Proof. From Section 2.3, the right adjoint to ¥(v) is ¥(¥)[p — g], when v = ¢ .,

FE ons 8 10n(1) or 5 5.(2). The result follows, since any tangle is the composition
of these tangles, and if v =y, 0 2, ¥ = Y2 0 V1. O

Now we will compute Ext*(¥,, ¥3) as a vector space, where «, 3 € Cross(n).

Ext*(¥q, ¥5) = Ext*(¥(a)y, ¥(8)v)
~ Ext*(v, ¥(& o B)[—n]v)
~ W(ito f)—nlu

Let A € D?(Vect) be a complex concentrated in degrees 1 and —1, with dimension 1
in those degrees.

Lemma 2.5.12.
A ifi=j
U(fir0 v v ifli—j]=1or {i,j} = {Lm+2}

0 otherwise

Proof. Firstly if i = m + 2 or j = m + 2 and m > 0 we can conjugate f,_,o g, 2
by a power of r,,, so it is safe to assume that 1 < i,7 < m + 1. From Section 2.3,
U( g 10)0 = i1, (E;®Ox, ;) ~ 41,54(E;), since my ; maps X3 ; to the point Sy X, T Bo.

‘I’(f:;wz © g];n—G—Z),U = ‘I'(fzwz)(’il,y*(g i)
~ m “[11 L(h]*(g )® +1)] ~m u[llz(h ]* (&; )) ® gz+1]
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Since the below conditions defining X;; force z = 2; (the standard nilpotent of
type (m + 1,1) acting on the Jordan basis {e1, - ,€my1, f1}), Vi = {e1,--- ,ex) for
1<k<i—1,and Vy = (e, - ,ex1, f1) for k > i+ 1, we have:

Xi={0CcViC---CViey CV; C Vi1 C-+- C Vi), 7}
x € 81,zVip1 C Vimy,2Vi C Viy} = P(Viga/Vi1)

Thus the intersection X;; N X4, consists of the single point {(0 C V; C --- C
Vint2), 21}, where Vi = (e1,--- ,e;) for 1 < k < i, and Vi = (ey,--- ,ex_1, f1) for
So in the above equation, if 7 = j since we have an exact triangle F ® Oy, (—X1,:)[1] —
it j1wF — F for F € Coh(X,,;); and that Oy, (—X;;) ~ &' ® E41- Thus we have
an exact triangles &,1[1] — i} ;i14& — &, and hence Oy, [1] = (i} j51,:&) ® EL—
& ® &Y. Noting that & ® £ is O(—2), and using the long exact sequence of
cohomology:

s —> RF’(OUl[l]) — RI‘"((i;"iilvi*&) @ S;_ll) — RI”(SZ ® g,;_ll) — RFH—l (OUI[ID —> e

Thus RI¥((i} 41,:&) ® €33) = 0if i # 1,0, —1; computing the terms in the above
exact sequence we get

0 C— RIY((1] 21,u&) ® L) > 0= 0>
— RI°((5] 1,6&) ® EZ4) = 0 = 0 = RTY((8} &) ®ELY) - C > 0

Thus ¥(fr42 © Gmi2)v = A

If |i — j| > 1, since ] ;i) j.F = 0 for any F € Coh(Xy;) (as X1;NX;; = 0), we obtain
U(fms2 © 9J1;1+2)2 =0.

If |i — j| = 1, denote by X, ;; the point X;; N Xy ;; denote 4} ; : X1,; — Xy15,4); :
X145 <> X145 Then i;,i(il,j*gj) = i’l,j*(i'l*,igj) = i/l,j*oxl,i,j? SO lI’(ffm»z © 97jn+2)1’. =
T (8,52 Oy ® Ey) = 0. 0

Definition 2.5.13. Define an m-link as an affine crossingless (m, m)-tangle, where
both the m inner points, and the m outer points are unlabelled. If each of the m
points in the inner circle are joined to m points in the outer circle, say that the m-link
is “good" , and otherwise (i.e. if there are cups and caps) say that the m-link is “bad".
If an m-link 7 is good, denote by w(+y) the number of loops contained in ~.

Note that if 7 > 0 no loop can enclose the origin and a good m-link v is determined
up to an isotopy by the number w(y). Given unlabelled affine crossingless (m,m +
2n) matchings «, 3, we can construct an m-link & o f; furthermore, any m-link ~y
corresponds to a functor ¥(vy) : Dy — Dy. It follows from Lemma 2.5.12 that:

Proposition 2.5.14. Let m > 0. If the m-link «v is bad, then VU(y) is zero. If the
m-link v is good, then W(y) is isomorphic to tensor multiplication by (A)®*(),
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Proof. The m-link f} 049!, 5 is good, with w(f} ,00% ,,) =1; and U(f ,006%,.0)
corresponds to multiplication by A. If |i—j| = 1, the m-link fi  ,0g/, +9 18 good, with
w(fi 007 5) =0; and W(fi 090 . ,) is the identity functor Dy — Dy. If |i—j| > 1,
the m-link f,,, 0 gj,.» i bad, and W(f},,, o g}, ,»)u = 0 for any w € Dy. Call an
m-link “basic" if it is of the form f}, , o ¢, ,,; then any m-link v can be written as
a composition of basic m-links. The conclusion then follows from our knowledge of
() for basic m-links 7, and the fact that m-link  is bad iff each expression of v in

terms of basic m-links contains at least one bad basic m-link. a

Note that the Z-graded algebra Ext’(\IJg:nH) = A[-1] is isomorphic to C[z]/(z?),
where z has degree 2. Indeed, this is the only possible algebra structure on A[—1]
which respects its grading. Thus:

Theorem 2.5.15. Let m > 0. For any «, 3 € Cross(n) we have an isomorphism of
vector spaces:

EﬁL’t.(\I] N ) - A@w(c’voﬂ) [_n] Zfd o ﬂ is gOOd
mT 0 otherwise

a

Now we will give a conjectural description of the multiplication in the Ext algebra.
It suffices to describe the map

Ext® (W, Uy) x Bxt* (U, 0,) — Ext*(Vg, ¥.,)
AEB) ] x AP [—p] — §A¥E[_p]

Consider a sequence of links, the first of which is a disjoint union of & o 8 and o+,
and the last of which is & o~. Each subsequent link is obtained from the previous
link by performing a “surgery”: pick two strands between i and j in 8o 3, and replace
them with two radial lines at ¢ and 7, so that the resulting tangle has no crossings. It
is clear that at each step, there is at least one way of performing a surgery operation.
Depending on whether the strands between 7 and j are part of a circle, a line, or an
arc (i.e. a cup or a cap), then diagrammatically each surgery operation corresponds
to one of the following. We also write down a corresponding map between the Ext
spaces (note there is a unique map, up to scalar, which respects the grading).

e Merging a line and a circle, into a line: C® A[-1] - C

Splitting a line, into a line and a circle: C[-1] - C® A

Merging two circles into one circle: A ® A[-1] — A

Splitting one circle into two circles: A[-1] = A® A

Merging two lines into two arcs: C — 0
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e Merging two arcs into two lines: 0 — C

e Merging a line and an arc, into (a different) line and an arc: 0 — 0
e Merging a circle and an arc, into an arc: 0 — 0

e Splitting an arc, into a circle and an arc: 0 — 0

By iteratively applying these “surgery” operations (so that all the cups and caps in
and S are replaced by radial lines), we arrive at the desired map.

2.6 Further directions

2.6.1 Decategorification

Denote by V the 2-dimensional representation of sl;. In section 6 (see Theorem 6.2
and Section 6.4) of [27], Cautis and Kamnitzer prove that:

K O(Coh(Ym+2n)) ~ | @mtin

Recall also that there is a map, which is compatible under composition (see Section
6.1 of [27] for an explicit description).

¥ : {(k,])-tangles} — HomU(s;z)(V@”'c , Ve

In Section 6 of [27], it is proven that for each (m + 2p, m + 2¢)-tangle «, the functor
W(a) corresponds to 9(c) on the level of the Grothendieck group. In fact, Cautis and
Kamnitzer work with a g-deformation of this picture (using C*-equivariant sheaves,
and representations of U,(sl2)); however we will not need to work in this generality.

Under the natural embedding U,, — Y;,,2, (constructed in Section 2.1), we have a
natural map:

K°(D?%) = K°(Cohg, (U,)) = K°(Coh(Yintan)) = VO 2"

It can be shown that under this map, K°(D?) is identified with the m weight space in
y@m+2n (which we shall denote V[%”””). After taking the image of the maps ¥(a)
in the Grothendieck group (where « is an affine tangle), we obtain:

P : {(m + 2k, m + 2l)-affine tangles} — Hom(V[f’lT”k, fo’lﬁ"”l

Now the images of the irreducible objects ¥(a) in D? will form a basis in the (m+n, n)
weight space in V®™+2" We expect that this will coincide with the canonical (or
perhaps the dual canonical) basis introduced by Lusztig; this is the subject of work
in progress. This should follow once we have an explicit description of the map zﬁ
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2.6.2 Applications to modular representation theory

Recall, from the introduction that, Theorem 5.3.1 from [17] (see also Section 1.6.2
from [16]) states that there is an equivalence:

D*(Cohs, , (8k)) = D*(Mod/**(Uy))

Further, the tautological t-structure on the right hand side corresponds to the exotic
t-structure on the left hand side. Thus, by studying the irreducible objects in the
heart of the exotic ¢-structure on the other side, one may derive information about
irreducible objects in Mod/#*(Uy). In the case where e is a two-block nilpotent, our
results give a fairly explicit description of the irreducible objects in the former category
(by repeatedly applying the functors G, .,,). By studying what these functors look
like on the other side of the above equivalence, we expect that it will be possible
to give an explicit, recursive construction of the irreducible representations lying in
Mod/¢*(Uy), along with formulae for their dimensions and characters; this is the
subject of work in progress.

More precisely, the dimension of the modules should be related to computing the
Euler characteristic of the corresponding exotic sheaves (after tensoring by a line
bundle); and the characters should correspond to computing the Euler characteristic
in the equivariant category (where the group acting is a maximal torus inside the
centralizer of the nilpotent). Computing these Euler characteristics is related to com-
puting the image of the irreducible objects in the Grothendieck group (the problem
discussed in the previous section). It would also be interesting to describe the pro-
jective covers of the irreducibles, and give a description of Mod/9*(Uy) as modules
over a diagram algebra; this would be related to computing the Koszul dual of the
arc algebra described above.

2.6.3 Categorifying invariants for affine tangles

From the discussion in the above subsection, we have constructed a map:

W : {(m + 2k, m + 2)-affine tangles} — Hom(V[%"“k’ V[%nwt)
This map is categorified by the functors ¥(a) : D, — D, between categories of
coherent sheaves on Springer fibers.

In [41] and [28], Khovanov and Chen construct a categorification of the invariant
P(a) : V™ — V@ using categories of modules over certain diagram algebras; the
functors which categorify the action of the generators ¢, f: and ¢ (1), (2) correspond
to tensoring with certain (complexes of) bi-modules. These diagram algebras used
there are very similar in nature to the Ext algebras we have described; however, the
crossingless matchings that appear are drawn on a line (instead of a circle).

We expect that it will be possible to categorify the maps 3, : VO™t —y yOmt2
by using categories of modules over our diagram algebras. We know that these cat-
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egories of modules categorify the weight spaces; and it remains to show that the
maps g%, fi (1), (2) and r, correspond to tensoring with certain (complexes of) bi-
modules. This categorification should be equivalent to the one constructed above
using coherent sheaves (after looking at the Koszul dual picture); however, it should

be possible to develop the theory independently, without reference to the theory de-
veloped here.
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Chapter 3

Stability conditions for subquotients
of category O

3.1 Introduction

Let g be a semisimple Lie algebra over C, with a fixed triangular decomposition
g=nt®hdn". Then the BGG category O is the category of all finitely generated
U(g)-modules that are h-diagonalizable and locally U(n,)-nilpotent. This category
splits into blocks in accordance with the action of the center Z(U(g)) of the enveloping
algebra; we will be interested primarily in the principal block Oy.

Consider the natural filtration on U(g) (where 7,22 ---z; € U(g)S if z1,--- , 7, € ¢
and i < j). Given a module M € O, pick a finite-dimensional vector space M, which
generates it, and let M; = (U(g))S*M,. Then it can be shown that for ¢ sufficiently
large, the function p(7) = dim(M/;) is polynomial, and that its leading term does not
depend on the choice of filtration. The degree of the polynomial p(z), which we denote
by GK(M), is known as the Gelfand-Kirillov dimension of M. We denote the leading
term of p by LC(M); in fact, we will be more interested in the quantity LC(M), which
a variant of LC(M) introduced in Section 3.2.1.

Given an integer d, let OF% (resp. Og?) be the subcategories of Oy consisting of
modules with Gelfand-Kirillov dimension at most d (resp. strictly less than d). Let
O¢d be the Serre sub-quotient OF%/Ose. 1t is known that there the braid group By
acts on the derived category D*(0,); here the simple reflections act via wall-crossing
functors. It can be shown that the braid group action factors through to the quotient
categories O5%/O5?. Here we will use this datum to construct an example of “real
variations of stability conditions” (which essentially amounts to checking a number of
compatibilities between the braid group action and the leading coefficient functions);
now we proceed to give some more precise definitions.
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3.1.1 Real variations of stability conditions

Inspired by Bridgeland’s theory of stability conditions, in [7], Anno, Bezrukavnikov
and Mirkovic define the notion of a “real variation of stability conditions" on a tri-
angulated category. They then give an example of this construction, using exotic
t-structures on the derived category of coherent sheaves on a Springer fiber. We
briefly recall the main definition (see Section 1.4 of [7] for more details).

Definition 3.1.1. Let C be a finite type triangulated category, and let X be a discrete
collection of affine hyperplanes in a finite-dimensional, real vector space V. Let Alc
(the set of “alcoves") be the connected components of V° = V\X. For each affine
hyperplane in ¥, consider the parallel hyperplane passes through 0, and let ¥, be
the set of those hyperplanes. Fix a component V* of V\X;;,. Given two alcoves
A, A’ € Alc which share a co-dimension 1 face, we say that A’ is above A if, after we
shift the hyperplane so that it passes through 0, then A’ lies on the same side of the
hyperplane as V*.

A “real variation of stability conditions” on C consist of a polynomial map Z : V —
(K°(C) ® R)* (known as “the central charge"), and a map 7 from Alc to the set of
bounded t-structures on C, such that:

e Let A € Alc, and let M be a non-zero object in the heart A of 7(A). Then
(Z(x),[M]) >0 for z € A.

e Let A’ € Alc be another alcove sharing a co-dimension one face H with A, and
lying above A. Let .4, be the Serre subcategory consisting of objects M such
that the polynomial function z — (Z(x), [M]) has a zero of order at least n on
H. Also define C, = {C € C | H} 4(C) € A,}. Then the truncation functors
for 7(A’) preserves the filtration by C,, and the two t-structures on C,/C,.;
induced by 7(A) and 7(A’) differ by a shift of [n].

Anno, Bezrukavnikov and Mirkovic construct an example with C = Db(Cohge(g’)) in
[7]. Here e is a nilpotent, B, is the corresponding Springer fiber, and S is the pre-
image to the Slodowy slice at e under the Springer map. The hyperplane arrangement
¥ in question is the set of affine co-root hyperplanes in V' = hi. The central charge
Z 1 h* — (K°(C) ® R)* is defined to be the unique polynomial map such that given
F € Cohg,(S), A € A*, Z(\)[F] is the Euler characteristic of F @ O(\). The map
7 from Alc to the set of bounded t-structures on D®(Cohg,(S)) is constructed in
Section 1.8.2 of [16]; in Proposition 1 of [7], it is proven that the axioms for a real
variation of stability conditions are satisfied.

In [7], the notion of a real variation of stability conditions were introduced in order to
study the space of Bridgeland stability conditions for the category C. For a detailed
exposition of Bridgeland stability conditions, we refer the reader to Bridgeland’s ex-
pository paper, [22]; see also [23] and [24] for some related work.
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3.1.2 Summary

In our example, the hyperplane arrangement X will be the set of linear co-root hy-
perplanes in V = h}. Given A € AT, M € Of, the central charge map Z is defined
by letting Z(A)[M] to be equal to LC(TpnM) (here Tp_,» denotes the translation
functor); it takes some work to show that this gives rise to a well-defined polynomial
map. Recalling that Alc is in bijection with W, the map 7 can be defined using the
action of the braid group By on C = D?(Og): for each w € W, let 7(w) be the image
of the natural ¢-structure on C under the automorphism ®(w) (here w is the lift of w
to the braid group). We claim that this data satisfies the axioms for a real variation
of stability conditions.

In Section 3.2, we start by rigorously defining the categories involved, the quantity
LC(M) and the action of the braid group By,. We then state the main result (which
was sketched briefly in the last paragraph). We conclude the section by proving
that the function Z(\)[M] (defined above when X is dominant) can be extended to
a polynomial map. In order to do this, we give a way of computing the leading
coefficient LC(M) by studying the Taylor expansion of the character of M. As a
result, we are also able to show a certain compatibility relation between the braid
group action and these leading coefficient polynomials.

In Section 3.3, we prove that the two conditions stated above are satisfied. The
first condition almost follows from the results of Section 3.2; however, we need some
additional machinery to show that (Z(z), [M]) is strictly positive (and not just non-
negative). To show the second condition, we examine how translation to the wall
interacts with these leading coefficient polynomials. We appeal to the theory of
harmonic polynomials to the show the categories .4, and C, are empty if n > 2.

3.2 Subquotients of category O.

3.2.1 Gelfand-Kirillov dimension and leading coefficients.

Let Op be the principal block of category @. Given a module M € O, recall that
its Gelfand-Kirillov dimension is defined as follows. Consider the natural filtration
on U(g), where U(g)=! denotes the subspace of U(g) spanned by products z,z, - - -
with K <iand z; € g.

Let M, C M be a vector sub-space which generates M as a U(g)-module, and let
M,; =U(g)S*- M. Then:

Proposition 3.2.1. There exists a polynomial p such that: for all i sufficiently large,
dim(M,) = p(i). The leading term of this polynomial p does not depend on the choice
of subspace M,.

Proof. With this grading, the associated graded of U(g) is S(g) (where all elements
of g have degree 1); let M = gr(M). Then by the theory of Hilbert polynomials,
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there exists a polynomial ¢ such that:

. i P(t

dim(M,)t* = F—T()"ZT@

It follows that there exists a polynomial p, such that dim(M,) = p(:) for ¢ sufficiently
large. Suppose now that we pick a different subspace A}, which gives rise to a
filtration M’ with dimension polynomial p’. Then My C M, for some k, so M) C
M., and p'(7) < p(i + k) for 7 large. Similarly, for some I, p(¢) < p(i + 1), provided
that ¢ large. These two inequalities imply that p and p’ have the same leading term,
i.e. that the leading term doesn’t depend on the choice of subspace M,,. O

Definition 3.2.2. The degree of the polynomial p, GK(M), is known as the Gelfand-
Kirillov dimension of M; denote the leading coefficient of p by LC(M).

From the following Lemma, we deduce that the set of all M € O, with Gelfand-
Kirillov dimension at most d (for some d € Zs() forms a Serre sub-category. The
following Lemma is self-evident:

Lemma 3.2.3. Given an exact sequence 0 -+ A — B — C — 0, then
maz{ GK(A), GK(C)} = GK(B)

Definition 3.2.4. Denote by O3 (resp., O5%) be the Serre sub-category of O con-
sisting of objects M with Gelfand-Kirillov dimension at most d (resp., strictly less
than d). Let O¢ denote the Serre quotient category OF%/O5e.

Lemma 3.2.5. The Verma module A(X\) = U(g) ®ue) Cx has Gelfand-Kirillov di-
mension |A*T|. More generally, given a parabolic sub-algebra p O b and a finite-
dimensional irreducible representation V) of p (which factors through to the Leuvi
sub-algebra 1), then the parabolic Verma module Ay(\) = U(g) Qup) Va has Gelfand-
Kirillov dimension |A™| — N(p), where N(p) = |a € A* : F, € p|.

Proof. Pick a basis {v1, -+ ,v;} for V3, where k£ = dim(V}). Using the PBW theorem,
the parabolic Verma has basis

I e

a€AF 1<i<k

Here we have fixed an order on the set A;," = {a € At : F, € p}; and the n,-s are
arbitrary positive integers. Picking M, = V), the above product lies in M,,, where
n =3 ,ea+ Na- Thus:

dim (M,) = dim (Vy)[{na} : 3 na <l

aEA;

The result now follows. O
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Example 3.2.6. Let us consider the example with g = sl3, and calculate the Gelfand-
Kirillov dimensions of the simple objects.

The simple objects in Op are L(w - 0) with w € S3. When w = 1, L(w - 0) is the
trivial 1-dimensional module, and clearly has Gelfand-Kirillov dimension 0. When
w = wp = 818281, L(w - 0) = A(w - 0) since the Verma module is irreducible; and has
Gelfand-Kirillov dimension 3 using the above Lemma.

Let p; (resp. p2) be the parabolic sub-algebra containing F,, where a = ¢ — €
(resp. where a@ = e; — €3). Consider the corresponding parabolic sub-categories
Of', 08t C Oy. From Chapter 9 of [34], we know that L(w - 0) € O} (where p;
is the parabolic subalgebra corresponding to a subset I of the set of simple roots)
precisely when (w - 0,&) > 0 for all @ € I. Thus L((s2s,) - 0), L(s2 - 0) € O}, and
L((51$2) . 0), L(Sl . 0) € 082

In fact, one can prove that the parabolic Verma modules A, ((s251)-0) and Ap,((s152)-
0) are irreducible (either directly, or by using the criterion in Section 9.12 of [34]);
thus L((s281) - 0) = Ap, ((s251) - 0) and L((s152) - 0) = Ap,((s152) - 0). Further, one
can prove that we have exact sequences:

0 = Ap,((5251) - 0) = Apy(s2-0) = L(sz-0) = 0
0 — Ap,((5182) - 0) = Ap,(s1-0) = L(s1-0) = 0

Using the above Lemma, it is now easy to check that the four simples L((s1s2) -
0), L((s281) - 0), L(s1 - 0), L(s; - 0) have Gelfand-Kirillov dimension 2. B

For our purposes it will be more convenient to modify the definition of leading co-
efficients. To this end, note that M = U(n_)M,, and define a different grading on
U(n_) by setting deg(F,) = (p, @) (so, in particular, deg(F,) = 1 when « is a simple
root). This gives a filtration on U(n_), where

U )= = fspan( [ F2o) | 3 nadeg(a) < i)

€At a€At

Define M; = U(n_)="- M,. We will see in the next example that dim (M) is no longer
a polynomial in 7; however, we will prove that the weaker statement below does hold.

Definition 3.2.7. We say that a function ¢ : Z — Z is “quasi-polynomial”, if there
exists an integer k, and polynomials g, g1, - - - , gx—1 with the same degree and leading
coefficient, such that ¢(n) = ¢;(n) if n = ¢ (mod k).

Proposition 3.2.8. There ezists a quasi-polynomial function q, such that for i suf-
ficiently large,

Further, deg(q) = GK(M), and the leading coefficient of q does not depend on the
choice of M,.
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Proof. 1t is clear that the associated graded algebra of U(n_) with respect to the
grading described above, is S(n_) (where the corresponding elements have the same
grading); let M = gr(M). From the general theory of Hilbert polynomials, we deduce
there exists a polynomial ¢ with the following property (more generally, this statement
is true with {c, p) being replaced by the degrees of the generators).

, : P(t)
dim(M;)t* = -
; [Toea+ (1 - )

Using the above formula, and inducting on the number of generators, it follows that
there exist an integer k, and polynomials gy, 1, - - , gxz—1 such that dim(M,,) = ¢;(n)
if n =4 (mod k) for n large. It remains to prove that the these polynomials have the
same degree and leading coefficient.

Using primary decomposition for modules, we obtain a filtration 0 = My, C M, C
coe C My_y C My = M, such that for each 1, Ann(ﬁj /Hj_l) = p; for some prime
ideal p;; and R/p; acts injectively. It is sufficient to prove the above statement for
each of the sub-quotients M;/M;_;. So we may assume that Ann(M) = p for some
prime ideal p, and R/p acts injectively on M. The support of M is contained in
(n_)*; we will identify (n_)* with n, via the Killing form.

It follows using Lemma 3.2.9 below, that there exists an element ¢ of degree 1, such
that ¢ acts injectively on M. This means that we have injective map from M; to M;, 1,
given by multiplication by ¢; thus dim(M;) < dim(M;y,), and ¢;(n) < g1 (n+1) <
gi{n+k)if 0 <i< k—2,n=1(mod k). This implies that the polynomials ¢; and
¢;+1 have the same degree and leading coefficient, as required. O

Lemma 3.2.9. The support of the module M is not contained inside the subvariety
[nt,nt] of nt.

Proof. Recall that an orbital variety is an irreducible component of the intersection
O Nn'*, where O is a nilpotent orbit. Since M is a module in category O, it is well-
known that the support of M, is a union of orbital varieties (see Joseph, [30], and
Borho-Brylinski, [19], for a proof). We will show that no orbital variety is contained
inside [n*, n*].

Pick e € O, and let B, be the Springer fiber:
B.={beB|eecb}

In Claim 6.5.8 of [29], it is proven that the irreducible components of @ N n* are in
bijection with C°(e)-orbits on B, (here C°(e) denotes the set of connected components
of the centralizer of ¢). Suppose an orbital variety Y is contained in [n*,n*], and
pick one of the corresponding components X of B.. Define:

B:={beB|ece nt nt|}
Since Y C [n*,n"], from the bijection sketched in Claim 6.5.8 it is clear that X C B?.
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For each positive root @ € A", let P, O B be the corresponding minimal parabolic
and let 7w, : G/B — G/P, be the natural projection map. Since X C B, it is easy
to see that X C 7, (mo(X)) C B.. Since 7 (m,(X)) is irreducible, and X is one of
the irreducible components of B,, in fact we have that X = 7! (7, (X)) for each a.

Define an equivalence relation on points in B as the transitive closure of the following
relation: if z,y € B, define z ~ y if m,(z) = 7,(y) for some simple root a. It is
well-known, that in fact z ~ y for any two points z,y € B (see Spaltenstein’s paper
[49] for a reference). Now pick any point z € X; since X = 7,(m4(X)), any other
point in the same equivalence class as z is also in X; it follows that X = B. This is
only possible when e = 0, and in this case one easily checks that the orbital variety Y
is not contained in [n*,n*]. Thus we have reached a contradiction, and so no orbital
variety is contained in [n*,n*]. a

Remark 3.2.10. Above we have used some non-trivial facts about the support of
modules in category O; it is possible that the above proof can be simplified, and that
the statement holds in greater generality.

Definition 3.2.11. Define LC(M) to be the leading coefficient of the quasi-polynomial
q from Proposition 3.2.8.

In fact, we conjecture that the two quantities LC (M) and LC(M) differ by a constant:

Conjecture: There exists a constant C, depending only on the Lie algebra g and d,
such that for all M € 04, we have:

LC(M) = C -LC(M)
Example 3.2.12. Returning to Example 3.2.6, let us compute LC(M) and LC(M)

when M is a simple modules L(w - A) lying in O} for g = sl3. First consider M =
L({s2s1) - \) and recall that:

L((s251) - A) = U(9) Qupy) Visas1)a

Pick a weight basis of V(sm).,\; vy, -, v where k& = dim(V/(,,s,).2). Then a basis for
L((s2s1) - A) is given by E3 E3,v where 4,5 > 0,1 < k <; and a basis for M, /M, _,
is given by E%; El,u; where 2¢ + j = n. Thus:

dim(M,, /M, 1) = [{(i,7) | 20 + j = n}|

EEZ+1) ifn=
= (2—1— ) 1 n=0 (mod 2)
E(2H)  ifn=1
1.. 1 .
LC(]VI) = Edlm(lf(swl)')\) = §</\ +p, a2>
Similarly, one may compute that LC(M) = (A + p,az). Using the descriptions of
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L((s182) - A), L(s2- A) and L(sy - A) given in Example 3.2.6, we may also deduce that:

LO(L((s152) - N)) = 500+ p,601), LO(L((s152) - V) = 3 (A + p, )
LO(L(s1 - V) = 5+ p, &), L(E(s: - X)) = 5(A+ 5, )

LC@@yAD=%Q+mdmlﬁuﬁyA»=%Q+mdﬁ -

3.2.2 Braid group action on derived category of .

Let By denote the braid group associated to the Weyl group W. Here we briefly
recall the action of By, on the derived category D®(Qy)

Given a simple root @ € A", and M € D*(O,), we will define the action of 5, on M
as follows.

Recall that the wall-crossing functor R, : Oy — Oy is defined as follows. First pick p
so that:

(B+p,d) =0,{u+p,p)>0if e AT,B+#0

Then define R, = T}, ,¢Tp—,. It can be shown that R, does not depend on the choice
of u. Now define:

®(54)M = Cone(M — RoM)

Theorem 3.2.13. The above action gives rise to an action of the braid group By, on
Db(Oy).

Proof. See the proof of Corollary 9.6 in [15]. O

However, since we are dealing the sub-quotients O¢, we would like to have an action
of the braid group By on D°(O%). Given M € D%(O,), define

GK(M) = max;czGK(H'(M))

Proposition 3.2.14. Given w € By, then GK(M) = GK(®(w) - M). In particular,
the action of By on D*(Op) induces an action of By on D*(OF).

Proof. Since the simple reflections S, and their inverses generate the braid group, it
is sufficient to show that M and ®(5,)M have the same Gelfand-Kirillov dimension.
First, T,,0To-,M has Gelfand-Kirillov dimension at most equal to that of M (since
tensoring by a finite-dimensional does not increase the Gelfand-Kirillov dimension).
Therefore:

GK(®(3,) M) < GK(M)

Since ®(5;')M = Cone(T,0To-,(M) — M)[—1], by a similar argument the reverse
inequality also holds, and the conclusion follows. In fact, the stronger statement that
the braid group action preserves the support of a module is true (i.e. supp(M) and
supp(®(w) - M)); see Joseph ([31]) for a more detailed discussion. O
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The induced action of the braid group on the Grothendieck group K°(Qy) is partic-
ularly simple to describe; we record it for later use (see [15] for a proof).

Lemma 3.2.15. In the Grothendieck group of Oy, we have the equality [®(3,)Aw.0] =
[A(s0w)-0]-

3.2.3 The central charge map

Given M € 0¢, and X € A™ dominant, we have Ty_,,M € 0.

Proposition 3.2.16. There ezists a unique polynomial function Z : h* — (K°(C) ®
R)* such that:

o Z(\)([M)) = LO(TosaM) for A € A+, M € OZ.

o Z(y - N([@@)M]) = Z(\)([M]) for X € b*, M € DYOF), y € W.

Example 3.2.17. Before proving this proposition, let us return to the example with
g = sl3, d = 1 and verify the first part of the above Proposition by calculating the
function Z. More precisely, we will calculate Z(\)[M] when M is one of the four
simple objects in OF.

First let us calculate Z(\)[M,] for My = L((s2s1) - 0) = Ay, ((s251) - 0). In this case,
using the computations from Example 3.2.12, we have:

TooaMy =~ L((s251) - A) =~ Ay, ((s251) - A)
ZOVM] = 50+ p, i)

Similarly, we compute that:
1
ZWILA(s182) - 0)] = S A + p, i)
1
ZN[L(s1-0)] = A + p, dz)

ZO)[E(s2-0)] = ZA + p, i) n

3.2.4 Main result

Now we are ready to state the main result.

Theorem 3.2.18. The following datum constitutes an example of “real variations of
stability conditions”:

e Let V = b*, and let ¥ consist of the co-root hyperplanes (A + p,&) = 0 (where
aeAt).
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o The set of alcoves, Alc are naturally identified with the Weyl group W ; denote
by w the alcove consisting of A\, with (w™'(A + p), &) > 0 for all o € A*.

o Let VT be the alcove 1 .
o Let C = D¥0Y).

e Let the central charge Z : §* — (K°(C) @ R)* be the map constructed in Propo-
sition 3.2.16.

o Given w € W, let w be its lift to the braid group By,. Let T(w) be the image of
the tautological t-structure on C under the automorphism ®(w).

3.2.5 Describing leading coefficients in terms of the character

Given M € O, for each i € b* denote by M,, the corresponding weight space. Recall
that

ch(M) = > (dim M,)e"

pneh*

Using the PBW theorem, A{w - \)

ew~/\ ewp
Ha€A+(1 - e—a) a HaEA+ (ea/:2 - 6—01/2)

ch(A(w - N)) =

Given M € O,, since the Verma modules {A(w-A)},ew form a basis of the Grothendieck
group K°(0,), we have

M) = 3" aufA(w- N

weWw

for some a,, € Q. Then we can express

EwGW' aye"’
Moca: (e =)

ch(M) =

In order to prove the above proposition, we will make use of the following Lemma.
Given a module M € OY, the following Lemma tells us how to deduce GK(M) and
LC(M), knowing the character of M.

Proposition 3.2.19. Suppose

ZwEW awew(p-*-)‘)
H(¥€A+ (80/2 _ 6—0/2)

Ezxpand the numerator as a Taylor series, so that we obtain a function, fir on h*.
Let k be minimal, such that the degree k component, fr,, of this polynomial does not

ch(M) =
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vanish. Then, there exists a constant c (depending on g and d) such that (here p is
the half-sum of the positive roots):

GK(M) = |A*] — k
LO(M) = of(p)

Example 3.2.20. Suppose M = L()) is the finite-dimensional irreducible module
with highest weight ), so that by the Weyl character formula

ZwEW Sgn(w)ew(p+)‘)
oca+ (ex/2 — e=2/2)

ch(M) =

It can be shown that for k£ < |A*]:

S sgn(w{w(p+ X))} =0

weWw

Thus k = |A*| is the smallest k for which f§, # 0. Clearly M has Gelfand-Kirillov
dimension 0, so this is consistent with the first claim in Proposition 3.2.19.

On the other end of the spectrum, suppose instead that M is the Verma module A())
for some X\ € h*. The function f)s is the Taylor expansion of e***, and k = 0 (since
the degree 0 component of fjs is non-zero). By Lemma 3.2.5, M has Gelfand-Kirillov
dimension |A"|; again, this is consistent with the first claim in Proposition 3.2.19. B

Example 3.2.21. Now let us verify Proposition 3.2.19 for the 4 simple modules lying
in O} for g = sl3. From the discussion in Example 3.2.6, it follows that:

ch L((s182) - A) = ch A((s152) - A) — ch A{(s15281) - 0)

ch L((s281) - A) = ch A((s251) - A\) — ch A((s15281) - A)
ch L(s; - A) =ch A(s1 - A) —ch A((s182) - A) — ch A((8251) - A) + ch A((s15251) - A)
ch L(sz-A) =ch A(s2- X) —ch A((s182) - A\) — ch A((s281) - A) + ch A((s18281) - \)

For each of these modules M, clearly fy, = 0, and f1, is as follows:

M = L((s281) - 0), far = (A + p, diz)auy
M = L((s182) - 0), fay = (A + p, i)z
M = L(s1-0), fiy = (A + p, di2)as
M = L(sy-0), fa = (A + p,d1)yy

Using the calculations in Example 3.2.17, it is clear these that these computations
are consistent with Proposition 3.2.19. W
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Proof of Proposition 3.2.19. We may make the assumption that M is a highest weight
module, i.e. it is a quotient of A()) for some . To see this, note that the functions
M — LC(M) and M — f¥,(p) are additive on exact triangles 0 — M; — M —
M, — 0 such that GK(M;) = GK(M2) = GK(M). Thus we can choose a Jordan-
Holder filtration of M, where each simple sub-quotient has the same Gelfand-Kirillov
dimension; the conclusion would then follow if we knew it to be true for all highest
weight modules, since all simples fall into this category.

So let My = Cu,, for some highest weight vector vy € M. Given u € h* such that
M, # 0, define d(p) = (p, A — p); alternatively d(u) = >, ., di if A —p =3, diey
(note that d; > 0, since M is a quotient of A(A)). Then:

M =P M,

dp)<i
dim M; = > dim M,

d(p)<i

To prove this proposition, we will explicitly compute both sides of the below equality.
Let us start with the LHS.

(z (dim M, )e*)(e') H (e3 —e7)(e?) = Z dype“ P (etP)

neAt acAt weW
( Z (dim J\/[p)e")etﬁ = tMA) Z dim(M,, /M, _;)e™™
puEAT n>0

For n sufficiently large, we have dim M, = py/(n) for some polynomial p,s; thus
dim(M,, /M, 1) = qu(n), where gr(x) = pp(z) — par(z — 1). By differentiating the
identity 1+ s+ s +--- = (1 — s)~! repeatedly, we obtain that:

Z nn—1)---(n—-k+ 1)3"_’c = kN1 — S)—k—l

n

By taking linear combinations of the above identity, we deduce that there exists a
polynomial Gy with degree d, leading coefficient d!LC(M) and no constant term,
satisfying the following. Then we will evaluate at s = e™*, and continue with the
computation of the left hand side (here the polynomial 7, accounts for the fact that
dim M,, # p(n) at finitely many values, and C' is some constant):

Z au(n)s™ =qgu((1—s5)7")

> dim(M,/M_1)e™ = Gur((1—e™)7") + rarle™)

n>0
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H (e? — e%“)(eti)) — H (etP3) — ¢tA3))

acAt acAt
- [T ey + 220
acAt
={I] ¢ a)}t|A+'(1 +t2C+--)
acAt

LHS = ¢ (G (1= ) )+ rar(e M [T (o)1 +£0 )

acAt
= {d LCM)t* 1+ - [T (6, )} 11+ 2N, 5) +--+)
acAt
=d L) ] (B o) 21141+ )

a€EAt

Above, we have used the Taylor expansion (1 —e )™ =¢7'(14+ £ +---) to obtain
the leading coefficient of the Taylor expansion of G ((1 — e™*)71).

Z dwe"’(’\"’")(etf’) — Z d,,e{eO+e)th)

weW weWw

= ) dw, w(A + p),H)"

weW,n>0

Comparing the Taylor expansions of the LHS and the RHS, it follows that LC (M) =
cf% (p) for some constant ¢ and k = |A*| — d; and further fi,(5) = 0 for i < k. Now
pick ¢’ arbitrary satisfying (¢',a) € Zs, for simple roots a. Repeating the whole
argument, we deduce that fi,(¢) = O for any such p. It then follows that fi, = 0
for ¢ < k, completing the proof. d

Proof of Proposition 3.2.16. Suppose that

ZweW a’wewp
HaeA+ (ea/2 - e—a/z)

Then, since Tp_, A(w - 0) = A(w - \):

ch(M) =

ZwEW awew(p+/\)
HaeA+ (60‘/2 _ e—a/2)

It is clear that GK(Tp_2M) = GK(M) = d. Let us define the polynomial

ZM)(IM]) = ¢ > auf{(w(p+N)(p) T

weWw

Ch(TO—»\jVI) =

Using Proposition 3.2.19, it follows that LC(Tp, M) = Z(A)([M]) for A € AT, prov-
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ing the first claim. The uniqueness of the polynomial is clear once its values on the
lattice AT are specified.

Next, using Lemma 3.2.15, we have:

z’wEW awe(""y)l’
ch(®(y)M) = [Lcas (€22 — e=o/2)

= ZweW Q1€
Mocas (@ —co7)
Z(y—l A)([@(y)M])) =c¢ Z Aoy 1 {0 (p + yl. A)(ﬁ)}llﬁl_d

weW

=) au{wy A+ o)D)}

weW

=c Y au{wr+ )} = Z() (M)

weW

This proves the statement of the second claim. |

Remark 3.2.22. At this point, we are almost ready to check the first condition
involving real variations of stability conditions. Suppose M lies in the heart of the
t-structure 7(w) (i.e. M = ®(w)(M’) for some M’ € 09), and that A lies inside the
alcove w (i.e. A = w-\ for some )\’ lying inside the alcove 1). Then, using Proposition
3.2.16:

(ZON[M]) = Z(w - X)[®(@)(M)]
= Z(\)[M]

Now if X € A", then Z(N)[M’'] = LC(Tp,x»M’) > 0 (by definition of leading coeffi-
cient). However, to rigorously show that this statement is true for arbitrary X in the
fundamental Weyl chamber, we will need more machinery.

3.3 Filtration of the heart corresponding to adjacent
alcoves

In this section we will check that the second condition from the above Definition is
satisfied.

Suppose w and w’ are two adjacent alcoves separated by a hyperplane H (i.e. w' =
SaWw, where ¢ is a simple root); and suppose that w’ lies above w. Recall that A,
denotes the heart of the t-structure 7(w). Denote by A}, (resp. A}, ) the sub-
category consisting of objects M € A, (resp. M € Awf) such that the function
far - b* — C defined by fu(z) = (Z(z),[M)) has a zero of order at least n on H.
The following Lemma allows us to reduce to the case where w = 1, and the two
propositions give a very concrete descriptions of these sub-categories in that case.
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Lemma 3.3.1. 1. A} = ‘I’(G)Agﬁ,y and A} = ®(0)Af

2. Ai’w_, = ®(5a) A%, , (in particular, A¥ | = ®(52)Ag o)

1
w,

Proposition 3.3.2. The category A}, C A, = OF consists of those objects M € Of

which possess a filtration, with each quotient being a simple modules L(w - 0) with
Hwsy) = H(w) + 1.

Proposition 3.3.3. For n > 2, the categories Ay, = {0}.

Example 3.3.4. Before proving the above two propositions, let us re-visit our run-
ning example (with g = sl and d = 1) and verify them by hand in that case. From

the calculations in Example 3.2.17, we deduce that the category A] , consists of mod-

ules in O} which have a filtration whose sub-quotients are L((s;s;) - 0) or L(s; - 0);

and that the category Aj ., consists of modules in Oj which have a filtration whose

sub-quotients are L{(s2s1) - 0) or L(s; - 0). This is consistent with Proposition 3.3.2.
For each M € O}, fu : b* — C is a linear function, and hence cannot have a double
zero on any hyperplane (unless M = 0); this is consistent with Proposition 3.3.3. B

Proof of Lemma 3.3.1. First let us prove (1). Given an object M € C, recall that fy,
denotes the function on h* defined by fi(z) = (Z(z), [M]). Denote by deg(fum|n)
the order of vanishing of the polynomial fjs on the hyperplane H.

Ab o ={M € Ay | deg(fmln) > k}
= {®(@)N, N € 07 | deg(fo@n|n) > k}
= {®(@W)N, N € OF | deg(fv|n) > k}
= o(w)A*

Lso

Here H® denotes the wall (A + p,d) = 0 separating A™ and s, - AT. Above we have
used the fact that deg(fsw)n|n) = deg(fn|u~), which follows from W-equivariance.
Similarly, it follows that A&,y_ = @({E)A’S“m_l_

Using (1), in order to show (2) it suffices to prove that A% | = ®(5)A], . This is
clear, since: - -
Af;'g,; ={®(5,)C,C € OF | deg(fo@clae) > k}
= {®(5)C, C € O | deg(fc|ua) = k}
= O(55)A]

1,5

Above, deg(fosz)c|na) = deg(fc|ne) using W-equivariance (since s, acts via reflect-
ing about the hyperplane H®). a

Lemma 3.3.5. Suppose M has a filtration, with each successive quotient being a
simple module L(w - 0) with l(ws,) = l(w) + 1. Then ®(5,)M = M[1]
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Proof. Fix p, such that (u+p, &) = 0, (u+ p, ) = 0. By definition, we need to show
that Cone(M — R,M) = M[1] (where Ry = T, ,¢To-,). So it suffices to show that
RoM = 0. We will show the stronger statement that 7p_,,M = 0.

Suppose that {(ws,) = l{(w) + 1. Then we have a sequence of maps:
A(wsy - 0) 5 Alw-0) B L(w - 0)

The map i is injective, and its existence follows using Proposition 1.4 of [34]; the map
p is clearly surjective. Since the image of ¢ lands inside the maximal submodule of
A(w - 0), the composition of these two maps is 0. Applying the translation functor
Ty to this triangle, we get:

Awsg - 1) N Aw-p) B Ty, L(w - 0)

However, since (1 + p,&) = 0, it follows that s, - 4 = u; and hence the map ir is
an isomorphism. Since the composition of the two maps is 0, and pr is surjective, it
follows that Ty \L(w - 0) = 0.

Now suppose M has a filtration by such modules L(w -0). By using the exact-ness of
the functor Ty_,», and inducting on the length [(Af) of this filtration, it follows that
ToaM = 0. O

Proof of Proposition 3.3.2. First we prove that any module M, with such a filtration
lies inside Aj ;. Suppose (z + p, @) = 0; then s, - z = x, so:

(Z(x), [M]) =

Z(5a - ), [2(s0) M])
Z(x), [M{1]])

= —(Z(2), [M])
= (Z(2),[M]) =0

o~~~

Then we have that, (Z(z), [M]) = 0if (z+p,&) =0, and so M € A by definition.

Next let us prove that any module M € .AiSa possesses such a filtration. Suppose the
Jordan-Holder filtration of M contains the simple module L(w - 0) with multiplicity
My, SO that

(Z(2),[M)) = (Z(x), Y mu[L(w-0)])

weW

= Z my(Z(z), [L{w - 0)})

weW

Now pick A to be integral such that (A + p,&) = 0, but (A + p, 3) > 0 for all simple
roots 3 # a (so A lies in the closure of the dominant alcove). Then we claim that
(Z(N), L(w - 0)) > 0 if l(ws,) = l{w) — 1. The desired result would follow.

It is known (for instance, see Section 7.7 of [34]) that Ty, sends an irreducible
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module either to 0, or to another irreducible; by counting the number of irreducibles
it follows that T,y L(w-0) = L(w-A). By using the techniques employed in the proof
of Proposition 3.2.19, it follows that L(w - A\) and L(w - 0) have the same Gelfand-
Kirillov dimension. Further, we deduce that (Z(\), L(w - 0)) = LC(L(w - X)) > 0, as
required. a

In order to prove Proposition 3.3.3, we appeal to the theory of harmonic polynomials.
For a detailed exposition, we refer the reader to Section 6.3 and 6.4 of [29].

Definition 3.3.6. A polynomial function f : h* — C is a “harmonic polynomial"’ if
for every 0 € D(h*)¥, 8f = 0.

Proposition 3.3.7. Fiz an object M € C. The function fp : §* — C, given by
fu(z) = {Z(z),[M]) is a harmonic polynomial.

Proposition 3.3.8. Any non-zero harmonic polynomial cannot have a double zero
on a co-root hyperplane.

Example 3.3.9. Before proving these two propositions, let us revisit the example
g = sl3. First let us calculate the invariant differential operators, and the harmonic
polynomials in this case. Define X3, X5 : h* — C by setting X;(A) = (), d1), Xo(A) =
(), dia); then the set of polynomial functions from h* to C can be naturally identified
by C[X}, X3]. We compute that:

o _ d + d s d . 0
Tox, T x| 9X,  tax,  ox,
) o 0 0 0
S190=— = =, 82 = -
90X,  0X, 0X, 08X, 00X,
P K o 0 0 0 0 , 0
*\W __ 2 2 _ 2 _ 2
D)y = ((8X1) +(3X2) 0X, aX2’(aX1 X2 00Xy 8X2) )

So the space H of harmonic polynomials are those annihilated by those two polyno-
mials:

H=C{X Xy + X1 X2, X3 4+ 2X1 X0, X2 + 2X1 X2, X1, X, 1}

This is consistent with Proposition 3.3.7, since when M is a simple module in O},
fu(z) = X1+ 1or fy(z) = Xa+1; in either case fiy € H. It is easy to verify that no
element of H is divisible by (X; +1)? or (X, +1)?; this is consistent with Proposition
3.3.8. M

Proof of Proposition 8.3.7. This follows from Proposition 3.2.19, combined with the
following Lemma. O

Lemma 3.3.10. Given a collection {a,}wew of complex numbers, let d be minimal
such that 4
w(p+ A
Rd = E aw———(pd! )

weW
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is a non-zero function. Then R, is a harmonic polynomial.

Proof. From Proposition 6.4.4 in [29], it follows that R4(\ — p) is a harmonic polyno-
mial. The result now follows using the well-known fact that any harmonic polynomial
is stable under shifts. O

Proof of Proposition 3.3.8. See the last paragraph of Proposition 1 in [7] (on page
9). O

Proof of Proposition 3.3.3. This follows using Propositions 3.3.7 and 3.3.8. (|

Before returning to the proof of the Main Theorem, we will need the following three
Lemmas (the first of which is a strengthening of Lemma 3.3.5).

Lemma 3.3.11. If A € C satisfies H"(A) € Aiﬁa Vn e€Z, then ®(5,)(A) ~ A[l].

Proof. Given an object A € C, define the length I(A) = |{i € Z, H'(A) # 0}|. Let
us proceed by induction on [(A). If [(A) = 1, the statement follows from Proposition
3.1 and Lemma 3.4.

Now suppose that I(A) = i. We can pick j so that I(7<;A),l(T>;4+14) < ¢ (here
7 denotes truncation with respect to the standard ¢-structure on C). Applying the
automorphism ®(5,)(A), and using the induction hypothesis, we have distinguished
triangles:

TSjA — A— T2j+1A
(I)(ga)TSjA — @(ga)Jq — (I)(ga)sz+1A
TSJA[]'] — (I)(ga)44 — T2j+1A[1]

Now using the axioms of a triangulated category, it follows that ®(3,)A ~ A[1], as
required. O

Lemma 3.3.12. Any A € C satisfies ®(3,)A ~ A (mod (], )

Proof. First let us prove the statement when A is a simple module. Recall that
®(5,)A = Cone(A — T,,0Tp-,A), where p satisfies
(w+pa)=0,(u+pB)>0if e A", B+a
Since the functors T),_,o and T;_,,, are bi-adjoint, we have natural maps 7, ,07o,, A4 —
Aand A — T, 0Ty, A. We claim that the composition of the two A — To_,, T}, ,04 —
A is zero. Suppose that it isn’t; then the composite map is an isomorphism. Further,
neither of the maps can be an isomorphism, since the action of the braid group el-
ement ®(3,) is invertible. Thus M = Ty, ,T,,,0A contains A as a direct summand.
But using adjointness, Hom (A, L) is 1-dimensional if L ~ A, and is 0 otherwise; this
is a contradiction.
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Since the composition of the two maps is 0, we have a map ®(5,)A — A. From
Corollary 7.12 in [34], we have:

TO—)p.Tu—)O(TOAMA) ~ TO“"I-LA D TO-—r,‘A

It follows that Ty, [®(34)A] = TouA, and hence Tp_,,[®(5,)A — A] = 0.

From Lemma 3.3.11, we deduce that if Tp_,,C' = 0 then C € C] . Thus the statement
is true when A is a simple module; the general case now follows using the argument

used in Lemma 3.3.11. O
Lemma 3.3.13. Suppose p € R[zy, - ,z,] is a homogeneous polynomial, such that
p(x1, T2, -+ @) 2 04f (21, ,2) € Z8,. Thenp(z1, T2, -+ ,%p) = 0if (x1,--- ,Tp) €
So-
Proof. Assume to the contrary that p(z1,zs,- -+ ,2,) < 0forsome (z,--- ,z,) € R,
By continuity, we can pick a small open ball B containing (z,--- ,z,), such that
p(x1, T2, ,z,) < O for all (z1,---,2,) € B. Let B = {t-z | z € B,t € Rxo};
since p is a homogeneous polynomlal it follows that p(zy,zs,--- ,z,) < 0 for all
(z1,-+- ,2n) € B. However, it is clear that B contains points in Z%,; this contradicts
our initial assumption. O

Proof of Main Theorem. First let us complete the proof of the first condition in Defi-
nition 3.1.1 (which we started in Remark 3.2.22). From the discussion in that remark,
it suffices to prove that Z(\)[M] > 0, where A € 1, and M € OY. We know that
Z(A)[M] = LC(To»aM) > 0 if A € A*; from the discussion in the proof of Proposi-
tion 3.3.2, we know that that this statement also holds if A is an integral weight lying
inside the closure of the alcove 1.

Let {dh,---,d,} are the simple roots, {A;,--- ,A,} the corresponding fundamental
weights, and suppose that w~1c Zl<]<r ey Jaj By Proposition 3.2.19, if [M] =
Y wew Gw[A(w -0)] and k = |A+| — d, then:

ZNIM] = =Y au{wlo + NP

weW

_ % > au{ Y (wh+p), d)A (0}

weW 1<5<r

= Z auw{ Z A+ p,w™ ;) A (p)}

weW 1<i<r

o Zaw{Z(/\+p,a, (E ciih;(p

T weWw 1<i<r 1<5<r

So it is clear that Z(\)[M] is a homogeneous polynomial of degree k in the variables
(A +p, i), -, {A+p,d,). Thus by applying Lemma 3.3.13, it follows that Z(\)[M] >
0 when ) lies inside the closure of the alcove 1. We will now prove the stronger
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statement that Z(\)[M] > 0 when A lies inside 1. Suppose instead that Z(\)[M] = 0.
From Proposition 3.3.7, and Proposition 6.3.25 of [29], we have that, for any u,

ZONIM] = 7 3 200+ w1

weWw

Pick p sufficiently small so that A + wpu lies in the alcove 1 for all w € W; then
Z(A+wp)[M] = 0 for all w € W. Since p was arbitrary, this means that Z(\)[M] =0
on some neighbourhood of A. Hence Z(A)[M] = 0, contradicting the fact that M was
a non-zero object. This completes the proof of the first condition from Definition
3.1.1.

Now we will check the second condition in Definition 3.1.1. In keeping with the

notation used there, recall that

;w_——{CGCl (w)(C)EAwu/Vl EZ}

First we need to show that the filtration {0} = C ,, € C, ,+ C C is stable under the
truncation functors for the t-structure 7(w’). Usmg Lemma 3.3. 1, we may reduce to
the case where w’ = 1,w = s, (where « is a simple root). Thus we have:
(€)= (Sa)H"(Q(%‘l)C)
Cour ={C €C| Hy o, )(C) € Al 1)
={Ce(| <I>(Sa)H"( (527)C) € ®(5a) AL, }
={CeClH"(2(s.7)C) € A1}

TSa

We wish to show that if C € C's 1, then 7¢,C, 75,C € C,_ | for i € Z.
Now A = ®(3,')C satisfies the hypothesis of Lemma 3.3.11, so:

D(3,)(A) = A[l] = ()0 = C[-1]
LHI(C)e A Viel

. j -f .> . . j . .< -
H (15:C) = #(C) 1 ]."z.yHJ(T«C)'—‘ H(C) lf]_l
- 0 if <1 - 0 if >4

= H(1,C), H (1,C) € A}, Vi€ Z
Applying Lemma 3.3.11 again, we get that:

P(3,)(72:C) = 72:C[1], ®(3,)(7<:C) = 7:C[1]
D(5,1)(72:0) = 7:C[-1], ®(3;")(1<iC) = 7<;iC[—1]
= HY(®(5,1)(12:0)), H(®(5.")(7:C)) € Al

It follows that if C € C;_,, then 7<;C, 7>,C € C,_, for i € Z.
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We also need to show that the two t-structures on the quotient C7 , /C:jll induced
by 7(1) and 7(s4) differ by a shift of [n], for n = 0,1. For n = 0, this follows from
Lemma 3.3.12; for n = 1, this follows directly follow Lemma 3.3.11. a
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