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Abstract

The Support Vector Machine (SVM) is a new and very promising classification and
function approximation technique developed by Vapnik and his group at AT&T Bell
Labs [16] [27] [107], and can be seen as an approximate implementation of the Struc-
tural Risk Minimization (SRM) induction priciple [106].

Since Structural Risk Minimization is an inductive principle that aims at mini-
mizing a bound on the generalization error of a model, rather than minimizing the
Mean Square Error over the data set, ( as Empirical Risk Minimization methods do
) training a SVM to obtain the maximum margin classifier requires a different objec-
tive function. This objective function is optimized by solving a large-scale Quadratic
Programming Problem with linear and box constraints. The problem is considered
non-trivial, since the quadratic matrix is completely dense and its size is square in the
number of data points. Therefore, training problems arising in some real applications
with large data sets are impossible to load in memory, and cannot be solved using
standard nonlinear constrained optimization algorithms.

We present a decomposition algorithm and a computer implementation that can
be used to train SVM’s over large data sets. The main idea behind the decomposition
is the iterative solution of sub-problems and the evaluation of optimality conditions
which are used both to detect improving-cost pivots, and also as a stopping criteria.

We also approach other challenges related to the use of the technique, like the
reduction of its run-time complexity, and the optimization of parameters that were
originally left to the user. The combination of the solutions for these challenges
yield an alternative mathematical formulation for SVMs that is characterized by a
nonlinear program, and that better approximates the Structural Risk Minimization
principle.

As applications of SVM’s, we present results in face and people detection systems,
as well as time series analysis.

Thesis Supervisor: Federico Girosi
Title: Principal Research Scientist

Thesis Supervisor: Tomaso A. Poggio
Title: Uncas and Helen Whitaker Professor
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Chapter 1

Introduction

In recent years Learning Systems have emerged as a practical technology, with suc-
cessful a.pf)lica,tions in many fields. The majority of these applications are concerned
with problems in pattern recognition and function approximation, and make use of
feed-forward network architectures such as multi-layer perceptrons and radial basis
function networks. Also in recent years, it has become widely acknowledged that tech-
niques that rely on well-founded theoretical concepts are preferred to others that may
involve ad hoc procedures, since the former are generally more reliable, predictable
and easier to apply.

This thesis studies a new pattern recognition and function approximation tech-
nique called a Suppért Vector Machine. We consider this novel technique interest-
ing not only because of its deep theoretical framework in statistical learning, but
also because its application requires the solution of a large-scale linearly constrained
quadratic programming problem. We alsc have found that certain improvements on
the technique can be obtained through the formulation and solution of additional
nonlinear optimization problems.

In this introduction we present an overview of learning systems, a primer on
Support Vector Machines (SVM), a list of challenges we encountered when applying
this technique, a brief literature review, the thesis outline, and a list of the main

contributions of this work.

15



1.1 Overview of Learning Systems and Concepts

The main purpose of this section is to offer an overview on Learning Systems, and
more specifically, a paradigm within it called Ezamples-based Learning or Supervised
Learning. We will also describe the function approximation and pattern classification

problem within this paradigm of learning by examples.

1.1.1 What is a Learning System?

A learning system is a computer program that makes decisions based on the accamu-
lated knowledge contained in successfully solved or labeled cases. Unlike an expert
system, which solves problems using a computer model of human reasoning, a pure
learning system can use many different techniques for exploiting available information
and the computational power of a computer, regardless of their relation to human
cognitive processes. These techniques include many highly mathematical methods,
as well as others that simply search systematically over large number of possibilities.

Within this context, we are more interested in learning systems that computa-
tionally extract their decision criteria from sets of correctly labeled eramples without

significant human intervention.

1.1.2 The Paradigm of Example-based Learning

Ezample-based learning is an area of research that has captivated the interest of
many technologists, scientists and mathematicians over the last decade. The field
deals with models of memory retrieval and techniques for empirically discovering
complex relationships in sparse data. The learning approach to software development
is fundamentally different from the traditional programmed computing approach. In
exampie-based learning, a programmer trains a system to perform an information
processing task by providing the system with input features measurements and cor-
responding output values of the task. This pair of input-output values is called an
example. The system learns the task from the input-output examples the program-

mer provides by adaptively modifying its state to implement an appropriate mapping.
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Examp.e-based learning techniques have been used in many areas ranging from stock
market prediction and signal processing to motor control in robots. It is this idea of
training machines instead of having to actually program them that makes learning
especially appealing in areas where general algorithms for dealing with problems are

still relatively unavailable.

1.1.3 Example-based Learning and Function Approxima-
tion

Learning from ezamples is a common supervised-learning paradigm that hypothesizes
a target concept given a stream of input-output examples that describes the concept.
In the domain of real numbers, the task of learning an input-output concept from
a set of examples is essentially equivalent to approximating a multivariate function
that (1) maps input examples onto their respective output values, and (2) reasonably
interpolates between output values at regions of the input space where no examples
are available (80].

The learning problem can thus be more formally stated as follows: Let D =
{(x1,%:) € R¢ x R|i = 1,...,n} be a set of n data points sampled from an unknown
multivariate function f(x), possibly in the presence of noise. The task is to recover the
function f(x), or at least a reasonable estimate of it, by means of an approzimation
function from a function class F(w,x), parameterized by the vector w. For a fixed
function class F, the problem is then to find the set of parameters w that best
approximates f(x) based on information from the set of data points D.

Clearly, how well one can approximate an unknown target function f(x) depends

heavily on the following two factors:

1. The function class F(w,x). Needless to say, it is very important to choose an
approximation function class F' that can represent the unknown target function
f sufficiently well. There would be little point in trying to recover f(x) if the
chosen approximation function class F(w,x) only gives a very poor representa-

tion of f(x) even with optimal parameter values. Some popular network-based
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function classes with universal approximation properties include multilayer per-
ceptron nets [79] [89] and radial basis function nets [64] [80]. Other classical
methods like splines can also be used. A closely related issue is the complez-
ity of the approximation function class, which is traditionally measured by the
number of free parameters in w. A more complex function class usually has a
better chance of approximating an unknown target function well, but it also re-
quires a larger number of data samples to arrive at a reasonable approximation
for predicting unseen data (see [73] for the case of radial basis function nets). In
Sections 2.1 and 2.2 we will discuss an alternative approach to measuring and

controlling this complexity.

. The data sample D. The accuracy of an approximation also depends on
the quality of data in D, i.e., the quality of available information about the
unknown target function f. A larger data sample charts the output value of
f at more input locations, and hence conveys more information about f. It
is well known in learning theory that as the complexity of the approximation
function class F' increases, one must also increase the number of data samples
in D to avoid large approximation errors due to overfitting. The distribution of
data samples is another critical aspeci of D that has often been overlooked in
example-based learning. Ideally, we want a well-distributed data sample that
provides a balanced representation of f. 1f the learning objective is to closely
approximate the unknown target function f at all input locations, then there is
little point in collecting a lot of data at one input location while ignoring other
input locations. Similarly, there is no point in collecting a lot of data at input
locations where the chosen function class F is slowly changing. In the particular
case of Support Vector Machines for pattern classification, we will show in
section 2.3.2 how points located in the boundary between the classes become
the keystones in defining the decision surface F(w,x). A similar geometric
interpretation will be given in section 2.4.3 for Support Vector Machines for

function approximation.
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predicting the clags identities of input patterns, Consider a two-way classification
task that operates op input domain X with output classes W = {wo,w1}. For each
input pattern z € X, let 2, € W be the true class labe] for z. The goal of pattern
classification is to construct a functional mapping, F : X W, such that F (z) = 2,
for all inpuyt patterns z ¢ ¥,

The classifier # can be implemented as a real-value target function S that com-

putes the following conditional probability density: f(z) = P(z, = wi|z). We have:

wr if f(z) = P(z, = w|z) > 0.5

wo otherwise

To construct F » We simply learn the conditional probability density function f from
examples. In Practice, it may not even be necessary to learn the fy]] conditional
probability distributjon function f(z) = P(z, -- wi|z). Any regression function
that interpolates reasonably between the available data samples should suffice, The
training data set D consists of (z,y) pairs in & X {~1.0,1.0}. Each € & is an
example input pattern jp the original problem domain. The corresponding output, y
value is 1.0 if 2z = wy, and —1.0 if Z; = wy.

By way of example, let us consider the problem of Predicting whether the stock
market will go up or down over the next three months. Here there are two classes: (1)
stock average rises; or (2) stock average declines or remajng unchanged. The task is to
predict which situation will occur, based op the observation of Some current economjc
indicators. Thege indicators can be for example: Prime interegt rate, inflation rate,
corporate earnihgs, stock price—to-earnings ratio,etc.

The sample data could be collected by examining economic records over a period

of several years, reflecting varying stock market conditions. The task of the classifier
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is to predict future stock market direction, which could be done by building a function

approximation of the stock market index.

1.2 A Primer on Support Vector Machines

Support Vector Machines can be seen as an approximate implementation of what
Vapnik has defined as Structurai Risk Minimization (SRM), an inductive principle
that aims at minimizing 2 bound on the generalization error of a model, rather than
minimizing the Mean Square Errer over the particular data set.

In this section we present a primer on Support Vector Machines for pattern clas-
sification and regression that merely sketches their properties, but gives the reader
an idea of: (1) the basic terminology; (2) the challenges in applying the technique;
and (3) the impact of the work contained in this thesis.

It is important to remark that this section has been deliberately kept as short and
as simple as possible, and that the technique’s deeper theoretical framework will be

discussed later in chapter 2 of this thesis.

1.2.1 SVMs for Pattern Classification

Support Vector Machines (SVMs) is a learning technique developed by V. Vapnik and
his team at AT&T Bell Laboratories. that can be seen as a new method for train-
ing” polynomial, neural network, or Radial Basis Functions classifiers. The decision
surfaces are found by solving a linearly constrained quadratic programming problem.

In this section we briefly sketch the SVM algorithm and its motivation. A more
detailed description of SVM can be found in chapter 2 of this thesis,[107] (chapter 5)
and [27].

We start from the simple case of two linearly separable classes. We assume that
we have a data set D = {(x;,y;)}., of labeled examples, where y; € {—1,1}, and
we wish to determine, among the infinite number of linear classifiers that separate
the data, which one will have the smallest generalization error. Intuitively, a good

choice is the hyperplane with the maximum margin between the two classes, where
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the margin is defined as the sum of the distances of the hyperplane from the closest

point of the two classes (see figure 1-1).

(a) (b)

Figure 1-1: (a) A Separating Hyperplane with small margin. (b) A Separating Hy-
perplane with larger margin. A better generalization capability is expected from

(b).

If the two classes are non-separable we can still look for the hyperplane that
maximizes the margin and that minimizes a quantity that penalizes misclassification
errors. The trade-off between margin and misclassification errors is controlled by a
positive constant C that has to be chosen beforehand. In this case it can be shown
that the solution to this problem is a linear classifier f(x) = sign(X5o; AiyixTx; + b)
whose coefficients A; (b can later be computed using A) are the solution of the following

QP problem:
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Minimize W(A) =-AT1+1ATDA

A
subject to
(1.1)
ATy =0
A-C1 <0
~A <0

where (A); = ), (1); = 1 and D;; = y;y;x7 x;. It turns out that in easy problems, only
a small number of coefficients ); are different from zero, and since every coefficient
corresponds to a particular data point, this means that the solution is determined by
the data points associated with the non-zero coefficients. These data points, called
support vectors, are the only ones which are relevant for the solution of the problem:
all the other data points could be deleted from the data set and the same solution
would be obtained. Intuitively, the support vectors are the data points that lie at the
border between the two classes. Their number is usually small, and Vapnik showed
that it is proportional to the generalization error of the classifier.

Since it is unlikely that any real life problem can actually be solved using a linear
classifier, the technique has to be extended in order to allow for non-linear decision
surfaces. This is easily done by mapping the original set of variables x into a higher
dimensional feature space: x € R* = z(x) = (¢1(x),-- ., ¢n(Xx)) € R™ and by formu-
lating the linear classification problem in the feature space. The solution will have
the form f(x) = sign(X¢, MiyizT (x)z(x;) + b), and therefore will be nonlinear in the
original input variables. One has to face at this point two problems: (1) the choice
of the features ¢;(x), which should be done in a way that leads to a “rich” class of
decision surfaces; (2) the computation of the scalar product zT(x)z(x;), which can
be computationally prohibitive if the number of features n is very large (for example
in the case in which one wants the feature space to span the set of polynomials in d

variables the number of features n is exponential in d). A possible solution to this
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problems consists in letting n go to infinity and make the following choice:

z(x) = (\/‘1_1¢l(x)" cvei(x), . )

where a; and 9; are the eigenvalues and eigenfunctions of an integral operator whose
kernel K(x,y) is a positive definite symmetric function. With this choice the scalar

product in the feature space becomes particularly simple because:

T (x)aly) = 3 ath(x)ly) = K(%,y)

i=1
where the last equality comes from the Mercer-Hilbert-Schmidt theorem for positive
definite functions (see [85], pp. 242-246). The QP problem that has to be solved now
is exactly the same as in eq. (1.1), with the exception that the matrix D has now
elements D;; = yiy; K (Xi,x;). As a result of this choice, the SVM classifier has the
form: f(x) = sign(3 %, NiyiK (x,%;) + b). In table (1.1) we list some choices of the
kerrel function proposed by Vapnik: notice how they lead to well-known classifiers,

whose decision surfaces are known to have good approximation properties.

Kernel Function Type of Classifier
K(x,x;) = exp(—||x — x;||*) | Gaussian RBF
K(x,x;) = (xTx; + 1) Polynomial of degree d
K(x,x;) = tanh(xTx; — ©) | Multi-Layer Perceptron

Table 1.1: Some possible kernel functions and the type of decision surfaces they define.

1.2.2 SVMs for Regression and Function Approximation

In this section we sketch the ideas behind the Support Vectors Machines (SVM) for
regression; a more detailed description can be found in chapter 2 of this thesis, [111)
and [107]. In a regression problem we are given a data set G = {(xi,¥:) N |, obtained
by sampling, with noise, some unknown function g(x) a.nd we are asked to determine a
function f that approximates g(x), based on the knowledge of G. The SVM considers

approximating functions of the form:
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D
f(x,€) =Y cigi(x) + b (1.2)

i=1
where the functions {#;(x)}2, are called features, and b and {c¢;}2, are coefficients
that have to be estimated from the data. This form of approximation can be con-
sidered as a hyperplane in the D-dimensional feature space defined by the functions
#i(x). The dimensionality of the feature space is not necessarily finite, and we will

present examples in which it is infinite. The unknown coefficients are estimated by

minimizing the following functional:

N
R(e) = 3 1w = £xis€) |+l (1.9

i=1

where ) is a constant and the following robust error function has been defined:

0 if |yi— f(xi,¢)]|<e
| 9 — f(xi,¢€) |e= (1.4)

| yi — f(xi,¢) | —e otherwise.

Ix|

Figure 1-2: Vapnik’s e-insensitive cost function V(z) = |z]..

Vapnik showed in [107] that the function that minimizes the functional in eq. (1.3)

depends on a finite number of parameters, and has the following form:
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N
f(xs a, a‘) = Z(a: - a,-)K(x,x;) + b7 (1'5)

i=]
where a}o; = 0, ol 20:=1,..., N, and K(x,y) is the so called kernel function,

and describes the inner product in the D-dimensional feature space:

K(x,y) = Ef_j $i(x)di(y)

The interesting fact is that for many choices of the set {:(x)}2,, including

infinite-dimensional sets, the form of K is analytically known and very simple, and
the features ¢; never need to be computed in practice because the algorithm relies
only on computation of scalar products in the feature space. Several choices for the
kernel K are available, including Gaussians, tensor product B-splines and trigonomet-
ric polynomials. The coefficients o and a* are obtained by maximizing the following

quadratic form:

N N N
L * L] l * L
Ra",a) = —€3 (o} + i) + 3 yi(al — ) =5 3 (af —a)(q; — ) K (xi,%;), (1.6)
=1 =1 i,j=1
subject to the constraints 0 < af,0; < C and >N (a7 —@ai) = 0. Due to the nature of
this quadratic programming problem, only a small number of coefficients af — a; will
be different from zero, and the data points associated with them are called support
vectors. The parameters ' and ¢ are two free parameters of the theory, and their

choice is left to the user.

1.3 The Challenges of applying Support Vector
Machines

When we started working with Support Vector Machines in the summer of 1995, only
a few papers (some of them AT&T internal technijcal reports) existed and were mostly

laying down the theoretica] framework of the technique. From the applications point
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of view, the only reported work was that of Vapnik’s group on the Optical Character
Recognition (OCR) problem. The technique looked promising, but a lot of research
was (and still is) needed in order to apply it and understand its potential as well as
its limitations.

In this section we briefly sketch some of the most important challenges that we
have found in applying SVMs. The presentation of these challenges should provide a

useful baseline for evaluating the contributions presented in this thesis.

1.3.1 Seolving the QP

As it was sketched in section 1.2.1 , the decision surface for the pattern classification

SVMs can be obtained by solving the QP given by:

Maximize F(A) =A-1—21A-DA

subject to
Ay =0
A <C1
A >0

where D;; = y;y; K (xi,X;).

This problem has the following key features or properties:

1. The QP has as many variables A as data points.
2. The matrix D is symmetric, positive semi-definite and fully dense.

3. In classification problems where the data can be easily separated, the number
of support vectors (i.e., the number of indices of A for which ); # 0) is usually

very small.

4. In problems where the data cannot be separated easily and/or a lot of misclas-

sifications occur, the number of support vectors can be very large.
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5. The Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for
optimality.

This QP is considered challenging due to the large-scale characteristics it can have
in real-life applications. For example, an application like our face detection system
that uses 50,000 examples requires at least 25 Gb of RAM just to store the matrix
D.

In order to solve this problem, we generate a finite sequence of smaller and more
manageable subproblems that use the KKT conditions to assess optimality and di-
rections of improvement.

It can be easily seen that the QP introduced in section 1.2.2 and used for regression
SVMs shares similar properties, difficulties and so naturally leads to a similar solution

strategy.

1.3.2 Reducing the Run-time complexity of SVMs

As we sketched in section 1.2.1, the classification of a new pattern is based on the

sign of f(x) defined as:

F) = 3° MK (x0,%) + b

i=1
where £ is the number of support vectors.

This operation can easily become the bottleneck of any system that performs a
massive number of classifications. Examples of this issue arise in face and people
detection systems, where SVMs are used as object-nonobject classifiers exhaustively,
checks and ZIP code readers, where the system can only afford to spend fractions of
a second per check or envelope, etc.

The reduction of the run-time complexity of SVMs can therefore be defined as a
series of heuristics or techniques that reduce the computational effort spent in the
evaluation or approximation of f(x).

The same issue arises in regression SVMs, where f(x) is similarly defined as:
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f(x’ a, a-) = f:(a: - ai)K(xv xi) + b

=1
In both pattern classification and regression machines, a speedup can be obtained

by:

1. Approximating f(x) as:

fx) = 28, %K (2, %) + b

where z; are synthetic vectors !, v; arc weights, and £’ < €. The first approach
of an algorithm to obtain this approximation was reported by C. Burges in [13],
but the procedure is very slow and lacks a principled way for controlling the

approximation accuracy.

2. Approximating f(x) as:
f(x) = T, vy K (xi, x) + b

where x; is still a support vector with weight ~;, but £ < ¢. This will be the

our first approach and it will be described in detail in chapter 4.

3. Find (when possible) another expansion for f(x) as: f(x) = F=8 7K (xi,x)+
b where ¢ < £. This will be our second approach and it will also be descibed

_ in detail in chapter 4.

Both of these heuristics try to approximate f(x) using the kernel operator so that
they can establish a meaningful accuracy comparison through the Lz norm measured
in feature space. Therefore, they strongly depend on the mapping: .

x € R? = z(x) = (¢1(x),- .., da(x)) € R"
where: (1) n can be huge, and (2) not very much is known about the characteristics

of the mapping itself. These two properties make this problem very hard to solve.

INotice that these vectors are not necessarily data points anymeore.
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1.3.3 Shifts, Scales and other key parameters

As we mentioned in section 1.2.1, non-linear decision surfaces can be obtained by
mapping the original set of variables x into a higher dimensional feature space: x
R = 2(x) = (41(x),...,a(x)) € R", and by formulating the linear classification
problem in this feature space. This powerful mapping is governed by the kernel
operator, and it is not a surprise that not only its structure, but also its parameters,
can be important in obtaining a favorable mapping. Examples of these parameters

are:

1. The location of the origin (i.e., shifting), the relative and absolute magnitude
of the input vector components (i.e. scaling), and the degree in polynomial

kernels.

2. The extent of the localization (i.e., o) in the Gaussian kernel.

As we explained previously, the problems of (1) huge dimensionality and (2) lack
of information about the characteristics of the mapping, makes this issue hard to
understand.

Our objective is to study the influence of these parameters, explore some alterna-
tives to optimize them, and characterize their impact on the geometric and theoretical

framework of SVMs.

1.4 Brief Literature Review

We now provide a very brief literature review on Support Vector Machines and other
related topics. Our discussion here is deliberately kept brief because many of the re-
sults mentioned here are discussed in greater detail in corresponding and appropriate

chapters of the thesis.

1.4.1 Theoretical Background

The origins of Support Vector Machines can be traced back to the mid-to late-1970’s,
when books by Vapnik and Chervonenkis (109] and Vapnik [106] described the Gener-
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alized Portrait algorithm for constructing separating hyperplanes with optimal mar-
gin.

Almost 15 years later, Boser,Guyon and Vapnik [8] [44] used Mercer kernels to
generalize from linear hyperplanes to nonlinear decisicn surfaces. Extension to non-
separable data-sets would come in 1995 when Cortes and Vapnik introduced slack
variables in the separability formulation to allow penalized misclassifications. A com-
prehensive overview of SVMs and the first description of its regression extension were
presented recently by Vapnik in [107).

We consider it relevant to mention that in their 1973 book, Duda and Hart [31]
present a slightly different concept of margin that leads to the same optimal margin
classifier. Interestingly enough, they also present a similar extension to non-separable
data sets, and the use of potential functions (see Aizerman et al. [1]) as a way to
achieve nonlinear decision surfaces. This emphasizes Vapnik’s own remarks (see the
footnote on page 136 in [107]) that support vectors could have been discovered 30
years ago, since most of its basic ideas had been uncovered by the mid-1960’s.

Other recent theoretical results include work done by Pontil and Verri [84], where
they discuss some interesting properties of SVMs; by Smola and Schélkopf [96], where
they explore kernel-based methods for pattern recognition and function approxima-
tion; and by Girosi [43], where he derives SVMs in the framework of regularization
theory and shows the equivalence between SVMs and a modified version of Basis
Pursuit De-Noising (see Chen [26] and Chen, Donoho and Saunders (25]).

Additional related work has been reported by Schélkopf, Smola and Miller in [93],
where they describe a nonlinear form of Principal Component Analysis using the same
kernel operators that SVMs; by Bennet and Blue in [3], where they examine a SVM
approach to Decision Trees; by Bennet, Bradley, Fayyad and Mangasarian (4] (9] [10]
where they study the use of mathematical programming in machine learning ;and by
Schélkopf, Burges and Vapnik in [92], where they report on a method of incorporating
prior knowledge about transformation invariances by generating artificial or virtual
examples. This approach is very similar to the work done by Poggio and Vetter in

[82], which has been successfully used, for example, in face detection systems by Sung
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and Poggio [100], Rowley et al. [88], and Osuna et al. [78].

1.4.2 Support Vector Machine Training

The first appearance of SVM training can be dated back to [8]. This paper informally
suggests the idea of partitioning or chunking the data and only considers the separable
case.

The first implementation of SVM training was reported internally at AT&T Bell
Laboratories in work done by Burges and Vapnik [16]. Their approach used a con-
strained conjugate gradient adaptation from Moré and Toraldo [66], and incorporated
some form of data partitioning that did not guarantee optimality.

More recently, Pontil and Verri [83] have reported an implementation using a
transformation to the Linear Complementarity Problem (see also page 503 in (2])
that becomes impractical for data sets of more than 1,000 data points.

The group working at Lucent Technologies (Burges, Kaufman and others) has
implemented a projected Hessian [i1] algorithm with certain heuristics for data par-
titioning [53] similar to the approach we used in our first decomposition algorithm
[77) [78] reported in section 3.3, but not as complete as its later improved version (76]
covered in section 3.4.

At this point in time we know that Smola et al., at the Max Planck Institute,
and Stitson et al.,at Royal Holloway and Bedford College, are implementing our
improved version. Companies like Daimler Benz and AT&T have been provided with

our complete computer implementation.

1.4.3 Reduction of Run-time complexity

The problem of reducing the run-time effort of SVMs was first approached by Burges
in 1996 [13]. His approach, called the Reduced Set Method, tries to approximate the
decision surface defined by the support vectors using synthesized vectors that are not
data points anymore. Another reference for this work can be found in [15]. So far

this problem has only been approached by Burges, and constitutes an open area of
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research.

1.4.4 Existing Applications of Support Vector Machines

The number of reported applications that use SVMs is very limited. The Optical
Character Recognition (OCR) problem is perhaps the first real-life application of the
technique and was first approached by Vapnik and his co-workers in AT&T Bell Labs
in 1992 [8) using small data sets. Further results were reported in 1995 [16] [91] [107]
and 1997 [15] [108].The performance obtained using SVMs was very close to the best
reported technique by Le Cun et al. [28]. Other applications include work done by
Schmidt in identification of speakers [90]; and 3D object recognition by Blanz et al.
(6], and Pontil and Verri [83].

Experimental results using the regression extension are also scarce: Vapnik, Golovich
and Smola [111] present results obtained on small toy problems; Drucker et al. [30]
compare it with a committee technique (bagging) based on regression trees and ridge
regression in feature space; and more recently? Miiller et al. [70] have used it for time

series prediction and compared it with radial basis functions.

1.4.5 Face and People Detection

The problem of face detection has been approached with different techniques in the
last few years. These techniques include Neural Networks [12] [88], detection of face
features and use of geometrical constraints [114], denéity estimation of the training
data [63], labeled graphs [54] and clustering and distribution-based modeling [100][99].

Out of all these previous works, the results of Sung and Poggio {100}{99], and
Rowley et al. [88] reflect systems with very high detection rates and low false positive
detection rates.

There has been a body of work on people detection reported by Tsukiyama and
Shirai in 1985 [102], Leung and Yang in 1987 (57](56], Rohr in 1993(87], and Chen and

2This work was done after we published in [69) our results on Time Series Analysis described in
chapter 6, section 6.3.
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Shirai in 1994 [23]. All of these approaches are heavily based on motion and hand
crafted models.

1.5 Thesis Outline and Contributions

In Chapter one of the thesis we introduce the paradigm of learning by examples and its
relationship with the tasks of pattern classification and function approximation. We
also present a primer on Support Vector Machines that merely sketches its properties,
but gives the reader an idea of: (1) the basic terminology; (2) the challenges for
applying the technique; and (3) the impact of the werk contained in this thesis.

In Chapter two we explain in detail the mathematical derivation behind Support
Vector Machines for pattern classification and regression. We also provide geometric
interpretation and some extensions of these techniques.

In Chapter three we present an active set method for solving the Quadratic Pro-
gram that defines a Support Vector Machine. Experimental results obtained with our
implementation of the algorithm and future directions of research are also provided.

In Chapter four we describe the problem of reducing the execution time required
by SVMs when performing classification and estimation, and present a solution to
some instances of this problem using Support Vector Regression Machines.

In Ch‘apt_er five we describe and formulate the problem of finding the radius of
the smaliestT sphere that contains the data points in a high dimensional space that
is only characterized by its dot product operator. We also present an active set
algorithm and its implementation for solving this problem. Using the radius and
a reformulation of the original SVM problem, we offer an alternative mathematical
program for Structural Risk Minimization.

In Chapter six we present applications using SVMs that include: face detection,
people detection, nonlinear prediction of chaotic time series and image reconstruction.

In Chapter seven we present our conclusions and suggest areas for future research.

The contributions of this thesis are as follows:
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. An active set algorithm for training Support Vector Machines that exploits
its geometrical properties, guarantees global optimality, and makes possible
the solution of problems with hundreds of thousands of data points that were

previously unsolvable.

. An implementation of this algorithm for both pattern classification and re-
gression problems using MINOS 5.4 [71] [72] as the solver of the subproblems
generated by the algorithm. This implementation has been tested under several
computer architectures (Sun, Silicon Graphics and IBM PCs) and operating

systems (Sun OS, Solaris, Irix and Microsoft Windows NT).

. A Support Vector Regression Machine solution to the problem of reducing the
run-time complexity when performing classification and estimation for the class
of problems where many of the non-zero variables A; have an active upper bound

(i.e., i = C).

. A primal reformulation of the SVM training problem which yields the same
decision surface obtained by solving the traditional QP training problem. This
formulation is used in the problem of reducing the run-time complexity when
many of the non-zero variables ); have an active upper bound (i.e., A = C),

and is also used in an alternative formulation to Structural Risk Minimization.

. An active set algorithm for finding the radius of the smallest sphere that con-
tains the data points in feature space (i.e., the high-dimensional space where
data points are mapped in nonlinear SVMs). This lalgorithm also exploits the
geometrical properties of the problem, guarantees global optimality, and solves

previously unsolvable problems.

. An implementation of (5) that also uses MINOS 5.4 as the solver for the sub-

problems generated by the algorithm.

. An alternative formulation to Structural Risk Minimization that finds not only
the support vectors, but also optimizes over some key parameters that drive the

behavior of the kernel-based mapping.
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8. Applications of SVMs to face detection, people detection and time series analy-
sis. These applications are important since they have been the first to follow the

OCR application developed by Vapnik and his co-workers at AT&T Research.
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Chapter 2

Support Vector Machines

2.1 Empirical Risk Minimization

In the case of two-class pattern recognition, the task of learning from examples can

be formulated in the following way: given a set of decision functions

{fa(x): X € A}, fr: RN o {-1,1}

where A is a set of abstract parameters, and a set of examples
(X1,81)s-- 5 (Xeye), xi€ R,y €{-1,1}

drawn from an unknown distribution P(x,y), we want to find a function fy« which

provides the smallest possible value for the ezpected risk:
R = [ 1£(x) -yl P(x,y)dxdy

The functions fy are usually called hypothesis, and the set {fi(x) : A € A} is
called the hypothesis space and it is denoted by H. The expected risk is therefore a
measure of how good an hypothesis is at predicting the correct label y for a point x.

The set of functions fy could be, for example, a set of Radial Basis Functions, or a
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Multi-Layer Perceptron with a certain number of hidden units. In this case, the set
A is the set of weights of the network. It is important to remnark that this space is not
hinary and in practice it is approximated over R to later threshold using the sign(-)
operator.

Since the probability distribution P(x,y) is unknown, we are unable to compute,
and therefore to minimize, the expected risk R()\). However, since we have access
to a sampling of P(x,y), we can compute a stochastic approximation of R(}) , the

so-called empirical risk:

Remp(X) = %g [fa(x:) — wil

Since the law of large numbers guarantees that the empirical risk converges in
probability to the expected risk, a common approach consists in minimizing the em-
pirical risk rather than the expected risk. The intuition underlying this approach (the
Empirical Risk Minimization Principle) is that if Remp converges to R, the minimum
of Remp may converge to the minimum of R. If convergence of the minimum of Remp
to the minimum of R does not hold, the Empirical Risk Minimization Principle does
not allow us to make any inference based on the data set, and it is therefore said to
be not consistent. As shown by Vapnik and Chervonenkis [112, 110, 106] consistency
takes place if and only if convergence in probability of Remp to R is replaced by uni-
form convergence in probability. Vapnik and Chervonenkis [112, 110, 106} showed
that a necessary and sufficient condition for consistency of the Empirical Risk Mini-
mization Principle is the finiteness of the VC-dimension h of the hypothesis space H.
The VC-dimension of the hypothesis space H (or VC-dimension of the classifier f))
is a natural number, possibly infinite, which is, losely speaking, the largest number
of data points that can be separated in all possible ways by that set of functions f.
The VC-dimension is a measure of the complexity of the set H. and it is often, but
not necessarily, proportional to the number of free parameters of the classifier f).

The theory of uniform convergence in probability developed by Vapnik and Cher-

vonenkis also provides bounds on the deviation of the empirical risk from the expected
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risk. A typical uniform Vapnik and Chervonenkis bound, which holds with probability

1 — n, has the following form:

h(lnZ+1) ~In2
l

R(\) € Remp(}) + \l Vi€ A (2.1)

where k is the VC-dimension of fy. From this bound it is clear that, in order to
achieve small expected risk (i.e., good generalization performances), both the em-
pirical risk and the ratio between the VC-dimension and the number of data points
has to be small. Since the empirical risk is usually a decreasing function of &, it
turns out that, for a given number of data points, there is an optimal value of the
VC-dimension. The choice of an appropriate value for 2 (which in most techniques is
controlled by the number of free parameters of the model) is crucial in order to get
good performances, especially when the number of data points is small. When using
a Multilayer Perceptron or a Radial Basis Functions network, this is equivalent to the
problem of finding the appropriate number of hidden units. This problem is known
to be difficult, and it is usually solved by some sort of cross-validation technique.
The bound (2.1) suggests that the Empirical Risk Minimization Principle can be

replaced by a better induction principle, as we will see in the next section.

2.2 Structural Risk Minimization

The technique of Structural Risk Minimization (SRM) developed by Vapnik [106] is
an attempt to overcome the problem of choosing an appropriate VC-dimension. It is
clear from equation (2.1) that a small value of the empirical risk does not necessarily
imply a small value of the expected risk. A different induction principle, called the
Structural Risk Minimization Principle, has been proposed by Vapnik [106]. The
principle is based on the observation that, in order to make the expected risk small,
both sides in equation (2.1) should be small. Therefore, both the VC-dimension and
the empirical risk should be minimized at the same time.

In order to implement the SRM principle one needs a nested structure of hypoth-
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esis spaces

HICHQC-u-CHnCo..

with the property that h(n) < kh(n + 1) where h(n) is the VC-dimension of the set
H.. Then equation (2.1) suggests that, disregarding logarithmic factors, the following

min (Rmp[A] + \/z'—-(?n—)_) (2.2)

The SRM principle is clearly well founded mathematically, but it can be difficult

problem should be solved:

to implement for the following reasons:

1. The VC-dimension of H, could be difficult to compute, and there are only a

small number of models for which we know how to compute the VC-dimension.

2. Even assuming that we can compute the VC-dimension of H,, it is not easy to
solve the minimization problem (2.2). In most cases one will have to minimize
the empirical risk for every set H,, and then choose the H, that minimizes

equation (2.2).

Therefore the implementation of this principle is not easy, because it is not trivial
- to control the VC-dimension of a learning technique during the training phase. The
SVM algorithm achieves this goal, minimizing a bound on the VC-dimension and
the number of training errors at the same time. In the next section we discuss
this technique in detail, and show how its implementation is related to quadratic

programming.

2.3 Support Vector Machines for Pattern Classi-
fication

In this section we introduce the SVM classification technique, and show how it leads

to the formulation of a QP problem in a number of variables that is equal to the
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number of data points.

2.3.1 Mathematical Derivation

In this section we describe the mathematical derivation of the Support Vector Machine
(SVM) developed by Vapnik [107]. The technique is introduced in steps: we first
consider the simplest case, a linear classifier and a linearly separable problem; then
a linear classifier and non-separable problem, and finally a non-linear classifier and

non-separable problem, which is the most interesting and useful case.

Linear Classifier and Linearly Separable Problem

In this section we consider the case in which the data set is linearly separable, and
we wish to find the “best” hyperplane that separates the data. For our purposes,

linearly separable means that we can find a pair (w, b) such that:

w-x;+b> 1 Vx; € Class 1 (2.3)
w-x;+b6< -1 Vx; € Class 2 (2.4)

The hypothesis space in this case is therefore the set of functions given by

fwp =sign(w-x+1b) (2.5)

Notice that if the parameters w and b are scaled by the same quantity, the decision
surface given by (2.5) is unchanged. In order to remove this redundancy, and to make
each decision surface correspond to one unique pair (w, d), the following constraint is
imposed:

. inl w-x;+b]=1 (2.6)

i=1,...,

where X;,...,X, are the points in the data set. The set of hyperplanes that satisfy
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(2.6) are called Canonical Hyperplanes. Notice that all linear decision surfaces can be
represented by Canonical Hyperplanes, and constraint (2.6) is just a normalization,
which will prove to be very convenient in the following calculations.

If no further constraints are imposed on the pair (w,b) the VC-dimension of the
Canonical Hyperplanes is N + 1 [107], that is, the total number of free parameters.
In order to be able to apply the Structural Risk Minimization Principle we need
to construct sets of hyperplanes of varying VC-dimension, and minimize both the
empirical risk (the training classification error) and the VC-dimension at the same
time. A structure on the set of canonical hyperplanes is defined by constraining the
norm of the vector w. In fact, Vapnik shows that, if we assume that all the points

Xi,...,X lie in the unit N-dimensional sphere, the set

{fw, = sign(w-x +b) | [lw]| < A} (2.7)

has a VC-dimension h that satisfies the following bound [107] [106]:
h < min{[A?],N} +1 (2.8)
If the data points lie inside a sphere of radius R, then (2.8) becomes
" h < min{[R*A*|,N} +1.

The geometrical reason for which bounding the norm of w constraints the set of
canonical hyperplanes is very simple. It can be shown that the distance from a point

x to the hyperplane associated to the pair (w,b) is:

[x - W+ b
[[wll

According to the normalization (2.6) the distance between the canonical hyper-

d(x; w,b) = (2.9)

plane (w,b) and the closest of the data points is simply "—‘lvﬂ Therefore, if ||w|| < A
then the distance of the canonical hyperplane to the closest data point has to be larger

than %. We can then conclude that the constrained set of canonical hyperplanes of
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fiwll < A

VA

Figure 2-1: Bounding the norm of w is equivalent to constraining the hyperplanes to
remain outside spheres of radius i- centered around the data points.

equation (2.7) is the set of hyperplanes whose distance from the data points is at
least %. This is equivalent to placing spheres of radius 1 around each data point,
and consider oniy the hyperplanes that do not intersect any of the spheres, as shown
in figure (2-1).

If the set of examples is linearly separable, the goal of the SVM is to find, among
the Canonical Hyperplanes that correctly classify the data, the one with minimum
norm, or equivalently minimum ||w||2, because keeping this norm small will also keep
the VC-dimension small. It is interesting to see that minimizing ||w]||* (in this case
of linear separability) is equivalent to finding the separating hyperplane for which the
distance between the two convex hulls (of the two classes of training data), measured
along a line perpendicular to the hyperplane, is maximized. In the rest of this paper,
this distance will be referred to as the margin. Figure (2-2) gives some geometrical
interpretation of why better generalization is expected from a separating hyperplane

with large margin.
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Figure 2-2: (a) A Separating Hyperplane with small margin. (b) A Separating Hy-
perplane with larger margin. A better generalization capability is expected from (b).

To construct the mazimum margin or optimal separating hyperplane, we need to

correctly classify the vectors x; of the training set
(xl,yl),---,(JQ,yt), X; € RN

into two different classes y; € {—1,1}, using the smallest norm of coefficient. . \is

can be formulated as follows:

lFwil®

N =

Minimize o(w) =
w,b
subject to
yi(w-xi+0) >1 i=1...0
(2.10)
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At this point, this problem can be solved using standard Quadratic Programming
(QP) optimization techniques and is not very complex since the dimension of the QP
is N 4+ 1. Since N is the dimension of the input space, this problem is more or less
tractable for real applications. Nevertheless, in order to easily explain ! the extension
to nonlinear decision surfaces (which will be described in section 2.3.1), we look at
the dual problem, and use the technique of Lagrange multipliers. We construct the

Lagrangian

(4
L(w,b,A) = Zlwl* = 3" Afys(w - x; 4+ 8) — 1], (2.11)

i=1
where A = (Ay,..., A,) is the vector of non-negative Lagrange multipliers correspond-
ing to the constraints in (2.10).
The solution to this optimization problem is determined by a saddle point of this

Lagrangian, which has to be minimized with respect to w and b, and maximized with

respect to A > 0. Differentiating (2.11) and setting the gradient equal to zero we

obtain:
OL(w,b,A) ¢ o
Thw = W- ;A,y.x. =0 (2.12)
¢
6L(“(;,bb,A) =3 Agi =0 (2.13)

i=1
Using the superscript * to denote the optimal values of the cost function, from

equation (2.12) we derive:

[4
W'=Y Atwix; (2.14)
i=1

which shows that the optimal hyperplane solution can be written as a nonnegative

linear combination of the training vectors. Notice that only those training vectors x;

! As we will show in Chapter 4 (section 4.5), this step is not vital for the non-linear extension of
SVM.

44



with ); > 0 contribute in the expansion (2.14).
Substituting (2.14) and (2.13) into (2.11) we obtain:

¢ 1 ¢ 1 [ S 4
F(A) = f_:r\i—'ﬁllv""ll2 = Z/\i—EZZ)\iAjyiijs'-xj (2.15)

i=1 =1 i=1 j=1

Writing (2.15) in matrix notation, incorporating non-negativity of A and con-

straint (2.13) we obtain the following dual quadratic program:

~ Maximize F(A) =A-1- %A - DA

~ subject to

where y = (¥1,--.,¥¢) and D is a symmetric £ x £ matrix with elements D;; =

YiY;Xi - X;.

Notice that complementary slackness conditions of the form:

Afy(w* - x; +5) —1] =0 i=1,...,¢ (2.16)

imply that A; > 0 only when constraint (2.10) is active. The vectors for which A; > 0
are called Support Vectors. From equation (2.16) it follows that * can be computed
as:

b* = yi—w*-x;

for any support vector x;. By linearity of the dot product and equation (2.14), the

decision function (2.5) can then be written as:

4
) = s (S wdiCx-x) + ) (217)
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The Soft Margin Hyperplane: Linearly Non-Separable Case

We now consider the case in which we still seek a linear separating surface, but a
separating hyperplane does not exist, so that it is not possible to satisfy all of the
constraints in problem (2.10). In order to deal with this case one introduces a new set
of variables {£;}{_,, that measure the amount of violation of the constraints. Then
the margin is maximized, paying a penalty proportional to the amount of constraint

violations. Formally, one solves the following problem:

Minimize ®(w,E) = -;-||w||2 + C’(g &)* (2.18)
w,b,E
subject to
yi(w-x;+b) >1-¢ i=1,...,¢ (2.19)
& >0 i=1,...,0  (2.20)

where C and k are parameters which have to be determined beforehand and define
the cost of constraints violation. Other monotonic convex functions of the errors can
be defined (see [27] for the more general case). Notice that minimizing the first term
in (2.18) amounts to minimizing the VC-dimension of the learning machine, thereby
minimizing the second term in the bound (2.1). On the other hand, minimizing the
second term in (2.18) controls the empirical risk, which is the first term in the bound
(2.1). This approach, therefore, constitutes a practical implementation of Structural
Risk Minimization on the given set of functions. In order to solve problem (2.18), we

construct the Lagrangian:

4 (4 4
L(W, b, Aa Ea r) =%"W"2 - Z Al'[yl'(“’ ‘Xi+ b) -1 +€l'] - E'Yifl' + C(EEi)kv (2'21)

i=1 =1 i=1

where the non-negative multipliers A = (Ay,...,A¢) and T = (71,...,7) are asso-
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ciated with constraints (2.19) and (2.20) respectively. The solution to this problem

is determined by the saddle point of this Lagrangian, which has to be minimized

with respect to w, £ and b, and maximized with respect to A > 0 and I' > 0.

Differentiating (2.21) and setting the results equal to zero, we obtain:

dL(w,b,A,E,T)
aw

= (w_zl:)\iyixi) =0

OL(w,bAET) &,
ob =Ly =0

i=1

k-1
oL(w,b,A,E,T) | ¥C (Zf:l Ei) =7 =0 k>1

0=

C-Xi—-7=0 k=1.

When k > 1, by denoting

we can rewrite equation (2.24) as:

5—-&—’)’; = 0.

From equation (2.22) we obtain:

[
wh o= YA

=1

Substituting (2.27), (2.23) and (2.25) into (2.21) we obtain:

¢ [ Py = (1 1)
k

F(A,8) = 2 X =2 3 dhiwiwsi i = 7o

i=1 i=1j=1

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

Therefore, in order to obtain the Soft Margin separating hyperplane we solve:
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imi “A-1—1A.-DA—SFT_(1_1
Maximize F(A,6) =A-1-3A-DA == (1 k)

subject to

>
v
o

where y = (y1,.--,y¢) and D is a symmetric £ x £ matrix with elements D;; =

Yiy;iXi * X;.
When k = 1, that is, penalizing linearly the violations in constraint (2.19), the

set of equations (2.29) simplifies to:

Maximize F(A) =A-1-}A-DA

subject to
Ay =0 (2.30)
A <C1
A >0

The value k = 1 is assumed for the rest of this thesis, since it simplifies
the mathematical formulation and has shown very good results in practical
applications. By the linearity of the dot product and equation (2.27), the decision

function (2.5) can be written as:

¢
f(x) = sign (z YAl (x %) + b') (2.31)

i=1
where b* = y; — w* - x;, for any support vector x; such that 0 < A; < C (that
is a support vector which is correctly classified). In order to verify this, notice that

complementary slackness in the conditions of the form:
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Ay(w® % +0") =1+ &) =0 i=1,...,¢ (2.32)

imply that A; > 0 only when constraint (2.19) is active, establishing the need for A; >
0. On the other hand, (2.19) can be active due to ; > 0, which is not acceptable since
x; would be a misclassified point. For k = 1 in equation (2.24) we have v; = C — A;.
Since 4; is the multiplier associated with constraint (2.20), 4 > 0 implies & = 0,
establishing the sufficiency of A; < C. Notice that this is a sufficient condition, since

both 4; and )A; could be equal to zero.

Note:

Our calculation above of the threshold value b assumes the existence
of some ); such that 0 < A; < C. We have not found a proof yet of the
existence of such )\;, or conditions under which it does not exist. However,
we think this is a very reasonable assumption, because it is equivalent to
the assumption that there is at least one support vector which is correctly
classified. So far our computational results indicate that this assumption

is correct, and we will use it in the rest of this thesis.

Nonlinear Decision Surfaces

Previous sections have only treated linear decision surfaces, which are definitely not
appropriate for many tasks. The extension to more complex decision surfaces is
conceptually quite simple, and is done by mapping the input variable x into a higher
dimensional feature space, and by working with linear classification in that space.
More precisely, one maps the input variable x into a (possibly infinite) vector of

“feature” variables:

X = @(x) = (a16(x), az¢2(x), - - -, andn(X),...) (2.33)

where {a,}22, are some real numbers and {¢,}32, are some real functions®. The

2The numbers {a,}3, are clearly unnecessary, and could be absorbed into the definition of the
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Soft Margin version of SVM is then applied, substituting the variable x with the new
“feature vector” ¢(x). Under the mapping (2.33) the solution of a SVM has the form:

(4
£(x) = sign ($(x) - w* + ") = sign (Z yNb(x) - B(x:) + b*) (2.34)

i=1

A key property of the SV machinery is that the only quantities that one needs
to compute are scalar products of the form ¢(x) - ¢(y). It is therefore convenient to

introduce the so-called kernel function K:

K(x,y) = ¢(x)- () = 5" a2gu(X)a(y) (2.35)

n=1

Using this quantity the solution of a SVM has the form:

f(x) = sign (zt: yidi K(x,x;) + b‘) (2.36)

i=1

and the quadratic programming problem (2.30) becomes:

Maximize F(A) =A-1-3A-DA

subject to
Ay =0 (2.37)
A <C1
A >0

where D is a symmetric, semi-positive definite, £ x £ matrix with elements D;; =
yiy; K (xi,x;). Notice that the decision surface (2.36) is now a nonlinear function,
given by linear superposition of kernel functions, one for each support vector. The
idea of expanding the input space into a feature space is therefore useful only if we

find some solution to the following problem starting from the feature space or starting

{#n}3%,, but we use them here because they make the formulation easier.
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from the kernel.

Problem 2.8.1 Find a set of coefficients {a,}>2; and a set of features {¢,}or, such
that:

1. the scalar product K (x,y) = ¢(x)- ¢(y) is well defined (for ezample the series

" converges uniformly);

2. the scalar product K(x,y) = ¢(x) - ¢(y) is easy to compute as a function of x
and y;

In addition to these requirements, we also should require the features ¢; to be such
that the scalar product K(x,y) defines a class of decision surfaces which is “rich”
enough (for example includes some well-known approximation schemes). There are

two different approaches to this problem.

Starting from the feature space

One approach consists of choosing carefully a set of features with “good” properties.
For example, an obvious choice would be to take as features ¢;(x) monomials in
the variable x up to a certain degree. Assuming, for simplicity, that we work in a

one-dimensional space, one could choose:

o(z) = (1,z,2%,...,7%

where d could be very large, and the coefficients g; are all equal to one. In this case
the decision surface is linear in the components of ¢, and therefore a polynomial of

degree d in z. This choice is unfortunate, however, because the scalar product

#(z)- Ply) =1+ zy + (zy)* + ... (zy)"

is not particularly simple to compute when d is large. However, it is easy to see that,

with a careful choice of the parameters a; that things simplify. In fact, choosing

an = ()
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it is easy to see that

d
d(z)- o(y) = Y () (zv)" = (1 + zy)*

n=0
which considerably reduces the computation. A similar result, although with a more
complex structure of the coefficients a,, is true in the multivariable case, where the
dimensionality of the feature space grows very quickly with the number of variables.

For example, in two variables we can define:

@(x) = (1,\/51‘1,\/51:2,223,173,\/5 1232) (2.38)

In this case it is easy to see that:

K(x,y) = ¢(x)-¢(y) = (1 +x-y)* (2.39)

It is straightforward to extend this example to the d-dimensional case. For exam-

ple, in three dimensions we have:

@(x) = (1, V2 1, V2 T2, \/5 T3, 3?1 x%i .'l'g,, \/5 Z1T2, V2 T1T3, V2 T273)

and the scalar product is still of the form of equation (2.39). Still in two dimensions

we can use features which are monomials of degree three:

¢(X) = (11 \/5 T1, \/§ T2, \/5 1’3, \/5 -‘Pg, \/6:513721 \/§ 33221 \/g -'011?3, 1":13 vrg )

and it can be shown that:

K(x,y)=(1+x-y)’

It can also be shown that if the features are monomials of degree less or equal to

d, it is always possible to find numbers a, in such a way that the scalar product is
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K(x,y)=(1+x-y)’ (2.40)

In the following we provide a few more examples of how one could choose the
features first, and then, witk a careful choice of the coefficients a,, arrive at an

analytical expression for the kernel K.

Infinite dimensional feature spaces

We consider one dimensional examples. Multidimensional kernels can be built using

tensor products of one-dimensional kernels.

1. Let z € [0, ] and let us consider the following feature space:

= (sin(z Lsin T -l—sin T —l—sin nc),.

Then
) i 4y
K(e,3) = $(2) - 6(a) = 3 Fsin(nz)sin(ny) = ; og !:; =

which ccrresponds to the choice a, = 7‘;

2. Let z € [0,27], h a positive number such that h < 1, and let us consider the

following feature space:

¢(z) = (1, hi sin(z), k¥ cos(z), hsin(2z), h cos(2z), .. ., h® sin(nz), h? cos(nz),...)

Then

K(z,y)=¢(z) - ¢p(z)=1+ i h" sin(nz) sin(ny) + i h" cos(nz) cos(ny) =

n=1 n=1
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1 1 — h?
271 —2hcos(z — y) + h?

which corresponds to the choice a, = h%.

3. In the two examples above we have an infinite but countable number of features.
We can also construct cases in which the number of features is infinite and

uncountable. Let us consider the following map:

$(x) = {\/G(s)e™* | s R}

where G(s) is the Fourier Transform of a positive definite function, and where

we work, for simplicity, with complex features. This corresponds to a kernel

K(x,y) = $(x)- ¢(¥) = [ , ds G(s)e™¥* = G(x — y).
which corresponds to a continuum of coefficients a(s) = \/G’(s).

Starting from the kernel

Another approach consists of looking for a kernel which is known to have a represen-
tation of the form (2.35) for some set of ¢;, but whose explicit analytic form may not
be known.

In order to find a solution to this problem we need some preliminary facts. Let
us call a positive definite kernel any function K(x,y) on © x , with @ C R?, with
the property that:

Z K(x.',xj)c.-c,- >0 Vx,, X; € Q, ‘v’c.-,c_,- €ER (2.41)

3,j=1
In the following, we will assume that Q = [a, b|%. The kernel K defines an integral

operator that is known to have a complete system of orthonormal eigenfunctions:

| KG,¥)4n(y) dy = dagn(x) (2.42)
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In 1976, Stewart [97] reported that, according to a theorem of Mercer from 1909

[62] the following statements are equivalent:
1. The function K(x,y) is a positive definite kernel;

2.
/[,, g (x,¥)g{x)g(y) dxdy > Vg € C([a,b]")

3. The eigenvalues ), in equation {Z.:2) are all positive;
4. The series

K(x,y) = 3 24 (x)6a(y)

n=1

(where a2 = ;- ) converges absolutely and uniformly.
This leads to the following:

Statement 2.3.1 Any feature vector @(x) = (a14(x), az¢2(x), . . .,andn(x),...) such
that the {a,}2, and the {¢,}32, are respectively the eigenvalues and the eigenfunc-
tions of a positive definite kernel K(x,y) will solve problem (2.3.1), and the scalar
product ¢(x) - ¢(y) has the foliowing simple expression:

d(x) - dly) = K(x,y)
A number of observations are in order:

e Vapnik (1995) uses the condition (2) above to characterize the kernels that can
be used in a SVM. Definition (2.41) can be used instead, and might be more

practical to work with if one has to prove the “admissibility” of a certain kernel.

e There is another result similar to Mercer’s result, but is more general. Young

(1909) proves that a kernel is positive definite if and only if

| K(x,y)9(x)g(y) dxdy 20 Vg€ Ly(Q)
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e The kernels K that can be used to represent a scalar product in the feature
space are closely related to the theory of Reproducing Kernel Hilbert Spaces
(RKHS) (see appendix A in (Girosi, 1997)[43]). In fact, in 1916 Moore [65]
considers a more general setting for positive definite kernels, and replaces 2
in equation (2.41) with any abstract set E. He calls these functions positive

Hermitian matrices and shows that for any such K one can associate a RKHS.

In table (2.1) we report some commonly used kernels.

e

Kernel Function Type of Classifier
K(x,y) = exp(—|Ix — y||?) | Gaussian RBF
Kxy)=(1+x-y) Polynomial of degree d

K(x,y) = tanh(x-y - 0)
(only for some values of §) | Multi Layer Perceptron

Table 2.1: Some possible kernel functions and the type of decision surface they define.

2.3.2 Additional Geometrical Interpretation

Just as Figure (2-2) shows why better generalization is expected from maximizing the
margin, one should wonder: do the support vectors have any georzetrical common
characteristic? Are they just scattered points used in a linear combination? It turns
out that they are not.

In order to find the optimal decision surface, the support vector training algorithm
tries to separate, as best as possible, the clouds defined by the data points from both
classes.

Particularly, one would expect points closer to the boundary between the classes
to be more important in the solution than data points that are far away, since the
first are harder to classify. These data points, in some sense, help to shape and define
better the decision surface than other points. Therefore, the support vectors are from
a geometrical point of view border points.

A direct consequence of the previous argument delivers another important geo-

metrical and algorithmic property, which is that, usually, the support vector are very
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few.

These ideas can be justified algebraically through the optimality conditions derived

in section 3.3.1.

Figure (2-3) shows examples of the preceding geometrical interpretations with

polynomial and RBF classifiers.
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Figure 2-3: Decision Surfaces given in (a) by a polynomial classifier, and in (b) by
a RBF, where the Support Vectors are indicated in dark fill. Notice the reduced
number of them and their position close to the boundary. In (b), the Support Vectors

are the RBF centers.

2.3.3 An Interesting Exiension: A Weighted SVM

The original formulation of the SVM in the existing literature can be extended to

handle two frequent cases in pattern classification and recognition:

e An unequal proportion of data samples between the classes.

o A need to tilt the balance or weight one class versns the other, which is very

frequent when a classification error of one type is more expensive or undesirable

than other.
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The way to derive this extension is to allow equation (2.37) to be:

Maximize F(A) =A:-1-3A-DA

subject to
Ay =0
(2.43)
N <Ct1 for y; = +1
i <C-1 for y; = -1
A >0
wherey = (y1,--..,¥¢), D is a symmetric £x £ matrix with elements D;; = yiy; K (xi, x;),
and C* and C~ are positive constants.
Equation (2.18) for k£ = 1 now becomes:
. 1
min 8(w,8) = JWIF+C*( ¥ £)+C( X &) (244)

iyi=+1 fiyi=—1
and equations (2.19) and (2.20) remain unchanged.

The quadratic program (2.43) can be interpreted as penalizing with higher penalty
(C* or C~) the most undesirable type of error through equation (2.44) . It is also
important to notice that this extension has no real impact on the complexity of the
problem of finding the optimal vector of multipliers A, since only the bounding box
constraints have changed.

Notice that this extension could be changed even further to allow, for example,
higher values of C for highly reliable or valuable data points and lower values for data

points of less confidence or value.

2.4 Support Vector Regression Machines

In this section we generalize the Support Vector Machine introduced for pattern

classification in section 2.3, to regression and function estimation. The main idea in
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this generalization is the use of a new type of loss-function, the e-insensitive loss-
function, whereby controlling € is somewhat equivalent to controlling the margin in
the pattern classification case.

In this section we first present some properties of the e-insensitive loss-function
and its relation to the Huber [49] robust loss-function. We then show a similar math-
ematical derivation to the one presented in section 2.3.1 for the pattern classification
case, that also yields a linearly constrained convex QP. We end this section with a

presentation of some additional insight and geometric interpretation of the technique.

2.4.1 The e-Insensitive Loss-Function

As we stated in section 1.1.3, the function approximation problem can be formally
stated as follows: Let D = {(xi,y:) € R? x R|i = 1,...,£} be a set of £ data points
sampled from an unknown multivariate function f(x), possibly in the presence of
noise. The task is to recover the function f(x), or at least a reasonable estimate of it,
by means of an approzimation function from a function class F(A, x), parameterized
by the vector A. For a fixed function class F, the problem is then to find the set of
parameters A that best approximates f(x) based on information from the set of data
points D.

Under conditions where y is the result of measuring a function with normally
distributed additive noise £ the Empirical Risk Minimization (ERM, see section 2.1)

principle provides for the loss function

L(y, f(A,2)) = (v — f(As2))? (2.45)

the most efficient estimator. However, if the additive noise is generated by other laws,
the best approximations are obtained using other loss-functions. _

Huber [48) developed in 1964 a theory for finding the best loss-function for the
problem under the ERM priciple, using only general information about the noise
model.

In particular, Huber showed that if we only know that the density p(x) describing
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the noise £ is a symmetric convex function with second derivatives, then the best

approximation for the worst possible density p(x) is given by the loss-function:

L(y, f(A,z)) = ly — f(A, z)|. (2.46)

Under the ERM principle, this loss-function defines the least-modulus method and
yields the robust regression function.
Another loss-function worth mention is the so called Huber loss-function, which

is given by:

- f(A, _a if — f(A, c
Lo Sy, = | P IINTE = S (2.47)
3y — f(A,z)]? otherwise.

This function penalizes linearly the deviations larger than some parameter c, and
quadratically the ones below c. It can be seen that this loss-function is somewhat less
sensitive to outliers than (2.45).

Support Vector Regression Machines use a new type of loss-functions, the e-

insensitive loss-functions:

L(y, f(A,=)) = L(ly - f(A,2)|)

where:

0 if |y—f(Az)|<e
ly = f(A,2)|e = (2.48)

ly = f(A,z)| — ¢ otherwise.

Examples of these e-insensitive loss-functions are given by:

e Linear e-insensitive:

L(y, f(A,2)) = |y — f(A, 2)|. (2.49)
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o Quadratic e-insensitive:

L(ya J(A, .1.‘)) = 'y - f(A, 3)'3 (2'50)

e Error-counting e-insensitive:

0 'fl —f(Av )l <e
L(y, f(A,2)) = yo I (251)

1 otherwise.

Using a similar approach as the one depicted in the given examples, one can con-
sider other convex functions L(y, f(A,z)). However, the Huber loss-function (2.47)
and the linear (2.49) and the quadratic (2.50) e-insensitive loss functions lead to
quadratic programming problems nearly identical to the one derived for SVM pat-
tern classifiers. The mathematical derivation of these quadratic programs is covered

in the next section.

2.4.2 Mathematical Derivation

In this section we take a closer look at the mathematical derivation of the Support
Vector Regression Machine, or SVRM. This section however, is not self-contained, as
it i1s assumed that the reader has covered sections 2.1 - 2.3.

The technique is introduced by steps: we first consider approximations by linear
functions using a cost function that embodies both complexity and risk minimization.
This step is considered for linear and quadratic e-insensitive loss functions, and for
the Huber loss function. We then extend the formulation to non-linear functional

forms, through the use of kernel functions, as we did for SVM classifiers.

Risk Minimization for linear functions

In this section we consider the approximations of the form

fx,w)=wlx+b (2.52)
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defined so that:

e The complexity of the structure allowed for f(x,w) is controlled by the norm

of w (i.e. ||w]|), as in the SV classification case.

o A certain empirical risk measure is defined by the use of the linear and quadratic

e-insensitive loss functions, and by the Huber loss function.

The reason behind these two points is the simultaneous control over the training
error and the complexity of the approximation. This aproach is an approximate
implementation of the Structural Risk Minimization (SRM) principle described in
section 2.2.

A mathematical formulation that achieves the described goal can be stated as:

, ¢
Minimize F(w,Z"E) = w2 + SO + (6)F)

i=1

w,B2°,E,b

subject to
yi— (WTxi) = b <e+§ ;=1 ¢ (253)
—yi+ (WIx))+b S e+ i=1...¢
=2 >0
w,b free
where:

e C is again a positive user-defined constant that controls the tradeoff between

functional complexity and training error.

e ¢ is a positive user-defined constant that corresponds to the insensitive region

of the loss function.

o k =1 gives the linear e-insensitive loss function.
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e k = 2 gives the quadratic e-insensitive loss function.

By constructing the Lagrangian function:

L(w,b,A*,A,E E,T*T) = ljw|?+ "(E(&)"+(£- )+

i=1

—2 MIWTx:) +b—yi+ e+ €1+

‘71 .
—_}_: Ailyi — (wTxi) — b+ e+ &) - z:(v{{.-‘ + 7i&i)
= = (2.54)

and minimizing with respect to w,Z,Z* and b, and maximizing with respect to the
Lagrange multipliers A, A*, T and I'* one obtains an expansion w = YO0 = \)x,

where A, A* are found by solving the following quadratic programming problems:

e Case k=1:

—czl:()‘}' + X)) + i yi(A] — A+

=1 i=1

A A° =137 (8 = M)A = A (xTx;)

i,j=1

Maximize F(A,A®)

subject to
(2.55)

i:(*.’—)\i) =0

1=1

A% A > 0

A" A < C1

o Case k =2:
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Maximize F(A,A*) = —e)f:(/\:+A.~)+Zl)y.-(A.’ — i)+

=1 i=1
A A" _.;.i:_l()\; — XA = X)) (xTx;)+
-%i;((k.’)’ +(N)?)
subject to (2.56)
Zt:(A:'Ai) =0
i=1
A" A > 0
A* A < C1

In order to apply the Huber loss function, we must solve the following mathemat-

ical program:

[4
Minimize F(w,Z*,E) = iw|® + CY_(L(&) + L(&))

=1

w, 2", 5, b

subject to

yi— (wixi))—b <& i=1...0 (257)
—yi+ (Wwix))+b <& i=1...0
A >0
w,b free

where:
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qlé| - 5 forl¢] > g
L(¢) = ? (2.58)

36 otherwise.

As in the previous cases, after constructing the Lagrangian and optimizing ac-

cordingly with respect to its parameters, one obtains the following QP:

¢
Maximize F(A,A*) = Y u(Af - N)+
i=1
¢
A A" =320 (8 = M) = X)) x;)+
i,J=1

{
7"62}((/\’)2 + (W)

subject to (2.59)

T(i-X) = 0

=1

A% A > 0

A*, A < C1

Note: Of the three loss functions presented in this section, we have
decided to use (as almost all the other researchers in the field have, too)
and further investigate the linear c-insensitive loss function, both because
of its simplicity and the very good results that it has shown in preliminary
tests and experiments. Therefore, from now on, when we refer to SVRMs,
we will be talking about the linear e-insensitive version, unless we state

otherwise.

Extending the SVRM to nonlinear functions

As in the pattern classification case, the main idea of this vital extension is the

mapping of the input vectors x into a high dimensional feature space where we then
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consider a linear function, as described in the preceeding section. In order to achieve
this mapping implicitly, we use (again, as in the pattern classification case) kernel
functions that represent the dot product operation in this high dimensional feature

space. Therefore, the approximation form is now decribed by:

¢
f(x,8)=>_BiK(xi,x) + b (2.60)

i=1
where $3;,7i = 1,...,Z, are coeflicients that are found by solving correponding QPs. In

the case of the linear e-insensitive loss function, this QP is:

t e
Maximize F(A,A*) = —CZ(/\: + X))+ Z (AT — A)+
=1 i=1
¢
A A =7 22 (A = )(A5 = XK (xi, %))
1,7=1
subject to

: (2.61)
P CHED )

i=1

A" A > 0

A% A < C1

and the corresponding coefficients in (2.60) are of the form 3; = A} — A;.
Similar replacement of the Euclidean dot product x¥x; by the kernel dot product

K(x;,x;) can be done in the QPs (2.56) and (2.59).

A short note on Kernels for SVRMs

To build different types of approximations, one has to use different kernels satisfying
Mercer’s condition. In particular, one can use the same kernels that were described
in section 2.3.1 (Table 2.1 on page 56) for pattern classification.

However, regression is more delicate than pattern classification, mainly because

the sign() operator simplifies somewhat the approximation task. Therefore, the se-
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lection of the kernel function to be used is more dei. :ate and must be given special
consideration. Some of the kernels that have been used in regression include: Her-
mite, Chebyshev and Legendre polynomials, semi-local approximations, splines and
B-splines, Fourier expansions, Dirichlet kernels, Anova kernels, etc. More detail on
these and other kernels, as well as a description on how to build multi-dimensional

kernels from one-dimensional kernels, can be found in [108].

2.4.3 Geometrical Interpretation

Just as section 2.3.2 shows a geometrical interpretation for the support vectors in
the pattern classification case, one should wonder: do the support vectors in the
regression case have any common characteristic? Are they just scattered points used
in a linear combination? It turns out that they are not.

In order to find the optimal approximation for the data points, the SVM uses
the e-insensitive area to approximately fit them within an e-tube. Data points that
force an inflection in the approximating function, that is, points that are barely fit
correctly within the +e range, correspond to support vectors. Also, data points whose
approximation lies outside the e-tube correspond to support vectors with coefficient
(A7 — \;) = £C.The sign of this coefficient depends on whether the violation is below
or above the e-tube, respectively.

Figure (2-4) shows an example of this geometrical interpretation. In particular we

remark:

e Points A,B,C,E are the support vectors. The other points (like D, for example)
have A! = \; = 0, and therefore are not support vectors since their coefficients

are (AF — A;) =0.

e Point A corresponds to a SV with & > 0, A} = 0, A\; = C, and a coefficient
(Af — X;) = —C. Notice that £ is measured from the e-tube and not from the

observed function value.

e Point B corresponds to a SV with & = 0, A; = 0, and generally (ruling out

degenerate cases) 0 < A} < C.
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e Point C corresponds to a SV with £ = 0, A7 = 0, and generally (again, ruling
out degenerate cases) 0 < A; < C.

e Point E corresponds to a SV with £ > 0, A; = 0, A\f = C, and a coefficient
(A —=X)=C.

These ideas can be justified algebraically through the optimality conditions derived

in section 3.5.1.

v (0 Observed Data Point\ el

¢ Predicted Data Point /
73,7 Predicted Function J

7.~ &-Insensitive Region

X

Figure 2-4: Geometrical interpretation of the support vectors in the regression case.
Points A,B,C and E are support vectors. Notice how these are points at which the
estimated function lies in the boundary of the e-tube, or beyond.
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Chapter 3

Training a Support Vector
Machine

In the case of pattern classification, solving the quadratic program (2.37) (see page
50) determines the desired decision surface given by equation (2.36).

Ana,logoﬁsly, the problem of function approximation requires the solution of the
QP given by (2.61) (see page 66) and defines the approximation form given by
equation (2.60).

This optimization process is referred to as training a Support Vector Machine.
This chapter covers previous, current, and possible future approaches to solving this
problem. -

Our presentation in this chapter starts by addressing the training problem as-
sociated to pattern classification. We later extend the described approaches to the
regression problem. The outline of this chapter is as follows: Section 3.1 is intended
to give the reader an idea of the difficulties associated with the problem of training
SVMs. Section3.2 deals with approaches to solving small training problems, both
because they constitute a natural first step, and also because the decomposition al-
gorithms described in sections 3.3, 3.4 and 3.5 iteratively solve small subproblems of
the type given by (2.37) and (2.61). In section 3.6 we discuss possible iinprovements

‘and future resear.h directions.
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3.1 Why is this problem Hard?

One important characteristic of (2.37) is that the quadratic form matrix D that
appears in the objective function ( even though symmetric ) is completely dense and
with size (i.e., the number of entries) square in the number of data vectors. This
fact implies that due to memory and computational constraints, problems with large
data sets (above = 5,000 samples) cannot be solved without some kind of data and

problem decomposition.

3.2 Initial experiments

During the procecs of this research, the training problem for small data sets was
initially approached with three different algorithms and three computer packages:
conjugate gradient, Zoutendijk’s [117}[2] method of feasible directions, ( using CPLEX
to solve the LP’s ), GAMS/MINOS ( using GAMS as the modeling language and
MINOS 5.4 as the solver ), and a second-order variaut of the reduced gradient method
( algorithm implemented in MINOS 5.4 ). A summary of Zoutendijk’s methed and
the reduced gradient method can be found in Appendix A. Some interesting notes
and computational results on these experiments are given below:

Zoutendijk’s Method:

One interesting modification that was done to this algorithm in order to help its
speed in the computer implementation was to solve the problem several times with
an increasing upper bound C. The starting value of C' was usually very low, and it
was scaled several times until it reached the originai value. The solutions were also
scaled and used as a starting point for the following iteration.

From a computational point of view, this method behaved a lot better than a
naive constrained conjugate gradient implementation, both in terms of speed and
graceful degradation wiih the increase of C.

On the other hand, this implementation had serious difficulties in cases where most

of the \;’s were strictly between their bounds. The zigzagging and slow convergence it
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presented allowed GAMS/MINOS and MINOS 5.4 to outperform it by several orders
of magnitude.

GAMS/MINOS:

GAMS is a modeling language that allows fast description and maintainability
of optimization problems. As a language, GAMS generates the specified model and
calls a user-specified solver, depending on the type of problem at hand. In the case
of nonlinear programs, MINOS is one of these solvers.

The work done with GAMS/MINOS was very important. At the beginning, it of-
fered a verification of the implementation of the conjugate gradient and Zoutendijk’s
method and a point of comparison in terms of speed and accuracy, but most impor-
tant, it later pointed to the idea of using MINOS 5.4 directly, without the overhead
that GAMS could represent.

Another reason for considering important the work done with GAMS/MINOS was

the improvement in the training speed due to a problem reformulation given by:

Maximize F(A,Q) =A-1—1A.0

A
subject to
Ay =0 (3.1)
DA =
A <C1
A >0

Although strange at first sight, this transformation allows a much faster function
and gradient evaluation, and was responsible for an important speedup in both steps
of the solution (inodel generation and optimization). This was enough reason to use
it as the formulation when using MINOS 5.4.

MINOS 5.4:
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MINOS 5.4 solves nonlinear problems with linear constraints using Wolfe's Re-
duced Gradient algorithm in conjunction with Davidson’s quasi-Newton method. De-
tails of its implementation are described by Murtagh and Saunders in [71], in MINOS
5.4 User’s Guide [72], and in Gill et al. [42]. Bazaraa et al. [2] present an overview

with some heuristics and comparisons.

Computational Results

In order to compare the relative speed between these methods, two different problems

with small data-sets were solved in the same computational environment:

1. Training a SVM with a linear classifier in the Ripley data-set. This data-set
consists of 250 samples in two dimensions which are not linearly separable.

Table 3.1 shows the following points of comparison:

o The difference between GAMS/MINOS used in the original problem and

in the transformed version (3.1).

e The performance degradation suffered by the conjugate gradient imple-
mentation under the increase of the upper bound C, and on the opposite

hand, the negligible effect on GAMS/MINOS (modified) and MINOS 5.4.

e A considerable advantage in performance by MINOS 5.4.

2. Training a SVM with a third degree polynomial classifier on the Sonar data-set.
This data-set consists of 208 samples in 60 dimensions which are not linearly
separable, but are polynomially separable. The results of these experiments are

shown in Table 3.2 and exhibit the following points of comparison:

e The difficulty experienced by first-order methods like Zoutendijk's method

to converge when the values of the );’s are strictly between the bounds.

o The clear advantage in solving the problern directly with MINOS 5.4, re-
moving the overhead created by GAMS and incorporating the knowledge
of the problem into the solution process through, for example, fast and

exact gradient evaluation, use of symmetry in the constraint matrix, etc.

72



using MINOS.

e Again, a negligible effect of the upper bound C on the performance, when

An important computational result ie the sub-linear dependence of the training

time with the dimensionality of the input data. In order to show this dependence, Ta-

ble 3.3 presents the training time for randomly-generated 2,000 data-points problems,

with different dimensionality, separability, and upper bound C.

|

Methods
C Conj. Grad. | Zoutendijk | GAMS/MINOS | GAMS/MINOS Mod. MINOS 5.4
10 23.9 sec 12.4 sec 906 sec 17.6 sec 1.2 sec
100 184.1 sec 37.9 sec 1068 sec 19.7 sec 1.4 sec
10000 || 5762.2 sec | 161.5 sec 1458 sec 22.6 sec 2.3 sec

Table 3.1: Training time on the Ripley data-set for different methods and upper bound
C. GAMS/MINOS Mod corresponds to the reformulated version of the problem.

Methods
C Zoutendijk | GAMS/MINOS Modified | MINOS 5.4
10 4381.2 sec 67.0 sec 3.3 sec
100 N/A 67.1 sec 3.3 sec
10000 N/A 67.1 sec 3.3 sec
Table 3.2: Training time on the Sonar Dataset for different methods and upper bound
C.
Dimension
I Separable Non-Separable
c | 4 16 256 4 16 256
10 60.7 sec | 106.4 sec | 613.5 sec || 292.9 sec | 476.0 sec | 1398.2 sec
100 36.0 sec | 69.2 sec | 613.7 sec || 313.5 sec | 541.0 sec | 2369.4 sec
10000 || 21.8 sec | 56.2 sec | 623.0 sec || 327.4 sec | 620.6 sec | 3764.1 sec

Table 3.3: Training time on a Randomly-generated Dataset for different dimension-
ality and upper bound C.
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3.3 A First Decomposition Approach for Large
Database Training

As mentioned before, training a SVM using large data sets (above ~ 5,000 samples)
is a very difficult problem to approach without some kind of data or preblem decom-
position. To give an idea of some memory requirements, an application like the one
described later in section 6.1 involves 50,000 training samples, and this amounts to a
quadratic form whose matrix D has 2.5-10° entries that would need, using an 8-byte
floating point representation. 20,000 Megabytes = 20 Gigabytes of memory!

In order to solve the iraining problem efficiently, we take explicit advantage of the
geometric interpretation introduced in Section 2.3.2, in particular, the expectation
that the number of support vectors will be very few. If we consider the quadratic
programming problem given by {2.37), this expectation translates into having many
of the components of A equal to zero.

In order to decompose the original problem, one can think of solving iteratively the
system given by (2.37), but keeping fixed at zero level, those components ); associated
with data points that are not support vectors, and therefore only optimizing over a
reduced set of variables.

To convert the previous description into an algorithm we need to specify:

1. Optimality Conditions: These conditions allow us to decide computationally
if the problem has been solved optimally at a particular global iteration of the
original problem. Section 3.3.1 states and proves optimality conditions for the

QP given by (2.37).

2. Strategy for Improvement: If a particular solution is not optimal, this strat-
egy defines a way to improve the cost function and is frequently associated with
variables that violate optimality conditions. This strategy will be stated in

section 3.3.2.

After presenting optimality conditions and a strategy for improving the cost func-

tion, section 3.3.3 introduces a decomposition algorithm that can be used to solve
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large database training problems, and section 3.3.4 reports some computational re-

sults obtained with its implementation.

3.3.1 Optimality Conditions

In order to be consistent with common standard notation for nonlinear optimization

problems, the quadratic program (2.37) can be rewritten in minimization form as:

Minimize W(A) =-A-1+3A-DA
A
subject to
(3.2)
Ay =0 (»)
A-C1 <0 (1)
—-A <0 (11)
where g, ¥ = (v1,-..,v¢) and II = (m,...,m) are the associated Karush-Kuhn-

Tucker multipliers.
Since D is a positive semi-definite matrix (see end of section 2.3.1) and the con-
straints in (3.2) are linear, the Karush-Kuhn-Tucker (KKT) conditions are necessary

and sufficient for optimality, and they are:
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VW(A)+ Y -M+py =0

’U,'-(A,'-—C) =0 i=1,...,£
i+ A =0 z=1,...,¢
Y 20
(3.3)
In >0
Ay =0
A-C1 <0
—-A <0

In order to derive further algebraic expressions from the optimality conditions
(3.3), we assume the existence of some \; such that 0 < A\; < C' (see end of section

2.3.1), and consider the three possible values that each component of A can have:

1. Case: 0 < \; < C:

From the first three equations of the KKT conditions we have:

(DA)i =1+ pyi =0 (3.4)

Noticing that

4 [4
(DAY =Y MywiK (xi,%x;) = vi Y Ay K(xi,%;)

1=1 j=1

and that for 0 < \; < C,

[4 (4
f(xi) = sign(Y_ Xy K (xi,%;) +6) = 3 Ay K(xi,x;) +b =

j=1 i=1
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we obtain the following:

_y=b_ 0
(DA); = ” 1 " (3.5)

By substituting (3.5) into (3.4) we finally obtain that
p=2>b (3.6)

Therefore, at an optimal solution A*, the value of the multiplier 4 is equal to

the optimal threshold b*.

. Case: )\, =C:

From the first three equations of the KKT conditions we have:

(DA); =14+ vi+py: =0 (3.7)

By defining
/4
g(xi) = D_ Ay K(xi,x;) + b

=1

and noticing that

(4
(DA)i = i 3_ Ay K(xi,%;) = yig(xi) — yib

i=1
equation (3.7) can be written as:

vig(x;) —yib—1+vi+pyi=0

11



By combining p = b (derived from case 1) and requiring v; > 0 we finally obtain:

yig(xi) < 1 (3.8)

3. Case: \; =0:

From the first three equations of the KKT conditions we have:
(DA).' —1-mi4py = 0 (3.9)

By applying a similar algebraic manipulation as the one described for case 2,

we obtain

y.-g(x.-) >1 (3.10)

3.3.2 Strategy for Improvement

In order to incorporate the optimality conditions and the expectation that most A;'s
will be zero into an algorithm, we need to derive a way to improve the objective
function value using this information. To do this, let us decompose A in two vectors
Ap and Ay, where Ay =0, and B and N partition the index set, and that the opti-
mality conditions hold in a subproblem defined only for the variables in B. In further
sections, the set B will be referred to as the working set. Under this decomposition

the following statements are clearly true:

e We can replace A\; =0, : € B, with A\; =0, j € N, without changing the cost

function or the feasibility of both the subproblem and the original problem.

e After such a replacement, the new subproblem is optimal if and only if y;9(x;) >
1. This follows from equation (3.10) and the assumption that the subproblem

was optimal before the replacement was done.

The previous statements suggest that replacing variables at zero levels in the

subproblem, with variables A; = 0, j € N that violate the optimality condition
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y;g(x;) > 1, yields a subproblem that, when optimized, improves the cost function

while maintaining feasibility. The following proposition states this idea formally.

Proposition 3.3.1 Given an optimal solution of a subproblem defined on B (and
assuming as indicated before the ezistence of some A; such that 0 < \; < C ), the
operation of replacing )\; = 0, i € B, with A\; = 0, j € N, satisfying y;g(x;) < 1
generates a new subproblem that, when optimized, yields a strict improvement of the

objective function W{A).

Proof: We assume again the existence of A, ! such that 0 < A, < C. Let us also
assume without loss of generality that y, = y; (the proof is analogous if y, = —y;).
Then, there is some € > 0 such that A, — 6 > 0, for § € (0,¢). Notice also that
g(X,) = yp- Now, consider A = A + 8e; — 8¢, where e; and e, are the jth and pth
unit vectors, and notice that the pivot operation can be handled implicitly by letting

6 > 0 and by holding A\; = 0. The new cost function W(A) can be written as:

W(&) = -K-1+ 3K DK |
—A-14 %[A - DA +2A - D(be; — 166,,) + (6e; — bep) - D(be; — bep))

x;)—b b 62
W(A)+$6 [-M—;)—— R Ry [K(%5,%;) + K (Xp, Xp) — 24595 K (Xp, X;)]
2 P
2

W(A) + 6 [g(x;)y; — 1] + % (K (xj,%5) + K (Xp, Xp) — 24p¥; K (Xp, X;)]

Therefore, since g(x;)y; < 1, by choosing § small enough we have W(A) < W(A).
q.e.d

Notice that given the problem equality constraint, this also assumes the existence of A, such
that 0 < Ay < C with y, = ~yp
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3.3.3 The Algorithm and its Geometric Interpretation

Suppose we can define a fixed-size working set B, such that |B| < ¢, and it is big
enough to contain all support vectors (A; > 0), but small enough such that the
computer can handle it and optimize it using some solver. Then the decomposition

algorithm can be stated as follows:

1. Arbitrarily chocse |B| points from the data set including both classes.
2. Solve the subproblem defined by the variables in B.

3. While there exists some j € N, such that g(x;)y; < 1, where

¢
9(x;) = Z Apyp K (xj,%p) + b

p=1
replace \; =0, i € B, with A; = 0 and solve the new subproblem.

Notice that this aigorithm will strictly improve the objective function at each
iteration and therefore will not cycle. Since the objective function is bounded (W(A.)
is convex and quadratic, and the feasible region is bounded), the algorithm must
converge to the global optimal solution in a finite number of iterations. Figure 3-1
gives a geometric interpretation of the way the decomposition algorithm allows the
redefinition of the separating surface by adding points that violate the optimality

conditions.

3.3.4 Computational Implementation and Results

We have implemented the decomposition algorithm using the transformed problem
defined by equation (3.1) and MINOS 5.4 as the solver.

Notice that the decomposition algorithm is rather flexible about the pivoting
strategy, that is, the way it decides which and how many new points to incorforate
into the working set B. Our implementation uses two parameters to define the desired

strategy:
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Figure 3-1: (a) A sub-optimal solution where the non-filled points have A = 0 but
are violating optimality conditions by being inside the +1 area. (b) The decision
surface gets redefined. Since no points with A = 0 are inside the +1 area, the solution
is optimal. Notice that the size of the margin has decreased, and the shape of the
decision surface has changed.

e Lookahead: this parameter specifies the maximum number of data points the
pricing subroutine should use to evaluate optimality conditions (Case 3). If
Lookahead data points have been examined without finding a violating one, the
subroutine continues until it finds the first one , or until all data points have

been examined. In the latter case, global optimality has been obtained.

e Newlimit: this parameter limits the number of new points to be incorporated

into the working set B.

The computational results that we pr- ~nt in this section have been obtained using
real data from our Face Detection System, which is described in Section 6.1.

Figure 3-2 shows the training time and the number of support vectors obtained
when training the system with 5,000, 10,000, 20,000, 30,000, 40,000, 49,000, and
50,000 data points. We must emphasize that the last 1,000 data points were collected
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in the last phase of bootstrapping of the Face Detection System, and therefore make
the training process harder, since they correspond to errors obtained with a system
that was already very accurate. Figure 3-3 shows the relationship between the training
time and the number of support vectors, as well as the number of global iterations
(the number of times the decomposition algorithm calls the solver). Notice the smooth
relation between the number of support vectors and the training time, and the jump
from 11 to 15 global iterations as we go from 49,000 to 50,000 samples. This increase
is responsible for the increase in the training time. The system, using a working set
of 1200 variables was able to solve the 50,000 data points problem using only 25Mb
of RAM.

a 1 X ) L L N I L L " L " L L L s L A L L
o 05 1 15 2 25 3 35 4 45 5 :mo 05 1 15 2 25 3 35 4 45 6
Number of Samples J Number of Samples ¢
x10 x 10
(a) (b)

Figure 3-2: (a) Training Time on a SPARCstation-20. (b) Number of Support Vectors
obtained after Training

Figure 3-4 shows the effect on the training time due to the parameter Newlimit and
the size of the working set, using 20,000 data points. Notice the clear improvement
as Newlimit is increased. This improvement suggests that in some way, the faster
new violating data points are brought into the working set, the faster the decision

surface is defined, and optimality is reached. Notice also that, if the working set is
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Figure 3-3: (a) Number of Support Vectors versus Training Time on 2 SPARCstation-
20. Notice how the Number of support vectors is a better indicator of the increase
in training time than the number of samples alone. (b) Number of global iterations
performed by the algorithm. Notice the increase experimented when going from
49,000 to 50,000 samples. This increase in the number of iterations is responsible for
the increase in the training time

toé small or too big compared to the number of support vectors (746 in the case of
20,000 samples), the training time increases. In the first case, this happens because
the algorithm can only incorporate new points slowly, and in the second case, this
happens because the solver takes longer to solve the subproblem as the size of the

working set increases.

3.3.5 Limitations

So far in the description and implementation of this decomposition algorithm, we
have assumed that enough mernory is available to solve a working set problem that
contains all of the support vectors. However, some applications may require mere
support vectors than the available memory can manage. How can we overcome this

problem? Are there conditions under which this can be done without compromising
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Figure 3-4: (a) Training time for 20,000 samples with different values of Newlimit,
using a working set of size 1000 and Lookahead=10,000. (b) Training time for 20,000
samples with different sizes of the working set, using Newlimit=size of the working
set, and Lookahead=10,000.

the training time or memory requirements?

A careful inspection of the optimality ~oritions yiclds the following observations:

o The optimality condition (3.8) ( given for the case where A; = C' ) implies that
any training error, and any data point that lives within the £1 margin, will
have a coefficient A\; = C. This can have severe consequences in this training
algorithm since data sets which are non-separable can generate a great number
of points with \; = C and clog the working set. To give an idea of the impact
of this, consider as an example, a 20,000 data-points financial data set where
at best we can obtain 60% correct training. In such an example, the SVM will
yield at least 8,000 support vectors, and a working set using at least 512 Mb of
RAM!

o The only optimality condition used explicitly in this algorithm is the one stated

for A\; = 0. In the next section we exolore using the other two conditions.
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3.4 An Improved Approach

The optimality conditions derived in the previous section are essential in order to
devise a decomposition strategy that guarantees that at every iteration the objective
function is improved. In order to accomplish this goal we again partition the index set.
in two sets B and N, where the set B is called the working set. Then we decompose
A in two vectors Ag and Ay, keeping fixed Ay ( although not necessarily at zero

level ) and allowing changes only in Ap, thus defining the following subproblem:

Minimize W(Ap) ~AL1+ 1 [ALDssAs + AL DenAN+

+ALDypAs + AL DyvAn| — AR
Ag
subject to (3.11)
ALys+Afyn = 0
Ag-C1 <0
—Ap <0
where (1); = 1, Dap is such that Di; = y;y; K (xi,X;), with i € a,j € §, and C is a
positive constant. Using this decomposition we notice that:
e The terms —AT1 + %A%DN,;,AN are constant within the defined subproblem.

e Since K(x,y) is a symmetric kernel, the computation of ALDpNAN +A'£,DNBA3

can be replaced by 2ALqpn, where:

(aBn)i = ¥i ) AiyiK(xi,x;) i€B (3.12)
JEN

This is a very important simplification, since it allows us to keep the size of the

subproblem independent of the number of fixed variables Ay, which transiates

85



into keeping it also independent of the number of support vectors.

e We can replace any );, i € B, with any };, j € N (i.e. there is no restriction
on their value), without changing the cost function or the feasibility of both the

subproblem and the original problem.

e If the subproblem is optimal before such a replacement, the new subproblem is
optimal if and only if A; satisfies the Optimality Conditions for the appropriate

case (three cases described in section 3.3.1).
The previous statements lead to the following more formal propositions:

Proposition 3.4.1 (“Build down”): moving a variable A\ from B to N leaves the

vost function unchanged, and the solution is feasible in the subproblem.

Proof: Let B'= B\ {k} and N’ = N U {k}. Then:

W(AB,AN) = =) Ai—- D A+ % [E AidiDi +23 A Y AiDii+
i€B i€EN ijEB i€B  jEN
+ 2 )l,'/\jD,'jjI
i,jEN

-3 A= M- EM+% [ 37 NADij + 20 Y AiDi

i€B’ iEN i,JEB' i€B’

+20 Yo NDik +2 30 M YD AiDij + MDY Aid;Dij

jEN i€EB’ jEN i,JEN
— 1
= - L A — Z /\,'-{-5 |- 2 /\,'/\_,'D.'j+221\.' Z AJ'D,'J'-{-
i€B'  ieN' |i.jeBr i€B'  jeN'
+ Z /\,'/\J'D,'J'
i,JEN’
= W(ABI’ ANI)

The solution (Apgr, Anr) is feasible in the subproblem since:

0 = Alys+A%ywn
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= ALys + My + Afyn
= Apys +ARyNn

and the bound constraints are always unaffected.q.e.d.

Proposition 3.4.2 (“Build up”): moving a variable that violates the optimalily

conditions from N to B gives a strict improvement in the cost function when the

subproblem is re-optimized.

Proof: This is a direct consequence of Proposition 3.4.1 and the fact that the Karush-

Kuhn-Tucker conditions are necessary and sufficient for optimality.

3.4.1 The Algorithm

Using the results of the previous sections we are now ready to formulate our decom-

position algorithm:
1. Arbitrarily choose |B| points from the data set including both classes.
2. Solve the subproblem defined by the variables in B.
3. While there exists some j € N, such that:

® AJ' =0 and g(x,-)y,- <l
e ); =C and g(x;)y; > 1
e 0< AJ‘ < C and g(xj)yj #1,

replace any \;, ¢ € B, with ); and solve the new subproblem given by:
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Minimize W(Ap) = —Agl + %AEDBBAB + AEQBN

AB
subject to

(3.13)

AZys+Afyy =0

Ag-C1 <0

—Ap <0

where:
(@sn)i = i 3 AjyiK(xi,x;) ieB (3.14)
JEN

Notice that we have omitted the constant term —A%l + %A%"‘_.,NAN in the cost func-
tion, and that according to Proposition 3.4.2, this algorithm will strictly improve the
objective function at each iteration and therefore will not cycle. Since the objective
function is bounded (W(A) is convex quadratic and the feasible region is bounded),
the algorithm must converge to the global optimal solution in a finite number of

iterations.

3.4.2 Computational Results

We have implemented the decomposition algorithm using MINOS 5.4 [71] as the
solver of the sub-problems. We tested our technique on a problem known for being
“difficult”: a foreign exchange rate time series that was used in the 1992 Santa Fe
Institute Time Series Competition, in which we looked at the sign of the hange of
the time series, rather than its value. We considered data sets of increasing sizes,
up to 110,000 points, obtaining up to 100,000 support vectors. Figure 3-5 shows the

relationship between training times, number of data points and number of support
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vectors in our experiments. The training time on a SUN Sparc 20 with 128 Mb of
RAM ranged from 3 hours for 10,000 support vectors to 48 hours for 40,000 support
vectors. The results that we obtain are comparable to the results reported in [116]
using a Neural Networks approach, where generalization errors around 53% were
reported. The purpose of this experiment was not to benchmark SVM’s on this
specific problem, but to show that its use in a problem with as many as 100,000

support vectors is computationally tractable.

" " " " L N A
3 4 ] [ ] 7 [} 9 10 "
Number of Samples 210"

Figure 3-5: (a)Number of support vectors Vs. number of data points. (b) Training
time Vs. number of data points.

3.5 Extension to Support Vector Regression

We have so far discussed the approach taken in order to train a Support Vector Ma-
chine for pattern classification. In this section we extend the decomposition algorithm
described in section 3.4.1 to the problem of training a SVM for regression and func-
tion approximation. In order to accomplish this task, we first derive the optimality

conditions for the QP formulation given in (2.61). We then present the algorithm
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and some computational results of its implementation.

3.5.1 Optimality Conditions

In order to be consistent with common standard notation for nonlinear optimization

problems, the quadratic program (2.61) can be rewritten in minimization form as:

Minimize F(A,A7) = ei;(xz +A) - Zt; yi(Ar = Ai)+
A A° +;Zl:l()\: = X)(A] ~ N)K (%, ;)
subject to
g(A.’ -X) =0 W 315
—A° <0 (x*)
~A < 0 ()
A"-C1 <0 (II°)
A-C1 <0 (IT)

where p, X* = (vf,...,v7),X = (v1,...,0¢), II* = (77,...,7;) and IT = (my,..., ™)
are the associated Karush-Kuhn-Tucker multipliers.

Since the cost function is convex (as in the pattern classification case) and the
constraints are linear, the Karush-Kuhn-Tucker (KKT) conditions are necessary and

sufficient for optimality, and they are:
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[4
e—yi+ (N — MK(xi,x;) —vf +af +p =0

=1
e+_./.-—zl;(.\;—/\J-)K(x.',x,-)—v,-+7r,-—p =0

i=
mr (A = C) =0
RPN =0
mi- (A —C) =0
vt A .' =0
Y, I, II >0

ztj(x; - ) =0

A% A >0

AT A <C1

some i. Then:

=1,
1=1,
1 =1,
=1,
1 =1,
1=1,

(-.K'-, X) = (A', A) - min(/\;‘, /\,') . (e.-,e,-)

F(R",K) = F(A",A) - ¢ min(X;, \)
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(3.16)

In order to simplify our presentation, we first demonstrate the following proposi-

Proposition 3.5.1 If e > 0, then an optimal solution (A*,A) satisfies A} - A; = 0,
fori=1,...,¢
Proof: Suppose we have an optimal feasible solution (A*,A) such that X7 - X; > 0 for

where e; is the ith unit vector, is also feasible. Moreover,it can be verified that:

and therefore F(A*,A*) < F(A*,A). This contradicts the optimality of (A*,A).



In order to derive further algebraic expressions from the optimality conditions
(3.16), we assume the existence of some A} and A; such that 0 < A} < C and 0 <
X; < C, and consider the possible values that they can have. Since A7 - A; = 0, for
i =1,...,¢, we assume a zero value for the corresponding variable when it applies.

The possible values are as follows:

1. Case 0 < A} < C:

From the first, third and fourth KKT conditions we have:

[4
e—yi+ 3 (A = A)K(xi,x;)) +p=0

=1

Since the desired approximation form (see section 2.4.2) is described by:

4

f(x,8) =Y BiK(xi,x; + b

i=1

we have that for b=p and §; = A7 — A1 =1,...,¢&
C_yi+f(x1ﬂ)=0

which can geometrically be seen as having an approximation value at point x;
equal to y; — ¢, that is, right at the lower wall of the epsilon-tube described in

section 2.4.3 (see also Figure 2-4).

2. Case 0 < \; < C:

From the second, fifth and sixth KKT conditions we have:

[4
e+yi— Y (A — M)K(xix;) —p =0

i=1
As in the previous case,we have that for b= g and i = Af — A, i=1,...,&
6+yi_.f(x1ﬂ)=0
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which can geometrically be seen as having an approximation value at .int x;
equal to y; + ¢, that is, right at the upper wall of the epsilon-tube.

. Case \} =C:

From the first and fourth KKT conditions we have:

[4
e—yi+ (A — X)K(xi,x;) + 7] +p=0

i=1

As in the previous case,we have that for b=p and B; = A} = \,i=1,...,&
e—yi+ f(x,8)+7 =0

which can geometrically be seen as defining 7} as the difference between the

lower wall of the epsilon-tube at data point x; and the approximation at x;
given by f(x;, B).
In order to satisfy the non-negativity condition of the multiplier, we then must

have that:
n =yi—e— f(x;,8)20

and thus conclude that A} = C can geometrically be seen been as having the
approximation at x;, given by f(x;, ), exactly or below the lower wall of the

epsilon-tube.

. Case \; =C:
From the second and sixth KKT conditions we have:

[4
e+yi— > (A = N)K(xi,x)+mi—p=0

7=1

As in the previous case,we have that for b= p and f; = A7 — X, 1 =1,...,¢
e+yi— f(x,8)+m=0
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5.

which can geometrically be seen as defining 7; as the difference between the
approximation at Xx; given by f(x;, ) and the upper wall of the epsilon-tube

at data point x;.

In order to satisfy the non-negativity condition of the multiplier, we then must
have that:
mi = f(xi,8) —yi—€20

and thus conclude that A\; = C can geometrically be seen been as having the
approximation at x;, given by f(x;, 8), exactly or above the upper wall of the

epsilon-tube.

Case A7 =0, =0:

From the first and third KKT conditions we have:

[4
e—yi+ 2 (A = X)K(xi,x;) — v +p =0

1

Similarly, from the second and fourth KKT condition we have:
¢
e+ yi — (N — M)K(xi,%;) +vi—p=0
j=1

Using the same definition for f(x;, /) as before, we have that:

e—yi+ f(xi,8)—v; =0

and

e+yi— f(xi,8) —vi=0

By requiring the non-negativity of the multipliers v} and v;, we have:

v = f(xi,B)+e—y:i 20

94



which can be seen as requiring the function approximation at x; to be at or

above the lower wall of the epsilon-tube.

Similarly, the condition :

vi=e+yi— f(x,8)20

requires the approximation to be at or below the upper wall of the epsilon-tube.

Therefore, corabining these two conditions we can conclude that A7 = A; = 0
implies that the function approximation at point x; lies at or within the epsilon-

tube.

3.5.2 The Algorithm

In order to derive a training algorithm, we again partition the index set into two sets
B and N, where the set B is called the working set. Then we decompose (A", A)
into corresponding vectors (Aj,Ap) and (Aj, AN) , with the idea of keeping fixed
(A}, AN) and allowing changes only (Aj, Ap). Using this partition, we can formulate

the decomposition algorithm as:

1. Arbitrarily choose |B| points from the data set.
2. Solve the subproblem defined by the variables in B.
3. While there exists some j € N, such that:

e \;=0,); =0and |g(x;) —y;| > €
e (\;=Cor);=C), and |g(x;) —y;| < ¢

e (0< X <Cor0<)\<C),and |g(x;) —y;l # ¢

with
¢

9(x;) = Y- (A — M) K(xi,x;) + b,

i=1
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replace any pair (A}, \:), ¢ € B, with (A}, ;) and solve the new subproblem

given by:
Minimize F(A'B,AB) =¢(A*p + AB)T]. - (A'B - AB)T(yB — qBN)+
A'g,Ap +3(A*s— AB)"Dpp(A"5 — AB)
subject to

(A*g — AB)TI = —(A*n — AN)Tl
A-B')AB S C1

A’p,Ap 20
(3.17)
where 1 is a vector of ones, D,g is such that D;; = K(x;,x;), with : € a,j € S,

and

(asn)i = (A7 = X)) K (xi, x;) i€eB
JEN

3.5.3 Computational Results

We have implemented this decomposition algorithm using MINOS 5.4 as the solver of
the sub-problems. We tested our technique on an image representation/reconstruction
problem. In particular, we used the traditional image of Leena at different resolutions,
having as data points the grey-level values at its (z,y) pixel positions. Figure 3-6
shows an input image of Leena and its corresponding SV reconstruction.

Figure 3-7 shows the relationship between training times, number of data points
and number of support vectors in our experiments. The training time on a SUN Sparc

20 with 128 Mb of RAM 2 ranged from 1.5 minutes for 428 support vectors (30 x 30

2The same >mputer used for the computer implementation and experiments of the SV classifi-
cation training algorithms
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(b)

Figure 3-6: (a) Original Leena image at a 128 pixel resolution. (b) Support Vector
reconstruction using « = 20 and a Gaussian kernel with o = 2.

image = 900 data points) to 4.7 hours for 1311 support vectors ((128 x 128 image =

16,331 data points). These results were obtained using =20, ('=500, a workiag set

size of 900, and a Gaussian kernel with o=2.

rpy - - "~ . . 0
I'wo interesting by-products of these experiments are worth mentioning:

I~

Figure 3-8(a) shows how the number ol support vectors diminishes as ¢ inereases:
as the c-tolerance becomes larger, lewer coeflicients are needed in order to build

the desired approximation.

Figure 3-8(b) shows the relationship between training time and the size of the
working set. Notice that if the working set. is too small or too big compared to
the number of =upport vectors (860 in this case, for a 50 x 50 image = 2.500
data points), the training time increases. In the first case, this happens hecause
the algorithm can only incorporate wolating points slowly, and in the second
case, because the solver takes longer to solve the corresponding sub-problem as

the size of the working set increases.
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Figure 3-7: (a)Number of support vectors Vs. number of data points. (b) Training
time Vs. number of data points.
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Figure 3-8: (a) Number of support vectors Vs. Epsilon. (b) Training time Vs. Size
of the working set. These results were obtained using a 50 x 50 image (2,500 data
points), € = 20 and a Gaussian kernel with o = 2.
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3.5.4 An Improved Version

The training algorithm for SV regression given in section 3.5.2 was developed following
closely the spirit of its SV classification counterpart given in section 3.4. However,
one interesting property of the optimal solution for SV regression was not taken into
account in its formulation: The algorithm does not take advantage of Proposition
3.5.1 which states that if € > 0, then an optimal solution (A*, A) satisfies A} - A; = 0,
fori = 1,...,£L. This means that after the solution of every sub-problem, at least half
of variables involved ( remember that we have two variables per data point ) will be

at zero level. There are many advantages in taking this proposition into account:

1. The storage needs for solvers that require as an explicit parameter the complete
quadratic form (e.g. LSSOL [38] and CPLEX 4.0) is drastically reduced by
75%.

2. Even if the explicit quadratic form is not required by the solver, memory needed

for basis storage is also saved.

3. Gradient and function evaluation, as well as line search procedures are at least

two times faster.

4. More data points can simultaneously be considered within the same sub-problem

size.

The implementation of this improvement can be considered as a minor modifica-

tion of our current version.

3.6 Improving the Training of SVM: Future Di-
rections

The algorithms described in the previous sections suggest two main areas where im-

provements can be made through future research. These two areas are:
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1. The Solver: The second-order variant of the reduced gradient method irnple-
mented by MINOS 5.4 has given very good results so far in terms of accuracy,
robustness and performance. However, this method is a general nonlinear opti-
mization method that is not designed in particular for quadratic programs, and
in the case of SVM’s, is not designed in particular for the special characteristics
of the problem. Having as a reference the experience obtained with MINOS 5.4,
new approaches to a tailored solver through, for example, projected Newton [5]
or interior point methods [20], should be attempted. Other QP-solvers avail-
able in the market like LSSOL [38], LOQO [104][105], CPLEX (version 4.0 or
above), SQOPT 5.0 [39] [41] and QPOPT 1.0 [39] [40] should be investigated
and compared with the solutions achieved using MINOS. Moré and Wright [67]
present a comprehensive optimization software guide which contains contact

information for these solvers.

At this point it is not clear whether the same type of algorithm is appropriate
for all stages of the solution process. To be more specific, it could happen that
an algorithm performs well with few non-zero variables at early stages, and then
is outperformed by others when the number of non-zero variables reaches some
threshold. In particular, we learned that the number of non-zero variables that

satisfy 0 < )A; < C has an important effect on the performance of the solver.

2. The Pivoting Strategy: This area offers great potential for improvements.
The improvements are based on some qualitative characteristics of the training

process that have been cbserved:

e During the execution of the algorithm, as much as 40% of the computa-
tional effort is dedicated to the evaluation of the optimality conditions. At
final stages, it is common to have all the data points evaluated, yet only

to collect very few of them to incorporate them into the working set.

e Only a small portion of the input data is ever brought into the working

set (about 16% in the case of the face detection application).
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e Out of the samples that ever go into the working set, about 30% of them
enter and exit this set at least once. These vectors are responsible for the

first characteristic mentioned above.
Possible future strategies that exploit these characteristics are:

e Keep a list or file with all or part of the input vectors that have exited
the working set. At the pricing stage, when the algorithm computes the
optimality conditions, evaluate these data points before other data points
to determine the entering vectors. This strategy is analogous to one some-
times used in the revised simplex method where the algorithm keeps track
of the basic variables that have become non-basic. In the case of training
of SVM’s, the geometric interpretation of this heuristic is to think that if
a point was a support vector at some iteration, it was more or less close
to the boundary between the classes, and as this boundary is refined or
fine-tuned, it is possible for it to switch from active to non-active several
times. This heuristic could be combined with main memory and cache

management policies used in computer operating systems.

e During the pricing stage, instead of bringing into the working set the first
k points that violate optimality conditions, we could try to determine r
violated data points, with r > k and choose from these the k most violated
points. This is done under the geometric idea that the most violated points
help in defining the decision surface faster and therefore save time in future

iterations.

o These last two approaches can be combined by keeping track not only of
the points exiting the working set, but also of the remaining violating data

points as well.
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Chapter 4

Reducing the Run-time
complexity of SVM’s

As we sketched in section 1.2.1, the classification of a new pattern is based on the

sign of f(x) defined as:

f(x) = f: AiyiK (xi,x) + b (4.1)

i=1
where £ is the number of support vectors.
The reduction of the run-time complexity of SVMs can therefore be defined as a
series of heuristics or techniques that reduce the computational effort spent in the

evaluation or approximation of f(x). The same issue arises in regression SVMs, where

f(x) is similarly defined as:

4
f(x) = 3 (A — X)K (xi,x) + b (4.2)

i=1
In this section we focus on pattern classification with the understanding that the
same approaches can be used in regression as well.
The outline of this chapter is as follows: in section 4.1 we introduce the motivation
of this problem and comment on possible approaches to its solution; in section 4.2 we
summarize the previous work in this topic; in section 4.3 we give an exact description

of the properties of the problem we are approaching; in section 4.4 we present a first
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approach in solving this problem using Support Vector Regression; in section 4.5
we offer a second approach to the solution which involves the reformulation of the
training problem; in section 4.6 we present experimental results; and in section 4.7

we comment on the limitations of our two suggested approaches.

4.1 Motivation and Statement of the Problem

The operations described in (4.1) and (4.2) can easily become the bottleneck of any
system that performs a massive number of classifications or function evaluations.
Examples of this issue arise in our face (see section 6.1 and [78]) and people (see
section 6.2 and [75]) detection systems, where SVMs are used as object-nonobject
classifiers exhaustively; in checks and ZIP code readers, where the system can only
afford to spend fractions of a second per check or envelope, etc.

In both pattern classification and regression machines, a speedup can be obtained

by:

1. Approximating the solution f(x) by:

fx) = 3o %k (2o ) + b

where z; are synthetic vectors, which are not necessarily data points anymore,
~; are weights, and ¢ < €. This approach, which for radial kernels K resembles
the technique of “moving centers” [64, 81], has been pursued by C. Burges [13],
but the procedure is slow, hard to implement, and lacks a principled way for

controlling the approximation accuracy.

2. Approximating the solution f(x) by:

v
fx) = vy K (xi,x) + b

i=1

where x; is still a support vector with weight «;, but ¢ <« ¢. This will be our

first approach and it will be described in detail in section 4.4.
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3. If possible, rewriting the solution f(x) as:

t’
f(x) =Y wyiK (xi,x) + b
=1
where x; are still data points (but not necessarily support vectors according
to the traditional definition) with weight +;, but ¢ <« £¢. Our hope in this
approach is to find an alternative more efficient representation of the separating

hyperplane in problems were its expansion is not unique. This will be our second

approach and it will be described in detail in section 4.5.

All of these heuristics try to approximate f(x) using the kernel operator so that
they can establish a meaningful accuracy comparison through the L; norm measured
in feature space. Therefore, they strongly depend on the mapping:

X € R? = ®(x) = (d1(x),-..,9a(x)) € R
where: (1) n can be huge, and (2) not very much is known about the characteristics

of the mapping itself. These two properties make this problem very hard to approach.

4.2 Previous Work: The Reduced Set Method

As we mentioned in section 4.1, one approach to speedup the test-phase of an SVM

is to approximate f(x) by:

f(x) = i:'y,-K(z,-,x) +b

i=1
where z; are synthetic vectors, 7; are weights, and £’ <« ¢. The purpose of this section
is to describe this technique due to Burges [13], called the Reduced Set Method, which
is the only previous work in this area.
In order to approximate f(x) with the suggested form, Burges uses the kernel
properties that define the dot product in feature space to calculate and minimize the
difference between the true decision surface w and its approximation given by W.

More formally:
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o w=Y"%, \yi®(x;) is the hyperplane in feature space obtained during the SVM
training, and it defines f(x) = w' ®(x) +b= T hyiK (xi,x) + b,

oW = Ef':l ~;®(2;) is the approximating hyperplane in feature space that we

wish to obtain, and it defines f(x)=wT®(x)+b= Y, 7K (2i,x) +b.

e The approximation error p can be defined as:

w—w|2 = (w—%)T(w-W)
= wiw4wiw—2wlw
t ¢ ¢
= Y Ay K (i, x;) + 20 K (2i,2) - 2573 Ny K (%, 25)
1,j=1 i,7=1 i=1 j=1
e By minimizing p with respect to the vectors z;’s (and its components) and the

weights +;, we can obtain, for a fixed ¢, the desired approximation.

The Reduced Set Method can then be stated as an unconstrained minimization of
p with respect to the synthetic vectors and the corresponding weights. This minimiza-
tion is not easy to perform because of the non-smooth and non-convex characteristics
of the surface and the rapid increase in the number of free variables in real life ap-
plications. Burges showed that the use of one particular class of kernel, the second
degree homogeneous polynomial, allows a closed form solution to this minimization
problem. Next we describe this solution in more detail, since it is used in our face
and people detection applications. Our intention is to give some idea of how this
particular case behaves. More detail can be found in [13].
Homogeneous Quadratic Polynomials:

We consider the case when K(xi,x;) = (x7x;)?, for x;,x; € ®*. To simplify the
presentation, we start with the simplest case, that is, when ¢ = 1. If we introduce

the symmetric matrix S, where:

¢
Su = O hiyi(Xi)u(xi) for p,y=1...n

i=1
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cne can show that to minimize p, z must satisfy:
Swze = 7|2z,

and that p? reduces to:

p* = Trace(S?) — 7*||z]|*.

From this expression we obtain that the largest reduction in p results when we
select z to be the eigenvector of S with the largest sized absolute eigenvalue, and
scale z so that 7j|z|? is that eigenvalue. The factor v allows the use of negative
eigenvalues,and can be chosen accordingly such that v € {~1,1}.

By extending this idea to more vectors (i.e. £ > 1), one can show that the

approximation becomes exact (i.e. p = 0) when ¢ = n, and that p? is reduced by:

l’
p* = Trace(S?) - 3. 2]l

=i
where z; are the eigenvectors of S. In practice, one selects the top ¢’ eigenvectors
sorted by the absolute value of their corresponding eigenvalue.

We applied this technique to two different databases:

e A set of 1969 support vectors obtained from training our 29 feature vector from

the people detection database (see section 6.2).

e A set of 964 support vectors obtained from training our 283 pixel vector from

the face detection database (see section 6.1).

As we have stated earlier, exact compression to 29 and 283, respectively, can be
achieved without any loss or system degradation.
Results obtained when applying this technique can be seen in Figures 4-1 and 4-2.

Two interesting issues arise from our experiments:

1. Figure 4-1 shows that in order to get a satisfactory approximation, we must use
nearly all of the eigenvectors. This can be contrasted with Figure 4-2, which

shows that an equally satisfactory approximation can be obtained when using
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(a)

Figure 4-1: The Reduced Set Method applied to the people detection database. (a)
Normalized p? as a function of ¢ (i.e., the number of eigenvectors used in the ex-
pansion). (b) MSE from the approximation as a function of £, evaluated over the
¢ = 1969 support vectors originally obtained during training.

just 30% of the eigenvectors. This is an interesting observation that seems to
suggest that the ratio ¢'/n is somewhat dependent on the amount of useful
information coded in the input vector. In these particular experiments, the
results suggest that nearly all of the input components are relevant for the
people/non-people discrimination task, whereas not even half are relevant for

the face/non-face discrimination task.

2. Figures 4-1(b) and 4-2(b) show that the MSE, computed as:

i (Fx) = f(xi))?

MSE = 7

is not monotonically decreasing as a function of £'. Since the sign of the classi-
fication is on the sign of f(x), these plots can be used to define a hierarchical
classification procedure. This procedure, for example, may approximate f(x)
using the first ¢, eigenvectors, and continue using up to £ (with ¢; < ¢,) eigen-

vectors if f (x) falls within some range of low confidence.
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(b)

Figure 4-2: The Reduced Set Method applied to the face detection database. (a)
Normalized p? as a function of # (i.e. the number of eigenvectors used in the expan-
sion). (b) MSE from the approximation as a function of ¢, evaluated over the ¢ = 964
support vectors originally obtained during training.

4.3 The class of problems we approach

Before characterizing explicitly the kind of problems we are trying to solve, we want
to present the following example: Training the Ripley data set ! (250 datapoints, 2
dimensions, not linearly separable) yields roughly 90 support vectors (actually 89 for
C=100). This means that the separating hyperplane w = ¥¢_, Aiyix; is defined
using 90 non-zero coefficients. Figure 4-3 presents the data set, the support vectors
and the separating hyperplane. This representation for w is strikingly inefficient,
since we are using a linear combination of 90 vectors to define a vector w in ®Z.

Although the example given is a simple linear classifier in R2, it is important to re-
mark that similar behavior will be encountered in other examples involving nonlinear
decision surfaces and input spaces with higher dimensionality.

Why is this happening?

! Available at ftp://markov.stats.ox.ac.uk/pub/neural/papers,’
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Figure 4-3: (a) The Ripley data set. (b) The optimal separating hyperplane and its
support vectors. The dotted lines above and below the hyperplane depict the + 1
range around the saparating surface.

1. The Karush-Kuhn-Tucker optimality conditions of the training problem man-

date for any misclassified training point ? to have \; = C.

2. Any non-zero ); contributes in the expansion of w, and cannot be removed from

the training set without affecting the solution.

3. Since the data set is non-separable, all of the training errors are present in the

expansion.

Moreover, desperate attempts like:
¢ removing known errors from the data-set before training,
e removing errors from the expansion after training, or

e training, removing the errors from the obtained set of support vectors, and

retraining,

2Also points falling within the margin, but correctly classified will have A; = C.
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will not, in general, give the same separating hyperpl-ne, since some of these errors
are actually needed in the expansion of w and also need to be taken into account
when penalizing non-separability. Therefore, we want to approach problems in which
the number of support vectors with A\; = C is ezcessively high. This is a problem that
appears in particular when the data set is non-separable, and becomes more relevant

with an increase in noise, degree of non-separability, and size of the training set.

4.4 First approach: Using SVRM

It has been recently shown [43] that under certain conditions Support Vector Re-
gression Machines (SVRM) are equivalent to Basis Pursuit De-Noising (BP) [25][26].
BP is an instance of a sparse approximation technique in which a function is recon-
structed using the least possible number of basis functions chosen [rom a large set,
which is called a dictionary. Having said that, we can think of building a sparse
approximation of f(x) using as dictionary the implicit mappings given by the kernel
function evaluated at the data points 3.

Given a desired e-accuracy, we are interested in drawing the least number of basis
functions in order to build our approximation.
Which Kernel do we use?

At this point we can use any of the valid kernels for SV regression and still obtain
a sparse approximation. However, by using the same kernel that was used during the

initial training, we obtain as byproduct three interesting properties:

1. e-accuracy can be arbitrarily small and a perfect approximation can be achieved,
provided that the parameter C is large enough. This is an important property

if we consider the approximation quality to be more important than speed.

2. The error measure ||w — W||? ( where w is the separating hyperplane in feature

space and W is its approximation) can be computed using the kernel function.

3The datapoints are in this case the support vectors obtained during the training of the SV
classifier. '
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3. Since the kernel used initially during training has already built a linear hy-
perplane in feature space, using the same kernel takes advantage of that same

linearization.

The Algorithm:

The formal algorithm can be stated as:

1. Train the SV classifier using the kernel and parameters of one’s choice. This

step defines f(x) = 5, Ny K (xi,x) + b.

2. Run SVRM on the data points defined by (x, f(x)); where x is a support vector
obtained in step 1. Use in this step a high value for the parameter C, the same

kernel used in (1), and the desired e-accuracy.

The results obtained with this approach are shown in section 4.6.

4.5 Second approach: Reformulating the Train-
ing Problem

Traditionally, the flow of the mathematical derivation for the training problem in
SVMs (see section 2.3.1 and [107]) has gone from the easiest problem of linearly sepa-
rable data sets and linear decision surfaces, to non-linear decision surfaces using kernel
functions. During this derivation, a Lagrangian function is introduced as a way to
solve the problem and to show how the separating hyperplane w can be written as a
linear combination using Lagrange multipliers as coefficients. This step has somehow
(and erroneously) suggested to several researchers that solving a primal version with-
out explicitly incorporating the mapping x € R? = z(x) = (¢1(x), . .-, #a(X)) € R" is
impossible. One can easily show that the Wolfe dual of the training problem currently

in use corresponds to:
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Minimize F(A,b,E) =IATQA+ CY_¢&

=1

subject to

y;(z /\,-y,-K(x,-,x,-) + b) >1-¢ i=1...n {4°3)
j=1

f,',A,' ZO i=1...n

b free

where Q;; = yiy; K (xi,x;)

This problem formulation, which from now on we refer to as the prima! reformula-
tion has the same initial structure as the original primal formulation, but incorporates
the kernel mapping implicitly through the kernel function, and therefore, works also
for defining non-linear decision surfaces. Moreover, its interpretation is natural and

clear:

e ATQA can be shown to be proportional to the inverse of the margin in feature

space (and therefore we want to minimize it);

e The constraint y;(7-; A\jy; K (xi,%;) + b) > 1 — & models how well the data

point X; is classified.

e ¢; captures for data point i, its degree of separability, and pays a linear penalty

C in the cost function.

One can show that the minimum of this problem gives the same separating surface
as in the classical approach, but probably with a different expansion for w. We say
probably, since the problems we are approaching are characterized by the fact that the
expansion of w is not unique, and by the observation that the current SVM training
gives us an expansion where the number of coefficients is absurdly large.

It is not guaranteed that the new representation of the hyperplane is more sparse

than the classical solution. However, experimentally, this approach works very well
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for two reasons: first, the coefficients are not forced to the upper bound for misclas-
sifications, since they are not Lagrange multipliers anymore; and second, starting
with A = O as initial solution helps in keeping at 0 level unnecessary points in the

expansion.

4.5.1 Possible Improvements

A clear advantage of this primal reformulation, when compared to the training prob-
lem typically solved , is that we can include in the cost function certain attractor

terms in order to benefit certain types of expansions. For example:

e We can include a small penalty of the form ¥!_, | X, which has been used before
in other techniques to enforce sparse representations [25][26][43][74].

e We can include a small penalty for using points that do not meet the separability
constraints exactly. This will cause the set of coefficients to be a subset of
the support vectors obtained through the current training problem. Since the
coefficients are not Lagrange multipliers anymore, the values can be drastically

different.
e We can include a small penalty for using errors, etc.

We want to remark that these penalties should be small so that the essence of
the cost function is altered in a minimal way, that is, these small penalties are just
coding a preference among all the possible linear combinations. A scheme in which
one gradually reduces these penalties to zero is also possible.

The results obtained with this approach are shown in section 4.6.

4.6 Experimental Results

Three datasets were selected for our experiments:
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e skin corresponds to pixel examples of normalized red and green values, where

the task is skin/non-skin classification *.

e electrons corresponds to measurements taken sfter the collision of electrons, and

the task is the classification of the outcome 5.

e ripley is a synthetic two-class problem generated by Ripley [86](page 11) where

each class has a bimodal distribution 6.

Two different runs were performed with each data set,where each run corresponds
to a different kernel and/or parameter setting. The problems selected, the informa-
tion regarding the kernel parameters, the number of support vectors and training
performance is given in table 4.1. The training performance is presented to give the

reader an idea of the separability of the data.

Database Dim | # Data points | Kernel | C | Tr. Perf. | # SVs [l
skin (1) 2 1600 | pol 2 100 | 91.94 587 12,669.36
skin (2) 2 1600 | pol 5 100 | 95.81 | 227 58,005.72
electrons (1) 8 2000 | pol 2 100 | 89.20 611 2,082.35
electrons (2) 8 2000 | rtbf ¢ =2 | 100 | 91.60 554 10,210.16
ripley (1) 2 250 | linear 100 | 86.40 89 71.80
ripley (2) 2 250 | rtbf ¢ =1 | 100 | 89.60 77 643.11

Table 4.1: Problems selected for our experiments.

The results obtained with the SV regression approach can be found in table 4.2.
Notice that reduction percentages are above 50% in all runs except electrons (2).
Notice also the relationship between the e-approximation quality and the number of
vectors obtained.

The results obtained with the primal reformulaticn are also shown in table 4.2.
As it was the case with the SV regression approach, reduction percentages are above

50% in all runs except electrons (2).

4This data set is available at ftp://ftp.ai.mit.edu/pub/cbcl/skin.zip.

5This data set was provided by A. Verri and M. Pontil, and is available at
ftp:/ /ftp.ai.mit.edu/pub/cbcl/electrons.zip.

6This data set is available at ftp://markov.stats.ox.ac.uk/pub/neural/papers/.
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Database Regression Primal Ref.
e=10"2 e=10"°
'";“"_ll # vec. | Red. % I‘iﬂ_‘i’ﬁl # vec. | Red. % || # vec. | Red. %

skin (1) 1.4x 103 11 98.13 1.6 x 1010 25 95.74 6 98.98
skin (2) 1.2x 103 10 95.59 6.1 x10~7 75 66.96 57 74.89
electrons (1) | 6.1 x 103 40 93.45 2.9x107° 47 92.30 44 92.80
electrons (2) | 6.6 x 103 297 46.38 5.1x 107 554 0.0 521 5.96
ripley (1) 2.6 x 10~8 3 96.63 2.5 x 10712 3 96.63 2 97.75
ripley (2) | 46x1072| 14 | 76.82 || 24x10-7 | 33 | 57.14 34 55.84

Table 4.2: Results obtained using the SV regression and primal reformulation ap-
proaches. The column "# vec.” reflects the number of vectors that are now present
in the expansion. This number corresponds with a percentage reduction indicated
in the column "Red. %”. The performance of both approaches in corresponding
test-sets were the same as with the original SV formulation.

4.7 Limitations and Final Remarks

Although we think that our solutions have been successful for the kind of problem we

decided to approach, there are two clear limitations that must be discussed:

1. Neither solution will reduce the run-time complexity of the classifier when all
or most of the coefficients are strictly between the bounds (i.e. 0 < A\; < C).
This situation tends to occur when the data is highly (if not totally) separable,
and worsens as the dimensionality of the feature space grows. Up to date, the

best we can do in cases like this is to use the reduced set method of Burges [13)].

2. Although a delayed column generation algorithm can be devised for decom-
posing and solving our primal reformulation, memory limitations make it pro-
hibitive for large data sets (beyond 10,000). Alternatives to this problem are

still an open area of research.

We feel that both approaches have attacked and solved the problem of an ex-
cessive number of support vectors with active upper bound (i.e. A = C). The SV
regression approach is useful since it can be applied as an after-training filter, it is
not limited by memery requirements, and it offers accuracy control of the approxima-

tion through the use of the parameter €. The primal reformulation offers a one-step

115




training approach that is not an approximation, but in fact gives exactly the same
hyperplane obtained by training the current QP problem. Together with the possi-
ble improvements suggested in section 4.5.1, this technique can be made to enforce
certain properties of the points used in the linear combination, and in fact, can be
used to provide a subset of the original support vectors without any loss of accuracy
or approximation error. This primal reformulation has a very natural structure and
therefore is suitable for improvements in the technique.

As a last comment, we must remark that throughout this section we have only
considered reducing the run-time complexity of the SV classifier. The proposed meth-
ods can easily be adapted to reducing the complexity of SV regression machines as

well.
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Chapter 5

VC-Bound Computation and

Parameterized Kernels

5.1 Motivation

The purpose of this chapter is to study in detail how to improve the way we use the

VC-Bound (see chapter 2, equation (2.1)) given by:

h(lnZ+1)—Inl
R(A) < Remp(A) + 1 (n"+l) n VAieA (5.1)

where k is the VC-dimension, and the bound on h (see chapter 2, equation (2.8)) is

given by:

h < min{[R%A*,N} +1 (5.2)

These two bounds are at the heart of the Support Vector Machine. The first
one motivates the idea of not just controlling how well we fit our data, but also of
controlling the complexity of the functions we use, i.e., the VC-dimension h.

The second bound relates the VC-dimension h with the margin, and therefore
justifies the idea of maximizing the margin as a way to control the upper bound on

h, and consequently, the complexity measure on bound (5.1).
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The first issue we should point out is that the bound on % (5.2) depends not only
on A (the margin), but also on R: The radius of the smallest sphere that contains
all the data points. This means that finding a way to compute R is important in
order to calculate the bound on k, and as a consequence, to estimate the VC-bound
(5.1). This computation is particularly difficult to achieve when using non-linear
SVM'’s, since the kernel is the only source of information available to describe how
the high-dimensional mapping has been performed. As we will show in section 5.2, R
can be computed by solving a QP which is very similar in structure and difficulty to
the one solved for SVM training. Also in that section, we formulate a decomposition
algorithm for solving this problem, and report some computational results of its
computer implementation.

A second issue we should point out is that SVM’s only concentrate on minimizing
A, that is, once the kernel and its parameters have been selected, R is a constant, and
A is the only variable quantity we can therefore consider. The question is: can one
select a better set of kernel parameters (degree of polynomial, sigma of Gaussian, etc.)
or a better data representation (scaling, location of origin, etc) so that the bound on
k is smaller and better generalization is expected?

The last issue we want to point out is that since the kernel parameters influence
R, then a tighter VC-bound can most likely be obtained if instead of minimizing just
A (as SVM’s currently do), we concentrate on minimizing RA. In this way we can not
only find the SVM decision surface, but also the optimal one in the sense of having a
tighter VC-bound. In section 5.3 we propose a non-linearly constrained problem that
models the desired solution. Some preliminary results obtained on toy problems are

also discussed in that section.

5.2 Computing the Radius R

As we defined in the previous section, R corresponds to the radius of the smallest
sphere that contains the data points. In the case where the SVM is performing a

linear separation on a set of data points, R is computed in the input space. However,
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when a non-linear kernel is used to generate a non-linear SVM, the radius R has to
be computed in what we have defined as feature space, since it is in that space where
the SVM is building the linear decision surface.

This section concentrates on the formulation and solution of the problem of finding
R. The outline is as follows: in section 5.2.1 we explore the connection between the
problem at hand and that of facility location, giving also a brief literature review on
several papers in the topic. In section 5.2.2 we formulate the problem as a convex
QP, in section 5.2.3 we develop a decomposition algorithm for finding R in large data
sets, in section 5.2.4 we consider its geometric interpretation, and in section 5.2.5 we

describe computational results on its computer implementation.

5.2.1 Previous Work

The minimum covering sphere problem, with many applications in location theory 1
is that of finding the sphere of smallest radius which encloses a set of points in R".

This can be stated more formally as:

min_max_ distance(p, p;)

where:
pi €R® i=1,...,m are given points, and
p is a variable point, center of the sphere.

The literature involving facility location problems is abundant. In this section we
briefly report on some papers, giving additional atention to those directly related to
our specific purpose, and therefore considered more relevant.

The work done by Elzinga and Hearn [33] is probably one of the most relevant
for the problem at hand. Their contribution in the cited paper can be summarized

as follows:

1The connection between the problem of finding the radius R and location theory was pointed
out by Professor Robert Freund during the presentation of the thesis proposal. Most of the relevant
results had been obtained before this happenned, but we are grateful to Professor Freund for pointing
it out, as it has justified and somewhat enhanced our approach.
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e Formulate the primal problem for n-dimensional points and Euclidean distance.

e Formulate the dual and show that Karush-Kuhn-Tucker (KKT) conditions are

necessary and sufficient for optimality.

e Show that the center p can be written as a convex combination of data points.
By Carathéodory’s [2] theorem, this means that at most n + 1 data points are

needed.

e Formulate s simplex-like algorithm for its solution using n + 2 variables at a

time.

In additional work, Elzinga and Hearn [32] extend their approach to include rec-
tilinear distance (which is more appropiate for urban environments), and using geo-
metrical arguments, justify an algorithm that is well suited for solving problems in
R?. The complexity of this algorithm is analyzed by Drezner and Shelah in [29].

More contribution from these authors include the solution of the problem of finding
the smallest sphere enclosing a convex polyhedron [35] when the extreme points are
unknown. Their solution is achieved by systematically generating larger enclosing
spheres and is more efficient than enumerating and using all the extreme points, since
their number is potentially very large.

Hearn and Vijay [47], constraining the problem to points in %2, extend Elzinga
and Hearn’s [33) approach to a more general weighted distance version of the prob-
lem. More importantly, they report computational experiments where they compare
heuristics and some of the algorithms known by then. In particular they discuss the
importance of a good initial solution using work done by Chakraborty and Chaud-
huri [22]. A very related problem involving the weighted sum of distances is also
approached by Kuhn in [55].

Facility location theory is also very rich in papers that deal with multifacility
location, being in some cases a valid generalization of the single one.

Using rectilinear distances and approaching the cost function as the sum of dis-

tances (no allocation or assignment considered), Wesolowsky [113] formulates the
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problem as a parametric linear program. A later paper by Elzinga and Hearn [34]
simplifies his formulation to non-parametric LP. Morris [68] later described a simpli-
fication of the same problem than can be solved in closed form.

Using Euclidean distances and still aproaching the problem as the sum of dis-
tances, Love [59] formulates the problem in ®? and explores the convexity and duality
properties of the problem, Francis and Cabot [37] explore more of its properties in
2, while Calamai et al. [17][18] formulate algorithms to solve it in ®". Extensions to
deal with other distances (¢, with 1 < p < o0) can be found in work done by Calamai
and Conn [19).

A more interesting approach to the multifacility problem not using the sum of
distances but a true minimax criteria is explored by Elzinga et al. in [36]. In this
paper, they basically extend their previus work reported in [33], study the primal
formulation of the problem in R", and solve its dual.

Chen [24], along the same line as Elzinga et al. in [36], gives an excellent expla-
nation about the computational differences between the single and the multifacility
instances, and about where non-differentiability arises. More recently, Bongartz et

al. (7] extend the work to other distances (¢, with 1 < p < c0).

5.2.2 Problem Formulation

In this section we describe the mathematical formulation for computing the radius
R. The formulation is derived by steps: we first consider the simplest case, which is
finding R in input space (this corresponds to using a linear kernel); then we extend

this formulation to the general case of non-linear kernels.
Finding R in input space

Given P, a set of m points x; € ®", the problem of finding R can be formulated as:

min max distance(a,X;)
a ¢=1,.,m

where:
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x; €ER® i=1,...,m are given points,
a € R" is a variable point, center of the sphere, and
R = max distance(a®,x;)
1=1,...m

When we are working with Euclidean distances, we can rewrite distance(a, x;) as:

distance(a,x;) = \/(Ta —x;)T(a—x;)

By letting r be the square of the radius R centered at a, we have the following

equivalent formulation:

Minimize r

a,r
(56.3)
subject to
(a-x)T(a-x)<r i=1,...,m
This problem will be referred to as the primal problem.
We construct the Lagrangian:
L(a’ T, A) = r+ E:’;l At'[(a - xi')T(a - xl') - ‘l‘]
(5.4)

r+ Y™, Mi[xTx; +aTa —2xTa —r]

where A = (A1,...,Am) is the vector of non-negative Lagrange muitipliers corre-
sponding to the constraints in (5.3).

The solution to this optimization problem is determined by a saddle point of this
Lagrangian, which has to be minimized with respect to a and r, and maximized with
respect to A > 0. Differentiating (5.4) and setting the results equal to zero we obtain:

Aan) 1 -$x=0 (5.5)
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a—L(z—"-i) a3 A -3 Axi =0 (5.6)

i=1 i=1

Using the superscript * to denote the optimal values of the cost function and

substituting (5.5) in (5.6) we obtain:

1=1

which combined with (5.5) shows that the center a can be written as a convex combi-
nation of data points. As we mentioned before, this was also pointed out by Elzinga
and Hearn in [33].

Substituting (5.5) and (5.7) in (5.4) we obtain:

F(A) r+ X7 AilxTx; +aTa—2xTa] —r X0, A

= XilxTx; — 2xT T, Ajx;] +aTa L, A

l"l

(5.8)
mAXTX — 2T AT X + Aid;xTx;

1=1

= ¥ AxTx; — AidjxTx;

I.J—l

By incorporating constraint (5.5) and the non-negativity of A we get the following
dual quadratic program:

Maximize F(A) =Y¥7, hixIx; — ATQA

A

subject to (5.9)

where Q is a symmetric m x m matrix with elements Q;; = x7x;.

This problem will be referred to as the dual problem, and its derivation also
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appears in [33].

Notice that complementary slackness conditions of the form:

(@ —x)T(a" —x;) —r*]=0 i=1,...,m (5.10)

imply that A; > 0 only when the constraint in (5.3) is active. The data points for
which ); > 0 are therefore on the surface of the sphere.

The radius R can thus be computed as:

R =/(a* — x;)T(a* — x;)

for any x; such that A; > 0. By substituting a* with equation (5.7) we obtain:

R= \lx,Tx.- -2 Z /\J'XJTX.' + z z\k,\,-x{x,-

=1 k=1
By algebraic manipulation (using the fact that 372, A;r; = r) we can obtain the
expected duality result:
R* = F(A*)

where A® is the optimal solution of (5.9).

F’ihding R in feature space

As we did in chapter 2 (section 2.3.1) we notice that by replacing the dot product
operation in the expressions derived for finding R in input space, with the kernel

operator, we obtain the QP:
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 Maximize F(A) = L, K (xi, %) — ATQA
A
subject to | | (5.11)
| AT =1
A 20

where @ is 2 symmetric m x m matrix with elements Qi; = K(xi,x;).

Similarly, the radius R can now be cpmputed as:

‘IK(x. ,X;) — 22A K(x;,x;) + Z M K (X, ;) (5.12)

j=1 k=1
for any x; such that A\; > 0.
In the next section, we focus on an algorithm devised to solve the QP given by

(5.11).

- 5.2.3 A Decomposition Algorithm for large data-sets

: As in the case of training a SVM using largé data sets (above =~ 5,000 samples), this
| is ;1 very difficult problem to approach without some kind of decomposition. To give
an idea of some memory requirements, an application like the one described later in
section 6.1 involves 50,000 training samples, and this amounts to a quadratic form
whose matrix @ has 2.5 - 10° entries that would need, using an 8-byte floating point
_representatlon, 20,000 Megabytes = 20 Glgabytes of memory'
In order to solve this problem eﬂicnently, we take explicit advantage of the geo-
" metric mterpreta.tlon mentioned in Section 5.2.2, which states that only points on the
surface of the sphere have a corresponding Lagrange multiplier A; > 0. If we consider
the quadratic programming problem given by (5.11), this interpretation translates
o i@fo having ma.ny of the components of A equal 1v'.ouvzero.

In order to decompose the original problem, one can think of solving iteratively
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the system given by (5-11), but keeping fixed at zero level those components )\; asso-
- ciated with data points that are not on the surface of the sphere, and therefore only
optimizing over a reduced set of variables.

Before we formulate the decomposition algorithm we first examine the optimality

conditions.

Gptimality Conditions

As in previous chapters, we rewrite the quadratic program (5.11) in minimization

form as:
Minimize F(A) =-Y¥7 ALK (xi,x:) + ATQA
A
subject to (5.13)
AT =1 (1)
-A <o (IT)
where y and I = (my,..., Tm) are the associated Karush-Kuhn-Tucker multipliers.

Since Q is a positive semi-definite matrix (see end of section 2.3.1) and the con-
straints in (5.13) are linear, the Karush-Kuhn-Tucker (KKT) conditions are necessary

and sufficient for optimality, and they are:

VF(A)-T+41 =0

W;-A,' =0 z'=1,...,m

(5.14)
II,LA >0
AT1 =0

We consider the two possible values that each component of A can have:
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1. Case: ); > 0: From the first two equations of the KKT conditions we have:

2(QA)i — K(xi,xi)+p=0 (5.15)

which translates into:

p = K(xi,x;) — 2i A K (xi, %)

j=1

2. Case: \; = 0: From the first KKT condition we have:
i = 2(QA); — K(xi,X;) + p

In order to enforce x; > 0, we require that the above expression is non-negative.

To do this, we use a point X; such that A\; > 0 and use the first case derived

before. This translates into:

7= 23" M, X5) — K (00 %5)] + K (%0 %) — K (i, %)

=1

A careful inspection of the formula for R given in equation (5.12) reveals that:
m; = R? — distance®(x;, a)

which geometrically can be seen as a confirmation that points in the interior of

the sphere have A\; = 0.

The Algorithm:

We again define a fixed-size working set B, such that |B| < m, and |B| is large
enough to contain all the data points for which (A; > 0), but small enough such that
the computer can handle it and optimize it using some solver. We also define N,

such that it contains the data points for which (A; = 0). Then the decomposition
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algorithm can be stated as follows:

1. Arbitrarily choose |B| points from the data set.
2. Solve the subproblem defined by the variables in B.

3. While there exists some j € N, such that x; < 0 (7, defined as above) replace
any A\; =0, 1 € B, with A; = 0 and solve the new subproblem.

Notice that this algorithm will strictly improve the objective function at each
iteration and therefore will not cycle. Since the radius R is finite and weak duality
implies F(A) < R, then the algorithm must converge to the global optimal solution

in a finite number of iterations.

5.2.4 Geometric Interpretation of the Algorithm

Figure 5-1 shows an example of the execution of the algorithm. In (a), we see the
algorithm being run with the black and gray points in the working set B, and the clear
points in N. After the first iteration, we obtain two sets of zero (gray points) and
non-zero (black points) coefficients. The black points correspond to surface points.

In a second :teration (b), we replace the gray points with points outside the sphere
and re-optimize. After every iteration, the sphere grows in size, and the algorithm
continues until all the points satisfy the optimality conditions.

To summarize, the two main geometrical ideas behind this algorithm are:

1. Points in N that violate optimality conditions correspond to points located

outside the current sphere.

2. Only points in the surface of the sphere end up with non-zero coefficients (;).

5.2.5 Experimental Results

The computational results that we present in this section have been obtained using

real data from our Face Detection System, which is described in Section 6.1.
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Figure 5-1: (a)First iteration of the algorithm starting with a random set of points
and finding the sphere that contains them. (b) Points that are left outside of the
sphere (clear color in (a)) replace in the working set points located in the interior of
the sphere (gray color in (a)). This continues until optimality.

Figure 5-2 shows the execution time as a function of the number of data points
considered and the size of the working set. In particular, we observe a linear increase
in the execution time as a function of the size of the working set. However, we
remind the reader that since we do not know how many surface points will appear in
the solution (nor how many we will encounter during the solution process), estimating
a small-enough working set size is at the moment very empirical.

Figure 5-3 shows the size of the radius R and the number of surface points as a
function of the number of points considered. An interesting result to remark: This
data is of dimension 283 and we are using a 2nd-degree homogeneous polynomial.
This means that the dimensionality of feature space is =~ 80,000, which is noticeable
larger than 32, which is the number of surface points found when considering 50,000
data points. This interesting result should be explored further, since it might be

uncovering important properties of the high-dimensional feature space.
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Figure 5-2: (a) Training time Vs. Number of data points. A working set of size 100
was used for this experiment. (b) Training time Vs. Size of the working set.
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Figure 5-3: (a) Radius R Vs. Number of data points.
coefficients (surface points) Vs. Number of data points.
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5.3 Using the VC-Bound to choose the best SVM

The previous section explains how to formulate and computationally solve the prob-
lem of finding R. This means that the upper bound on the VC-dimension % given
by (5.2) can be computed, and using it, we can compute the VC-bound (5.1) for a
predetermined set of parameters. This is already an achievement. However, as we
introduced at the beginning of this chapter, the question is: can one select a better set
of kernel parameters (degree of polynomial, sigma of Gaussian, etc.) or a better data
representation (scaling, location of origin, etc.) so that the bound on k is smaller and
better generalization is expected? Moreover, the objective is to formulate a mathe-
matical program to model the minimization of the VC-bound over the set of kernel

parameters. We will explain this approach in section 5.3.2.

5.3.1 Previous Work

There are very few references that consider the use of the approximate VC-bound to
estimate the optimal kernel parameters. |

Scholkopf et. al. describe in [91] how they use the VC-bound to select the degree
of the polynomial kernel in their OCR application. The approach used was to train
the SVM and find R for polynomials ranging from degrees 2 to 7, to then select the
lowest VC-bound. This experiments are also reported in [107], and in most cases
show that a low VC-bound implies a better generalization. |

Joachins [52] does not compute R, but bounds it by pre-normalizing his data. He
then uses the VC-bound to estimate the best parameter setting (degree of polynomial
and sigma of the Gaussian?). His results also reinforce the idea that in most cases a
low VC-bound suggests a better generalization.

A recent tutorial by Burges [14] reports on the observation that although the
estimated VC-bound is loose, its behavior seems to be highly predictive of the actual
risk.

In a draft of his most recent book, Vapnik [108] also suggests that the ultimate

2He uses a discrete step of 0.2 to cope with the continuous nature of sigma.
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goal is that of minimizing R?W?, but no mathematical formulation is given.

5.3.2 An Alternative formulation for Structural Risk Min-
imization
We start this section by defining a parameterized kernel as a function K(x,y, ) such

that B is a subset of the parameters of the kernel K(x,y). For example, we can have:

o Degree of polynomial:
K(x,y,B) = (x"y +1)°

e Data scaling:

dim(input)

K(X, y, ﬂ) = ( Z x.-y.-ﬂ.- + l)d

=1

o Location of the origin:
K(x,y,8) = ((x+B8)"(y + ) +1)*
o Weight of the linear terms:
K(x,y,0) = (x"y + )’
e Sigma of the Gaussian RBF:

K(x,y,8) = =

Our objective will be to find an optimal setting of the kernel parameters with
respect to the VC-bound. In order to do this, we aim at minimizing a cost function
that involves R2W? and some penalty (in our case linear) on how correctly the data
is separated. The first term controls the structure, while the second one the empirical'

risk.
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Before we write the formularion, we formalate the dual QP (5.11) used for com-
puting R as:

Minimize r
II,r
subject to

K(xi,x;) — 22‘!’,‘1\'(!,‘,)(.’) + 2 mriK(xe,x;) <r ¢=1,....m
=1 k,j=1

nr =1

IIr >0
(5.16)
where the set of constraints are equivalent to requiring: distance(sphere center,x;) < r
measured in feature space.

As we did in chapter 4, we write the primal reformulation of the SVM training

problem as:
Minimize F(A,b,E) =1ATQA + Ci &
i=1
subject to |
y-'(_)’_n_:l Ay K(xiyx;) +0) 21-§ i=1...m (5.17)
j=
&is A 20 i=1...m
b free

where Q;; = yiy; K(xi, ;).
By combining the formulations (5.16) and (5.17), we obtain:
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Minimize r[ i A.-A,-y.-y,-K(x.-, X, ﬁ)] + Ci fi

ig=1 i=1

I,r,Ab,8,8

subject to

K(x;, x.-,ﬂ) - 2ir,-K(x,-,x.',ﬂ) + i nr,-l\’(x,,,x,-,ﬂ) <ri=1,...

=1 kj=1
y.-[;km!\’(xe,x,-,ﬂ)+b]+£.- >1i=1,...
7 =1
ILr,AE >0
b free

(5.18)
where B might need to be constrained so that K(x,y, §) is a valid Mercer kernel (see
chapter 2, page 55).

This formulation can be easily adapted to only compute the radius R enclosing
the support vectors by adding appropriate slack variables, penalties and constraints.
This may be more appropriate if we consider recent bounds proposed by Vapnik in
[108].

We must remark that this problem can be hard to solve due to the nature of the
constraints. Further study of this formulation and its solution should be considered
in the near future.

Computational Results on a toy problem:

We solved formulation (5.18) for a toy problem with 20 data points and 2-dimensional

input using MINOS 5.4. The purpose was to verify if the formulation would yield the
desired solution and to compare its value with the one obtained using a good initial
guess for the kernel parameters. Input data in R? was also very convenient because
it allowed us to plot the VC-surface (which is nothing else but the cost function of

problem (5.18)) as a function of the kernel parameters.
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We used a parameterized kernel of the form:

3
K(x,y,8) = (3 xiyifi +1)?

i=1

to explore the scaling parameter A. This kernel is particularly interesting, since it
can be seen as a feature selector, i.e., under reasonable initial scaling, 8; weights the
importance of the i-th input and can be driven down to zero if that helps in reducing
the complexity of the classifier without hurting its discriminative capability.

The data used appears in Figure 5-4(a). For this example, the inital guess was
to leave the scaling unchanged, that is, feed the data in its original format. For this

initial guess, the function value was:
RRW*4+C if.- = 23.0360
i=1
By using the new approach (5.18), we obtained:
RRW?+C fjf.- = 14.4483
| i=1

To double-check the performance of the code, we generated a plot of the VC-
surface as a function of the kernel parameters, and obtained a value of 14.4476, which
is remerkably close to the one obtained using out formulation. Figure 5-4(b) presents

a contour plot of the surface, while Figure 5-5 contains 3D plots of it.
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Figure 5-4: (a)The data points used and the labels.(b)The contour plot of the VC-
surface for values:14.5, 14.6, 14.7, 14.8, 14.9 and 15

Figure 5-5: The VC-surface from different view points.
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Chapter 6

Applications

6.1 Face Detection in Images

This section introduces a Support Vector Machine application for detecting vertically
oriented and unoccluded frontal views of human faces in grey level images. It handles
faces over a wide range of scales and works under different lighting conditions, even
with moderately strong shadows.

The face detection problem can be defined as follows: Given as input an arbitrary
image, which could be a digitized video signal or a scanned photograph, determine
whether or not there are any human faces in the image, and if there are, return
an encoding of their location. The encoding in this system is to fit each face in a
bounding box defined by tﬁe image coordinates of the corners.

Face detection as a computer vision task has many applications. It has direct rel-
evance to the face recogm'tlion problem, because the first important step of a fully au-
tomatic human face recognizer is usvally identifying and locating faces in an unknown
image. Face detection also has potential application in human-computer interfaces,
surveillance systems, census systems, etc.

From the standpoint of this paper, face detection is interesting because it is an
example of a natural and challenging problem for demonstrating and testing the
potentials of Support Vector Machines. There are many other object classes and

phenomena in the real world that share similar characteristics, for example, tumor
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anomalies in MRI scans, structural defects in manufactured parts, etc. A successful
and general methodology for finding faces using SVM’s should generalize well for
other spatially well-defined pattern and feature detection problems.

It is important to remark that face detection, like most object detection prob-
lems, is a difficult task due to the significant pattern variations that are hard to
parameterize analytically. Some common sources of pattern variations are facial ap-
pearance, expression, presence or absence of common structural features, like glasses
or a moustache, light source distribution, shadows, etc.

This system works by testing candidate image locations for local patterns that
appear like faces using a classification procedure that determines whether or not a
given local image pattern is a face or not. Therefore, the face detection problem
is approached as a classification problem given by examples of 2 classes: faces and

non-faces.

6.1.1 Previous Systems

The problem of face detection has been approached with different techniques in the
last few years. This techniques include Neural Networks [12] [88], detection of face
features and use of geometrical constraints [114], density estimation of the training
data [63], labeled graphs [54] and clustering and distribution-based modeling [100][99).

Out of all these previous works, the results of Sung and Poggio [100][99], and
Rowley et al. [88] reflect systems with very high detection rates and low false positive
detection rates.

Sung and Poggio use clustering and distance metrics to model the distribution of
the face and non-face manifold, and a Neural Network to classify a new pattern given
the measurements. The key of the quality of their result is the clustering and use of
combined Mahalanobis and Euclidean metrics to measure the distance from a new
pattern and the clusters. Other important features of their approach is the use of
non-face clusters, and the use of a bootstrapping technique to collect important non-
face patterns. One drawback of this technique is that it does not provide a principled

way to choose some important free parameters like the number of clusters it uses.
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Similarly, Rowley et al. have used problem information in the design of a retinally
connected Neural Network that is trained to classify faces and non-faces patterns.
Their approach relies on training several NN emphasizing subsets of the training data,
in order to obtain different sets of weights. Then, different schemes of arbitration
between them are used in order to reach a final answer.

The approach to the face detection system with a SVM uses no prior information
in order to obtain the decision surface, this being an interesting property that can be

exploited in using the same approach for detecting other objects in digital images.

6.1.2 The SVM Face Detection System

This system, as it was described before, detects faces by exhaustively scanning an
image for face-like patterns at many possible scales, by dividing the original image
into overlapping sub-images and classifying them using a SVM to determine the
appropriate class, that is, face or non-face. Multiple scales are handled by examining
windcws taken from scaled versions of the original image.

Clearly, the major use of SVM’s is in the classification step, and it constitutes
the most critical and important part of this work. Figure 6-2 gives a geometrical
interpretation of the way SVM’s work in the context of face detection.

More specifically, this system works as follows:

1. A database of face and non-face 19x19 pixel patterns, assigned to classes +1
and -1 respectively, is trained on, using the support vector algorithm. A 2nd-
degree polynomial kernel function and an upper bound C' = 200 are used in

this process obtaining a perfect training error.

2. In order to compensate for certain sources of image variation, some preprocess-

ing of the data is performed:

e Masking: A binary pixel mask is used to remove some pixels close to the
boundary of the window pattern allowing a reduction in the dimensionality

of the input space from 19x19=361 to 283. This step is important in the
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reduction of background patterns that introduce unnecessary noise in the

training process.

e Illumination gradient correction: A best-fit brightness plane is sub-
tracted from the unmasked window pixel values, allowing reduction of light

and heavy shadows.

e Histogram equalization: A-histogram equalization is performed over
the patterns in order to compensate for differences in illumination bright-

ness, different cameras response curves, etc.

3. Once a decision surface has been obtained through training, the run-time system
is used over images that do not contain faces, and misclassifications are stored
so they can be used as negative examples in subsequent training phases. Images
of landscapes, trees, buildings, rocks, etc., are good sources of false positives
due to the many different teztured patterns they contain. This bootstrapping
step, which was successfully used by Sung and Poggio [100] is very important

in the context of a face detector that learns from examples because:

e Although negative examples are abundant, negative examples that are -
useful from a learning point of view are very difficult to characterize and

define. "

¢ By approaching the problem of object detection, and in this case of face
detection, by using the paradigm of binary pattern classification, the two
classes, object and non-object are not equally complex since the non-object
class is broader and richer, and therefore needs more examples in order to
get an accurate definition that separates it from the object class. Figure
6-1 shows an image used for bootstrapping with some misclassifications,

that were later used as negative examples.

4. After training the SVM, we incorporate it as the classifier in a run-time system
very similar to the one used by Sung and Poggio [100]{99] that performs the

following operations:
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o Re-scale the input image several times.

e Cut 19x19 window patterns out of the scaled image.

o Preprocess the window using masking, light correction and histogran equal-
ization.

e Classify the pattern using the SVM.

o If the class corresponds to a face, draw a regtangle aroung the face in the

output image.

Figure 6-3 reflects the system’s architecture at run-time.

6.1.3 Experimental Results on Static Images

To test the run-time system, we used two sets of images. The set A, contained 313
high-quality images with same number of faces. The set B, contained 23 images of |
mixed quality, with a total of 155 faces. Both sets were tested using our system and
the one by Sung and Poggio [100])[99). In order to give true meaning to the number of
false positives obtained, it is important to state that set A involved 4,669,960 pattern

windows, while set B 5,383,682. Table 6.1 shows a comparison between the 2 systems.

Test Set A Test Set B
Detection Rate | False Detections || Detection Rate | False Detections
Ideal System 100 % 0 . 100% 0
SVM 97.12 % 4 74.19% 20
Sung & Poggio 94.57 % 2 74.19% 11

Table 6.1: Performance of the SVM face detection system

Figures 6-4, 6-5, 6-6, 6-7, 6-8, 6-9, 6-10 and 6-11 present some output images of

our system. These images were not used during the training phase of the system.

6.1.4 Extension to a Real-Time System

The system presented in the previous two sections spends approximately 6 seconds

(SparcStation 20) on a 320x240 pixels grey level image. Although this is faster by
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Figure 6-1: Some false detections obtained with the first version of the system. This
false positives were later used as negative examples ( class -1 ) in the training process
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NON-FACES

Figure 6-2: Geometrical Interpretation of how the SVM separates the face and non-
face classes. The patterns are real support vectors obtained after training the system.
Notice the small number of total support vectors and the fact that a higher proportion

of them correspond to non-faces.

143



8Je4-uopN/ade4
leljisse|) ej9|dwo) WAS

ﬂ 80k 8|qissod ﬂ

8de4-UoN/ade4-9|qIssod
piedsig XoIND WAS

seujyoepy 10300\ uoddng
Buisn uopeoyissel)

(s661'apeuey pue elnjeg ‘Aejmoy ‘661 ‘016604 pue Bung)

Buissesoidelq

e IR
e

uogezjenby  uopoeuno) (siexid gLx61) plwe:fd
weiBois|H W6 mopuim peesxg  ebew indu|

AAN)INYIIY WIIISAS

Figure 6-3: System Architecture at Run-Time

144



IFigure 6--1: Faces
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Figure 6-6: Faces
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Figure 6-7: Faces
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Figure 6-8: Faces
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Figure 6-9: Faces
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Figure 6-10: Faces
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Figure 6-11: Faces

a factor of 2 than Rowley’s system, and by a factor of 35 than Sung and Poggio’s
system, it is not fast enough to be used as a run-time system. In order to build a

run-time version of the system, we took the following steps:

1. We ported the C code developed on the SUN environment to a Windows NT
Pentium 200 Mhz computer, added a Matrox RGB frame grabber and a Hitachi
3-chip color camera. No special hardware was used to speed-up the computa-

tional burden of the system.

2. We collected several color images with faces and extracted from them areas with
skin and non-skin pixels. A data set of 6.000 examples was collected. Figure
6-12 presents a plot of 1600 (out of the 6.000 total) examples of skin/non-skin
data.
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3. We trained a SVM classifier using the skin/non-skin data. The input vari-
ables were normalized green and red values, that is, g/(r+g+b) and r/(r+g+b)
respectively. Figure 6-13 presents an image captured by the system and its

corresponding skin-detection output.

4. A very primitive motion detector based on thresholded frame differencing was
coded in order to identify areas of movement and use them as focus of attention.
Motion was not a requirement in order to be detected by the system since every
so many frames (20 in the current implementation) this step was skipped and

the whole image was scanned.

5. A hierarchical system was put together using as a first step the motion detec-
tion module. The skin detection system was used as second layer to identify
candidate locations of faces. The face/non-face SVM classifier described in the
previous two sections was used over the grey level version of the candidate

locations.

The whole system achieves rates of 4 to 5 frames per second. Figure 6-14 presents

a couple of images captured our PC-based Color Reai Time face detection system.

6.1.5 Future Directions

Future research can be divided icto the following categories or topics:

1. Simplification of the SVM: As we pointed out in chapter 4 of this thesis, one
drawback for using SVMs in some real-life applications is the large number of
arithmetic operations that are necessary to classify a new input vector. Usually,
this number is proportional to the dimension of the input vector and the number
of support vectors cbtained. In the case of face detection, for example, this is

~ 283,000 multiplications per pattern!

Since a closed form solution exists for the case of kernel functions that are 2nd.

degree polynomials, we are using a simplified SVM [13] in our current exper-
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Figure 6-12: 1600 examples of Skin and Non-Skin color samples. The plot is done
using normalized green vs. normalized red values.

imental face detection system that gains an acceleration factor of 20, without

degrading the quality of the classifications.

In order to use other more sophisticated kernels, techniques like the ones de-
scribed in chapter 4 could be used. This is considered as another area where

further improvement can be achieved.

2. Use of multiple classifiers: The use of multiple classifiers offers possibilities
that can be faster and/or more accurate. Rowley et al. [88] have success-
fully éombined the output from different neural networks by means of different
schemes of arbitration in the face detection problem. Sung and Poggio [100][99]
use a first classifier that is very fast as a way to quickly &isca.rd patterns that

are clearly non-faces. These two references are just examples of the combination
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Figure 6-13: An example of the skin detection module implemented using SVMs.

of different classifiers to produce better systems. The classifiers to be combined
do not have to be of the same kind. An interesting type of classifier that could

be considered is Discriminant Adaptative Nearest Neighbor due to Hastie et al.

[46][45).

. Focus of attention and quick discarding:Our current experimental face
detection system performs an initial quick-discarding step using a SVM trained
to separate clearly non-faces from probable faces using just 14 averages taken
from different areas of the window pattern. This classification can be done about
300 times faster and is currently discarding more than 99% of input patterns.

More work can be done in in this area.

. Better color representation: In our real-time system we rely on the infor-
mation given by the human skin classifier. By using better and more reliable
color representations that are, for example, less sensitive to light variations, the

system as a whole can also be improved.
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Figure 6-14: Face detection on the PC-based Color Real-Time system.
6.2 People Detection

This section presents a trainable object detection architecture that is applied to de-
tecting people in static images of cluttered scenes. This problem poses several chal-
lenges. People are highly non-rigid objects with a high degree of variability in size,
shape, color, and texture. Unlike previous approaches, this system learns from exam-
ples and does not rely on any a priori (hand-crafted) models or on motion.

The detection technique is based on the novel idea of the wavelet template that
defines the shape of an object in terms of a subset of the wavelet coefficients of the
image. It is invariant to changes in color and texture and can be used to robustly de-
fine a rich and complex class of objects such as people. We show how the combination
of a powerful classifier like the SVM and the invariant properties and computational

efficiency of the wavelet template define an effective tool for object detection.

6.2.1 Introduction and Previous Work

The problem of object detection has seen a high degree of interest over the years.
The fundamental problem is how to characterize an object class. In contrast to the
case of pattern classification, where we need to decide between a relatively small

number of classes, the detection problem requires us to differentiate between the

156




object class and the rest of the world. As a result, the class description for object
detection must have large discriminative power to handle the cluttered scenes it will
be presented with. Furthermore, in modeling complicated classes of objects (e.g.
faces, pedestrians) the intra-class variability itself is sighiﬁcant and difficult to model.
Since it is not known how many instances of the class are presented in the scene, if
any, the detection problem cannot easily be solved using methods such as maximum-
a-posteriori probability (MAP) or maximum likelihood models. Consequently, the
classification of each pattern in the image must be done independently; this makes

the decision problem susceptible to miss instances of the class and to false positives.
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Figure 6-15: Examples of images of people in the training database. The examples
vary in color, texture, view point (either frontal or rear) and background.

There has been a body of work on people detection (Tsukiyama & Shirai, 1985[102],
Leung & Yang, 1987[57][56], Rohr, 1993[87], Chen & Shirai, 1994[23]); these ap-
proaches are heavily based on motion and hand crafted models. An important aspect
of our system is that the model is automatically learned from examples and avoids
the use of motion and explicit segmentation.

As we mentioned in section 6.1.1 one of the successful systems in the area of
trainable object detection in cluttered scenes is the face detection system of Sung
and Poggio [100]. They model face and non-face patterns in a high dimensional
space and derive a statistical model for the class of frontal human faces. Similar face
detection systems have been developed by others (Vaillant, et al.[103], Rowley, et
al.[88], Moghaddam and A. Pentland [63]). We describe our face detection system in
section 6.1.

Frontal human faces, despite their variability, share very similar patterns (shape
and the spatial layout of facial features) and their color space is very constrained.

This is not the case with pedestrians. Figure 6-15 shows several typical images of
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people in our database. These images illustrate the difficulties of pedestrian detection;
there is significant variability in the patterns and colors within the boundaries of the
body. The detection problem is also complicated by the absence of constraints on the
image background. Given these problems, direct analysis of pixel characteristics (e.g.
intensity, color and texture) is not adequate. This section presents a new approach
motivated by an earlier piece of work done by Sinha [94] [95], who derived a new
invariant called the ratio template and applied it to face detection.

A ratio template encodes the ordinal structure of the brightness distribution on
a face. It consists of a set of inequality relationships between the average intensities
of a few different face-regions. This design was motivated by the observation that
while the absolute intensity values of different regions change dramatically under
varying illumination conditions, their mutual ordinal relationships (binarized ratios)
remain largely unaffected. Thus, for instance, the forehead is typically brighter than
the eye-socket regions for all but the most contrived lighting setups. A small set of
such relationships, collectively called a ratio template, provides a powerful constraint
for face detection. The emphasis on the use of qualitative relationships also renders
the ratio template construct perceptually plausible (the human visual system is poor
at judging absolute brightnesses but remarkably adept at making ordinal brightness
comparisons). In [95] a scheme for learning such relationships from examples was
presented and tested on synthetic images. However, this work left some important
issues open. These include a formalization of the template structure in terms of simple
primitives, a rigorous learning scheme capable of working with real images, and also
the question of applicability to other, possibly more complex, object classes such as
pedestrians.

We present an extension of the ratio template, called the wavelet template, and
address some of these issues in the context of pedestriau dete tion. The wavelet
template consists of a set of regular regions of different scales that correspond to
the support of a subset of significant wavelet functions. The relationships between
different regions are expressed as constraints on the values of the wavelet coefficients.

The wavelet template can compactly express the structural commonality of a class
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of objects and is computationally efficient. We show that it is learnable from a set
of examples and provides an effective tool for the challenging problem of detecting
pedestrians in cluttered scenes. We believe that the learnable wavelet template repre-
sents a framework that is extensible to the detection of complex object classes other

than pedestrians.

6.2.2 Image Representation and the wavelet template

In this section, we review the Haar wavelet, describe a denser (redundant) transform,

and define the wavelet template.

The Haar dictionary

In this section, we survey the properties of wavelets. A more detailed treatment can
be found in [61] and other standards references on wavelets.

As motivated by the work on the template ratio, we were looking for an image rep-
resentation which captures the relationship between average intensities of neighboring
regions. This suggests the use of a family of basis functions, such as the Haar wavelets,
which encode such relationships along different orientations. The Haar wavelet repre-
sentation has also been used for image database retrieval, Jacobs et al.[51], where the
largest wavelet coefficients were used as a measure of similarity between two images.
In our work, the wavelet representation is used to capture the structural similari-
ties between various instances of the class. In Figure 6-16, we depict the 3 types
of 2-dimensional Haar wavelets. These types include basis functions which capture
change in intensity along the horizontal direction, the vertical direction and the di-
agonals (or corners). Since the wavelets that the standard transform generates have
irregular support, we use the non-standard 2-dimensional DWT where, at a given
scale, the transform is applied to each dimension sequentially before proceeding to
the next scale [98]. The results are Haar wavelets with square support at all scales.

The standard Haar basis is not dense enough for our application. For the 1-
dimensional transform, the distance between two neighboring wavelets at level n (with

support of size 2") is 2". For better spatial resolution, we need a set of redundant basis
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Figure 6-16: The 3 types of 2-dimensional non-standard Haar wavelets; (a) vertical,
(b) herizontal, (c) corner.

functions, or an overcomplete dictionary, where the distance between the wavelets at
scale n is 32", We call this a quadruple density dictionary. As one can easily observe,
the straightforward approach of shifting the signal and recomputing the DWT will not
generate the desired dense sampling. However, one can observe that in the standard
wavelet transform, after the scaling and wavelet coeflicients are convolved with the
corresponding filters there is a step of downsampling. If we do not downsample the
wavelet coefficients we generate wavelets with double density, where wavelets of level
n are centered every ;2".

To generate the quadruple density dictionary, we compute the scaling coefficients
with double density by not downsampling them. The next step is to calculate double
density wavelet coefficients on the two sets of scaling coefficients — even and odd —
separately. By interleaving the results of the two transforms we get quadruple density
wavelet coefficients. For the next scale we keep only the even scaling coefficients of the
previous level and repeat the quadruple transform on this set only; the odd scaling
coefficients are dropped oif. Since only the even coefficients are carried along at all
the scales, we avoid an ezplosion in the number of coefficients, yet provide a dense
and uniform sampling of the wavelet coefficients at all the scales. As with the regular
DWT, the time complexity is O(n) in the number of pixels n. The extension for the

2-dimensional transform is straightforward.

The wavelet template

The ratio template defines a set of constraints on the appearance of an object by
defining a set of regions and a set of relationships on their average intensities. The
relationships can require, for example, that the ratio of intensities between two specific

regions falls within a certain range. We address the issues of learning these relation-
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ships, using the template for detection, and its efficient computation by establishing
the ratio template in the natural framework of Haar wavelets. Each wavelet coef-
ficient describes the relationship between the average intensities of two neighboring
regions. If we compute the transform on the image intensities, the Haar coeflicients
specify the intensity differences between the regions; computing the transform on the
log of the image intensities produces coefficients that represent the log of the ratio of
the intensities. Furthermore, the wavelet template can describe regions with different
shapes by using combinations of neighboring wavelets with overlapping support and
wavelets of different scales. The wavelet template is also computationally efficient
since we can compute the transform once for the whole image and look at different

sets of coefficients for different spatial locations.

Learning the pedestrian template

As shown in Figure 6-15, it is easy to observe that there are no consistent patterns
in the color and texture of pedestrians or their backgrounds in arbitrary cluttered
scenes in unconstrained environments. This lack of clearly discernible interior fea-
tures is circumvented by relying on (1) differences in the intensity between pedestrian
bodies and their backgrounds and (2) consistencies within regions inside the body
boundaries. We interpret the wavelet coefficients as either indicating an almost uni-
form area, i.e. no-change, if their absolute value is relatively small, or as indicating
strong change if their absolute value is relatively large. The wavelet template we
seek to identify will consist solely of wavelet coefficients (either vertical, horizontal
or corner) whose types (change/no-change) are both clearly identified and consistent
along the ensemble of pedestrian images; these comprise the important coeflicients.

The basic analysis to identify the template consists of two steps: first, we nor-
malize the wavelet coefficients relative to the rest of the coefficients in the patterns;
second, we analyze the averages of the normalized coefficients along the ensemble. We
have collected a set of 564 color images of people (Figure 6-15) for use in the template
learning. All the images are scaled and clipped to the dimensions 128 x 64 such that

the people are centered and approximately the same size (the distance from the shoul-
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ders to feet is about 80 pixels). In our analysis, we restrict ourselves to the wavelets
at scales of 32 x 32 pixels (one array of 15 x 5 coefficients for each wavelet class) and
16 x 16 pixels (29 x 13 for each class). For each color channel (RGB) of every image,
we compute the quadruple dense Haar transform and take the coefficient value to be
the largest absolute value among the three channels. The normalization step com-
putes the average of each coefficient’s class ({vertical, horizontal, corner} x {16, 32})
over all the pedestrian patterns and divides every coefficient by its corresponding
class average. We calculate the averages separately for each class since the power
distribution between the different classes may vary.

To begin specifying the template, we calculate the average of each normalized
coefficient over the set of pedestrians. A base set of 597 color images of natural
scenes of size 128 x 64 that do not contain people were gathered to compare with the
pedestrian patterns and are processed as above. Tables 6.2(a) and 6.2(b) show the
average coefficient values for the set of vertical Haar coefficients of scale 32 x 32 for
beth the non-pedestrian and pedestrian classes. Table 6.2(a) shows that the process
of averaging the coefficients within the pattern and then in the ensemble does not
create spurious patterns; the average values of these non-pedestrian coefficients are
near 1 since these are random images that do not share any common pattern. The
pedestrian averages, on the other hand, show a clear pattern, with strong response
(values over 1.5) in the coefficients corresponding to the sides of the body and weak
response (values less than 0.5) in the coefficients along the center of the body.

We use a gray level coding scheme to visualize the patterns in the different classes
of coefficients the values of the coefficients and display them in the proper spatial
layout. Coefficients close to 1 are gray, stronger coefficients are darker, and weaker
coefficients are lighter. Figures 6-17(a)-(d) show the color coding for the arrays of
coarse scale cocfficients (32x32) and Figures 6-17(e)-(g) show the arrays of coefficients
of the finer scale, (16 x 16).

Figure 6-17(a) shows the vertical coefficients of random images; as expected, this
figure is uniformly gray. The corresponding images for the horizontal and corner

coefficients, not shown here, are similar. In contrast, the coefficients of the people,
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Figure 6-17: Ensemble average values of the wavelet coefficients coded using gray
level. Coefficients whose values are above the template average are darker, those
below the average are lighter. (a) vertical coefficients of random scenes.  (b)-(d)
vertical, horizontal and corner coefficients of scale 32 x 32 of images of people. (¢)-(g)
vertical, horizontal and corner coeflicients of scale 16 x 16 of images of people.
IFigures 6-17(b)-(d), show clear patterns, with the different classes of wavelet coelfi-
cients being tuned to different types of structural information. The vertical wavelets,
Figure 6-17(b), capture the sides of the pedestrians. The horizontal wavelets, IMig-
ure 6-17(c), respond to the line from shoulder to shoulder and to a weaker belt line.
The corner wavelets, Figure 6-17(d), are better tuned to corners, for example, the
shoulders, hands and feet. The wavelets of finer scale in Figures 6-17(¢)-(g) provide
better spatial resolution of the body’s overall shape and smaller scale details such as
the head and extremities appear clearer. T'wo similar statistical analyses using a) the
wavelets of the log of the intensities and b) the sigmoid function as a soft threshold on
the normalized coefficients yields results that are similar to the intensity differencing
wavelets. It is intriguing that a basic measure like the ensemble average provides
clear identification of the template as shown in Figure 6-17.

The template derived from learning uses a set of 29 coeflicients that are consistent
along the ensemble cither as indicators of change or no-change. There are 6 vertical
and 1 horizontal coefficients at the scale of 32 x 32 and 14 vertical and 8 horizontal at
the scale of 16 x 16. These coeflicients serve as the feature vector for the classification

problem.
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6.2.3 The detection system

Once we have identified the important b. sis functions, we can use various classifica-
tion techniques to learn the relationships between the wavelet coefficients that define
the pedestrian class. In this section, we present the overall architecture of the detec-
tion system and the training process. We conclude with experimental results of the

detection system.

System architecture

The system detects people in arbitrary positions in the image and in different scalcs.
To accomplish this task, the system is trained to detect a pedestrian centered in a
128 x 64 pixel window. Once the training stage is completed, the system is able
to detect pedestrians at arbitrary positions by shifting the 128 x 64 window, thereby
scanning all possible locations in the image. This is combined with iteratively resizing
the image to achieve multi-scale detection; in our experiments, we scale the image
from 0.2 to 1.5 times its original size, at incrementsof 0.1. At any given scale, instead
of recomputing the wavelet coefficients for every window in the image. we compute
the transform for the whole image and do the shifting in the coefficient space. A shift
of one coefficient in the finer scale corresponds to a shift of 4 pixels in the window
and a shift in the coarse scale corresponds to a shift of 8 pixels. Since most of the
coefficients in the wavelet template are at the finer scale (the coarse scale coefficients
hardly change with a shift of 4 pixels), we achieve an effective spatial resolution of 4

pixels by working in the wavelet coefficient space.

System training

To train our system, we use a database of frontal and rear images of people from out-
door and indoor scenes. The initial non-people in the training database are patterns
from natural scenes not containing people. The combined set of positive and negative
examples form the initial training database for the classifier. A key issue with the

training of detection systems is that, while the examples of the target class, in this
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case pedestrians, are well defined, there are no typical examples of non-pedestrians.
The main idea in overcoming this problem of defining this extremely large negative
class is the use of bootstrapping training [100). After the initial training, we run the
system over arbitrary images that do not contain any people. Any detections are
clearly identified as false positives and are added to the database of negative exam-
ples and the classifier is then retrained with this larger set of data. These iterations
of the bootstrapping procedure allows the classifier to construct an incremental re-
finement of the non-pedestrian class until satisfactory performance is achieved. This

bootstrapping technique is illustrated in Figure 6-18.
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Figure 6-18: Incremental bootstrapping to improve the system performance.

Classification schemes

In Section 6.2.2 we described the identification of the significant coefficients that
characterize the pedestrian class. These coefficients are used as the feature vector for
various classification methods.

Basic template matching

The simplest classification scheme is to use a basic template matching measure. As
in Section 6.2.2, the normalized template coefficients are divided into two categories:

coefficients above 1 (indicating strong change) and below 1 (weak change). For every
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novel window, the wavelet coefficients are compared to the pedestrian template. The
matching value is the ratio of the coefficients in agreement. A similar approach
was nsed in [94] for face detection with good results. While this basic template
matching scheme is very simple — better classification techniques can be applied —
it is interesting to see how well it will perform on this more complex task.

Support vector machines

Instead of the simple template matching paradigm we can use a more sophisticated
classifier which will learn the relationship between the coefficients from given sets of
positive and negative examples. The classifier can learn more refined relationships
than the simple template matching scheme and therefore can provide more accurate
detection. For our classification problem, we find that using a polynomial of degree
two as the kernel provides good results.

It should be observed, that from the view point of the classification task, we could
use the whole set of coefficients as a feature vector. However, using all the wavelet
functions that describe a window of 128 x 64 pixels, over a few thousands, would
yield vectors of very high dimensionality, as we mentioned earlier. The training of a
classifier with such a high dimensionality would in turn require too large an example
set. The template learning stage of Section 6.2.2 serves to select the basis functions
relevant for this task and to reduce their number considerably (to a very reasonable

29).

6.2.4 Experimental results

To evaluate the system performance, we start with a database of 564 positive examples
and 597 negative examples. The system then undergoes the bootstrapping cycle
detailed in Section 6.2.3. For this system, the support vector system goes through
three bootstrapping steps, ending up with a total of 4597 negative examples. For the
template matching version a threshold of 0.7 (70% matching) was empirically found
to yield good results.

Out-of-sample performance is evaluated over a test set consisting of 72 images

for both the template matching scheme and the support vector classifier. The test
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Figure 6-19: Results from the pedestrian detection system. These are typical images
of relativeiy complex scenes that are used to test the system.
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Figure 6-20: ROC curves for the support vector detection system; the bottom curve
is over the entire test set, the top curve is over the high quality set.

images contain a total of 165 pedestrians in frontal or near-frontal poses; 24 of these
pedestrians are only partially observable (e.g. with body regions that are indistin-
guishable from the background). Since the system was not trained with partially
observable pedestrians, we would not even expect a perfectly trained system (with
the current template) to detect these instances. To give a fair account of the system,
we present statistics for both the total set and the set of 141 high quality pedestrian
images. Results of the tests are presented in Table 6.3 for representative systems
using template matching and support vectors.

The template matching system has a pedestrian detection rate of 52.7%, with
a false positive rate of 1 for every 5,000 windows examined. The success of such
a straightforward template matching measure suggests that the template learning
scheme extracts non-trivial structural regularity within the pedestrian class.

For the more sophisticated system with the support vector classifier, we perform a
more thorough analysis. In general, the performance of any detection system exhibits
a tradeoff between the rate of detection and the rate of false positives. Performance
drops as we impose more stringent restrictions on the rate of false positives. To
capture this tradeoff, we vary the sensitivity of the system by thresholding the output
and evaluate the ROC curve, given in Figure 6-20. From the curve we can see, for

example, that if we have a tolerance of one false positive for every 15,000 windows
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examined, we can achieve a detection rate of 69.6%, and as high as 81.6% on the
high quality set. As we expect, the support vector classifier with the bootstrapping
training performs better than the naive template matching scheme.

In Figure 6-19 we show typical images that are used to test the system. These are
very cluttered scenes crowded with complex patterns. Considering the complexity of
these scenes and the difficulties of pedestrian detection in natural outdoor scenes, we
consider the above detection rate to be high. It is interesting to observe that most of
the false positives are patterns with overall proportions similar to the human body.
We believe that additional training and refinement of the current system will reduce
the false detection rate further.

The system is currently trained only on frontal and rear views of pedestrians.
Training the classifier to handle side views can be accomplished in an identical manner

and can be considered as a natural extension to the current system.

6.2.5 Remarks

In this section, we have introduced the idea of a wavelet template and demonstrated
how it can be learned and used for pedestrian detection in a cluttered scene. The
wavelet template defines an object as a set of regions and relationships among them.
A key idea is to use a wavelet basis to represent the template, yielding not only a
computationally efficient algorithm but also an effective learning scheme.

The success of the wavelet template for pedestrian detection comes from its abil-
ity to capture high-level knowledge about the object class (structural information
expressed as a set of constraints on the wavelet coefficients) and incorporate it into
the low-level process of interpreting image intensities. Attempts to directly apply
low-level techniques such as edge detection and region segmentation are likely to fail
in the type of images we analyze since these methods are not robust, are sensitive to
spurious details, and give ambiguous results. Using the wavelet template, only sig-
nificant information that characterizes the cbject class — as obtained in the learning
phase — is evaluated and used.

In summary, in our approach a pedestrian template is learned from examples
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and then used for classification. It is important to realize that this is not the only
interpretation of our approach, though it is the one originally suggested by [94] and
is the one emphasized throughout this section. An alternative, and more general,
point of view considers the step of learning the template as a dimensionality reduction
stage. Using all the wavelet functions that describe a window of 128 x 64 pixels would
yield vectors of very high dimensionality, as we mentioned earlier. The training of
a classifier with such a high dimensionality would in turn require too large a data
set. The template learning stage of Section 6.2.2 serves to select the basis functions
relevant for this task and to reduce their number considerably (to a very reasonable
29). A classifier ~ such as the support vector machine ~ can then be trained on the
data set. From this point of view, learning the pedestrian detection task consists of
two learning steps: 1) dimensionality reduction, that is, task-dependent basis selection
and 2) training the classifier. In this interpretation, a template in the strict sense of
the word is neither learned nor used.

In any case, it seems that the approach we have described, combined with the
related strategy used previously to learn face detection, may well generalize to several

other object detection tasks.
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1.18 1.14 1.16 1.09 1.11
1.13 1.06 1.11 1.06 1.07
1.07 1.01 1.05 1.03 1.05
1.07 097 1.00 1.00 1.056
1.06 0.99 0.98 098 1.04
1.03 0.98 0.95 094 1.01
0.98 0.97 096 0.91 0.98
098 096 0.98 0.94 0.99
1.01 0.94 098 0.96 1.01
1.01 0.95 0.95 0.96 1.00
099 095 0.92 0.93 0.98
1.00 0.94 091 0.92 0.96
1.00 0.92 0.93 0.92 0.96
@)
062 0.74 0.60 0.75 0.66
0.76 0.92 0.54 0.88 0.81
1.07 1.11 0.52 1.04 1.15
1.38 1.17 0.48 1.08 1.47
1.65 1.27 0.48 1.15 1.71
1.62 1.24 048 1.11 1.63
1.44 127 046 1.20 1.44
1.27 138 046 134 1.27
1.18 1.51 0.46 148 1.18
1.09 1.54 045 1.52 1.08
094 138 0.42 1.39 0.93
0.74 1.08 0.36 1.11 0.72
052 0.74 0.29 0.77 0.50

(b)

Table 6.2: Normalized vertical coefficients of scale 32 x 32 of images with (a) random
natural scenes (without people), (b) pedestrians.
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Detection False Positive

Rate Rate (per window)

Template
Matching || 52.7% (61.7%) | 1:5,000

SVM 69.7% (81.6%) | 1:15,000

Table 6.3: Performance of the pedestrian cetection system; values in parentheses are
for the set of "high quality” pedestrian images.
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6.3 Nonlinear Prediction of Chaotic Time Series

We tested SVRM on the same data base of chaotic time series that was used in by
Casdagli in [21] to compare the performances of different approximation techniques,
including polynomial and rational approximation, local polynomial techniques, Ra-
dial Basis Functions, and Neural Networks. The SVM performs better than the ap-
proaches presented in [21]. We also study, for a particular time series, the variability
in performance with respect to the few free parameters of SVM.

The section is organized as follows: In section 6.3.1 we formulate the problem of
time series prediction and see how it is equivalent to a regression problem. In section
6.3.2 we introduce the chaotic time series used to benchmark previous regression
methods in [21]. Section 6.3.3 contains the experimental results and the comparison
with the techniques presented in [21]. Section 6.3.4 focuses on a particular series,
the Mackey-Glass, and examines the relation between parameters of the SVM and

generalization error.

6.3.1 Time Series Prediction and Dynamical Systems

For the purpose of this section a dynamical system is a smooth map F: R x § — &
where S is an open set of an Euclidean space. Writing F(t,x) = F(x), the map F

has to satisfy the following conditions:
1. Fo(x) =x;
2. F(Fy(x)) = Foye(x) Vs,t€ R

For any given initial condition xo = Fp(x) a dynamical system defines a trajec-
tory x(t) = Fi(xo) in the set S. The direct problem in dynamical systems consists in
analyzing the behavior and the properties of the trajectories x(t) for different initial
conditions xo. We are interested in a problem similar to the inverse of the problem
stated above. We are given a finite portion of a time series z(t), where z is a com-
ponent of a vector x that represents a variable evolving according to some unknown

dynamical system. We assume that the trajectory x(t) lies on a manifold with fractal
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dimension D (a “strange attractor”). Our goal is to be able to predict the future
behavior of the time series z(t). Remarkably, this can be done, at least in principle,
without knowledge of the other components of the vector x(t). In fact, Takens em-
bedding theorem (101) ensures that, under certain conditions, for almost all T and for

some m < 2D +1 thereis a smooth map f: R™ = R such that:

2(nr) = f (@((n = D7), 2((n = 2)7),-- ., x((n = m)7)) (6.1)

The value of m used is called the embedding dimension and the smallest value for
which (6.1) is true is called the minimum embedding dimension, m”. Therefore, if
the map f were known, the value of z at time nT is uniquely determined by its m

values in the past. For simplicity of notation we define the m-dimensional vector

Sy = (a((n — 1)7), 2((n = 2)7)s - L, z((n = m)7))

in such a way that eq. (6.1) can ke written simply as z(n7) = f(kn-1)- U N
observations {z(n7)}\, of the time series z(t) are known, then one also knows N —m
values of the function f, and the problem of learning the dynamical system becomes
equivalent to the problem of estimating the unknown function f from a set of N—-m
sparse data points in R™. Many regressior technigues can be used to solve problems
of this type. In this section we concentrate on using the Support Vector Regression

Machine (SVRM).

6.3.2 Benchmark Time Series

We tested the SVM regression technique on the same set of chaotic time series that
Casdagli used in [21] to test and compare several approximation techniques.

The Mackey-Glass time series

We considered two time series generated by the Mackey-Glass delay-differential equa-

tion [60]:
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0.2z(t — A)
1+ z(t— A)NO’

dsft)
dt

= —0.1z(t) + (6.2)

with parameters A = 17,30 and embedding dimensions m = 4,6 respectively. We
denote these two time-series by MG;7 and MG3p. In order to be consistent with
[21] the initial condition for the above equation was z(t) = 0.9 for 0 < ¢ < A, and
the sampling rate 7 = 6. The series were generated by numerical integration using a

fourth order Runge-Kutta method.

The Ikeda map

The Ikeda map [50] is a two dimensional time series which is generated iterating the

following map:

f(z1,22) = (1 + p(z1 cosw — T2 8inw), p(z; sinw + 72 cosw)), (6.3)

where w = 0.4 — 6.0/(1 + z? + z2). In [21] Casdagli considered both this time series,
that we will denote by Ikeda,, and the one generated by the fourth iterate of this

map, which has a more complicated dynamic, and that will be denoted by Ikeday.

The Lorenz time series

We also considered the time series associated to the variable z of the Lorenz differ-

ential equation [58):

t=o(y—z), y=rz—y—zz, 2=y bz (6.4)

where 0 = 10, b = g—, and r = 28. We considered two different sampling rates,
7 = 0.05 and T = 0.20, generating the two time series Lorenzoos and Lorenzg .
The series were generated by numerical integration using a fourth order Runge-Kutta

method.
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6.3.3 Comparison with Other Techniques

In this section we report the results of the SVM on the time series presented above,
and compare them with the results reported in [21] using different approximation
techniques (polynomial, rational, local polynomial, Radial Basis Functions with multi-
quadrics as basis function, and Neural Networks). In all cases, a time series {z(n7)} 4"
was generated as follows: the first N points were used for training and the remaining
M points were used for testing. In all cases N was set to 500, except for the Ikeda,,
for which N = 100, while M was always set to 1000. The data sets we used were the
same that were used in [21]. Following [21], denoting by fy the predictor built using
N data points, the following quantity was used as a measure of the generalization
error of fn:
1 & (z(n7) = fn(%n-1))

o*(fn) = M, 2, Var (6.5)

where Var is the variance of the time series.

For each series we choose the kernel, K, and parameters of the kernel that gave
us the smallest generalization error. This is consistent with the strategy adopted in
[21). The results are reported in table (6.4). The last column of the table contains
the results of our experiments, while the rest of the table is from [21] with parameters

and kernels set as in the remaining part of this section:

o Mackey-Glass time-series: the kernel K was chosen to have the following

form:

m (d)
K(x,x;) = E sin((v + 1/2)(1(‘0 —z;"))

o sin(0.5(z@ — YY) (6.6)

where z(9 is the d-th component of the m-dimensional vector x, and a v is an
integer. This kernel generates an approximating function that is an additive

trigonometric polynomial of degree v, and corresponds to features ¢; that are
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trigonometric monomials up to degree v. We tried various values for € and
C. The embedding dimension for the series MGy7 and M G3o were m = 4 and
m = 6 in accordance with the work by Casdagli, and we used v = 200 and

e=10"3.

e Lorenz time-series: For the Lorenzoos and Lorenzp o series the polynomial
kernels of order 6 and 10 were used. The embedding dimensions used were 6

and 10 respectively. The value of € used was 1073.

o Ikeda map: a B-spline of order 3 was used as the kernel, and the value of €

was 1073,

Poly | Rational | Loc?=! | Loc?=2 | RBF | N.Net | SVM |
MGy |-195™M |-1.14® |-148 |-1.89 |-1.97-2.00 [-2.36 (258)
MGso | -1.404 |-1.33® |-124 |-142 |-1.60|-15 [-1.87 (341)
Ikeda, | -5.57(12) | -8.01® |-1.71 |-2.34 |-2.95|- -6.21 (374) |]
Ikeday | -1.0509) [-1.3909 |-1.26 |-160 |-210]- -2.31 (427) ||
Loroos | -4.626) | -4.30®) [-2.00 |-348 [-3.54]- -4.76 (389)
Lorgy | -1.05® |-1.39) [-126 |-1.60 |-210 - -2.21 (448)J

Table 6.4: Estimated values of log,q o( f,) for the SVM algorithm and for various regres-
sion algorithms, as reported in [21). The degrecs used for the best rational and polynomial
regressors are in superscripts beside the estimates. Loc?=! and Loc?=? refer to local ap-
proximation with polynomials of degree 1 and 2 respectively. The numbers in parenthesis
near the SVM estimates are the number of support vectors ohtained by the algorithm. The
Neural Networks results which are missing were also missing in [21].

6.3.4 Sensitivity to Parameters and Embedding Dimension

In this section we report our observations on how the generalization error and the
number of support vectors vary with respect to the free parameters of the SVM and
to the choice of the embedding dimension. The parameters we analyze are therefore
C, ¢, the dimensionality of the feature space D, and the embedding dimension m. All

of these results are for the MG, series.
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Figure 6-21a demonstrates that C has little effect on the generalization error (the
plot spans over 7 orders of magnitude). The parameter C has also little effect on the
number of support vector, as shown in figure 6-21b, which remains almost constant
in the range 10~2 — 102. The results were similar for kernels with low (D = 2), high

(D = 802) and infinite dimensionality of the feature spaces.
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Figure 6-21: (a) The L? generalization error versus C for the MG series. (b) The number
of support vectors versus C for the same series. The kernel was an additive trigonometric
polynomial with v = 200.

The parameter ¢ has a strong effect on the number of support vectors and on
the generalization error, and its relevance is related to D. In order to see why this
happens, remember (see equation 2.1 in section 2.1) that if R(A) and Remp(A) are

respectively the expected risk and empirical risk, with probability 1 — #:

I[6] < Lmgle] + \/ Mlog®y 1) —log}, (6.7)

where h is the VC-dimension of the approximation scheme. It is known that
the VC-dimension satisfies A < min(ﬂz-(%ﬂﬁ, D) + 1[108], where R is the radius of
the smallest sphere that contains all the data points in the feature space, A is a
bound on the norm of the vector of coefficients. When D is small, the VC-dimension
h is not dependent on € and the second term on the bound of the generalization
error is constant and therc...c a very small ¢ does not cause overfitting. For the
same reason when D is large the term is very sensitive to € and overfitting occurs

for small e. Numerical results confirm this. For example, figures 6-22 and 6-23
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which correspond to feature spaces of 802 and infinite dimensions, respectively, show
overfitting. (The kernels used were the additive trigonometric polynomial with v =
200 and a B-spline of order 3, respectively). Figure 6-24 corresponds to a feature
space of 10 dimensions and there is no overfitting. (The kernel used was the additive

trigonometric polynomial with v = 2.)
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Figure 6-22: (a) The L? generalization error versus ¢ with a 802 dimensional feature
space. The iuset magnifies the boxed region in the lower left section of the plot. Note that
overfitting occurs. (b) The number of support vectors versus € for the same feature space.
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Figure 6-23: (a) The L? generalization error versus ¢ with an infinite dimensional feature
space. The inset magnifies the boxed region in the Jower left section of the plot. Note that
ovefitting occurs (b) The number of support vectors versus ¢ for the same feature space.

The effect of the embedding dimension m on generalization error was also exam-
ined. According to Takens theorem the generalization error should decrease as m

approaches the minimum embedding dimension, m*. Above m* there should be no
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Figure 6-24: (a) The L? generalization error versus ¢ with a 10 dimensional feature space.
Note that there is no overfitting (b) The number of support vectors versus ¢ for the same
feature space.

decrease in the generalization error. However, if the regression algorithm is sensitive
to overfitting the generalization error can increase for m > m*. The minimal embed-
ding dimension of the MG)7 series is 4. Our numerical results demonstrate that the
SVM does not overfit for the case of a low dimensional kernel and overfits slightly
for high dimensional kernels, see figure 6-25. The additive trigonometric polynomial

with v = 200 and 2 were used for this figure.

Embedding dimension vs L2 error

embedding dimension

Figure 6-25: The L? generalization error versus the embedding dimension. The solid line
is for a 802 dimensional feature space and the dashed line is for a 10 dimensional feature

space.
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6.3.5 Remarks

The SVM algorithm showed excellent performances on the data base of chaotic time
series, outperforming the other techniques in the benchmark in all but one case. The
generalization error is not sensitive to the choice of C, and very stable with respect to
€ in a wide range. The variability of the performances with ¢ and D seems consistent

with the theory of VC bounds.
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Chapter 7

Contributions, Future Research

and Conclusions

7.1 Contributions

The contributions of this thesis can be summarized as follows:

1. An active set algorithm for training Support Vector Machines that exploits
its geometrical properties, guarantees global optimality, and makes possible
the solution of problems with hundreds of thousands of data points that were

previously unsolvable.

2. An implementation of this algorithm for both pattern classification and re-
gression problems using MINOS 5.4 [71] [72] as the solver of the subproblems
generated by the algorithm. This implementation has been tested under several
compwer architectures (Sun, Silicon Graphics and IBM PCs) and operating

systems (Sun OS, Solaris, Irix and Microsoft Windows NT).

3. A Support Vector Regression Machine solution to the problem of reducing the
run-time complexity when performing classification and estimation for the class
of problems where many of the non-zero variables ); have an active upper bound

(i.e, \i =C).

182



N

. A primal reformulation of the SVM training problem which yields the same
decision surface obtained by solving the traditional QP training problem. This
formulation is used for reducing the run-time complexity when many of the
non-zero variables ); have an active upper bound (i.e., A; = (), and is also

used in an alternative formulation to Structural Risk Minimization.

5. An active set algorithm for finding the radius of the smallest sphere that con-
tains the data points in feature space (i.e., the high-dimensional space where
data points are mapped in nonlinear SVMs). This algorithm also exploits the
geometrical properties of the problem, guarantees global optimality, and solves

previously unsolvable problems.

6. An implementation of (5) that also uses MINOS 5.4 as the solver for the sub-
problems generated by the algorithm.

7. An alternative formulation to Structural Risk Minimization that finds not only
the support vectors, but also optimizes over some key parameters that drive the

behavior of the kernel-based mapping.

8. Applications of SVMs to face detection, people detection and time series analy-
sis. These applications are important since they have been the first to follow the

OCR application developed by Vapnik and his cc-workers at AT&T Research.

7.2 Future Research

As stated in section 3.6, there are two main topics regarding SVM training that should
be explored further: the solver and the pivoting strategy. A detailed comparison
between MINOS 5.4 [72] and QP solvers like LSSOL [38], LOQO [104][105], CPLEX
(version 4.0 or above), SQOPT 5.0 [39] [41] and QPOPT 1.0 [39] [40] could help us
in reducing the training time even further. Regarding the pivoting strategy, we must
say that our implementation is not as sophisticated as we would like, since several
promising heuristics (see section 3.6) have not been implemeated. This should also

be considered in the near future.
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Another area where future work should concentrate is the study and understanding
of the geometry behind the mapping induced by the kernel operator. The work we
have presented in this thesis using parameterized kernels and radius/margin ratios
has been just a small step in what should be an active area of research in the near
future.

Not least irnportant, we must say that being able to apply the SVM technique to
real-life problems is essential to its survival. How to actively embed prior knowledge of
the problem at hand within the SVM, particularly within the kernel, can be considered
an immediate goal. The relationship between the process of feature selection and
whether (or when) it makes sense to perform the latter is also an open question that
should be investigated.

In this thesis we have offered three applications of the technique to real-life prob-
lems where we have matched or exceeded the state-of-the-art benchmarks. We believe

there will be more to follow.

7.3 Conclusions

This thesis marks the conclusion of three years of hard work and research surround-
ing a new, excellent, and very promising tool. We believe that even in applications
where tailored and hand-crafted techniques can have the leading edge, Support Vector
Machines will give many researchers an outstanding (and sometimes tough to outper-
form!) benchmark or starting point. Its elegance, simplicity and sound mathematical
framework make SVMs a very unique tool within the reach of all machine learning
researchers.

An important conclusion that can be drawn from this thesis is the immense con-
tribution that optimization theory and tools can offer to the artificial intelligence
community, in particular to the research in machine learning. Undoubtly, there will

be more to follow.
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Appendix A

Methods used in preliminary work

A.1 Zoutendijk’s Method (case of linear constraints)

[117](2):
In order to solve a nonlinear problem of the form:
Maximize fix)
subject to
(A1)
Ax <b

Ex =e

this method follows the following skeletal approach:

1. Find x; with A;x; = by, A2x; < b, and Ex; = e, partitioning AT = [AT, A]]
and b = [by, by). Let k = 1.

2. Given Xk, A1Xx = by and A;x < by, find dy, the optimal solution of:
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Maximize V f(x;)-d

subject to
Ad <0 (A.2)
Ed =0

-1<d <1

3. If Vf(xx)-di =0, Stop. Else go to 4.

4. Find a step-size 6, solution to:

Maximize f(xx + 6d)
subject to (A.3)

0S6 <6ma::

where

5 mind-‘>o(§%) if dg0

00 if d<O0
with b = b, — A;xx and d = A,d.
5. Let X441 = X4 + 8idy. Let £ =k + 1. Go to step 2.

Step 2 involves solving a linear program, which is usually very easy to .In the case

of training a SVM, step 2 becomes:
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Maximize f(d) =(1-DAy)-d

subject to
A-d =0

(A.4)

-1<d; <0 for \;=C

0<d; <1 for \; =0

-1<d; <1 otherwise
and step 4 selects 6 = min(6op¢, Smaz), Where:
d-1-d:-DA ) ., C=X\ =N
bopt = —od . Dd and Amaz = 5'.'1;'&‘(}{,\23.'2 >o( d; ) Ai>rg.ldr.'l<0(d—.-)}

A.2 MINOS 5.4:

Wolfe’s Reduced Gradient method depends upon reducing the dimensionality of the
problem by representing all variables in terms of an independent set of them. Under
non-degeneracy assumptions (to facilitate this brief description), a program of the

form:

Minimize f(x)

subject to

can be decomposed into A = [B,N] , x = (xg,xn) with B non-singular, xg > 0
and xy > 0.

By denoting the gradient V f(x) = (Vi f(x), Vnf(x)) and a direction vector d =
(dB,dn), the system Ad = 0 holds for any choice of dy by letting dg = —B~'dn.
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Definingr = (rp,ry) = Vf(x)—Vaf(x)B™'A = (0,Vnf(x)—Vsf(x)B™'N}
as the reduced gradient, it follows that Vf(x)-d = ry - dy. Therefore, in order
to have a feasible direction d to be an improving feasible direction (feasibility and
Vf(x)-d < 0), a vector dy must be chosen such that ry -dy < 0 and d; > 0 for

z; = 0. This can be accomplished by choosing dp = —B~'d,, and:

-T; if ry S 0

—I;T; if r; > 0

for j € N.After determining the improving feasible direction d, a line-search
procedure is used to determine the step-size, and an improved solution is obtained.

Reduced gradient methods allow all components of dxy to be non-zero. On the
opposite side, for example, the simplex method for linear programming examines a
similar direction-finding problem, but allow only one component of dy to be non-zero
at a time. It is interesting to see that although the second strategy looks too restric-
tive, the first one also can result in a slow progress, as sometimes only small step-sizes
are possible due to the fact that many components are changing simultaneously.

In order to reach a compromise between the two strategies mentioned above, the
set of non basic variables Xy can be further partitioned into (xs,Xnr), with the
corresponding decomposition of N = [S, N'] and dy = (ds,dns). The variables x,
are called superbasic variables, and are intended to be the driving force of the iterates
while x5+ is fixed and xp is adjusted to maintain feasibility [71].

Notice that the direction vector d can be accordingly decomposed through a linear

operator Z of the form:

dp —B-1§

d = dS = I ds = st (A.5)
dy: 0
L - L J

and now the search direction along the surface of the active constraints is char-
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acterized as being in the range of a matrix Z which is orthogonal to the matrix of

constraint normals, i.e.,

-B-'S

AZ = [B,S,N]| 1 = 0. (A.6)

t 0

By expressing the directional derivative V f(x) - d as:

Vf(x)-d = Vf(x)-Z2ds = [Vsf(x)— ng(x)B"‘S]ds = rg-dg (A.7)

where rs = Vsf(x) — Vpf(x)B™'S, and the direction finding problem can there-
fore be reduced to:

Minimize rs- ds

subject to (A.8)

—zj|rj] < dj < |rj| for z; superbasic.

Given that the direction finding problem described by equation (A.8) uses a linear
approximation to the objective function, slow and zigzagging convergence is likely to
happen when the contours of f are flat or thin in some directions. Therefore, we
would expect faster convergence when this approach is upgraded by taking a second-
order approximation to f. More formally, the goal is to minimize a second-order

approximation to the direction finding problem given by:

F(x)+ Vf(x)-d+ %d . H(x)d (A.9)

over the linear manifold Ad = 0.

Usirg equations (A.7) and (A.5), (A.9) transforms into:

189



min{rs - ds + %ds . ZTH(x)Zds) (A.10)

where the matrix ZTH(x)Z is called the reduced Hessian.
Setting the gradient of (A.10) equal to zero results in the system of equations:

ZTH(x)Zds = —rs (A.11)

Once d; is available, a line-search along the direction d = Zds is performed and
a new solution is obtained.

MINOS 5.4 implements (A.11) with certain computational highlights [71]:

1. During the algorithm, if it appears that no more improvement can be made
with the current partition [B, S, N'], that is, ||rs|| < ¢, for a suitably chosen
tolerance level ¢, some of the non-basic variables are added to the superbasics
set. Using a Multiple Pricing option, MINOS allows the user to specify how

many of them to incorporate.

2. If at any iteration a basic or superbasic variable reaches one of its bounds, the

variable is made non-basic.

3. The matrices Z, H(x) and ZT H(x)Z are never actually computed, but are used

implicitly

4. The reduced Hessian matrix ZT H(x)Z is approximated by RTR, where R is a

dense upp=r triangular matrix.

5. A sparse LU factorization of the basis matrix B is used.
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