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Theory of Sorption Hysteresis in Nanoporous Solids:
II. Molecular Condensation

Martin Z. Bazant1 and Zdeněk P. Bažant2

November 22, 2011

Abstract: Motivated by the puzzle of sorption hysteresis in Portland cement concrete or cement
paste, we develop in Part II of this study a general theory of vapor sorption and desorption from
nanoporous solids, which attributes hysteresis to hindered molecular condensation with attractive
lateral interactions. The classical mean-field theory of van der Waals is applied to predict the de-
pendence of hysteresis on temperature and pore size, using the regular solution model and gradient
energy of Cahn and Hilliard. A simple “hierarchical wetting” model for thin nanopores is developed to
describe the case of strong wetting by the first monolayer, followed by condensation of nanodroplets
and nanobubbles in the bulk. The model predicts a larger hysteresis critical temperature and en-
hanced hysteresis for molecular condensation across nanopores at high vapor pressure than within
monolayers at low vapor pressure. For heterogeneous pores, the theory predicts sorption/desorption
sequences similar to those seen in molecular dynamics simulations, where the interfacial energy (or
gradient penalty) at nanopore junctions acts as a free energy barrier for snap-through instabilities.
The model helps to quantitatively understand recent experimental data for concrete or cement paste
wetting and drying cycles and suggests new experiments at different temperatures and humidity
sweep rates.

Introduction

As introduced in Part I [1], a long-standing puzzle in the thermodynamics of concrete or cement
paste and other nanoporous solids is the pronounced hysteresis of the sorption/desorption
isotherm at low vapor pressure [36, 26, 27, 38, 39, 31, 3, 25]. Typical experimental data for
wetting/drying cycles in concrete is shown in Fig 1, and similar behavior can be observed (or
expected) in many other important situations, such as water sorption in dry soils or wood,
carbon sequestration in porous absorbents, and natural gas recovery from nanoporous shales.
At low vapor pressures, well below the saturation pressure, very little bulk liquid exists in the
larger pores, and so the observed hysteresis cannot be attributed to the classical “ink-bottle
effect” of capillarity from continuum fluid mechanics [16, 15]. Moreover, in nanopores, the
Laplace tension of a continuous meniscus can easily exceed the tensile strength of the liquid.
So it is widely believed that adsorbate layers must be uniformly spread over the entire internal
surface area at low vapor pressure and unable to coalesce into nonuniform patches or droplets.

This thinking underlies the ubiquitous method of determining the internal surface area of
porous media by fitting the sorption isotherm to the Brunauer-Emmett-Teller (BET) equation
of state [17], which is strictly valid only for a statistically homogeneous adsorbate on a flat
surface. Since the BET isotherm is perfectly reversible, the internal surface area can only be
unambiguously inferred from one type of measurement, either sorption or desorption, starting
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(a) (b)

Figure 1: Experimental data for isothermal water-vapor desorption and sorption cycles in
concrete at different temperatures. (a) Pronounced hysteresis at T = 23◦C. (b) Suppressed
hysteresis at T = 44◦C. [Reproduced from Fig. 2(e) and 2(g) of Baroghel-Bouny [44] with
permission.]

from a well defined reproducible initial state. Typically, the BET fit is made for sorption
starting from very low vapor pressure, assuming that the internal surface is initially bare, but
it is troubling to neglect the desorption data, which would imply a different BET internal
surface area, without a theory to explain its origin. Moreover, if a mathematical theory could
be developed, then in principle one could extract more complete information about the internal
pore structure, such as the statistical distributions of pore thickness or pore area, from the
history dependence of sorption and desorption.

If one insists on the validity of any reversible adsorption isotherm (not only BET), then
the only way to explain the observed hysteresis is to invoke changes in the accessible internal
surface area, e.g. due to chemical transformations or structural damage [27, 41, 38, 25, 30].
As a result, this picture of “pore collapse” and subsequent reopening upon desorption and
sorption, respectively, is firmly entrenched, but it is noteworthy that, sixty years after the first
observations of sorption hysteresis in concrete and cement paste, no mathematical theory has
emerged to justify this assumption or make any testable theoretical predictions. For example,
it is not clear how the pore collapse hypothesis could explain the strong dependence of sorption
hysteresis in concrete on temperature and chemical composition of the vapor observed in recent
experiments [44], as shown in Figure 1, or how it could be reconciled with the measured shrink-
age values. While some adsorption-related structural changes surely occur in cement paste
and concrete and other nanoporous solids, especially at high vapor pressures, the repeatability
of sorption hysteresis (after the first few cycles) and the relatively small concomitant macro-
scopic deformations seem inconsistent with the very drastic changes to the pore structure at
the nanoscale required by the pore-collapse hypothesis.

In this work, we show that, due to molecular discreteness, hysteresis is a natural and un-
avoidable feature of sorption in nanoporous solids with fixed pore geometries. In Part I [1],
we showed that misfit pressures due to discrete molecular forces around heterogeneities in the
nanopore geometry generally provide local energy barriers for the passage of the adsorbate-vapor
interface, consistent with evidence from molecular dynamics simulations [19, 20, 22, 23, 21]. As
the thermodynamic driving force is increased by changing the vapor pressure, the interface re-
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mains pinned at the heterogeneity until a sudden “snap-through instability” occurs, analogous
to snap-through buckling of a flat arch. This theory is also reminiscent of the Peierls-Nabarro
model of dislocation motion in crystals, where the misfit strain energy due to discrete molecular
forces in the dislocation core provides the crucial resistance to dislocation motion, which cannot
be predicted by continuum elasticity [54]. A common feature of both theories is the assumption
of a layered solid-like material undergoing sudden, localized rearrangements in response to a
driving force that overcome the effective “lattice resistance”. An important difference between
nanopore sorption and dislocation motion, however, is that there is no reference crystal structure
or long-range order in the adsorbate, and so much more dramatic molecular rearrangements,
such as wetting phase transformations, are possible. Predicting such phase transformations and
their dependence on temperature requires a more detailed molecular model.

Here, in Part II, we consider sorption from the general perspective of statistical thermody-
namics and develop a simple mathematical theory that connects hysteresis to inter-molecular
forces. The model is quantitatively consistent with the concrete sorption data in Figure 1 and
suggests new directions for experiments and simulations to further develop the theory. The
key insight is that sorption hysteresis is possible at sufficiently low temperature in any fixed
surface geometry, as long as the adsorbed molecules have a short-range attraction. Although
weaker than the orthogonal forces that bind the adsorbate to the surface, such attractive lateral
forces within the adsorbate itself promote condensation into stable high density patches below
a critical temperature, regardless of the pore geometry. This phenomenon can be inhibited by
geometrical or chemical heterogeneities on the surface, but molecular condensation can also oc-
cur in homogeneous pores or on flat surfaces, as the metastable homogeneous adsorbate phase
separates into stable low-density and high-density phases within the porous structure.

Before we begin, let us explain our choice of terminology. The term “capillary condensation”
has been used to describe wetting/de-wetting transitions on surfaces, which comprise a well-
studied class of phase separation phenomena in confined systems [18]. We avoid the use of this
term because in many fields, such as cement and concrete research (which motivates our work),
the term “capillary water” refers to liquid water at high vapor pressure in large (> 1µm) pores,
which can be modeled by continuum fluid mechanics with constant gas/liquid surface tension.
Here, we suggest the term “molecular condensation” to refer to the phase separation of discrete
adsorbed molecules in nanopores at low vapor pressure, which requires a statistical mechanical
treatment.

Mean-Field Theory of Molecular Condensation

Capillarity at the Molecular Scale: The macroscopic continuum theory of capillarity cannot
be applied to very thin adsorbate layers, whose individual molecules interact strongly with the
surface – and each other [82, 83, 81, 18]. The density of an adsorbate is generally heterogeneous
and lies between that of the bulk liquid and vapor phases, due to attractive forces with the
surface which stabilize individual adatoms and (upon contact with a second surface) give rise
to disjoining pressure. These “orthogonal forces” allow adsorbed molecules to be distributed
over a surface without maintaining close lateral contacts. In a nanoscale pore, the total energy
of the missing lateral bonds would be grossly overestimated, if they were approximated by
sharp, continuous surfaces using the bulk surface tension and the nanoscale curvature. Instead,
one must develop a theory that takes “lateral forces” between discrete adsorbate molecules
explicitly into account.

The theory of snap-through instabilities in nonuniform pore geometries from Part I is an
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Figure 2: Molecular condensation in a straight, monolayer-thick pore during sorption (left)
and desorption (right) from the vapor at low temperature. Attractive lateral forces lead to
the spontaneous separation of high-density and low-density adsorbate phases from metastable
homogeneous phases. Analogous thermodynamic instabilities of the adsorbate distribution
would also occur in thicker pores or flat surfaces, only across a different range of relative
humidities, depending on the free energies of adsorption and lateral interaction. In non-uniform
pores, the snap-through instability is another manifestation of this general phenomenon, driven
by attractive lateral (or inclined) forces in the adsorbate. It naturally leads to sorption hysteresis
without invoking any changes in pore structure.

example of such an approach, but the effect of attractive lateral forces is much more general and
can lead to sorption hysteresis even in perfectly uniform geometries. The basic idea is already
illustrated by the simplest case of monolayer adsorption on a flat bare surface or monolayer-
thick pore, as shown in Figure 2. (The latter problem is equivalent to lithium insertion and
extraction in a crystalline nanoparticle in a Li-ion battery [68, 69, 67], and we apply similar
concepts and models for adsorption dynamics [60].) As humidity increases during sorption
(left), the dilute homogeneous adsorbate a becomes thermodynamically unstable and separates
b into locally stable low-density and high-density phases, which quickly grow and merge into a
stable homogeneous adsorbate at high density c. As humidity then decreases during desorption
(right), the homogeneous phase d destabilizes and coalesces to form the stable, dense phase e,
which quickly shrinks and leaves behind a stable, homogeneous low-density adsorbate f . The
sketches in Figure 2 assume nucleation of the second phase at the pore openings, although
other phase-separation pathways are possible.

The key point is that molecular condensation, or separation into low-density and high-
density adsorbate phases, is history dependent and occurs by triggering the sudden instability
of a metastable state. The specific pore geometry is largely irrelevant. Spontaneous phase
separation of the adsorbate is mathematically analogous to the snap-through instability of shells
and arches, but the physical interpretation in terms of buckling failure may not always apply.
More importantly, in order to predict the effect of temperature on sorption hysteresis, one must
go beyond mechanical analogs and consider the statistical thermodynamics of adsorption.

Thermodynamics of Adsorption with Lateral Forces: Consider a nanopore or sur-
face film, whose state is described by a dimensionless filling Θ = Γw/Γ1, which may depend on
lateral position x. The Gibbs free energy per surface site g can be expressed for a homogeneous
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adsorbate as follows:
ghom(Θ, x) = gmix(Θ, x)−∆ga(x) Θ (1)

where gmix is the free energy of mixing in the pore volume Vs(x) associated with surface site
x, which contains an expected number Θ(x) of adsorbate molecules, whose free energy change
(per molecule) due to adsorption from the vapor phase is

∆ga = kBT ln c0 + ∆qa. (2)

The first term is a reference entropy, expressed in terms of a dimensionless concentration c0

(as in BET theory) and Boltzman’s constant kB, and the second term, ∆qa, is the latent heat
of adsorption minus that of liquefaction per site. To focus on molecular effects, here in Part
II we define energies per particle, rather than per mole as in Part I (∆Qa

RT
= ∆qa

kBT
), and we

drop the overbars for ease of notation. Lateral interactions among adsorbate molecules are
included gmix, e.g. according to the regular solution model of the next section. Orthogonal
surface-adsorbate forces are treated separately via ∆ga. In the case of pairwise interactions,
the enthalpic contribution can be expressed as

∆qa =
∫
Vs
d~r
∫
S
d~rs Φs(|~r − ~rs) ps(~r|~rs) (3)

where the Φs(r) is the pair potential between adsorbate and surface molecules, ps(~r|~rs) is the
conditional probability density of finding a surface molecule at ~rs anywhere in the solid volume
S given an adsorbate molecule at ~r in the pore volume Vs(x) associated with site x. In an
isotropic bulk liquid, the pair correlation function g(r) is defined by ps(~r|~r′) = 4πr2g(r) where
r = |~r − ~r′|, but here the pore surface breaks symmetry.

Due to attractive lateral interactions, at sufficiently low temperature the homogeneous free
energy of mixing gmix(Θ) becomes non-convex and leads to at least two local minima in the
total free energy, corresponding to stable high-density (liquid-like) and low-density (vapor-
like) adsorbate phases on the surface, as shown in Fig. 3(a). A common tangent construction
connecting the two local minima, which restores convexity across the “miscibility gap”, provides
the mean free energy of a phase separated system consisting of appropriate proportions of the
immiscible endpoint phases (neglecting interphasial tension, discussed below). Phase separation
is illustrated by sketches in Figure 2, whose labels correspond to the letters in Figure 3.
During sorption, the homogeneous adsorbate passes the low-density free energy minimum a,
destabilizes and drops down to the common tangent upon phase separation b, and becomes
homogeneous again after passing the high-density free energy minimum c. A similar free-energy
path is followed in reverse during desorption, only the free-energy overshoot in the metastable
homogeneous adsorbate occurs at high density rather than low density. This is the fundamental
source of hysteresis.

The connection with sorption hysteresis becomes more clear from the “diffusional” chemical
potential of the homogeneous adsorbate,

µhom =
dghom
dΘ

=
dgmix
dΘ

−∆ga (4)

which is the net free energy change to add a molecule (and remove any vacant site). As
sketched in Fig. 3(b), a non-convex free energy corresponds to a non-monotonic chemical
potential versus composition. In equilibrium, the chemical potential of an adatom equals that
of a vapor molecule,

µv = kBT lnh (5)
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Figure 3: Effects of lateral forces on adsorption. (a) Gibbs free energy per site g versus
dimensionless filling Θ of adsorbate. The homogeneous free energy ghom (thin solid line) is
made convex by a common tangent construction (thick solid line), which corresponds to phase
separation into high and low density regions (neglecting interphasial tension). (b) Chemical
potential µ per site for homogeneous (thin solid) and phase separated (thick solid) states. (c)
The corresponing filling fraction versus relative humidity h for quasi-equilibrium between the
adsorbate and vapor. Hysteresis during adsorption (a → b → c in Fig. 10) or desorption
(d→ e→ f) results from the delay in phase separation due to either nucleation (dotted lines)
or spinodal decomposition (dashed lines).

where we set the zero of chemical potential in the saturated vapor phase (h = 1). Setting µhom =
µv yields the equilibrium sorption curve (Θ vs h) for homogeneous filling of the nanopore,
shown in Fig. 3(c). The non-convex free energy is seen to correspond to a non-invertible
sorption curve with three degenerate filling fractions over the “spinodal range” of humidities,
∆hsp. Over the corresponding spinodal gap of filling fractions, where the free energy loses

convexity (d
2ghom
dΘ2 < 0) and the chemical potential decreases with concentration (dµhom

dΘ
< 0),

the homogeneous adsorbate is linearly unstable with respect to the growth of infinitesimal
perturbations of the concentration profile (spinodal decomposition). This leads to sorption
hysteresis with varying humidity, as represented by the dashed lines in Figure 3.

It is possible for phase separation to occur for any metastable composition within the mis-
cibility gap, but outside the spinodal gap, a sufficiently large critical nucleus of the second
phase is required. In the typical case of heterogeneous nucleation, phase separation is triggered
at nanopore defects or boundaries, as sketched in Figure 2. If nucleation occurs before spin-
odal decomposition, then phase separation occurs with less overshoot of the chemical potential
plateau and smaller sorption hysteresis, as denoted by the dotted lines in Figure 3 (b) and (c),
respectively. For sufficiently slow humidity variations, the nanopore should be able to reversibly
follow the convex equilibrium free energy surface without any hysteresis, but depending on ex-
perimental conditions, the required nucleation and growth may not have enough time to occur.
In the absence of nucleation, the spinodal humidity range ∆hsp provides a convenient upper
bound on the equilibrium sorption hysteresis, and so we now proceed to calculate it using a
simple model.

Regular Solution Model: The simplest mean-field model of adsorption with lateral forces
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Figure 4: Thermodynamics of condensation in the regular solution model for an adsorbed
monolayer with attractive intermolecular forces (ω > 0). (a) Free energy of mixing versus
filling fraction. (b) Homogeneous chemical potential (shifted by the adsorption free energy)
versus filling fraction. (c) Filling fraction versus humidity. Below the critical temperature
Tc = ω

2kB
, enthalpy dominates entropy; the free energy is non-convex; the chemical potential is

non-monotonic; and the adsorption isotherms are multi-valued, leading to hysteresis.
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is the regular solution model for a binary mixture [55, 56, 59], whose free energy of mixing,

gmix = kBT [Θ ln Θ + (1−Θ) ln(1−Θ)] + ωΘ(1−Θ) (6)

comes from the continuum limit of a lattice gas of filled and empty sites. The first two terms
represent the configurational entropy of particles and holes in the lattice, and the last term
represents the enthalpy of mixing, expressed as a particle-hole interaction. The lattice gas
could represent individual adsorbate molecules in a monolayer, either on a free surface or in
a flat one-molecule-thick nanopore as in Fig. 2. As discussed below, the same model could
also provide a first approximation of hindered multilayer adsorption, where the particles and
holes represent coarsened molecular droplets and bubbles spanning the interior of a nanopore.
Therefore, we will proceed to analyze sorption hysteresis in general terms without yet referring
a specific pore geometry.

Lateral adsorbate-adsorbate forces are captured by the regular solution parameter, ω, equal
to the mean energy of pairwise attraction between adsorbed molecules,

ω =
∫
Vs
d~r
∫
P
d~r′

1

2
Φ(|~r − ~r′|) p(~r|~r′) (7)

where Φ(r) is the pair potential between adsorbate molecules, p(~r|~r′) is the conditional proba-
bility density of finding a molecule at ~r′ anywhere in the pore volume P given a molecule at ~r
in the site volume Vs. (The factor 1

2
avoids double counting pair interactions.) Note that ∆ga

and ω depend on position in a heterogeneous pore, whose geometry or surface chemistry varies
with position.

As shown in Figure 4(a), the homogeneous free energy of mixing reflects a competition
between entropy, which favors mixing (Θ = 1

2
) and enthalpy, which favors de-mixing or phase

separation (Θ = 0, 1). At high temperature, entropy dominates, and the free energy is convex
with a minimum at Θ = 1

2
. Below a critical temperature,

Tc =
ω

2kB
(8)

enthalpy (due to attractive lateral forces) begins to dominate entropy, and there is a pitchfork
bifurcation (in the mathematical sense), leading to two local minima of the free energy density,
corresponding to stable high-density and low-density phases. The miscibility gap is the range of
metastable homogeneous compositions, bounded by the circles in Fig. 4(a). The homogeneous
chemical potential is given by

µhom = kBT ln
Θ

1−Θ
+ ω(1− 2Θ)−∆ga (9)

which is plotted for different temperatures in Figure 4(b) to illustrate the onset of non-
monotonic behavior for T < Tc. The spinodal gap is the range of unstable compositions,
bounded by circles in Fig. 4(b).

The corresponding adsorption isotherm, obtained by setting µhom = µv, is given by

cTh =
(

Θhom

1−Θhom

)
exp

(
ω(1− 2Θhom)

kBT

)
, where cT = c0 exp

(
∆qa
kBT

)
(10)

and plotted in Figure 4(c). At high temperature, we recover the classical Langmuir isotherm
without lateral interactions,

Θhom ∼
cTh

1 + cTh
for T � Tc. (11)
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Figure 5: Simple analytical prediction of the temperature dependence of sorption hysteresis,
based on the regular solution model for lateral interactions in the adsorbate. The change
in relative humidity across the spinodal range ∆hsp is plotted against reduced temperature
T/Tc, where we set cT = 54 for monolayer water adsorption in cement paste or concrete.
We also neglect the weak temperature dependence of cT since adsorption forces are much
stronger than lateral forces (∆qa � 2kBTc = ω). The exact solution (12)-(13) (solid curve)
is well approximated over this range by the asymptotic power law at the critical point (14)
(dashed curve). At higher temperatures, T > Tc, molecular condensation is thermodynamically
unfavorable due to the dominance of entropy over enthalpy.

Below the critical point, T < Tc, the modified Langmuir isotherm with lateral interactions
becomes non-monotonic, and the sorption curve exhibits hysteresis.

The spinodal humidity range, which provides an upper bound on the humidity hysteresis in
this model, can be derived analytically:

∆hsp =
2

c0

f
(
Tc
T

)
exp

(
−∆qa
kBT

)
(12)

where the Arrhenius temperature dependence is augmented by a prefactor

f(u) =
cT ∆hsp

2
= (2u− 1) sinh v − v cosh v, where v = 2

√
u(u− 1), u =

Tc
T

=
ω

2kBT
. (13)

An important prediction of this model is that sorption hysteresis decreases with increasing
temperature and vanishes as a power law at the critical point:

∆hsp ∼
8

3cT

(
Tc
T
− 1

)3/2

as T → Tc, (14)

The same 3
2

critical exponent also arises in the temperature dependence of the interfacial tension
between the low-density and high-density phases in the van der Waals theory of capillarity [87]
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and the related Cahn-Hilliard model of phase separation [56], which we consider in the next
section. (In structural mechanics, this scaling relation is analogous to Koiter’s 2/3-power law for
the difference between the critical load at symmetric bifurcation of a perfect structure and the
stability limit of imperfect structures with vanishing imperfections [10]. There is also Koiter’s
1/2-power law for the bifurcation of a perfect system that is asymmetric, and we would expect
analogous scaling, ∆hsp ∝ (Tc− T )2 in a different model with broken symmetry in the entropy
and/or enthalpy density around Θ = 1

2
.) More generally, the theory of critical phenomena

provides many ways for nontrivial power law scalings to arise, ∆hsp ∝ (Tc − T )ν , and the
exponent ν is best determined by experiment for a given material.

As shown in Figure 5, the critical power law (14) is a good approximation of the ex-
act formula (12)-(13) over a broad temperature range corresponding to typical hysteresis val-
ues, ∆h < 10. In these formulae, the weak dependence of cT on temperature can be ne-
glected if orthogonal adsorption forces are much stronger than lateral intermolecular forces,
∆qa � 2kBTc = ω, which is always the case whenever there is significant adsorption from the
vapor. (Otherwise, bulk liquid condensation would occur before surface adsorption.) For water
adsorption in cement paste or concrete, this assumption is consistent with an early estimate of
∆qa/kB = ∆Qa/R = 2700 K [47], which is likely to be much larger than Tc, as discussed below
(see also [48], p. 210).

In such cases, the dominant temperature dependence in (12) comes from the prefactor
(13), which vanishes at the critical point. Physically, sorption hysteresis disappears above the
critical temperature because entropy, which promotes uniform surface coverage, then dominates
the enthalpy of lateral interactions, which promotes molecular condensation. This is a very
general effect, which will also arise in more complicated models (e.g. for multilayer adsorption
[52, 51, 49, 50]), as long as the lateral interactions among adsorbed molecules are attractive.

Molecular Condensation on Bounded Surfaces

Interphasial Tension: The foregoing theory describes sorption hysteresis for an infinite
pore or surface, since it considers only the homogeneous free energy per site. In a finite system,
phase separation is hindered by the interfacial (or “interphasial”) tension between immiscible
stable phases, below the critical temperature. The standard mathematical model of interphasial
tension is based on the concept of a diffuse interface of continuously varying density, first
introduced by Van der Waals in his original “thermodynamic theory of capillarity” [87] and
still used today to describe surface wetting by thin liquid films [81, 84, 88, 85]. The same
model has also been used to describe disjoining pressure in liquid-filled nanopores [86], albeit
without making connections to adsorption isotherms and sorption hysteresis in nanoporous
solids. Modern interest in this approach and many subsequent extensions sprang from the
celebrated paper of Cahn and Hilliard [56], which used the regular solution model to rederive
and extend key results of Van der Waals [87] and paved the way for phase-field models in
materials science [58, 59].

Given the homogeneous free energy (1) per discretized pore volume Vs(~r) (associated with
fixed sites on the nearby pore surface), the total free energy G of an arbitrary (possible multiply
connected) pore geometry can be expressed as an integral over the pore volume,

G[Θ, S] =
∫
d~r
[
ghom(Θ, ~r) +

1

2
∇Θ ·K(~r)∇Θ

]
(15)

which is a functional of Θ(~r), the dimensionless filling fraction of the volume Vs(~r) (e.g. mea-
sured in monolayers, and possibly larger than one for a site volume spanning a nanopore) and
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S(~r), a function prescribing the surface geometry of the pore (e.g. via a level-set or phase-field
description). The coefficient K in the second term is the “gradient penalty tensor”, which
approximates corrections to the free energy density due to density variations, as well as the
interphasial tension (see below). In principle, both ghom and K depend on position within the
pore geometry specified by S. In Eq. (15), we neglect the mechanical energy stored in the solid
phase [58, 62, 70], in order to emphasize our prediction that hysteresis can occur in nanoporous
solids whose mechanical deformation, if any, is too small to affect the equilibrium distribution
of the adsorbate. It would be straightforward to incorporate mechanical response of the solid
matrix in a more sophisticated model, e.g. following Ref. [70].

The diffusional chemical potential is given by the functional derivative with respect to
composition,

µ =
δG

δΘ
= µhom −∇ ·K∇Θ (16)

where µhom = g′hom is the homogeneous chemical potential (4). Physically, this corresponds to
the free energy change upon creating a continuum “molecule” represented by a delta function
at ~r. Outside the spinodal range, setting chemical potential µ = constant yields one uniform
solution, corresponding to a stable homogeneous phase. Within the spinodal range, there are
three uniform solutions, two stable and one unstable, and µ = constant yields a Beltrami
differential equation, whose nontrivial solution corresponds to a phase separated system with
a diffuse phase boundary. In the regime of strong phase separation ω � kBT or T � Tc, the
width λ of the phase boundary scales as

λ =

√
K

ω
(17)

in each eigendirection of the K tensor, and the corresponding interphasial tension (energy/area)
is

γ = ρs
√
Kω (18)

where ρs is the density of sites per volume, or the inverse of the single-site volume [56, 69].
Suppressed Condensation in Small Pores: The tendency for phase separation is

reduced in small systems, as the phase interface area to bulk volume ratio increases. More
precisely, both the spinodal range [72] and miscibility gap [79, 80, 69] shrink and ultimately
disappear, as the system size becomes comparable to the phase boundary thickness. For phase
separation in solid materials, if the two phases have different equilibrium volumes, then elastic
coherency strain energy further reduces the miscibility and spinodal gaps and can eliminate
phase separation [70].

The suppression of phase transformations with decreasing system size is a universal phe-
nomenon, which is drawing attention in other fields and has important technological applica-
tions. For example, it controls the “ultimate fineness”, or minimum feature size, of polymer-in-
polymer microdispersions [79, 80]. Recently, it has also played a major role in the development
of high-rate Li-ion batteries using lithium iron phosphate (LixFePO4), which has a strong ten-
dency for phase separation into Li-rich and Li-poor domains. Ironically, when it was first
explored as an insertion cathode material in microparticle form, LixFePO4 was predicted to
be good for ”low power applications” as a result of slow phase separation dynamics and re-
lated mechanical deformations [73], but today, in nanoparticle form, it is capable of ultrafast
battery discharge (in tens of seconds) while maintaining long cycle life [74]. In addition to size-
dependent diffusivity [75], the main reasons that “nano is different” may be the shrinking of the

11



miscibility gap [61, 62, 69, 63, 70] and the dynamical suppression of phase separation [76, 67, 70].
Analogous phenomena must also occur for vapor sorption in nanopores, as we now explain.

Consider a homogeneous adsorbate Θ = Θ0 in a straight pore or flat surface whose longest
lateral dimension is L. For example, in the case of a perfect cylindrical pore, we set L equal
to the maximum of its length and diameter. This state will be linearly stable to sinusoidal

perturbations of wavevector ~k, given by Θ(~r) = Θ0(1 + εei
~k·~r), if the perturbation increases the

chemical potential, which implies

∂µhom
∂Θ

(Θ0) + ~k ·K~k > 0 (19)

The second term is strictly positive, so in an infinite system, where arbitrarily long wavelength
perturbations (k → 0) with vanishing gradient energy are possible, the spinodal range is defined
by setting the first term to zero, as above. In a finite system, however, there is a minimum
wavelength for perturbations set by the boundary conditions, e.g. given by kmin = π

L
for

constant concentration boundary conditions, reflecting adsorption equilibrium at the farthest
ends of the pores. As a result, the spinodal range of unstable compositions, determined by
µ < 0, is generally reduced [72, 79, 69].

The corresponding spinodal humidity range ∆hsp(L), defined as the jump in the homo-
geneous isotherm humidity between the spinodal points satisfying µ(Θ, L) = 0, is given by
the same formula as derived above, Eqs. (12)-(13), but only with a length-dependent critical
temperature,

Tc(L) = T∞c

(
1− π2λ2

2L2

)
, where T∞c =

ω

2kB
. (20)

The critical point is depressed as the ratio of the system size to the phase boundary thickness
λ
L

decreases. For very small systems, L < Lc = πλ√
2
, the critical temperature vanishes, and the

homogeneous state is linearly stable, even at zero temperature. In simple physical terms, molec-
ular condensation is only possible on surfaces whose length L is large enough to accommodate
an equilibrium phase boundary of thickness λ.

Enhanced Hysteresis in Small Pores: One might expect hysteresis to be suppressed
in short pores, due to the reduced spinodal and miscibility gaps, but this is not the case since
it is the humidity, not the filling fraction, that is experimentally controlled. The basic physics
is sketched in Figure 6. First consider the possibility of nucleation, where the second phase
is created by fluctuations over the surface or at defects or pore edges. As the pore size is
decreased, there are fewer sites for nucleation, and the reduced nucleation probability enhances
hysteresis by preserving the homogeneous state as the humidity is varied. Even if nucleation
is very fast, the reduced miscibility gap ∆hLhom increases the corresponding humidity range of
hysteresis, up to the limit set by ∆h∞sp.

In the absence of nucleation, phase separation must occur by spinodal decomposition, which
is also suppressed in short pores. If the humidity passes out of the spinodal range, then the
adsorbate can pass into the infinite-system spinodal gap ∆h∞hom while remaining uniform. After
the overshoot, it experiences a strong thermodynamic driving force to vary the concentration
until the new homogeneous equilibrium state is reached, and phase separation may not have
enough time to occur during this sudden transition. (This non-equilibrium transition state has
recently been called a “quasi-solid solution” [67].) As a result, the infinite-system spinodal
humidity range, ∆h∞sp(T ), given by Eqs. (12)-(14), provides a robust estimate of sorption
hysteresis in finite-length pores of any size if nucleation is too slow to occur over experimental
time scales.
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Figure 6: Molecular condensation on a bounded surface of maximum dimension L (e.g. length
or diameter of a cylindrical pore), where humidity h is controlled (rather than the mean filling
fraction Θ). If nucleation is possible, then, as the miscibility gap ∆ΘL

m shrinks (open circles) and
the nucleation rate decreases with decreasing pore size, the hysteresis (dotted lines) increases
up to the maximum set by the spinodal humidity range, ∆h∞sp. (b) In the absence of nucleation,
the adsorbate undergoes sudden transitions at the infinite-system spinodals (dashed lines), prior
to reaching the reduced spinodal gap ∆ΘL

sp (black points).

Molecular Condensation in Single Nanopores

Theory of Hindered Multilayer Adsorption: A general continuum model of adsorption
in nanoporous media of arbitrary geometry could be based on the van der Waals (or Cahn-
Hilliard) model, Eq. (15), where Θ(~x) is the local mean density of the adsorbate at a point
in the pore. The main difference with monolayer adsorption is that the adsorption free energy
∆ga(~x) would depend on ~x and reflects the decay of surface forces with distance from the pore
walls, including screening effects due to the other molecules. The local interaction energy, ω(~x),
would also depend on position, approaching a bulk value as the influence of surface forces decays
with distance from the nearest wall. The gradient penalty K(~x) would represent the local free
energy difference associated with broken or frustrated molecular bonds (the nanoscale analog
of gas-liquid surface tension), and this, too, would generally depend on position.

The dynamics of the concentration profile in such a model would be described by the Cahn-
Hilliard equation [59, 89],

∂Θ

∂t
= ∇ · [MΘ∇µ] (21)

where the chemical potential µ(Θ, ~x) is given by (16) and the diffusional particle mobility
M(Θ, ~x) generally depends on the concentration and position. For example, in the foregoing
regular solution model for the first monolayer, the mobility should be proportional to the free
volume, M = M0(1 − Θ) (this effect was omitted in early models and yields a “modified
Cahn-Hilliard equation” [89]). More generally, to account for finite pores, one should use
the “Cahn-Hilliard-Reaction model”, which includes thermodynamically consistent boundary
conditions for molecules to enter and leave the pore space [68, 69]. It is beyond the scope
of this paper to analyze or simulate the intrapore adsorbate distribution in detail, but this
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Figure 7: Hierarchical wetting model for hindered multilayer adsorption in nanopores. The
homogeneous isotherm, as in Eq. (22), exhibits two regions of hysteresis: (i) a small loop at
low vapor pressure for low-density (A) and high-density (B) phases in the first monolayer and
(ii) a larger loop at higher vapor pressure for the low-density (C) and high-density (D) phases
of coarsened pore-spanning droplets and bubbles in the bulk fluid, outside the monolayer.

would be interesting to pursue in future work. Such a nanoscale, statistical continuum model
may be able to capture key features of molecular dynamics simulations [18, 19, 20, 22, 23, 21]
at greatly reduced computational cost, thereby allowing extensions to experimental time and
length scales.

Hierarchical Wetting Model: We proceed instead by making some simple approxima-
tions to enable us to predict general features of molecular condensation in nanoporous media.
It is often reasonable to assume that in the first monolayer there are strong surface forces,
which decay quickly with distance from the surface. In case of concrete, for example, water
adsorption in C-S-H nanopores containing dissolved salts involves strong electrostatic forces,
which are screened at the molecular scale due to diffuse charge, solvated ion crowding and
electrostatic correlations [77, 78]. For simplicity, let us assume that the regular solution model
above describes the mean homogeneous coverage Ωhom(h, T ; cT , ω) of the first monolayer on the
surface at low vapor pressure. Here, cT and ω describe the local adsorption and interaction en-
ergies, which could depend on surface heterogeneities or curvature in very small pores. In thick
pores at low vapor pressure, the dynamics of the concentration profile in the first monolayer
could be described by the Allen-Cahn equation [59] for an open system (or its generalization for
nonlinear adsorption kinetics [67]), since gas molecules are freely exchanged with the adsorbate
at all points.

Here we consider what would happen in the general case of nanopores, which are thick
enough to be covered by non-overlapping monolayers at low vapor pressure, but thin enough
to be spanned by a condensed liquid phase at moderate vapor pressures (below the saturation
pressure). Over experimental time scales (e.g. minutes to months), the Cahn-Hilliard equation
predicts that small clusters of molecules or voids resulting from thermal fluctuations of the
homogeneous state will coarsen within the nanopores, so as to minimize the gradient energy
(which is the molecular analog of surface tension). Assuming strong wetting in the first mono-
layer, this coarsening proceeds until the size of the separated nanophases is set by the diameter
of the bulk region just outside the first monolayer.

In that case, as a crude first approximation, we describe the bulk region by another regular
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solution model, whose characteristic lattice size is that of the pore bulk. The filling fraction
of the bulk region is thus given by Θhom(h, T ; cbT , ω

b), where cbT = exp(∆gba/kBT ) and ωb are
effective values for molecular droplets in the pore. The total weight of a homogeneous adsorbate
in the pore is then given by

whom(h, T ) = Γ1Θhom(h, T ; cT , ω) + ΓbΘhom(h, T ; cbT , ω
b). (22)

where Γ1 is the total weight of a full surface monolayer and Γb is the weight of the filled bulk
region. This “Hierarchical Wetting” model is surely oversimplified, but it captures typical
results of molecular dynamics simulations [20, 22, 23, 21] and allows considerable insight into
experimental data, as we now explain.

Surface versus bulk phase separation in nanopores: This very simple model leads to
two types of hysteresis, one due to the condensation of adatom clusters in the first monolayer
at low vapor pressure and the second due to the condensation of pore-spanning clusters of
molecules or voids (“nanodroplets” and “nanobubbles”, respectively) in the bulk pore at higher
vapor pressure. Each hysteresis has its own magnitude and critical temperature. If the pore
radius is R and monolayer thickness, a, then the effective interaction parameter scales with the
geometrical ratio:

ωb

ω
≈ T bc
Tc
≈ ∆hb

∆h
≈ R

a
, (23)

which is typically larger than one, except in molecular scale pores (which might not be macro-
scopically accessible). An interesting implication is that critical temperature T bc for droplet
phase separation in the bulk nanopore is larger from that of the first monolayer Tc by the same
factor α. Well below the critical temperatures, the magnitude of the bulk hysteresis ∆hb (dom-
inated by enthalpy) is also larger than that of the surface layer ∆h, by the same factor. Bulk
hysteresis is also shifted to larger humidities in the multilayer adsorption regime, assuming that
the adsorption energy in the bulk is much less than it is at the surface, ∆gba � ∆ga.

These simple concepts are illustrated in Fig. 7. As the nanopore is emptied and filled,
there are two instabilities corresponding to sudden phase separation in the first monolayer, at
low vapor pressure, and in the bulk, at higher vapor pressure. The resulting desorption and
sorption isotherms for this crude model already resemble the experimental data for concrete or
cement paste at room temperature in Fig. 1. The theory also qualitatively predicts a nontrivial
effect of temperature, which suppresses hysteresis in the monolayers at low vapor pressures
more than in the bulk pores at higher vapor pressures.

Snap-Through Instabilities: The reader may be wondering how our general statis-
tical thermodynamic theory in Part II relates to the snap-through instabilities predicted for
nonuniform pore openings in Part I. One major difference is that the theory of Part I does
not account for the entropy of molecular rearrangements in the adsorbate and thus is mainly
relevant for low temperature, where enthalpy dominates and sorption or desorption proceeds
sequentially through the junction, like a crack tip. In the present model, phase separation
can occur anywhere in the system that achieves a locally metastable state, and thus the sorp-
tion or desorption process can effectively tunnel through a junction. Nevertheless, a junction
between two nanopores of different geometry or surface chemistry can act as a barrier for snap-
through instabilities, due to the interfacial tension associated with lateral interactions across
the junction.

To model the pinning effect of molecular interactions at junctions, we use again the Cahn-
Hilliard (or Van der Waals) model (15), but it suffices to average over the cross section and
focus on density gradients through the junction or pore opening. Relative to the free energy of
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an infinite system, the gradient energy per area (i.e. the interphasial tension at the junction)
can be approximated as

∆Gi ≈ λK

(
∆Θ̃

λ

)2

≈ ωb ∆Θ̃2 (24)

where λ is the local interface width and Θ̃ = Θ/Θmax is the jump in dimensionless adsorbate
density, or total filling fraction (0 < Θ̃ < 1). This additional energy barrier must be overcome
for phase separation to occur across the junction. Just as in the foregoing case of short pores,
the interphasial tension can lead to hindrance or even suppression of phase separation.

When phase separation does occur across the junction, the chemical potential jumps ac-
cording to Eq. (16) and causes an increase in humidity hysteresis at a given mean weight, due
to the need to overcome the interfacial energy at the junction. As shown in Figure 8 for the
heterogeneous pore geometry in (a), this effect can be estimated graphically using Eq. (24) by
plotting in (c) the two homogeneous isotherms as the dimensionless filling fraction Θ̃ versus
humidity h and measuring the density difference ∆Θ̃ between the two curves as the humidity is
varied. The filling fraction jumps are also evident in the density profiles across heterogeneous
pore in (d). The interfacial contribution to hysteresis at each junction, ∆Gi, which leads to the
enlarged hysteresis in (d), can be of comparable magnitude to the intrinsic hysteresis for the
interior of the pore, ωb, since each results from the energy of lateral forces in a cross section of
the pore. As the interfacial energy builds up during sorption, the humidity is gradually ampli-
fied by exp(∆Gi/kBT ), while during desorption the humidity is multiplied by exp(−∆Gi/kBT ).
The net effect is to widen the hysteresis envelope associated with each phase separation process,
e.g. in the first monolayer and the two types of bulk pores.

The sorption/desorption sequences predicted by these arguments using the simple Hierarchi-
cal Wetting Model are similar to those observed in molecular dynamics simulations of wetting
fluids in heterogeneous nanopores by Coasne, Pellenq and collaborators [20, 22, 23, 21]. The
example shown in Figure 8(a) consists of a series of multilayer-thick pores of two different radii
a and b, which terminates at the free surfaces of much larger pores. The bulk regions of the
thicker b pores have smaller adsorption energy ∆gb (larger c−1

T ) and larger interaction energy
ωb for spanning nanodroplets and nanobubbles than those of the thinner a pores. This leads to
the different rescaled isotherms Θ̃(h) for a and b sections plotted in (c), which allow the sorp-
tion/desorption sequences to be predicted. During sorption starting from very low humidity, a
monolayer first covers the entire pore surface in state A, and then bulk molecular condensation
proceeds to the narrower sections in state B, followed by the thicker sections in state C. The
corresponding spatial profiles of the filling fraction are shown in (d), from which the interfacial
energies at the junctions can be estimated using Eq. (24). Due to the larger density jump
at the pore ends, there is a larger interfacial energy there, compared to the internal a/b junc-
tions, and this can cause condensation to occur in outermost pores after the others, leading to
intermediate states B’ and C’ shown in (a).

Solid Matrix Deformation: Although we emphasize the statistical thermodynamic
origin of sorption hysteresis, mechanical deformation of the solid matrix during phase separation
could play an important role, even in the absence of pore collapse. Molecular condensation
events lead to sudden changes in disjoining (or joining) pressure, which can influence neighboring
pores, perhaps even triggering chains of subsequent phase separation events, as stresses are
quickly transmitted through in the solid (at the local speed of sound). Analogous effects of
“coherency strain” due to adsorption in elastic crystal lattices have recently been considered
in Li-ion batteries and shown to contribute to suppression of phase separation and nonlinear
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Figure 8: Molecular condensation in a heterogeneous multilayer nanopore with sections a and
b of two different thicknesses. (a) Typical molecular configurations A, B, B’, C, and C’ at dif-
ferent stages of sorption. (b) Net sorption and desorption isotherms for the nanopore including
interfacial energies with the states A, B, and C indicated. (c) Isotherms of dimensionless filling
fraction Θ̃ (mean density) versus relative humidity h for the a and b sections of the pore, show-
ing the jumps at a/b junctions (dashed lines) and the empty regions at the pore ends (dotted
lines). (d) Spatial density profiles, Θ̃(x), for the states in part (a), where the interfacial energy
due to each jump, which enhances the hysteresis in (b), scales as ωb∆Θ̃2.
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pattern formation, consistent with experimental observations [70]. Ultimately, a complete model
of sorption dynamics in nanoporous solids should take into account viscoelastic relaxation, or
even plastic deformation and damage to the solid matrix, coupled to molecular condensation
and transport.

Molecular Condensation in Nanoporous Solids

Mosaic Instability: It is important to emphasize that quasi-equilibrium phase separation
across a nonuniform network of pores need not be sequential, as suggested in Part I based on
mechanical analogies. As long as there is sufficient time for the chemical potential to equilibrate
across the pore network between tiny, applied steps in humidity, then there is no prescribed order
for the intermittent events of filling or emptying in different pores. At the macroscopic scale,
the resulting “mosaic instability” of discrete molecular condensation events in different, tiny
nanopores manifests itself by accumulating many incremental sorption/desorption isotherms
into a smoother overall curve, as shown in Figure 9. This effect has recently been invoked to
explain the noisy thermodynamic hysteresis of voltage versus state of charge in phase-separating
nanocomposite Li-ion battery cathodes [65, 66].

This approximation inevitably breaks down, however, in sufficiently large porous bodies,
where the transport of mass or heat is too slow to fully equilibrate the system between external
humidity steps. In such cases, the progression of phase separation is biased by transport
limitations and indeed behaves like a sequence of snap-through instabilities propagating through
the porous medium, starting from the edges where the humidity is controlled. Analogous
phenomena have also recently been predicted [71] and observed [64] in Li-ion batteries, where a
narrow front of mosaic instability can propagate across the electrode from the separator, limited
by diffusion of lithium ions in the electrolyte. Similar dynamical phase separation phenomena
must occur during vapor sorption/desorption in porous media, but to our knowledge no simple
theory is yet available for the resulting macroscopic dynamics. Percolation concepts, which
have been applied to sorption hysteresis due to classical capillarity in pore networks [53], may
be useful, but molecular condensation, gas transport and adsorption reaction kinetics should
also be considered. Analyzing the macroscopic dynamics of sorption and desorption in phase
separating nanoporous solids would be a very interesting avenue for future research.

Rate Dependence. Non-equilibrium phenomena always play a role in hysteresis, no
matter how slowly experiment is performed. Whenever transport or adsorption kinetics are
at least partly rate limiting, there will be an additional non-thermodynamic contribution to
hysteresis, sketched in Fig. 9(b), which is related to the work done (or frictional energy dissi-
pated) to drive the system, as noted in Part I. The faster the humidity sweep rate, the larger
the hysteresis, in excess of the thermodynamic contribution described above. This effect is
analogous to the “overpotential” or “internal resistances” observed in battery cycling under
different conditions. For example, galvanostatic discharge is analogous to constant mass flux
dw/dt, and more realistic situations for gas sorption, such as small humidity steps ∆h or con-
stant rate of humidity variation dh/dt, are analogous to potentiostatic intermittent titration
and cyclic voltammetry, respectively. In principle, detailed mathematical modeling of tran-
sient vapor sorption/desorption taking into account transport, adsorption kinetics and phase
separation could enable quantitative information about the material to be extracted from the
rate-dependence of the observed hysteresis.

Temperature Dependence. As noted above, the very simple Hierarchical Wetting
Model already makes an interesting prediction about the temperature dependence of hysteresis
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Figure 9: Molecular condensation in macroscopic nanoporous solids. (a) Discrete nanopore
transformations due to local mosaic instabilities propagate across the material in a narrow front
from the edges where the vapor pressure is controlled. The front thickness scales with sweep
rate dw/dt, and at high rates spans the system. (b) Sorption hysteresis due to quasi-equilibrium
thermodynamics (thick solid lines) corresponding to countless, tiny condensation events (thin
interior curves) for individual nanopores. With increasing sweep rate, there is additional non-
thermodynamic hysteresis (thin exterior curves) due to internal resistances to transport and/or
adsorption reaction kinetics.

in nanoporous solids with strong wetting. As sketched in Figure 10, hysteresis is pronounced
at low temperature and disappears at high temperature, but there is an intermediate range
of temperatures (Tc < T < T bc ) where hysteresis vanishes at low vapor pressure (monolayer
filling) but persists at high vapor pressure (bulk nanopore filling). In complicated nanoporous
geometries, the general effect should remain: As the temperature is increased, hysteresis van-
ishes first at low vapor pressure in the monolayer regime and then at high vapor pressure in the
bulk nanopore regime. The reason is that the effective interaction energy ωb of pore-spanning
nanodroplets and nanobubbles is larger than that of individual adsorbed molecules, due to the
larger number of intermolecular bonds. Similar arguments apply to the interfacial energy ∆Gi

at a nanopore junction, which is larger at high filling than for monolayer coverage. As a result,
the critical hysteresis temperatures for different bulk nanopores are larger than for monolayers.

Re-interpretation of Experimental Data for Concrete:

As noted above, water sorption hysteresis at low humidity in concrete has long been attributed
to pore collapse, in spite of the lack of any testable theory. It is noteworthy, therefore, that a
number of puzzling experimental observations can be explained for the first time by molecular
condensation without invoking any changes in the pore structure. In some cases, our predictions
seem to be quantitatively consistent with the data, although more systematic experiments and
detailed modeling should done, e.g. at different temperatures and humidity sweep rates, to
further test the theory.

• Inert gas versus water vapor. No sorption hysteresis is observed for inert gases,
such as nitrogen, in the same concrete samples that exhibit large hysteresis for water
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Figure 10: Temperature dependence of sorption hysteresis in nanoporous solids with strong
wetting. At low temperature, pronounced hysteresis exists at all vapor pressures (thin solid
curves). Above the critical temperature Tc for phase separation in a monolayer, hysteresis
disappears at low vapor pressure, but remains at high vapor pressure (dashed curves) until the
critical temperature for bulk nanopore phase separation, T bc , is exceeded (thick solid curve).

vapor [44], and our model is able to attribute this effect to differences in lateral forces.
Sorption experiments are usually carried out at room temperature, which is larger than
the critical temperature Tc in our model (8), if the mean pair interaction energy ω is
smaller than 2kBT = 52 meV. This is a reasonable upper bound for the weak lateral van
der Waals forces in adsorbed inert gases, and so negligible hysteresis can be expected.
In contrast, adsorbed water molecules have much stronger attractive forces, leading to
room-temperature hysteresis, as explain next.

• Hysteresis at low vapor pressure. Our theory, although oversimplified, predicts hys-
teresis of a reasonable scale for monolayer water sorption at room temperature. Naively,
we might estimate ω by the hydrogen bond enthalpy in bulk liquid water of 23.3 kJ/mol [46],
which would imply Tc = 1380 K, but this grossly overestimates the lateral pair interac-
tion energy of adsorbed water molecules. A recent molecular dynamics study of water
monolayers on hydrophilic silica surfaces has shown that 90% of the water molecules
are “non-wetting”, having much stronger bonds with the surface than with other water
molecules [45]. If we work backwards from our result in Figure 5, then 1% hysteresis (in
relative humidity) at room temperature implies Tc = 410K or ω =6.8 kJ/mol, while 10%
hysteresis implies Tc = 660K or ω =11 kJ/mol. These are reasonable lateral interaction
energies for adsorbed water molecules, which could quantitatively explain the observed
hysteresis without any pore collapse.

• Hysteresis at moderate vapor pressure. In the regime of multilayer adsorption,
we predict that the scale of hysteresis ∆hb is larger than in the monolayer regime ∆h,
very roughly scaling as the ratio of bulk pore radius to the monolayer thickness. This is
consistent with the larger hysteresis that is always observed in the multilayer region [44].
It may even be possible to make quantitative connections with pore geometry, since the
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C-S-H pores and wetting layers in cement paste are indeed at the scale of 3–10 molecular
diameters, as suggested by the hysteresis ratio.

• Temperature dependence. We predict that sorption hysteresis should decrease with
increasing temperature, although we are not aware of any prior theoretical predictions
or systematic experimental studies of this effect. In a recent study [44], the hysteresis
of water sorption in concrete at low vapor pressure (first monolayer) was negligible at
44◦C but quite significant at 23◦C, albeit in different concrete specimens, as shown in
Fig. 1(a) and (b) respectively. The first adsorption isotherm was also steeper at 44◦C
than at 23◦C (Figs 3a and 9a of [44]), suggesting that the free energy barriers responsible
for hysteresis were lowered in the former case. Moreover, the curve of nearly reversible
sorption/desorption at the higher temperature (Fig. 1(b)) passes roughly through the
center of the hysteresis “window” between the first sorption and desorption curves (Fig.
1(a)) over a wide range of low humidities (h < 60%). The data in Fig. 1(b) also makes
the tantalizing suggestion of lingering hysteresis in the multilayer regime at an elevated
temperature where hysteresis is already suppressed in the monolayer regime. This is
consistent with our prediction that the critical temperature for condensation of larger
droplets in nanopores is much larger than for individual adatoms in the first monolayer,
as shown in Figure. 10.

• Cycling History Dependence: Although we do not claim a quantitative understand-
ing, it makes perfect sense in light of our theory that the first few sorption/desorption
cycles often exhibit strong history dependence, where hysteresis grows with time, until a
more reproducible path is achieved. This would naturally result from trapped condensed
phases (droplets or bubbles) in the adsorbate, which may require nucleation to a larger
perturbation to be released, e.g. from defects, cracks, or chemical heterogeneities. As
explained above in the context of nanopore junctions, any heterogeneity can act as a
pinning site for the adsorbate, effectively removing mass and increasing internal resis-
tance during the initial sorption and desorption cycles. Of course, the same behavior is
observed in rechargeable batteries, where the first few cycles are often very different from
next hundred, e.g. due to the lithium trapping in interfacial films or defect sites, which
lead to an irreversible initial capacity loss.

Conclusion

We have developed a simple thermodynamic theory of sorption/desorption hysteresis in nano
porous solids, based on the concept of hindered molecular condensation. The model makes a
number of novel and testable predictions that seem consistent with previously unexplained data
for cement paste and concrete, without postulating any pore collapse. Further experiments to
systematically study the effects of temperature, humidity sweep rate, cycling behavior, etc.,
are proposed. The theory is very general and could be refined at the nanoscale and connected
with macroscopic transport and mechanical deformation. The possibility of making quantita-
tive predictions directly from the microstructure may lead to new, more accurate methods of
determining the internal surface area and nanopore width distribution directly from the ob-
served hysteresis of sorption and desorption isotherms. For concrete in particular, fruitful new
directions for experiments suggested by our theory would involve systematically varying the
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temperature and humidity sweep rate during sorption/desorption of water vapor.
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[9] Bažant, Z.P. (1975).“Theory of creep and shrinkage in concrete structures: A précis of recent
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