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ABSTRACT

The results on robustness theory presented here
are extensions of those given in [1]. The basic
innovation in these new results is that they
utiiize minimal additional information about the
structure of the modelling error as well as its
magnitude to assess the robustness of feedback
systems for which robustness tests based on the
magnitude of modelling error alone are
inconclusive.

I. INTRODUCTION

Briefly, the issue of robustness in feedback
conrol system design may be summarized as
follows. Any mathematical model can only
approximate the behavior of a physical system.
In designing a feedback compensator, one nominal
model must be selected, from a class models that
approximate the physical system’'s behavior. Once
a nominal model has been selected an associated
class of modelling errors is defined implicitly
by the deviation of any model (in the class of
models that approximate the physical system's
behavior); from the nominal design model. When a
compensator is designed using this nominal model,
the resulting feedback system is said to be
robust with respect to the class of modelling
errors 1if it remains stable when the nominal
model is replaced by any other model in the class
of models that represents the physical system.
Otherwise, the feedback system is not robust.
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Determining the robustness of a given feedback
control system can be logically divided into two
distinct questioms: (1) how near instability is
the feedback system and (2) given the class of
model errors for which the feedback system is
stable, does this class include the model errors
that can be reasonably expected for this
particular system? The first question can be
answered exactly by appropriate mathematical
analysis once a suitable notion of "nearness to
instability” is defined. The second question is,
however, a question that requires engineering
judgment in the definition of what constitutes a
reasonable modelling error. The role of
mathematical analysis with respect to question
(2) s that of providing a simple
characterization of a sufficiently large subclass
of modelling errors that do not destabilize the
feedback system. Without a simple
characterization of this subclass of model errors
even the best engineering judgment may not be
adequate to answer question (2). Nevertheless,
very simple characterizations of model errors
that are not destabilizing often lead to results
that are not very useful practically because they
are too restrictive and the associated subclass
of nondestabilizing model errors too small.
Therefore, a compromise between the simplicity of
the characterization and the extent of the
subclass of nondestabilizing model errors that
can be considered is necessary. The main result
of this paper will propose one such compromise.

The results presented in this paper are
essentially extensions of those presented in [1]
on the robustness of multivariable linear
time invariant feedback control systems. The
work in [1] is based on a multivariable version
of Nyquist's theorem from which several
robustness theorems were derived In this paper,
a slightly more general approach based on

. Nyquist's theorem is given in a fundamental

robustness theorem from which various robustness
tests may be obtained. These robustness tests
all have the following form. The magnitude or
norm of the modelling error or uncertainty in the
frequency domain is characterized by a
nonnegative frequency dependent scalar. The
measure of robustness or margin of stability is
also characterized by a nonnegative frequency
dependent scalar that represents the mininum norm
or magnitude of the modelling error required to
destabilize the feedback system. The robustness
test comnsists in comparing these two quantities
versus frequency. If the norm of the modelling




error is less than the minimum error norm
required to destabilize the feedback system at
all the frequencies theén, obviously stability is
guaranteed in the face of this modelling error.
However, if the norm of the model error at some
frequency exceeds the minimum error norm required
to destabilize the test is inconclusive.
Additional information about the structure of the
modelling error must be used to determine if it
will destabilize the feedback system. This
additional information about the model error
structure is obtained by examining the projection
of the error matrix onto the one dimensional
subspace spanned by the outerproduct of the left
and right singular vectors corresponding to the
minimum singular value of the return difference
matrix or a related matrix quantity. A corollary
of the main result is that the minimum “size"
(i-e. norm; of the modelling error required to
destabilize a feedback system is equal to the
geometric mean of the two smallest singular
values of the return difference transfer matrix
(or a related matrix quantity) provided the error
matrix has no projection onto the one dimensional
subspace spanned by the outer product of the left
and right singular vectors associated with the
smallest singular value. Thus, the feedback
system will tolerate an error of this type of
possibly much larger magnitude than an
artitrarily structured model error. 0f course,
in order to. guarantee that the error matrix has
no such projection, engineering judgment based on
what class of models gives a reasonable
approximation to the behaviour of the physical
system is required.

The development of the results on the use of
model error structure will proceed first by
presenting in Section II a generalized version of
a fundamental robustness theorem found in [1]
based on the idea of deforming the multivariable
Nyquist locus to account for model error without
making the return difference matrix singular.
Section III gives a brief review of the singular
value decomposition and related notions that will
be used. It then gives the basic results from
matrix theory that will be used in Section IV.
Section IV gives a classification of various
robustness tests that have appeared previously in
the literature as well as a new one that has not,
according to the type of model error they guard
against. All these tests have the same basic
form and therefore may all be generalized to use
model error structure as well as magnitude
information via the results of Sections III.
Section V shows how the results of Section III
may be used along with the fundamental robustness
theorem to generalize the robustness theorems of
Section IV that wutilize only error magnitude

information. Also, an example is given
demonstrating the results.
All proofs are omitted due to space

considerations but may be found in [2].
II. FUNDAMENTAL CHARACTERIZATION- OF ROBUSTNESS.
The basic system under consideration is given in

Figure 1, where G(s), the loop transfer function
matrix, incorporates the open loop plant dynamics

1. (a)

as well as any compensation employed.

Due to modelling error or uncertainty the actual
loop transfer function matrix is G(s), a
perturbed version of G(s). For the purposes of
this paper the perturbed (or actual) system is
assumed to have the form given by
G(s) = G(s)L(s; (2.1,
where L(s) is a multiplicative factor used to
account for model error or uncertainty.
Furthermore we assume’ that both G(s) and G(s)
have state space representations _given
respectively by the triples (A,B.C) and (A, B o))
(i-e, G(s) = C(Is-A)7'B  and T(s) =
T(Is-A)" 1B) Associated with the state space
representation of G(s) are the open and closed

loop characteristic polynominals, respectively
doL(s) and ¢¢cr(s) defined by
doL(s) = det(sI-A) (2.2)
dcL(s) = det(sI-A+BC) (2.3)
The polynominals _ ¢0L(s) and ¢CL(S)

associated with (A B ,C) are analogously defined.

The follow1ng theorem generalizes Theorem 2.2 of
[1] and is based on the idea of continuously
deforming the multivariable Nyquist diagram for
G(s) into the one corresponding to G(s) without
passing the locus through the critical point. If
this can be done and the number of encirclements
of the critical point required for stability by
G(s) and G(s) are the same then this perturbation

of G(s} will not induce instability. 1In this
theorem we will let Dp denote the Nyquist
contour (shown in Figure 2) along which

det(I+G(s)) 1is evaluated and define G(s,e) as a
matrix of rational transfer functions continuous
in € for € in [0,1}] and for all s in Dg
that also satisfies the following conditions

G(s,0) = G(s) (2.4)
and

G(s,1) = G(s) (2.5)
Theorem 1: The polynominal $bL(s) has no

CRHP (closed~right—half-—plane)
following conditions hold:

zeros if the

dor(s) and $6L(S) have the same
number of CRHP zeros.

(b)Y 1f Bop(Jwg) = O then dop(fug) =

(e) ¢cr{s) has no CREP zeros

2 det[I+G(s,e)] # 0 for all € in [0,1]
and for all s e Dy with
R sufficiently large.

Theorem 1 forms the basis for the derivation of
all subsequent robustness results. We will
subsequently assume that the radius R of the
contour Dp is taken sufficiently large so that
Theorem 1 may be applied.




Theorem 1, condition 2 provides the complete
characterization of the class of modelling errors
that do not destabilize the feedback system
{under the restrictions given in condition 1).
However, this characterization of the class of
nondestabilizing errors is so complex as to be
practically useless. A simple "small gain” type

of characterization of a subclass of
nondestabilizing model errors is those for which
a G(s,€} may be constructed with

1G(s,e)llp < 1 for (s,e) on Dgp x [0 1].

This simple characterization of the "small gain”
subclass of nondestabilizing modelling
errors does not cover many systems or modelling
errors of interest because of the requirements
that HG(s)l9<1 and G(s)lp<1 for
all seDp-

Notice, that if IG(s,€)lly — 0 as lsl—

for all € in [0,1], then condition 2 of Theorem
1 need only be verifed for (s,e) in & x
{0,1] where Qp is defined as

Qp={s!seDg and Re(s)<0}. (2.6)

This will be the case when G(s,c) is defined. in
Section IV because both I!G(s)llp —= 0 and
IG(s}llg~—= 0 as Isl— «. The development

of robustness tests from Theorem 1 involves the
construction of inequalities that can guarantee

the nonsingularity of I+G(s,€) as in condition

2. Therefore, section III will develop general
matrix theory results that test for singularity
of the sum of two matrices

III. MATRIX THEORY

The purpose of this section: is to introduce
important tools from matrix theory and present
some results that form the backbone of the
robustness results of section V. The 'specific
problem considered in this section is the
following. Given a nonsingular complex matrix A,
find the nearest (in some sense) singular matrix
X which belongs to a certain class of matrices.
If the error matrix E is defined as E = A - A
then the problem may be stated in the following
form. Given a nonsingular complex matrix A find
the matrix E of minimum norm that makes A + E
singular when E 1is constrained to belong to a
certain class of matrices.

Essential use of the singular value decomposition
is made 1in the solution of this problem and
therefore is reviewed next-

A. Singular Values and the Singular Value
Decomposition

The singular values of a complex nxm matrix A,
denoted 0:(A) are the k largest nonnegative
square roots of the eigenvalues of AHA or aaH
where A" is the complex conjugate transpose of
A and k = min(n,m) that is

0j(A) = Ay M2 (aBAY 1 =1,2,..,k

(3.1)

where we assume that 0; are ordered such that
0:20547- The maximum and minimum
singular values may alternatively bé defined by

|21, (3:2)
omax(A) = max ———— = HA”2 ’
=0 |zl
l1axl |, (2.

o_. (A) = min (a7t T ie a7t exists

e =t [lzl],

The smallest singular value Opin(A) measures
how near the matrix A is to being singular or
rank deficient (a matrix is rank deficient if
both its rows and columns are linearly
dependent) . To see this consider finding a
matrix E of minimum spectral norm that makes A+E
rank deficient. Since A+E must be rank deficient
there exists a nonzero vector x such that
lxllg = 1 and (A+E)x = O and thus by (3.2)
and (3.3)

Omin( A)<AXI H<IEXI 9 SHNEN p=0 - (E) (3.4)

Therefore, E must have spectral norm of at least
OminfA) otherwise  -A+E cannot be rank
deficient. The property that

Omin(A) > Opax (E) (3.5)

implies that A+E is nonsingular (assuming square
matrices) and will be a basic inequality used in
the formulation of various robustness tests.

A convenient way of representing a matrix that
exposes its internal structure is known as the
singular value decomposition (SVD). For an nxm
matrix A, the SVD of A is given by
K
A= IZIEVH = I 0, (A)u.vi.i (3.6)
i=1 i —=i—i .

where U and V are unitary matrices with column
vectors denoted by

U= [y, up,.-..uy] (3.7)
Vo= [vi,¥2.--4,¥] (3.8)
and I contains a diagonal nonnegative definite

matrix I3 of singular values arranged in
descending order as in

- v n>mnm
z 0 .
. 3.9
and (3.10;
Zl = diag[cl, Tpreenr Gk] H x =min (m,n) .




The columns of V and U are unit eigenvectors of
AlA  and  aaB respectively and are known as
right and left singular vectors of the matrix A.

B Projections and Orthonormal Bases

Any unitary matrices, such as the U and V
produced by computing the SVD of a matrix, can be
used to generate an orthonormal basis in which to
express an arbitrary matrix E. Let U and V be
nxn unitary matrices with columns as in (3.7,8)
and express E as

n n

0
™
™
A
s
<
v
\Y
a

jof
(3.11)
where the innerproduct for matrices is defined by

<A,B> = tr(AHB) (3.12)
for complex matrices A and B. Note that with
this innerproduct the n rank one matrices
EiXH are orthogonal to each other and have
uni% spectral and Euclidean norms and thus form

an orthonormal basis. The matrix
<uiv-,E>uivH is simply the
projection of the matrix E onto the

one dimensional subspace spanned by uivie.
1f the elements of gigﬂ are formed into a
nc length vector x by stacking the n rows of

uivy and the same procedure is used to
reduce the matrix E to a vector y then
ﬁiizg,E> is equal to the usual §§l
innerproduct between these n? length vectors.
This makes it clear that <gi!?,

E>uiXH can be rearranged into a vector
(iHy)x which is just the projection of y in the
direction of the vector X. Also, 1if all the
matrices EiVH are formed into vectors,
they will be orthogonal to each other and have

unit Euclidean length. We will thus think of the

n rank one matrices as representing n?
orthogonal directions and refer to
<u;v%,E>u; 3 as the projection

of E along the direction uij. This type
of perspective 1is useful in‘_ studying the
structure of the error matrix E = A - A.

C. Error Matrix Structure

In this section we will use the tools developed
in earlier sections to solve the problem of
finding a singular matrix A nearest to a given
matrix. This can be formulated more precisely as
a mathematical optimization problem:

Probiem A:

min IEl,
E 2
s.t. det (A+E) = 0 (3.13)
In this formulation the matrix A is simply A+E,
where we refer to E as the error matrix. This is
the simplest problem to solve since E is

unconstrained. In what follows we make the

‘following technical assumption.

Assumption 1: The matrix A is nxn nonsingular
and has distinct singular values. :

The assumption of nonsingularity of A assures us
of a nontrivial problem otherwise E is
identically zero when A is singular. The
assumption of distinct singular values is a
technical one which allows us to avoid some
combinatoric problems associated with multiple
solutions but it is not difficult to remove this
assumption.

Solution to Problem A:
Suppose that A has the SVD given by

A = yzvH (3.14)
where
L = diag[oy, Op,+++, Oyl ; Oy >0p4] (3.15)
U= [uj,u9,..., up] (3.16)
Vo= [v1,¥9, 0., ¥4]- (3.17)

then we can characterize the form that all
solutions to Problem A must have, namely

P i o
s { - H
E=0U|-—- e v (3.18)
L]
OT l -0
4 ! n
where Py is (n-1) x (n 1) and
IPgliy < 0y = IElly (3.19)

but is otherwise arbitrary.

Recall from equation (3.11) the interpretation of

<unvg,E2gnvg as the projection
of E onto the direction unvg. From (3.18)
we see that all solutions to Problem A have the

same projection in the direction unvg
which we shall call the most sensitive direction
since this is the direction it is "easiest"” to
make A singular by changing Its elements the
"least”. Note also the additional conditions

for any two solutions to Problem A say E; and
EZ that

<unv§,El>=<unv§,Ez>=O,j#n

(3.20)
and
<§jzg) E1>=<Ej‘_’,§: E 2>=0’ J*’t
(3.21)
requiring the projections of E] and E%{ to be
aqual along any direction u4v and
ang where j = 1,2,...,n. In act, the

natrix P given by

P = vHev (3.22)




is just the matrix of projections onto each of
the n< directions  ujvj (slightly  abusing
the notion of projection to mean

H H H .
< > i <u,v.,E> u.v.) that is
Ei!j’E instead of gﬂ_j,E —7?1) R
pij = <ugvl £ >, (3.23)
Now suppose that we construct a constraint set

for E so that E cannot have a projection of
magnitude 0, in the most sensitive direction

Enfg' This means that the matrix A+E
cannot become singular along the direction
EMX% and thus A1) must increase if
A+tE is to be singular. To find out just how much
larger lEll; must become we formulate the

constrained optimization problem:
Problem B:
min lEl,
E
s.t. det (A+tE) = 0O (3.24)

I<upvll, E >1<0 < oy

Solution to Problem B:

The error matrix E is given by

P i o
s |
e ———— H
Rl Y (3.25)
o 1 yr ¢
where Pg arbitrary and
IPgli< ¥0,0n-110(0~0y 3 )=lEll g, (3.26)

where Y is given by

y = ¢(¢+on_l)(c —¢feje, O arbitrary
n (3.27)

and A has the SVD

(3.28)

The following theorem follows trivially from th-~
solutions of Problems A and B.

Theorem 2: For square matrices A and E, A+E is
nonsingular if

o} (E)=lEll9< 000110 (0,~0
max 2 n%n-1 n Y%-1) (3.29)

and
I <ugvil, E>1<d<oy,
(3.30)
where On-1 > On > 0 are the two

smallest singular values of A and u, and vy
are respectively the left and right singular
vectors of A corresponding to Op- a

Corollary 1: For square matrices A and E, det (A+E)

#0 if

Opax(BYEN < ¥5r0ar]

(3.31)

and

vl E>=0 O (3.32)
Theorem 2 is the key to making use of model error
structure in the subsequent robustness tests.
Corollary 1 has a very pleasing geometrical

interpretation that will be discussed next.

D. Geometric Interpretation

The nature of the solution to Problems A and B
becomes apparent when the SVD is used to
transform the A matrix into a positive definite
diagonal matrix. This is accomplished with the
following simple lemma.

Lemma 1. TIf the SVD of A is given by

A = uIvH (3.33)
with U and VH unitary and I and diagonal then

A+E is singular if and only if X+P is singular
where

p = UHEV (3.34)
and furthermore iIPlly=IEll,. O

Thus, one may work with I and P rather than A
and E. Therefore,in the subsequent discussion we
will make the assumption that the matrix A is now
diagonal and positive definite.

The matrix A is now given by

ag 0
(3.35)

0 a

n
where Oy > 0jq3-. If the columns of the
matrix A are thought of as a set of n orthogonal
vectors of lengths 03 then Corollary 1 can be
interpreted geometrically in the 2x2 case as the
problem of aligning two orthogonal vectors with
minimum "effort” without decreasing the length of
the shortest vector. Here the "effort” required




to align the two vectors is equal to
HEIl =0544(E) where E makes ) ‘A+E
singular. Corollary 1 states that the wminimum
"effort” required to align the two vectors is
equal to the geometric mean of their lengths.
Figure 3 graphically illustrates Corollary 1 in
the 2x2 case and displays the columns of A and
A=A+E where A is singular and Ell; a
minimum. When the number of orthogonal vectors
(i.e. columns of A) is greater than 2, Corollary
1l states that it requires the minimum "effort” to
align the two shortest vectors in the set.

Using these observations Problems A and B can be
generalized to accommodate additional constraints
on the matrix E. One additional constraint that
may be added is the condition that
finln"le><En—lZ§’E>=o’ where the vectors

ug and vy are the appropriate singular
vectors taken from the SVD of the matrix A. This
effectively, rules out the form of solutions to
Problems A and B given in (3.18) and (3.25) and

thus [Elly must again increase. In general,
if constraints of the form <u1vg,E>
<3j2§,E> = 0 for all (i,j) € M for

some index set M, are imposed on the matrix E,
where uj and v; are the left and right
singular vectors of A, then ||E|] 3y6_31 where o, 0
= min Oin for (i,j)¢M, if A+E is“to ge singular,

E. Examples

To make these results clearer we will illustrate
the solutions to the problem of finding the
matrices E of minimum spectral norm that make A+E

singular under various constraints on the E
matrix.

Examples:

Let A be given by

¥e]
o
(o]

>
"
o
>
o

(3.35)

o
o
[

and consider the various constraints on E.

Unconstrained Case:

E 1o
S
E = } 0
------- i (3-36)
o o} -1

where HE gl < 1 but otherwise Eg is
arbitrary.
e33 = 0 Case:
ell 0 0
E = 0 0 ZeJe
(3.373
o 26”30 0

where lejj! < 2 and otherwise ej; and O are arbitrary.

er3 = e33 = 0 Case:

0 ) 3¢9
E = o] e o}
22 (3.38)
3e_:Je 0 o]
where legol < 3 and otherwise
ey and O are arbitrary.
€13 = e33 = e33 = 0 Case:
e o] 0
E = 0 -4 0. (3.39)
e [+] Q

(i

where

_
Viey ! + eyl < a=jl2ll, .0

but otherwise ej; and e3] are arbitrary.

le33l £ 1/2 Case:

®11 0 0
E = 36
0 1/2 3/2 e (3.41)
o 32738 -1/2
where
H Vi
le) 1 < Metl, = 22 2158 (3.42

and ey and © are otherwise arbitrary.




It is important to point out that we have limited
ourselves to constraints on E of a very special
form and in general arbitrary constraints on the
form of E lead to a mathematical nonlinear
programming problem that does not in general have
a closed form solution. However, these special
form of constraints on E will be useful in
obtaining robustness results of section V.

IV. ROBUSTNESS TESTS AND UNSTRUCTURED MODEL ERROR
In this section, we present theorems that
guarantee the stability of the perturbed
closed~loop system for different
characterizations of wmodel wuncertainty (i.e.,
different types of model error). This is done
via Theorem 1 by using a specific error criterion
to construct a transfer matrix G(s,€)
continuous in € on DR x [O0,1] that satisfies
(2.4) and (2.5). Then a simple test bounding the
magnitude of the error is devised which
guarantees that condition 2 of Theorem 1 is
satisfied. This procedure is carried out for
four different types of errors. These tests use
only the magnitude of the modelling error and do
not exploit any other characteristics or
structure of the model error and hence are based
on the unstructured part of the model error.
These different types of model errors will
emphasize different aspects of the difference
between the nominal G(s) and G(s) and thus under
certain circumstances will give essentially
different assessments of the robustness or margin
of stability of the feedback control system.

A. Robustness Tests Using Different Error

Criteria

Probably the most familiar types of errors are
those of absolute and relative errors.
errors are additive in nature whereas relative
errors are multiplicative in nature.
both types of errors to derive robustnes
theorems. However, the familiar notions of gain
and phase margins are associated only with
relative type of error since these margins are
multiplicative in nature.

If we let the matrix E(s) generically denote the
particular modelling error under consideration,
the absolute error is obviously given by

E(s) = G(s) - G(s) © o (4.1)

and the relative error, in a matrix sense, by

E(s) = ¢ 1(s)[Ts)-G(s)]- (4.2)
In (4.2) G—l(s) could post-multiply the
absolute error and serve as an alternative
relative error in the matrix sense but all
subsequent results will still hold with trivial
modifications. Two robustness theorems using
these errors will be given. However, first
G(s,€) must be constructed.

Using (4.1) and (4.2) we can define G(s,€) by
replacing G(s) in (4.1) and (4.2) by G(s,€) and
E(s) by €E(s) and solve for G(s,€). If we do
this we obtain

Absolute

One can use

G(s;e) = G(s) + €E(s) (4.3)

where E(s) is the absolute error given by (4.1) or

G(s,€g) = G(s)[I+€E(s)] (4.4)

where E(s) is the relative error given by (4.2).
Both (4.3) and (4.4) imply the same G(s,e)
although they employ different types of errors to

arrive at G(s,€). In either (4.3) or (4.4)
G(s,€) is simply given by
G(s,e)=(1-€)G(s}+€G(s) (4.5)

showing that G(s,€) is continuous in € for
€ on [0,1] and for all s ¢ Dg and that
G(s,c) satisfies (2.4) and (2.5)

In deriving stability margins based on theorems
using different error criteria, it is useful to
define a multiplicative uncertainty matrix L(s)
to account for modelling errors in the open-loop
plant. The perturbed or actual system G(s) in
this case is given by

~

(s) = G(s)L(s) (4.6)

which implicitly defines L(s). Notice that for

the relative error criteria that L(s) is very
simply given by
L(s) = (I+E(s)) (4.7)

where E(s) is given by (4.2).
will be shown later (4.7) is not the only
description of L(s); there are other types of
relative errors in which the relationship between
L(s) and the generic E(s) is not so simply given

However, as we

by (4.7). We will wuse both L(s) as defined
implicitly in (4.6) and a variety of error
matrices denoted by E(s) in stating the

subsequent robustness theorems. -

Two robustness theorems based on the preceedings
definitions of absolute and relative errors in
(4-1) and (4.2) respectively are the following.

Theorem 3 [4,5]: The polynominal $bL(s) has
no CRHP zeros and hence the perturbed feedback
system is stable if the following conditions hold:

1. condition 1 of Theorem 1 holds

2. OpinlI+G(s)] > Op x[E(s)]
for all s ¢ Qp

- where E(s) is given by (4.1),
and Qg was defined

by (2.6). a
Theorem 4 [3,4,5]: The polynominal EbL(s)
has no CRHP =zeros and hence the perturbed
feedback system is stable if the following

conditions hold:
1. condition 1 of Theorem 1 holds

2. OpinlI+6E(s)] > opa[E(s)]
seQR where E(s) is given by (4.2)




Theorem 4 was first proved by Doyle [3] using
singular values and Nyquist's theorem but under
the slightly stronger condition that E(s) be stable.
An operator version of Theorem 3 is due to
Sandell (4] who was the first to consider
additive perturbations. Laub 151 provides
further numerical insights to. the relationship of
Theorems 3 and 4.

Suppose that instead of measuring the absolute
relative errors between G(s) and G(s), we measure
the absolutes and relative errors between
Gl(s) and G1(s). 1In the SISO case, this
would correspond to measuring the absolute and
relative errors between the nominal and perturbed
systems on an inverse Nyquist diagram in which
the inverse loop transfer functions g7 (s) and
g"l(s) are plotted. (The inverse Nyquist
diagram can also be used to determine stability
by counting encirclements of the critical points
(0,0) and (-1,0) in the complex plane.)
Therefore, it is natural to define the absolute
and relative errors between the nominal and
perturbed systems as

E(s) = GL(s) - 671(s) (4.8)
for the absolute error and
E(s)=[G L(s)~6¢"1(s)]G(s) (4.9)

for the relative error. Using (4.8) and (4.9) we
may define a G(s,€), again by replacing G(s) by
G(s,€) and E(s) by €E(s) in (4.8) and (4.9),

and then solving for G(s,ej. If this is done,
we obtain
G(s,e)=iG L(s)+eR(s)] L
(4.10)
where E(s) is given by (4.8) and
G(s,e) = G(s) [I+eE(s)] L
(4.11)

where E(s) is given by (4.9).
(4.11) give the same G(s,€)
terms of G(s) and G(s) is

Both (4.10) and
which written in

G(s,e)=[(1-e)6 1 (s)+eG L(s) L

where now we see that € enters nonlinearly and
it 1is not clear that G(s,€) is continuous in
€ in {0.1] for all s € Dg but is clear that
it does satisfy (2.4) and (2.5). The type of
G(s,e) in (4.12) could be replaced by the one
in (4.5) and theorems worked out in terms of the

errors described by (4.8) and (4.9). This
approach was taken by Lehtomaki, Sandell and
Athans [1] and led to more restrictive and

complicated conditions to check than the approach
using (4.12).

Since (4.10) and (4.11) and (4.12) are all
equivalent in that they give rise to the same
G(s,e) we may work with any one of them to
prove assertions about the continuity of G(s,€)
required by Theorem 1. 1f G6~I(s) and E‘l(s)
exist, so that E(s) in (4.9) is well-defined,

(4.12)

then for G(s,€) to be continuous in € for
(s,€) € Dg x [0,1] all that is required is
that [I+€E(s)] be nonsingular. Notice that in
this case L(s) is simply

L(s) = [I+E(s)}~T (4.13)
and that [I+€E(s)] is nonsingular for all ¢
in {0,1] if L(s) defined by (4.6) has no zero or
strictly negative eigenvalues. This 1is true
since if L(s) has no zero or negative
eigenvalues, neither does I+E(s) and thus E(s)

cannot have eigenvalues in the interval
(-<,-1 ] so that €E(s) never has eigenvalues
of -1. Therefore, with these restrictions
G(s,€) is continuous in € on Dgx [0,l]. We

also see from (4.11) that if L(s) has no zero or
negative eigenvalues that lIG(s,e)llpg—» 0 as
Isl— «® for any € in [0,1]. This allows
us to check for the nonsingularity of I+G(s,€)
only on Qpx[0,1] in Theorem 1. We may now
state the theorems analogous to Theorems 3 and 4.

Theorem 5: The polynominal $EL(S) has no
CRHP zeros and hence ‘the perturbed feedback

system is stable if the following conditions holdl:

1. condition 1 of Theorem 1 holds

2. L(s) of (4.6) has no zero or strictly
negative real eigenvalues for any s ¢
R

3. OpinlI+67I(8)] > OpaylE(s)]
for all s ¢ QR where E(s) is
given by (4.8). a

The next theorem works with the relative error
between G"l(s) and G “(s) and plays a
fundamental role in establishing the properties
of LQ (linear—quadratic) state feedback
regulators and is an improved version of a
theorem found in [1].

Theorem 6: The polynominal $CL(S) has no
CRHP zeros and hence the perturbed feedback
system is stable if the following conditions hold:

1. condition 1 of Theorem 1 holds

2. L(s) of (4.6) has no zero or

strictly
negative real eigenvalues
3. OpinlI+G(s)] > Opax[E(s)]
for all s ¢ QR where E(s) is given
by (4.9) O3

Remark: If condition 3 is satisifed and

Omin[I+G(s)]fg then it can be easily shown
via (4.13) that condition 2 1is automatically
satisfied.

Observation: The condition that L(s) have no
strictly real and negative eigenvalues or be

singular can be interpreted in terms of a phase
reversal of certain signals between the nominal

11n the proof of Theorem 5 use of the fact that

G(s) and Ezs) are both invertible

on D i
made . R 1s




and perturbed systems or as the introduction of
transmission zeros by the modelling error. To
make this precise, suppose that for some wg
that L(jwg)x = Ax for some .complex mnonzero
vector x and some real A < O. Then there
exists a vector u(t) of input sinusoids of
various phasing and at frequency wqg which
when applied to the nominal system produces an
output y(t) and produces an output Ay(t) when
applied to the perturbed system. This is
depicted in Figure 4.

Thus when A 1is negative the phase difference
between the sinusoidal outputs of the nominal and
perturbed systems is 180°. If A=0 then the
perturbed system has transmission zeros at +
Jwo-

This fact is significant since Theorems 5 and 6
can never guarantee stability with respect to
model uncertainty when the phase of the system
outputs is completely uncertain above some
frequency or with respect to sensor or actuator
failures in the feedback channels.

B. 1Interpretations of Robustness Tests Error
Criteria

Up to this point, it is probably unclear what the
significance of the various error criteria are
and how they are related. This can be partly
clarified by an understanding of how each error
enters into the structure of the perturbed system
from a block diagram perspective. This is done
in Figure 5 where a very pleasing symmetry occurs
that corresponds to the four basic arithmetic
operations of addition, subtraction,
multiplication and division.” As can be seen from
Figure 5 the absolute type of errors correspond
‘to addition and subtraction whereas the relative
errors correspond to multiplication and
division. Other types of errors can be
represented as combinations of these basic types
of errors. One such combination of the two basic
relative errors given in (4.2) and (4.9) occurs
in connection with Barrett's generalization of
the passivity theorem [6] for 1linear-time
invariant systems. One statement of his theorem
is given in Theorem 7.

Theorem 7 [6]: The polynominal $EL(S) has no

CRHP zeros and hence the perturbed feedback
system is stable if the following conditions hold:

1. condition 1 of Theorem 1 holds

2. ML(s)) ¢ (-=,-1] for all s € Qg

3. Opinl(I-G(s))"1(I+6(8))] > Opax(E(s))
for all seQg

where

E(s) = [G(s)+G(s)]™L [C(s)-G(s)]
(4.14)
O

The block diagram (suppressing s dependence) of

Figure 6 depicts the corresponding perturbed
model G.

From Figure 6 the nature of the combination of
the two types of relative errors given in (4.2)
and (4.9) is readily apparent. Algebraically, if
Ei and Ej denote

E1 = ¢ 1(G-6) (4.15)
and

E; = -G 1-6c71]¢ ’ (4.16)
then E of (4.14) is given by

g7l = ggl 4551 (4.17)

Therefore, E is a "parallel-resistive” type sum
of errors Ej and Ej. This  particular
criteria is pleasing in that it  produces
logarithmically symmetrical stability margins.

All the preceeding robustness tests guarantee
that stability is preserved by ensuring that the
magnitude of the model error (according to some
particular error criteria) is sufficiently
small. In these tests the model error is
unconstrained in its structure and therefore
these tests guard against any type of model error
structure. If all types of model error structure
are not possible then these robustness tests may
be conservative and methods such as those
developed in the next section must be employed to
take advantage of some particular aspect of the
structure of the model error.

V. ROBUSTNESS ANALYSIS FOR LINEAR SYSTEMS WITH
STRUCTURED MODEL ERROR

In this section, the robustness tests of Section
IV are refined to distinguish between those model
errors which do not destabilize the feedback
system and those that do, but both of which have
magnitudes larger than the MIMO generalization of
the "distance to the critiecal (-1,0) point”. To
do this it is necessary to be able to distinguish
between model errors that increase the margin of
stability for the feedback system and those that
decrease it. This cannot be done on the basis of
the magnitude of the model error. Therefore, it
must be done on the basis of the structure of the
model error.

The structure of the model error, in general
terms, is simply the numerical relationship of
the elements of the error matrix E(s),
representing the difference between the nominal
and the perturbed loop transfer matrices. In
other words, the structure of the model is
specified by magnitude and phase relationships
between the eji(s) elements of E(s). In this
section the structure of E(s) which is necessary
to determine the stability of the perturbed
feedback system is extracted using the results of
Section III and the singular value decomposition
(SVD), to generate an orthonormal basis for the
expansion of E(s). It will be shown that the
projections of E(s) on only certain elements of
the basis need be known precisely to extract the
information relevant for stability analysis.
Thus, only a partial characterization of the




modelling error is necessary and its structure is
constructively produced by the method of analysis
used in Section III.

In order to make a practical use of these results
that utilize the structure of the model error, it
is necessary to determine if the model error of
minimum magnitude that will destabilize the
feedback system can be guaranteed not to occur.
This assessment must be made on the basis of
engineering judgement about the type of model
uncertainties that are reasonable for the nominal
design model representing the physical system.
For discussions on how to practically determine
what constitutes a reasonable modelling error,
the reader is referred to [7] for a discussion of
model errors in an automative engine control
system and [8] for a similar discussion with
regard to power system models.

A. Robustness Tests Utilizing Model Error
Structure

In the robustness theorems of Section IV, the key
conditions ensuring the stability of the
perturbed closed-loop system were inequalities of
the form

Omax[E(s)]<Opin[h(G(s))] C(5.1)

where h( - ) is some bilinear fractional
transformation (i.e., I+G, I+C‘1, (1-G)~

(I+G)) and where (5.1) must hold for all
SEfl, . This condition assures that the
model error is sufficiently small so that a
closed-loop system designed on the basis of G(s)
will remain stable when it is replaced by G(s).
However, the approach used to develop these
robustness theorems neglects the fact that there
are perturbations or modelling errors for which
(5.1) does not hold, i.e., the model error is not
small, and yet the closed-loop system remains
stable. These Section v theorems are
conservative if one resgtricts the allowable type
of model error structure because they guard
against absolutely all types of structure in
linear model errors.

One way to reduce this conservatism is to obtain
additional conditions that distinguish between
modelling errors that do not destabilize the
feedback system but violate the test of (5.1),
and those that violate the test of (5.1) but also
destabilize the feedback system. Or better yet,
obtain some conditions that discriminate between
modelling errors, that violate (5.1), between
those that increase and those that decrease the
margin of stability of the feedback system.

The problem is illustrated in Figure 7 for SISO

systems where two different perturbed systems -~

g1(s; and gp(s) produce exactly the same size
of relative error on the Nyquist diagram. As can
be seen from Figure 7, the difference between the
perturbed systems gj(s) and E)(s) cannot be
determined from the magnitude of the error
alone. Clearly, B)(s) has a smaller margin of
stability than the nominal system g(s), and
g’(s) has a larger margin of stability than the
n%minal g(s). Since this is a scalar system the
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only additional information apout the rror
needed to. distinguish between g)(s) and go(s)
is the phase of the error. Thus, in the SISO

case this gives us a complete characterization of
the error.

In the MIMO case, the problem is not so simple
because for an nxn system G(s) the error matrix
E(s) has 2n“ degrees of freedom, two for each
element of E(s) (i.e., gain and phase or real and
imaginary part). Thus, if a single degree of
freedom is eliminated from E(s), by information
in_addition to the norm of E(s), there are still
2n*~2 degrees of freedom left. Therefore, it
is important that exactly the right additional
information about E(s) is obtained so that only a
partial characterization of E(s) is necessary to
distinguish between modelling errors that
increase or decrease the margin of stability of
the feedback system. In order to do this it is
necessary to examine the structure of the
smallest error that destabilizes the feedback

loop. We will call this error the worst error.
In the SISO case, the worst error is illustraed
in the Nyquist diagram of Figure 8.

At point A, in Figure 8, the Nyquist locus of
g(s) is nearest the critical -1 point and thus
the worst error simply moves point A to A' by
"stretching” the Nyquist locus at that particular
frequency to just pick up an extra encirclement
of the —1 point (the point A' is infinitesimally
close to —1). It is important to point out that
this type of perturbation could be applied to
g(s) in any frequency range but that it need
happen only at one particular frequency, wg
near A, in order to induce instability. Thus we
will speak of the worst error at a particular
value of sefip.

Notice also that there are any number of curves
that we could pass through A' representing
perturbations of the original Nyquist diagram of
g(s) as depicted by Fi(s) in Figure 8, that
induce instability and are identical to the worst
error at the frequency of point A but differ at
other frequencies. However, these curves will
also be considered as worst errors since it is
really their nature at a single frequency that is
important in distinguishing them from other
curves.

One other point must be emphasized. A casual

perturbed system g(s) of the type
in Figure 8 may be constructed quite simply by
finding a continuous stable &(s) = g(s)/g(s)

that meets a closely as desired the ideal
specifications given by

-g71(3wg), s=iwp

Lidealls) = (5.2)
1 =
> s=jwg
where wp is the frequency corresponding to
point A in Figure 8. For example, one
continuous, stable 2L(s) that approximates

%ideal in (5 2) can be generated simply by




taking 2(s) to be of the form

M) =1 - a1+ g‘l(jwo)l (5.3)
where
20 s-a
= T 5.4
as) 2+2 w s+w2 sta c ( )
S TLSTYY
To approximate £i4ea1(s) closely, P >0 in
(5.4) must be very small so that lq(s)! 1is as
small as desired whenever Is—jwpl>€
for a given €. The constants @>0 and c=+1

in (5.4) are used to adjust the ’_phase of q(s)
without affecting Iq(s)! so that
q(jwg)=exp{ j{arg(lrg ™ (jwg) }]- (5.5)
a and c¢ in (5.4) makes
q(s) essentially =zero everywhere except in a
suitably small frequency range near W, Wwhere
it has the value given in (5.5). Thus 2(s) is
as close as desired to the specifications in
(5.2) but is still continuous in s and stable.
The L(s) determined by (5.3}, (5.4) and (5.5)
produces a g(s) essentially like the one of
Figure 8.

This selection of po,

Returning to the MIMO case, we can make all the

analogous statements to those concerning Figure
8, once we have specified the worst error. Then
similarities between the SIS0 and MIMO

cases can be easSily demonstrated using the ideas
of Section III developed in Problems A and B and

by use of the SVD on the matrix h(G(s)) of
éi.l). Suppose that the SVD of h(G(s)) is given
h(C(s)) = U(s)Z(s)VE(s) (5.6)
where
U(s)=[u3 (s),u9(s),evs,uy(s)] (5.7)
V(s)=[{v1(8),v2(8),eee,v(s)]] (5.8)
I(s)=diag[01,02(8),++,04(s)]
01(s) >0341(s)>0 (5.10)
where the singular values 0j3(s) Omax(s)
and Gn(s) = Omin(s).Recall from (3.18) that the

error matrix E(s) of smallest norm that will make
h(G(s)) + E(s) singular is given by

1]
A
Eo(s) ' 0 L
E(s) = U(s)]| ~==—r——t}-—emmmmr -1 v(s) (5.11)
L)
L
QT to-o (s)
wﬁere IIEg(s)l<0,(s) but is otherwise
arbitrary.l Provided the norm of the matrix
Ey(s) 1is bounded by o,(s), its structure is

completely unimportant information for the test
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determining the singularity or nonsingularity of
h(G{(s)) + E(s) Therefore, Ep{s) will be
taken as identically zero in the following
discussion and thus, E(s) given by (5.11) reduces
to

H (5.12)
E(S)—-—cn(S)gn(S)gn(S)
The E(s) given by (5.12) will be called the

essential structure of the more general form of
E(s) given by (5.11)when Eg(s}#0. The quantity
“On(s)ﬂn(s)zﬂn(s) is the component of
E(s) given by (5.11) that alone must be exactly
known if it is to be ascertained whether or not
the matrix h(G(s)) +E(s) is singular. Hence, the
description of the E(s) given by (5.12) as the

essential structure of E(s) given by (5.11) is
justified.

Again, as in the SISO case, the error given by
(5.12) need only occur at one particular complex
frequency sQ to destabilize the feedback
system. That 1is, we may construct a perturbed

G(s) having the same number of unstable poles as
the nominal G(s) that has the property that
E(sg) satisfies (5.11) arbitrarily closely and
hence destabilizes the feedback system. The MIMO
error matrix E(s0)=-on(so)5n(so)1§(so)

is the generalization of the model errors that
produce the g(s) and gj(s) of Figure 8 passing
through point A' just picking up an extra
encirclement of the critical point (-1,0). From
(5.12) we see that for an arbitrary error matrix

E(s) that the projection, <g_n(s)1§(s),E(s)>gn(s)xg(s),

of E(s) onto the one dimensional subspace spanned

by En(s)zg(s) can be wused to determine if
the component of modelling error in the most
sensitive direction gn(s)f}l(s) will move

the multivariable Nyquist diagram of the nominal
system nearer or farther from the critical point

(0,0) in the complex plane. The direction of
this movement of the MIMO Nyquist diagram is
simply ascertained by determining if
<u,(s)v,.(s),E(s)> is nearer or farther
than a distance of Oj(s) from the point
(~0n(s),0) in the complex plane.

However, the quantity <En(s)yg(s),E(s)>

merely determines the effect of one component of
the model error and does not take into account
the effect of the other components of the model

error (i.e., the projections
<w;(s)H(s),E(s)>ui(s)h(s))
have on the multivariable Nyquist diagram.

Therefore, some restrictions on these other model
error components must be placed if their effect
on the stability of the closed-loop system is to
be easily predicted.

Suppose now that we restrict the component of
modelling error in the most sensitive or worst

direction _gn(s)llg(s) to be exactly zero
‘1of course it must also be such that E(s}

satisfies condition 1 of Theorem 1.




(i.e., <un(s)vi(s),E(s)>=0) so that it
has no effect on the multivariable Nyquist
diagram. Naturally, for this class of modelling
errors, one expects that the magnitude of the
error required to destabilize the feedback system
should increase since the worst possible type of
errror has been ruled out and indeed this is" the
case. The elimination of this type of error can
only be done using engineering judgement about
what type of error can occur in the physical
system. The next theorem assumes that the worst
model error can be ruled out and extends Theorems
3,4,5,6 and 7, by allowing them to deal with
errors of larger magnitudes than previously
allowable.

Theorem 8: The polynominal EEL(S) has no
CRHP zeros and hence the perturbed feedback
system is stable if the following four conditions
hold:

1. (a) o¢or(s) and  bor(s) have  the
same number of CRHP zeros.

(b) 1if dop(jwp)=0, then dqr(iwg)=0
(c) ¢cp(s) has no CRHP zeros
2. h(G(s)) is of the form:

(a) h(G(s)) = I+G(s), A(L(s))g(~»,0] and
E(s) = [6-1(s)-G1(s)]G(s) or

E(s) = Efs)—c(s) for all sefig

or (b) h(G(s))=(I+G(s))(I-G(s))"1,
A(L(s))g(=2,~1]

and E(s) = [G(s)+G(s)]~! [G(s)-G(s)]
for all seQp .

orx

(c) h(G(s)) = +6T1(s)
and E(s) = 6~1(s)[G(s)-G(s)] or
E(s) = [ 1(s)-c"1(s)]
and A(L(s))g(-»,0] for
all sefp.
3. Opax[E(s)]<[0n(s)0n-1(s)]1/2
for all sefig where on(s) and
On-1(8) are the two smallest singular
values (assumed to be distinct) of h(G(s))

4. <up(s)vli(s),E(s)> = 0

for all seflg  where  uj(s) and  vp(s)
are the left and right singular vectors of
h(G(s)) associated with O,(s). [m]

Note that in Theorem 8, conditions 3 and 4 are
required to hold for all sefp even though
they need only be used in the frequency range
where the sufficient conditions (all given by
(5.1; of Theorems 3 and 7)are violated.

The significance of Theorem 8 is that by
requiring very little information (condition 4)
in addition to the magnitude of the model error,
the worst type of modelling error that could
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destabilize the feedback system (and whose
exclusion might be justified on physical grounds)
is effectively eliminated. Hence, the "size"” of
the error necessary to destabilize the system may
increase significantly if 0q..3(s)>>0,(s).

Thus, the conservatism of the Section IV theorems
for this class of modelling errors is reduced.
The essential structure of the next worst error
(i.e., next smallest error) that destabilizes the
system in this restricted class of modelling
errors 1s given by (from (3.25) with ¢=0
because <3n(s)xg(s),E(s)>=0)

E{s) = Vch(s)dn_l(s)-

H 36 .
.[}_Jﬁ(s)zﬂ_l(s)eJ (S)+En_1(5)!§(s)e 39(51.

(5.13)

where (a) ©(s) is real and arbitrary and (b)
the vectors Un-1(s),un(s), Vp-1(s) and
vnh(s) are the 1left and right singular vectors

of h(G(s)) corresponding to Op-1(s) and
On(s) respectively. The spectral norm of the
matrix E(s) in (5.13) is precisely

Vo ( .
Gn s)ch_l(s)

However, it must be pointed out, that it is
extremely unlikely that condition 4 of Theorem 8
will hold exactly for a realistic modelling error
since the model error in the particular direction
un(s)vp(s) will rarely be exactly zero. A
more likely expectation is that this component of
the error not be exactly zero but sufficiently
small in magnitude. By requiring only that the
model error in the direction En(s)gg(s) be
sufficiently small, Theorem 8 may be modified so
that the essential nature of its results are
still valid when the class of model errors
considered is characterized by

I<un(s)vi(s),E(8)>! <c(s) <op(s) = Opin(s)-
(5.14)

The positive scalar c(s) in (5.14) bounds the
magnitude of the worst modelling error as a
function ' of frequency to be less than
Opins), the minimum magnitude of the
smallest destabilizing error required to
destabilize the feedback system. Therefore, the
magnitude of the model error in the most
sensitive or worst direction Bn(s)g%(s) is
not large enough by itself to destabilize the
feedback system.

In order to destabilize the feedback system wheﬁ
the model errors satisfy (5.14), other model
error components, besides the model error

.component in the worst direction, must contribute

to the movement of the MIMO Nyquist diagram
through the critical point (0,0). This is stated
formally in the next theorem.
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Theorem 9: The polynominal ECL(S) has no
CRHP zeros and hence the perturbed feedback
system is stable if the following conditions hold:

1. conditions 1 and 2 of Theorem 8 hold

2. omaxlE(s)]<[0n(s)0n_l(s)+c(s)[On(s)—0n~l(s)]]l/Z
for all sefip

3. 1<up(s)vis) E(s)>1ce(s)<oq(s)
for all sefig. a

The essential structure of the next worst
perturbation that does not violate condition 3
but destabilizes the feedback system is given by
(from 3.25)

H . H,
E(s) = £C(s)gn_l(S)gn_l(s)-c\s)gn(s)gn«s)+

+ Y(s)gn_l(s)gg(s)+y*(s)gn(s)gi_l(S)]

(5.15)
where

1/2039(s)

"Y(s) = &cn(s)-c(s)][C(S)+0n—1(5)ﬂ (5.16)

with ¢(s) being arbitrary but real. Note that
as ¢—=0, in condition 3 and in (5.15) and (5.16)

that we recover the results of Theorem 8. To
make the meaning of the result of Theorem 9
clearer, the following example is given.

Example 1: Suppose that we wish to determine
stability robustness of a 2x2 control system
which actually has a loop transfer function
matrix E(s) but is represented by the nominal
diagonal loop transfer matrix G(s) given by

1

95, 0 S+7.5 °
G(s) = =
o ( 0 __..1‘_._.
9p2(8) s+0.5
(5.17)

so that the nominal closed-loop system has poles
at -8.5 and -1.5. If we use the relative error
criterion

£(s) = G 1(s) [G(s)=G(s)] =

}

gll(s)-gll(s) glz(s)

gll(s) gll(S)
521(5) 522(5)-922(5)
955 (8) EPPALY

then the mumltiplicative uncertainty factor matrix
L(s) is given by

Y N
g1 (s) 81, (s)
g,,(s) g,.(s)
L(s) = I+E(s) =| L1 11
N "
8, (s) 8,7 (s)
8,,(s) 8,5, ()
L -
(5.19)
First, we compute omin(I+G'l(jw)) to
determine the magnitude of the smallest

destabilizing model error E(s). This is simply
given by

Opin(I+6~1(jw)) = '1.5+jw = V(1.5)%w?> 1.5

(5.20)

because

-1 s+8.5 0
I+G " (s) =
(5.21)

.

[¢] s+1.5

Now suppose that the error in the loop gain of
each loop of the feedback system is known within.
+50% of the nominal loop gain, that is

glr(jm)
0.5 €| —=m = .
=l 53,, (W llll(Jm)li 1.5
(5.22)
and
g, (jw)
22
0.5 <] 2= _____ |= 5
_’ 3y, G [2,,Gw | < 1.5 .

(5.23)

Next, suppose that we are more uncertain about
the channel crossfeeds in the sense that we can
only assert that

g,, (3w
; - T I ¥
lep,Gw | = 2, G [= 7,00 !
(5.24)
and that
g, (3w)
. . | ca1
leyy G = [, G| = 5,00 <2
(5.25)

It follows from (5.22) and (5.23) that we can
bound |ej;(jw)] and |epa(jw) by 1/2 and
thus, by (5.24) and (5.25), we can only conclude
that .




HE(jm)Hz = Gmax[E(jw) ]S_Z-S
(5.26)

From (5.26) and (5.20) it is clearly possible to
have

OmaxlE (W) 1>0nin[ I+671(jw) ] -
(5.27)

Therefore, Theorem 4 does not apply. However, we
can use Theorem 9 to ensure the stability of the
perturbed feedback system. To see this, note
that the SVD of I+G~1(jw) is given by

36, (w)
e 1 0
146 5w = _
30 (w)
0 e 2
jw+g.s | o 1 0
0 ljwi.s||]o 1
= U(Gw) Z(Hw)V (jw)
(5.28)
where
91(w) = arg[jw+8.5] (5.29)
and
Op(w) = arg{jw+l.5] (5.30)

Note that condition 3 of Theorem 9 can be
satisfied with «c(jw)=1/2 since from (5.28)
defining uo (Jw) and vo (jw) and from
(5.23) bounding 255(jw) and thus

epo(jw)we have that for all w

. H, . . H,. . .
|<32(3w)12(3m) ,E(jm)>!=|gz(Jm)E(jw)g_z(jm) [=

(5.31)

le,, Gy |2 172 .
Thus, by (5.31) and (5.20) we have

O, (W2 1.5 > 1/2 > |<u, (Jw)v) (Ju) ,E (Gw)>| .

Next, we calculate the right-hand-side of
condition 2 of Theorem 9 and a lower bound as

follows

14

. . 0 l/'z
[Gl(Jw)Oz(jw)+c(jm)icz(jw)—dl(jw)l] =

[[jw+8.5|]jm+l.5] +
: 1
1/2[Ijm+1.s|-{jw+e.5{]] /2 >

@5 w.5+(Z)z 3 (5.33)

Therefore, using (5.26) we have that

Onax [E(GWIL 2.5 < 3 <

. . . . , 1/2
[cl(Jm)cz(ijc(Jw) [0’2 (Jw)—cl(jw)]] /

(5.34)

and so condition 2 of Theorem 9 holds. Assuming
condition 1 of Theorem 9 holds we have shown
that the perturbed feedback system is stable.
The next smallest destabilizing error can be
calculated from (5.15) and (5.16) with

1) =0 0 si -1
¢ (Jw) iulzd w=0 since Onin (IHG ~ (Gw)) >
cmin(I+G (0))=1.5 and is given by
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E(0) =
(5.35
3 -1/2 )

which means that L(s) may be taken as the
constant matrix L given by

L= (5.36)

Thus, we see that (refer to Figs. 9 and 10)
crossfeed gain errors of magnitude 5 and loop

gain changes of | +50% are

required to destabilize the’ feedba:k system if we

insist that (5.22) and (5.23) pust hold.

Remark: One possible exception, to the form of

E(s) given in (5.13) or (5.15) occurs when E(s)

is such that at least, one of the eigenvalues of
L(s) is real and negative. In Theorem 8 and 9,




condition 2 places restrictions on the
eigenvalues of L(s) which may be violated when at
least one of the eigenvalues of L(s) is real and
negative. 1In this case, Theorems 8 and 9 may not
apply and there may exist a smaller error that
destabilizes the feedback system  but yet
conditions 4 and 3, of Theorems 8 and 9
respectively, still hold. However, when the
matrices U(s) and V(s) of the SVD of h(G(s)) are
complex it is very unlikely that L(s) determined
by the E(s) given in (5.13) or (5.15) will even
have real eigenvalues.

We ¢an now consider placing additional
constraints on the modelling and further restrict
the class of allowable modelling errors in the

manner of Problem B in section III and derive the
next theorem.

Theorem 10: The polynominal EbL(s) has no

CRHP zeros and hence the perturbed feedback

system is stable if the following conditions hold:
1. Conditions 1 and 2 of Theorem 8 hold

2. E(s) is of the form

[
E ()| e,(s) ]
E(S) = U(S) - —: - - V(s) (5.37)
e 10
!
i

where eo(s) and e3(s) are vectors
whose last component is identically zero
and where U(s) and V(s) are defined in

(5.6).
3. Omax(E(s)) < "Ok(S)GQ(S)
where Gk(s)dg(s) =min 0, (s)0. (s) (5.38)
(i,3)gM
and M ={(n,n), (n-1,n), (n,n-1)} (5.39)

Theorem 10 allows us to determine the next larger
magnitude of the "next, next worst model error”
required to product instability when the smallest
destabilizing model error and next smallest
destabilizing model error comsidered in Theorem 8
and given by (5.13) are completely eliminated
from consideration. Theorem 10 eliminates these
types of errors by requiring zero model error
projections in the worst direction
un(s)vp(s) and the next worst pair of
directions gn(s)xg_l(s) and
En_l(s)xg(s). The process of eliminating
each successively worst direction”  could
obviously be continued and larger magnitudes of
these classes of errors would then be necessziy
to destabilize the feedback system.
VI. SUMMARY AND CONCLUSIONS

This paper has addressed the following problem.
Given a finite-dimensional, linear-time-invariant

feedback control system designed using an
inaccurate nominal model of the open-loop plant,
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how much and what kind of model error can the
feedback system tolerate without becoming
unstable? Thus, this paper deals primarily with
the evaluation of tlie robustness of stability of
a feedback control system. This robustness
evaluation is absolutely essential since all

models of physical processes are only
approximations to the actual relationship between
the system inputs and outputs. In the
single-input, single~output (SISO) case, this
evaluation is readily accomplished using
frequency domain plots, (e.g., using a Bode
diagram) to display the  behavior and

characteristics of the feedback system. However,
in the multiple-input, wmultiple-output (MIMO)
case, many generalizations of the SISO methods
have proven inadequate because they have not
dealt with the MIMO system as a whole but as a
sequence of SISO systems.

This paper has avoided this deficiency by
utilizing standard matrix theory concepts and
methods appropriate for dealing with the MIMO
case, namely the singular value decomposition
(SVD) and properties of special types of
matrices. These.were discussed in Section III,
where the main problem solved was the
determination of the nearest singular matrix, Z,
to a given nonsingular matrix, A, under certain
constraints on A-A. The solution to this problem
(given in Problems A and B)is fundamental to the
control .system robustness results of Section IV
and V.

The basic formulation of the control system
robustness problem was considered in Section II

via a multivariable version of Nyquist's stability
theorem. There, a fundamental robustness theorem
(Theorem 1 was presented that implicitly
characterized the class of perturbed models that
would not destabilize the control system, in
terms of the nonsingularity of the return
difference matrix. Various robustness tests
Theorems 3 and 7), wete then derived which can be
used to test the nonsingularity of the return
difference matrix for several types of model
error criteria.

Section V heavily wutilizes the results of
Section III in determining what types of model
error will destabilize a given feedback system.
Model errors that tend to destabilize the
feedback system are distinguished from those that
tend to stabilize the feedback system by
examining their structure as well as their
magnitude. The key results, contained in
Theorems 8, 9, and 10, show that the magnitude of
the model error necessary to destabilize the
feedback system may greatly increase if the class
of model errors that can plausibly occur does not
include model errors that are essentially alike
in structure to the model error of minimum size
that will destabilize the feedback system. This
provides an important partial characterization of
the model errors that are important in feedback
system design. However, the degree to which the
the partial characterization of the model error
demanded by this approach correlates with one's
understanding of modelling errors in the physical
system will undoubtably be the key factor in
making practical use of these results.
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Figure 1l: Control system under consideration.
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vectors aligned with minimum effort.

ulth—= "Sarem [y

System Ay

u(t) —
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Block Diagram
of Perturbed Svstem

Error Criterion
Perturbed Systems and
Stability Test

E(s)| E(s) = 3(s) - G(s)
+ .
> G(S) G(s) = G(s) + g(s
-+
J . (I+G(s)) > © (E(s))
mi max
Feedforward
(Addition)
~-1 -1
G(S) E(s) =G "(s) -G “(s)
E(s)] Es) = 6 Hs) + E(s))
5. (x+c te)) > o (E(s))
Feedback min max
{subtraction)
-1 -~
E(s) = G ~(s8){G(s)-G(s)]
E(s)
+ G(s) = G(s) (I+E(s))
G(s)l— .
+ g_. (I+G “(s)) > ¢___(E(s))
min max
(Multiplication)
et -1
E(s) = [G " (s)-G " (s)]G(s)
G(s)t—» . .
G(s) = G(s) (I+E(s))
E(S) s . (I+G(s)) > C (E(s))
min max
(Division)

Figure 5: Block diagrams of perturbed models
corresponding to various error criteria
and associated stability tests.
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Figure 6: Block diagram of G associated with
model error criteria of (4.14).
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Figure 7: Two different perturbed models with Figure 8: Illustration of worst type of error
the same relative error magnitude on in SISO case on a Nyquist diagram.
a SISO Nyquist diagram.
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Figure 9: Nominal feedback system (stable). Figure 10: Perturbed feedback system (unstable).




