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Abstract 

We can only estimate the distribution of stock returns but from option prices 

we observe the distribution of state prices.  State prices are the product of risk 

aversion – the pricing kernel – and the natural probability distribution.  The 

Recovery Theorem enables us to separate these so as to determine the market’s 

forecast of returns and the market’s risk aversion from state prices alone.  Among 

other things, this allows us to recover the pricing kernel, the market risk premium, 

the probability of a catastrophe, and to construct model free tests of the efficient 

market hypothesis. 
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Financial markets price securities with payoffs extending out in time, and the 

hope that they can be used to forecast the future has long fascinated both scholars 

and practitioners.  Nowhere is this more apparent than in the fixed income 

markets with its enormous literature devoted to examining the predictive content 

of forward rates.  But with the exception of foreign exchange and some futures 

markets, a similar line of research has not developed in other markets, and this 

absence is most notable in the equity markets. 

While we have a rich market in equity options and a well developed theory of 

how to use their prices to extract the martingale or risk neutral probabilities (see 

Cox and Ross (1976a, 1976b)), there has been a theoretical hurdle to using these 

probabilities to forecast the probability distribution of future returns, i.e. real or 

natural probabilities.  Risk neutral returns are natural returns that have been ‘risk 

adjusted’.  In the risk neutral measure, the expected return on all assets is the risk 

free rate because the return under the risk neutral measure is the return under the 

natural measure with the risk premium subtracted out.  The risk premium is a 

function both of risk and of the market’s risk aversion, and to use risk neutral 

prices to estimate natural probabilities we have to know the risk adjustment so we 

can add it back in.  In models with a representative agent this is equivalent to 

knowing both the agent’s risk aversion and the agent’s subjective probability 

distribution and neither is directly observable.  Instead, we infer them from fitting 

or ‘calibrating’ market models.  Unfortunately, efforts to empirically measure the 

aversion to risk have led to more controversy than consensus.  For example, 

measurements of the coefficient of aggregate risk aversion range from 2 or 3 to 

500 depending on the model and the macro data used.  Additionally, financial 



 3 

data are less helpful than we would like because we have a lengthy history in 

which U.S. stock returns seemed to have consistently outperformed fixed income 

returns – the equity premium puzzle (Prescott and Mehra [1985]) – and that has 

even given rise to some worrisome practical investment advice based on the view 

that stocks are uniformly superior to bonds.  These conundrums have led some to 

propose that finance has its equivalent to the dark matter cosmologists posit to 

explain the behavior of their models for the universe when observables seem 

insufficient.  The dark matter of finance is the very low probability of a 

catastrophic event and the impact that changes in that perceived probability can 

have on asset prices (see, e.g., Barro [2006] and Weitzmann [2007]).  Apparently, 

though, such events are not all that remote and ‘five sigma events’ seem to occur 

with a frequency that belies their supposed low probability.   

When we extract the risk neutral probabilities of such events from the prices 

of options on the S&P 500, we find the risk neutral probability of, for example, a 

25% drop in a month, to be higher than the probability calculated from historical 

stock returns.  But since the risk neutral probabilities are the natural probabilities 

adjusted for the risk premium, either the market forecasts a higher probability of a 

stock decline than has occurred historically or the market requires a very high risk 

premium to insure against a decline.  Without knowing which, it is impossible to 

separate the two out and infer the market’s forecast of the event probability. 

Finding the market’s forecast for returns is important for other reasons as 

well.  The natural expected return of a strategy depends on the risk premium for 

that strategy and, consequently, it has long been argued that any tests of efficient 

market hypotheses are simultaneously, tests of a particular asset pricing model 
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and of the efficient market hypothesis (Fama [1970]).  But, if we knew the kernel, 

we could estimate how variable the risk premium is (see Ross [2005]), and a 

bound on the variability of the kernel would limit how predictable a model for 

returns could be and still not violate efficient markets.  In other words, it would 

provide a model free test of the efficient markets hypothesis.  

A related issue is the inability to find the current market forecast of the 

expected return on equities.  Unable to obtain this directly from prices as we do 

with forward rates
1
, we are left to using historical returns and resorting to opinion 

polls of economists and investors - asking them to reveal their estimated risk 

premiums.  It certainly does not seem that we can derive the risk premium directly 

from option prices because by pricing one asset – the derivative – in terms of 

another, the underlying, the elusive risk premium does not appear in the resulting 

formula. 

But, in fact, all is not quite so hopeless.   While quite different, the results in 

this paper are in the spirit of Dybvig and Rogers [1997], who showed that if stock 

returns follow a recombining tree (or diffusion) then from observing an agent’s 

portfolio choice along a single path we can reconstruct the agent’s utility function.  

Borrowing their nomenclature, we will call these results recovery theorems as 

well.  Section I presents the basic analytic framework tying the state price density 

to the kernel and the natural density.  Section II derives the Recovery Theorem 

which allows us to estimate the natural probability of asset returns and the 

market’s risk aversion, the kernel, from the state price transition process alone.  

                                                           

1
 Although these too require a risk adjustment. 
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To allow us to do so, two important non parametric assumptions are introduced 

here.  Section III derives a second recovery theorem, the Multinomial Recovery 

Theorem, which offers an alternative route for recovering the natural distribution 

for binomial and multinomial processes.  Section IV examines the application of 

these results to some examples and highlights some important limitations of the 

approach.  Section V estimates the state price densities at different horizons from 

the S&P 500 option prices on a randomly chosen recent date, April 27, 2011, 

estimates the state price transition matrix, and applies the Recovery Theorem to 

derive the kernel and the natural probability distribution.  We compare the 

model’s estimate of the natural probability with the histogram of historical stock 

returns.  In particular, we shed some light on the dark matter of economics by 

highlighting the difference between the odds of a catastrophe as derived from 

observed state prices with that obtained from historical data.  The analysis of 

Section V is meant to be illustrative and is far from the much needed empirical 

analysis, but it provides the first use of the Recovery Theorem to estimate the 

natural density of stock returns.  Section VI outlines a model free test of efficient 

market hypotheses.  Section VII concludes and summarizes the paper, and points 

to some future research directions.    
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 I. The Basic Framework 

Consider a discrete time world with asset payoffs g(θ) at time T, contingent on 

the realization of a state of nature, θ ε Ω.  From the Fundamental Theorem of 

Asset Pricing (see Dybvig and Ross [1987, 2003]), no arbitrage (‘NA’) implies 

the existence of positive state space prices, i.e., Arrow Debreu contingent claims 

prices, p(θ) (or, in general spaces, a price distribution function, P(θ)), paying $1 in 

state θ and nothing in any other states.  If the market is complete, then these state 

prices are unique.  The current value,   , of an asset paying g(θ) in one period is 

given by  

    ∫ ( )  ( )                                                         ( ) 

Since the sum of the contingent claims prices is the current value of a dollar 

for sure in the future, letting r(  ) denote the riskless rate as a function of the 

current state,   , we can rewrite this in the familiar forms 

                            ∫ ( )  ( )                                                                                 ( ) 

                 (∫  ( ))∫ ( )
  ( )

∫  ( )
    (  ) ∫ ( )   ( )

    (  )   [ ( )]     [ ( ) ( )] 

where an asterisk denotes the expectation in the martingale measure and where 

the pricing kernel, i.e., the state price/probability, φ(θ), is the Radon Nikodym 

derivative of P(θ) with respect to the natural measure which we will denote as 

F(θ).  With continuous distributions, φ(θ) = p(θ)/f(θ) where f(θ) is the natural 



 7 

probability, i.e., the actual or relevant subjective probability distribution, and the 

risk neutral probabilities, are given by   ( )  
 ( )

∫ ( )  
   (  )  ( )   

Let    denote the current state and    a state one period forward.  We assume 

that this is a full description of the state of nature including the stock price itself 

and other information that is pertinent to the future evolution of the stock market 

index, thus the stock price can be written as S(  ).  From the forward equation for 

the martingale probabilities 

 (       )   ∫  (      ) (         )                                   ( )

 

 

where Q(       ) is the forward martingale probability transition function for 

going from state    to state    in T periods and where the integration is over the 

intermediate state   at time t.  Notice that the transition function depends on the 

time interval and is independent of calendar time.    

      This is a very general framework and allows for many interpretations.  For 

example, the state could be composed of parameters that describe the motion of 

the process, e.g., the volatility of returns, σ, as well as the current stock price, S, 

i.e.,   = (S,σ).  If the distribution of martingale returns is determined only by the 

volatility, then a transition could be written as a move from    = (S,σ) to    = 

( (   )   ) where R is the rate of return and 

 (       )   ((   ) ( (   )   )  )                                              ( ) 



 8 

     To simplify notation we will use state prices rather than the martingale 

probabilities so that we do not have to be continually correcting for the interest 

factor.  Defining the state prices as 

 (         )      (  )(   ) (         )                                     ( ) 

and, assuming a time homogeneous process where calendar time is irrelevant, for 

the transition from any time t to t+1, we have  

 (     )      (  ) (     )                                                        ( ) 

Letting f denote the natural (time homogeneous) transition density, the kernel 

in this framework is defined as the price per unit of probability in continuous state 

spaces, 

 (     )   
 (     )

 (     )
                                                            ( ) 

and an equivalent statement of no arbitrage is that a positive kernel exists.   

A canonical example of this framework is an intertemporal model with a 

representative agent with additively time separable preferences and a constant 

discount factor, δ.  We will use this example to motivate our results but it is not 

necessary for the analysis that follows.  Letting c( )denote consumption at time t 

as a function of the state, over any two periods the agent seeks  

   
{ (  ) { ( )}   }

{ ( (  ))    ∫ ( ( )) (    )  }                               ( ) 

s.t. 
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 (  )  ∫  ( ) (    )                                                         

The first order condition for the optimum allows us to interpret the kernel as  

 (     )   
 (     )

 (     )
  

   ( (  ))

  ( (  ))
                                              ( ) 

Equation (9) for the kernel is the equilibrium solution for an economy with 

complete markets in which, for example, consumption is exogenous and prices 

are defined by the first order condition for the optimum.  In a multiperiod model 

with complete markets and state independent, intertemporally additive separable 

utility, there is a unique representative agent utility function that satisfies the 

above optimum condition.  The kernel is the agent’s marginal rate of substitution 

as a function of aggregate consumption (see Dybvig and Ross [1987, 2003]).   

Notice, too, that in this example the pricing kernel depends only on the 

marginal rate of substitution between future and current consumption.  This path 

independence is a key element of the analysis in this paper, and the kernel is 

assumed to have the form of (9), i.e., it is a function of the ending state and 

depends on the beginning state only through dividing to normalize it. 

Definition 1   

A kernel is transition independent if there is a positive function of the states, 

h, and a positive constant δ such that for any transition from    to   , the kernel 

has the form, 
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 (     )    
 (  )

 (  )
                                                            (  ) 

  The intertemporally additive utility function is a common example that 

generates a transition independent kernel but there are many others.
2
   

Using transition independence we can rewrite (7) as  

 (     )    (     ) (     )      
 (  )

 ((  ))
 (     )                              (  ) 

where h( ) =   ( ( )) in the representative agent model.  Assuming that we 

observe the state price transition function, p(     ), our objective will be to solve 

this system to recover the three unknowns, the natural probability transition 

function, f(     ), the kernel, φ(     )= δh(  )/h(  ), and the discount rate, δ. 

Transition independence or some variant, is necessary to allow us to separately 

determine the kernel and the natural probability distribution from equation 7.  

With no restrictions on the kernel, φ(     ), or the natural distribution, f(     ), it 

would not be possible to identify them separately from knowledge of the product 

alone, p(     ).  Roughly speaking, there are more unknowns on the right hand 

side of (7) than equations.    

There is an extensive literature on a variety of approaches to this problem.  

For example, Jackwerth and Rubinstein [1996] and Jackwerth [2000] use implied 

binomial trees to represent the stochastic process.  Ait Sahalia and Lo [2000] 

                                                           

2
 For example, it is easy to show that Epstein-Zin recursive preferences (Epstein and Zin 

[1989]) also produce a transition independent kernel.     
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combine state prices derived from option prices with estimates of the natural 

distribution to determine the kernel.   Bliss and Panigirtzoglou [2004] assume  

constant relative or absolute risk aversion preferences and estimate the elasticity 

parameter by comparing the predictions of this form with historical data.  

Bollerslev and Tederov [2008] use high frequency data to estimate the premium 

for jump risk in a jump diffusion model and, implicitly, the kernel.  These 

approaches have a common element; they use the historical distribution of returns 

to estimate the unknown kernel and thereby link the historical estimate of the 

natural distribution to the risk neutral distribution and, or, they make parametric 

assumptions on the utility function of a representative agent (and often assume the 

distribution follows a diffusion). 

     In the next section we will take a different tack and show that the equilibrium 

system of equations, (11), can be solved without the need to use either historical 

data or any further assumptions than a transition independent kernel.  
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II. The Recovery Theorem 

To gain some insight into equation (11) and to position the apparatus for 

empirical work from now on we will specialize it to a discrete state space model, 

and, while it is not necessary, we will illustrate the analysis with the 

representative agent formulation, 

  
        

                                                                        (  ) 

where we can interpret 

  
    ( (  ))                                                                    (  ) 

But, more generally, U´ is any positive function of the state.  Writing this in terms 

of the kernel and denoting the current state    as state i = 1, 

     (     )   (  
    

 )                                                        (  ) 

We will define the states from the filtration of the stock value, so that the 

kernel is the projection of the kernel across the broader state space onto the more 

limited space defined by the filtration of the asset price.  Notice that while 

marginal utility is monotone declining in consumption it need not be monotone 

declining in the asset value, S(  ).    

Rewriting the state equations (11) in matrix form we have 

                                                                            (  ) 

where P is the mxm matrix of state contingent Arrow Debreu prices, pij, F is the 

mxm matrix of the natural probabilities, fij, and D is the diagonal matrix with the 
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undiscounted kernel, i.e., the marginal rates of substitution,    /δ,  on the 

diagonal, 

  (
 

  
 ) [

  
   

   
  

    
 

]    [

    
    
    

] (
 

 
)                             (  ) 

With a discrete or compact state space for prices we will have to make sure 

that the model does not permit arbitrage.  In a model with exogenous consumption 

the absence of arbitrage is a simple consequence of an equilibrium with positive 

state prices which assures that the carrying cost net of the dividend compensates 

for any position that attempts to profit from the rise out of the lowest asset value 

or the decline from the highest value. 

Continuing with the analysis, keep in mind that we observe the state prices, P, 

and our objective is to see what, if anything, we can infer about the natural 

measure, F, and the pricing kernel, i.e., the marginal rates of substitution.  Solving 

(15) for F as a function of P, 

  (
 

 
)                                                                   (  ) 

Clearly if we knew D, we would know F.  It appears that we only have m
2
 

equations in the m
2
 unknown probabilities, the m marginal utilities, and the 

discount rate, δ, and this appears to be the current state of thought on this matter.  

We know the risk neutral measure but without the marginal rates of substitution 

across the states, i.e., the risk adjustment, there appears to be no way to close the 

system and solve for the natural measure, F.  Fortunately, though, since F is a 

matrix whose rows are transition probabilities, it is a stochastic matrix, i.e., a 
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positive matrix whose rows sum to one, and there is an additional set of m 

constraints,  

                                                                           (  ) 

where e is the vector with 1 in all the entries. 

Using this condition we have 

   (
 

 
)                                                          (  ) 

or  

                                                                          (  ) 

where 

                                                                          (  ) 

This is a characteristic root problem and offers some hope that the solution set 

will be discrete and not an arbitrary cone.  With one further condition, the 

theorem below verifies that this is so and provides us with a powerful result.  

From NA, P is nonnegative and we will also assume that it is irreducible, i.e., all 

states are attainable from all other states in n steps.  For example, if P is positive 

then it is irreducible.  More generally, though, even if there is a zero in the ij entry 

then it could be possible to get to j in, say, two steps by going from i to k and then 
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from k to j or along a path with n steps.  A matrix P is irreducible if there is 

always some path such that any state j can be reached from any state i.
3
       

Theorem 1 – The Recovery Theorem 

If there is no arbitrage, if the pricing matrix is irreducible and if it is generated 

by a transition independent kernel, then there exists a unique (positive) solution to 

the problem of finding the natural probability transition matrix, F, the discount 

rate, δ, and the pricing kernel, φ.  In other words, for any given set of state prices 

there is a unique compatible natural measure and a unique pricing kernel.    

Proof: 

Existence can also be proven directly, but it follows immediately from the fact 

that P is assumed to be generated from F and D as shown above.  The problem of 

solving for F is equivalent to finding the characteristic roots (eigenvalues) and 

characteristic vectors (eigenvectors) of P since, if we know δ and z such that  

                                                                     (  ) 

then the kernel can be found from z = D
-1

e.   

From the Perron Frobenius Theorem (see Meyer [2000]) all nonnegative 

irreducible matrices have a unique positive characteristic vector, z, and an 

associated positive characteristic root, λ.  The characteristic root λ = δ is the 

                                                           

3
 Notice that since the martingale measure is absolutely continuous with respect to the natural 

measure, P is irreducible if F is irreducible. 
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subjective rate of time discount.  Letting z denote the unique positive 

characteristic vector with root λ, we can solve for the kernel as  

  ( (  ))

  ( (  ))
 (

 

 
)         

 

  
                                               (  ) 

To obtain the natural probability distribution, from our previous analysis,  

  (
 

 
)                                                                (  ) 

 and  

    (
 

 
)
  

  
 (

 

 
)
  

 

  
     (

 

 
)
  

  
                                        (  ) 

□ 

 Notice that if the kernel is not transition independent then we have no 

assurance that the probability transition matrix can be separated from the kernel as 

in the proof.  Notice, too, that there is no assurance that the kernel will be 

monotone in the ordering of the states by, for example, stock market values.  

Corollary 1 

The subjective discount rate, δ, is bounded above by the largest interest factor. 

Proof: 

From The Recovery Theorem the subjective rate of discount, δ, is the 

maximum characteristic root of the price transition matrix, P.  From the Perron 

Frobenius Theorem (see Meyer [2000]) this root is bounded above by the 
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maximum row sum of P.  Since the elements of P are the pure contingent claim 

state prices, the row sums of P are the interest factors and the maximum row sum 

is the maximum interest factor. 

□ 

 Now let’s turn to the case where the riskless rate is the same in all states. 

Theorem 2 

If the riskless rate is state independent then the unique natural density 

associated with a given set of risk neutral prices is the martingale density itself, 

i.e., pricing is risk neutral.   

Proof: 

In this case we have 

                                                                        (  ) 

where γ is the interest factor.  It follows that Q = (1/γ)P is the risk neutral 

probability matrix and, as such, e is its unique positive characteristic vector and 1 

is its characteristic root.  From Theorem 1   

                            (
 

 
)                                                               (  )  

□ 

Given the apparent ease of creating intertemporal models satisfying the usual 

assumptions without risk neutrality this result may seem strange, but it is a 

consequence of having a finite irreducible process for state transition.  When we 
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extend the recovery result to multinomial processes that are unbounded this is no 

longer the case. 

Before going on to implement these results, there is a simple extension of this 

approach that appears not to be well known, and is of interest in its own right. 

Theorem 3 

 The risk neutral density for consumption and the natural density for 

consumption have the single crossing property and the natural density 

stochastically dominates the risk neutral density.  Equivalently, in a one period 

world, the market natural density stochastically dominates the risk neutral density. 

Proof:  

 From 

 (     )   
 (     )

 (     )
  

   ( (  ))

  ( (  ))
                                              (  ) 

we know that φ is declining in c(  ).  Fixing   , since both densities integrate to 

one and since φ exceeds δ for c(  ) < c(  ), defining v by δU′(v) = U′(c(  )), it 

follows that p > f for c < v and p < f for c > v.  This is the single crossing property 

and verifies that f stochastically dominates p.  In a single period model, terminal 

wealth and consumption are the same.  

□ 

 



 19 

Corollary 2 

In a one period world the market displays a risk premium, i.e., the expected 

return on the asset is greater than the riskless rate. 

Proof: 

In a one period world consumption coincides with the value of the market.  

From stochastic dominance at any future date, T, the return in the risk neutral 

measure 

                                                                      (  ) 

where R is the natural return, Z is strictly nonnegative and ε is mean zero 

conditional on R - Z.  Taking expectations we have  

 [ ]     [ ]                                                         (  ) 

□ 

The Recovery Theorem embodies the central intuitions of recovery and is 

sufficiently powerful for the subsequent empirical analysis.  But, before leaving 

this section we should note that, while there are extensions to continuous state 

spaces, the Recovery Theorem as developed here relied heavily on the finiteness 

of the state space.  In the next section we will take a different tack and derive a 

recovery theorem when the state space is infinite and generated by a binomial or 

multinomial process and in Section IV we will examine a continuous state space 

example.    
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 III. A Binomial and Multinomial Recovery Theorem 

While the Recovery Theorem can be applied to a binomial or multinomial 

process, doing so requires a truncation of the state space.  To avoid this step and 

since such processes are so ubiquitous in finance (see Cox, Ross, and Rubinstein 

[1979]), it is useful to look at them separately.  Throughout this analysis the 

underlying metaphorical model is a tree of height H that grows exogenously and 

bears exogenous fruit, ‘dividends’, that are wholly consumed.  Tree growth is 

governed by a multinomial process and the state of the economy is <H,   >, i = 1, 

…, m.  The multinomial process is state dependent and the tree grows to   H with 

probability fij.  In every period the tree pays a consumption dividend kH where k 

is a constant.  Notice that the state only determines the growth rate and the current 

dividend depends only on the height of the tree, H, and not on the complete state, 

<H,   >.  The value of the tree – the market value of the economy’s assets – is 

given by S = S(H,   ).  Since tree height and, therefore, consumption follow a 

multinomial process, S also follows a multinomial, but, in general, jump sizes will 

change with the state.   

The marginal utility of consumption depends only on the dividend, and 

without loss of generality we set initial U′(kH) = 1.  The equilibrium equations are  

   ( )      (    )                                                 (  ) 

or, in terms of the undiscounted kernel        
  

                                                         ( )                                                                (  ) 
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In matrix notation, 

                                                                       (  ) 

  (
 

 
)                                                             (  ) 

and, since F is a stochastic matrix, 

   (
 

 
)                                                        (  ) 

or 

                                                                    (  ) 

Assuming P is of full rank, this solves for the undiscounted kernel, D, as 

(
 

 
)                                                                    (  ) 

and F is recovered as 

  (
 

 
)                                                               (  ) 

We can now proceed node by node and recover F and δD, but the analysis does 

not recover δ and φ separately.  By taking advantage of the recombining feature 

of the process, though, we can recover δ and φ separately.  For simplicity, 

consider a binomial process that jumps to a or b.  The binomial is recurrent, i.e., it 

eventually returns arbitrarily close to any starting position, which is equivalent to 

irreducibility in this setting.  For a binomial, the infinite matrix has only two 

nonzero elements in any row, and at a particular node we only see the marginal 
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price densities at that node.  To observe the transition matrix we want to return to 

that node from a different path.  For example, if the current stock price is S and 

there is no exact path that returns to S, then we can get arbitrarily close to S along 

a path where the number of up (a) steps, i, and the number of down ( ) steps,       

n – i, satisfy   

 

   
    

    

    
                                                    (  ) 

for large n. 

Sparing the obvious continuity analysis, we will simply assume that the 

binomial recurs in two steps, i.e., ab = 1.  At the return step from aH to H, then, 

since the current state is <     >, the price of receiving 1in one period is  

   (  )   (
  (  )

  (   )
)     (

 

  
)                             (  ) 

Since we have recovered δφa from equation 37, we can now solve separately 

for δ and φa and, more generally, for δ and φ.  The analysis is similar for the 

general multinomial case. 

To implement recovery, if the current state is a, say, we need to know pba(H) 

and pbb(H), and if there are no contingent forward markets that allow them to be 

observed directly, we can compute them from current prices.  The prices of going 

from the current state to a or b in three steps along the paths (a,b,a) and (a,b,b) 

when divided by the price of returning to the current state in two steps by the 

path(a,b) are pba(H) and pbb(H), respectively.  Alternatively, if we know the 

current price of returning to the current state in two steps, pa∙1, then 
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         ( )   (  )     ( )   (  )                               (  ) 

    [     (
 

  
) (     )    (     ) (

 

  
) (     )] 

    (     )(         )   , 

is an independent equation which completes the system and allows it to be solved 

for δ, F, and φ.   

     If the riskless rate is state independent, then P has identical row sums and if it 

is of full rank, then, as with the first Recovery Theorem, we must have risk 

neutrality.  To see this, let 

                                                                           (  ) 

Hence 

(
 

 
)           (

 

 
)                                                 (  ) 

all the marginal utilities are identical and the natural probabilities equal the 

martingale probabilities.   

If P is not of full rank, while there is a solution to 

   (
 

 
)                                                                 (  ) 

in general, there is a (nonlinear) subspace of potential solutions with dimension 

equal to the rank of P, and we cannot uniquely recover the kernel and the 

probability matrix.  As an example, consider a simple binomial process that jumps 
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to a with probability f.  In this case P has two identical rows and recombining 

gives us a total of three equations in the four unknowns, δ, f, φa and φb: 

                                                                           (  ) 

      (   )                                                         (  ) 

and 

         (   )                                                            (  ) 

which, with positivity, has a one dimensional set of solutions. 

In the special case where the interest rate is state independent, though, even if 

the matrix is of less than full rank risk neutrality is one of the potential solutions.  

We summarize these results in the following theorem. 

Theorem 4   The Multinomial Recovery Theorem 

Under the assumed conditions on the process and the kernel, the transition 

probability matrix and the subjective rate of discount of a binomial (multinomial) 

process can be recovered at each node from a full rank state price transition 

matrix alone.  If the transition matrix is of less than full rank, then we can restrict 

the potential solutions, but recovery is not unique.  If the state prices are 

independent of the state, then risk neutrality is always one possible solution. 

Proof: 

See the analysis above preceding the statement of the theorem.   

□ 
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In Section V we will use the Recovery Theorem but we could also have used 

the Multinomial Recovery Theorem.  Which approach is preferable will depend 

on the availability of contingent state prices and, ultimately, it is an empirical 

question.  Now we look at some special cases. 

A. Relative Risk Aversion 

An alternative approach to recovery is to assume a functional form for the 

kernel.  Suppose, for example, that the kernel is generated by a constant relative 

risk aversion utility function and that we specialize the model to a binomial with 

tree growth of a or b, a > b.  State prices are given by 

   ( )   (      )                                                (  ) 

Hence, after the current dividend, the value of stock (the tree) is  

 (    )      ( )[ (     )     ]     ( )[ (    )     ]     (  ) 

and 

 (   )      ( )[ (    )     ]     ( )[ (    )     ]     (  ) 

Assuming constant relative risk aversion,  

 (   )    (
 

 
)
  

                                                    (  ) 

this system is linear with the solution 

 (   )                                                                     (  ) 
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where 

(
  

  
)  

[
           (    ) 

   

  (    ) 
             ]

  

(
          (    )     

          (    )     )          (  ) 

Thus the stock value S follows a binomial process and at the next step takes 

on the values S(a,aH) or S(b,bH) depending on the current state and the transition, 

 (   )              (    )          (    )               (  ) 

and 

  (   )               (    )          (    )               (  ) 

Notice, that even if ab =  1, the binomial for S is not recombining.  If it starts at 

S(a,aH) and first goes up and then down it returns to S(b,abH) = S(b,H) ≠ S(a,H), 

but, if it goes down and then up, it does return to S(a,baH)= S(a,H). 

Without making use of recombination, the state price equations for this system 

are given by: 

                                                                     (  ) 

     (    ) 
                                                      (  ) 

     (    ) 
                                                      (  ) 

and 

        
                                                              (  ) 
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Assuming state independence, fb ≠ 1 – fa, these are four independent equations 

in the four unknowns           , and the solution is given by 

(
  
  

)  (
      

      
  )

  

(

   

   
  

   

   
  

)                                     (  ) 

  
    (

  
    

)    (
   

   
)

   (
 
 )

                                                (  ) 

and 

   
     

  
                                                          (  ) 

This example also further clarifies the importance of state dependence.  With 

state independence there are only two equilibrium state equations in the three 

unknowns, γ, f, and δ,  

  ( )                                                               (  ) 

and 

  ( )   (   )                                                (  ) 

Nor can this be augmented by recombining since, assuming     1, 

  (  )    (
 

   
)                                        (  ) 

which is identical to the first equation.  In other words, while the parametric 

assumption has reduced finding the two element kernel to recovering a single 
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parameter, γ, it has also eliminated one of the equations.  As we have shown, 

though, assuming meaningful state dependency once again allows full recovery.  

This approach also allows for recovery if the rate of consumption is state 

dependent.  Suppose, for example, that consumption is ka or kb in the respective 

states, a and b.  The equilibrium state equations are now 

                                                                      (  ) 

     (    )(
  

  
)                                                     (  ) 

     (    )(
  

  
)                                                     (  ) 

and 

        
                                                               (  ) 

These are four independent equations which can be solved for the four 

unknowns,              .     
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Section IV. An Example and Some Comments and Extensions 

Consider a model with a lognormally distributed payoff at time T and a 

representative agent with a constant relative risk aversion utility function, 

 (  )   
  

   

   
                                                                     (  ) 

The future stock payoff, the consumed ‘fruit’ dividend, is lognormal,  

     (    
 
  )    √                                                           (  ) 

where the parameters are as usual and z is a unit standard normal variable. 

The pricing kernel is given by 

    
      (  )

  ( )
     [

  

 
]
  

                                       (  ) 

where S is the current stock dividend that must be consumed at time 0.   

Given the natural measure and the kernel, state prices are given by 

  (    )     (
  

 
)   (    )       [

  

 
]
  

 (
     (  

 

 
  ) 

 √ 
)     (  )                       

where n(∙) is the normal density function, or, in terms of the logs of consumption, 

s ≡ ln(S) and sT ≡ ln(ST), 

  (    )           (    ) (
   (  

 

 
  ) 

 √ 
)                              (  )                       
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In this model we know both the natural measure and the state price density 

and our objective is to see how accurately we can recover the natural measure 

and, thus, the kernel from the state prices alone using the Recovery Theorem.  

Setting T = 1, Table I displays natural transition probability matrix, F, the pricing 

kernel and the matrix P of transition prices.  The units of relative stock movement, 

ST/S, are the grid of units of sigma from -5 to +5.  Sigma can be chosen as the 

standard deviation of the derived martingale measure from P, but alternatively we 

chose the current at the money implied volatility from option prices on the S&P 

500 index as of March 15, 2011.  [Insert Table I] 

With an assumed market return of 8%, a standard deviation of 20% we 

calculate the characteristic vector of P.  As anticipated, there is one positive 

vector and it exactly equals the pricing kernel shown in Table I and the 

characteristic root is e
-.02

 = .9802, as was assumed.  Solving for the natural 

transition matrix, F, we have exactly recovered the posited lognormal density. 

This static example fits the assumptions of the Recovery Theorem closely 

except for having a continuous distribution rather than a discrete one.  The 

closeness of the results with the actual distribution and kernel suggests that 

applying the theorem by truncating the tail outcomes is an appropriate approach in 

this case.  Notice that since we can take the truncated portions as the cumulative 

prices of being in those regions, there is no loss of accuracy in estimating 

cumulative tail probabilities.   

Finding this result in a continuous space example is important since the 

Recovery Theorem was proven on a discrete and, therefore, a bounded state 
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space.  To explore the impact of significantly loosening this assumption, we can 

extend the example to allow for consumption growth.   

Assuming that consumption follows a lognormal growth process, 

       
(    

 
  )    √                                            (  )  

state prices are given by 

  (    )           (    ) (
     (  

 

 
  ) 

 √ 
)                      (  )                 

Taking logs,  

     (   )

       (    )  (
 

    
) (     (  

 

 
  )  )

 

    √                                                                                                                    (  ) 

and, as (sT-s) varies, state prices depend on the quadratic form 

 (
 

    
) (    )  (  (

 

  
) (  

 

 
  )) (    )

 (   (
 

   
) (  

 

 
  )

 

    √     )                         (  )  

Since the prices follow a diffusion, even if we assume that we know σ it is not 

possible to extract the three parameters, μ, γ, and δ from the two relevant 

parameters of the quadratic,  
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   (
 

  
) (  

 

 
  )       (  (

 

   
) (  

 

 
  )

 

)                  (  )  

This indeterminacy first arose with the Black Scholes Merton option pricing 

formula and similar diffusion equations for derivative pricing in which, with risk 

neutral pricing, the risk free interest rate is substituted for the drift, μ, in the 

valuation formulas. 

 What happens, then, if we attempt a continuous space analogue to the 

Recovery Theorem?  The analogous space characteristic equation to be solved is:  

∫  (    ) (  )      ( ) 
 

 

                                       (  ) 

By construction 1/U´(x) and δ satisfy this equation, but they are not the 

unique solutions, and a little mathematics verifies that any exponential, e
αx

, also 

satisfies the characteristic equation with characteristic value   

 ( )        (    )((  
 

 
  )   

 
   (   )                          (81) 

Since α is arbitrary, this agrees with the earlier finding and the well established 

intuition that given risk neutral prices and even assuming that σ is observable – as 

it would be for a diffusion, we cannot determine the mean return, μ, of the 

underlying process.                                                                                       

 Why, then, did we have success in finding a solution in the original static 

version?
4
  One important difference between the two models arises when we 

                                                           

4
 From (74) it is easy to see that e

-γx
 is the unique characteristic solution.   
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discretize by truncation.  By truncating the process we are implicitly making the 

marginal utility the same in all the states beyond a threshold and that is a 

substitute for bounding the process and the state space.  A natural conjecture 

would be that if the generating kernel has a finite upper bound on marginal utility 

(and, perhaps, too, a nonzero lower bound as well), then the recovered solution 

will be unique.
5
  Whether or not the kernel is generated by a representative agent 

with bounded marginal utility cannot be resolved by theory alone, but in practice 

one natural approach would be to examine the stability of the solution with 

different extreme truncations  

 A more directly relevant comparison between the two models is that in the 

growth model the current state has no impact on the growth rate.  When combined 

with a constant relative risk aversion kernel, the result is that state prices depend 

only on the difference between the future state and the current state. This makes 

the growth model a close relative of the state independent binomial process 

examined in the previous section.  As was shown there, an alternative approach to 

aid recovery is to introduce some explicit state dependence.  For example, we 

could model the dependence of the distribution on a volatility process by taking 

advantage of the observed strong empirical inverse relation between changes in 

volatility and current returns.  This could once again allow us to apply the 

Recovery Theorem as we have done above.
6
 

                                                           

5
 The multiplicity of solutions in the continuous case was pointed out to me by Xavier Gabaix.  

In an unpublished manuscript Peter Carr and Jiming Yu [2012] have established recovery with a 

bounded diffusion.     

 
6
 An explicit example is available from the author upon request. 
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V. Applying the Recovery Theorem 

With the rich market for derivatives on the S&P 500 index and on futures on 

the index, we will assume that the market is effectively complete along 

dimensions related to the index, i.e., both value and the states of the return 

process.  The Recovery Theorem relies on knowledge of the martingale transition 

matrix and given the widespread interest in using the martingale measure for 

pricing derivative securities it is not surprising that there is an extensive literature 

on estimating the martingale measure (see, e.g., Rubinstein [1994], Rubinstein 

and Jackwerth [1996] and Jackwerth [1999], Derman and Kani [1994] and [1998], 

Dupire [1994], Ait-Sahalia and Lo [1998], Figlewski [2008]).  We will draw on 

only the most basic findings of this work.     

Figure 1 displays the surface of implied volatilities on S&P puts and calls, the 

'volatility surface', on March 20, 2011 drawn as a function of time to maturity, 

'tenor', and the strike. Option prices are typically quoted in terms of implied 

volatilities from the Black Scholes Merton formula, i.e., the volatilities that when 

put into the model give the market premium for the option. Note that doing so is 

not a statement of the validity of the Black-Scholes Merton model, rather it is 

simply a transformation of the market determined premiums into a convenient 

way to quote them.  The source of the data used in this paper is a bank over the 

counter bid/offer sheet.  While the data is in broad agreement with exchange 

traded options, we chose this source since the volume on the over the counter 
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market is multiples of that on the exchange even for at the money contracts.
7
    

[Insert Figure I] 

The surface displays a number of familiar features.  There is a ‘smile’ with out 

of the money and in the money options having the highest implied volatilities.  

The shape is actually a ‘smirk’ with more of a rise in implied volatility for out of 

the money puts (in the money calls).  One explanation for this is that there is an 

excess demand for out of the money puts to protect long equity positions relative 

to the expectations the market has about future volatilities.  Notice, too, that the 

surface has the most pronounced curvature for short dated options and that it rises 

and flattens out as the tenor increases.  A story supporting this is the demand for 

long dated calls by insurance companies that have sold variable annuities.  

Whatever the merit of these explanations, these are persistent features of the vol 

surface at least since the crash in 1987.   

Implied volatilities are a function of the risk neutral probabilities, the product 

of the natural probabilities and the pricing kernel (i.e., risk aversion and time 

discounting), and, as such, they embody all of the information needed to 

determine state prices.  Since all contracts can be formed as portfolios of options 

(Ross [1976]) it is well known that from the volatility surface and the formula for 

                                                           

7 Bank for International Settlements Quarterly Review, June 2012 Statistical Annex, pages 

A135 and A136.  While there is some lack of clarity as to the exact option terms, the notional on 

listed equity index options is given as $197.6 billion of notional, and that for OTC equity options 

is given as $4.244 billion. 
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the value of a call option we can derive the state price distribution, p(S,T) at any 

tenor T: 

 (   )   ∫ [   ]  (   )    ∫ [   ] (   )  
 

 

 

 

                     (  ) 

Where C(K,T) is the current price of a call option with a strike of K and a tenor of 

T.  Differentiating twice with respect to the strike we obtain the Breeden and 

Litzenberger [1978]) result that 

 (   )     (   )                                                          (  ) 

Numerically approximating this second derivative as a second difference 

along the surface at each tenor yields the distribution of state prices looking 

forward from the current state, with state defined by the return from holding the 

index until T.  Setting the grid size of index movements at 0.5%, the S&P 500 call 

options on April 27, 2011 produced the state prices reported in the top table of 

Table II.  The results are broadly sensible with the exception of the relatively high 

implied interest rates at longer maturities which we will address below.   

[Insert Table II] 

To apply the Recovery Theorem, though, we need the m x m state price 

transition matrix,  

  [ (   )]        (   )                                 

                                                            (  ) 
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Unfortunately, since a rich forward market for options does not exist, and we do 

not directly observe P, we will estimate it from the state price distributions at 

different tenors.    

Currently the system is in some particular state, c, and we observe the current 

prices of options across strikes and tenors.  As shown above in equation (83), 

from these option prices we can extract the state prices at each future date T, 

  ( )     (   )    (   )                                          (  )  

Let the stock price at time T,   , index the states and denote the current stock 

price, S0.  The row of the state price transition matrix, P, corresponding to the 

current state, c, is simply pc, i.e., the vector of one period ahead state prices with 

T = 1 in equation (85).  Since our intention is illustrative we have ignored the 

potential state dependence on past returns and on other variables such as implied 

volatility itself, and identified the states only by the price level.  For relatively 

short periods this may not be much different than if we also used returns, since the 

final price over, for example, a quarter, is a good surrogate for the price path – 

this is clearly a matter for further study.   

To solve for the remaining elements of P we apply the forward equation 

recursively to create the sequence of m-1 equations: 

                                                          (  ) 

where m is the number of states.  Each of the equations in (86) expresses that the 

current state price for a security paying off in state j at time T+1 is the state price 

for a payment at time T in some intermediate state k multiplied by the transition 
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price of going from state k to state j, p(k,j), and then added up over all the 

possible intermediate states, k.  Thus, by looking at only m time periods we have 

the m
2
 equations necessary to solve for the m

2
 unknown p(i,j) transition prices.  

This is a system of m
2
 individual equations in the m

2
 variables Pij and since 

we know the current prices, p
t
 it can be solved by recursion.  In an effort to 

minimize the errors in the estimation of P, it was required that the resulting state 

prices, the rows of P, be unimodal.   

The grid is chosen to be from -5 to + 5 standard deviations with a standard 

deviation of 9%/quarter.  This seemed a reasonable compromise between fineness 

and coverage in the tails.  The analysis above was then implemented numerically 

to derive the transition pricing matrix, P by varying the choice of P so as to 

minimize the sum of squared deviations between the resulting prices and the state 

price vectors of Table II.  The resulting forward transition price matrix, P, is 

shown in Table II under the table of the state prices, p
t
.    

The state prices in Table II should sum to the riskless interest factor.  The 

rates are relatively accurate out to about 1 but then rise from 1.85% at 1 year to 

7.93% at 3 years.  This is significantly higher than 3 year (swap) rates at the time 

and indicative of a bias in the computation of the state prices which impacts some 

subsequent results, as will be pointed out below.   This has nothing to do with the 

recovery theory per se, but, rather, is a consequence of the crudeness in the 

computation of state prices from option prices and speaks to the critical need to do 

a better job at this step.   
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The final step applies the Recovery Theorem to the transition pricing matrix, 

P, to recover the pricing kernel and the resulting natural probability (quarterly) 

transition matrix shown in Table III.  The kernel declines monotonically as the 

stock value rises, but this need not be the case.  The recovered characteristic root, 

δ, the social rate of discount in a representative agent model, is 1.0018. 

Alternatively, if we were to use monthly data instead of quarterly observations, 

the characteristic root is 0.9977, which is less than one – as it should be.  This 

serves as a warning about the delicate nature of the estimation procedure.   

 [Insert Table III] 

Table IV shows the recovered natural marginal distributions at the future 

dates, summary statistics for the recovered distributions and comparable summary 

statistics for the historical distribution estimated by a bootstrap of S&P 500 

returns from 60 years of data (1960 – 2010).  Table IV also displays the implied 

volatilities from the option prices on April 27, 2011.  The summary statistics 

display some significant differences between the recovered and the historical 

distributions.  For the recovered, which is a forward looking measure, the annual 

expected return at all horizons is approximately 6%/year as compared with 

10%/year for the historical measure.  The recovered standard deviation, on the 

other hand, is comparable at about 15%/ year – an unsurprising result given the 

greater accuracy inherent in implied volatilities and the fact that with diffusions 

they coincide – albeit with bias – more closely with realized volatilities than do 

expected and realized returns.  The upward biased estimates of the risk free 

interest rate beyond two years, are the source of the risk premium (and thus the 

Sharpe ratio) in Table IV declining and turning negative at 2.5 years. 
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 [Insert Table IV] 

Notice that the at the money implied volatilities are significantly higher than 

those derived from the recovered distribution.   This is a phenomena closely 

related to the observation that implied volatilities are generally significantly 

greater than realized volatility and it is not surprising that the volatilities from the 

recovered distribution have a similar relation to realized volatility.  This 

difference is consistent with the existence of a risk premium for bearing volatility 

risk, but of and by itself it is not dispositive.   

Table V compares the recovered natural density and distributions with 

those obtained from a bootstrap of historical data, and Figure 2 plots these 

densities.  Of particular interest is what they say about the long standing concern 

with tail events.  Rietz [1988] argued that a large but unobserved probability of a 

catastrophe – ‘tail risk’ - could explain the equity risk premium puzzle, i.e., the 

apparent dominance of stocks over bonds and related questions.  Barro [2006] lent 

support to this view by expanding the data set to include a wide collection of 

catastrophic market drops beyond what one would see with a single market and 

Weitzmann [2007] provided a deep theoretical argument in support of fat tails.  

More pithily, Merton Miller observed after the 1987 crash that 10 standard 

deviation events seemed to be happening every few years.  

Insert Table V]  

 As was suggested in the introduction, tail risk is the economists’ version 

of the cosmologists’ dark matter.  It is unseen and not directly observable but it 

exerts a force that can change over time and that can profoundly influence 



 41 

markets.  By separating the kernel from the forward looking probabilities 

embedded in option prices we can shed some light on the dark matter and estimate 

the market’s probability of a catastrophe.  As Figure 2 shows, the recovered 

density has a fatter left tail than the historical distribution. Table V puts the 

probability of a six month drop in excess of 32% at 0.0008 or 4 in 5,000 

bootstraps.  By contrast, the recovered density puts this probability at 1.2%.  

Similarly, the historical probability of a drop in excess of 26% in a six month 

period is 0.002 (10 times in 5,000 bootstraps) while the recovered market 

probability of 0.0223 is 10 times greater, at over 2%.   

 [Insert Figure 2]  

This is only a first pass at applying the Recovery Theorem, and it is intended 

to be indicative rather than conclusive.  There is an enormous amount of work to 

be done starting with doing a more careful job of estimating the state price density 

from option prices and then estimating the state price transition matrix from the 

state price density at different horizons and strikes.  There are also many 

improvements required to accurately recover the kernel and the natural measure 

implicit in the state prices.    

  



 42 

VI. Testing the Efficient Market Hypothesis 

It has long been thought that tests of efficient market hypotheses are 

necessarily joint tests of both market efficiency and a particular asset pricing 

model (see Fama [1970]).  Under the hypothesized conditions of the Recovery 

Theorem we can separate efficiency from a pricing model and to that extent we 

can derive model free tests of the efficient market hypothesis.  In Ross [2005] an 

approach to testing efficient market hypotheses was proposed that depended on 

finding an upper bound to the volatility of the pricing kernel; such a bound is a 

simple byproduct of recovery.     

Assume that μ is stochastic and depends on some unspecified or unobserved 

conditioning information set, I.  From the Hansen – Jagannathan bound [1991] we 

have a lower bound on the volatility of the pricing kernel 

 ( )   (    )
 

 
                                                          (  ) 

where μ is the absolute value of the excess return and σ is the standard deviation 

on any asset, which implies that σ(φ) is bounded from below by the largest 

observed discounted Sharpe ratio.  

Equivalently, this is also an upper bound on the Sharpe ratio for any 

investment. From the recovered marginal density function reported in Table V we 

can compute the variance of the kernel at, for example, one year out.  The 

computation is straightforward and the resulting variance is 

  ( )                                                              (  ) 
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  or an annual standard deviation of 

 ( )                                                              (  ) 

Which, ignoring the small interest factor, is the upper limit for the Sharpe ratio for 

any strategy to be consistent with efficient markets.  It is also a bound used in the 

literature on when a deal is ‘too good’ (see Cochrane [1999] and Bernardo and 

Ledoit [1999] for a discussion of good deals, and Ross [1976] for an early use of 

the bound for asset pricing).   

Alternatively (see Ross [2005]), we can decompose excess returns, xt, on an 

asset or portfolio strategy as 

     (  )                                                            (  ) 

where the mean depends on the particular information set, I, and where the 

residual term is uncorrelated with I, and  

  (  )    ( (  ))     (  )   [  (  )]     (  )                (  ) 

Rearranging yields an upper bound to the R
2
 of the regression,  

    
  ( (  ))

  (  )
   

 [  (  )]

  (  )
          ( )                           (  ) 

i.e., the R
2
 is bounded above by the volatility of the pricing kernel (see Ross 

[2005]).  Notice that the kernel can have arbitrarily high volatility by simply 

adding orthogonal noise to it, so the proper maximum to be used is the volatility 

of the projection of the kernel on the stock market, and, hence, these are tests on 

strategies that are based on stock returns and the filtration they generate.  A 
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potential advantage of the tests such as these is that they depend on the second 

moments, much like the volatility tests of efficiency, and, as such might be more 

robust than standard t-statistic tests on coefficient.    

Using our estimate of the variance of the pricing kernel we find that the 

maximum it can contribute to the R
2
 of an explanatory regression is about 10%.  

In other words, 10% of the annual variability of an asset return is the maximum 

amount that can be attributed to movements in the pricing kernel and 90% should 

be idiosyncratic in an efficient market.  Hence any test of an investment strategy 

that uses publicly available data, and has the ability to predict future returns with 

an R
2
 > 10% would be a violation of efficient markets independent of the specific 

asset pricing model being used, subject to the maintained assumptions of the 

Recovery Theorem. Of course, any such strategy must also overcome transactions 

costs to be an implementable violation, and a strategy that could not overcome 

those costs would be purely of academic interest.   
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VII. Summary and Conclusions 

No arbitrage implies the existence of positive Arrow Debreu state prices, a 

risk neutral measure under which the expected return on any asset is the risk free 

rate, and, equivalently, the existence of a strictly positive pricing kernel that can 

be used to price all assets by taking the expectation of their payoffs weighted by 

the kernel.  To this framework we have added some additional nonparametric 

conditions.  First, we made the common assumption that the underlying process is 

Markov in the state variables, and for implementation we discretized the state 

space.  Second, we assumed that the kernel was transition independent, i.e., it was 

a function of the final state and depended only on the current state as a 

normalization, as is the case for the marginal rate of substitution across time for 

an agent with an intertemporally additively separable utility function. 

In this setting we were able to prove the Recovery Theorem that allowed us to 

uniquely determine the kernel, the discount rate, future values of the kernel, and 

the underlying natural probability distribution of returns from the transition state 

prices alone.  There was no need to use either the historical distribution of returns 

or independent parametric assumptions on preferences to find the market’s 

subjective distribution of future returns.  Put another way, we have a setting in 

which even though risk neutral probabilities are the product of an unknown kernel 

(i.e., risk aversion) and natural probabilities, the two can be disentangled from 

each other. 

A novel element of the approach is that it focuses on the state transition matrix 

whose elements give the price of one dollar in a future state, conditional on any 
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other state.  This is a challenge for implementation when we do not observe the 

price of a dollar in a future state conditional on being in a different state from the 

current one, due to the absence of appropriate contingent forward markets.  An 

example illustrated how to find these transition prices from the state prices for 

different maturities derived from the market prices of simple options by using a 

version of the forward equation for Markov processes. The accuracy with which 

this can be done and the accuracy with which state prices can be estimated from 

option prices will eventually determine how useful the Recovery Theorem will be 

both empirically and practically.  In an example it was assumed that the state 

could be summarized by the current level of the index.  This is clearly not the 

case: for example, implied volatility is also a relevant state variable.  Extending 

the empirical analysis to include such variables will be important, along with 

gauging the extent to which this has significant impact.  Particularly for short 

horizons, this remains to be explored.   

Finding the limitations and appropriate extensions of the Recovery Theorem is 

a rich research agenda.  Several conjectured extensions to allow recovery in such 

cases include bounding the assumed kernel, bounding the underlying process, and 

incorporating various forms of state dependence in the process.  In general, we 

want to know what is necessary to apply the theorem or extensions to continuous 

or unbounded processes, and what sort of bounds on the underlying process and, 

or, bounds on the assumed kernel will allow recovery.  We also need to further 

explore the Multinomial Recovery Theorem and, perhaps, introduce some weak 

parametric assumptions into both recovery theorems.  While we have focused on 

the equity markets, bounds on the process are natural for interest rates and fixed 
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income markets, and this will be an important area to explore (see Carr and Yu 

(2012)). 

Once we have recovered the kernel (i.e., the market’s risk aversion) and the 

market’s subjective assessment of the distribution of returns, there are a host of 

applications. We can use the market’s future distribution of returns much as we 

use forward rates as forecasts of future spot rates, albeit without a theoretical bias.  

Institutional asset holders, such as pension funds, use historical estimates of the 

risk premium on the market as an input into asset allocation models.  The 

market’s current subjective forecast should be superior, and at the least will be of 

interest. Project valuation also uses historical estimates of the risk premium. Risk 

control models such as VAR typically use historical estimates to determine the 

risk of various books of business and this, too, would be enhanced by using the 

recovered distribution.  Moreover, with time series data we will be able to test 

these predictions against the realizations.   

These results can also be applied to a wide variety of markets such as fixed 

income, currency, and futures.  Indeed, beyond using forward rates, we make little 

use of interest rate options to estimate the future probability distribution of rates 

and applying recovery techniques to this market is a promising line of research.  

For the stock market, the kernel and the recovered distribution can be used to 

recover the distribution of returns for individual stocks, and to examine the host of 

market anomalies and potential violations of market efficiency.  The ability to 

better assess the market’s perspective of the likelihood of a catastrophic drop will 

have both practical and theoretical implications.  The kernel is important on its 

own since it measures the degree of risk aversion in the market, and just as the 
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market portfolio is a benchmark for performance measurement and portfolio 

selection, the pricing kernel serves as a benchmark for preferences.  Knowledge 

of both the kernel and the natural distribution would also shed light on the 

controversy of whether the market is too volatile to be consistent with rational 

pricing models (see, e.g., Leroy and Porter [1981], Shiller [1981]).           

In conclusion, contrary to finance folklore, under the appropriate assumptions 

it is possible to separate risk aversion from the natural distribution, and estimate 

each of them from market prices.  With a pun intended, we have only scratched 

the surface of discovering the forecasts imbedded in market prices both for the 

market itself and, more generally, for the economy as a whole. 
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Table I 

 

Fixed Lognormally Distributed Future Payoff and a Constant 

Relative Risk Aversion (γ = 3) Pricing Kernel 
 

The State Space Transition Matrix, P 

  Sigmas -5 -4 -3 -2 -1 0 1 2 3 4 5 

Sigmas ST \ S0     0.37 0.45 0.55 0.67 0.82 1 1.22 1.49 1.82 2.23 2.72 

-5 0.37 0.000 0.000 0.001 0.005 0.015 0.019 0.008 0.001 0.000 0.000 0.000 

-4 0.45 0.000 0.000 0.001 0.008 0.028 0.034 0.015 0.003 0.000 0.000 0.000 

-3 0.55 0.000 0.000 0.002 0.015 0.051 0.062 0.028 0.005 0.000 0.000 0.000 

-2 0.67 0.000 0.000 0.003 0.028 0.092 0.113 0.051 0.008 0.001 0.000 0.000 

-1 0.82 0.000 0.000 0.006 0.051 0.168 0.205 0.092 0.015 0.001 0.000 0.000 

0 1 0.000 0.000 0.010 0.092 0.306 0.374 0.168 0.028 0.002 0.000 0.000 

1 1.22 0.000 0.001 0.019 0.168 0.558 0.681 0.306 0.051 0.003 0.000 0.000 

2 1.49 0.000 0.001 0.034 0.306 1.016 1.241 0.558 0.092 0.006 0.000 0.000 

3 1.82 0.000 0.003 0.062 0.558 1.852 2.262 1.016 0.168 0.010 0.000 0.000 

4 2.23 0.000 0.005 0.113 1.016 3.374 4.121 1.852 0.306 0.019 0.000 0.000 

5 2.72 0.000 0.008 0.205 1.852 6.148 7.509 3.374 0.558 0.034 0.001 0.000 

Kernel, φ = 20.086 11.023 6.05 3.32 1.822 1 0.549 0.301 0.165 0.091 0.05 

  
  

         

The Natural Probability Transition Matrix, F 

  Sigmas -5 -4 -3 -2 -1 0 1 2 3 4 5 

Sigmas ST \ S0    0.37 0.45 0.55 0.67 0.82 1 1.22 1.49 1.82 2.23 2.72 

-5 0.37 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000 

-4 0.45 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000 

-3 0.55 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000 

-2 0.67 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000 

-1 0.82 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000 

0 1 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000 

1 1.22 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000 

2 1.49 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000 

3 1.82 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000 

4 2.23 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000 

5 2.72 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000 

 

The above matrices are derived from the one period model elaborated in Section IV.  The rows 

and columns in the matrices refer to ranges for the stock price state variable, e.g., 3 standard 

deviations from the current level is 1.82. The shaded row highlights the current state. 
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Figure 1 

 

The Implied Volatility Surface on March 20, 2011 
 

 

 

 
Figure 1 displays the surface of implied volatilities on puts and calls on the S&P500 index on 

March 20, 2011, drawn as a function of both time to maturity in years (‘tenor’) and the strike price 

divided by current price (‘moneyness’). Option prices are typically quoted in terms of implied 

volatilities from the Black-Scholes formula, and are displayed here on the vertical axis. The source 

of the data used in this paper is a bank over-the-counter bid/offer sheet. 
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Table II  

 
State Prices on April 27, 2011 

Return\Tenor 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 

-0.351 0.005 0.023 0.038 0.050 0.058 0.064 0.068 0.071 0.073 0.075 0.076 0.076 

-0.293 0.007 0.019 0.026 0.030 0.032 0.034 0.034 0.035 0.035 0.035 0.034 0.034 

-0.229 0.018 0.041 0.046 0.050 0.051 0.052 0.051 0.050 0.050 0.049 0.048 0.046 

-0.159 0.045 0.064 0.073 0.073 0.072 0.070 0.068 0.066 0.064 0.061 0.058 0.056 

-0.083 0.164 0.156 0.142 0.128 0.118 0.109 0.102 0.096 0.091 0.085 0.081 0.076 

0 0.478 0.302 0.234 0.198 0.173 0.155 0.141 0.129 0.120 0.111 0.103 0.096 

0.09 0.276 0.316 0.278 0.245 0.219 0.198 0.180 0.164 0.151 0.140 0.130 0.120 

0.189 0.007 0.070 0.129 0.155 0.166 0.167 0.164 0.158 0.152 0.145 0.137 0.130 

0.297 0.000 0.002 0.016 0.036 0.055 0.072 0.085 0.094 0.100 0.103 0.105 0.105 

0.414 0.000 0.000 0.001 0.004 0.009 0.017 0.026 0.036 0.045 0.053 0.061 0.067 

0.542 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003 

                          

Discount 

Factor 
.9988 .9929 .9820 .9688 .9542 .9380 .9204 .9012 .8806 .8586 .8355 .8112 

 
            

 
            

The State Price Transition Matrix, P 

Sigmas -5 -4 -3 -2 -1 0 1 2 3 4 5 

Sigmas S0 \ ST    0.368 0.449 0.549 0.67 0.819 1 1.221 1.492 1.822 2.226 2.718 

-5 0.368 0.671 0.241 0.053 0.005 0.001 0.001 0.001 0.001 0.001 0.000 0.000 

-4 0.449 0.280 0.396 0.245 0.054 0.004 0.000 0.000 0.000 0.000 0.000 0.000 

-3 0.549 0.049 0.224 0.394 0.248 0.056 0.004 0.000 0.000 0.000 0.000 0.000 

-2 0.67 0.006 0.044 0.218 0.390 0.250 0.057 0.003 0.000 0.000 0.000 0.000 

-1 0.819 0.006 0.007 0.041 0.211 0.385 0.249 0.054 0.002 0.000 0.000 0.000 

0 1 0.005 0.007 0.018 0.045 0.164 0.478 0.276 0.007 0.000 0.000 0.000 

1 1.221 0.001 0.001 0.001 0.004 0.040 0.204 0.382 0.251 0.058 0.005 0.000 

2 1.492 0.001 0.001 0.001 0.002 0.006 0.042 0.204 0.373 0.243 0.055 0.004 

3 1.822 0.002 0.001 0.001 0.002 0.003 0.006 0.041 0.195 0.361 0.232 0.057 

4 2.226 0.001 0.000 0.000 0.001 0.001 0.001 0.003 0.035 0.187 0.347 0.313 

5 2.718 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.181 0.875 

 
The first matrix above displays the Arrow-Debreu state prices for the current values of $1 in the 

relevant stock price return range given in the left hand column at the tenors given in the top row.  

These are derived by taking the numerical second derivative with respect to the strikes of traded 

call option prices from a bank offer sheet.  The row labeled discount factor sums each column of 

the first state price matrix to obtain the risk free discount factors.  The second matrix is the 

estimated table of contingent state prices that are consistent with the given Arrow-Debreu state 

prices.  These were derived by applying the forward equation to find the transition matrix that best 

fit the Arrow-Debreu state prices subject to the constraint that the resulting transition matrix have 

unimodal rows.  The two top rows and two leftmost columns express the state variable in terms of 

both standard deviations from the current level, and the stock price.    
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Table III 

 

The Recovered Pricing Kernel and the Natural Probability 

Transition Matrix 

 
The Natural Probability Transition Matrix, F 

  Sigmas -5 -4 -3 -2 -1 0 1 2 3 4 5 

Sigmas ST \ S0    -35% -29% -23% -16% -8% 0% 9% 19% 30% 41% 54% 

-5 -35% 0.670 0.253 0.061 0.006 0.002 0.001 0.002 0.001 0.002 0.002 0.000 

-4 -29% 0.266 0.395 0.267 0.066 0.005 0.000 0.001 0.000 0.000 0.000 0.000 

-3 -23% 0.043 0.205 0.393 0.278 0.073 0.007 0.000 0.000 0.000 0.000 0.000 

-2 -16% 0.004 0.035 0.193 0.390 0.290 0.081 0.006 0.000 0.000 0.000 0.000 

-1 -8% 0.004 0.005 0.031 0.181 0.385 0.309 0.080 0.005 0.000 0.000 0.000 

0 0% 0.003 0.004 0.011 0.031 0.132 0.477 0.333 0.010 0.000 0.000 0.000 

1 9% 0.000 0.000 0.000 0.002 0.027 0.169 0.381 0.314 0.095 0.011 0.000 

2 19% 0.000 0.000 0.000 0.001 0.003 0.028 0.163 0.373 0.318 0.102 0.013 

3 30% 0.000 0.000 0.000 0.001 0.001 0.003 0.025 0.148 0.361 0.330 0.130 

4 41% 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.019 0.131 0.347 0.501 

5 54% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.113 0.873 

             Kernel, φ    = 1.86 1.77 1.62 1.44 1.24 1 0.83 0.66 0.5 0.35 0.22 

 
Applying the Recovery Theorem to the data in Table II, the above matrix displays the resulting 

natural transition probabilities from the ranges for the stock price returns in the far left column to 

the identical ranges in the top rows.  The bottom row displays the recovered kernel for the given 

stock ranges in the top row.  
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Table IV: the Recovered and the Bootstrapped Natural Marginal Distributions 
The Recovered Marginal Distributions 

Return\Tenor 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 

-35% 0.003 0.012 0.020 0.026 0.030 0.032 0.034 0.036 0.037 0.038 0.038 0.039 

-29% 0.004 0.010 0.014 0.016 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 

-23% 0.011 0.025 0.028 0.030 0.030 0.030 0.030 0.029 0.029 0.028 0.028 0.027 

-16% 0.031 0.044 0.049 0.049 0.047 0.046 0.044 0.043 0.041 0.039 0.038 0.038 

-8% 0.132 0.124 0.111 0.099 0.090 0.083 0.077 0.072 0.068 0.065 0.062 0.059 

0% 0.477 0.299 0.228 0.190 0.165 0.146 0.132 0.121 0.112 0.104 0.098 0.092 

9% 0.333 0.377 0.327 0.285 0.252 0.225 0.203 0.185 0.171 0.159 0.148 0.140 

19% 0.010 0.105 0.190 0.226 0.239 0.238 0.232 0.224 0.215 0.206 0.197 0.189 

30% 0.000 0.005 0.031 0.068 0.104 0.134 0.157 0.173 0.184 0.192 0.197 0.200 

41% 0.000 0.000 0.002 0.010 0.025 0.045 0.070 0.094 0.118 0.141 0.163 0.182 

54% 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.005 0.007 0.009 0.012 0.015 

Recovered Summary Statistics (annualized) 

 Tenor 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 

Mean 0.051 0.055 0.06 0.062 0.063 0.063 0.063 0.062 0.061 0.06 0.058 0.057 

Sigma 0.117 0.14 0.147 0.15 0.152 0.153 0.154 0.154 0.153 0.152 0.151 0.149 

risk free 0.005 0.002 0.01 0.018 0.026 0.034 0.041 0.048 0.054 0.061 0.068 0.074 

E – r 0.047 0.053 0.05 0.043 0.036 0.03 0.022 0.015 0.007 -0.001 -0.009 -0.017 

Sharpe 0.399 0.376 0.34 0.287 0.239 0.193 0.146 0.096 0.044 -0.008 -0.061 -0.115 

ATM volatility 0.145 0.167 0.177 0.182 0.185 0.188 0.191 0.193 0.196 0.198 0.201 0.203 

 

Historical Summary Statistics (Monthly S&P 500 returns from 1960 - 2010 (annualized)) 
Mean       0.103 

Sigma 
   

0.155 

risk free 
   

0.055 

E – r 
   

0.049 

Sharpe       0.316 

Each column of the first matrix represents a time horizon (years) and the entries in that column are the probabilities of the respective future S&P 500 ranges, the row values of the first 

column, derived by adjusting the state prices of Table II by the derived kernel.  The second matrix computes the associated summary statistics for the recovered marginal distribution of each 

time horizon.  The third matrix displays the comparable summary statistics derived from monthly S&P 500 returns over the 50 year period from 1960 to 2010
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Table V 

 

The Densities and the Cumulative Distributions for the Recovered 

and the Bootstrapped Natural Probabilities 

(Six month horizon, bootstrap using data from 1/1/1960 – 

11/30/2010) 

 
 

  Densities: Distribution Functions: 

Range Bootstrapped Recovered Bootstrapped Recovered 

-32% 0.0008 0.0120 0.0008 0.0120 

-26% 0.0012 0.0103 0.0020 0.0223 

-19% 0.0102 0.0250 0.0122 0.0473 

-12% 0.0448 0.0438 0.0570 0.0912 

-4% 0.1294 0.1242 0.1864 0.2153 

0% 0.2834 0.2986 0.4698 0.5139 

4% 0.3264 0.3765 0.7962 0.8904 

14% 0.1616 0.1047 0.9578 0.9951 

24% 0.0384 0.0047 0.9962 0.9998 

35% 0.0036 0.0002 0.9998 1.0000 

48% 0.0002 0.0000 1.0000 1.0000 

 
The rows of the above table correspond to ranges for the S&P 500 index for six months from the 

date April 27, 2011.  The first and third columns are from the historical distribution obtained by 

bootstrapping independent monthly return observations from the period 1960 through 2010.  The 

second and fourth columns display the comparable distribution results from the recovered 

distribution of Table IV. 
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Figure 2 

 

The Recovered and the Bootstrapped Natural Densities 
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