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Abstract
The relatively flat energy landscapes associated with intrinsically disordered proteins makes
modeling these systems especially problematic. A comprehensive model for these proteins
requires one to build an ensemble consisting of a finite collection of structures, and their
corresponding relative stabilities, which adequately capture the range of accessible states of the
protein. In this regard, methods that use computational techniques to interpret experimental data in
terms of such ensembles are an essential part of the modeling process. In this review, we critically
assess the advantages and limitations of current techniques and discuss new methods for the
validation of these ensembles.

Introduction
Thermal fluctuations cause proteins to sample a variety of conformations during their
biological lifetime, where the probability of each conformation is determined by the
topography of the underlying energy landscape. Folded proteins exhibit energy landscapes
that have a well-defined global energy minimum (Fig. 1A). By contrast, intrinsically
disordered proteins (IDPs) correspond to a class of polypeptides with relatively flat energy
landscapes (Fig. 1B) and consequently, these proteins sample a relatively large and diverse
set of conformations at room temperature [1–2]. A great deal of interest in understanding the
structure of IDPs has emerged due to their proposed role in neurodegenerative disorders
such as Parkinson’s and Alzheimer’s diseases [3–11]. Therefore, a detailed characterization
of these systems could pave the way to the development of new therapeutics through
structure based drug design [12–13].

The earliest attempts at modeling disordered protein states were aimed at describing folded
proteins under denaturing conditions[14–17]. Denatured proteins and IDPs share the
characteristic that experimental observables correspond to averages over a diverse ensemble
of conformations. Therefore, the typical approach to constructing an ensemble for both
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folded proteins under denaturing conditions and IDPs is to generate a set of conformations
that have ensemble averages that agree with experimental values. When formulated in this
way, the approach is straightforward; i.e., generate a diverse set of conformations and then
find a subset of structures and their relative stabilities (or weights) that agree with
experiment. In other cases, the ensemble is constructed using purely theoretical methods and
the predicted data are compared to experiment[18–19]. While important insights have been
obtained using this latter approach, using experimental data to guide the construction of the
ensemble helps to limit the space of possible solutions.

In practice, constructing an ensemble from experimental data is quite a challenging task
because the amount of data that are typically available pales in comparison to the number of
parameters needed to uniquely define the ensemble. In other words, there are typically many
different ensembles that agree with any given set of experimental data. Hence the
optimization problem described above leads to degenerate solutions. In light of this, how
does one reliably infer a set of conformations and weights that capture the essential features
of the energy landscape, from the available experimental data? In this article, we review
recent advances in this area and provide discussion regarding the advantages and limitations
of various techniques.

Sources of experimental data
To date, most of the experimental measurements that have been used to guide the
construction of unfolded ensembles correspond to observables obtained via NMR
spectroscopy. Examples of such measurements include chemical shifts, which provide
information about local conformational preferences [20–22**], scalar couplings, which
report on backbone dihedral angles, [23*], Residual Dipolar Couplings (RDCs), which
report on the angle of a bond relative to an external frame of reference, [8,22**,24*–28] and
Paramagnetic Relaxation Enhancement (PRE) effects, which provide long-range distance
restraints [7,29**]. These data can be combined with radius of gyration (Rg) estimates or
scattering profiles from Small Angle X-Ray Scattering (SAXS) [9,30–32]. FRET studies
have also provided additional experimental data that can further limit the available space of
solutions [33–35]. In most cases, the measured quantities correspond to ensemble averages
over a vast set of distinct conformations that interconvert on a fairly rapid timescale.
Therefore to ensure that the calculated ensemble agrees with experiment, one must compute
the corresponding observable from the ensemble and compare these data to the
corresponding experimental measurements.

A number of programs, such as SHIFTX [36], SPARTA [37], CamShift [38] and SHIFTS
[39] among others, can be used to estimate chemical shifts from the atomic coordinates of a
protein structure. PALES [40] is typically used to estimate the RDCs, although other
methods based on the radius of gyration tensor or the shape of the molecular surface are also
available [41–43]. It is important to keep in mind that the prediction of experimental
observables from a structure may not be entirely accurate [36,42]. For example, calculated
RDCs are often rescaled to better fit the data to account for uncertainty in the concentration
of the alignment medium [8]. It is also possible that experimental conditions, such as the
introduction of an alignment medium for measuring RDCs [44] or introducing a spin label to
the protein to measure PREs, could perturb the underlying ensemble.

Validation of Ensemble Building Methods
Before discussing specific algorithms used for constructing ensembles it is useful to
introduce a technique, which we will refer to as the reference ensemble method, which has
become a standard tool for evaluating the performance of these methods [22**,45*–47]. The
reference ensemble method is illustrated in Fig. 2. A reference ensemble is a pre-defined
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“truth,” i.e. a pre-specified set of conformations and their statistical weights that can be used
to calculate synthetic experimental data. The synthetic experimental data, therefore,
correspond to measurements that would arise if the protein in question had the
conformational distribution of the reference ensemble.

Within this formalism the marker of success is clear. That is, can the ensemble building
algorithm being evaluated reproduce the reference ensemble using only the synthetic
experimental data? More precisely, the synthetic experimental data is fed into the ensemble
building algorithm, which produces an “output” ensemble. Comparison of the reference and
output ensembles allows one to assess the performance of the algorithm (Fig. 2). This
method is powerful because it allows one to control the sources of uncertainty in the
problem; one can use the reference ensemble method to analyze the effects of experimental
error or even systematic error in the prediction algorithms on the resulting ensemble, or
these sources of uncertainty can be eliminated completely to examine the performance of the
algorithm under ideal circumstances.

Ensemble-restrained MD simulations
Restrained MD simulations introduce a term into the potential function that biases the
simulation towards regions of conformational space that agree with experimental
observations. For an IDP, the restraints should be applied to an entire ensemble rather than
an individual structure [45*]. This is accomplished by simulating multiple replicas of the
protein in parallel and calculating the biasing potential based on averages taken over all of
the replicas [45*,48]. Ganguly and Chen [29**] used the reference ensemble method to
examine the performance of ensemble-restrained MD using only PRE derived distance
restraints. The study found that the method performed poorly unless a very large number of
distance restraints were used - more than 4 PRE distance restraints per residue per replica.
They suggested that ensembles with a large number of replicas may be under-restrained
because only a small number of conformations in the ensemble need to satisfy the restraint
due to the r−6 weighting of the PRE effect. Subsequently, Allison et al. [45*] applied
ensemble-restrained MD using approximately 2 PRE derived distance restraints per residue
per replica in combination with the Rg to model the ensemble of α-synuclein. The Rg
provides independent information to the PRE distances, and therefore helps to mitigate the
problem encountered by Ganguly and Chen. In addition, the studies were performed on
different proteins and used slightly different methods for implementing the distance
restraints. Allison et al. first used the reference ensemble method to show that the number
and type of restraints used in the study was adequate for accurately constructing ensembles
and also cross-validated their ensemble using predictions of other types of experimental data
that were not incorporated in the modeling procedure.

These studies highlight both the strengths and disadvantages of the method. When a
relatively large number of constraints are known, it is possible to obtain an accurate
representation of the ensemble. Nevertheless, it is difficult to know exactly how many
restraints are sufficient to accurately model the protein. Also, it is likely that not all types of
experimental data are created equal in that some types of data may be more informative than
others. For example, while data obtained from PRE experiments are useful for estimating
average inter-residue distances in an ensemble, it is important to note that in order to obtain
these data one must introduce a paramagnetic probe into the protein. Furthermore, it is not
clear whether such modifications alter the conformational distribution of the protein [49].
Therefore, it is likely that both the number of experimental constraints and the types of
experimental data used are important factors that determine whether the method will find an
accurate ensemble. While ensemble restrained MD simulations constitutes a useful and
important tool in our arsenal for modeling IDPs, additional studies are needed to more fully
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define the limitations of the method and under what circumstances it is expected to yield
accurate results.

Ensemble construction using a pre-defined conformational library
Another method for constructing ensembles for IDPs is to first generate a library of
conformations and then to select a subset of conformations from this library such that
averages calculated from this subset agree with the experimental data. The initial
conformational library may be generated with MD, perhaps using techniques to enhance
conformational sampling (see [50] for a review) like replica exchange [51], accelerated MD
[46] or quenched MD [21], by piecing together small peptide fragments that have been
constructed using MD simulations [22**], or with statistical coil models such as Flexible-
Meccano [24*,47] or TraDES [23*,52–53]. The statistical coil models usually involve a
simplified potential function taking into account backbone dihedral angle distributions and
some type of excluded volume interactions.

Once the conformational library has been constructed, a smaller sample of conformations is
selected to minimize the difference between the predicted and experimental data. The
selection process typically involves some form of Monte Carlo, e.g. ENSEMBLE [17,52–
54] or Sample and Select (SAS) [34*,55–56], or evolutionary algorithm, e.g. ASTEROIDS
[20,24*,47], that performs a stochastic search for a set of conformations that give calculated
values that agree with the experimental measurements. The conformations in the ensembles
generated using ASTEROIDS, ENSEMBLE (in its most recent applications) and SAS are
equally weighted, so that the statistical properties of the conformational distribution are
represented implicitly by the composition of the final set of conformations rather than by
explicit statistical weights for each conformation. Salmon et al. [47] and Mittag et al. [52]
recently used the ASTEROIDS and ENSEMBLE methods, respectively, to identify transient
long-ranged contacts in two IDPs.

A related approach to the selection of a sample of structures from a conformational library is
to explicitly estimate the statistical weight of each conformation in the library. In fact, the
selection of conformations from a library is really just a particular way of specifying weights
over the entire structural library, where a conformation is assigned a weight of 0 if it is not
included in the ensemble and a weight of 1/n if it is included in the ensemble (where n is the
number of chosen structures). Hence at its core, selecting a subset of structures from a larger
structural library is a subset of the more general problem of specifying a set of weights for a
given set of structures. In the Energy-minima Mapping and Weighting (EMW) algorithm,
both the sample of conformations and their statistical weights are optimized simultaneously
using a simulated annealing protocol [21,57]. In this instance the weight of any given
structure can vary from 0 to 1, and in general the set of structural weights spans a wide range
of possibilities. Application of EMW to the second microtubule binding repeat of tau protein
as well as an aggregation-prone mutant suggested that the mutation lead to aggregation-
initiating regions of tau protein to adopt more extended states, thereby promoting the
formation of aggregates rich in extended secondary structure [21].

Degeneracy and model construction
Degeneracy of the ensembles with respect to the experimental measurements is one problem
that plagues the construction of IDP ensembles. At its core, the problem of degeneracy
arises because in practice the number of experimental constraints is small relative to the
number of degrees of freedom that are needed to uniquely specify the ensemble. Fisher,
Huang and Stultz [22**] used the reference ensemble method to show that one can often
find many sets of statistical weights (for a pre-specified set of conformations) that will agree
with a given dataset to within experimental uncertainty, but are all very different from the

Fisher and Stultz Page 4

Curr Opin Struct Biol. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



“true” weights. Furthermore, it was shown that not all reference ensembles are created
equal, some are easy to reconstruct while others are very hard, and that uncertainty in the
predicted values of the experimental observables for each structure can have a detrimental
effect on algorithm performance. The take home message is that agreement with
experimental data alone does not guarantee that an ensemble is accurate. While this is
known to be a significant problem, few methods have attempted to explicitly deal with the
degeneracy issue. In prior work, Huang and Stultz [21] and Marsh and Forman-Kay [54]
utilized similar approaches to mitigate the problem of degenerate ensembles by constructing
multiple ensembles and making inferences based on characteristics they had in common.
The idea is that although one cannot be sure that the final ensemble is accurate, if one
generates many different ensembles and identifies structural features that are recur in the
different ensembles, it is likely that inferences made on the preserved structural elements are
accurate. The drawback here is that what defines a preserved structural feature is somewhat
subjective. Moreover, it is not clear how many ensembles one needs to analyze to have
confidence that the identified preserved structural features are not present because of chance
alone.

An alternate approach is to calculate quantitative estimates of our uncertainty of a
constructed ensemble, given a pre-specified set of experimental measurements. Bayesian
inference provides a statistical framework for quantifying this uncertainty and for
propagating it to parameters estimated from the ensemble in the form of confidence intervals
[22**,30,58]. A recently described Bayesian Weighting (BW) algorithm [22**] uses a
Bayesian framework for estimating the weights of a pre-defined set of conformations. In
fact, the BW algorithm computes a probability distribution over all possible ways of
weighting the conformations in the library. The global uncertainty of the statistical weights
can be calculated from this probability distribution in terms of a posterior divergence or
uncertainty parameter – a metric which is akin to the standard deviation of a Gaussian
distribution. The posterior divergence ranges from 0 to 1, corresponding to a high and low
confidence in the estimated population weights, respectively. An empirical study using
reference ensembles suggested that when the uncertainty parameter is 0, one can be
confident that the ensemble is accurate, assuming that the pre-specified set of structures is
diverse enough to capture a wide range of energetically favorable conformations.
Nonetheless, when the uncertainty parameter is non-zero we can still express calculated
values from the ensemble with rigorous confidence intervals. The BW algorithm was
applied to the K18 construct of Tau protein to construct confidence intervals examining the
presence of long-ranged contacts [22**]. It was found that mutations known to affect the
K18 aggregation propensity preferentially occur near regions that were identified to be
involved in long-ranged contacts with high confidence.

Conclusions and future directions
Any comprehensive description of an IDP necessitates the construction of an ensemble – a
finite collection of conformations and weights – that capture the essence of the
conformational distribution of the protein. A variety of different approaches have been
developed for constructing ensembles for IDPs, each of which has its own advantages and
limitations. In the past few years, a number of advances have been made in our ability to
model the conformational ensembles of IDPs. Many of these advances, including the use of
reference ensembles, cross validation and Bayesian statistics, have focused on developing
methods for assessing the validity of structural models.

There remain plenty of open methodological and conceptual problems in the computational
modeling of IDP ensembles. Because each of the techniques discussed above is based on a
specific set of assumptions (e.g. that the experimental conditions do not perturb the
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ensemble) it is crucial to continue to develop methods for validating ensembles and for
estimating their associated uncertainty. As more IDP ensembles are constructed, it will also
become important to develop methods for comparing different ensembles [59] or generating
consensus estimates from multiple ensembles.

We learn a great deal more about the IDP structural universe with each model of an IDP
conformational ensemble that is constructed. In the last few years alone, we have learned
that IDPs are not well described as pure random coils [23*], that some IDP ensembles may
contain long-ranged contacts [7,22**,47] and that these contacts may be associated with
important functional properties [22**]. Due, in part, to progress in computational modeling
our understanding of IDPs is growing at an increasingly fast rate and we look forward to the
surprising results that are yet to be discovered. Progress in the field would be greatly
enhanced if all new ensemble generation algorithms and experimental data on IDPs (e.g.,
chemical shift values, RDCs, etc), were deposited in publically accessible repositories like
the BioMagResBank [60] or the Database of Protein Disorder [61].
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Figure 1.
The energy landscape of a folded protein (A) exhibits a well-defined minimum energy state
corresponding to the folded conformation. In comparison, the energy landscape of an IDP
(B) lacks a deep energy minimum.
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Figure 2.
A schematic representation of the Reference Ensemble Method for validating ensemble
construction algorithms.
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