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Abstract

In this thesis, a Vehicle Health Monitoring (VHM) system is designed to de-
tect and isolate failures in the engines of Reusable Launch Vehicles (RLV). In
particular, our focus has been on the Space Shuttle Main Engine (SSME). This
VHM system is an improvement over the current safety monitoring system that
relies on redline methods to detect failures. This VHM system takes into ac-
count engine failures in both sensors and valves, as well as internal components
such as turbopumps, injectors, and the combustion chamber. The algorithm of
the VHM system is model based. Specifically, using information from a ther-
modynamic model of the engine together with sensor measurements, a Kalman
filter (KF) is designed to predict sensor outputs. The residual, or the difference
between the predicted and actual measurement, is used by several statistical
tests to detect the presence of a failure, and to categorize the failure as a sen-
sor/valve failure or an internal component failure. Sensor and valve fajlures are
diagnosed using the Generalized Likelihood Ratio Test (GLRT). Internal com-
ponent failures, on the other hand, are isolated using the Multiple Model (MM)
method. The proposed methodology can be used for online Failure Detection
and Isolation (FDI) as well as for postflight analysis. At the design stage, it
can help determine the detectability and distinguishability of failures given a
candidate sensor configuration.
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Chapter 1

Introduction

The increasing demand ror conducting experiments in space, and installing satel-
lites into orbits for commercial facilities, have necessitated the use of Reusable
Launch Vehicles (RLV) more than ever before. In essence, this demand moti-
vates the development and design of high performance, sophisticated technolo-
gies that significantly improve the performance of the RLV. These technologies
would not only aim to reduce vehicle life cycle cost and decrease fuel consump-
tion but also encompass control system that counteract problems such as re-
jection of external disturbance in uncertain environments, and detection and
compensation of system failures.

This thesis addresses the problem of fuilure detection for the RLV’s. Specifi-
cally, the focus is on the Space Shuttle Main Engine (SSME), the most powerful
reusable liquid propellent rocket engine, built after many years of experience in
designing expendable rockets. The SSME (Figure 1-1) provides a considerable
part of the thrust for the Space Shuttle during lift-off and is driven to its limit
during normal operation. Therefore, the reliable performance of the SSME is
absolutely indispensable for successful missions. The large-scale SSME itself has
a large number of parts working together in a complex way, but the only sources
of information that can be extracted for monitoring its health and performance
are a set of on-board sensors.

The failure detection problem for the SSME involves the detection and iso-
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Figure 1-1: Two views of the Space Shuttle Main Engine {SSME)

lation of engine failures using the information measured by the sensors. The
solution described in this thesis is a Vehicle Health Monitoring (VHM) system
that detects and isolates failures in the engine control valves, sensors, and the
internal components such as the turbopumps, the combustion chamber, and the
main injector. This proposed VHM system uses model-based statistical signal
processing methods. Specifically, using a dynamic model of the engine and its
sensors, we design Kalman filters which predict the sensor outputs. The differ-
ence between the predicted and the observed measurements, called the residual,

is then analyzed using detection and information theoretic methods.

1.1 Motivation

The present safety monitoring system [22] of reusable launch vehicle uses the
so-called redlines system, where redlines are defined to be the limits at which
the engine is inoperable. These limits correspond to the values at which selected

measurements or derived core paramters exceed above their normal operating
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* values. While this approach is effective in avoiding catastrophic failures caused
by a speciﬁc component, it has many drawbacks. For example, during the
developmental and operational phases, the engine has already undergone severe
damage by the time the failure is declared. Moreover, this technique causes
high false alarm rate that usually results in premature shutdown of the engine
due to normal excursions and inconsistent redlines limits that vary from one
engine to another, since components of each engine are produced by different
manufacturers.

In this thesis, we propose a Vehicle Health Monitoring(VHM) system which
not only enhances the current redlines system, but also continuously supplies
useful information for the operation of engine. Our VHM system provides infor-
mation about the condition of the engine state variables that would help identify
trends indicating incipient anomalies. This information allows the main con-
troller to execute appropriate actions for system reconfigurations such as gain
adjustment, or activation of backup system, etc. These actions reduce damage
after a failure is detected. In addition, the information supplied by the VHM
system can be used for reducing the cost of between-flight maintenance, and

can aid in sensor placement and selection.

1.2 An Overview of Some Failure Detection

Methods

Many approaches are potentially applicable for SSME health monitoring. In par-
ticular, for failure detection, some notable ones are redlines, pattern recoguition
and data trending, plume spectrometry, vibration monitoring, and model-based
failure detection. There are of course overlaps of ideas in these techniques, anda
comprehensive approach to FDI (Failure Detection and Isolation) for the SSME
would have to integrate these and perhaps mary other techniques into a frame-

work that yields maximal consistency and reliability in detecting and isolating
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failures. We will give a brief description of each technique.

Redlines is pei‘haps the oldes;: technique and the easiest to implement. Ef-
forts have gone into designing more intricate redlines with improved criteria
which incorporate tighter limits and account for variations in nominal values of
the selected parameters due to different power levels and individual engine char-
acteristics. These redline decision logics are usually part of an expert system.
While these improvements seem to reduce the likelihood of extensive engine
damage by the time the failure is declared, they are unreliable and may cause
high false alarm rate if not implemented judiciously. Examples of usage of red-
lines are mentioned in (7, 8, 22, 23).

Pattern recognition and data trending are time series analysis methods that
utilize the time history of the measurements of various failure scenarios to train
a neural network or to define a specific subspace for each failure. The trained
network performs FDI by identifying the signature of each particular failure.
These techniques do not make use of the plant dynamics, and in general require
large amount of data from the failed and nominal systems to sufficiently identify
all failures. Considerable success in these techniques has been demonstrated in
the works of [6, 10, 21].

Plume spectrometry can be independently implemented from other tech-
niques with a set of simple sensors that have minimal interface with the engine.
This technique examines the engine exhaust plume’s combustion products since
different combustion species possess different spectral bands. Therefore, anal-
ysis of the spectral emission, i.e. the amplitude and wavelength, can reveal
the presence of anomalies and often lead to identify the failed component. A
number of results have been developed for this technique in (3, 26].

Vibration monitoring of turbopumps is another important technique that
provides early detection of the engine’s structural failures. Analysis of the vi-
bration data involves identifying and categorizing peaks in the power spectral
densities that represent the fundamental and harmonic frequencies of the rota-

tion in the shafts and the bearing cage. Anomalies are detected by observing
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the amplitude of the peaks of the fundamental and harmonic frequencies. This
technique has promising results as reported in [16].

The VHM system proposed in this thesis is a model-based failure detection
technique which uses the RLV engine dynamics, together with sensor models,
to design filters that monitor the physical state of the engine. These filters use
sensor measurements together with a model of the engine dynamics to supply
outputs that are affected in a specific way by each failure. A decision rule, via
threshold test or likelihood ratio test, detects and isolates the failures based on
these outputs. Approaches that exploit system dynamics include the work in
[9, 14, 28]. An important difference in our work is the use of the entire dy-
namics of the SSME [1]. The dyramic model uses a set of 37 state variables
and an assumed set of 15 sensors. In actual ground test setting, approximately
500 measurements are taken along with visual inspection of video cameras and
technical staffs. In real-time operation, these ground-based ‘facilities are not ac-
cessible and thus we limit our work to using a smaller set of sensors for obtaining
information on the engine.

Furthermore, one significant strength of our model-based technique stems
from the fact that the system dynamics provide additional pkysical insight into
the interpretation of the failure signatures. For instance, when failures in two
different sensors yield siinilar signatures, then knowledge of the physical rela-
tionship between these measured variables could provide a more definite conclu-
sion,'a.s we intend to demonstrate. In other words, the proposed method makes
use of the tight interaction between the physics of the real engine, the engine’s
mathematical model, and the failure detection algorithm to check their mutual

consistency.

1.3 VHM Design Concept

In this section, we present a VHM system that considers failures in the SSME

sensors/valves and internal components. The VHM structure is shown in Figure
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Figure 1-2: SSME Vehicle Health Monitoring System

1-2. First, nonlinear models of the engine available from Rocketdyne [1], are
used to obtain linear models for any desired operating condition. The linearized
models are then used to design Kalman filters which provide least-square esti-
mates of the states in the engine model. The motivation of using the Kalman
filter will be clear as we describe the function of other components of the VHM
system.

The failure detection and isolation scheme takes as input the difference
between the predicted outputs given by the Kalman filter and the observed
measurements, referred to as the residual. In the absence of failure, the residuals
are unbiased (of zero-mean), demonstrating agreement between the estimates
and the observed measurements. In contrast, biased residuals are indicative of
abnormai behavior or failures, and based on this fact, a preliminary threshold
test is continuously used to detect bias. If the value of a residual exceeds this
threshold, then a failure is declared.

The next step in the FDI scheme is to isolate the failed component. The
isolation problem is solved in two levels. The first level categorizes the failure
as either a sensor/valve failure or an internal component failure by checking the
whiteness of the residual. As we will discuss later, a white residual indicates
that the failure is more likely to have occurred in a sensor or a valve whereas
a colored or correlated residual indicates that the failure is more likely to have

occurred in an internal component, such as the turbepump or the main injector.
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After the categorizing, the second level of isolation determines the specific
sensor or valve, or internal component which has failed. For a sensor/valve
failure, the Generalized Likelihood Ratio Test (GLRT) is applied to detect the
presence of the failure with a more complex decision rule and decide which
component has failed. On the other hand, if the residual is correlated, then
the Multiple Model(MM) method is used in the decision process to identify the
faulty subsystem. The GLRT and the MM methed are two different kinds of
hypothesis test as discussed in Chapters 3, 4, and 5.

Thus, the VHM system is mainly concerned with two functions: 1) gen-
erating the residual using Kalman filters and 2) making a decision based on
this information. The threshold test determines whether a failure has occurred,
while the whiteness test determines whether the failed part is among the valves
and sensors, or among the internal components. Further isolation is accom-
plished using Generalized Likelikood Ratio Test for sensor/valve failures or the
Multiple Model method for internal component failures. The logic behind our
choice of the structure of the VHM and the failure detection sequence is justified
in Chapter 3.

The motivation behind dividing the failures into two categories, one for
sensors and valves and the other for internal components, is due to the fact that
these failures are modeled in different fashions. Sensor and valve failures are
modeled as additive changes at the output and input of the SSME, respectively.
Additive changes are independent of the state and reflect our belief of how the
real changes occur in the component in question. The usage of additive changes
to represent failures in the sensors and valves has provided reasonable results,
as it is a common way to represent bias in the gyros.

With the SSME, for instance, a defect in a sensor can be commonly repre-
sented as a bias, or increases in measurement noise. A valve fault can manifest
as changes in the control matrix, or as a bias in the input due to a stuck valve.
Internal component failures, on the other hand, are represented as multiplica-

tive changes because they change the dynamic characteristic of the system. For
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instance, a bearing failure in the engine’s turbopump would shift the pump’s
dynamics to induce rubbing, and consequently affect the entire dynamics of the
engine. |

In the coniext of the FDI scheme, sensor/valve failures and internal compo-
nent failures are distinguished by their effect on the correlation property of the
residual. The isolation of these two types of failures is also at different levels
of difficulty. Sensor or valve failures can be resolved by many failure detection
techniques, such as the GLRT with high accuracy. Isolation of internal com-
ponent failures, however, is a much more difficult problem, as the SSME is a
highly coupled system, and there are few techniques available. Ideally the ob-
Jective is to identify the exact origin of the failure. Unfortunately, determining
which specific blade is faulty in a turbopump is very difficult and may require
placing extra sensors in each pump, where the physical space is extremely lim-
ited. Isolation to the highest level of detail is rarely possible in any system, et
alone a highly coupled one like the SSME. A realistic objective for the SSME
is to determine in which of the following subsystems has a faulty component:
the High Pressure Fuel Turbopump, the High Pressure Oxidizer Turbopump,
the Low Pressure Oxidizer Turbopump, the Low Pressure Fuel Turbopump, the
Main Injector, the nozzle, and the pipes/ducts.

Therefore, instead of attempting to detect and trace back the precise origin
(component) of the failure, the VHM’s algorithm specifies which subsystem ex-
hibits anomalous behavior. For example, the algorifhm identifies that the High
Pressure Oxidizer Turbopump subsystem has failed, but not that a specific com-
ponent (i.e. the turbine blade, or bearing) in that subsystem has malfunctioned.
This approach is attractive and useful since internal component failures tend to
quickly propagate from one component to another in the same subsystem be-
fore spreading to other subsystems. The knowledge of the degraded subsystem is
crucial in guiding subsequent investigations such as using vibration monitoring
to further analyze the identified faulty subsystem.

For the particular problem of designing a FDI scheme for the engine internal
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component failures, using the MM technique is sufficient for the purpose of
isolating failures on the level of subsystems. The context of subsystems refers
to a collection of components in the engine. For instance, the High Pressure
Oxidizer Turbopump Subsystem is ccmposed of the pump itself, the turbine,
the injector, and the oxidizer preburner. The division of the subsystems and

the MM method are described in Chapter 5.

1.4 Thesis Outline

Chapter 2 presents the operational performance and dynamics of the SSME.
Mathematical modeling of the dynamics of the engine are discussed in terms
of the 37 nonlinear differential equations categorized by seven basic type of
thermodynamics relations. The discrete-time linear state space representation
of this model at various power levels as well as the sensor model are derived with
noise included. The characteristics of the open loop dynamics of the engine are
also discussed.

In Chapter 3, an overview and justification of the propesed VHM system
illustrated in Figure 1-2 is presented. We focus on the Kalman filter design, the
preliminary threshold test for detection, and the test of whiteness. This takes us
to the first level of isolation, i.e. determining whether the failure is in a sensor
or a valve, or in an internal subsystem.

In Chapter 4, we focus on the development of the residual generation and the
failure detection process for sensor/valve failures. The Kalman filter described
in Chapter 3 is used as the residual generator while the GLRT is used for failure
detection and isolation for all 15 sensors and 5 control valves. Results are
presented through numerical simulations. A geometrical interpretation of the
GLRT is also included to provide additional insight into the detection problem.

In Chapter 5, we consider engine internal component failures. We discuss
the different types of internal component failures and their characteristics, and

how the proposed VHM algorithin performs FDI of these failures. The Multiple
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Model method is derived and simulation results are presented for a few repre-
sentative failures that occurred in the past. Finally the issue of robustness of
the MM method is considered using information theoretic measures that give
the separation distance among hypothesized models.

Chapter 6 provides conclusions and suggests further research to enhance the

VHM algorithm presented in this thesis.
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Chapter 2

The SSME: Description and
Modeling

In this chapter, the operational performance specifications and mathematical
modeling of the engine are outlined. More details about the SSME can be found
in [12], [24], and [25]. We begin with providing the description of the engine in
Section 2.1 and its mathematical modeling in Section 2.2. The linearization of
the SSME nonlinear model for the analysis of failure detection is next discussed
in Section 2.3, and the engine’s dynamic characteristics are delineated in Section

2.4.

2.1 Description of the engine

The design and operation of the SSME represents a revolution in rocket propul-
sion technology. The power cutput of its four turbopumps drastically surpasses
that of its predecessor; each SSME can produce about 12.3 million horsepower
compared to that of 11000 horsepower by the J-2 engine flown on the Saturn
V vehicle. The SSME nerates at higher temperature and pressure extremes
than any other mechanical system. The temperature and pressure in the main
combustion chamber(MCC) reaches about 6000 degrees Farenheit and 3200 psi
respectively at full power level. The highest MCC pressure achieved prior to
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SSME was only 1000 psi by the Saturn V engine. These achievements demon-
strate a large jump in reusable space engine technology brought forth by the
SSME.

The SSME uses cryogenic Liquid Hydrogen(LH) and liquid oxygen(LOX) as
propellants. The engine power operation ranges from a minimum level of 305,000
Ibs of thrust (65 percent) to Full Power Level (FPL), or 512,300 lbs of thrust
(109 percent) in 1 percent increments. A typical operational profile of the SSME
is illustrated in Figure 2-1. The major subsystems of the SSME consists of four
turbopumps, one main injector (MI), one main combustion chamber (MCC),
one nozzle, heat exchangers, valves, ducts. The four turbopumps are the Low-
Pressure Oxidizer Turbopump (LPOTP), the Low-Pressure Fuel Turboprmp
(LPFTP), the High-Pressure Oxidizer Turbopump (HPOTP), and the High-
Pressure Fuel Turbopump (HPFTP). Each of the two high pressure pumps has
a preburner and an injector.

The SSME is a staged combustion cycle engine, which provides higher levels
of performance when compared to other cycles, such as the bi-propellent gas
generator cycle and expander cycle. The staged combustion cycle maximizes the
power performance since all combustion products and propellents are eventually
utilized to generate thrust. A schematic propellent flow for the engine is shown
in Figure 2-2. The discharged LOX and LH from the pumps are first partially
diverted to the preburners where they are combusted at a mixture ratio of one.
This rich mixture ratio is required to keep the gaseous combusted product at
moderate temperature to prevent from damaging the turbine blades while still
satisfying the power required by pumps. The combusted products are next
expanded through the turbines to drive the pumps, and then are directed to the
main combustion chamber along with the coolant fuel and the rest of the LOX
to go through a second combustion process at mixture ratio of 6 1b of LOX to
11b of LH.

The selection of 3000 psi chamber pressure and staged combustion cycle to

attain maximum specific impulse for the SSME necessitates the use of four tur-
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bopumps operating at high speed. The design selection of the four turbopumps
are determined by the fact that low pressure is desirable at the pump inlet to
minimize the tank’s thickness, while high pressure is necessary at the pump
outlet to produce discharge pressure between 7000 psi and 8500 psi. These con-
flicting requirements are best balanced by adding two low pressure pumps (one
for LOX and cne for LH) that give sufficient inlet pressure for the two high
pressure pumps that, in turn, must provide high discharge pressure.

The SSME operational phases and control are accomplished by simultane-
ous manipulation of the five hydraulic actuated valves: Main Fuel Vzlve (MFV),
Main Oxidizer Valve (MOV), Chamber Coolant Valve (CCV), Oxidizer Pre-
burner Oxidizer Valve (OPOV), and Fuel Preburner Oxidizer Valve (FPOV).

In the start-up phase, all five valves are scheduled to ensure a smooth start
by directing fuel into the combustion chamber prior to the oxidizer to establish
a fuel-rich environment. This start-up sequence takes approximately 4 seconds.

In the main stage phase where the power level is about 104 percent as
illustrated in Figure 2-1, the MOV, MFV, and CCV remain fully opened until
shutdown. The OPOV and FPOV control engine throttling by varying the
output of the preburners, the speed of the turbopumps, and consequently the
LOX and LH flow rate. The mixture ratio in the MCC is solely controlled by
the FPOV. The OPOV is used simultaneously with the FPOV to control the

thrust at a specific mixture ratio.

2.2 Mathematical Modeling

This section presents the mathematical model of the dynamic behavior of the
SSME. The dynamics of the SSME are governed by the interaction of a large
number of physical variables. The SSME flow schematic of Figure 2-2 provides

a notion of the potential degree of complexity of these interactions.
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2.2.1 Nonlinear Model

The open loop dynamic model presented here is adapted from Rocketdyne’s
documentation and nonlinear simulation [1]. It will be referred to as Rocket-
dyne Model hereafter. The core of this model is a set of 37 nonlinear ordinary

differential equation that can be written in a concise notation. Specifically,

¢ = f(z(t),5(2)) (2.1)
q(t) = h(z(t)) (2.2)

where z(t) is the 37 dimensional state vector, s(t) is the vector representing the 5
inputs or valve openings, q(t) is 15 dimensional observation vector representing
sensor outputs at time ¢, and h(z(t)) is a nonlinear function of the observation.
In this study, it is assumed that a total of 15 sensors are used to measure various
state variables of the model in Eq.(2.1) and Eq.(2.2). While this is probably a
subset of the entire actual set of sensors, it is sufficient to ensure the observability
of every state in Egs.(2.1-2.2). The description of the thirty-seven variables are
listed in Teble 2.1 with unit in paratheses. Ten of these 37 variables are sensed
directly and 5 measurements are nonlinearly related to more than one variable,

as listed in Table 2.2.

2.2.2 Seven Types of Equation
The 37 equations fall into seven categories of dynamic equations [24]:

e Type 1: The rotational dynamics of turbopumps: Four equations, one for

each turbopump, describe the rotational dynamics of the engine. The
following is the general form of this equation, where ITp is the moment of
inertia of the rotor, Q the angular velocity, 7r the torque delivered by the

turbine, and 7p the torque absorbed by the pump:

dQ}
ITP_dT =Tr—Tp (2.3)
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State Variable Description

(1707 Rotational velocity (rad/sec} in HPOTP (sensor 1)
Ppos Pressure (psia) for preburner common supply
mepo Mass flowrate (Ib/sec) for oxidizer preburner oxidizer
ho po Mass flowrate (Ib/sec) for oxidizer preburner oxidizsz

Pop Pressure (psia) in oxidizer preburner

Pp;, Pressure (psia) for main fuel injector (sensor 3)
marov Mass flowrate (Ib/sec) for main oxidizer vaive

Peo Pressure (psia) in thrust chamber (sensor 4)

Npq Rotational velocity (rad/sec) in HPFTP (sensor 5)
Moy Mass flowrate (Ib/sec) at coolant line inlet
mero Mass flowrate (Ib/sec) at coolant line outlet

Per Pressure (poie) in coolant line
thppp Maes flowrate (Ib/sec) into fuel preburner

Prp Pressure (psia) in preburner (sensor 6)

e pr Mass flowrate (lb/sec) into oxydizer preburner
masc Mass flowrate (Ib/sec) in main
chamber heat exchanger
Twis Temperature of hot gas wall at cooling Line
of the main chamber
Twas Temperature of ambient wall at cooling line
of the main chamber

SU,4 Specific internal energy of hydrogen (Btu/Ib)

out of nozzle coolant line

mpNn Mass flowrate (lb/sec) at the primary heat exchang

Pa Mass dersity of hydrogen (lb/in>) out of
nozzle coolant line
Twie Temperature of hot gas wall at nozzle

coolant line

Twae Temperature of ambient wall at nozzle coolant line

Hing Mass flowrate (Ib/sec) through nozzle coolant line
masrFp ASI Mass flowrate (Ib/sec) in fuel preburner
masrop ASI Mass flowrate (Ib/sec) in oxidizer preburner

masy MC ASI Mass flowrate (Ib/sec) in main chamber
Pg Pressure (psia) in the preburner common
fuel supply line

thpnBp Mass flowrate (1b/sec) through primary nozzle by pass
mer Mass flowrate (Ib/sec) in low-pressure oxidizer turbine
Pors Pressure (psia) in low-pressure oxidizer pump inlet
No; Rotational velocity (rad/sec) in LPOTP (senzor 9)
p; Rotational velocity (rad/sec) in LPFTP (sensor 10)
mos Mass flowrate (Ib/sec) through LPOTP inlet

Table 2.1: Complete SSME state variables (directly sensed variables indicated).
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Sensor Description

HPOTP discharge pressure (psia) (sensor 11)

_Pogz
P Preburner booster pump discharge pr (psis) ( 12)
| Tre29

High presoure fuel turbine discharge temperature (R) (sensor 13)

Tosag | High pressure oxidizer turbine discharge tempersture (R)(sensor 14)
Praa High pressure fuel pump discharge pr (poia) ( 15)

Table 2.2: Nonlinear sensors

o Type 2: Inertia of liquid nnder pressure variation: Seventeen equations

follow the form of this type of equation. This equation relates the change
in time in the mean flow rate at each pipe to the pressure difference. It is
just an application of Newton’s second law and is analogous to inductance
effects in electric circuits. Consider a pipe of length L and cross-section
area A, fed by a pump discharge at a pressure Pp, and having a mean
pressure Pp . Frictional forces along the pipe at bends and restrictions
contribute a total pressure drop of A (1/2pv?), where p and v are the liquid
density and velocity respectively, and A (of order unity) is the pressure loss
coefficient. From the continuity equation m = pvA where m is the mass

flow rate, we can write

Ly din _ 2z

o Type 3:Fluid capacitance under pressure variation: This type of equation

is analogous to capacitive effects. There are 8 equations of this type ex-
pressing the ability of cavities to store fluid due to its compressibility
under pressure fluctuations. Consider the same pipe as above with an in-
let fow rate of 1, from the pump, and discharges at one or more different
places so that the net outlet flow is Trivgy. A net inflow is then given by
T = Mip — Siftewe- Although the fluid discharged by the pump is a liquid,

it still has finite compressibility, v, which becomes more appreciable as the
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pressures become large. This is the case of the turbomachineries (both low
pressure and high pressure) we are dealing with, and as a result the net
inflow does not generally equal zero. From the definition of compressibil-
ity and considering that the volume V of the pipe remains constant under

the pressure fluctuations, we can write the continuity equation as

dP

vpV

Type 4:Fluid Capacitance under density variation: Some of the dynamics

of the SSME, in 2 equations, are more sensitive to density variations than
to pressure variations. This is specially true when we deal with beat
transfer phenomena in the main combustion chamber and nozzle walls. In
either case, this type of equation is essentially the same as Eq.(2.5) with

constant pressure:

V%';i = Sri (2.6)

Type 5:Heat transfer in the heat exchangers: There are 2 equations that

deal with the property of gases formed from heat transfer processes in the
main heat exchangers of the engine. Consider the coolant fluid inside two
walls separating the hot gases produced from the combustion process (from
nozzle and combustion chamber) and the ambient gases of the atmosphere,
and let u be its specific internal energy, h be its specific enthalpy and
mh its heat flow rate convected by the system. From the first law of
thermodynamics, assuming constant density, a simple heat flow balance

for the coolant fluid yields

du

PVT = Qw,in - Qw,out + (Thh)gn - (Thh)out (2‘7)

where Qw,;n and Qw,o,,t are the heat flow rate transfered from the hot wall
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to the fluid and the heat flow rate transfered from the fluid to the ambiert

wall respectively.

e Type 6: Heat Transfer Across Metal Walls: Four equations in the model
describe the transient heat transfer phenomena inside the metal walls of
the heat exchangers. Again, using the first law of thermodyramics, the
net heat flux inside the wall is given by Qc,,-n - Qw_;“ where Qc,;n is the heat
flux transfered from the hot gases to the hot wall and Qw,;n is the heat
flux transfered from the wall to the coclant fluid. Then the temperature

of the hot wall obeys the equation

dThw
di

1 . .
= ;‘n—é‘(Qc.in - Qw.in) (28)

where m is the mass per unit area of wall and ¢ is the specific heat of the

material.

e Type 7:Time Delay Equation: Some of the sensors used to monitor the

behavior of the SSME do not have an immediate response to changes in
the state of variables. This delay can be categorized as a first order time
lag. For instance, if we have one of these sensors measuring mass flow rate
and m, is the real signal and 7 is the sensor output shifted by a small

time constant €, then she relationship between the two signals is

di(t) 1,. .
& = ;(ma(t) —m(t)) (2.9)

2.2.3 The Nonlinear Differential Equations

With the geometry and other structural specifications of the engine specified,

the complete 37 differential equations can be constructed.

1 dQ
0.916 dt

Tot2 = Top2 *~ Top3 (210)

31



1 diitgps
100 dt
1 dP,,

38120 dt
1 dsipo

2 dt
diitopo
Tdt

1 dP,,
10000 df

1 dPy
3000 dt

1 dm,,,,
25 dt

1 dP,
4000 dt
1 dQy,

0.3087 dt
1 dmy;
0.1 dt
1 dmgy,
01 dt
1 dPg
283700 dt
1 dmy,y
20 dt
1 dPy,
16000 dt
1 dintgpy
10 dt
1 d(p,SU5)
0.001 4t
1dm,,,

5 dt

_1_dps

0.001 dt
1 dTuss

0.31 dt
1 dTw25

0.0825 dt
1 d(p,SVJ4)

0.0005  dt

Pops = Ppo, — 0.000813rh2 4 (2.11)

rh¢>p3 - l'hj'po - Iilt)po - ﬁlopm: (212)
I /po
[A/ A]fpv

2
P pos — Py, — 0.02488 ( ) ~ 01048102, (2.13)

L 2
m
Ppos — Pop — 0. i — 1.463ih? .
pos — Pop — 0.260 ( v A]m) 1463m2,  (2.14)
Tger + Thors + g — 1.0857; (2.16)

o 2
m
Pogy — P, —0.001358 { ——==— ] — 0.0003575{xi1mov )2
od2 p 38 ([A/A]mov) 0.0003573{mMmov )
(2.17)
mfi + lhmov — Men (2'18)
Tft2 — Tfp2 (219)
Pray — Py — 6573.46m7, (2:20)
Py — Pj; — 109.59m?, (2.21)
fy; — My, (2.22)
n‘12
Py — Py, - 0.000131% (2.23)
9
Wy, + Hgp — 0.990817 44 (2.24)
rh2
Py — P,, — 0.000570—=L (2.25)
Ps
Q15 + Qa5 + 18971, — 1hs H (2.26)
n‘12
Prgoa — Ps — 0.001442—2¢ (2.27)
Ps
M — s (2.28)
ths - le (229)
~Q2s (2.30)
Q14 + Q24 + 166.81h 5, — thy Hy (2.31)
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0.0005 dt
1 dT wl4d

0.1668 dt
1 dTu24

0.0834 dt
1 dmy
21.19 dt
1 dmyg,; fp
0.1 dt

1 dPy
10000 dt
1 dmggep
0.2 dt
Ldﬁlotl

1.2 dt
1 d,,

150 ¢t
1 dQan

0.37566 dt
1 dQp,

1.0449 dt
1 dm,,

21.57 dit

mevd — Py - Clh;ulh';n

Ih,fn - ﬁl4
Q.‘M - Ql4
—Qz4
l.h?
P~ Py—Cp,—
P4

Prjoa — Pop — 1025.04m2,;

Ponjod — P, — 3552.88mh2,,

1y + M gy — Mepy — Mgps

[A/ Alecy
Poiz — Pogy — (.1142 + Rop )1,

. 2
P,,.,.,.,—P,,—o.1297( 0 frbp )

.o — Moy — Mep3
Tot1 — Topl
Tft1 — Tfp1

Py — P,y — 01121,

(2.32)
(2.33)
(2.34)
(2.35)
(2.36)
(2.37)
(2.38)
(2.39)

(2.40)
(2.41)

(2.42)
(2.43)
(2.44)
(2.45)

(2.46)

In the above equations, the state variables are shown in bold. The other

variables on the right hand side are algebraically related to eithe: the state

variables or control variables by different functions listed in Appendix B.
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2.3 Linear State Space Representation for the

SSME Model

The nonlinear dynamics of the 37 differential equations are made more tractable
for the analysis of failure detection by linearizing them about various operating
points. The linearized model is extremely useful for constructing linear filters as
will be seen in Chapter 3. The linearization procedure is described in Appendix
C. The plant and sensor models of Eqs.(2.1-2.2), when linearized and discretized
in the absence of a failure about certain power level or constant operating point

2, and s,, become

z(k+1) = Az(k)+ Bu(k) + Tw(k) (2.47)
y(k) = Cz(k)+v(k) (2.48)

where k is time, z(k), u(k), and y(k) are the discrete version of z(t) — z,
s(t) — so, and q(t) — g, respectively. The matrices A, B, C are the Jacobians
of Eqs.(2.1-2.2) evaluated at z, and s,. The constant operating point (z, and
8,) results in these matrices being time-invariant as described in Appendix C.
The vector w(k) represents the process noise independent of z(k), and v(k)
represents the sensor or measurement noise. It is also assumed that the w(k)
and v(k) are independent, and w(k) and v(k) are zero-mean and Gaussian white

noise sequences with

E(w(kyw'(k) = Q(k) (2.49)
E(w(k)'(k)) = R(k) (2.50)

The terms ['w(k) represent the exogenous disturbance as well as the model
uncertainty, such as that resulting from the linearization. The matrix T is
therefore a design choice. For simplicity, we also make the noise covariance

matrices constant, i.e. Q(k) = @ and R(k) = R. Numerical values of these
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matrices and other relevant matrices at 100 percent power level are listed in
Appendix A. We also use these matrices as the representative system matrices to
generate the results in the subsequent chapters, similar results can be obtained
for system matrices at other power levels. In addition, the sensor sampling rate
is assumed to be 1000 Hz.

The above equations are used to design the Kalman filter and the FDI
algorithm that are described in the next chapter.

2.4 Characteristics of the SSME Model

In this section, a few important characteristics of the SSME dynamics is delin-
eated to further enhance our insights about the choice of the detection scheme
described in the next chapters.

The trajectories of the state variables of the nonlinear ﬁmdel described in
the previous sections at 100 percent Rated Power Level (RPL) are shown in
Figure 2-3 where the x-axis is time and the y-axis is the value of each of the 37
state variables. The nonlinear model is initialized at a point in the neighbor-
hood of the 100 percent power level steady-state value. The plots in Figure 2-3
indicate that the SSME is a highly damped system, since most of the variables
reach steady state in less than 1 second. The oscillatory behavior in the states
P,, {pressure in low-pressure oxidizer turbopump inlet) and dM,, (mass flowrate
through LPOTP) is primarily due the compressibility of LOX, which is trans-
ferred from the LOX tank to the LPOTP in a pipe whose length is much larger
than the other pipes’ length. This long pipe sustains low frequency oscillation
and effectively possesses capacitive behavior that P,;, and dM,, exhibit.

The stability of the dynamics is also reflected from the eigenvalues of the
system transition matrix A across the 100 percent power level where all of the
eigenvalues are located inside the unit circle. A plot of the eigenvalues is shown
in Figure 2-4. The rapid transient response of the state variables motivates the

usage of the stationary Kalman filter for failure detection and isolation.
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Figure 2-3: Trajectory of SSME model state variables when reaching steady-

state at the 100 percent power level.
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Figure 2-4: Pole-Zero Plot of Eigenvalues of A (in discrete time)
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Chapter 3

The FDI Approach

This chapter motivates and delineates the role of each building block in the
VHM system of Figure 3-1. In addition, a detailed description of the three
of these blocks (in the dashed-line box) are presented: the Kalman filter, the
threshold test, and the whiteness test.

In Section 3.1, the FDI problem is formulated using the nonlinear model.
The difficulty of this formulation is explained, thus motivating the architecture
in Figure 3-1. In Section 3.2, we reformulate the problem using the linear model
introduced in Chapter 2 and explain the role of each of the subsequent blocks in
the VHM system. Next, in Section 3.3, the linearized model is used to construct

the Kalman filter (KF), and the vital role of the KF as a residual generator in

u, p] Full Nonlinear x, states
controls | Model ¥, sensors Sensor/Valve g_‘k';_“'m
frefteeccccaecananecnaseas RatioﬂTmuOdt
ﬂ; 1 yes Whiteness yes
'
L]
'

[]
1
Test
filter s residual white?
. Kal residual Threshold! " ino

Linearized man [] - "

Model F=| Filter v-9 o I?'? +  Intemal Component Multiple Models
L]

L

No Failure
no Continue Monitoring )

§ = predicted measurement
¥ = sensor measurement
e = preliminary threshold

Figure 3-1: SSME Vehicle Health Monitoring System
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the FDI process is demonstrated. In Section 3.4, we discuss the threshold test
for failure detection. The whiteness test is introduced next in Section 3.5. This
test is used to determine whether the detected failure occurred in a sensor or a

valve, or in an internal component.

3.1 Problem Formulation and Solution

A natural approach to the problem of detecting and isolating failures in the
SSME'’s sensors, valves, and internal components based on the observed mea-
surements is to set up the problem as a hypothesis test. In this approach, the
test consists of two hypotheses Hy and H;, where Hy corresponds to the no-
failure scenario and H; corresponds to the failure scenario. We assume that the
failure either exists or does not exist in the entire time interval of interest, hence
the time at which the failure occurs is not considered. The two hypotheses differ
in the system parameter values used in the different hypothesized models. Let
© be the system parameter vector in the absence of any failure, and ©, be the
system parameter vector in the presence of a failure. Then, using the nonlinear
model (2.1-2.2) with noise incorporated, the two hypotheses (in discrete time)

are:

Ho © a(k+1) = f(a(k),s(k); O0) + w(k)
a(k) = h(z(k); O0) + v(k) (3.1)

Hi i z(k+1) = f(2(k),s(k); ©1) + w(k)
q(k) = h(z(k);01) + v(k) (3.2)

where w(k) and v(k) are zero-mean white Gaussian noise sequences, independent
of each other with respective covariances @ and R. It is also assumed that w(k)
is independent with the state z(k).

As shown in [27, 30], the usual procedure used to decide between Hy and
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H, is to compare a likelihood ratio (LR) A , against a threshold 5. Specifically,

2 _ P(q(ko),---,Q(kj) I Hb@l) ?
Aer = Dla(Ro)s mra(Rs) | Hoy @) 33)

Since the parameter vector @, is unknown, we use instead its maximum

likelihood estimate (:)1 assuming that hypothesis Hj is true.
©; = arg max p(g(ko), ..., a(ks) | i, ©1) (34)

The estimate @, is then substituted into Eq.(3.3) to form the generalized likeli-
hood ratio (GLR), A, (©1). ¥or an observation interval of ko < k < ky, A, (0,)

is given by

s pa(ko), ..., q(ks) | Hi,01) =
Ak (00) = L Ro), v alhy) | Ho.Bo) =" (3:5)

This overall procedure is referred to as the generalized likelihood ratio test
(GLRT).

However, the GLRT as presented is impossible to compute for several rea-
sons. First, the probability density function p(q(ko),...,q(ks)) is usually not
computable because of the nonlinearity in the model (2.1-2.2). Second, even if
the density function can be derived, the sequence {g(ko), ..., g(ks)} is not inde-
pendent so that expression (3.5) cannot be computed recursively. Third, since
the density function in Eq.(3.4) is generally not convex, the optimization in
Eq.(3.4) is not simple.

To implement the GLRT, we use the approach illustrated in Figure 3-1. The

outline of this approach is the following six steps:
1. Linearize the nonlinear model (Linearized Model Block).

2. Design a Kalman filter based on the linearized model in the absence of
failure to generate a residual sequence (Kalman filter Block) that can be

assumed independent.

3. Use the threshold test to process the residual and detect the presence of
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failures (Threshold Test Block).

4. Perform the whiteness test to distinguish between sensor/valve failures

and internal component failures (Whiteness test Block).

5. If the failure is in a sensor/valve, a simplified version of the GLRT is
employed to detect and isolate the faulty comporent (GLRT Block).

6. If the failure is in an internal component, the Multiple Model (MM)
method is employed to detect and isolate the faulty subsystem (MM
Block).

In Step 1, the linearized model allows us to replace the density func-
tion p(g(ko),...,q(ks)) with the density function p(y(ko),...,y(ks)). The se-
quence {y(ko),...,y(ks)} is Gaussian since, by assumption, it is the out-
put of a linear system driven by white Gaussian noise. The calculation of
p(y(ko), ..., y(ks)), however, is still computationally intensive because the se-
quence {y(ko), ..., y(ks)} is not an independent sequence which makes it impos-
sible to express the GLRT recursively.

In the case when the failure occurs in a sensor or valve, a recursive form
of the GLR can be obtained by replacing the sequence {y(ko),...,y(ks)} with
its residual sequence {o(ko), ..., 0(ks)}, which contains the same information as
{y(ko), ..., y(ks)} but has independent samples. The residual g(k) is defined as
the difference between the output measurement y(k) and the estimate of y(k),
#(k). The residual sequence is generated by a Kalman filter in Step 2 based on
the linearized model in the absence of failure.

Step 3 is concerned with failure detection. It consists of a test in which a
statistic that is a function of the residual is continuously compared to a thresh-
old to determine whether any a failure has occured. The threshold test elimi-
nates other unnecessary computations (i.e. the whiteness, the GLRT, the MM
method) if a failure is not detected. Details of the threshold test is discussed in
Section 3.4.
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Once a failure is detected, we proceed to Step 4 where the whiteness test
is used to determine whether the failure occured in a sensor or a valve, or in
an internal component. This test takes advantage of the fact that the residual
is white or uncorrelated when the failure is in a sensor/valve and is colored or
correlated when the failure is in an internal component. The discussion of the
whiteness test is in Section 3.5.

After the failure is detected and diagnosed either as a sensor/valve or inter-
nal component failure, then the algorithm proceeds as in Figure 3-1. Specifically,
if it is determined that the failure is in a sensor or a valve, we proceed to Step
5 and use the GLRT to specify which sensor or valve failed. If, however, the
whiteness test indicates that the failure occured in an internal component, the
MM method of Step 6 is employed to identify the faulty subsystem. The GLRT
is introduced in Section 3.2.1 and described in details in Chapter 4 while Section
3.2.2 introduces the MM method and Chapter 5 presents it in depth.

Before we proceed further, we want to note that the assumption of white
Gaussian noise is an idealization since it allows us to cbtain closed form solu-
tion for the GLRT. The white Gaussian noise is cnly an approximation of the
observed realistic ncises, hence this assumption should be kept in mind when

implementing this algorithm on the real system.

3.2 Hypothesis Test with Linearized Model

In this section, we revisit problems with the GLRT presented in the last sec-
tion. Specifically, we replace the nonlinear model with the linearized model and
elaborate on the methods used in the treatment of both sensor/valve failures in
Step 5 and internal component failures in Step 6.

As a result of using the linearized model, the hypotheses of Egs.(3.1-3.2)

become

Hy : z(k+1) = A(Oo)z(k)+ B(Oo)ulk) + Tuw(k)
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y(k) = C(@o)(k) + (k) (3.6)
Hy : z(k+1) = A(©1)z(k) + B(©:1)u(k) + T'w(k) + F(0,)v
y(k) = C(01)z(k)+ v(k) + L(©,)v (3.7)

for ke[k,, ks]. The parameter vector O, is the system parameters in the presence
of internal component failures. The vectors F' and L describe the way the failures
in the control valves and sensors are injected into the system. For instance, if the
failed component is a control valve, then F is the column vector of B representing
that contro} valve in the plant dynamics. The magnitude of the sensor/valve
failures is represented by v, and v is zero in the case of an internal component
failure. Similarly, ©; equals @ in the case of an sensor/valve failure. We
want to point out here that the modeling of sensor and valve failures as additive
changes in Eq.(3.7) implies that the magnitude of the failure, v, is not a function
of the state z. This modeling of failures as additive changes is generally valid
since sensor and valve failures tend to occur independently of the behavior of
the dynamics. While we cnly consider step failure mode for simplicity, other

non-step failure modes can be analyzed in the same manner.

3.2.1 Sensor or Valve Failures

Let us first consider the case when the failure occurs in a sensor or a valve, i.e.

0O, = O¢ and v # 0. The hypotheses in Eqs.(3.6-3.7) become

Hy : z(k+1) = Az(k)+ Bu(k)+ Tw(k)

y(k) = Ca(k)+ (k) (33)
Hy : z(k+1) = Az(k)+ Bu(k)+Tw(k)+ Fv
y(k) = Caz(k)+v(k)+ Lv (3.9)

where the matrices A, B, C are function of ©y. For an observations over a finite

interval ko < k < ky, the generalized likelihood ratio, Ax,(?), of the hypothesis
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test of Eqs.(3.8-3.9) is given by

D) = p(y(kO)’ay(kf) I Hl’l))
A (2 = = o), sy (k) T Bl (3.10)
¥ = argmaxp(y(ko), ..., y(ks) | H, v) (3-11)

where 2 is the maximum likelihood estimate of v.

The likelihood ratio in Eq.(3.10) is computable since the output y(k) is now
the output of a linear system driven by white Gaussian noise; specifically the
noise sequences w(k) and v(k). The computation of the LR itself, however,
is not trivial. The difficulty primarily arises in the calculation of the density
function p(y(ko), ..., y(ky)) because the sequence {y(ko), «.»y(ks)} is not inde-
pendent. As a result, the GLR cannot be written recursively. To overcome this
difficulty, we implement a Kalman filter and replaces the measurement sequence
{y(ko), ..., y(ky)} by its residual sequence {o(ko), ..., 6(ks)} that carries the same
information as the measurement. The o(k)’s are statistically independent, al-
lowing Eq.(3.10) to be computed recursively as we will show in depth in Chapter

4 where the we continue discussing sensor and valve failures in details.

3.2.2 Internal Component Failures

For the case when the failure is in an internal component, we have v = 0 and

©; # ©o. The GLR and the optimization over 0, is given by

Ay P(y(ko), oy Y(ky) | Hlaél)
Ar(O0) = = ko), 58 T Ho) (8.12)
0, = arg %?Xp(y(kO), ws Y(kyg)|Hy, 1) (3.13)

The density function in Eq.(3.13) remains Gaussian but the mean and covari-
ance are unknown because we don’t know the system matrices A(9,;), B(©,),
and C(0©,) that generate the measurement y(k). Moreover, even if the the den-

sity function can be derived, Eq.(3.12) cannot be expressed recursively since the
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residual sequence is not independent. Thus the GLR in Eq.(3.12) is not com-
putable. To circumvent these problems, we implement a bank of filters based

on different hypotheses Hj, j = 1,...,N

H; : z(k+1) = A(©;)z(k) + B(0;)ulk)+ Tw(k)
y(k) = C(0;)z(k)+ v(k) (3.14)

where each filter assumes a specific model that corresponds to a particular in-
ternal component failure. These filters take as input the the measurement from
the true failed model; and using the residual of each filter, the probability of hy-
pothesis/model j is the correct hypothesis/model can be computed using Bayes
rule. This is the MM method which we will elaborate in Chapter 5.

In the outline, before the GLRT or the MM method is used to isolate the
failures in Step 5 and Step 6, the failure must be detected by the threshold
test in Step 3 and categorized as either a sensor/valve failure or an internal
component failure by the whiteness test in Step 4. Since both the threshold test
and the whiteness test require the information from the residual or innovatioq,
we will first describe how the residual is generated by the Kalman filter in Step
2 and then proceed to Step 3 and Step 4.

3.3 The Kalman Filter as a Residual Generator

In our FDI framework, the residual generated by the Kalman filter is an es-
sential piece of information. In our VHM system, the residual is used in every
phase of the FDI algorithm: from detecting the failure by the threshold test,
to categorizing the type of failure (sensor/valve or internal component) by the
whiteness test, and to isolating the failures by either the GLRT or the MM
method.

In this section we present how the residual is generated by the Kalman filter

algorithm. In addition, we discuss some of the powerful features of the residual,
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namely its zero-mean and white (independent) properties. The derivation of the
Kalman filter is given in Appendix C.
Consider the dynamic system (of Eqgs.(2.47 -2.48)), rewritten below

z(k+1) = Az(k)+ Bu(k)+ Tw(k) (3.15)
y(k) = Cz(k)+ v(k) (3.16)

where w(k) represents the observation noise independent of z(k), I' is a known
matrix , and v(k) represents the measurement noise. It is also assumed that
the w(k) and v(k) are independent, and w(k) and v(k) are zero mean, Gaussian

white noise sequences with

E(w(k)w'(k) = @ (3.17)
E(w(kW'(k) = R (3.18)

In addition, the initial condition z(ko) has mean m.(ko) and covariance P, (ko).
The Kalman filter gives the minimum variance estimates of z(k) or the

conditional means:

27(k) = Elz(k)ly(ko), ..., y(k — 1)] (3.19)
#*(k) = Elz(k)ly(ko), ..., y(k)] (3-20)

The estimates 27(k) and £*(k) are referred to as the predicted and update
estimates of the state, respectively. The equations for the KF algorithm is as
follows:

Prediction

&7 (k+1) = Ai*(k)+ Bu(k) (3.21)
P (k+1) = AP*(k)A'(k)+ QI (3.22)
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Update

it(k+1) = &7 (k+1)+ K(k)o(k +1) (3.23)
o(k) = y(k)—Cz (k) (3.24)
K(k) = P~ (k)C'(k)V(k)™ (3.25)
V(k) = CP-(k)C'(k)+R (3.26)
P*(k) = P (k—1)— K(k)CP~(k—1) (3.27)

where P~(k) and P*(k) are error covariance mairices of 2~ (k) and (k) re-
spectively . The vector p(k) is referred as to the innovation in the absence
of failure, and it is referred as the the residual in the presence of any failure.
The matrix K (k) is known as the Kalman gain and V/(k) is the covariance of
the residual. If the measurement is available at time ko, the algorithm is ini-
tiated with £~ (ko) = mg(ko) and P~(ko) = P:(ko), otherwise initiated with
2t(ko) = my(ko) and P* (ko) = Pr(ko).

A number of observations can be made regarding the structure of the
Kalman filter. First, Eq.(3.21) is a noise-free version of Eq.(3.15) and its cor-
rection based on the previous measurement is given by Eq.(3.23). Second, the
covariances (3.22 and 3.25-3.27) can be computed off-line since the measure-
ment does not enter into these equations. Finally, in order to process the next
estimate, only the current measurement instead of the whole past history of the
measurement is needed for the computation.

In the context of FDI, the most desirable feature of the innovation in the

absence of failure is that it is both white and of zero mean. Specifically,

Elo(k)] = E{y(k)—Ci~(k)} (3.28)
= E{y(k) - Ely(k)ly(k), ..., y(k — 1)]}

Ely(k)] — E(Ely(k)ly(ko), .., y(k — 1)])

= Ely(k)] - Ely(k)] =0 (3.29)
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where the law of iterated expectation is applied to go from the third equality to
the fourth equality. For n < k,

Ele(n)d'(k)] = E{E[e(n)d'(¥)ly(ko),...,y(n)]}
= E{o(n)E[e(k)ly(ko), .-, y(n)]}
=0 (3.30)

where the second equaltity follows from the fact that, given measurement
through n, then g(n) is a constant. Similar arguments can be made for & > n.

The third equality follows from

Elo(k)ly(ko), -, y(n)] = Ely(k)ly(ko), ... y(n)] — E{E[y(k)|y(ko), ..., y(n)]}
= Ely(k)ly(ko), .., y(n)] — E[§(k)ly(ko), ., y(n)]

= Efy(k)ly(ko), ..., y(n)] — Ely(k)ly(ko), -, y(n)]
=0 (3.31)

Thus the innovations (or residuals) are uncorrelated or white, which in the
Guassian context, implies that the innovations are independent. This property
of the innovation is used extensively in our application of determining whether a
failure occured in a sensor/valve or in an internal component as will be discussed

in Section 3.5. It is also used in Chapter 4 and 5.

3.4 The Threshold Test

As mentioned earlier, the residual (or innovation) generated by the KF is next
processed by a preliminary threshold test (dashed-boxed in Figure 3-2) to decide
whether a failure has occured. This is Step 3 in our FDI procedure as outlined
in Section 3.1. In section 3.4.1, we show that any failure, whether in a sensor
or a valve, or in an internal component, will shift the mean of the residual.

The description and design considerations of the preliminary threshold test is
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discussed in Section 3.4.2.

3.4.1 Failures and the Residual’s Mean

In this section we demonstrate that whenever there is a failure of any kind,
the mean of the residual will shift. Suppose that the true system is given by
Eqs.(3.15-3.16) with the usual notations (repeated here for reference).

o(k+1) = Az(k)+ Bu(k)+ Tw(k) (3.32)
y(k) = Cz(k)+v(k) (3.33)

First, we want to show that the residual is biased when the failure occurs in a
sensor or valve. Suppose that in the presence of a sensor failure, Egs.(3.32-3.33)

becomes

z(k+1) = Az(k)+ Bu(k)+ Tw(k) (3.34)
y(k) = Caz(k)+v(k)+ f(k) (3.35)

where f(k) represents the step failure with magnitude one. Substituting

Eq.(3.35) into Eqgs.(3.21,3.23-3.24) yields

3~ (k +1) = Az~ (k) + Bu(k) + AKo(k) (3.36)
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Using Egs.(3.34-3.35), the error dynamics of this filter #~(k) can be expressed

as

F(k+1) = z(k+1)—i(k+1) (3.37)
i (k+1) = (A—AKC)s (k) — AKv(k) + Tw(k) — AKf(k) (3.38)

and
E[z™(k+1)] = (A— AKC)E[i~ (k)] — AK f(k) (3.39)

Clearly, ~(k+1) is biased because of the term f(k). The biased error dynamics

in turn implies that the residual is biased since
Elo(k+1)] =CE[z™(k +1)] (3.40)
Suppose next that the failure occurs in a control valve at time k:

z(k+1) = Az(k)+ Bu(k)+ Tw(k) + f(k) (3.41)
y(k) = Cuz(k)+ v(k) (3.42)

and again using Eq.(3.23) and Eq.(3.41), we can write

i(k+1) = (A—AKC){As (k) + AKC3™(k) + AKv(k)}
+AKCAz(k) + AKCBu(k) + AKC(k) (3.43)
A’z(k) + ABu(k) + Af(k) + Bu(k + 1) + f(k +1) (3.44)

z(k+1)
These two equations yield the error dynamics

i (k+1) = (A’-{(A— AKC)AKC + AKCA}) (k) + f(k +1)
(A— AKC)f(k) — (A— AKC)AKv(k) (3.45)

which is also biased because of the terms f(k) and f(k + 1).
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Consider next the case of an internal component failure where the filter is

based on a model with incorrect parameter values:
27 (k +1) = A13~ (k) + Biu(k) + A1 K (k)(y(k) — Ciz~(k)) (3.46)

where A;, B, C,; are different from A, B,C as a result of the failure. The error

dynamics is then

F(k+1) = (A - AK(E)C)E (k) + (AA — A K(k)AC)z(k)
+ABu(k) + Tw(k) + A K (k)v(k) (3.47)

where AA=A— A, AB = B — B,, and AC = C — C;. The error dynamics
in Eq.(3.47) is biased because of the term AA, AB,AC, and the mean of z(k)
itself. This is also true even if AB is zero since the mean of z(k) is always
nonzero. To see this, recall from Section 2.3 that z(k) represents the difference
between the actual state and the steady state. The actual state always deviates
from the steady state when either AA or AC is nonzero or when both AA and
AC are nonzero, which implies that the mean of z(k) cannot be zero.

Finally, we present simulation experiments demonstrating the shift of the
residual’s mean in the presence of sensor/vaive and internal component failures.
Figure 3-3 shows the residual with a step failure in the HPOTP rotational
velocity sensor occurs at time ¢ = 1 second. The residual is unbiased prior
to 1 second, and its mean shifts after the failure occurs. Similar results are
demonstrated in Figure 3-4 and Figure 3-5 where the failures occur in a control
valve (fuel preburner oxidizer valve) at time ¢ = 1 second and in an internal

component (bearing failure) at time ¢t = 0.8 second, respectively.

3.4.2 Description and Design of the Threshold Test

The purpose of the threshold test is to detect the occurence of any failure.

While both sensor/valve and internal component failures shift the mean of the
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Figure 3-3: Residual of a HPOTP rotational speed sensor failure. Failure occurs
at 1 second.

Figure 3-4: Residual of a main fuel valve failure. Failure occurs at 1 second.
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Figure 3-5: Residual of an internal component failure (HPOTP bearing). Failure
occurs at 0.8 second.

residual, their effect on the covariance of the residual is different. As shown in
[4], when the failure in a sensor or a valve is modeled as an additive input, the
covariance of the residual is the same as it was before the failure occurs. The
residual’s covariance, however, is changed in the presence of internal component
failures. It can only be numerically estimated from the sample data since an
analytical form is not obtainable due to the lack of knowledge of the new sys-
tem matrices (matrices A, B;, and C; as shown in the discussion of internal
component failures in the previous section). Since the type of the anticipated
failure is generally unknown, a good detection test must take into account the
lack of information on the residual’s covariance. A test commonly used for this
particular situation is the ¢-test which uses the sample covariance. The proce-
dure of this test is outlined below with a few numerical examples. A thorough
treatment of this test can be found in [2].

From the discussiors in the previous sections, knowing that the residual
is Gaussian with zero-mean and known covariance in the ubsence of failure,

and otherwise Gaussian with mean m and unknown covariance, we consider the
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following hypotheses for the interval kq, ..., ko + N :

Hy:m = 0
lem # 0 (348)

where m = {m(ko), ..., n(ko+ N)}. As shown in [2], the standard procedure for
testing hypotheses (3.48) for N samples of the observed residual using the ¢-test
is to define the T statistics

T? = N§'§~'p (3.49)

which has ¢-distribution with N — 1 degrees of freedom. The notation 0 denotes
the sample mean vector of the residual and S denotes the sample covariance

matrix. These two quantities can be computed as

1 i=ko+N
e = N gk:o [ (3.50)
1 i=ko+N _ —
S =53 gfo (e: — 2)(0i — @) (3.51)

and hypothesis Hp is rejected if T2 > e. The threshold, e, is chosen such that
the probability of error (or the probability that T > e when Hj is true) is
equal to the significance level a,. The value of o, is a design choice. Once a, is
specified, e can be found using the ¢-distribution table.

To demonstrate this test, we present three numerical simulations. In Figures
3-6, 3-7, 3-8, the value of T? is computed using a sliding window of N = 50
points. The residual of these failures are illustrated in Figures 3-3, 3-4, and 3-5
respectively. Immediately after the failure, the value of T2 jumps, indicating the
presence of the failure. These failures are detected with a threshold e = 40. Since
the noise is statistical, noise samples whose values are large can occasionally
cause T? to cross the threshold, thus triggering a false alarm. On the other

hand, raising the threshold may delay detection of true failures. Error due to
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Figure 3-6: T2 Statistic for the residual in the absence of failure (above) and
in the presence of failure (below). The failure occurs in the HPOTP rotional
speed sensor at 1 second.

linearization must also be taken into account when determining the threshold
level. The threshold level therefore represents a tradeoff between false alarm
rate and detection speed. For instance, if the threshold is lowered to e = 30, the
failure would be detected slightly earlier but at the expense of possibly causing
false alarm at time ¢ = 0.17 seconds.

We want to emphasize that these failures can also be detected by just ob-
serving the residual, i.e. eye-balling or calculating the residual’s mean. This is
the case when the jump in the residual is large and obvious. In contrast, if the
jump in the residual is small and is contaminated with noise, deciding whether
a failure has occured can be quite subtle. The presence of noise implies that in
general the detection is not always perfect. However, we want a detection test

as good as possible in an appropriate sense.
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Figure 3-7: T? Statistic for the residual in the absence of failure (above) and in
the presence of failure (below). The failure occurs in the main fuel valve at 1
second.
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Figure 3-8: T2 Statistic for the residual in the absence of failure (above) and
in the presence of failure (below). The failure occurs in an internal component
(HPOTP bearing) at .4 seconds.
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3.5 The Whiteness Test

Once the failure is detected, we proceed to the first level of isolation. This level
categorizes the fa.ilufe as either a sensor/valve failure or an internal component
failure based on the whiteness of the residual. This is Step 4 in our outline
(dashed-box in Figure 3-9). We first show in Section 3.5.1 that when the failure
occurs in a sensor or a valve, the residual is white, and when the failure is in
an internal component, the residual is not white. In Section 3.5.2, the design
and description of the whiteness test is discussed along with some numerical

simulation results.

3.5.1 Whiteness of the Residual

Let us first show that the residual is white when the failure occurs in a sensor
or a valve. Let go(k) and g;(k) denote the residuals in the absence and presence
of failure, respectively. Due to the linear feature in the dynamic equations and

filter equations, we can decompose the residual g; (k) into
o1(k) = eo(k) + g(k) (3.52)

where g(k) is a deterministic but unknown quantity representing the effect of

the failure. In order to show that g,(k) is white, we must show that the auto
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covariance sequence K, ,, (k,n) is zero for n # k. That is,

Koo (kyn) = E{ei(k)e1(n)'} — E{o1(k)} E{o1(n)} =0 (3.53)

for n # k. Substitute Eq.(3.52) into the above equation and rearrange yields

Koo (kin) = E{go(k)oo(n)'} + E{eo(k)}g(r)
+9(k)E{o(n)'} + E{g(k)g(n)'} — E{g(k)g(n)'}
=0 (3.54)

where we have used the uncorrelation property of the residual from Eq.(3.30) so
that the first term is zero, and the zero-mean property from Eq.(3.29) for the
second and third term to be zero. Hence, the whiteness property of the residual
is preserved when the failure occurs in a sensor or z valve.

We now show that when the residual is not white, the failure is assumed
to have occured in an internal component. Before we present our argument, we
first make some comments about white noise process and the optimality of the
Kalman filter. Generally, white noise can perhaps be seen as the most unpre-
dictable stochastic process. Hence, if the residual of the Kalman filter is white,
then this means that the filter already utilized all the available information, and
therefore it must be optimal. The optimality here is in the sense of generating
the conditional mean (which the KF does). From Section 3.3, we showed that
the optimality of the filter is a sufficient condition for the whiteness of the resid-
ual. Hence, if the residual is not white, then one can conclude that the filter
is suboptimal. The non-whiteness of the residual is usually a consequence of
using the wrong model to generate the residual. That is, the plant used in the
realization of the Kalman filter is not the same as the actual plant. Whenever
an internal component failure occurs in the system, the actual plant deviates
from the nominal plant on which the Kalman filter is based, causiug the filter to

become suboptimal. While it is true that there are other changes in the system
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besides internal compconent failures that account for the suboptimality, from our
experience these changes generally appear to occur so infrequently that we can
ignore them. In summary, if the residual is not white, then it is assumed that

the failure occurs in an internal component.

3.5.2 Description and Design of the Whiteness Test

The whiteness test is introduced in this section to test the whiteness of the
residual. Specifically, as shown in [13, 17], the test checks the correlation of
each component of the the residual at different time instants. The first step
in this test is to estimate the auto-correlation function (acf), c,,(k), and the

normalized acf, r,,, of all components of the residual as follows

1 t=N-k
cop(k) = 37 Zk: (Pt — P)(pe+k — P) (3.55)
rool) = 225) (3.56)

cop(0)
for k = 1,2,...N-1. The notation p denotes an arbitrary component of the residual

vector p. The mean of this component, p, is given by

1 i=ko+N
P — — ; 3.57
P=% 'Z_‘,ko p (3.57)

It is shown in [13] that if the residual is indeed white and the number of
terms in the residual sequences, N, is large, then r,,(k) follows the statistics of
a Gaussian random variable with zero mean and variance 1/N (these statistics
are usually denoted as A(0, +)). One common method to check the statistics
of r,,(k) is to specify a significance level of the test at 5 percent. That is,
r,p(k) must lie in the region & 1.96/v/N more than 95 per cent of the times
for the residual to be white. The significance level is essentially the probability

that establishes a significant enough agreement from expected distribution to
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justify that the hypothesis that r,,(k) is M(0, #)- We want to note that in this
test, the cross auto-correlation function of different components of the residual
at different time lags can also be incorporated into this test using the same
procedure, but for simplicity it is not included in this test.

Recall from chapter 2 that the residual vector has fifteen components. In
the implementation of this test, the decision rule is that if about 13 out of 15
acf’s are inside the significance interval 95 percent of the time, then the residual
is declared white. The choice of 13 acf’s depends on several considerations and
can be different based on the information available. For example, our choice
of 13 acf’s is based on our consideration of the number of data points N used
to compute the acfs and the level of contamination in the output signal due
to sensor noise and process noise. In practice, with the actual measured data,
one should also take into consideration modeling errors that may cause the
residual to be correlated when it it actually white. One major modeling error
that usually arises is the inconsistency between the mathematical model of the
engine and the actual engine itself.

The application of the above test is illustrated in Figures 3-10 and 3-11 for
sensor/valve failures, and Figure 3-12 for an internal component failure. Figure
3-10 plots the normalized acf, r,,, of each component of the residual before and
after the failure for an interval of N = 1000 data points. The two solid horizontal
lines on each plot represent the region +1.96/v/N. The failure is a bias in the
HPOTRP rotational velocity sensor. These plots show that the values of the acf
of each component of the residual after the failure lies inside the significance
level threshold (the two horizontal solid lines) more than 95 per cent of the
times. The acf of each component of the residual before the failure also shows
the same result as expected. Similar conclusions are obtained for the failure in
one of the actuators (fuel preburner oxidizer valve) as illustrated in Figure 3-11.
However, the acf’s are different for internal component failures. Figure 3-12 is
a typical acf plot when the failure occurs in an internal component (bearing

failure and polytropic efficiency degradation in HPFTP). About 9 out of 15
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Figure 3-10: acf of a sensor-failure residual. Residuals 1-15 are all white.
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Figure 3-11: acf of a valve-failure residual. Residuals 1-15 are all white.
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Figure 3-12: acf of an internal component-failure residual. After the failure,
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acf’s lie outside the significance interval comfirming that the residual of internal

cdmponent failures is not white.
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Chapter 4

FDI for Sensor and Valve

Failures

In this chapter, we use the linearized state space model described in Section
2.3 to design the Generalized Likelihood Ratio Test (GLRT) for the detection
and isolation of failures in the engine control valv;:s and sensors. As indicated
in Figure 4-1, these failures, as well as any others, are first detected by the
threshold test. Then the whiteness test determines whether the whiteness of
the residual has changed. As explained in Chapter 3, if the residual is white,
then it can be assumed that the failures occured in either a sensor or a valve.

The GLRT (dashed-box in Figure 4-1) is then used to isolate the specific sensor

Full Nonlinear x, states [] ]
U, | —
Model [] Generalized ]
controls y, sensors Sensor/Valve . Likelihood .
. Ratio Test '
) oo [ W ] | :
es! -
&T}j“il Is residual white? . b oo ewewe- L}
Linearized Kalman Threshold . !
Model == Filter s :c;i; Tl 1 Multiple Models
No Failure

no Continue Monitoring

§ = predicted measurement
y = sensor measurement
e = preliminary threshold

Figure 4-1: SSME Vehicle Health Monitoring System
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or valve that failed.

The chapter is organized as follows. Section 4.1 describes the role of the
Kalman filter in the GLRT for failure detection and isolation. Specifically, using
the the observed measurements along with the SSME mathematical model, a
KF is designed to generate the residual. The. GLRT uses a statistic that is a
function of the the residual to identify the faulty sensor or valve. In Section 4.2,
simulation results are presented for failures in the engine’s fifteen sensors and
five valves. A geometrical interpretation of the GLRT is presented in Section 4.3

where the issue of the distinguishablitity of one failure from another is discussed.

4.1 The GLRT

We describe here a simple version of the GLRT. Specifically, we consider only
step failures, and we assume that the failure either exists or does not exist for
the interval of interest. Nevertheless, we demonstrate that our method works for
more general failures. More general versions of the GLRT that consider a larger
class of failure modes, or that takes into account the failure time, are derived
in [19, 30]. The GLRT described below is for linear Gaussian systems, but can
also be applied to nonlinear systems if the linearization error are insignificant

as we demonstrate. The no failure (Hp) and failure (H;) hypotheses are

Ho : a(k+1) = Az(k)+ Bu(k)+ Tw(k) (4.1)
y(k) = Cz(k)+v(k) (42)

Hj : az(k+1) = Az(k)+ Bu(k) + Tw(k) + Fisp_rev (4.3)
y(k) = Cz(k)+v(k)+ L;sprev (4.4)

for ke[k,, kg], and j = 1,2,...,20 since we have five control valves and fifteen
sensors. The vectors F; and L; describe the way the failure is injected into the

system. For instance, if the failed component is a valve, then F; is the column
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vector of B representing that particular valve in the plant dynamics, and there
is no L;. The parameter 7* is the unknown time at which the failure occurs,
the function s is the unit step function representing the failure mode, and v is
the magnitude of the step failure, which is generally not known.

For observations over a finite interval k; < k < ky, the generalized likelihood
ratio of the above hypothesis test is given by

A . p(y(ko)s"'» y(kf) | H;,0)
A(ks,0,7) = 4.5
12 203) = o)y s ¥Chs) | Ho) (43)
where ¥ is the maximum likelihood estimate of v assuming that hypothesis H;
is true.

o = arg max p(y(Ko), ---, y(ks) | Hjs v) (4.6)

Note that 7* is not included in the hypothesis test because of the assumption
that the failure either exists or does not exist in the entire interval of interest
ko < k < ky. That is, in hypothesis H;, 7* = ko.

As motivated in Chapter 3, the above probability distributions are difficult
to compute because the sequence {y(ko),...,y(ks)} is not independent. There-
fore we replace that sequence by its corresponding residual or innovation se-

quence g(k)
e(k) = y(k) — E(y(k) | y(0),...,y(k - 1)) (4.7)

The g(k)’s form an independent sequence. Note that the observation sequence
y(k) can be reconstructed from the residual sequence o(k), and vice-versa.
Hence, both of these sequences contain the same statistical information. In

terms of the residual, the hypothesis test of Eqs.(4.1-4.4) becomes

Ho = o(k) = oo(k) (4.8)
H; : (k)= eo(k) + G(j, k)v (4.9)

where G(j,k), the projection of the failure onto the residual output, can be
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computed recursively as shown below. The two hypothesis tests of Eqs.(4.1-4.4)
and Eqs.(4.8-4.9) are therefore equivalent.

To generate the residual and calculate G(j, k), we implement a Kalman filter
based on the no-failure model from Eqs.(4.1—4.2). These equations are the same

as the ones presented in Section 3.3:

i~ (k+1) = Az*(k)+ Bu(k) (4.10)
gt(k+1) = 7 (k+1)+K(k+1)o(k+1) (4.11)
o(k+1) = y(k+1)—Ci (k+1) (4.12)
P~ (k+1) = APt(k)A’'+TQI' (4.13)
V(k) = CP(k)C'(k)+R (4.14)
K(k) = P~ (k)C'(k)V(k)™ (4.15)
P*(k) = P~ (k—1)- K(k)CP~(k—1) (4.16)

Because of the linearity in the state equations and the filter equations, we

can express

z(k) = wo(k)+zi(k)v (4.17)
i~(k) = #5(k)+&; (k) (4.18)
gt(k) = &(k)+ 37 (k) (4.19)
o(k) = oo(k) +G(j,k)v (4.20)

where zo(k), £ (k), ¢ (k), and go(k) are the responses in the absence of failure,
while z;, 27 (k), £} (k), and G(j, k) are responses that only appear in the presence

of failure in component j. These terms can be recursively written as follows:

:L‘J(k + 1) = A.'I:J(k) + Fjl/ (4.21)
gfk+1) = #5(k+1)+ K(k+1)G(j,k+1) (4.22)
E5(k+1) = As}(k) (4.23)
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Let Y(j,k) = z;(k) — £; (k), it follows that

YG,k+1) = A(I - K(k)C)Y(j,k) + [F; — K(k)L;] (4.24)
G(G,k) = CYIG,k)+L; (4.25)

where G(j, k), the failure signature, is simply the output of the dynamics of
T(j, k)
Using the residual and the failure signature, the likelihood ratio of Eq.(4.5)

is given by

p(o(ko), ..., e(ky) | Hj,v)
p(e(ko), ..., o(ks) | Ho)

k:k!
= p(o(k) | Hj,v)
- kgo p(e(k) | Ho) (4.26)

A(kf7 Vaj) =

where the last equality follows from the independence of the residual process. By
taking the log of the above equation, we obtain the following simple expression

for the likelihood ratio in terms of the residual

e(kfa'/’j) = logA(kfsV,j)
N 1 .
= wx(ky,j) — 5v°5(ks. ) (4.27)

where x(ky, j) is a weighted linear combination of the residuals representing the

correlations of the residuals and the failure signature G(j, k). Specifically,

<
x(ks3) = 3 G'(G,k)V(k)ei(k) (4.28)
k=kg
and S(ky, 7) is a known quantitiy
k=k;
S(kp,d) = Y G'(G,kV(K)G(, k) (4.29)
k=ky
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The generalized likelihood ratio is given by
e(kf’ .7) = m,,a'xe(kfs v, .7) (4‘30)

The failure magnitude v is obtained by computing its maximum likelihood es-

timate

Loy _ X(kgs3)
o(k) = -S-@;_]) (4.31)

Substitute Eq.(4.31) into Eq.(4.30) gives

2
bks,j) = ’fs%’;ij))— (4.32)
The on-line implementation of the GLRT consists of computing the quantity
S(ky,5) and x(ky, ) for a time interval of interest ko < k < k;y and comparing
the likelihood ratio £(ky, j) against a selected threshold for failure detection.
This detection test is essentially identical to the threshold test presented in
Chapter 3. However, the GLRT algorithm requires the computation of each
£(ky,j) whereas the threshold test only requires a single computation of the
T? statistics using Eq.(3.49). Threshold test is therefore used for detection to
reduce the computation complexity.
To isolate the faulty component, we note that each Lypothesis test in
Eqs.{4.8-4.9) produces a likelihood function £(ks,7). The most likely compo-
nent to have failed, j*, is the one that produces the maximum value of the

likelihood ratio, i.e.
J*=arg m;jxxf(kf,j) (4.33)

for 5 =1,2,...,20.
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4.2 Results

In this section we present some numerical results for the test described in the
previous section using the SSME model developed in Section 2.2. The Kalman
filter is first implemented to track the propagation of the state variables. Figure
4-2 shows the filter state estimates (dot) and the actual value of the states
(solid) generated from the nonlinear Rocketdyne model. These plots show that
the filter can track the value of the engine variables very well. The insignificant
error arises from the fact that the filter design assumes a linear plant while
the measurement data input into the system originates from a nonlinear plant.
The knowledge of the engine variables is valuable for heath monitoring because
these estimates can be part of the flight’s health records, and can be used for
comparison.

The residual generated by the filter is then used in the GLRT algorithm for
failure detection and isolation. Before discussing failure isolation, we illustrate
how the detection test (of the GLRT) works. In a previous work [18], we applied
the test to the HPOTP subsystem of the SSME where we used only three sensors.
The time history of the three output residuals, averaged using a sliding window
of length kf — ko + 1 (= 50), is plotted in Figure 4-3. The units in Figure 4-3
are not shown because the three sensors measure three different quantities. A
failure is introduced at time t= .1 seconds and the magnitude of the failure is
approximately half of its steady state value. For a linear system, the residual
would be unbiased. The small bias in one of the residuals prior to the failure
is due to linearization error. Immediately after the failure, two of the residuals
experience a jump in value.

For the entire SSME with fifteen sensors and five control valves, the residual
plot is shown in Figure 4-4, where a failure in the mass flowrate through the ozy-
gen pump boost stage sensor (Sensor #2) is chosen as a representative example.
The failure is injected at time t = 1 second and the magnitude of the failure

is approximately half of its steady state value. The likelihood ratio expression,
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Figure 4-2: Kalman filter estimates (dot line) and actual states (solid line).

72



Main fuel injector
pressure sensor (P_fi)

40 v H v T T Y T Y Main chamb
: : v 4 : . : pressure

10 i ; z ; i . L . i
0 005 o.1\ 015 02 025 03 035 04 o.45/ 05

Failure occurred at .
=0.1 seco High pressure oxidizer
t=0.1 seconds. turbopump rotational

velocity sensor (Omega_o2)

Figure 4-3: A failure’s effect on the Kalman filter’s residuals using the HPOTP
model with 3 sensors.

Eq.(4.32), which is a function of the residuals and the hypothesized failures,
indicates a jump as shown in Figure 4-5 for each specific hypothesized failure
i.e. failure in a particular sensor or valve. This is an indication of an abrupt
change, or a failure. In practice, a threshold is set, and a failure is declared
once the likelihood ratio crosses it. Since the noise is statistical, noise samples
whose values are large can occasionally cause the likelihood ratio expression to
cross the threshold, thus triggering a false alarm. On the other hand, raising the
threshold may delay detection of true failures. Error due to linearization must
also be taken into account when determining the threshold level. The thresh-
old level therefore represents a tradeoff between false alarm rate and detection
speed.

Let us now discuss the isolation of the failure (in Sensor #2), presented
above in Figure 4-4, which occurs at time equals 1 second. Figure 4-6 shows
the likelihood ratio of each hypothesized failure on the same y-axis scale. These
plots shows that the likelihood ratio of the true failure (in Sensor #2) is larger
than the others, implying correct isolation of the faulty sensor and confirming
Eq.(4.33). Failures in the other nineteen components were also successfully

diagnosed with this procudure.
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Figure 4-5: The Likelihood Ratio for Figure 4-4.
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4.3 Geometrical Intepretation

More insight can be gained into the above failure isolation procedure by looking
at a geometrical interpretation. This interpretation relies on the fact that for
each failure, the residual vector takes a unique and fixed direction in the residual
space. For example, consider a sample of the residual of Figure 4-3 at any time
after a failure occurs [18]. This sample is a vector in three dimensional space.
The direction of this vector is an indicator of the failed component. Specifically,
Figure 4-7 shows residual samples of several different failures for the HPOTP
subsystem. Samples from the same failure are clustered together, and when av-
eraged, they define a one-dimensional subspace(direction) that is identified with
the failure. Different failures are therefore identified with different subspaces or
directions. Each subspace is a line passing through the origin. Since, in our
work, all failure modes are modeled as step functions, the resulting failure sub-
spaces are simply straight lines. Generally, if the failure modes are arbitrary,
then these subspaces become larger and more complex.

Given samples of an output residual, consider the projection of these sam-
ples, or their average, onto all the subspaces representing the failures under
consideration. The projection with the largest magnitude indicates the failed
component. Specifically, the failure signature G(j, k) is the vector spanning the

subspace of failure j at time k. The likelihood ratio £(ky,j) can be rewritten as

k=k;

e(kfaj) = W]},J—) (Z < (R-lg(k))', G(.77 k) >) (4'34)

k=ko

Each element in the above summation is a weighted projection of the residual
onto the subspace spanned by G(j, k). The summation attenuates the effect of
noise.

The question now arises as to how distinguishable are any two failures.
In steady state, G(j,k) — G(j) for all failures j's. The angles between the

subspaces can define a distance measure. The larger the angle ranging from 0
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Figure 4-7: Residual vector samples from different failures for the HPOTP sub-
system with 3 sensors.

to 90 degrees, the more distinguishable are the failures. Figure 4-8 illustrates
the distinguishability of a failure in the main fuel valve (MFV, valve #4). The
signature of the failure in the sensor (#15) measuring the rotational speed of
the HPFTP (14, is closest to that of the MFV’s failure signature. This is not
surprising if we consider the relationship between the MFV and (s, sensor. A
failure in either the MFV or the £, sensor would produces similar effect on
other residuals, since these components regulate or indicate how much fuel is
flowing through the rest of the engine. This kind of physical interpretation gives
additional insight about the degree of distinguishability of various failures and
can be employed at the design stage to place sensors judiciously.

For our complete model with fifteen sensors and five valves, Table 4.1 lists
the angles between the residual vector of the failure in component j and that
of the other nineteen failure signatures where each signature corresponds to a
particular failure in component 7. For instance, if the faulty component is the
MFV (valve #4), then all the rows under the “valve # 4” column are angles
between the valve #4 failure residual and the other signatures. The angles shown
here may vary slightly depending on the level of noise. In our implementation,
the variance of the process noise and sensor noise for a particular state or sensor

is assumed to be about one percent of the steady state value. The angles shown
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in this table imply that failures in the twenty components are distinguishable,
which is consistent with the results obtained by using the isolation procedure in
Eq.(4.33).

The above discussion is concerned with failure in a single component. For
simultaneous failures, it can be shown [20] that the maximum number of simul-
taneous control valve and sensor failures that can be isolated cannot exceed the
number of sensors used. Thus with fifteen sensors and five control valves, one
must be able to exclude by other means five candidate components. This is of-
ten done by triplicating sensors and if, for instance, five of the fifteen sensors are
triplicated, then a voting system can be used to detect failures in these sensors.
Simultaneous failures in the remaining ten sensors and in all the control valves

can then be uniquely determined using the described method.
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sensors # valves
T 2 3 4 5 [ %3 9 10 [ 11 | 12 | I8 | 14 | 15 1 2 3 4 5
sensors 1 0 74 | 88 | 88 | 85 | 81 31 79 | 83 | 82 | 19 | 65 | 66 | 85 | 76 | 68 | 81 | 87 | 80 |
2 74 0 83 | 86 | 70 | 81 B8 77 | 72 | 66 | 74 | 87 72 | 60 | 80 | 73 | B8 | 66 |
3 88 | 84 O |26 | B3 | 66 | 63 | 90 | 86 | 88 | 89 | 76 | 79 | 81 | 85 | 89 | 84 | 70 | 86
) 88 | 86 | 26 0 | 87 0 69 75 | 88 | 90 | 88 | 89 [ 82 | 84 | 83 | 90 | 75 | 79 | 87
3 85 | 70 | 88 | 87 | © 76 €3 85 | 24 | 88 | B4 | 60 | 89 | 12 | 87 | 86 | 82 | 60 | 88
3 81 | 81 | 65 | 80 | 76 { O 88 71 | 78 | 89 | 70 | 48 | 81 | 78 | 66 | 73 | 71 | 77 | 73
7%8 | 81 | 85 | &3 | 69 | 63 | 88 [ 88 | 77 | 84 | 70 | 73 | 838 [ 68 | 87 | 80 | 74 | 79 | 83
[ 79 | 77 | 90 | 78 | 85 | 7 88 2 85 | 75 | 88 | 60 | 76 | 83 | &8 9 | 77 | 69 | 87
10 B3 | 72 | 86 | 88 | 24 | 7 77 85 | O | 86 | 82 | 62 | 88 | 24 | 88 | 88 | 82 | 57 | 88
11 32 | 66 | 88 | 60 | 88 | 84 75 | 86 | 0 | 80 | 77 | 88 | ¢ 58 | 78 | 85 | 83 |
12 19 | 74 84 | 70 79 88 | 82 | 30 | 0 |62 | 65 | 85 | 68 | 62 | 77 | 89 | 82
13 65 | 87 | 76 | 89 | 60 { 48 78 60 | 62 | 80 | 62 0 40 | 60 | 89 | 67 | 71 | 67 | 86
14 65 | 80 | 79 | 82 31 83 76 | 88 | 77 | 56 | 40 | O | 90 | © 43 | 57 | 88 | 87
15 85 | 72 | 81 | 84 | 12 | 78 68 | 838 | 24 | 88 | 856 | 60 | [} 87 | 86 | 84 | 50 | 85
valves T K B85 | 88 | 87 B7 | 88 | 88 | 75 | 68 | 89 | 87 | O B9 | 87 | 85 | 80 |
2 B8 | 80 | 80 | 90 | B& | 73 85 | 89 | 88 | 88 | 82 [ B7 | 43 | 86 | G | 89 | 87 | 86 |
3 81 | 73 | 84 | 78 2 | 71 73 77 | B2 | 8 | 77 | 71 | 87 | 84 | B7 [ 8O | O 83
q B7 70 | 79 77 79 B0 | 57 | 85 | 89 | 67 50 | 85 | 87 | 89 0 38
5 80 | 66 | 86 | 57 78 | 83 87 | 88 | 83 | 82 87 | 8 L] 83 | 88 [

Table 4.1: Distinguishability of failure signatures for comple model sensors and

valves.
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Chapter 5

FDI for Internal Component

Failures

In the previous chapter, the GLRT methodology was presented for detecting
failures in the engine sensors and valves. As we discussed, the main characteris-
tic of sensor and valve failures is that they shift the mean of the residual while
preserving its whiteness property. For failures that take place in engine internal
components, the mean of the residual shifts and the residual is colored.

In this chapter, the Multiple Model(MM) method is employed for detecting
failures in the internal components of the engine. The premise here is that these

failures have been detected by the threshold test and identified by the whiteness

Full Nonlinear x, states
u, — )
Model Generalized
controls y, sensors Sensor/Valve b
Ratio Test
yes Whiteness yes

filter Test | r-~=rcecaa= -y
residual Is residual white? o i '
Linearized Threshold '
Model =] Kaman o] Test > Multiple Models | |
v-N >e? Internal Component, '
No Failure ' '
no  Continue Monitoring L . '

§ = predicted measurement
¥ = sensor measurement
€= preliminary threshold

Figure 5-1: SSME Vehicle Health Monitoring System
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test (Figure 5-1) as presented in Chapter 3. In Section 5.1, internal component
failures are classified according to the subsystem in which they originate. Actual
SSME failures that have occurred during past tests [8] are reviewed and catego-
rized into different kinds, based on the rate at which they propagate throughout
the engine. This categorization allows us to focus on the specific failures that
are detectable by the MM technique. Section 5.2 provides the formulation of the
MM structure, and compares and contrasts the MM technique with the GLRT.
Simulation results from the implementation of the MM method are presented
in Section 5.3 for a few representative failure scenarios described in [8]. In Sec-
tion 5.4, the issue of robustness of the MM method to the choice of models is
examined using an information theoretic distance criterion [3]. This distance
suggests how to select models that are far apart enough so that the MM can

distinguish between them.

5.1 Internal Component Failures

The internal component failures that we consider are those that occur in tur-
bopumps, ducts, manifolds, injectors, nozzle, main combustion chamber, and
many other components. In addition, these failures are ones that affect the
performance of the engine. Many critical internal component failures that oc-
curred in the past are documented in [8]. These failures can occur in numerous
components in the engine and can cause substantial damage to neighboring and
remote components, or to the entire engine as a whole, if they are not detected
or compensated for.

Let us first consider the nature of these failures. The analysis of the failures
compiled in [8] suggests that while failures that originate from different com-
ponents progress at different rates, their degree of damage spreading to other
components is unpredictable. This study also concludes that most failures typ-
ically occur at three different rates. Most turbopump and preburner failures

had indications of trouble tens of seconds before becoming catastrophic. Main
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burner and control failures developed at a slightly faster rate while duct, mani-
fold, heat exchanger failures progressed in tenths of seconds. In our study, the
focus is primarily on the failures at the first two rates since they develop at a
slower pace then the failures of the third rate (tenths of seconds), and cannot
easily be compensated. For instance, once there is a leakage in a duct, the leak-
age hole would be wide opened within the next few milliseconds and ruptured,
since the pressure in the duct is extremely high.

Some of the internal component failures and their nature as reported in
[8] are summarized in the following four examples. A full description of these

failures as well as others can be found in [8] and references therein.

1. Fuel Turbopump Failures: High Pressure Fuel Turbopump failures are
caused by a variety of factors such as turbine blade failures, cracks in
the ducts, and coolant liner buckle. These failures usually result in high
oxygen to fuel mixture ratio due to loss of fuel pumping. As a result, the
gas temperature is raised above the design limits and damages the hot gas

flow path.

2. Oxidizer Turbopump Failures: High Pressure Oxidizer Turbopump fail-
ures are due to design deficiencies in various forms such as bearing fail-
ures and LOX seal burning. These failures are typically followed by fire
because of the addition of heat. In the case of bearing failure, rubbing is
a common phenomenon that consequently added sufficient heat to cause

fire, while in the case of LOX seal burning, the LOX and LH mixed to

cause fire.

3. Preburners and Main Burner Failures: These failures are originated as a
result of preburner LOX posts crack or main injector LOX pests crack due
to design deficiencies (usually high cycle fatigue). The cracks in the posts
allowed LOX to mix with hot gases and resulted in high mixture ratio and

eventually fire.
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4. Duct and Manifolds Failures: These failures occurred when the compo-
nents of the nozzle such as ducts and manifolds ruptured. The ruptures
were the results of low cycle fatigue and smal! cracks, that gradually be-
came critical with time. These failures usually resulted in damage through-

out the engine hot gas system.

These examples, along with the description of the engine presented in Chap-
ter 2, provide a notion of the complex and tight interaction among the compo-
nents of the SSME. The ultimate goal of any FDI algorithm is to identify the
precise origin of the failure. However, there is no technique available that has
this capability. As presented, the task of isolating the specific failed component,
and how it results in further damage in other components, is a difficult task
since this may rzquire placing of sensors monitoring the specific components of
interest. The space in the engine is extremely limited, and the environment is
hostile (high temperature and pressure). For this reason, placing sensors in arbi-
trary locations is not practical. Besides the packaging constraint, adding extra
sensors also implies extra costs. Due to these considerations, a more realistic
approach is to determine which of the following subsystem has a faulty compo-
nent: the High Pressure Fuel Turbopump, High Pressure Oxidizer Turbopump,
the Low Pressure Oxidizer Turbopump, the Low Pressure Fuel Turbopump, the
Main Injector, the nozzle, and the pipes/ducts. The term subsystem refers to
a collection of components in the engine. For instance, the High Pressure Ox-
idizer Turbopump Subsystem is composed of the pump itself, the turbine, the
injector, the oxidizer preburner, and other components therein.

Therefore, instead of attempting to detect and trace back the precise origin
(component) of the failure, the VHM’s algorithm specifies which subsystem ex-
hibits anomalous behavior. For example, the algorithm identifies that the High
Pressure Oxidizer Turbopump subsystem has failed, but not that a specific com-
ponent(i.e. the turbine blade, or bearing) in that subsystem has malfunctioned.
This approach is attractive and useful since internal component failures tend to

quickly propagate from one component to another in the same subsystem be-
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fore spreading to other subsystems. The knowledge of the degraded subsystem is
crucial in guiding subsequent investigations such as using vibration monitoring
to further analyze the identified faulty subsystem [24].

The internal component failures considered in this study can be modeled as
changes in the geometry of the components in the engine. To represent these
failures, we model them as changes in the parameter since the geometry is made
of a set of parameters. For simplicity, no modeling of phenomenon such as fire
is included. While it is not practical to model all parameiers as they number
about 150, we select a few in each subsystem or ones that are generally affected
whenever there is a failure or an anomaly in that subsytem.

The following three examples illustrate the modeling of failures as parameter
changes.

Example 1 : To model cracks in LOX posts as a 50 per cent change in the

area of the in the main injector, the equation of the mass flow flow rate in the

7 2 2

. Pfa' Pc = Pc =
"‘f*'“"’ﬁ\, (7)) o
. Py; P, e P, e
m=esms Ze(7x) - (52) .

where the parameter B65 represents the lumped area of the main injector, Py;,

injector

is modified as

P, and ty; are the injector pressure, the main combustion chamber pressure,
and the temperature in the the main injector, respectively. The 50 per cent
change in the main injector area is modified as a decrease in 50 per cent in
parameter B65.

Example 2 : Similarly, to model cracks in LOX posts as a 50 per cent decrease
in the area of the fuel preburner injector of the High Pressure Fuel Turbopump

subsystem, the equation of the mass flow rate into fuel preburner

1 drhfpf - Th}pf
50 g = Po— Ppp— B51 . (5.3)
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i1s modifed as

1 drivgpy e
55 = Po= Prp— 5BS1 ) (5.4)

where the parameter B51 is the lumped area of the fuel preburner flow area,
Myps is the mass flow rate into the fuel preburner, Py, is the fuel preburner
pressure, and Py and po are the pressure and fuel density in the preburner
common fuel supply line respectively.

Example 3 : Failures in the turbopump bearings can be modeled as additional
resistances or additional torques absorbed by the pump. For instance, bearing
failure in the High Pressure Fuel Turbopump can be represented as changes in

parameters B4l and B44 in the following equations

Topz = 1.2B4102%,T(dop2) (5.5)
Tops = 1.2B4402,T(dop3) (5.6)

where 7,p2 and 7,3 are the torques absorbed by the HPOTP and the boost pump
respectively. The quantities I'(¢p2) and I'(¢op3) are nonlinear functions of other
state variables [24]. The coefficients 1.2's in front of B41 and B44 represent a
20 per cent jumps in the torques absorbed "y the pumps due to bearing failures.

Each of these modified equations (i.e. Egs. 5.2, 5.4-5.6), representing a fail-
ure, changes the internal dynamics of the engine and produces a new nonlinear
model. The problem of designing a FDI scheme for engine internal component
failures becomes the problem of identifying a model from a set of models (each
model has one or some parameters modified in the same fashion as Eqs.(5.2-5.6))
that best matches the model of the real failure. The identified model indicates
the corresponding faulty subsystem. Using the MM technique is sufficient for

this purpose as w2 demonstrate in the next sections.
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5.2 The Multiple Model Method

The FDI method presented in Chapter 4 for detection of failures in the sensors
and valves has a residual-based structure as depicted in Figure 5-2, where only
one Kalman filter based on the correct model is used in the implementation.
The decision mechanism in this structure is based on the residual generated
by the filter. For detection of failures in engine internal components, we in-
troduce the Multiple Model(MM) method which has a multiple-filter structure
as illustrated in Figure 5-3. In contrast with the single filter approach of the
residual-based structure, the MM approach uses a set of N filters based on
different hypothesized models to process the observed measurement, y. Each
hypothesized model corresponds to an assumed model, i.e. Filter #1 assumes
the correct model, Filter #2 assumes a model with changes in system parame-
ters (i.e. such as that of parameter B65 in Eq.(5.2)) that correspond to a failure
in a particular component, etc. The residual generated by each filter is small
if the hypothesized model is close to the true model. Consequently the filter
that generates smallest residual is one whose model best matches that of the
true model. Hence, the decision logic is based on deciding which of these N
hypothesized filters is performing best in term of keeping the residual small.
The formulation of the MM method presented here follows the presentation
in [30]. A natural framework for formulating the MM problem is posing it in
terms of a multiple hypothesis test, as done in Section 4.1. Specifically, by
assuming that the true model belongs to the set of N models, we have the

following multiple hypothesis test
H; : :L‘,(k + 1) = A,:l.',(k) + B,u(k) + [‘,-w,-(k) (57)

y(k) = Cizi(k) + vi(k) (5.8)

for : = 1,2,..., N. The matrices 4;, B;, C;, and I'; are known, u(k) is the

control input vector, z;(k) is the state vector, and each z;(k) can be of different
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dimensions depending on how the hypothesized model is used to approximate
the true model. The sequences w;(k) and v;(k) are independent, zero mean,
Gaussian white noise with covariance @;(k) and R;(k) respectively. In addition,
they are independent of the initial state estimate £;(0) that has covariance
P(0).

The corresponding Kalman filter equations for each model i are

g7(k+1) = Ak)z} (k) + Bi(k)u(k) (5.9)
gf(k+1) = & (k+1)+ Ki(k+ 1)oi(k +1) (5.10)
ei(k+1) = y(k+1)—Ci (k+1) (5.11)
Pr(k+1) = Ai(k)PH(k)A((K) + Ti(k)Qi(k)Ti(k) (5.12)
Vilk) = Ci(k)P7(k)Ci(k) + Ri(k) - (5.13)
Ki(k) = P (k)Ci(k)Vi(k)™ (5.14)
Pr(k) = P7(k-1)- Ki(k)Ci(k)P7 (k- 1) (5.15)

where 27 (k) and & (k) are the predicted and update estimates of the state
respectively, while P,”(k) and P (k) are their corresponding error covariance
matrices. The matrix Kj(k) is known as the Kalman gain and Vi(k) is the
covariance of the residual g;(k).

Let pi(0) be the a priori probability that H; is true, and likewise pi(k)
be the probability that model i is the true model up to time k given Jip =
[v(0), ..., u(k),y(1), ..., y(k)]. Using Bayes’ rule, we can express pi(k+1) as

p(y(k + 1)|H;, Ji)pi(k) (5.16)

pi(k+1) = SN py(k + 1)|Hj, Ji)p; (k)

But from Eq.(5.11), y(k+ 1) has the statistics of a Gaussian random vector with

mean C;(k)Z; (k) and covariance V;(k) under H;. As a result, the conditional
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probability density p(y(k + 1)|H;, Ji) for i = 1,2,..., N can be computed as

1y - expl=3ei(k + DV (k + Dai(k + 1))
plylh +1)1H J) = (2m)™?[detVi(k + 1))

(5.17)

where m is the dimension of y.

In summary, the implementation of the MM algorithm consists of using the
inputs y(k) and u(k) to compute the probabilities of Eq.(5.17) to determine
which model from a set of N hypothesized models best matches that of the
true model, assuming that the system has reached steady-state. A bank of N
filters is used in this process, where each filter uses one of these models. The
performance of the filters is reflected in the magnitude and whiteness property
of the residual gi(k), i.e., if the i** model is the true model, then p;(k) will
be unbiased and white; conversely, if the the assumed model is not correct,
0i(k) will not be white and unbiased as a result of using the wrong model for
estimation.

As discussed in [30], one important issue in the implementation of the MM
method is how the algorithm handles the case when the real systuun under
consideration is nonlinear. This problem can be remedied by using the extended
Kalman filter (EKF) in place of the KF for each hypothesized model. The
EKF is designed based on the linearized model about different operating points.
The performance of the MM algorithm in this case relies on how far apart the
linearized models are, which is a signal to noise ratio problem. Specifically,
the quantity Vi(k) dictates how well each filter is tracking. Large value of
Vi(k) indicates that the quantity o}(k)V;"!(k)e:(k) is small and in effect flattens
out the probability density p(y(k + 1)|H;, I(k),u(k)), which makes it harder to
distinguish among the models.

Another important issue is that in addition to identifying the correct model,
the MM algorithm also needs to detect and track the shifting of the hypothesized
models from one to another.

In our implementation of the MM method, we made the simplification that
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Subsystem Parameters and Their Description

HPOTP subsystem | B58 (lumped cross-section area of the flow passage in the HPOTP)
B60B61 (lumped cross-section area of the HPOTP injector)
B5S (HPOTP isentropic efficiency)

HPFTP subsystem B51 (lumped cross-section area of the flow passage in the HPFTP)
B53B54 (lumped cross-section area of the HPFTP injector)
B8 (HPFTP isentropic efficiency)

LPOTP subsystem B32(lumped cross-section area of flow passage in the LPOTP)

LPFTP subsystem B12(lumped cross-section area of flow passage in the LPFTP)

Main Injector Bé5(lumped cross-section area of the main injector posts)

Table 5.1: Selected parameters in each subsystem and parameters’ descriptions.

the system approaches steady-state rapidly after a failure occurs, and therefore
there is no need to track transients arising from shifting models. This assump-

tion is particularly plausible because the SSME is a highly damped system.

5.3 Results

In this section, we present some numerical results from the implementation of
the MM method. As noted in Section 5.1, our goal is to isolate the failures
according to the subsystem in which they originate. To demonstrate this idea,
a few parameters are chosen in each subsystem as listed in Table 5.1, and the
failures are modeled as jumps in the parameters as shown in Section 5.1. Each
failure is represented by a new model that is identical with the nominal model
except with the modified parameter. For simplicity, each failure is modeled as a
Jump with a certain percentage in one parameter at a time. Hence, from Table
5.1, the model set for the hypothesis test consists of nine different models, one
for each parameter. As shown in Figure 5-3, each of these new models is used
to contruct a Kalman filter, and the MM algorithm computes the probability of
which Kalman filter is realized by the correct model.

Figure 5-4 plots the probability of each of these hypothesized mod-

els/parameters that has failed. In this example, the failure consists of cracks
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in the LOX posts of the HPFTP injector, which is modeled as a decrease by
50 per cent in parameter B53B54. Parameter B53B54 represents the lumped
cross-section area of the HPFTP injector. After the transient response of ap-
proximately one second has died out, the algorithm correctly indicates that the
probability (of the model that represents a jump by 50 per cent in parameter
B5354) tends to one. Similar results are obtained for failures that correspond
to jumps in the other parameters as shown in Figures 5-5, 5-6, and 5-7.

We want to emphasize here that the MM algorithm presented thus far as-
sumes that the hypothesized model set consists of the true failed model along
with other models. This assumption generally cannot be satisfied since it re-
quires that the hypothesized model set must include a model that precisely
matches with that of the real failed model. For example, in Figure 5-4, the real
failure is a 50 per cent jump in parameter B5354 so the model set must include
a model with precisely 50 per cent jump in parameter B5354. This assumption
is not practical and can be relaxed as shown in the next section where the is-
sue of how to choose hypothesized models to include in the hypothesis test is

discussed.

5.4 Robustness of the MM method

One problem commonly encountered in practice using the MM algorithm is that
the set of N hypothesized models inevitably does not include the true model due
to changes in system parameters, unmodeled dynamics, modeling errors from
linearization, etc. The criteria for choosing which models to include in the
model set is not clear. A result had been derived for linear systems in [3] that
introduces a distance between the models and shows that the MM algorithm
will converge to the i** model that is closest to the true model according to
that distance. In other words, the probability density function p;(k) of this
" model will tend to one. Since the true model is not generally known when

the dynamics of the system changes (i.e. changes in system parameters), this
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Figure 5-4: MM probability plot. Failure in Paramameters B51B53. Failure is
isolated immmediately after ¢t = 1.4 seconds.
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technique essentially provides a way to check the robustness of the MM method
or a guide in selecting models far apart enough so that the MM algorithm will
be able to distinguish between them.

The equations of the algorithm that are necessary for the calculation of the
distance between the models are summarized below. A thorough treatment of
the algorithm can be found in [3]. Suppose we have a model set of N models

denoted by
M = {M; = (4;,B;,C;,Q;,R;);5 € Z =(0,1,...,N)} (5.18)

where the true model ¢ is not included in the set Z. This algorithm states that
the MM method will converge to model j whose distance, L;'-, is closest to the

true model ; where j € Z
|Li| = min{|L};0 € Z} (5.19)

The distance Lj- is computed by the following procedure. First we assume that
the model M is detectable!, all the eigenvalues of matrix A are inside the unit
circle, and the dynamics equations as well as the filter equations have reached
steady state. These conditions guarantee that the steady-state prediction error
covariance matrix P; (k) and the ergodicity? of §~(k) and y;(k) exist. The
matrix P; (k) is generated by the filter corresponding to model M;. Since we
are at steady-state operation, the time step subscript k is dropped off from all

matrices. Let

T = E{(y—97)(y — 97)} (5.20)

be the prediction error covariance matrix where the expectation is taking with

respect to model ¢ while the measurement is from model 7. The matrix I‘;- can

1A linear time invariant system is detectable if all unobservable modes are stable.
2A zerc mean stationary Gaussian process z(n) is ergodic if and only if

lima—se0 747 Snmo [B {2(n)2' (n + B)}? = 0.
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be expressed as

% = Cj¥;C"; + R; (5.21)

where \Il; is the steady-state solution of the Lyapunov equation
Ti(k +1) = AJTi(K)A”; + GQ'G; (5.22)

with arbitrary initial condition and

. A; 0 . Gi 0
A;K;C; A;(I - K;Cj;) 0 AjK;
i Q: 0 i
Q'= 3 Cj = [ C; —-Cj ]
0 R;
Then the distance between models j and ¢ is
L} = log | PJ"| + trace(P'T}) (5.23)

The calculation of the distance L;'- consists of computing the prediction error
covariance matrix I‘; using Eqgs.(5.21-5.22) and the prediction error covariance
matrix P; using the Kalman filter Eqs.(5.9-5.15).

To demonstrate the convergence of the MM algorithm to the model that best
matches the real failed model, a simulation is presented in Figure 5-8 where the
real failed model is a jump of 36 per cent in paramater B8. In this example,
the model set Z consists of a model that represents a jump of 15 per cent in
parameter B8 and other models that represent jumps of arbitrary percentage in
other parameters. As shown in Figure 5-8, the MM algorithm correctly indicates
that the model closest to the real model is the model that represents a jump
of 15 per cent in parameter B8. This conclusion is confirmed by the results

obtained from computing the distance between the lLiypothesized models and
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the real model. Figure 5-9 shows the distance between the failed model and
the hypothesized models where the y — azis is the distance and the z — azis
is the hypothesized models. The shortest distance is the one between the real
failed-model and the model with a 15 per cent jump in parameter B8. Similar
results are obtained for failures in other models.

Thus, given the failures of interest, the distances between the models can
be computed beforehand. The selected models are ones whose distances are far

apart so that they can be isolated.
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Chapter 6

Conclusion

In this thesis, a Vehicle Health Monitoring (VHM) system is designed to detect
and isolate failures in the engines of Reusable Launch Vehicles. In particular,
our focus has been on the Space Shuttle Main Engine. This VHM system is
an improvement over the current safety monitoring system that relies on red-
line methods to detect failures. The algorithm of the VHM system is model
based, combining information from a thermodynamic model of the engine to-
gether with sensor measurements to predict future sensor outputs. The residual,
or the difference between the predicted and actual measurement, is used by sev-
eral statistical tests to detect the presence of a failure and to identify failures in
sensors and valves as well as internal components, such as turbopumps, main in-
jectors, etc. The VHM system also supplies estimates of all of the state variables
that can be used as a health record for the engine. This health record would
help to reduce the cost of maintenance and routine checkup. In addition, at the
design stage, the VHM system helps to determine where to best place sensors
in order to obtain the necessary information to investigate the components in

question.
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6.1 Summary of Thesis

Since our FDI algorthm is model based, we first studied in Chapter 2 the de-
scription of the engine as well as the modeling of the engine dynamics. The
SSME is an internal combustion cycle, and its dynamics can be categorized
into seven types of thermodynamic equations. Since the SSME is a nonlinear
model, linearization of the model was necessary to make the failure detection
and isolation problem more tractable.

In Chapter 3, we proceeded to pose the problem of detecting and isolating
engine failures as a hypothesis test. It was found that the Generalized Likeli-
hood Ratio Test is difficult to apply due to the large number of potential failures
and the nonlinearity of the engine model. These difficulties were circumvented
by decomposing the problem into six steps: (1) linearize the nonlinear model,
(2) design the Kalman filter based on the linearized model to generate a white
innovation/residual sequence, (3) use the threshold test to process the residual
and detect the presence of failures, (4) perform a whiteness test to distinguish
sensor/valve failures and internal component failures, (5) employ the General-
ized Likelihood Ratio Test (GLRT) to detect and isolate sensor/valve failures,
and (6) employ the Multiple Model (MM) method to detect and isolate internal
components. A description of steps (1)-(4) is also given in Chapter 3.

The linearization of the nonlinear model and designing the KF were straight-
forward. The threshold test, employing the 7' statistic that is a function of the
residual, decides whether a failure has occured by comparing the T? statistic
against a threshold. Once a failure is detected, the whiteness test examines the
autocorrelation function of the residual to check the whiteness of the residual.
If the residual is white, then it is assumed that the failure is in either a sensor
or a valve. If the residual is colored, then it is assumed that the failure is in an
internal component.

Step (5) is described in Chapter 4. Specifically, the GLRT was implemented

to accomodate failures that occur in sensors or valves. The GLRT uses a statis-
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tical test to process the residual and identify the faulty component. Simulation
results showed that failures in fifteen sensors and five valves, modeled as step
failures, were successfully isolated using the GLRT algorithm. Besides step
failures, the GLRT can be applied for other failure modes such as ramp and
impulse. A geometrical interpretation of the GLRT was also presented to show
that failures in the sensors and valves are distinguishable. This geometrical
interpretation could be useful in the study of the issue of sensor placement to
maximize the distinguishability of failures in the sensors and valves.

Finally, Chapter 5 deals with failures occurring jn the engine internal com-
ponents. Our goal was to determine in which subsystem (HPOTP, HPFTP,
LPOTP, LPFTP, Main Injector, and Nozzle and pipe/ducts) the failure orig-
inated. This is a more realistic goal than tracking the precise origin of the
failures. The internal component failures considered are those that occurred in
the past, as reported in [8]. These failures, altering the geometry of the engine,
were modeled as changes in the parameters of the nonlinear model since the ge-
ometry of the engine is represented by these parameters. Consequently, changes
in parameters produce new models. A bank of Kalman filters were constructed
based on these models. The Multiple Model (MM) method was used to process
the residual of each of these filters and decide which filter corresponds to the
correct model. Simulation results were presented for a few representative cases
in which the failed parameters were identified correctly. When the true failed-
model is not included in the model set (or not included in the bank of filters),
we showed that the MM method converges to the model that is closest to the

true failed model based on an information theoretic distance criterion.

6.2 Recommendations for Future Work

One immediate step that should be considered is testing the VHM algorithms
with the engine real data. This step can be carried out in the fcllowing se-

quences.
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Fine tune the nonlinear model with real data to ensure that the math-
ematical model is a reliable representation of the actual model. Various
system identification techniques can be used in this process. For instance,
a neural network can be implemented to identify the discrepancies (in
term of modeling errors or unmodeled dynamics, etc.) between the actual

model and the mathematical model.

Estimate the level of noise in the system and in the sensors based on the

real data and the quality of the on-board sensors.

Test the VHM algorithms with real data to assess the performance of the
KF, and set the thresholds appropriately based on the given information.

Consider other unmodeled dynamics in the system that the GLRT and
the MM method may be sensitive to.

Find out the real set of on board sensors and their redundancy, i.e. which
sensors and measurement instruments are triplicated, and modify the

GLRT and the MM method accordingly.

The choice of parameters used in the MM method for internal component
failures should be further analyzed meticulously to ensure that all failures

of interested are modeled.

Test the VHM system with data containing the actual failures and recon-

figure/adjust the designed algorithms.

With the algorithm working properly, the next step is to integrate the devel-

oped FDI algorithm into a larger VHM system. This integration requires fusing
the VHM system with the current safety monitoring systems and perhaps with

other health monitoring systems based on the techniques mentioned in Chapter

Two other problems of equal importance that we have not discussed are the

problem of reconfiguring the system to compensate the identified failure and
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the problem of integrating the FDI algorithm into the closed-loop control of the
engine. The former problem typically involves compensating for damages or loss
of hardware functionality. For example, when a valve malfunctions or is stuck
at one position, then one has to somehow use the other four valves to obtain the
desired response. Another example is in the case when a sensor malfunctions,
the filter has to be reconfigured to take into account the loss of this sensor while
retaining the observability condition of the filter.

To integrate the FDI algorithm into the closed-loop control, one needs to
design an interface (between the VHM system and the controller) that takes
into account how the different features of the FDI algorithms and the consrol
laws affect one another. As an example, the control laws are often designed to
be insensitive to modeling error, which is a plus for the FDI algorithms, but
the control laws may also be robust to failures that the FDI algorithm wants
to detect and isolate. Another issue that should be considered is of augmenting
the control states with the filter states to enhance the performance of both the

filter and the controller.
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Appendix A

SSME Matrices and Equations

A.1 Linearized System Matrices and Noise Co-
variances

The results presented throughout this thesis are generated with the following
system matrics and noise covariances. All the system matrices (A,B,C), in
continuous time, are obtained by linearing the nonlinear model at 100 power

level (or about the state xo and control uo) .

xo 37 x1) =

Rows 1 through 6

2.8566e+03 9.6724e+01 6.9787e+03 6.6505e+01 2.3267e¢+01 5.0475e+03
Rows 7 through 12

3.2300e+03 8.0237e+02 3.0060e+03 3.5966e+03 6.5481e-01 6.5480e~01
Rows 13 through 18

3.2770e+03 7.8340e+05% 4.9769e+03 3.4937e+01 1.0420e+03 2.8405e+01
Rows 19 through 24

8.8900e-04 1.2149¢+03 4.659%9e+02 1.0373e+03 5.2184e+01 1.0240e-03
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Rows 25 through 30

1.2603e+03

4.6577e+02

Rows 31 through 37

5.4997e+03

6.1092e+01

wo (5§ x 1) = [ 7.8231e-01

A (37x37) =

Columns 1 through 6

-5.5861e+01
7.3801e+02
~1.7690e+01
(o]

0
3.4983e+01
-1.0516e+01
1.1966e+02

© © O O O O © O 0 © 0 © © 0 © 0 © 06 © o
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3.8175e+04
]

0

(o]

1]
-1.5728e+02
-4.5338e+03

© ©0 © 0 © © 0 0o o o©

1.0932¢+01
]
o]
1]
/]
1.1272e+01
(4]
0
0

5.2184e+01

1.7602e+02

6.4107e-01

0
=-1.0000e+02
0
2.0000e+00
1.0000e+00

©C O © © O 0 O © © 0 0 0O ©O © 0O 0600 060 0 © 0 ©

9.5575a-01

9.9942e+01

1.0000e+00

(4]

]
=3.8120e+04
=1.20392+02
]

o
=4.3169e+02
0
-6.2470e+03
=-1.5079e+02
0o

c

0

0
3.1699e+04
0

0

o

0
7.5386e+00
0

0

0

(¢
7.7736e+00
0

0

0
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9.6877e-01

5.2753e+02

1.0000e+00

5.4523e+01
(o]
=3.8120e+04
0
-1.6598e+02
2.0339e+04
2.2962e+02
o

-8.2108e+03

© O © O © © © 0o © o©

9.9084e+00
o
0
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0
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0
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3.7486e+01
0

0

(]
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5.9675e+01

©C O © O © © © ©
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© ©0 O O © 0 ©0 0 © © o ©

8.9909e+02



© O © ©

5.7438e+0:
(]

(4]
o
]

© © ©o o

=7.0019e¢+00
=1.50000+02
~2.98290+00
0
0o

Columns 7 through 12

=4.3475e+01
o]

0

(]
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-1.7227e+03
]
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~3.4068e+01
o
=1.0000e-01
o
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5.4266e+02
(o]
6.2267e+00
(o]
9.8310e-06
=4.6057e+00
o

(]

0

(1]
~4.7492e+00

]
(o]
o]
[0}
]
0
]
]

1.8589e+01
-6.2912e+02
1.3987e+01
0o

o
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o
=2.2610e+02
3.4742e+03
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1.2678e+00
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=7.0019e+00

© O © ©0 0 © © o ©
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0
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-1.9888e+00



Columms 19 through 24

1.0000e+00

3.8829e+03
3.7500e+03

(o}
0

-1.9888e+00

1.4949e~01

0
0

1.4438e-01

0

Columns 25 through 30

2.6264¢+00
2.5365e+00

0
0

-1.9888e+00 -1.9888e+00

~1.9888e+00

(]

Columns 31 through 37
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(1] ] 0 o 0 0 0
o 0 0 0 1.06000e+00 00
o 0 o o 0 1.0000e+00 O
[+] 0 -5.0664e+00 1.0000e+00 1.7150¢+CD o 0
o] 0 -5.0664e+00 1.0000e+00 1.7150e+00 0 o
3.9242¢-03 -1.8818e+00 o o 0 0o 0
3.7900e-03 -1.8174e+00 0 o 0 o0
0 -1.5888e+00 0 0 0 2.5988e-01 O
o 0 -5.0654e+00 1.0000e+00 1.7150e+00 00
(4] 0 =5.0664e+00 1.0000e+00 1.7150e+00 0o 0
3.9242e-03 -~1.8818e+00 0 o o o 0
3.7900e-03 ~1.8174e+00 0 0 0 0 0
0 -1.9888e+00 ] ] 0 2.5988¢-01 O

R (15 x 15) = diag[10 .5 15 15 15 20 5 5e~6 2 8 20 30 8 6 30]

Q (37 x 37) = diag[150 5 125 3.5 1.5 250 150 40 150 150 .03 .03 150 4 250 1.5 50 1.5
5¢-5 60 20 50 2.5 Ge-5 60 25 2.5 .05 .05 .05 250 3 8 5 25 90 45]

A.2 RHS of the SSME Equations

This section lists the variables on the right hand side of Eqs.(2.10-2.46) and their
relationship to the state variables and the control variables. Explicit forms of
these equations can be found in [1] and [24].

Tot2 = f(lhopl, rhoma Qo2, Pyi, Pop)

Topz = f(Mmov, Mop3, Moz, 2s2)

Tops = f(1Mop3, Po2)

Pots = f(Mmov, Mop3, Mot1, Doz, o1, Pos)

Mop2e = F(Mmev, Mop3, Mot1, o2, Lor, Pos)

Motz = f(fhopfa lhoz»ovnohp.fhpop)

Thfu = f(Pfi, P55 SUs)

mhgey = f (10 fnbp, W fpf, W fpo, ks, 212, P iy Ppy pa, SUs)

tgi = f( ntp, M gpg, T fpo, Mopf, Mopo, W4, Pe, Pji, p5, SUs, pa, SUy)
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Poiz = f(tynoy, Mop3, Mot1, o2, o1, Pos)

Men = f(‘hfnbm M fp, M fpo, Hmov, Ihoph Ii’-opm Ihop3v
my, P., Py;, ps5,SUs, ps, SUy)

Tjiz = F(10 fubpy W fpg, 1 fpoy Tk, Rp2, P iy P sy, pa, SUL)

Tsp2 = J(Masifp, Masime, Masiops M fn, M frbp, Mpne, $52)

Praz = f(Masifp, Masime, Masiopy M fn, T frbp, Mme, 2, 1)

Qis = f(ape, p5, SUs, Tyis)

@25 = f(tme, ps, SUs, Tuns)

s = f(Pyi, ps, SUs)

Hs = f(ps,SUs)

Pusoi = f([A/A 100 Masifp, Wasimes Wasiops 1 fry 1 fabps Hime; 2, Xs1)

Ps = f(ps,SUs)

Qics = f(tien, Wi, Moy, Mops, Tuw2s)

Qua = f(mrg,, pg, SU4, Tona)

Q24 = f(tt1n, pa, SU4, Tura)

Hy = f(ps,SUs)

Py = f(ps,SU,)

C!'nrn = f(p4,SUy)

th4 =f (Ihfnbp’ M fpf, 1 fpo, Mmov, lhoz'fa Mpo, rhov3’ my, ...
P, Py, ps5,SUs, ps, SU4, Ty14)

Cn, = f(ps,SUy)

Poay = f(tmoy, Mop3; o1, Pos)

Tot1 = f (lhotl, Qol)

Topt = f (Himov, Mops, Po1)

T = f(R1, P, ps, SUs)

Ttp1t = f(Masifp, Masimes Masiopy M fry M frbp, Mime, $271)

P,; = constant
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Appendix B

Linearization Procedure

Consider the nonlinear differential equation

dz
7 = f(=9) (B.1)

where z = z(t) is the state of the system, s = s(t) is the control input, and
f(z,s) describes the dynamics. The functions z,s are continuous in the time
variable ¢, while f is continuous in z and s. Let s(t) = s,() be a particular

control history, producing a state trajectory z(t) = 2z,(t), i.e.,

% = f(205 o) (B.2)

Consider now a perturbation s’ = s,+ds around s,. By continuity, the resultin
g

trajectory is 2’ = z,(t) 4+ dz(t). Substitute 2’ for z into Eq.(B.1)

dz

d
il a—t(zo+5z)

= f(20 + 82,5+ 3,) (B.3)
and expand the right-hand side in a Taylor series expansion, we get

(20 + 020,58 + 855) = f(26,50) + %(zo, 50)02, + -g—f(za, 80)08, +h.o.t (B.4)
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Finally, substitute the above equation into Eq.(B.1) and substract Eq.(B.2)

results in
diit.az - -g—‘:(zo, 50)0z + %(zo, 50)8s +h.o.t. (B.5)
With
z(t) = 6a(%) (B.6)
u(t) = 8s(t) (B.7)
Aft) = g—f(zo,so) (B.8)
Bt) = P(zs) (B.9)

and the h.o.t replaced by white noise, we have the continuous-time, time-varying

linear system

c%z(t) = A(8)a(t) + Bult)u(t) + To(t)u(t) (B.10)

where w(t) is a white Gaussian process with unit intensity, and T(t) is a design
choice. The term I'c(t)w(t) can represent the uncertainty, such as that ema-
nating from the linearization. When discretized, the above system takes the

form

z(k +1) = A(k)z(k) + B(k)u(k) + T(k)w(k) (B.11)

Here k is the time step, (k) the state at time k, u(k) the control, and w(k) is
a white Gaussian noise with unit intensity.

If the control s,(t) and state z,(t) above are constant, i.e., s,(t) = s, and
zo(t) = z,, which is the case when the objective is to regulate around some
state value, then the partial derivatives in Eqs.(B.8-B.9) are constants, so that
A(t) = A, B(t) = B, etc. In that case, we would have A(k) = A, B(k) = B, and
I'(k) = T. In other words, the resulting linear system is time-invariant. This

is the case when the SSME is held at constant power level. Finally, we rewrite
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the observations equation (2.2).
y(k) = Cz(k) + v(k) (B.12)

where v(k) the sensor noise, which is assumed to be white and Gaussian with a

certain covariance.
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Appendix C

A Derivation of the Kalman

Filter

This appendix presents a derivation of the Kalman filter [29]. We first present
some fundamental results from Baysian estimation theory in Section C.1 and
then relate these results to the Kalman filter in Section C.2. Other ways of
deriving the same result can be found in many signal processing texts such as

[4, 11, 19].

C.1 Some Results from Estimation Theory

Estimation theory is an extremely rich field, a complete account of this subject
can be found in [27]. Here we only present some fundamental results which will
be essential tools for our derivation of the Kalman filter in the next section.
From Baysian estimation theory, let = and y be random variables where
z is the quantity of interest and y is the measurement contains information
about z. The notation p,(Y|X) is used to denote the conditional probability
density function of y given z, and likewise Y is the value that y takes on give
X. In particular, given a noisy measurement vector y of some function of z, the
conditional density function pyj;(Y|X) and the density function of y, py(Y) can

both be deduced given the measurement model. Using Bayes rule, the posterior

122



density for z given the measurement y is then

pylx(le)Pz(X) (C.1)

In the Baysian approach, the goal is to choose an estimator #(y) using some error
cost criteria and the information pertaining to z from the observed measurement
y (i.e. the density p,,(Y]X)). In this thesis, we use a common cost criterion,

mean-square error:
+o0
#(y) = argmin [ (¢ ~ 0’ (2 - a)py (XY )do (C2)

Likewise, this estimator is called the minimum mean-square error estimator since
it minimizes the mean-square error. The estimate #(y) can be easily obtained
by taking the derivative of Eq.(C.2) with respect to a and setting the result to

zero as follows

400
-—2a/:°° (z — a)pz(X|Y)dz = 0

+00 +oo
af _paXIV)de = [ apy(X|Y)de
a = i(y) = Elz|y] (C.3)

The obtained solution for a is indeed the global minimum since the cost
function(Eq.(C.2)) is convex. Furthermore, this estimator is unbiased, and the
estimation error covariance, A, is the expected value of the covariance of the

posterior density

Elz-3(y)] = E(z- E[sly]) = Elz] - E[z] =0 (C.4)
Ae = E[(E[zly] - =)(Elzly] - 2)] = ElAa,(y)]  (C.5)

where Ay, (y) is the covariance of p,,(X|Y). Another additional important

property of this estimator is that its estimator error is uncorrelated with

any function of the data f(y) (i.e. E[(z — #(y))f'(y)] = 0 or Elzf'(y)] =
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E[#(y)f'(y)]). This fact is known as the orthogonality property, and the result

can be proven in a few steps

E[zf'(y)] = E[Elzf'(y)Iy]] = E[Elzly]f'(v)] = El2(y)f'(y)] (C.6)

The computation of this estimator, however, is not trivial since the estimator
is generally a nonlinear function of the measurement y and the statistics of
the density p.y(X|Y) must be known. A situation when this estimator can
be expressed in a simple form is the case when the vector z and y is jointly

Guassian. Specifically, we have

Ey) = mot+AyA[ (y—my) (C.7)
Ae = A — Ay AJ'AL, (C.8)

where m; = E[z], my = E[y], Ay is cross-covariance of z and y, A, and A, is
the covariance of = and y respectively. The estimator #(y) in this case is usually
referred to as the linear least square estimator (LLSE). Egs.(C.7-C.8) can be
derived from [15] as follows. Let 2 = m, + AzyA; (y —my), and 2 =z — 3, .

Then E[z] = 0 by direct substitution, and

Ez(y—my)] = E[(z~ms)(y—my))]
—AayAJ El(y — my)(y — my)']
= Auy— AoyhS'A,
= 0 (C.9)

which implies that Z and y is uncorrelated or independent since they are Guas-

sian, i.e. E[Zy] = 0. Thus

&(y) = E[z|y]
= E[2+ 2]y

124



= E[zly] + E[Z|y]
= 3 (C.10)

since E[Z|y] = E[2] = 0. Therefore this proves Eq.(C.7). The proof for Eq.(C.8)
is preceeded by noting that 2 and & = z — #(y) are independent because of the
orthogonality property (C.6). This implies that A, = Az + A;. But A; = Az
by observingl that the density p; ~ exp[—(z — m,ly)’A;l;(x — myy,)] and the

density pajy ~ ezp[—(z — mqyy) A7} (z — myy)] are identical. As a result,

A::Iy = Aa: - A:i'
= Ao = AgAS'AL, (C.11)

Using Eqgs.(C.7-C.8), we can write down the LLSE equations for some simple
expressions below which will be useful later in constructing the structure of the

Kalman filter. Let

z2=Fz+b+ Guw (C.12)
y=Cz+v (C.13)

where F, G, C are known matrices, b is a deterministic vector, y is the observa-
tion vector, z and w and v are uncorrelated random vectors. Moreover, w and
v has zero mean with covariances @ and R respectively. The vector z has the

following prior statistics

m, =Fm,+b (C.14)
A, = FAF' + GA,G' (C.15)

Defined respectively #(y) and 2(y) as the LLSE of z and z based on y, and
Azy and A, as the corresponding error covariances, applying Eqs.(C.7-C.8) and
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straigth forward calculations yield

2(y) = Fi(y)+b (C.16)
Ay = FALF +GALG (C.17)
2(y) = m.+ K(y—Cm,) (C.18)
K = A,C'[CA,C'+R]™ (C.19)

Asg = A —AgA AL,
= A, —AC'[CAC' + RI'CA, (C.20)

C.2 Kalman Filter Equations

We now present the derivation of Egs.(3.21-3.27). The prediction Eqgs.(3.21-3.22)
are precisely Egs.(C.16-C.17) since the model (3.15-3.16) is analogous to that of
(C.12-C.13) and w(k) is uncorrelated with y(k), and B(k)u(k) is a deterministic
vector. The update equations are obtained in the same manner by noting the
similarity among Eqs.(3.23-3.27) and Eqs.(C.18-C.20).

Thus the structure of the Kalman filter can be constructed immediately
once the state space model is available. The only parameter to determine is
the Kalman gain matrix which is computed together with the solution of the
Riccati equation. In addition, one can see that the Kalman filter is essentially
the solution to a sequence of static well-known linear least square estimation

problems.

126



. THESIS PROCESS@NG SLIP

FIXED FIELD: il - name

index biblio

. > COPIES: Aero  Dewey (Eng) Hum

Lindgren Music Rotch  Science

TITLE VARIES: ’D

" NAME VARIES: ’D

IMPRINT: (COPYRIGHT)

» COLLATION: |2§ iA-

»ADD.DEGREE: ______ - P> DEPT.

© SUPERVISORS:
MNOTES:
o : catr. - date:
. - - i:age
. BDEPT: M‘ E, 5

svear: 1992 - >DEGREE,_M__A
»NAME: HO /Vhyd' TQ—L : e

-
<
|
i




