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Abstract

Magnetic bearings have the desirable property that they allow frictionless relative
motion between surfaces, which is greatly beneficial where precision motion control
is required such as in photolithography stages. The test bed used in this thesis was
built as a scaled-down version of a photolithography stage, but it is equally applicable
as a test-bed for a wide variety of mechanical systems where positioning of a target
is required. The system exhibits behaviours which can be found in any mechani-
cal system namely resonances, cross-coupling between axes, actuator saturation and
time delays, so the control strategies and limitations presented in this thesis can be
extrapolated and used for other systems.

After using bond graphs and electromagnetic theory to model the system, var-
jous controllers are designed to close the loop on the position of the target. The
electromagnetic actuators used introduce non-linearities in the system, while a linear
capacitance probe is used as the sensor for the position of the target. At first a clas-
sical linear controller is used on the system and its limitations are discussed. Next a
feedback linearizing controller is used to cancel the system nonlinearities to achieve,
at least in theory, a linear system independent of the operating point. The third
approach used is sliding control which both takes intc account the non-linear nature
of the system and by construction makes the system robust to parameter variation.

In the last two chapters we investigate, through simulations, two possible con-
trol strategies for meeting performance specifications on the stepping motion of a
photolithography stage subject to ground vibrations, sensor quantization, actuator
saturation and Coulomb friction. The first controller is designed using classical con-
trol theory after the plant has been decoupled. In the second part, optimal control is
used to close the loop but since not all states are available for measurement a Kalman
Filter is designed to obtain the state estimates.

Thesis Supervisor: David L. Trumper
Title: Rockwell International Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

Magnetic bearings are bearings whose suspension forces are generated magnetically
without contact between surfaces. The name “magnetic bearing” will appear often
throughout this thesis so it is important to distinguish it from “magnetic suspension”
and “magnetic levitation” which although closely related have a somewhat narrower
meaning. By definition both suspension and levitation must exert forces on the target
in a direction opposite that of gravity, but while magnetic suspensions use repulsive
forces, magnetic levitation uses attractive forces. Magnetic bearings, on the other
hand, do not have a specified direction in which the magnetic force must act. Thus
if the application requires the bearing to exert a vertical force to allow horizontal
movement then it overlaps with the definition of magnetic suspension/levitation. But
the direction of actuation can also be horizontal as is the case of the test bed used in
this thesis, or it can be radial as in gyroscopes and bearings for rotating machinery.

Since their introduction in the 1930’s magnetic bearings have been used in a wide
variety of applications such as robotics, interferometry, photolithography, spacecraft
attitude control, disk drives, power generators, and many more. Over the past three
decades there has been a growing interest in magnetic levitation/suspension of trans-
portation vehicles and together with bearings for rotating machinery these two ap-
plications are the most common use of magnetic bearings. Because they feature
no physical contact between surfaces they are virtually frictionless and induce little

heating. They do not wear or fail from metal fatigue and produce no audible vi-
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bration noise. Likewise they do not require extensive lubrication systems, another
source of mechanical bearing failure and machinery cost. Particulate contamination
is avoided because normal working conditions typically use air gaps which are greater
than 50 um and minor precautions should be taken when the bearing will be made
to operate at air gaps of the order of micrometers. The interest in this field has also
been stirred up by advances in materials and electronics which have enabled designers
to increase the force density of the actuators which has led to simpler, smaller, actua-
tors. Most important is the fact that magnetic bearings can function both as precision
actuators and as bearings; i.e., in additior: to allowing frictionless relative movement
they can also be modulated to exert activation forces on the target. Their properties
can be changed online and this renders then particularly useful in vibration isolation
[30, 6, 23]. The precision of magnetic bearings is limited only by sensor quantization
and external noise, although if the actuators are driven to saturation precise control
may become hard to achieve. The actuation bandwidth is usually limited only by the
servo-control bandwidth.

In this thesis we focus in particular on the application of magnetic bearings to
wafer steppers in photolithography. The test bed used was built as a scaled-down
version of a photolithography stage however the control strategies derived, and the
approaches adopted to deal with resonances, friction and so on, are quite general
and can be extrapolated and used for other systems where accurate positioning of
a target is required. The difficulties of achieving a stable system are highlighted by
an examination of the inverse square law relating force to distance. Earnshaw [27],
in his classic paper, shows mathematically that there is no stable equilibrium point
for a pole placed in a static magnetic field, hence the need for feedback in order to
stabilize the system.

The advent of quick, inexpensive, powerful computers and dedicated DSP chips
has shifted automatic control from continuous-time implementations to digital im-
plementations. The advantages offered by the latter are numerous, but the most
important is probably the ease of altering the controller. Most control applications

today use programmable computers and/or programmable logic chips to run the con-
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trol algorithm. When the need arises for the controller to be altered one needs only
to type in new parameters in the Graphical User Interface or maybe enter these new
parameters in the control code, rather than having to re-wire the controller as might
be required if the controller were made of op-amps and RLC elements. This allows
for faster prototyping and experimentation. But use of digital computers has also
greatly simplified operations that used to be hard to perform with continuous time
controllers, and has made possible the implementation of control strategies which
until then were considered to be purely of academic interest.

Control of magnetic bearings has heen investigated quite extensively as indicated
by the amount of literature on the subject. A lot of it presents continuous time
controllers, but more and more is appearing in scientific journals detailing digital
control approaches. The remainder of this section will give a brief overview of some
of the recent applications and techniques used in magnetic bearings, which will help
put the work done in this thesis inta context.

A good place to start looking far information an magnetic bearings is the paper by
Goodall [26]. Although this paper is directed towards Maglev, the analysis is strongly
based upon a consideration of the suspension transfer functions and so many of the
principles are applicable to actively controlled suspensions and bearings in general.
In this regard we also mention the book by Jayawant [3] which, as well as providing
a good historical introduction to magnetic suspensions/bearings, also details a wide
variety of techniques for control. An interesting approach which is sometimes used for
Maglev vehicles, and that we considered as a possible control strategy for our magnetic
bearing, is flux feedback [25, 3]. The idea behind this technique is that by closing
an inner loop on the flux density within the air gap the force-distance characteristics
will be very nearly linear and independent of the operating point. This approach,
however, was abandoned because deemed impractical for our setup.

The literature presents control techniques for suspensions having permanent mag-
nets providing the bias force to balance out gravity at the nominal operating point.
A lot of research has gone into this direction and many industrial applications of

electromagnets do have a permanent magnet in the flux loop. The advantages with
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this hybrid design is that the control currents (incremental currents) nceded can be
orders of magnitude less than the primary magnetic field and control currents in an all-
electromagnetic setup. With the power consumption reduced by as much as 50 - 100
times, hybrid systems can be made much smaller and cost less to operate. The advent
of high energy rare earth permanent-magnet materials (typically neodymium boron
iron or samarium cobolt, depending on the operating temperatures) greatly increased
the attractiveness of hybrid electromagnetic systems. Adding a bias force which is
much greater than the incremental changes thereof, and allowing only incremental
displacements from a nominal operating point, linearizes the system about that op-
erating point and makes control more amenable using linear control theory. This is
the most widely used compensation technique for magnetic suspension/bearings.

A very important industrial application in which electromagnets are called upon to
increase the efficiency of the process, is in rotating machinery. As a way to eliminate
friction in the rotor shaft radial bearings are being designed and integrated into
the machines which allows for more benefits than backfitting these bearings into an
existing piece of equipment. However, at rotational frequencies close to resonant
frequencies of the shaft and/or structure, or under large loads, radial bearings run
into stabilization problems because the flexibility of the shaft introduces self-excited
vibrations. Finite Element Analysis, luniped parameter models, modal analysis and
model reduction techniques have all been used to characterize these resonant states
and radial magnetic bearing are being used both as bearings and as actuators to
damp out these vibrations [9, 18, 16, 4].

The last application we will mention is the use of electromagnetic actuators as
thrust bearings. Used in pairwise opposition where the target is typically a thrust
disk, or runner on a shaft, they serve to prevent axial movement particularly of
rotors used in turbomachinery [24]. It is this application which most resembles the
setup used in this thesis, however while thrust bearings serve mostly to perform as
regulators, the actuators iu this thesis will be used to impart desired trajectories on

the target.
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1,1 Thesis Overview

We will begin chapter two by describing the hardware used and the software developed
as part of the thesis. We will proceed to characterize the system by both estimating
and then determining experimentally, flexure stiffness, actuator constants as well as
in-plane and out-of-plane resonant frequencies. From the model of the electromagnets
derived herein we will proceed to derive the state equations for the bearing which we
use in subsequent chapters for controller design.

Before implementing nonlinear cantrollers, chapter three is devoted to testing the
performance of linear controllers when used aon the plant. Here we linearize the dy-
namics about an operating point and stabilize the system with a lead-lag compensator.
Using a dynamic analyzer we are ahle ta measure the loop transmission experimen-
tally and verify our plant model. Several linear compensators are derived, some in
discrete-time and others are mapped from continuous-time. The compensators are
applied to the system and the responses compared to the simulated behaviour. We
end the chapter by looking at limitations of these linear actuators and we show ex-
perimentally the effect of unmodeled mass and operating point variations.

In chapter four we present feedback linearization as a way to deal with the nonlin-
earities of the system. We derive the set of linearizing transformations and apply one
of the controllers used in chapter three. We vary the operating point and introduce
unmodeled mass variations to see the effects of these.

The control strategies presented thus far all suffer from lack of robustness to
parametric uncertainties/variations. To overcome this, in chapter five we introduce
sliding control which is a robust control technique. Experimentally we verify the
closed loop system'’s robustness to parametric uncertainties.

The last two chapters are dedicated te designing controllers for a single degree
of freedom wafer stepper. The stage is subject to performance specifications on the
stepping motion and the control strategies must deal with ground vibrations, sen-
sor quantization, actuator saturation and Coulomb friction. The first controller is

designed using classical control theory after the plant has been decoupled. In the
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second part, optimal control is used to close the loop but since not all states are

available for measurement a Kalman Filter is designed to obtain the state estimates.
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Chapter 2

Experimental hardware and

modeling

This chapter introduces the experimental setup which is used for this thesis, and also
illustrates the modeling procedure used to obtain a plant model useful for control

design.

2.1 General overview of the system

Figure 2-1 shows a picture of the hardware setup with various components pointed
out. The setup was originally built by a previous student, Sean Olson [28], for his
Master thesis but the control electronics has greatly changed since then. The system

is composed of the following parts :
1. Two electromagnetic actuators
2. Cantilevered arm with target on the end
3. Flexures
4. Capacitance gage including signal conditioning electronics

5. 16-bit A/D (with a 10 us conversion time)
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Figure 2-1: Photograph of the experimental setup.

6. 12-bit D/A converter (with a 15 us average settling time)
7. Amplifier
8. Tiger 31/IP DSP board
9. Gateway 2000 P166 computer
10. HP signal generator

The rest of this chapter details each of these components and shows how they fit
together. We also focus on the modeling of the system and analyze important system
characteristics such as resonances, actuator constants and open loop instability.

To better understand, and expand upon, Figure 2-1 we show a diagram of the
closed loop system in Figure 2-2. We note that the loop is closed by the capacitance

gage from which we feedback position of the target.
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Amplifier Capacitance
Flexures : Gage
i Target
Actuator 2

Amplifier

Figure 2-2: Diagram of the closed loop system.

The position signal is then sampled through the A/D and processed in the DSP
before being output through the D/A. The effort signal is then amplified by the
current amplifier which controls the current into the electromagnetic actuators. The
plant has one output and we can command two plant inputs, namely the current to
each actuator, thus the system is MISQ. In the next two chapters we will present. two

ways to reduce the system to a SISO system.
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2.2 Tiger 31/IP, computer and converters

A Gateway2000 Pentium 166 is used primarily for data storage and for a graphical user
interface (GUI). All the control code and the sampling processes are executed on the
DSP board which resides in the computer. The DSP board used is the Tiger 31/IP,
designed by DSP Research Inc.! and based on the Texas Instrument TMS320C31
DSP chip. The Tiger 31 is a fully integrated 32-bit floating point DSP running at 48
MHz clock speed specifically designed for mathematical operations. A very attractive
feature of this board which has contributed to our decision to adopt it for this project,
is its modularity via the IP standard: there are four slots on the board itself into
which it is possible to plug a wide variety of actuators, sensors and other devices.
The IP-HiRes 16-bit A/D made by Wavetron? and the IP-DAC D/A by GreenSpring
Computers?® occupy two of these slots. Communication from the board to the plug-in
modules occurs through an internal bus and therefore sampling and calculations are
completely invisible to the computer. In addition, the DSP board has 512K of Static
Random Access Memory (SRAM) and 4 Mb of Enhanced Dynamic Random Access
Memory (EDRAM) which can be used for data storage while the system is running,
and then the data can be dumped to the host computer and saved to disk. Using
the EDRAM requires having to refresh the data stored in it at least every 64 ms.

Altogether, the strengths of this DSP board can be summarized as follows :
e Powerful mathematical and 1/O capabilities
e Independence from host computer
e IP plug-in hardware
e Optimizing compiler specific for the C31 chip

e Ease of operation

'DSP Research, Inc. 1095 East Duane Avenue, Suite 203 Sunnyvale, CA 94086
ZWavetron products are available through GreenSpring Computers.
3GreenSpring Computers, 1204 O’Brien Drive, Menlo Park, CA 94025.
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With its on-board RAM and ROM the board could also be made to opcrate in
stand-alone configuration if we provided a 12 V power supply. In this case we could
run the control algorithm from the Boot ROM; but this approach was not taken as
it does not allow for user interaction and easy change of controller parameters. In
our setup the board sits inside the host computer from which it draws power and
exchanges data. This arrangement requires two software programs to be written: one
to run on the host and the other ta run of the DSP. From now on, when it will be
necessary to distinguish between the code running on the host and that running on
the DSP we shall use the terms “host code” and “DSP code” respectively.

When the system is initialized, the first task of the host code is to initialize the
hoard after which it downloads the cantrol cade to it. From then un the host code
will act as the GUI from which the user can change the operation of the controller
and save the data. Communication between the board and the computer occurs
through a memory region called the Dual Port RAM (DPRAM). This memory region
can be accessed simultaneously both by the computer and by the board, and is used
primarily for data transfer.

A noticeable feature of this setup is that the control is entirely operating system
independent. The control code is on the DSP and all transactions, with the exception
of the data update on the screen, are initiated by the user through the GUI and
therefore it is the computer which asserts the interrupts to the board when a transfer
is needed and not the other way around. The update of the screen interface occurs
at a rate of 10 Hz and is not interrupt-dependent. It simply occurs by having the
interrupt service routine (ISR) on the DSP write the current data to the DPRAM
every 0.1 seconds and using a timer in the host to read the DPRAM every 0.1 seconds
or as soon after that as possible. We note that the data transfer could have been done
by having the DSP write the data and assert a flag every 0.1 seconds while the host
continuously monitored the flag and read the data when the flag went high. Either
way, the scrrcn update is non-real time but we are doing real-time control with the

DSP board.
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The host is running under Windows NT and this slows data display somewhat
because Windows NT does not allow the user to access the hardware directly, therefore
an extra layer of software had to be included. It was necessary to add the DriverX
device-driver developed by Tetradyne Inc. which enabled communication with the
ports. The overall low chart of the closed loop system for the process is shown in

Figure 2-3.

2.3 Flexures

As part of the system characterization we briefly look at the flexures used to restrict
the motion of the vibration shaft to one degree of freedom. A drawing of the flexure
used is shown in Figure 2-4.

As the following section will detail, the system exhibits an open-loop resonance
at 8 Hz. Since our aim is to achieve a closed loop bandwidth of the order of 100-150
Hz, the system is modeled as a free mass since at these frequencies the effect of the
flexures and damping is almos! negligible. However, to characterize the system, it is
necessary to evaluate the spring constant of the flexures. For a theoretical estimate
of this parameter refer to [15] which gives a simplified way of calculating the stiffness.
For the single-degree-of-freedom flexure used in the project, the equations for the

vertical and rotational spring constants are

3
a, 9rR2
~

@ ITR? 2.1
F, 2Ebt: 1)

Ay 9r (R\?

S (). 2.2

F, ~ 2Eb (t ) (22)

where F is the Young’s Modulus of the material and the dimensions R, t and b are
shown in Figure 2-4. The flexures constrain the arm to rotational motion about the
flexure midpoint, however the length from the flexures to the end of the arm is 0.3 m

while the chosen allowed motion of the arm on either side of the equilibrium position

1Tetradyne Software Inc. 2542 S. Bascom Ave, Suite 206 Campbell, CA 95008
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Figure 2-3: The flowchart for the operations performed in the closed-loop digital
system.
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h=1.051

Figure 2-4: Drawing of one of the two flexures used to constrain the motion of the
arm to one plane.

is £254 pm (£0.01") therefore it will be assumed that the target translates linearly.

The flexures are manufactured from 6061-T6 Aluminium with an alodine coating,
S0 Egjuminium = 75GPa. Using the measurements shown in Figure 2-4 and using
equation (2.2) for the linear stiffness, we get that the theoretical stiffness for a single
flexure is, k = 672 % The experimental determination of the stiffness was done by
building a setup in which a micrometer capped off with a load cell was used to impose
a displacement of the target. The load cell measures the reaction force exerted by
the stiffness of the flexures and from the linear-motion assumption, the gradient of
the displacement vs. force plot gives the stiffness of the flexures. The experimental
value of the stiffness was determined to be 2218 N/m which does not compare at
all well with the theoretical value given previously. The discrepancy has not been

investigated further.
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Figure 2-5: Circuit diagram of the current amplifier.
2.4 Amplifier

Before modeling the electromagnetics involved in the systemn, we will first make a short
note on the amplifier used to amplify the D/A signal and drive the electromagnets.
The design is borrowed from [29] and is notable because it allows rapid reduction
of the coil current and has a high negative current slew rate capability. For reasons
to be discussed in the following chapter, our desired bandwidth will be about 100
Hz, while as the amplifier has a 12 kHz bandwidth. From this we see that for the
dynamic range of interest the amplifier can be approximated by a constant gain whose
experimentally determined gain is K, = 0.127 A/V. For completeness we show the

circuit diagram of the amplifier in Figure 2-5.

2.5 Resonances

The system exhibits an open-loop resonance of 8 Hz which is clearly visible by con-
necting the capacitance gage to an oscilloscope and observing the arm moving freely.

Using the experimental value of the spring constant given in section 2.3 and this
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resonant frequency, we find that the equivalent translational mass of the target and
arm is 1.15 kg. This is the values that will be used in the control design.

Although the double flexure arrangement constrains the motion of the arm to
essentially one degree of freedom, we expect there to be some cross coupling between
axes. It is therefore important to find the resonant frequency of the vertical mode in
particular so that we can consider it in our controller design. The complete, closed
form solution of the vibration equation for the system at hand is quite impractical
and therefore we will use Rayleigh’s Energy Method [22] which is an approximate
technique. This energy method is based on the assumption that the system is conser-
vative thus there is a non-dissipative interchange of energy between kinetic energy and
potential energy. While no mechanical system is entirely conservative, this method
serves to obtain an initial estimate which can then be refiied by more accurate meth-
ods if needed [21]. Flexures are elements which tend to exhibit low energy dissipation
and therefore the Rayleigh Method can potentially provide good results. The place
where large errors are most easily introduced in the analysis is in the selection of
trial mode shapes for the system. These assumed modes are used to calculate the
potential and reference kinetic energies. The quality of the approximation of the
natural frequency which results from using this technique, is highly coupled with the
closeness between the actual mode shape and the assumed one.

The Rayleigh Energy Method states that the natural frequency is approximated
by

V;
2 . Ymaz

where V.., is the maximum potential energy of the system (calculated at its point
of maximum deformation when the kinetic energy is zero), and T* is the reference
kinetic energy of the system.

For the horizontal dynamics, the compliance of the flexure is much greater than
the compliance of the shaft to bending motion, herce the flexure will absorb virtually

all of the rotation about the flexure center, while the shaft will remain undeflected.
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We can assume a linear mode shape
T
71

where z is the distance along the shaft and L is the length from the flexure midpoint
to the end of the shaft. Using this assumed mode to calculate the energy of the
system and then using (2.3) we get that

) L[y kOdf

~ 2.4
VR T et ds + 1M (D) @4

where k is the stiffness of the flexure, # is the rotation of the shaft about the flexure
midpoint, m(z) is the approximate mass distribution of the shaft and target, and ~
is the assumed mode shape.

In order to calculate the integral we must estimate the parameters involved. The
length from the flexure midpoint to the tip of the target is L = 0.3 in (12"”). The
thickness of the tube making the shaft was taken to be t = 1.73 mm which is
a standard tube thickness size; the target was weighed and its mass found to be
M = 045 kg. Being an aluminium shaft the density is known to be p = 2700 Eﬁ
Without taking into account all the geometrical details of the setup, a quick estimate
of the mass distribution is obtained by assuming the distribution to be uniform. For
this we calculate m(z) =~ w(r2 — r?)p where 7, = 0.046 m (1.81") is the outer
diameter of the shaft and r; is the inner diameter. This approximation gives the mass
distribution as m(z) = 0.746 Enf Inserting these estimates into the above, the natural
frequency is estimated to be 12 Hz. We note the discrepancy with the actual value of
8 Hz as partly due to estimation of m(z) and partly due to the assumed mode shape.

For vertical dynamics, we re-write (2.3) as

s YIVEI(Y)?dz + Mgy(L)
LfEm(z)yrdz + IM~2(L)

(2.5)

in which the potential energy contribution comes from the shaft bending as a can-

tilever beam. The expression is analogous in form to the equation for the in plane
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motion, except that potential energy of the flexures has been replaced with the po-
tential energy of the beam in bending for which the term EI represents the bending

stiffness of the beam. A quadratic trial mode

is assumed.

To determine the parameters to be used in the above integral we use a simplifying
approximation and physical intuition: it is assumed that the deflection occurs only in
the bending of the shaft and not in the flexures. This assumption can be qualitatively
justified by noting that flexures exhibit a high stiffness to motion in directions per-
pendicular to the allowed direction of motion; in addition the two flexures are placed
far apart in the vertical direction which greatly increases the opposing moment which
they exert to motion in the vertical direction. The length to be used in this integral
is wflerent from the one used previously in the horizontal motion because it only ac-
counts for the shaft overhang. From the base of the shaft to the tip of the target this
length is L = 0.267 m (10.5”). Being fiber reinforced, the Young’s modulus for the
reinforced aluminium was approximated as £ = 80GPa and the density was given
before as p = 2700 #% Similar to how we estimated the mass distribution, we can
estimate the moment of inertia as I ~ Z(rj — r{) = 6.7 x 107®m". Inserting these
parameters into the equation above we get that f,eriict = 241 Hz. The actual value
of the vertical resonance was experimentally determined to be around 270 Hz, and
was measured using a geophone placed on the target. Geophones are devices which
measure absolute velocity, and are essentially accelerometers with an integrator. The
particular one used in this project is the McSeis 101LT by GeoSpace Corp® with a
resonance of 5.5 Hz. Measurement of the shaft’s vertical resonance was done by tap-
ping the target and picking up the vertical vibrations with the geophone. Taking the
DFT of the data, we see that the vertical resonance is approximately 270 Hz which

is in good agreement with the result derived above. The spectrum of the vertical

5GeoSpace Corp. 7334 N. Gessner Houston, TX 77040
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Figure 2-6: DFT of signal from vertical motion of target.

motion is shown in Figure 2-6.

2,6 Capacitance gage and RC circuit

As shown in Figure 2-2 the loop is closed around the position of the target as measured
by the capacitance probe. The specific model used is the PX405HC made by Lion
Precision® with a gain of 3.937 x 10* V/m (1000 V/in) over a range of £305 ym from
the zero output position. This probe easily allows for sub-micron resolution provided
the surface being measured is perpendicular to the sensor face; with good shielding
the accuracy can be improved even more. The signal conditioning electronics requires
a £15 V input and outputs a signal that varies linearly, (although towards the end of
the range of operation, sensitivity starts rolling off), with position over a range of £12

V. The full range of the probe could not be used because the A/D only accepts an

6Lion Precision, A division of A.Q.T Inc., 563 Shoreview Park Road, St. Paul, MN 55126.

37



R=4750Q

S °

R=47500Q  C=01pF

O . O

Figure 2-7: Divide-by-two passive filter.

input range of £5V/, thus we added a divide-by-two circuit on the input to the A/D.
A passive RC filter was chosen over an active filter to avoid noise pickup problems;
the filter is shown in Figure 2-7. Inserting a low-pass filter in front of the A/D has
the added advantage of acting as an anti-alias filter for high frequency signals.

To make sure the filter dynamics does not interfere with that of the system, we
designed it to have a bandwidth of 670 Hz. The steady-state gain of the filter is one
half, so that it is able to keer the range of the probe to +6 V. Due to non-linearities
in the probe design, the gain at large displacements will no longer be constant, thus
the maximum displacement was chosen so as to produce a filtered output of +5V
into the A/D. The gain of the probe in series with the filter is now 1.9685 x 16* V/m

and the linearly measured displacement of the target is bounded to 4254 pm.

2.7 Electromagnetic actuators

Figure 2-8 shows a photo of one of the electromagnets used in the magnetic bearing,.
The E-core is composed of laminations made from 50% Ni-50% Fe alloy chosen because
of its low hysteresis and reasonably high force characteristics.

Figure 2-9 shows the actuator diagram and how the flux path is closed.
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Figure 2-8: Picture of one of the electromagnetic actuators.
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Figure 2-9: Diagram of the electromagnetic actuator and the magnetic circuit.
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2.7.1 Classical modeling

This section illustrates how to model the actuator using basic principles from classical
electromagnetic theory. This presentation is tailored after [12, 25].

We start from Maxwell’s equation
iH cdl= NI (2.7)
which, if integrated around one of the two flux paths, gives
Heore leore + 2 Hgap T + Hiarget liarger = NI (2.8)

where H is ithe magnetic field intensity, N is the number of turns of the coil, I is the
current through the coil and z is the variable gap size. We can now use Gauss’ Law

to express the continuity of the flux around the flux path as
f B.dA=0 (2.9)

where B is the magnetic flux density and A is the cross-sectional area of the actuator
face. Assuming no fringing in the field as well as a linear constitutive relation B = pH

of the material, we find that
Hcore Hcore A = I-Lgap HgapA = Htarget Htar_qet A = (I) (21(,)

where p is the permittivity of the part cited in the subscript and ® is the magnetic

flux. We can solve for He,re and Hiorger and insert them into (2.8) to get an equation

for Hyop, as NI
g _ 2.11
qap (#gae leore + 2‘,1: + Hgap llurge( ) ( )
Heore Hiarget

In crder to find the force exerted, we can either find the potential energy in the gap

and take the partial derivative with respect to the displacement z, or more simply we
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can utilize Maxwell’s stress tensor

F=o-A (2.12)

where A is the area of one of the flux paths in the gap. As Figure 2-9 shows, the
E-core magnet sets up two magnetic lnops thus the total area of the flux is twice the
area of one of the legs of the E-care. Use af the above equation on one of the loops
only gives half the total force exerted hy the actuator so the result must be multiplied
by two. Using Faraday’s Law we can also say that for this system

Ni

o= (2.13)

where R is the reluctance of the flux path given by

237 lMB ltarget )
R= + i+ : 2.14
(”’941’ A loreA  arge A ( )

Inserting (2.10), (2.11), (2.13) and (2.14) into (2.12) the force exerted by the actuator

is
NZ? 1
F= 5 (2.15)
ugap A ! 2! “ﬂ:‘ llurﬂet )
Bgap A feore A Btarget A

We note that for the choice of materials used in the actuators,

Bgap K Hiarget (2 16)

Hgap K Heore

so with these physical considerations it is possible to simplify the expression for the

force to

WN2A [i)2
F =t (i) . (2.17)

We will see in the section dedicated to actuator calibration that we can use this
simplified version to moael the actuators, but we will need to add a term to account

for the finite permeability of the core and target.
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Figure 2-10: Bond graph model of the electromagnetic actuator shown in Figure 2-9.

2.7.2 Bond graph modeling of the electromagnetic actuators

In this section we briefly present an alternative way of modeling the actuators based
on the bond graph method [5].

Figure 2-10 shows the bond graph model for the actuator shown in Figure 2-9.
The first gyrator represents the current amplifier used in changing the voltage signal,
Se, exiting the D/A to the current used to drive the actuators. As we noted before,
the bandwidth of the amplifier is much higher than the bandwidth which we are
aiming for, therefore it can be modeled as a constant gain, K,, without the need to
add parasitic dynamics. The second gyrator represents the conversion between energy
domains occurring inside the actuator. The input to the latter are the electrical power
variables (voltage, E, and current, I) while as the output from the actuator are the
magnetic power variables (magnetomotive force, M, and flux rate, b).

Unlike the analogy with Ohm’s law that is often made in elementary books on
electromagnetics the gap described by (2.18), where R is the reluctance, is in fact
a capacitor which stores energy in the magnetic field. Equation (2.18) shows this
because it relates the a generalized displacement (the flux) to a generalized effort

(the magnetomotive force).

M =R® (2.18)

42



The power balance on the generalized capacitance is
P=Md + Fi (2.19)
which integrated gives the potential energy, Fp.
t .
AE, = [ (M& + Fi)dt (2.20)
to

Since potential energy is independent of the path taken, we can select the path of
integration that allows for a simpler integral; an example of which is a path for which
F = 0 always.

&
ABy = | Mdb (2.21)

Use of (2.13) allows this integral to be evaluated. From the potential energy stored
in the gap, the force exerted by the magnetic field is

F = -VE, (2.22)

We can thus use (2.13), (2.18) and (2.21) in (2.22) and get the force as

N2 ;2
F= ’A — . R (2.23)
“yap (I-‘gup A Hcore A Htarget A )

which we see is equivalent to (2.15).

2.8 Actuator calibration

Having derived a model for the actuator we can, as a notational simplification, group

together constant parameters and define a constant C as

2 2
F= _CcF where C = Ha 2 N" 4

@ + o 1 (224)

and z is the distance from the pole face; go is added as a bias displacement. to account.
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Figure 2-11: Experimental force-current-displacement plots of actuator one.

for the finite permeability of the cores. Equation (2.16) still applies, but in a real
system fieore < 00 and fiargee < 00 and a term must be introduced to account for
this whose value is determined to be =~ 20 um. This value was obtained by fitting a
quadratic curve to the calibration data for the actuator and seeing what value of gg
would give the best correlation between the actual and theoretical data.

Each actuator has N=230 coils and a cross-sectional area of A=0.013 m x 0.013
m (0.51” x 0.51"), thus with f1gap = K freespace = 47 x 1077 H/m we get a theoretical
value of C = 2.789 x 1076 NT"‘Q. To measure this parameter experimentally we use
the calibration fixture built by Poovey et al. [29]. We shall not detail the calibration
fixture, so the reader is referred to the appropriate reference. Figures 2-11 and 2-12
show the force-current-displacement plots obtained by using this calibration fixture.

The graphs show the saturation characteristics of the actuators. The plot for an
air gap of 50 um shows a double knee in the curve, but the upper knee is due to

saturation of the A/D in the calibration fixture which can be inferred from the fact
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Figure 2-12: Experimental force-current-displacement plots of actuator two.

that the response curve becomes flat. The first knee of this curve, as well as the knee
displayed by the other curves, is due to the preferential saturation of the core due
to the grain orientation within the material. The electromagnets used are made of
E-core laminations which are obtained by cuiting an E-shape from a sheet of material
which had been previously rolled to the desired thickness. The rolling process orients
the grains in the material along the rolling direction so that upon magnetization,
the flux will in some parts be parallel to this orientation and in others it will be
perpendicular to it as shown in Figure 2-13. This leads to preferential magnetization
and saturation.

We also note the relatively high force exerted by the actuators, and the low hys-
teresis. In order to obtain the experimental value for the actuator constant, C, a
least-squares best fit is done on the part of the data which exhibits no saturation
and we get that the constants for actuators one and two are 2.6 x 10~° NT’“! and

2.79 x 1076 NT"‘2 respectively which are in excellent agreement with the predicted
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Figure 2-13: Effect of grain orientation on the saturation characteristics of the core

value.

2.9 State variable derivation

Equations (2.15) and (2.23) expressed the forces exerted by the actuators on the
target. The bearing is set up so that the electromagnets are in pairwise opposition
and attract the target in opposite directions; the net force is therefore the difference
between the two forces. The spring constant of the flexures gives such a small resonant
frequency with respect to the bandwidth at which we wish to close the loop that
its effect will be negligible. In addition, the flexures provide little damping to the
system especially at low amplitude motion, so that effect too can be neglected above
resonance. Overall the plant can be modeled as a free mass subject to an input force
equal in magnitude to the difference between the actuator forces. For the mechanical
side of the system, we select the position of the target and the velocity of the latter as
the state variables of interest. The state equations for the amplifier are not included
for reasons described earlier, namely that the amplifier acts as a constant gain for

the frequencies of interest. Therefore, the state equations are only those for the
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mechanical system driven by the nonlinear electromagnetic forces.

1 = T (2.25)

e iy g ( i )2 d
=77 v — 2.26
2 M(go+1'20~$) M\g+zwt+<T +M ( )

where z is the motion from the equilibrium operating point, zjo and Zyo are the

equilibrium gaps between the target and the pole faces of actuators one and two
respectively and d is a disturbance farce.

While as the setup is oriented in the horizantal plane and motion is thus perpen-
dicular to gravity, the setup could have ensily heen rotated such that motion is in the
direction of gravity. The latter arrangement is what most would envision as a mag-
netic bearing setup, however gravity enters as a simple bias in the state equations.
As a matter of fact, gravity bias can be included in the generalized disturbance term
in the above state equations so that the exact same relationship applies. Viewed in
the sliding control framework which will be presented in chapter 5, the same exact
equations which will be developed then, apply with the minor modification of having

to change the disturbance bounds.
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Chapter 3

Linear Control

Having derived the plant model in the previous chapter, this chapter will be dedi-
cated to the design and implementation of several digital linear controllers. The state
equations presented at the end of the last chapter show that the plant is non-linear
in 52 and the coefficient of the input is state dependent in z=2. The state equations
also show that the system is two-input, single-output. As for most non-linear sys-
tems, before approaching the complexity of non-linear control, it is good to check the
applicability and validity of linearizing the plant about an operating point and using
a linear controller on it. This chapter thus focuses on designing linear controllers for
the magnetic bearing and checking the performance both through simulations and

through digital implementation of the controller on the actual hardware.

3.1 Linearization

We show again the schematic of the actuators is pairwise opposition in Figure 3-1. If
we select a nominal operating point around which the magnetic bearing is to operate,

for small displacements around this operating point we can write

’i1=11+6’il
19 = Iy + 619
=X+ 6z
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Actuator 2

Actuator 1

Figure 3-1: Schematic of tne actuators in pairwise opposition

d=D+éd

where 7, and i, are the currents to actuators one and two respectively and 4i, and
biy are the changes in current from the respective bias values I; and I [19]. The
assumed disturbance force d is also taken as being composed of a bias component, D,
and a change from the latter, 4d.

We can now use a Taylor series expansion and retain terms only up to the first
derivative, to get a linear model of the system around an equilibrium or operating

point as

af af 2 5, L of

5l 5d. sd. (3.1)

f(:L‘ 7'1,12’d) = fe(ze,zlmhe, e) + ==

The subscript e next to the partial derivatives indicates that the partial is to be
evaluated at the operating point.

To avoid treating the problem as a multiple input single output system, let us
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constrain the actuators such that the change in current into each actuator is equal in
magnitude but opposite in direction. Let us further apply equal biases to each of the
actuators so that the control effort will be more evenly distributed amongst the two

electromagnets. We express this as
8ig = —b1y = bi (3.2)

h=~L=].

With these constraints, we can linearize the plant according to (3.1) and re-write
the equations in matrix notation. The partial derivatives evaluated at the point
about which the plant is being linearized will hecome the constant coefficients for the
incremental quantities &i1, 8iz, 6 and éd so we can define the increments as the new
state variables. For convenience we drap the 8, but for the remainder of this chapter
the state variables will be the incremental quantities measured from the point about

which the system was linearized; they are not the absolute values of the states.

L 0 ! (’T‘) + ( 0 ) 8i

= 2 2 20, 1 20, 1

3 2 B oy tig 0 )\ Gy T —“Wm)( )
3.3

y=[10] C:) +[0 0] (;) (3.4)

(go+Z10) and (go+ Z20) are the operating point displacements from the two actuators
respectively plus the go = 20 um to account for the finite permeability of the target.
The system has now been put in the standard form x = Ax + Bu for controller
design. We note that if the flexure stiffness had been included in the model it would
enter as —ﬁ in the lower left entry of the A matrix in (3.3). However, by substituting
parameter values into the equation, we see that the effect of the stiffness is very small
compared to the coefficient already there; the latter represents the negative stiffness

of the magnetic -earing. From the state space representation we get the transfer
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(3.5)

The transfer function clearly shows the existence of a right hand plane pole which
makes the linearized plant open-loop unstable. Figure 3-2 shows the bode plot of
the plant from which we see the existence of an unstable pole because the magnitude
breaks but the phase remains constant at —180°. Lyapunov’s first method can now
be invoked to claim that the non-linear system is also open-loop unstable. This is
Earnshaw’s theorem and is a property of all magnetic suspensions. It makes intuitive
sense if we take the simple example of a ball levitator. Applying a constant current to
the electromagnet coils will generate a force which will tend to draw the ball towards
the magnet’s face. There exists only one equilibrium point for this system and that is
where the weight of the ball exactly balances the attractive force of the electromagnet,
assuming initial conditions are zeroed. However, this equilibrium point is unstable

because any infinitesimal displacement thereof will result in the ball rising to touch the
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actuator or dropping to the ground, depending on the direction of the displacement.
Stability can only be achieved by modulating the current in the coils and thus the
need for feedback control.

For the magnetic bearing setup, we aim for a reasonably fast settling time, no
steady state error, and a bandwidth of around 100 Hz. The latter specification comes
from not wanting to excite the vertical dynamics too much since its effects have not
been modeled. In Chapter 5 we will see that a rule of thumb to start designing a sliding
mode controller is to set the bandwidth of the system to 1/3 the first unmodeled mode
of the system [14], and we shail adopt that rule for the linear design. Experimentation
has shown that this is indeed a. valid crossover to aim for, and the reason for this shall
be detailed later in this chapter. To check the validity of the model we would need
to compare the loop transmission of the model with that of the actual system, but in

order to obtain the experimental loop transmission we must first stabilize the system.

3.2 Model verification

The system was modeled as a free mass and thus has no damping. Although this is
not strictly true in practice, we stated in the previous chapter that the assumption
is justified because of the low damping of the flexures. This lack of damping calls
for a lead compensator to be included in the system in order to raise the phase
margin. Also, in order to increase low frequency response of the system as a way to
achieve better disturbance rejection, especially in view of the 8 Hz natural frequency,
we include a lag compensator. The actual design of the controller can be done in
continuous time and then mapped by emulation techniques, or it can be performed in
discrete time directly. Out of the linear controllers to be presented some are mapped
to discrete time and some are designed in discrete time.

Damping is primarily a function of the lead while as crossover is adjusted using
the gain. Since the lag is usually designed to affect low frequencies and have almost
no effect around crossover, the lead and the lag can be designed separately. To

have maximum phase increase at the desired crossover, we select the lead such that
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the desired crossover is the geometric mean of its pole and zero. To express this

mathematically, for a lead whose general form is given by

-6
Glead(s) = Klead: mp (3.6)

where § < 7, the maximum phase bump occurs at a frequency given by

Wmaz phase = \/4_5—'7

The separation of the pole and zero has a direct influence on the amount of
phase increase that is achievable. Ideally it is desirable to have a very large pole-
zero separation so as to increase the phase as much as possible, but the limitation is
that for plants whose response above crossover is falling with increasing frequency,
we will generally loose gain margin. The reason is that in between the break points
of the lead the relative order of the system is decreased by one and thus, especially
if crossover occurs in this region, the rate of change of magnitude will increase by
20 dB/decade. Another practical, and more intuitive, limitation of selecting a very
large pole-zero separation is that a lead is a high pass filter and therefore raises the
noise response of the system. A separation factor of 15 between the lead zero and the
lead pole will ideally give about 60° of phase increase [19], but depending on where
the lead is placed and what poles/zeros are breaking around it, this phase increase
me be substantially lower. A separation factor of 15 is chosen for all of the linear
controllers designed here. In order to place the phase bump at 100 Hz, we thus solve

the following equations:

Vov =2xmx 100

v
-=15

0
which give § = 162.231 and vy = 2433.467. The bode plot of the lead compensator
is shown in Figure 3-3 from which we see that phase bump is indeed at 100 Hz. The

gain of the lead will be combined with that of the lag and will be used to set the

54



Phase (deq). Magnitud.: (dB)

Frequency (rad/sec)

Figure 3-3: Lead compensator designed to produce a phase bump at 100 Hz.

Crossover.

Designing the lag is analogous to the procedure detailed above, but the problem
is in selecting where to place the zero. In arder to keep the lag from affecting the
phase at crossover tco much, the break point was first chosen to be a decade below

crossover, i.e., at 10 Hz. The lag is thus given by

s +62.831
Glag(s) = Kigg—— .

Simulating the lead-lag compensated plant with the gain of the controller set to
1, we find the magnitude of the loop transmission at 100 Hz and then use the inverse
of that value as the gain of our controller. Figure 3-4 shows the loop transmission of
the continuous-time and discrete-time lead-lag compensated system.

In order to map the controller to discrete time so that it can be implemented on
the DSP board, we must select a sampling rate for the digital system. Franklin et

al. [11] suggest using sampling rates as low as six times the crossover, but it is also
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Figure 3-4: Loop transmission of lead-lag compensated system

stated that a value of 20 times or more should be implemented where possible. We
have the possibility of sampling much faster than that and in general the faster the
better, so we select a sampling rate of 5 kHz. Mapping the controller with the ZOH

equivalent gives
z—0.9743 z — 0.9874

z2—06147 =z-1

Gleadzag(z) = 21.02 (3.7)

In order to simulate the plant in discrete time it is also necessary to take the ZOH

equivalent of the plant

Xi(2) 4783 x 1077z + 4.783 x 1077
I(z) 22 — 2001z + 1

where [ is the input current into the plant.
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3.3 Digital implementation

To reduce excessive control effort we implement the controller with the lead placed in
the feedback path as shown in Figure 3-5, where the general form of the lead is (3.6)
(with z substituted for s) and that of the lag is

z—a
z2—1"

Glag =K lag

(3.9)

Lag

1-\ |IMegrator
(:3)

D/Ar—~ Amp [ Plant

l_ (1-1)(_2-_6) A/D |«——— RC Filter = Sensor

1-5)\ z
Lead

Figure 3-5: General structure of lead-lag compensated system

The lag is divided into two parts one being the proportional part, the other being
the integrator. This functional splitting allows us direct access to the integral term
so that we can implement antiwindup measures [7]. The latter are included in the
control algorithm in the form of a software switch which limits the value of the integral
to the range of operation of the D/A, i.e. £10 V. In order to avoid steady-state errors
it in necessary to normalize the DC gain of the lead compensator to unity. Therefore
we use part of the controller gain to normalize the lead and use the remainder of the
controller gain as the gain of the lag compensator [11, 19].

The controller desigrned above stabilized the system and allowed the loop transmis-
sion to be measured experimentally using a dynamic analyzer. We created a summing
junction for injecting a swept sine signal into the A/D and then measured the return

signal out of the capacitance gage electronics. The setup is shown schematically
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in Figure 3-6. By superposition, we can write the output voltage of the summing

junction as
R, R,
Vo = ‘/; + Vg 3.10
Rl + R2 Rl + Rz ( )
which, for the chosen resistors is
1 10
Vo==V.+—=V,. 11
11 + 11 (3.11)

The output of the junction, which is what is being fed to the RC filter and A/D, is
almost the same values as the source voltage being applied, while as the return signal
from the éapacitance gage is attenuated by a factor of 11. In this configuration the
plant is being driven mostly by the swept sine wave voltage source. Figure 3-7 shows
the negative of the loop transmission, and on the same graph we have also plotted

the bode plot of the discrete time compensated plant model.

From Source of
dynamic analyzer, Vs

To channel 2 of To channel 1 of
dynamic analyzer dynamic analyzer
R,=22KQ
R = 220Q

& To RC filter and A/D, Vo

From capacitance
gage, Vi

Figure 3-6: Setup for measuring the loop transmission experimentally.

We note the very good correspondence between the actual and theoretical model
for the magnitude plot. On the other hand the phase plots show good agreement
up to 60 Hz or so and then diverge quite rapidly. The actual system is losing phase
more rapidly than the model predicts. The way the phase keeps falling off would
seem to be the effect of neglected time delays however good fit between model and

experimental data cculd not be obtained even if delays were added to the model. For
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Figure 3-7: Experimental plot of the negative of the discrete loop transmission (solid)
overlayed with bode plot of the discrete time compensated plant model (dashed).

instance, including a time delay of 300 us with a Pade approximation could make
the phase coincide well until around 90 Hz after which the experimental data and
the model would diverge. We note though that 300 us is equivalent to 1.5 sampling
intervals which is an extremely long time delay considering the speed of the DSP
board; in addition, when we simulate a step response for the system with this delay
the overshoot is much greater than the one measured on the hardware.

We re-design the controller to make the system faster. To do this we push the lead
further into the left half plane and center the phase bump beyond 100 Hz. We do this
because in view of the asymmetric phase drop, the maximum increase in phase will
occur before the geometric mean of the lead break points. Furthermore, to increase
response we also bring the lag zero closer to the lead zero so that we get more gain
at all frequencies. The down side of this last step is that it detracts some phase
at crossover thus making the system more oscillatory. With these considerations we

design the following compensator which we implemented on the magnetic bearing and
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obtained the step response shown in Figure 3-8 when a 25 pm step was commanded.
On this plot we have also shown the step response of the model with a 300 us time
delay. The negative of the loop transmission for this revised system is shown in

Figure 3-9 for comparison.

z—0.9601 z -- 0.965508

ead—la. =2
Clead—tag = 25— 0.481909

(3.12)

x 10
3 T T T T T
300 us delay
" Simulation w/o delay
25 .
! -Experimental
2 ’._ . p . 4
€ s :
[=
]
£
8
s
@ 1 .
o
0.5 - .
0 ~
_05 i i 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12

time (s)

Figure 3-8: 25 um step response of system compensated with (3.12) with and without
the time delay.

The unmodeled phase roll-off reduced phase margin, which accounts for the slightly
more oscillatory response seen in the real system but we see from Figure 3-8 that the
time delay is still not sufficient to account for the discrepancies between the simulated
and experimental responses. Pin-pointing the exact nature of this phenomenon is one
of the recommended areas of future work. We note however that the settling time
of the model and that of the actual system are equal which enables us to make time

predictions using the model. The rate at which the controller drives the trajectory
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Figure 3-9: Experimental (solid) and theoretical (dashed) bode plots using (3.12).

to the reference is thought to be a major cause and contributor to the difference
in the observed behaviour. In fact using the controller in (3.13), which still has a
bandwidth of 100 Hz but whose lag zero is well below the lead pole, we get much

better agreement in the step response. We show this in Figure 3-10.

z —0.9513307 z — 0.9811504

z-1 z —0.26996 (3.13)

Gleadlag = 34.8557

The results just presented indicate that using a linear controller on the system is a
valid approach provided the target remains close to the operating point about which
the plant was linearized. In order to test the performance of the system at other
operating points, we command 25 pm steps starting at different gap spacings. The
results are shown in Figure 3-11 where the direction of the positive gap is towards
actuator two.

As expected, the performance of the system gets progressively worse as the target

moves away from the point used in the linearization. Instability sets in at a dis-
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Figure 3-10: Experimental (solid) and simulated (dashed) step response of (3.13)

placement of 175 pum from the position in which the target is centered between the
actuators. The same applies for steps taken in the negative direction, (i.e. towards
actuator one), so the corresponding plot is not shown.

In the linearization process it is assumed that the system parameters such as
the mass and the actuator constants are known exactly. A change in any of the
parameters would require re-computation of the linearized system if we are to have
a valid model, hence we see that linearization calls for some form of gain scheduling
if the system is to operate over a large range. To test the “robustness” of the plant
model (3.3) controlled by the lead-lag compensator (3.12), we input a 40 Hz sinusoidal
trajectory having an amplitude of 50 um centered at the midpoint between actuators,
and then add weights to the target. The experimental responses with and without
an unmodeled mass of 100 g are shown in Figure 3-12. The linearized controller is
not able to accommodate unmodeled parameter variations and a mass variation of ~

8.7% produces an amplitude change of ~ 8%.
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Figure 3-11: Step responses of linearized system starting at different operating points.
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Figure 3-12: Experimental response of linearized system with (solid) and without
(dashed) a 100 g mass added to the target.
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Chapter 4

Feedback Linearization

4.1 Introduction

In the last chapter we have seen how a linear controller can be used on the system
and we also showed that we can get good performance if the system is translating
close to the point about which it was linearized. If, however, the trajectory takes the
target well away from the nominal operating point, instability may result. In this
chapter we will develop a first approach to nonlinear control design using a method
whose intuitive nature makes it an attractive starting point in the design of more
complicated controllers. In fact we shall use this technique again in the next chapter
in conjunction with sliding mode control.

The attractiveness of feedback linearization lies in its ease of application to a
certain category of systems. The central idea behind this approach is to transform
a nonlinear system into a linear one by canceling nonlinearities through either input.
or state transformations (depending on the system). Successful completion of this
step will leave behind a linear system which can be compensated using linear control
theory [14]. The difference between this and linearization using the Jacobian of
the system is that in the former the controller is made up of two parts : a set of
input/state linearizing transformations and a linear controller, so that the overall
controller still retains the nonlinear characteristics of the real plant. In the case of

using the Jacobian, all nonlinearities are lost upon linearization.
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4.2 Application of Feedback Linearization

Feedback linearization involves canceling nonlinearities and can be very directly ap-

plied to systems described by
™ = f(x) + b(x)u (4.1)

where z(™ is the n'* derivative of the output of interest, u is the control input and x
is the state vector. The general form of (4.1) is called Companion Form or Control-
lability Canonical Form and shall be important also for the development. of sliding
control in the next chapter. A noticeable feature of this form is that it contains no

derivatives of the control input. In state space notation, we can re-write (4.1) as

() n )

d 9 3

\ (1) / f(x) +b(x)u )

which we recognize as analogous to the Controllability Canonical Form in linear con-
trol theory.

Assuming the plant is perfectly known so that f(x) and b(x) are fully determined
we can define a transformation (4.3), where v is the new input, and insert. it in (4.1)

to get a multiple integrator linear system, i.e.,

1

u= T-’”)[U - f(=)] (4.3)

™=y, (4.4)

Under this transformation we have canceled the nonlinearity and reduced the
system to a linear one to which we can easily apply linear techniques. For example

it is possible to use pole-placement in which case we could select a new input having
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Figure 4-1: Diagram of the closed loop setup for general system with feedback lin-
earization.

the form

for which we could chose gains k; such that all the poles are in the left half plane.
This is possible because there are n constants and n degrees of freedom. Using full
state feedback is attractive, however we do not have access to all states and therefore
this approach requires the use of an estimator. The issue of estimating states shall be
dealt with in the next chapter where it will be necessary to access all states in order to
implement sliding control. In this chapter we will follow a classical control approach
and adopt the same controller we used in the previous chapter, modifying only the
gain to achieve a bandwidth of 100 Hz. Our objective is to achieve a closed-loop
arrangement, like the one shown in Figure 4-1.

We see clearly from the figure that there are two loops involved. The inner one car-
ries out the linearization and establishes v as the new input, to the feedback linearized
plant, while the outer one stabilizes the resulting linear system. We also begin to see
from the figure, and we’ll see it more afterwards, that for feedback linearization we
rely heavily on the plant model both for designing the controller and for computing
the linearizing transformations. Hence if the model contains uncertainties these will
lead to incomplete cancelations of non-linearities. These concepts can be expanded
to a broader class of non-linear systems using concepts from differential geometry and

topology [14]. Such generalizations, however, are not needed for the system at hand
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and shall not be detailed. The state equations for the magnetic bearing were given

in chapter 2 and are written again here for reference.

%) =1, (4.5)

i 2 i 2 d

=5t (arewms) it (arewrs) *3 4

Comparison with the general form of equation (4.1) shows that we can rewrite
these equations as (4.2) if, at any one time, we drive the plant with one current
and set the other to zero. With this control strategy, and seeing that there are no
derivatives of the input, the plant is in companion form. We also note that with this
“switching” current, the equations are directly input-state linearized. To show that
the plant is also input-output linearized we note that the output of the plant is the

position of the target so

y=r« (4.7)

from which we can say

== f(x)+bx)u. (4.8)

The output is then directly controlled by the input.
To transform it into a SISO system in the new input. », we can use the following

transformations.

fOl‘V_>_0 = i1=0 i2=(go+$0—$1) C (49)
forv<0 = 4 =(go+%o+z1) _g“’ i =0
1

Inserting these transformations into the state equations, we see that the plant will be
linearized to

13'1‘—:.'1)2

Ty =10
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Figure 4-2: A perfectly linearized system is equivalent to a series of integrators.

which is a double integrator as shown in Figure 4-2 [7].
We implement the same controller used in the previous chapter, equation (3.12),

with the difference that the gain is modified to set the bandwidth at 100 Hz. The

controller is

z — 0.9601 z — 0.965508
Ge=15 z—1 z—0.481909 (4.10)

Figure 4-3 shows response of commanding a 25 pm step in displacement from
the equilibrium position. The response shows the same deviation from the predicted
response as was seen in the last chapter. Using the same setup as Figure 3-6 we
measure the loop transmission; this is shown in Figure 4-4.

We showed that the linearized plant should be equivalent to a series of cascaded
integrators and we check this claim by dividing out the controller from the experi-
mental loop transmission to recover the plant transfer function shown in Figure 4-5.
As expected the magnitude plots are in excellent, agreement; the phase plots however
display the same inconsistency highlighted previously. The loop transmission plots
show the existence of unmodeled resonance around 4800 rad/s. The magnitude plot
would indicate a set of complex conjugate zeros breaking before a set of complex
conjugate poles which we speculate as being due the vertical resonaace of the shaft.
Referring to Figure 2-6 we see that there is a vertical resonance at this frequency,
and since the controller has virtually no effect this far above the bandwidth, it will
not compensate for it.

For the linear controller of the previous chapter, performance degrades when the
operating point moves away from the one about which the plant was linearized. In
feedback linearization the transformations are functions of the displacement, z, and

are therefore dynamically compensating for the target position; this ideally makes the

69



3 T T 1 L T
E
= i
[
E
]
Q
«
& -
h e
_0-5 1 1 Il AL 1
0 0.02 0.04 0.06 0.08 0.1 0.12
time (s)

Figure 4-3: Experimental (solid) and theoretical (dashed) response of system con-
trolled with (4.10) subject to a 25 um step in displacement.
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Figure 4-5: Exerimental (solid) and theoretical (dashed) bode plot. of the feedback
linearized plant,

system independent of the operating point. We test this by commanding 25 um step
displacements at various air-gaps. Unlike the case where we used the linear controller
alone, using feedback linearization allows the target to be controlled over the full range
of motion until it sticks to the pole face of one of the electromagnets. Figure 4-6 shows
this. With perfect cancelation of the nonlinearities the responses should be identical
regardless of the operating point, we see however that as the target. approaches the
pole face the responses become more oscillatory. This behaviour is expected since
we have seen how the model is not exact, and thus perfect linearization is not being
achieved. This is a good example of the non-robust. nature of this technique. A similar
analysis was carried out in Subrahmanyan et al. [7] however in that case the plant,
model was known almost exactly and close to total cancelation of the nonlinearitics
was achieved. To check the effect of unmodeled mass variation Figure 4-7 shows tho
response of adding 100 g to the target and referencing a 40 Hz, 50 s m amplitude,

sinusoidal reference tra jectory.
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Chapter 5

Sliding Controller

5.1 Introduction to sliding control

We have seen in the previous chapters that we can achieve good performance using
both simple linear controllers and feedback linearizing controllers, but it was also
shown that both of these are subject to limitations on robustness to parameter, and
operating point, variations as well as on parametric uncertainties. To overcome these
shortcomings, in this chapter we use a technique from robust control theory which
allows us to include our estimated levels of parametric uncertainties in the controller.
The resulting controller will then guarantee stability and robustness at least with
respect. to the uncertainties included in the controller design. This chapter is not.
meant. to be a course in sliding control, rather it is aimed at presenting the main
results which will then be used on the magnetic bearing. For more information on
sliding control methodologies, consult references such as [14].

A fact that is easily encountered in linear control is that first order systems are
inherently simpler to control than are higher order ones. The difference is mostly
mathematical, but low order systems also allow a certain degree of physical insight.
which may not be there when dealing with complicated higher order dynamics. The
idea behind sliding control is quite simply to reduce the system to a stabilization
problem in one dimension by means of a particular choice of a variable called the

“sliding variable”. We shall also see that the sliding variable is not only a form of
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state variable, but it is also a dynamics towards which the system is directed.
Sliding control in its basic form can ideally deliver perfect performance by the
use of a discontinuous control law, however this approach is hardly ever adopted
because the discontinuities are directly related to the parametric uncertainty levels
which are being built into the plant model, and thus can be quite large. The result
is that the system will reach the desired dynamics, then enter a limit cycle in which
chattering occurs leading thus to extremely high control activity and excitation of
unmodeled resonant modes of the structure. For this reason a smoothed version
of the switching controller is preferred which renders the control more feasible but
has the disadvantage of diminishing the accuracy of the controller. The approach to
designing the smoothed controller involves first designing the switching controller and

then smoothing it out it in a boundary layer around the desired dynamics.

5.2 Switching Control
™ = f(x,t) + b(x,t)u (5.1)

Let us consider a system described by equation (5.1) where f(x,t) and b(x, t) are
generally non-linear functions of the state vector, x, and possibly time. The output
of interest is the scalar z and u is the control input applied to the system. This is
not the only form to which sliding control can be applied, but it is the one applicable

to the magnetic bearing being used. The state vector is as follows :

x=[z %..z" VT (5.2)

where 7 is the order of the system. Analogous to the above, the state vector of desired
states is defined from the desired reference trajectory, x4, and contains the derivatives

of the desired trajectory.

Xqg = (CL‘d i‘d :L“(in—l)]T (53)

While as the exact non-linear parameters may not be known, it is assumed that

bounds can be placed on them either from physical principles, intuition or by other
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means. These bounds are expressed as
f(*%,8) - fx, )| < F (5.4)

0< bfm’n S b(x’t) S bma:l: (55)

where f is the estimate of the f(x,¢) and buin, bmas are the upper and lower bounds

of b(x,t).
As a new state variable, define the sliding variable to be a weighted surn of errors
in the states
d (n-1)
s= (Et- + A) z (5.6)

where the weighing parameter, A, is strictly positive and can be shown to be the

equivalent. bandwidth of the controller [13]; Z is the scalar output error
I=1z-— x4 . (57)

With this definition of the sliding variable we see that since s is a weighted sum
of the state errors, it represents a measure of the deviation between the desired state

vector and the actual state vector. We can now define a sliding surface, S(x,t), as
S(x,t) : s(x,t)=0 (5.8)

Perfect tracking requires that all the state errors vanish, so from (5.6) this is seen
to be analogous to requiring s to go to zero. We also notice that s is a dynamic
system because it is state and time dependent. When the system has reached s = 0

the system trajectory will be determined by the sliding surface itself

d {n-1)
(E + A) =0 (5.9)



Differentiating (5.6) with respect to time gives
$ = h(,i,..,c™) = h(&, %, ..., f(x,t) + b(x, t)u) (5.10)

where h represents the function

R I

The input. has appeared directly and the problem has been reduced to a stabilization
problem of a first order differential equation in s.

Perfect tracking is analogous to steering the system towards the sliding swrface
and therefore we can chose a control law that aims at minimizing the square error in
the distance to the surface. The sliding condition from which we derive the control
law can therefore be chosen fo ensure that the gradient of the square of the distance
to the surface is always negative. This ensures that the sliding surface is an attractive
invariant set so that all system trajectories outside this surface will point towards it.

Formally we express it as

-8 < —nls] (5.12)

where the constant, 7) is strictly positive and determines the power of attraction of the
surface and hence the “transient” time required by the dynamics to reach the surface
in the event in which the initial conditions differ from the desired ones. Given an
initial state error, the trajectory will reach the sliding surface in a time interval ¢,—¢
given by

|s(O)] (5.13)

J.

From the sliding condition we calculate the control law and from the first order
stabilization problem (5.10) the best estimate of the control effort required to bring

$ to zero is

n—1 _
i=—f(x,t) =) (" 1),\”:5("‘”) : (5.14)
p=1 p

where 1 is our best estimate of the actual control effort u required to reach the sliding
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surface, and f(x,t) is our best estimate of f(x, ).

If the plant were perfectly knawn then this would be the exact effort required,
but. to account for the uncertainties in the madel, a correction factor of magnitude
k is introduced which is discontinuous across the sliding surface. This gives the full

control effort as

u=—f(x,t) - nil (n. - 1) APZEP) _ k sgn(s) (5.15)

p=l p

where the sgn(s) function is defined mathematically as

sgn(s)={ T+ *20 (5.16)

-1 : s<0
The lower bound on k& which will gnarantee attractiveness of the sliding surface is
obtained by satisfying the sliding candition. We note that we cannot derive a unique
solution for k because for some oi the parameters in the system we know only the
bounds, and not. the exact values. Substituting (5.15) back into (5.12) and solving,
gives the resulting inequality for k£ as a function of 8, n, F, 4, D. More compactly

the control law (5.15) can be written as
u=1u- ksgn(s) . (5.17)

where 1 was presented earlier as the best estimate of the control effort required to
hring the trajectory to the sliding surface, and ksgn(s) is the discontinuous term
which compensates for model uncertainties.

This discontinuous control law will give perfect performance at the price of ex-
tremely high control activity, the latter being due to chattering induced by the dis-
contimous term. In Figure 5-1 we show a representative example of a second order
system sliding surface (which is a line in the phase plane defined by the two state
variables) and how a trajectory is attracted to it. Overshooting the surface on either

side will lead to the chattering phenomenon showed.
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trajectory

/

s=0

Figure 5-1: Chattering in a second order system induced by the discontinuous control
law.

For the magnetic bearing studied in this thesis, the control algorithm on the DSP
will be switching between actuators at very high frequencies possibly driving the D/A
to saturation every time, which makes the control unfeasible and impractical on a real

system. This effect will be shown later in this chapter.

5.3 Sliding Control

In the previous section we presented the switching controller and detailed the steps
required to design one. At the end of the section we also stated that the practical
problems encountered in applying this controller force us to seeck ways to smoothen
out the control discontinuities aznd obtain a continuous control effort. In this section
we present. the “continuous approximation to sliding control”, otherwise simply re-
ferred to as sliding control, which is an extension of the switching controller. The

fundamental difference between the two is that while the switching controller is dras-
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tic in commanding the effort as the sliding varjable passes from s > 0 to s < 0 or
vice-versa, the sliding controller provides an effort which is not discontinuous. It
achieves this by using a different contral law when the sliding variable is within a
thin boundary layer around the sliding surface.

When s is outside the boundary layer the same switching control laws derived in
the previous section apply and this makes the boundary layer an attractive invariant
set. However, when s enters the boundary layer we substitute the switching law with
a linear interpolation, to calculate the effort. The effect of this can be shown to be
the same as adding another lowpass filter to the dynamics of s. It is precisely this
lowpass action that eliminates the chattering. It suffices to say that \ is normally
chosen as the bandwidth of this filtering action, so while we would want to increase
A to get faster response times, increasing A also reduces attenuation of chattering.
Later in this sectjon we shall present. some guidelines for selecting A.

Let us define a boundary layer, B(t), as
B(t) = {z,|s(x,8)| < @(t)} @) > 0 (5.18)

where ®(t) is the time varying boundary layer thickness and is strictly positive. Use
of the switching control laws when |s| > ® ensures that all trajectories will converge
to the boundary layer, however once they reach it, the objective is now to keep the
trajectory inside the boundary layer and aiming toward s = 0. Sastry and Slotine
(13], and many others since, have shown that we can achieve this by substituting
the discontinuous k sgn(s) term in (5.15) with a linear interpolator E(x)% inside the
boundary layer. k is a new gain term modulated according to the rate of change of the
boundary layer. Intuitively, if ¢ < 0, so that the boundary layer is shrinking, k& must
increase in order to maintain the trajectory within the layer; if instead & > 0 then
we can relax the control effort, by decreasing k and still remain within the boundary

layer. This smoothed implementation is achieved by substituting the term k sgn(s)
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Figure 5-2: Plot of sat (%)

with the term k sat (%), from which we re-write the complete control law as
- n-1 n—1 = (n—p) - S
u=—f(x,t)— ) NPZ"P) — ksat(—) . (5.19)
p=1 p @

The saturation function is defined mathematically as

sat(s) = sgn(s) : sl >1 | (5.20)

s @ |s| <1
so we see that if s positive and outside the boundary layer, (s > @), it follows
that £ > 1 and therefore sat (%) == sgn. (%) = 1. Similarly if s < —® then
sat (%) = —1. If instead |s| < @ then the discontinuous part of the control law
is replaced altogether. We see therefore that the only discontinuity that could have

occurred was if the sgn function was valid across s = 0, but, it’s not. Figure 5-2 shows

the plot. of sat (%)
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This approach requires us to derive a relation for the gain k as well as deriving
the differential equations governing the boundary layer. Again constraining the rate
of change of the square of the distance to the sliding surface to be negative, we can

redefine the sliding condition as

1d , .
S8 < (@)l (5:21)

where the power of attraction is now (® — ). We do this for the same reason
we modulate k: during boundary layer contraction the power of attraction needs to
increase to ensure that the trajectary stays within the boundary layer. It has been
shown [13] that the new sliding candition, (5.21), is satisfied by the following set. of

equations referred to as the balance conditions.

k(xq) > 2—? = &+ A =fak(xa)  k(x) = k(x) — % (5.22)
k(xq) AP h oy AP _ k(%) k(x) = k(x) — &3 (5.23)

<— = o+ =
Ba i ba
where the subscript d refers to the value of that parameter evaluated along the desired

trajectory and the gain margin g is defined as

g = bmas (5.24)

bmin.

so that bound (5.5) can be re-written as
<p (5.25)

where b is the geometri. mean of the bounds on b. In the balance conditions the gain
k is the same one derived for the switching controller, and the gain k(xg4) is the gain
of the switching controller evaluated along the desired trajectory which is found from

k(x by setting Z = £ = £ = .... = 0 because on the desired trajectory there are no
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errors. The initial condition for the boundary layer can be shown to be

Bak(xq(0))

(0) = ==3

(5.26)

The sliding controlled is thus defined by (5.19), (5.22) and (5.23).

A key step in the implementation of sliding control is the necessity to decide on
a suitable value for A. As we said before this parameter represents the equivalent.
bandwidth of the controller. Ideally it is desirable that A be large, but practical
limitations pose limits on the values this parameter can take. Slotine and Li [14] give
typical limitations as due to three effects :

e structural resonant modes

/\S%Trllﬂ

where vp is the first unmodeled resonant. frequency of the structure, measured
in Hertz. In most practical cases this criterion will be the one limiting the choice
of A, however this bound can be changed as a result of experimental evaluation
and engineering judgment. Back in chapter two, we used this to decide on the

desired bandwidth.

e neglected time delays

1
A< —
— 3Ty

where T, is largest unmodeled time-delay which in the case of the magnetic

bearing is due to the execution of the ISR.

e sampling rate

A S gysampling

where Vyampling is the sampling rate.
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5.4 Sliding Control with mass uncertainty

The magnetic bearing system contains two components whose characteristic values
introducc  he most variability. These are the equivalent mass of the target and the
actuator constants. While as the mass of the target is easily determined by simply
weighing it, the equivalent translationa! mass of the target and arm is not easily
determinable to a high degree of accuracy. As for the actuators, calibration gives a
good estimate of the actuator constant but the true value is still not known especially
if the actuators are driven to saturation. In any case the aim is to make the system
robust. to parameter changes, so we must. assume that some or all the parameters are
not. well known.

In this section only the mass uncertainty is accounted for, and we assume that the
actuator constants are accurately knawn. In the next section both mass and actuator
uncertainties will be dealt with.

Sliding control is used here in conjunction with feedback linearization where the
latter is used to produce an equivalent linear system as was described in chapter
four. Unlike using feedback linearization alone where the closed loop system is highly
model-dependent, using sliding control on the feedback linearized system allows us
to specifically take the model uncertainties into consideration when designing the
controller and thus make the closed loop system robust at least with respect to the
modeied uncertainties.

We write here again the plant. equations for the feedback linearized system, where
the non-linear transformations are slightly different to the ones presented in the last
chapter: namely, the mass and the actuator constants are not included in the lin-

earizing transformations and are therefore left in the resulting plant equation.

u>0 = da=(go+xo—)Vu and i, =0 (5.27)

u<0 =14 =(g+zo+z)y/—u and i, =0 (5.28)
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The plant equation is re-written as

(5.29)

Qls

m"v"—u+
o=

A single value for actuator constant, C, is used to make the plant model conform
to (5.1). Comparing (5.29) to (5.1) we get that for the magnetic bearing with mass

uncertainty

f(x,t) =0 and b(x,t)= % (5.30)

The value of C used in this section will be the geometric mean of the actual
values as measured by the calibration procedure: C = /C,C; = 2.69 x 1078 NT"‘2
In designing the continuous sliding control, it. is necessary to first design the switching
controller.

To characterize the mass uncertainty, a range for the actual value of the mass
must. be specified, and since the mass enters the plant equation in a multiplicative
fashion (see equation (5.29)), it seems reasonable to define the estimate of the mass

as the geometric mean of its uncertainty range.
Uncertainty : Mpin KM < My = 1.030 < m < 1.265 kg (5.31)

This range represents a £10% deviation from the nominal value of 1.15 kg used in the
previous chapters. This level of urcertainty is picked quite arbitrarily and a higher
level could have been used, but we feel that with this choice the real mass uncertainty

is covered.

Estimate of mass : 1 = /M, Moax (5.32)
Estimate of b : b= ——C (5.33)

vV Mmin Mmaz

It is necessary to bound the mass uncertainty as well as the disturbance uncertainty,
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sc we can postulate

IA

|m — | M (5.34)
d-dl < D (5.35)

where d is the geometric mean of the estimated disturbance given by an equation
analogous to (5.32). The gain margin for the plant was given in (5.24) which for the

case of only mass uncertainty can bhe re-written using (5.30) as

A= lmaz (5.36)
Mmin

Referring to (5.6), the sliding surface for the second order plant (n = 2), is
i+ AE=0 (5.37)

which implies that after convergence to the sliding surface, the tracking error decreases
exponentially with a time constant of ;. This fortifies our interpretation of A as the
equivalent. bandwidth of the controller.

Differentiating (5.37) with respect. to time we get. the equivalent stabilization prob-
lem in the sliding variable

§=T4+A7. (5.38)

We can now use (5.7) to rewrite the above as a first order equation in s containing

the control input, just as we showed in (5.10):
. d e :r s
§=b(x,t)u + — — + AT . (5.39)

The estimate of the control effor! required to bring the sliding variable to the surface

is found using (5.14).

~

R d

= —— + &g — AT (5.40)
m

and the discontinuous control effort will then be given by (5.17) but. with a correction



factor in front to account for the uncertainty in b.
w=b""[& — k sgn(s)] (5.41)

Inserting (5.40) and (5.41) into (5.39)

~

b d . d .
s =x|——+Zg4— AT —ksgn — —Zy+ AT 42
5 7 ( s +E4— AZ sgn(s)) + - Tyg+ AT (5.42)
Using (5.30) we can substitute ¢ = 2 and then substitute (5.42) into the sliding

condition (5.12)

s [(2 - 1) T4+ (l - 2) AT + d-d_ ﬁﬁlsgn(s)
m m m

m

< —nls| . (5.43)

Taking advantage of the fact that ssgn(s) = |s|, (5.43) c..n be rearranged to find A.

' . d—d
k|s|21)%|s|+%s[(%—l) :'r'd+(l—1n—) AL+ ]

m m

. " 2 . d—d
k27]$+2.sg1),(s) [(ﬂ—1> Zq+ (1—— E) AL+ ]
m  m m '

m m

Being an incequality there is not a unique solution, so the bound will still be satisfied

m ) m\ . d—d
— =1 Z4+{1-— AT+
™m m m

We can further manipulate the inequality by noting that

(ﬁ—l)z(%—l)

if we set.
m m
k>n—+—
m m

and that

la +b] < |a| + |b]

which allow us to take the disturbance uncertainty term out of the modulus and get
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a relation for the discontinuous gain k
. - D
k25U+(ﬁ—1)|—$d+/\$|+E (5.44)

The switching controller is therefore defined by equations (5.32), (5.33), (5.40), (5.41)
and (5.44).

We note that k # k(%) and 4 # 4(zZ) thus the controller may not deliver excellent
performance in response to slow varying dynamics even though Z may be large. Equa-
tion (5.44) shows that the bounds on k depend upon iy which makes it impossible
for us to apply a step reference to the plant because the second derivative of a step
is undefined. We cannot,, therefore, obtain step response plots like the ones shown in
previous chapters.

It was previously stated thLat a switching controller is hardly ever used as it is
because of the chattering problems it leads to. We can see this by simulating the
respouse of the system to the switching controller just derived. Figure 5-3 shows how
the voltage output from channel one of the D/A would look like if we command a 40
Hz sinusoidal trajectory having an amplitude of 50 um. The D/A would saturate at
almost. every cycle; to avoid this we now design and implement a sliding controller

For the magnetic bearing the sliding controller for the case of only mass uncer-

tainty is given by the following set of equations.

v 7n-nu'g'm'max (11 _ l: sat (%))

u =

- .. 3 d
UW=T4— AT — —
m

.. D
k> p0n+(8-1) —:i:'d+/\§:|+-13

from Balance Conditions (5.22), (5.23)
o



voltage trom D/A (V)

time (s)

Figure 5-3: Voltage output from channel one of the D/A using the discontinuous
control law for the case of only mass uncertainty.

5.4.1 Digital implementation

The sliding controller is implemented digitally on the computer, with a sampling rate
of 5 kHz as in the previous chapters. Unlike the linear controller and the feedback
linearizing controller where we used the position signal as the only feedback clement,
sliding control requires all the states to be available. We can sce this in (5.14), for
example, where the estimate of the required control effort is a lincar sum of state errors
which implics that we first need to know the state in order to caleulate the error. Just
like in state feedback methodologies used in linear control, we cotild design an observer
to provide an estimate of the system states. Use of a Luenberger observer for a non-
lincar system will degrade performance since these observers are model-based and
the whole purpose of designing a robust controller is to compensate for paramectric
uncertainties and/or parameter changes neither of which will be taken into account,

by this type of observer. Ideally a non-linear observer is required for a non-lincar
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system and Hedrick et al. [8] provide a good summary of some non-linear observer
techniques. The paper by Walcott and Zac (2] provides another approach to non-
linear estimation in the case of imperfect knowledge of the plant non-linearities. The
dual of a sliding controller is a sliding observer where similar parameter bounds can
be incorporated into the observer. However for the purpose of these experiments we
use the backward difference approach. This suffices since only first order derivatives
need to be estimated; if higher order derivatives were required more accurate methods
may need to be used. Experimentation showed that, as expected, this approach led
to noise which limited how much we could increase the system bandwidth, but the
results clearly show the system robustness. We further note that decreasing sampling
time, T, has a detrimental effect on the amount. of noise generated by the backward
differentiation.

Backward differentiation is a linear system

z(k + 1) — z(k)

k = 5.
v(k+1) T (5.45)
whose transfer function is given by
V(iz) z-1 .
X(z) -~ Tz (5.46)

where V is the z-transform of the velocity and X is that of position. From Figure 5-4,
which shows the bode diagram of the above transfer function for sampling rates of 5
kHz and 1 kHz, we see that the higher the input frequency into the differentiator the
more noise we are introducing into the system.

In deciding on a suitable value for A the trial bound.: given in the previous section
limit. the allowable values as follows:

o )\ < &270Hz = 565rad/s

o A< —— =11x10%rad/s

— 3xH0pus

5000 Hz = 1000 rad/s

[
Sl
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Figure 5-4: Bode plot. of backward difference for different. sampling rates.

According to these bounds, the choice of A is limited by structural resonances, how-
ever, experiments show that it is possible to use higher values of A which lead to
improved performance becanse of the higher bandwidth.

When direct backward difference is used the equivalent bandwidth of the con-
troller, J, is found to be limited to 600 rad/s. To get better performance a slightly
different. interpolator is used which has the effect of better simoothing the estimated
velocity signal. Rather than estimating the instantancous velocity using (5.45) we
can cstimate it. by finding the mean of the current velocity and the velocity at the

previous sampling instant:

Vang (k) = v(k) - g(k —1 _ =k _2";96 —2) (5.47)

With this choice of interpolator we can push the bandwidth to a little over 750
rad/s which is better, but there is still ample margin for improvement. We sec from

Figure 5-5, which depicts the bode plot of (5.47), that the high frequency noise is
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Figure 5-5: Bode plots of filters (5.46) and (5.47).

smoothed more.

The sliding controller also requires the boundary layer to be updated in real time.
From the balance conditions (5.22) and (5.23) the boundary layer is a first order
dynamic system which requires computation of ®. For this we have no trouble in
using backward difference since the boundary layer exists numerically only inside the
computer. Equations (5.49) - (5.52) arc how the balance conditions are implemented
in the Interrupt. Service Routine on the DSP board, where we have estimated ® as

&(k) — b(k - 1)

o(k) = T (5.48)

For k(x,) > 2%4=1

TS k(xq) + D(k — 1)

@ (k)= T (5.49)
k(x) = k(x) — (k) _Tq)ﬂ(k —U (5.50)
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For k(x,) < 22¢=1)

=75
TB k(x4) + B2 ®(k — 1)

P (k)= AT (5.51)

k(x) = k(x) — Blo (k) —ch(k — )] (5.52)

Interrupt Service Routine

The following is the algorithm implemented in the ISR:
1. Initiate conversion of A/D.
2. Read data from A/D and reset status bits.
3. Convert A/D counts to displacement. of target.
4. Calculate desired states x4, T4, 4.

Calculate best estimate of effort (5.40).

(1]

6. Use digital Balance Conditions, (5.49)-(5.52), to find ® and k.
7. Use (5.19) to determine required effort.

8. Pass effort, u, through linearizing transformations, (5.27).

9. Output cffort through D/A.

10. Update parameters.

5.4.2 Experimental results

The desired trajectory applied to the system is a 40 Hz sinusoid with a 50 pm am-
plitude generated internally by the DSP board; its derivatives are programmed in
the ISR as well. Figure 5-u shows the experimental resnlts of applying the sliding
control with mass uncertainty to the magnetic bearing, overlayed with the simulated
response. We note the good correspondence between the two responses. Figure 5-7

shows the experimental time history of the sliding variable. We note that the sliding
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Figure 5-6: Experimental and simulated response of applying sliding control to mag-
netic bearing (7 = 10 A = 600)
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Figure 5-7: Experimental time history of the sliding variable (solid) and the boundary
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Fignre 5-8: Tracking error, Z, overlayed with the shding variable, s, scaled by 200.

variable is always inside the boundary layer which is a result of the boundary layer
being an attractive invariant set. Figure 5-8 shows the plot of the trajectory crror
plotted against the sliding variable (scaled by 200 so that it is of comparable mag-
nitude to the crror) for the experiment. What are the effects of 7 and A 7 Having
ascertained that simulations and experimental results agree very closely, we can vary
the parameters in the simulation to see the resulting cffects. In particular, varying 7

leads to the following behaviour:

Increasing 7 ensures faster convergence to the boundary layer if the sliding

variable is outside.

The biggest effect of 7 is on the boundary layer : the larger 7 the larger the

boundary layer.

Equation (5.44) shows that & depends additively on 5.

The control effort. during the initial transient. increases with 7 because the power
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of aitraction of the boundary layer increases.
o 7 has less effect on Z than daes A.
Siinilarly the effects of increasing A are :

¢ Smaller boundary layer. This js easy to see from the Balance Conditions since
A enters directly and multiplicatively in the denominator of the equation for the

boundary layer.

o More control effort. X is interpreted as the equivalent bandwidth of the con-
troller, thus if we increase the handwidth we expect an increase in control effort.
The simulations shown in Figure 5-11, however, showed that the control effort

does not. change very much.
o T decreases more than due to a corresponding change in 7.

e If the values of A decreases too much the controller will be unable to kecp up

with the reference trajectory and this leads to instability.

Based on the observations made abave, we show the effect of A by simulating the
response of the sliding controller with A = 1000; the results are shown in Figures 5-9
through 5-11.

We test robustness of the feedback system by adding weights on the target to alter
the mass and run the system with the same 40 Hz desired trajectory. Figure 5-12
shows the experimental data from having added 100 g and 400 g weights. We can
sec how the influence of the added mass is mitigated by the controller so that the
performance of the system is virtually unchanged even with an added mass of 35% of

the nominal value. The change of amplitude with the 400 g added mass is less than

2 pm.
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Figure 5-9: Simulated plots of applying sliding control with A = 1000 (solid) and

A = 600 (dashed).
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Figure 5-10: Sliding variable with A = 1000 (solid) and A = 600 (dashed).
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Figure 5-11: Control effort with A = 1000 (solid) and A = 600 (dashed)
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Figure 5-12: Experimental plots with added masses of : no added mass (dashed), 100
g, 400 g (solid).

97



5.5 Sliding control with mass and actuator uncer-
tainty

In the previous section we have seen how mass uncertainty can be taken into account,
by incorporating it in the controller. In this section we expand our treatment of
uncertainties to include the uncertainty of the actuator constants as well. We can
do this is two ways, one will be essentially identical to the development presented in
the previous section and the other will show another approach to the problem. The

values used in this section are

1.035 <m < 1.265 kg

N m?

243 x107° < C <297 x 107° A2

both of which represent a +10% deviation from the nominal values.

5.5.1 Mass and actuator constants included in the linearizing

transformations

The difference in how we chose to incorporate actuator uncertainty into the system
comes from how we chose the linearizing transformations. If we chose the transfor-
mations such that they include our estimates of the mass and actuator constants, m.

and C, then we can rewrite the transformations as

~ 705

u>20 = i3=(go+zo— 1) (mFu) and ¢, =0 (5.53)
—mu\"°

u<0 = i1=(!}0+$o+z)< C’) and i, =0 (5.54)

which are the same as (4.9) except that the estimates of the parameters are used.

In the presence of parametric uncertainties feedback linearization does not. guarantee
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good performance nor stability. With these transformations, the plant reduces to

. d
E=bu+ —
m
where the new coeflicient. of the effart. js now
_ Cm
Cm

As before, taking the estimate b ta he the geometric mean of b, and b, the

estimate will be

o
It
—

We can now use (5.24) to find the new expression for

A= (£§E51222£)05 . (5.55)

Cmin Mmin

Having characterized the uncertainties and noted that the plant equation has the same
general form as that used in the preceding section, it follows that the development
of the sliding controller is completely analogous. Without repeating the previous

derivation we will simply state the results.

. C C\d CmMm
k?Z(ﬁ—1)|—$+)\$|+CPm+(1—(7 )E_H'Cmrh (5.56)
_ ¢ from Balance Conditions (5.22), (5.23) (5.57)
k
a=i—Ai—i (5.58)
T

w=>bh" (12 — ksat (%)) (5.59)

In implementing this new controller digitally, the steps performed in the ISR remain
the same as those presented previously in this chapter. When applied to the magnetic

bearing this new controller produces an output which was similar to that produced
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by just using the mass uncertainty. The trajectory is shown in Figure 5-13.
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Figure 5-13: Experimental trajectory using controller with mass and actuator uncer-
tainties.

Again we test the robustness of the controller to mass uncertainty and the results
plotted in Figure 5-14 show a marked improvement. over those obtained using only
mass uncertainty. This was expected because when accounting for only mass uncer-
tainty we did not take into account. the difference i actuator constants between the

two clectromagnets.

5.5.2 Mass and actuator constants not included in the lin-
earizing transformations

We have seen how, by choosing the linearizing transformations as (5.53) and (5.54),

the procedure of designing the sliding controller is identical to that illustrated with

the mass uncertainty only. In this section we develop a sliding controller for the case of

mass and actuator uncertainty by using a slightly different approach. The lincarizing
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Figure 5-14: Trajectory with (solid) and without (dashed) an added mass of 100 g.

transformations are written without the mass and actuator constant estimates, just
as we did in (5.27). Using these transformations the plant will be the same as (5.29).
For notational simplicity, we will multiply (5.12) on both sides by the mass and

use it as the new sliding condition. Following the procedure leading to (5.40), we get.
that

i = ém'nd — AL —d (5.60)
For the switching controller we apply (5.15) directly and this will be the effort required

by the switching controller.

Proceeding as before we differentiate the sliding condition with respect to time

and insert (5.15) and (5.60) in it to get the inequality from which we calculate the

gain, k. After simplifying the resulting inequality we get that,
mn m m\ . m m\ - d d
k> — sgn. - = = ———=1A - — =
R [((’ C)m” (C C) ot (C c)]
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We see that the above expression still includes the true actuator constant, C, the
true mass, m, and the true disturbance, d, all of which are parameters which we do
not know accurately. We can thus make the following substitutions which will allow

us to take the mass and disturbance bounds out. of the sgn function.

d=(d-d)+d

m = (m —m)+m
Substituting for the above and using (5.34) and (5.35) to simplify the inequality,
the desired expression for & in terms of known parameters is

M

min

D
Cm.iu

|.’fd + /\.f:| +

_ MimazT) +( 1 (5.61)

k= o T é) |—m5:d + A + ci| +

We have finished designing the switching controller, and must now smooth it. out.
with the boundary layer approach. The effort will still be given by (5.19) but the
uncertainty propagates in a way which requires us to change the balance conditions.

We can show that the following conditions will satisfy (5.21).

_ k- Zmind ¢ >0
k= { Cimaz - (5.62)

k - 'é'nu'n (i) (.D S 0

In order to find the governing equations for the boundary layer, we look at when
the trajectory is inside the boundary layer in which case sat (%) = 3. We again
make the analogy with a first order low-pass filter in s and if we set the bandwidth

of this filter as A then we derive

Ck Cky
— = A — = A
m® = m®
which we rearrange to give
F(xg) ~ 22 (5.63)
d C" . .

Where we have used the approximation that within the boundary layer A = k(x4).
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Inserting this into (5.62) we also conclude that k = k(x,). Placing the latter approx-
imations and (5.63) into (5.62) the new equations for the boundary layer are :
For & >0

$ 4+ Gmas g Comaz oy (5.64)
mm;’n mmln
For & <0
$ 4 Gmin™ 5 g Comin k(xq) (5.65)
Mmaz Mmaz

In conclusion, the sliding controller designed in this section is represented by Equa-
tions (5.60), (5.61), (5.62). (5.64), and (5.65). These equations were implemented in
the computer as explained previously. Figure 5-15 shows the experimental results for
the controller just derived when the desired trajectory is, again, a 40 Hz sinusoid of
amplitude 50 pm.

As we did before we add an unmodeled 100 g mass to the target, the trajectory
is shown in Figure 5-16. We see that performance is very similar to that for the case
with mass and actuator constant uncertainty presented in the previous section. In
both cases the results are better than those obtained with the controller designed only
for mass uncertainty, and are much better than the results obtained with the linear
or feedback-linearized controllers. For the latter two controllers, parameter variation
was not, accounted for and thus any deviation from the nominal values for which they

were designed, lead to substantial degradation in performance.
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Figure 5-16: Experimental trajectory with (solid) and without (dashed) 100 g mass
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Chapter 6

Conclusions and Future Work for
the Single Degree of Freedom

Magnetic Bearing

The goal of this thesis is the control of a single degree of freedom magnetic bearing.
Proceeding in order of increasing complexity we start. by designing several linear lead-
lag controllers; we then retain one of these controllers while adding to the feedback
system an inner loop which linearizes the model. Having tested these techniques we
design and implement. sliding control.

The data presented demonstrates the superior performance of sliding control when
applied to this test. setup, over application of the other controllers. The linear compen-
sators provide good performance for small excursions of the target from the nominal
operating point, but will become unstable at. large displacements. We overcome this
problem by using feedback linearization. The target can now move the full range
of motion of the bearing and still be stable. However, model imperfections prevent
us from achieving perfect. cancelation of the nonlinearities: the loop transmission of
the plant shows that our model predicts the magnitudes very w i, but is unable to
explain phase roll-off above 90 Hz. We venture to postulate that this is the result of
neglected time delays, but even by including these in our model we are not able to

explain the behaviour.
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Both of the techniques implemented above suffer from lack of robustness to para-
metric uncertainties/variations. We find sliding control to be invaluable in making
the closed loop system virtually insensitive to parametric variations having known
bounds. Of the methods presented here sliding control is to be preferred where large
target displacements are required and/or in the presence of parametric uncertainties.

As future work we propose first of all to investigate the unmodeled phase roll
off. Also, for future experiments on the existing setup, we recommend stiffening the
arm holding the target; raising the resonant frequencies of the vertical vibrations will
enable us to design controllers having higher bandwidths.

The purpose of having a long arm is to be able to approximate rotational motion
as linear motion. As a way to reduce the size of the assembly, we suggest replacing
the arm and the notch hinges with leaf spring flexures mounted below the target. For
small displacements this type of flexures provide quasi-linear motion.

Looking at the “bigger picture” i.e., beyond this setup and in industry, the work
done in this document provides a core analysis substantiated by simulations and
experimentation, which can now be tailored to a specific application. In particu-
lar, a survey of previous work in this area revealed that vibration isolation is often
an engineering solution that is not properly included in early conceptual designs of
machinery. This provides ample opportunities for integration of magnetic bearing
technology. A natural extension of the work done would be to increase the number of
controlled degrees of freedom to actively mitigate cross-axis vibrations and/or rota-
tional motion of the machine or subassembly. This leads to active vibration isolation
of the payload from vibrations produced by other subsystems, and to isolation from
ground vibrations in ultraprecision machines. This is the trend in the photolithogra-
phy industry where magnetic bearings are being designed into the base to damp out.
vibrations entering through the ground and reaction forces from the moving stage.

Reduction of critical dimensions as a result of industry’s trend towards minia-
turization poses increasingly stringent, specifications and requirements on machines
whose dynamics is not known, or exactly modeled. Researching new technologies,

manufacturing solutions, etc. are radical ways to circumvent. the obstacle when it
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may be possible to adjust the control loop to get desired performance. Robust control
methods are particularly attractive in this regard, and we suggest studying techniques
such as Hp-control, He-control and LTR on test-beds as general as the one used in

this thesis.
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Chapter 7

Design of a controller for a single
degree of freedom wafer stepper
using the classical approach to

design

7.1 Problem specification

We stated in the first chapter that the target application for this projet was the con-
trol of a photolithography stage, although the hardware used can serve as a testbed
for a wide variety of mechanical systems. In this chapter and the next we focus our at-
tention on the lithographic process in particular and introduce two design approaches
for designing a control system for a photolithography stage subject to specified con-
straints on accuracy, movement and sensors.

The system which will be studied is shown in Figure 7-1 and is a version of the
stage presented in [10]. The problem statement which follows has been adapted from
a take home design project for the Digital Control course at MIT, taught by Prof.
Trumper. The model is one-dimensional in the sense that we model all of the masses

as able to move in only the x-direction. Springs and dampers connected between
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elements are sensitive to the relative x-motion of their ends, and forces are applied
along the x-axis.

The wafer is carried on the mirror M,, which is mounted to the fine stage M3 via
the spring k4 and damper b,. These elements model the relatively stiff kinematic cou-
rling which connects the mirror to the fine stage. The fine stage moves on relatively
soft flexures k3 and b3 with respect. to the coarse stage M, as driven by the input,
force F,. In the real system this force is supplied by a voice coil actuator, which is
not modeled in any further detail herein. The coarse stage rides on plain bearings
which will be assumed to have Coulomb friction acting on them. The coarse stage is
driven by force F; with respect. to the machine base M,. In the real system, this force
is supplied by a rotary motor through a rack-and-pinion drive, but this mechanism is
not modeled here. The machine base is supported on spring &, and damper b,. These
model the vibration isolation legs which are present on the real stepper. In order to
isolate well, these elements are made to be compliant, however, this introduces the
problem that the base is driven by the stage input forces.

The two system outputs are y;, which is the distance between the coarse and
fine stages, and y, which is the distance between the machine base and the mirror.
Output y; is measured with a linear differential variable transformer (LVDT) and y,
is measured with a laser interferometer. Since the system lens is modeled as rigidly
attached to the machine base, and the wafer is carried on the mirror, the output y,
is the critical output for control purposes. The details of the lithographic process
require that the errors in y, from its setpoint. be less than 10 nanometers RMS in a
500 msec exposure interval after each step; this is the design specification.

The main task of the stage system is to take repeated 20 mm steps while main-
taining an exposure window of 500 msec during which time the RMS position error
specification is maintained. Under the constraint described below, a controller must.
be designed which meets the specifications.

A note on numerics: This system is 8 th order, and with the controllers the order
will increase. There are also widely spaced singularities (i.e., it’s “stiff”), so attention

must. be paid to the numerics of any simulations. As a general rule in all systems,
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especially those which are stiff, it is important to carry out reasonableness tests on
any of the data to be sure that the results are not simply numerical artifacts.

The system model is linear and ithe plain bearings experience a friction force
Ftriction = 10 sgn(q4) which opposes the control force Fj. Nonlinearities arise in that
force actuator saturation occurs, specifically Fj is limited to £F .o, and that Fj is
limited to £ Fomar Where Fimaz = 200 N and Fyne: = 50 N. A further requirement of
the system performance is that the fine stage relative excursion y; must be maintained
at less than 3200 um at all times. Furthermore, sensors exhibit quantization and the

entire stage is subject to floor vibrations described as a set, of two sinusoids as follows:
Zo(t) = e; coswyt + e coswot (7.1)

Where the parameters e; = 3 x 10-"m/sec? and e = 1 x 10~*m/sec? are constant
amplitudes while w; = 1rad/sec and w; = 20vad/sec are the frequencies of the main
two components of ground vibrations. In a real setting, a model for gronund vibrations
can be obtained by sampling the output of an accelerometer placed on the ground
next to the stage and taking the Fourier Series of the signal. The two components
shown above are assumed to be the greatest contributors to the vibrations. For the
quantization, the LVDT output y; is quantized at the 25 nm level (this represents
approximately a 14-bit A/D converter on this channel) and the interferometer output.
12 is quantized at the 2.5 nm level (this is a typical resolution for a laser interferometer
system).

The main task of the stage is to take repeated 20 mm steps and between each step
there must be a 500 msec exposure window during which time the error in ¥, is held
to less than 10 nm RMS. The controller has direct access to the measurements y; and
o but cannot use any other system outputs and the controller onutput will drive the
two input. forces F) and F;. While the model will be perfectly known in simulations,
one cannot. take unreasonable advantage of this fact for example by using notch filters
to exactly cancel the plant modes, or inverting the plant to obtain exact feedforward

blocks. As part of the controller design, we will also generate an appropriately shaped

111



ey [Je—2
Wafer 1. | i
inor o hid X
3 Ka 4 3 L
F2 yl
c—>

Fine Stage M3

x3

S k3,b3 r |—>

Fl
Coarse Stage M2
L
" Plain Bearing - x2
Machine Base Ml
L
kibl x1
Floor
L >
x0
—_ X

Figure 7-1: Stage system model

reference trajectory which will be necessary to meet specifications.

7.2 RMS error requirement

The RMS specifications are based upon the requirements for the lithographic progress.
When the wafer is exposed to the light source, the RMS requirement allows for some
vibration in the stage, but limits it to a level that the pattern being impressed is not.
smeared to the extent that it is un-usable. Overlapping patterns is a major source

of concern especially since the trend is towards circuits which have an increasing
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component, density. For a continuous-time signal e(t), the RMS value is defined as:

enms =\ / " e2(t)dt (7.2)

When using Matlab to solve the equations, the system will be solved in discrete
fashion and hence values will be quantized. For this reason the integral given above

becomes a summation over time.

1 window
\J——— > el (7.3)

window

where window refers to the number of time intervals in the required time window.
For example, if the required window is 0.5 s and the time step used is 1ms, then
window =500. Note that a fixed time interval is used in the calculations.

As a point of reference in understanding RMS, a Gaussian random waveform will
have a peak-to-peak value of about, 6 times its RMS value (99% of values from such
a distribution will fall within this limit), whereas a pure sinusoid has a peak-to-peak
value of 2v/2 times its RMS value (The power lines rated at 110V actually have a
peak voltage of £160 V).

7.3 Plant linear model

In developing a model for the system, the first step is to decide upon the state-
variables to use. The preferred set of states to be utilized in this problem is one
which uses relative displacements between elements. This is a natural choice since
all the dynamics are associated with relative displacements and relative velocities.
Furthermore, if absolute displacements are used, the base vibration enters the system
as zg, To and Zo which may cause problems since only #y is known. The linear
dynamics for the system shown in Figure 7-1 may be expressed in standard state

space representation as

q = Aq+Bu (7.4)
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y:

where the eight state variables are

q =

Q2 =

Q3 =

qq =

g6 =

g =

qs =

Cq+Du

I, — Tp
Q
Io — Iy
a3
I3 — I2
ds
T4 — I3
gz

(7.5)

The following table lists the parameters for the mechanical elements in the system

1 2 3 4
Masses (kg) m =500 |mm=50{ my=10 m, =95
Spring Constants || k; =9000 | ko =0 | k3 =1500 | k4 = 56
Damping Constant. | by =800 [ b,=0 | b3=15 | by =700

To derive the state equations,

element. With this we get

my $"1 =
mgii"g =
m3Ty =

my .'i'.4 =

we first use Newton’s Laws of motion applied to each

ki — bigo — Fy

kags + bags + F1 — F»

—k3qs — bage + k4q7 + bags + F

—ky4 g7 — bags
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Now substitute

2'3'1 = (iz + :L'o
T3 = g4+
T3 = (gs+ T2
Ty = qs+ 13
To get.
miGa = —kigq1 — biga — Fy — mizp (7.10)
. m
mags = kags +bsge + F1 — F3 — ;f[‘qul —biq2 — A (7.11)
) m
mags = —kaqs — b3gs + kaqy + bags + F — ;‘n—:[ksqs + byge + Fy — F3] (7.12)
. m
mags = —ky+4g7 — bygs — ai[—ka% — b3gs + k4qr + bags + F2] (7.13)

n —qs
The system outputs are y = = )
Y P Y (y2) (—q-'i —qs — q7

3
while as the inputs areu = | F,

T

A

These equations can be written in matrix form as in (7.5) where
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(0 1 00 0 0 0 0 )
k b
~& _bg g0 0 0 0
0 0 10 0 0 0 0
ki b 00 k3 b3 0 0
m) my m2 ma
0 0 00 01 0 0
1 1 1 1 k b
0 0 00 —kfs+ ] —bsl+ 77 — ma
0 0 00 0 0 0 1
L 0 0 00 by LS —kalmy + 7] —balig + 75 )
(7.14)
(o 0 0 )
_1 |
m)
0 0 0
. SR -1 0
B=| ™ ™ my (7.15)
0 0 0
1 1 41 0
ma ma2 m3
0 0 0
1
|0 ~m 0
00 0 0 1 0 0 O
C- (7.16)
00 -1 0 -10 —-10
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000
D=|00 0 (7.17)

000

The real plant is represented using the above C matrix, but for simulations an
augmented C matrix must be used which outputs g4 so that the latter can be used

to calculate the friction.

7.4 Controller Design

There are multiple ways in which this design problem can be apprcached. Before
deciding which method to utiiize, it is more fundamental to decide which domain the
design is going to be carried out in initially. If a digital controller is needed, one
can design in continuous time and then use emulation techniques to map the results
over to discrete time, or it is possible to design in discrete time from the start. The
first stage of the latter will require ZOH transformation of the state equations given
above. To show the design procedure involved in controller design, in this problem
a confinuous-time controller will be derived. This approach was chosen because in
controller design the major challenge is to find a controller that is able to perform
the desired function without the need to worry about sampling. The transition to
discrete time can then be made by methods such as the Tustin approximation, pole-
zero mapping or ZOH. Sampling fast. enough will ensure that the discrete controller
will function very similarly to the continuous-time controller, but, practical limitations
on the sampling frequency may lead to the need to make some changes to the discrete
equivalent.

There are several approaches which can be used to tackle the problem. One way
is to use Optimal Control for the stage. Appropriate weight matrices will need to
be found, and this will be the longest part. of adopting this design approach because
unfortunately no straightforward technique is available to help in the selection of

weight matrices. Optimal control requires all states to be available so an observer
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will need to be implemented; a Kalman filter is the natural choice for such an observer.
The task of designing an estimator is simplified by the Separation Principle which
states that the controller and estimator can be designed separately and implemented
together. This approach will be taken on in the next chapter.

Another design approach, the one which is developed in this chapter, is based
on the classical approach to design; i.e. output feedback. While as this approach is
not, restricted to SISO systems, its ease of use is very much increased if the system
at hand is an SISO linear system. However, there are three inputs (two of which
are controllable, F; and F, and one is uncontrollable, Zy) while as there are only two
outputs thus it is necessary to make some assumptions in order to be able to decouple
the system. The final goal is to have one force controlling one output.

We check the effect of the ground vibrations on the outputs by finding the transfer
functions between i and y; and between #, and y,. Manual calculations of these
transfer functions are rather long and very prone to errors because the resulting
characteristic equation is eighth order; a computer solution is highly recommended.

The relations are the following

Y, 0

Xo 8+213457+1.555+4.4 x 10655 +2.3 x 10854 + 3.5 x 108 5% + 3.5 x 10° 52
(7.18)

Y, 1.6s° + 356.9s* +2.41%5° + 3.0 x 107 s* + 3.5 x 1085 + 3.5 x 10°

Xo 5% +213.457+1.5x 10656 +4.4 x 10655 + 2.3 x 108 s* + 3.5 x 108 s3 + 3.5 x 10° s2
(7.19)

The Bode plot of Equation (7.18) is shown in Figure 7-2. The plot shows that at input
frequencies of w; = 1 rad/sec and wy, = 20 rad/sec the magnitudes of the transfer
function from &, to y, are 1.06 m and 2.39 x 10~* m respectively, showing that the
slower sinusoid has more impact on the output and passes through un-attennated.
The faster sinusoidal component, on the other hand, is attenuated in magnitude by a
factor of 2.39 x 10~4. The entire system is linear thus the output is scaled linearly by
the magnitude of the input hence, with the values of €, and e, stated in the problem,

the slower sinusoid will contribute at most 3 x 10~"m to the output, while as
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Figure 7-2: Bode plot. of the transfer function from disturbance to y;

the faster sinusoid will contribute at most +2.39 x 10®m. Added together, the
maximum effect of the disturbance on the output is £3.2 x 10~ "m. The effect of the
disturbance is very small and will be reduced to the nanometer level with a controller
gain of 100 or more at w=1 rad/sec. Note that the gain of the controller enters
the closed loop disturbance transfer function in the denominator (because it’s in the
disturbance feedback loop) therefore it will act to increase disturbance rejection.
The first, assumption is thus to design the controller without the disturbance; this
problem is now better suited to decoupling because there are two significant inputs

and two outputs.

7.4.1 Decoupling Approach

Consider a system consisting of the mirror, m4 and the fine-stage, ms, coupled by
a spring and damper and with the actunating force, F,. The system is shown in

Figure 7-3.
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Writing the equations of motion for the masses

F+ b4(j)4 - .’23) + k4(.’L‘4 - Ia) = Mais (720)

MyZy + balq + kyTg = byTz + kgzs (721)

Taking the Laplace transforms of these and re-arranging, the following transfer

functions are obtained.

{1 — b4 s+ k4 (7 22)
Fy 82 (mgmq s? + (1n3 + mq)by s + (m3 + my)ky) '
é_ m432+b4s+k4 (723)

Fy,  s2(mamy s+ (mg + my)by s + (m3 + my)ky)

The Bode plots for this system are shown in Figure 7-4

There is a resonance at 1225 rad/sec for both systems, and there is also an anti-
resonance at 1000 rad/sec for the %.;1 transfer function. The anti-resonance is due to
a complex zero in the transfer function and it is interpreted as the steady-state input
dynamics for which m3 doesn’t move. This is identical to the natural frequency when
m3 is clamped. In other words it can be shown that if the mass m3 were held fixed
then this anti-resonance becomes a resonance for the clamped system (i.e. a complex
pole). The plots further show that below the resonances, the plants are coupled above

after the resonances, the subsysiems become essentially decoupled. This can be seen
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Figure 7-4: Bode plots of the coupled m3-m4 subsystem

by the fact that the magnitude plot for % rolls off with a -40dB slope, while as the
%.;’} plot. rolls off with a -60dB slope. Two systems are coupled when their dynamics
depend on each other. In this problem, the force F; applied to one stage will transmit.
through to the other stage as is shown by the magnitude plot of the bode diagram.
In particular we see that below 1000 rad/sec the input force affects z3 and z4 equally
hence the two masses will move together as a rigid body.

The decoupling approach presented in the preceding paragraph is true provided
that the inputs are pure sinusoids. In reality, though, the actuation forces are not.
pure sinusoids and will contain an entire spectrum of frequencies. As was seen above,
for frequencies above 1000 rad/sec the decoupling argument will not hold because
the mirror and the fine stage wiil become progressively more uncoupled as higher
frequency content is introducer in the input. Nevertheless, by selecting a smooth
trajectory, the high frequency content of the input can be substantially reduced so

the decoupling approach will be valid. Under the assumption that the dominant
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frequencies are below 1000 rad/sec the two masses m3 and m4 would be perfectly
coupled and would move as a rigid body of mass (mg + my).

This canonical example showing how it may be possible to decouple masses if
the input frequency is above resonance, can be extended to ithe other subsystems of
the stage, in particular the ms — m3 subsystem. Thus when operating between the
resonant. frequencies of the entire plant, it may be possible to make the statement.
that the entire stage can be approximated as a system of only masses. The mjy —
my4 subsystem resonance was found to be \/% ky = 1225 rad/sec and a similar
analysis shows that the resonance for the my — m3 subsystem is % ky =
11.4rad/sec. The latter is the lower resonance and therefore, between approximately
10 < w < 1000 rad/sec, the decoupled mass assunption (remember that the my —my
subsystem is coupled in this frequency range, and is acting as a single mass) may be
applicable. In this frequency range the system would look like Figure 7-1 without.
the springs and dampers and with m3 and my rigidly connected. This new model is

shown in Figure 7-5. For this system the equations become



(m3 + my) s°X3(s) = F (7.24)
mo 32X2(S) = —Fz + Fl (725)
m; sX,(s) = —-F (7.26)

With m3 and m, lumped together it would be preferable to keep y; almost zero in
order not. to exceed the 200 m limit imposed by physical constraints on y,. Figure 7-5

shows that

2= +q3

Thus trying to keep y; almost zero suggests using y, and g3 as outputs, and feeding
the same reference trajectory into them. A linear transformation, Tp, can be carried
out on the system outputs y; and y; so that the new outputs to be fed back are y,

and q3. The linear transformation thus makes the following changes of variables

Ya = VY2
W=Y2—U
Hence
0 1
Ts = (7.27)
-1 1

With this new choice of outputs the free-mass system equations (7.24), (7.25), (7.26)

and (7.27) can be written in matrix notation as

a 1 -1 - 1 F
o 1 S | (7.28)
Ub ‘ — T . F

-1

In order to decouple the system, it is convenient to define a new set of inputs
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such that the transfer matrix between inputs and outputs is diagonal; this
Fy

can be achieved by defining new outputs as

Fl Fa
=T (7.29)
F E

substituting (7.28) into (7.29) results in the following matrix equation which shows
the perfect theoretical decoupling.
L I (7.30)
Us 0 % F,
We note again that (7.30) is only valid in the range in which the input. frequency is
10 < w < 1000 rad/sec. |

Provided that the assumptions on the input frequency are satisfied, we have seen
in (7.30) that the system is almost decoupled and equivalent. to two separate masses
acted on by forces. To verify the validity of this modeling assumption, the following
page shows the bode plots of the entire plant with the linear transformations. In
other words the bode plots are for the system : [T,] x [Plant] x [T}]

Figure 7-6 and Figure 7-7 show how, between the resonances, the twn systems are
separated by as much as three decades. While not. a perfect decoupling, it is enough
to warrant, proceeding with this approach.

For completeness we note that the problem could have been approached by feeding
back from y; and y, rather than y, and q3. The same reasoning applies in this case,
but there will be no T, matrix. As for the reference trajectories, the one for y, will
be analogous to the one which will be presented later in this module, and the one for
1y, should be zero.

Continning with the decoupled system, two free masses have no damping and
hence require the use of a lead compensator. Given the limits on F; and F3, it is
necessary to avoid excessive control usage hence the lead will be placed in the feedback

loop. A lag compensator i3 also needed to add low frequency stiffness to the system
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Figure 7-6: Bode plots of transformad stepper stage alone (Input. is Fa)

as well as to help decouple the dynamics. The reasoning is that at frequencies in the
range from 10 rad/sec to 1000 rad/sec the linear transformations will be the major
factors in the decoupling. On the other hand at low frequencies this decoupling is
no longer valid because below resonance, dampers and springs cannot. be neglected.
We are thus counting on the controller gains to create decoupling at low frequencies.
Altogether the compensated system will look like Figure 7-8

We have added a lag compensator on the coarse stage although we are aware that
it may cause hunting because of friction. We wished to test it out and possibly remove
it if performance was bad, however simulations showed that we could achieve good
performance with it there, so it was kept.

It is important to note that the lead networks in the feedback paths are designed
for unity DC gain so as to maintain accuracy.

The lead compensator is chosen for cross-over around 300 rad/sec. At this fre-

quency the plant is almost decoupled (see Figure 7-6), so the decoupling is maintained.
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Figure 7-7: Bode plots of transformed stepper stage alone (Input is Fb)

Crossover at 100rad/sec would decouple the plant. more but the bandwidth will be
rather low and hence the dynamics will be slow. Although bandwidth and vrossover

are different concepts, as a rough approximation their values are similar.

7.4.2 Lead - Lag compensator

The controllers used are of the form

Ts+1

ea =Kea
= e (221)
. s+1
Gla_qzklag(’ys )

Combining the two controllers gives the following form for the lead-lag compensator
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)
j — ™1 y=Cx+Du r‘—’l__
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yb
Lead [
Figure 7-8: Compensated wafer stage
_ T8+1 vs+1
Ge = Ke (ars+1) ( s ) (7.31)

Lead portion

It was seen from Figure 7-6 that 300 rad/sec was a reasonable frequency for crossover.
In order to find the controller parameters which will place the crossover there we can
use the following properties of the lead compensator. It can be shown that the peak
of the phase bump is at

while as the height of the phase bump is given as

. -«
Sln¢m=m

Witha=231 = ¢, =549deg.
Setting wp, = 300 = 7 =1.05 x 10~ 2sec.
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Figure 7-9: Lead compensated loop transmissions for y, and y,

To find the gain Kj..q4 that will allow a crossover at 300 rad/sec we solve for

Kiead ( 7s+1 )I_l
2 \ars+1/)|

This gives Kjeaq = 28551.

In order to decide where to place the lag compensator, let us plot the loop trans-
mission for the system with only the lead compensator and see where would be a
good location for the lag. Figure 7-9 a plot of the loop transmission for the lead com-
pensated y, loop with the y, loop open, and a plot of the lead compensated y;, loop
with y, open. We see that the phase margin is about 55 degrees, and we also note
that the resonant peak at 1225 rad/sec is close to crossing over unity gain once more.
This is a problem as will be detailed later. To be conservative, we could keep the
phase margin around 40 degrees, but aiming for around 30 degrees of phase margin

is suitable provided we do not anticipate too much disturbance.
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Lag portion

The upper break point of the lag is chosen at w = 150 rad/sec. With this break
point, the lag controller will decrease the phase by about 20 degrees at crossover,
but the system will greatly benefit from the added low frequency stiffness obtained.
Remember that we are counting on the controller gain to achieve decoupling at low
frequencies because our model without springs and dampers is no longer valid.

At crossover, the magnitude of the loop transmission is unity, thus in order to find

Kiag we must solve

lGla.q| =1

This requires

Kiqy =134 (for break — point at 150 rad/sec)

The full controller is thus

(7.32)

-2
G. = 3843250 (1-05 x 10725+ 1) (0.00667.9 + 1)

1.05 x 10-3s+1 s

The bode plots which follow, depict various aspects of the compensated system.
Figure 7-10 and Figure 7-11 show the loop transmissions for the system with one loop
closed and the other open. As part of a design having multiple loops, final stability is
best viewed as a sequential loop closing problem in which loops are closed one at the
time, and stability checked at each stage. Normally the faster loop is closed before
the slowest. loop (such as a tachometer feedback in a motor controller) but the way
the problem has been addressed until now, the two loops have essentially the same
bandwidth and crossover. Therefore there is no preference as to which loop is closed

first. The two loop transmissions were calculated as follows

A
() a3 04 Fy

Where o; =the corresponding transfer function. Closing the loop around y, we get.
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F, = —Lead x Lag X y,. Therefore the loop path from y, back to y, is given
by —ay x Lead x Lag. Similarly the path around the loop from y, back to y,
is —aq x Lead x Lag. The negative of these functions (i.e. negative of the lc ,p
transmission) is what is plotted.

We note that both ioops are stable because their phase margins are positive and
so are their gain margins. Note, though, that for the loop around y, the resonant
peak at 1225rad/sec is extremely close to crossing over unity gain again. At that,
point. the phase is less than —180deg which means that if it were to crossover, the
system would be unstable. This issue of multiple crossover is typical of systems with
resonances. Trying to solve the problem by adding a pole which breaks before the
resonance will lower the dangerous peak, but it will kill the phase margin bringing
the plant closer to instability. A possible alternative to overcome this problem is to
add physical damping to the system, i.e. add pads of vibration absorbing material or
whatever is suitable for the application at hand.

Figure 7-12 and Figure 7-13 depict. the loop transmission around y, and y, respec-
tively, when both loops are closed. As an exawmple, the loop transmission around y,

was found as follows

Yo | [ a0 o2 Fy

Yb as oy Fy
_ a; — Lead x Lag X y,
- a3 oy — Lead x Lag x y,

Expanding these equations we get the following

Ya = — (a1 x Lead x Lag)y, — (as X Lead x Lag)wys (7.34)

¥ = — (a3 x Lead x Lag)y, — (cg X Lead x Lag)ys (7.35)

Eliminating y, from (7.35) the loop transmission becomes
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Figure 7-10: Loop transmissions for y, with y, loop open

ay X a3 X (Lead x Lag)z)

1+ a4 X Lead x Lag (7.36)

Ya = (—011 x Lead x Lag +

The plots in Figure 7-12 and Figure 7-13 show that the phase margin is 29.4 deg
and 28.1 deg respectively, although the resonance in the mirror stage makes the loop
around y, almost crossover again, as pointed out before.

The closed loop transfer function plotted in Figure 7-14 and Figure 7-15 are the
relation between yer and y. The decoupling which is achieved is apparent in these
plots and it shows that one reference trajectory has control over one output far more
than it has over the other output. More specifically it is clearly seen that y,,e; guides

Yo via F, and yures guides yp via Fp.
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Figure 7-12: Loop transmission for y, with both loops closed
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7.5 Reference Trajectory

While as in simulations a step function can be easily implemented, in a real mechanical
system applying such a drastic input is hardly a good idea. The high frequency
content, of the step will excite all sorts of unmodeled dynamics of the system, and will
more easily lead to things such as fatigne damage, and so on. For mechanical systems
with large inertial loads, this is even more true. For this reason the trajectory which is
supplied to the plant should be such that it is relatively smooth while as still achieving
the desired position. It is possible to filter a step function and feed this as the input
trajectory, but it must be kept in mind that filters may only be asymptotic in the
way that their output approaches the final value, i.e., the final value is only rcached
as t— o0o. A better approach is to fit a trajectory which reaches the desired final
value in a finite, pre-determined time. The approach which was taken in developing

the figures which follow, was to select a cubic trajectory profile which would reach
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the desired set-point in a user-determined time and then be fixed at this value until
the stage needed to step again.

Figure 7-16 shows the trajectory nsed.

0.021

0.018 4

T

0.016 i

T
L

0.014

0.012+ .

Amplitude (m)

o [=]
3 3 o
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Figure 7-16: Cubic reference trajectory
This reference trajectory was generated based on three user-defined parameters :
1. stepping time, step_time, (the desired interval between steps.)
2. rise time, t,, (time at which the trajectory reaches the set point of 0.02m.)

3. time interval, or, sampling time, T (a necessary parameter because even though
the trajectory should be continuous in time, the computer generates it by dis-

crete points).

Using the general form for a cubic equation with no second order or first order
terms, i.e. an equation of the form y = kt3 the constant k was determined by
setting y = 0.01 m at t=ts/2s. The cubic trajectory was plotted in the time interval

—t8/2 — ts/2 and then the part defined in the negative time interval was cut and
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Figure 7-17: Velocity (dashed) and acceleration (solid) profiles for the reference tra-
jecetory of Figure 7-16.

attached after the part defined over the positive time interval. This procedure gives
the first ts seconds of motion. The remaining trajectory, namely that over the time
interval ts — step_time, was filled in with a constant. vector of 0.02. The entire
trajectory looks like Figure 7-16. Note that the trajectory as it. stands is only defined
in the time interval 0 — step_time sec, but it can be replicated by concatenation
so as to achieve a continuous reference trajectory for as long a period as desired.
Figure 7-17, instead, shows the velocity and acceleration profiles for this trajectory.
In particular we note the sharp change in acceleration which will appear directly in
the control effort as will be discussed later on.

The results of the simulations are shown in the following two sections. The first
section shows the response of the continuous-time system and the second section
shows the response when the system is implemented in discrefe-time as it would be
in a real setup. The two results arc very similar and the controller did not even

have to be adjusted when mapped to discrete time. The controllers were designed
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without taking into account the friction, and the good performance shows that with
a high enough gain the disturbance rejection of the system will reduce the effect of
the disturbance to the extent that it will affect. performance very little. Quantization

will be seen to be more problematic than ground vibrations.

7.6 Simulations of the controller impiemented in
continuous-time

Figure 7-18 shows the output responses y, and y, of the system. The two responses

are essentially identical so only one curve is apparent.
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Figure 7-18: Time response of y, and y,

The Simulink block diagram used to generate the plots is shown if Figure 7-19 and
is of the same topology as the complete, compensated system shown in Figure 7-8.
Figure 7-20 shows an expanded section of the output response graph, Figure 7-18.

We see that the nonlinear nature of quantization introduces fast dynamics.
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F:gure 7-21 shows the time response of the output y,. As can be seen, the max-
imum displacement in y; is 2.75 um which is well within the limit of the allowable
200 um set by the constraints. Keeping ¥, so low was possible because the same
input trajectory was supplied to both y, and y, of the transformed system (as was
explained earlier). A striking phenomena of this plot. is the limit cycle which has been
set up around the amplitude = 0 m point. This limit cycle is yet another result of the
quantization in y;. any moverment greater than the quantization level will result in a
jump in the output which is fed back. Hence in trying to set y, to zero, the controller
is continuously “kicking” the output around the desired position. Zooming in on the
limit cycle we see that the spikes are 25 nm in height.

Also quantized at 25nm is the output shown in Figure 7-22. In this figure note
that as well as the LVDT quantization, the interferometer quantization is also visible
(the smaller transitions). This is because y, = y, — y; and since y, is quantized at
2.5nm and y, is quantized at 25 nm, both quantizations appear together.

The rise time for the chosen reference trajectory is 0.5s and all the following plots
show that at half this rise time, i.e. at the point where the second derivative of
this trajectory changes sign, the dynamics of the system receives a jolt. This is not.
surprising since the second derivative of the trajectory represents the acceleration,
and by Newton’s Second Law the latter is related to the force applied to the system.

Figure 7-23 shows how the outputs y, and y, differ from the reference trajectory.
In the time between the start and half the rise time, the output trajectories ontinue
diverging from the reference trajectory. This is due to the fact that the reference
trajectory is a cubic and therefore there are not enough free integrators in the system
to make the output converge without steady state errors. In fact if the cubic trajectory
was allowed to continue to infinity, the error depicted in Figure 7-23 would increase
without bounds. Between half the rise time and the rise timgz, the situation is reversed
and the problem is perfectly symmetrical. Finally in the plateau between the rise time
and the stepping time the reference trajectory is a constant and thus the output is
able to follow it without steady state errors.

Figure 7-24 shows that all the actuation forces are well within the allowable lim-
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its. Note the large jump in forces which occurs at 0.25s. As explained before, this
transition is due to the discontinuity in the acceleration profile associated with the
reference trajectory; and acceleration is directly related to forces by Newton’s Second

Law of motion.
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Figure 7-19: Simulink block diagram for continuous time controlled system
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Figure 7-20: Zoom in of Figure 7-18 showing non-quantized output y, (dashed) and
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Figure 7-22: Output response of y,.
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Figure 7-23: Discrepancy between the reference trajectory and the output responses
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Figure 7-24: Actuation forces applied to the system

7.7 Digital equivalent of the continuous-time con-
troller

Now that we have designed a continuous-time controller and checked its validity
we can use emulation techniques to find its discrete time equivalent. Continuous
time is the limiting case of discrete-time so we expect the performance of a discrete
time controller to converge to that of its continuous-time equivalent, as the sampling
interval is reduced. The problem statement does not. specify any lower bound on the
sampling interval but an A/D or D/A conversion takes on average between 5 us and
20 us. The ones which were used on the magnetic bearing took around 10 us. If we
allow for some computation time, a sampling interval of 40 — 50 us is quite feasible
and adequate. Using these values and a sampling rate of 2KHz, the ratio of the time

delay to the sampling interval is around 5. Ideally the smaller this number the better,
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but a value of 5 is acceptable. The emulation technique which we shall adopt will be
the Pole-Zero Mapping. This method uses the relation which maps the poles from
one domain to the other, and applies it to the zeros as well. By the definition of the

Z-transform, it is known that
z=¢eT (7.37)

To map the controller gain, we choose to keep the same DC gain as in the continuous
design so that equilibrium is not affected. The following table shows the equivalent

discrete pole locations for the compensators.

Continuous | Discrete

Lead zero -95.2 0.954
Lead pole -952.4 0.622

Lag zero -150 0.928

Lag pole 0 1

The compensators are as follows :

8153z — 7.775
Cread(2) = — 55223 (7.38)
2.651 x 10z — 2.459 x 10*
Glag(2) = (7.39)

z —1

Using these compensators in the simulation the performance is entirely unchanged:
the RMS for the continuous controller was 7.6759 x 10~ m and that of the digital
controller is 7.671 x 102 m. The plots were almost. identical to the ones shown in

the previous section and are therefore not repeated.
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Chapter 8

Design of a controller for a single

degree of freedom wafer stepper

using LQG

8.1 Introduction

The previous chapter presented a control design based on a system repreéentation
which allowed the dynamics to be decoupled. The feature that accomplished this was
the realization that the effect of springs and dampers is reduced as frequency increases.
This is particularly true for frequencies above resonance; the latter thus supplies us
with a convenient breakpoint which allows us to re-derive the system model making
certain simplifying assumptions. Such simplifications were shown to be valid through
simulations before any further use was made of the simplified model, and it rmust
not, be assumed that these simplifications are necessarily applicable to all mechanical
systems. Decoupling the dynamics was important because classical control design
is best suited to SISO systems because it. relies heavily on inferences and analysis of
visual aids such as Bode plots which only represent. one input-output relation between
parameters. In the case of a MIMO system, Bode plots of diagonal 1/O terms ( i.e.

Y1/u1,y2/us, etc ) as well as Bode plots of cross-terms (i.e. y;/uz, y2/u1, etc.), would
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have to be analyzed simultaneously, rendering this approach rather inconvenient.

In order to be able to work with a MIMO system directly, it is more convenient
to adopt state space methods whose matrix representations, although less intuitive,
allow MIMO systems to be supported far more easily. In this regard, the procedure
which is adopted in this chapter is the design of a controller using optimal control
methods, also referred to as Linear Quadratic control (LQ). The rest of the chapter
will cover the steps involved in designing an optimal controller and will point out the
heuristic steps involved in its design. An LQR system is based upon feedback of all the
system states, i.e. full state feedback, but this is not available to us, as the problem
statement clearly specifies. An observer must therefore be included in the system
design to estimate the states which are not directly accessible. The chosen observer is
the Kalman filter also referred to as the optimal estimator because its design parallels
that of the LQR. The combined LQR-Kalman Filter system is referred to as the Linear
Quadratic Gaussian (LQG); the term Gaussian entering because the Kalman filter

assumes a Gaussian model of noise for its rejection properties.

8.2 Discrete Plant

In the previous chapter, the controller was designed in continuous time and then
mapped to discrete time by emulation techniques. This last step was iraportant
because in a real setting the controller will most. likely be implemented on a digital
computer. In this chapter we take another approach and carry out the controller
design in discrete-time from the start. We will use a 2 kHz sampling frequency since
we showed in the previous chapter that with this choice we will be able to capture
all the resonances. Taking the ZOH of (7.14)-(7.17) we can re-write the plant ia the

discrete time form

q(k+1) = ®q(k) + Tu(k) (8.1)
y(k) =Cq + Du(k) (8.2)
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where the matrices ®,I", C, D are the new matrices defining the plant.

8.3 Properties of LQR

LQR design is another form of state feedback design in which the goal is to find a
set. of gains which will place the poles of the closed loop system in specific locations.
However, unlike pole placement techniques in which the designer is faced with the
dilemma of having to decide upon n (n being the order of the system) desired pole
location, LQR techniques are attractive in that the procedures systematically set the
poles at locations which are in a sense optimal. Optimal in this sense does not refer
to global optimality, it refers instead to the optimal solution of minimizing the cost
function, J. Tkis represents a quadratic expression in the states (or alternatively the
outputs since the two are linearly related for a linear system) and inputs normally of

the form
1

N

¥ [xT(kQx(k) + uT(K)Ru(k)] (8.3)

In the above equation N is the discrete time indicator, x is the state vector, u is the
input vector, and the matrices Q and R are the state and input weighting matrices
respectively. It is required that Q be at least positive semidefinite while as R be
positive definite.

There are several important properties of LQR which are worth mentioning al-
though for complete detaiis refer to [20]. First of all, and most fundamental, it can
be shown either through defining a Lyapunov function or other means that the gain
matrix K derived from the steady state solution of the Algebraic Riccati Equation
(ARE) yields an asymptotically stable system. It can also be shown that LQR de-
sign guarantees a certain level of stability robustness, most. noticeably that the phase
margin is at least £60°. On a Nyquist diagram this is represented by having a unit
circle centered around the -1 point and the plot of the controlled system will never
enter that region. Another robustness guarantee is that the controller derived from
the LQR procedure will remain stable if its gains are increased by any factor > 1

(this is referred to as having a positive gain margin of oco) and still be stable if the
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gains are reduced by a factor of up to % (this is referred to as having a negative gain
margin of %) In either of these cases, stability is maintained but performance guar-
antees are lost and performance is obviously suboptimal for the given cost function.
For completeness we also note that being a pole placement technique, using gains to
change pole locations does not affect the order of the system.

To carry out LQR. design, several assumptions need to be satisfied. It is assumed
that the entire state vector is available for feedback. For the wafer stepper design at
hand, this is not the case since access is limited to the two outputs y; and y, which
calls for an observer to be introduced in the system. Adding the observer requires that
the plant be detectable otherwise states could not be reconstructed. The observer
design will be discussed later in the chapter. Another requirement is that the plant
be stabilizable which is a formal way of proving that the closed loop system poles can
be placed arbitrarily in any location with the appropriate selection of gains, and the
poles that cannot be placed are stable. Stabilizability is a subset of reachability and
detectability is a subset of observability. Under these assumptions the LQR is the
optimal input

u(t) = -Kx (8.4)

which minimizes the cost function (8.3) subject to the dynamic constraints of the
system (8.1).

In order to proceed with this design approach, it is necessary to show first that
the plant is both detectable and stabilizable ard hence the system is minimal. We
start by proving reachability of the system. For the system defined by (8.1), complete
state controllability can be proved by first finding the modal matrix, S, such that

S™'AS =],

where J, is the Jordan canonical representation for the system. The eigenvalues for
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the discrete plant are

( 1 )

1

0.9996 + 0.0020824i
0.9996-0.0020824i
0.77757+0.54356;
0.77757-0.54350i

0.98066-+0.0056896i

| 0.99966-0.0056896i |

(8.5)

The complex Jordan form is a diagonal matrix of these eigenvalues, and the modal
matrix is the matrix of the right eigenvectors of the system. Note that the system
is very stiff so the modal matrix is close to singular. Having determined these, the

system is state controllable if and only if
e no two Jordan blocks in J, are associated with the same eigenvalues

o the elements of any row of S7*I" that carrespond to the last row of each Jordan

block are not, all zero

o the elements of each row of 87T that correspond to distinct eigenvalues are

not. all zero.

The plant. passes these three conditions and is therefore reachable. In order to test

for observability we test for the following properties :
e no two Jordan blocks are associated with the same eigenvalue

e no columns of CS that correspond to the first row of each Jordan block consist.

of zero elements

e no columns of CS that correspond to distinct eigenvalues consist. of zero ele-

ments.

Again we find that the plant passes these conditions.
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8.4 Regulator Design

The order for the model-based controller with the observer will be twice the order
of the plant alone since the state variables of both the plant, x, and the observer,
X, are required to describe the dynamics of the system. For an eighth order system
with two outputs this means selecting 32 gains. The task can be reduced by invoking
the Separation Principle which states that the closed loop dynamics matrix of the
system with compensator and observer will be block upper triangular and thus the
eigenvalues of the closed loop system will be those of the controller as well as those of
the observer. This allows us to design the controller and compensator independently.
In this section we shall focus on the controller design only and the goal is to form a

setup whose general form is shown in Figure 8-1.

yref(k) + e(k) F(k) k k
e Ny =O——{ K 2 ety = @0 + Tty s ¢ |2

Figure 8-1: LQR setup

The matrix Ny is the State Command Matrix and the structure of the closed loop
setup is the State Command Structure which derives its name from the fact that the
reference input is the direct reference to the states for a linear combination of the
latter). There are two inputs to the plant and there are also two outputs; the case of
equal number of inputs and outputs is the only case which has a unique solution. As

was done in the previous chapter, it is known that

y1 =-—¢s and Y2 = —q3 — G5 — Q7

and physical constraints require y; < 200 um. We therefore reference qs = 0, and we
also reference q; = 0 since we can’t, and don’t want to, control the relative motion
within the kinematic coupling. This coupling is very stiff which would require a

high bandwidth controller as well as a large force input; but more importantly the
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z-1

yref(k) _i e(k) . F(k)’ X(k’) y(k)

x(k+1) = ®x(k) + I'u(k)

Figure 8-2: Block diagram for integral control with full-state feedback

actuators do not act directly on ¢g;. We therefore conclude that the desired reference
is
Y2 = —q3

and thus
Ny=(00 —1000000)".

Note that N, commands nine states in anticipation of what is discussed below. Having
decided on the control strategy to adopt, the choice is now on what control structure
to use. There are several possibilities: simple state feedback structure, integral con-
troller, feedforward controller, just to name a few. A simple structure would seem
adequate for the task however in an attempt to increase performance of the system
it was decided that an integrator should be used in the systern to help drive g3 to the
desired trajectory as fast and efficiently as possible. With this state augmentation
the dynamics becomes ninth order and the compensated setup iz shown in Figure 8-2.

Referring to this figure the new state is defined as

go(k + 1) = go(k) + T(gares — q3) - (8.6)

where T is the sampling interval of T=0.0005 s. This requires the system matrices

for the integral model to be redefined as in (§.7)-(8.10).
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& 0
&y = (8.7)
v 1

where =0 0 =T 0 0 0 0 0 0O ] and @ is the matrix for the unaugmented

plant.
r
)= (8.8)
0
Ci=(C 0) (8.9)
D;=D (8.10)

The feedback control law for the regulator setup is

u(k) = - [ K —K,} (:(i))) (8.11)

which is composed of two parts : Upnysical states = —K q and Wintegrat state = Ki qo
where u is the vector of inputs (forces) to the plant and the subscripts are self ex-
planatory. There are two inputs to command, F; and F5, therefore K will be a 2 x 8
matrix and K; will be a 2 x 1 vector.

A fundamental distinction must be made between the integral plant model and
the physical plant model: the actual physical plant does not contain the integral
state. The latter is added in a control scheme aimed at improving performance but,
is a purely fictitious state which exists only inside the computer.

The integral model has now been put in the general form of (8.1) which can be used
in LQR design. In order to minimize (8.3) it remains to chose the weighting matrices
Q and R. The latter are only weakly connected to performance and experimentation
with different sefs of gains showed that the system is extremely stiff with respect to
changes in the weighting matrices. More than the absolute values of the weighting

gains, the performance was more a function of the ratio between the entries. There
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is no universal way of directly correlating the weight matrices to the performance
of the system so LQR inevitably leads to an iterative procedure guided both by
trial and error, and by intuition. Weighting coefficients are constants, (although in
the literature there are LQR techniques based on frequency weighted cost functions
for which this is not true [1, 20]), thus in minimizing the quadratic expression the
optimizing algorithm will minimize the corresponding input or state. Intuition leads
us to think, and this is indeed the case, that the larger the weights the more that
particular combination of states ar inputs is pepalized. Therefore to decrease the
excursion of a specific state or input we would increase the gain associated with its
guadratic form. It is this basic notion which guided the iterative procedure of coming
up with apprapriate weight matrices.

As a starting point for the selection of the weights, we adopt the guidelines com-
monly referred to as the Bryson Rules which suggest that the weight matrices should

be chosen to be diagonal with entries of

1
(max. allowable deviation)?

Using symmetric weighting matrices and a quadratic cost function of the states,
(not. the outputs), would leave us with 39 gains to select. Quite a formidable task
since gain selection is fundamentally a heuristic approach. Furthermore, while as we
have a physical intuition for the effects of diagonal terms in the weighting matrices,
the effect of off-diagonal terms is much harder to zet a feeling for. We will restrict the
choice of weighting matrices to diagonal matrices so that the entries will be directly
related to the penalization of the corresponding state or input. This step reduces the
number of weights to chose to 10. A way of reducing the choice of weights even more
is to use an output transformation to transform a 2 x 2 weight matrix for the outputs,

Q, into a 9 x 9 weight matrix for the states.
Q=C"QC (8.12)

where Cj is the output matrix (8.9). Choice of the gains in this fashion is attractive
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because the weights enter the cost function directly through the important outputs.
This is good since the performance requirement which we’re trying to meet is based
on one of the system outputs. Use of the Bryson Rules for this case would suggest.

the following weighting matrices.

b 0
g=| @
0 1
(10-9)?
R — 20102 0
0 g2

Using these matrices lead to poor performance but they were used as the starting
point for the iterative procedure. Numerous unsuccessful iterations finally convinced.
us that the approach had to be altered snomewhat because it did not take into account,
certain physical considerations of the setup. First, in view of the large (with respect
to the specifications) quantization noise of the LVDT we cannot. rely entirely on our
estimate of g3 or gs. Also, from the point of view of control effort, penalizing g3 very
much means asking for faster performance and hence greater control effort. This is
not desired because g3 is directly related to motion of the heavy coarse stage and high
bandwidth control of it requires much more effort than high bandwidth control of the
smaller masses. These considerations are not taken into account if (8.12) is used; in
fact use of this equation would penalize g3 the most because this state is common
to both y; and y, and it thus considered the most important state. It was therefore
decided that a diagonal weight matrix for the states should be used so that each entry
could be independently adjusted after each iteration. The following weight. matrices

were found to lead to good performance, and we note that they are substantially
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different from the ones suggested by the Bryson Rules.

—~

oo o0 o0 0 O o0 o0 0
oo 0 o o0 0 o0 O 0
00-(-1-0457,0 0 0 o0 o0 O
0o 0 o0 o0 0 o0 O 0
Q= 1 (8.13)
00 0 0 g 0 0 0 O
oo o o 0 0 o0 O 0
00 0 0 0 0 e O O
\00 0 0 0 0 0 0 gy
2 0
R= (8.14)
0 12

Matrix Q penalizes g3 by (106)2, g5 by (107)2, g; by (10°)2 and ¢ by (10'°)2. The
integral state has been penalized the most since it is a non-physical state so we don’t
need to worry about it getting too high (provided, of course, that it remains within
the working limits of the computer). State ¢z is weighed the least because it is directly
related to friction: if we penalized this state too much we are asking for the controller
to track the reference on g3 very closely and in the presence of friction this will lead
to chattering and very high control activity. The weight on g5 was also chosen fo
be rather loose because of the large quantization level, o0 penalizing this state more
would lead to chattering introduced by quantization. Finally, the weighting of q; was
made more stringent. because the kinematic coupling is stiff and only allows nanometer
level excursions in q;. We note again that while these were the guidelines we used in
searching for appropriate weights, many iterations were required to come up with the
values presented above.

Attempts were made to plot. the locus of the closed loop poles as a function of
the weighting matrices with the idea of checking the asymptotic behaviours of LQR.
The idea was abandoned because the scaling of the system matrices led to singularity

problems owing to the finite precision of the computer.
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8.5 Estimator design

It was previously shown that the plant was observable so in this section we focus on
the design of an observer. The natural choice is to use a Kalman Filter (KF) whose
derivation is the dual of the LQR procedure, in that the optimal estimator gain matrix
is the outcome of minimizing another cost. function. The overall structure of a KF is
the same as that of a current estimator, (8.15), so Kalman filtering boils down to a

method of selecting the gains of the current estimator, £.
%(k) = %(k) + K. [y(k) — 7(K)] (8.15)
where X is the prediction estimate from the previous time interval.
x(k + 1) = ®x(k) + I'ulk) (8.16)
We can rewrite the above equation grouping terms together as follows
%(k+1)=[® - K.C®|%(k) + [[ —K.,CT|u(k) + Koy(k+1)  (8.17)
The plant is assumed to obey a stochastic difference equation having the general form
x(k+1) =®x(k) + Tu(k) + Aw(k) (8.18)

where w is the vector of process noise disturbance entering the plant and is assumed
to have certain statistical properties corresponding to a stationary continuous time
white Gaussian noise with zero mean. A is the matrix showing how this disturbance
enters the dynamics.

In the classical Kalman filter formulation, it is assumed that measurements can

only be made in the presence of additive whi‘e noise

y(k) = Cx(k) + v(k) (8.19)
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o

2 +
Figure 8-3: Block diagram for a current. estimator

where v(k) is the process measurement noise assumed to be a continuous time white
Gaussian random process independent of w, with zero mean.
For the wafer stepper setup we identify the disturbances as the ground vibrations,

friction force and quantization of the sensors, which we can divide into driving noise

wik) =( Friction )

and measurement noise.

Floor vibr.

v(k) = (

Quantization in y,
Quantization in y;

From the setup we know that friction enters the same way as — Fj, while as ground

vibration enters through ¢,.

8.6 Current estimator

The current. estimator uses measurement up to time ¢ = k to produce a state estimate
at the same sampling interval. The block diagram of this estimator is shown in
Figure 8-3. A useful fac\ about the current. estimator can be proved by defining the
state error vector as

X=x-—X

This definition then leads to the state error dynamics for the plant with noise

%(k+ 1) = [® — Ko C®)%(k) + [A — KcCA] w(k) — K v(k +1)
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which is a stable dynamic system if
Ai[® — KC®|| <1

where ); is the i" eigenvalue of ® — K,C®. It can be shown that if the system
defined by (®,C) is detectable then it is guaranteed that there is at least one filter
gain matrix K, such that the filter is stable.

The KF enjoys most, of the same properties of as LQR, foremost. that the procedure
guarantees a stable filter. However, while as both LQR and KF have robustness
properties if each is analyzed independently the combined system, LQG, does not
have robustness guarantees; the only guarantee that can be made is stability. During
the iteration procedure, several LQG designs were tried which led to unstable closed
loop systems, but the instabilities were due to numerical limitations of the computer.

The weighting matrices for the estimator cost funiction are the covariance matrices
of the process and measurement noise. Under the assumption that the process noises
are stationary and hence arise from a time invariant parent distribution, the mean
of the noises for random processes x(t) and y(t) are p; and p, both of which are
independent. of time.

For arbitrary means of the noises, the covariance functions are related to the

autocorrelation functions by the following equations [17].
C:I:I = Rzz(T) - ﬂi (820)

Cyy = Ryy(7) — 1y
Czy = Ray(T) — prapty

We associate the random variable z with friction and y with ground vibrations. The
latter is a sum of two sinusoids each centered about. zero therefore it has a zero mean

value, p, = 0. From the above relations and from the definition of autocorrelation
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we redefine y; = y(t) and ¥ = y(t + 1)
s o}
Cow=PRu(r) = [ [ _w19ap(on, ) o (8.21)
For a random process of ground vibration having the form
y(t) = a11(t) + a262(t)

where a; = e; and a; = e; are constant amplitudes and ¢, = cos(w,t + ), ¢ =

cos(wqt + 6) are themselves independent randam processes in the variable #
Ry, = a‘%R¢l¢l + a1 a2[Rp,4, + Rpe,] + ag Ry,

hawever, the process is deterministic because ground vibrations are assumed to be

exactly known and thus the pdf of 8 is non-zero only at the origin :

1 6=0
p(0) = (8.22)
0 elsewhere

Inserting (8.22) into (8.21) gives the covariance of the ground vibrations as
R,, = €2 cos(w)T) + € ez cos(w;T) cos(wyT) + €3 cos(woT) (8.23)

We can find an upper bound for (8.23) by utilizing

|Rpyga(T)* < Ry, (0) Ry, (0) (8.24)
|R¢1¢|(T)| < R¢l‘ﬁl (0) (8'25)
[ Rpata (T) < Ry (0) (8.26)

Therefore, inserting (8.24)-(8.26) in (8.23) the ground vibration covariance becomes

Ry < e +eres+ b
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Figure 8-4: Plot of variable versus quantized value

which we can simplify even further by noting that the problem statement specifies

e; > e;. Therefore as a starting point in the design of the KF we can say
R, =~e3 = 107® (8.27)

For friction we cannot perform a similar analysis because we cannot. say a priori
how the friction is going to oscillate between +10 N. We can, nonetheless say that
R.s x c® where c is the magnitude of the Coulomb friction. This leads to an initial
trial value of

R.. = (10)* (8.28)

Having calculated starting estimates for driving noise covariance we now look
for estimates of the measurement noise covariance. Measurement noise is taken as
deriving solely from quantization of the sensors and not from external interference.

The plot. of the actual value of a variable versus its quantized value, x4, is shown in
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Figure 8-5: Round-off error

p(e)
A

0

q q
2 2

Figure 8-6: Uniform pdf

Figure 8-4 while Figure 8-5 shows the round-off error, ¢, of the quantization.

In both plots ¢ is the quantization step. If we imagine a random variable z(k)
that takes on values in a scattered way at successive sampling instants then it is
reasonable to suppose that the errors will be scattered over the range —q/2 — ¢q/2.
Furthermore, there is no reason to believe that the error has a greater probability
of taking on certain values rather than other values and since the signal will jump
several quantization steps in a sampling interval there is reason to assume that the
signal is uncorrelated. It therefore secms reasonable to say that the error is equally
likely to be anywhere in the range —g/2 < ¢ < ¢/2 and that its pdf is hence a
uniform distribution as shown in Figure 8-6. The covariance of a uniform, zero mean

distribution is easily found to be

Ceelk) = % .
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Knowing that the quantization step of the LVDT is 25 nm and that of the interfer-

ometer is 2.5 nm we get the following covariances.

Cuyw, = 5.2 x 10717 (8.29)
Cuopw, = 5.2 x 10719 (8.30)

We now have all the components to design the estimator: use the following ma-

trices to find K, and use this (8.17).
@e =& (not Q[)

([ 25x10-10 —1.25x 10-7 )
1x 1076 -5 x 1074
~275x 1079 3.3 x 101!
—1.1 x10°° -2 x 1077
_ (8.31)
2.5 x 107°
1 x107°
6 x 10°13

\ 3.6 x 107°

0
0
0
0

Ce=C

Using the weighting matrices derived in this section together with (8.13) and (8.14)
gave a reasonable staring performance: the RMS was 3.02 x 10~7 however actuator
onc =aturated since very fast excursions of 500 N were required. Adjusting the entries
in the covariance matrices and simulating the system we were able to see the effects
of parameter changes on the performance, and used this to guide the selection of the
weighting matrices. It was noticed that entry Qe(1,1), where the matrix Qe is the
driving noise covariance matrix, had the most impact on the estimate of ¢3 as well
as the excursions of g3 and on the control effort. Fi. This fact is intuitive because
this particular entry in the matrix is associated with how the mathematics of the

minimization process deals with the friction in the system. Entry Qe(2,2) was also
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found to have a very large impact on the forces. We note however that too large of
a ratio [Qe(1,1)]/[Qe(2,2)] led to an unstable closed loop system. As was mentioned
before this was due not to failure of LQG to provide a stable system, rather to
numerical problems owing to the mumerical stiffness of the system and finite precision
of the computer. Similar instability resulted if the ratio [Re(1,1)]/[Re(2,2)] was too
high, where R, is the measurement noise covariance matrix. On the whole, increasing
all the parameters from their initial estimates was seen to lead to better performance,

and good results were obtained with the following set. of weighting matrices.

9 - 100 0 5.32)

0 1

52 x 10°13 0
R, = (8.33)
0 5.2 x 10715

8.7 Simulation Results

In this section we present the results of the using matrices (8.13), (8.14), (8.32),
(8.33) in the LQG procedure. Supplying a reference trajectory for state g3 gave results
which were very similar to the ones presented in this section. However, slightly better
performance was found to be obtainable if we supplied a reference trajectory for both
gs and g4 where the latier is the derivative of the former. The controller design
technique does not change at all, and the gain matrices K and K; are obtained in
the exact same way as was described in the previous sections; the same goes for the
observer gains. We note also that introduction of a reference trajectory does not alter
the poles of the system it only changes the closed loop zeros [11].

Figure 8-7 shows how the system was implemented in Simulink. The RMS value
for this design was 7.41 x 107 m which amply met the specifications requested.
Simulations also showed that the result was quite insensitive with respect to changes
in the covariance matrices, however it was quite susceptible to the controller weighting

matrices.

163



[ TY
woi4
liesgb*a)

%901D [EnBIQ

1z I ¥
" : ] Bl
v gl =3 23
8 5 3| &
S - Q Ej:;._‘
<3 £ 8 &2 z 3 c
1 &l 32
g5 ‘ ]
~ g2 ory -+
= <™ gi zli:-l a+|1—]
§§ 2l a1 (3R _4§ B

SelEs eng

PIOH
BPIO0IeZ
104u0)
e

wquenb JesT)

1xnyy 2k inding

Figure 8-7: Simulink block diagram used to simulate the design.
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Figure 8-8: Response of output y;.

Figures 8-8 and 8-9 show the outputs, with y, being the output of interest. The
physical constraints on movement of the flexures holding the fine stage are met. Owing
to the quantization of the LVDT, simulation showed that if in the matrix (8.13) the
weight given to g5 was increased, it would lead to the control signal becoming far
more oscillatory and hence necessitating a much higher bandwidth controller. This
is intuitively obvious because by penalizing g5 more we are requesting that it be
controlled more stringently which is not possible because the quantization steps are
so large.

Figures 8-10 and 8-12 show that the actnators are well below their saturation
levels. The bandwidth required by actuator one would be something to look more
into depending on the physical hardware available, while as use of a voice coil setup
like the one used for the magnetic bearing presented in this thesis can be shown to
have more than enough slew rate (bandwidth) for this design. Earlier we noted the

effect of increasing the weight of g5 in (8.13). We show this in Figure 8-11 where
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Figure 8-9: Referenced (dashed) and actual (solid) response of output ys,.
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Figure 8-10: Required actuation force Fj.
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Figure 8-11: Required force F; if weight of g5 is increased to 1/(1079)2.
the observer used in exactly the same, but a larger weight of 1/(107°)? is used in
(8.13) (all other weights remain the same) to calculate the controller gains. This plot
highlights the excessive bandwidth required.

Figures 8-14 - 8-17 show the estimation errors of how the Kalman Filter esti-
mates the states. The last plot, Figure 8-18 plots the Coulomb friction which after a
transient of =~ 0.35 s, (0.34 s being the time which the reference trajectory takes to
reach the desired displacement value of 0.02 m), starts switching at virtually every
sampling interval. A noticeable phenomenon brought out by these plots is the rapid
convergence of the state estimates at the onset of the rapidly changing friction. Note
how in the initial transient when friction is not oscillating and is fixed at +10 N, the
KF converges to estimates which have a constant bias. From Figures 8-14 and 8-15
g4 is estimated with a constant bias of —4.5 x 10~* m/s and ¢ with a bias of 4 x 10~*
m/s both from the actual values of the states. Similarly from Figures 8-16 and 8-17

the estimate of g5 converges with an error of 7.2 x 10-7 m/s, and for g3 the error is a
g q
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Figure 8-12: Required actuation force Fy.

constant —6.8 x 10~7 m/s. However at the onset. of oscillating friction the estimates
rapidly converge to the real values of the states. The explanation for the convergence
to the wrong estimates lies in some of the assumption of the Kalman Filter not being
satisfied. The derivation assumes zero mean white Gaussian noise with a positive def-
inite covariance matrix, Q.. From (8.21) we find that the mean and autocorrelation
for constant friction of +10 N are p; = 10 N and R, = 106m? respectively, which
shows that the zero mean assumption is being violated. Furthermore, inserting these
values in (8.20) shows that C;; = 0 which makes Q. positive semi-definite. However
when friction starts oscillating the mean value of the square signal gets closer and
closer to zero with time, and the covariance becomes o ¢? which is what we assumed

in our design.
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Figure 8-13: Referenced (dashed) and simulated (solid) plot of gg.
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Figure 8-14: State estimate error for g.
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Figure 8-16: State estimate error of g3.

170



Error in g5_est (m)

Coulomb friction (N)

x 10

[,

H

w
¥
1

N
¥

10

0.2 0.4 0.6 0.8 1 1.2 14 1.6
time (s)

Figure 8-17: State estimate error of gs.
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Figure 8-18: Time history of Coulomb friction in the system.
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