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ABSTRACT

One of the fundamental questions in quantum physics is whether measurements re-
veal pre-existing values. Leggett and Garg derived an inequality that is satisfied
by systems featuring both macroscopic realism and non-invasive measurability. The
Leggett-Garg Inequality places a quantum-classical limit on a linear combination of
correlation functions of a series of measurement outcomes. The flavor oscillations of
solar neutrinos provide an interesting way to test the Leggett-Garg inequality, and on
an astrophysical length scale. Beginning as electron neutrinos in the solar core, they
undergo the Mikheyev-Smirnov-Wolfenstein Effect and exit the sun in either of two
mass eigenstates, depending on their energy. Using the neutrino energy to predict
the flavor state when it begins traversing the vacuum between the sun and the Earth,
we can construct two-time correlation functions of the flavor state at creation, after
the MSW effect, and upon detection here on Earth. We can then use these correlation
functions to test whether neutrino flavor oscillations obey or violate the Leggett-Garg
inequality.

Una delle domande fondamentali della fisica quantistica 6 se le misurazioni rivelano
valori preesistenti. Leggett e Garg hanno derivato una disuguaglianza che viene sod-
disfatta da sistemi caratterizzati sia dal realismo macroscopico che dalla misurabilitd
non invasiva. La disuguaglianza Leggett-Garg pone un limite quantistico-classico
su una combinazione lineare di funzioni di correlazione di una serie di risultati di
misura. Le oscillazioni di sapore dei neutrini solari forniscono un modo interessante
per testare la disuguaglianza Leggett-Garg, e su una scala di lunghezza astrofisica.
Utilizzando l'energia dei neutrini per prevedere lo stato di sapore quando comincia ad
attraversare il vuoto tra il sole e la Terra, possiamo costruire funzioni di correlazione
due volte dello stato di sapore al momento della creazione, dopo l'effetto MSW, e al ril-
evamento qui sulla Terra. Possiamo poi utilizzare queste funzioni di correlazione per
verificare se oscillazioni di sapore dei neutrini obbediscono o violano la disuguaglianza
Leggett-Garg.

Thesis Supervisor: David Kaiser, Germeshausen Professor of the History of Science
Title: Senior Lecturer, Department of Physics
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CHAPTER 1

THE LEGGETT-GARG INEQUALITY

1.1 REALISM, LoCALITY, AND MEASUREMENT

1.1.1 THE COPENHAGEN INTERPRETATION

The predictions of quantum mechanics have been verified in a century's worth of ex-

periments, while the theory has been subject to that century's debates over its inter-

pretation. Quantum mechanics rejects many of the assumptions about the external

world that were developed in Renaissance philosophy and enshrined in classical me-

chanics and electrodynamics. No longer universal are the principle of determination

(that a system's later state is completely fixed in terms of its previous states), the

principle of realism (that objects have fixed states even when no one looks at them),

and others.

Bohr believed that quantum mechanics required these mysteries in order to reduce

to classical mechanics in the h -+ 0 limit, and that no more fundamental theory could

match its predictions. In his words,

Far from being a temporary compromise in this dilemma, the recourse to

essentially statistical considerations is our only conceivable means of ar-

riving at a generation of the customary way of description sufficiently wide

to account for ... the quantum postulates and reducing to classical theory

9



in the [classical limit].1

Einstein, on the other hand, described himself as a suspicious admirer of quantum

mechanics, believing that there was a more fundamental theory from which the for-

mer might emerge. He, Podolsky, and Rosen presented2 a classic thought experiment

demonstrating that quantum mechanics predicted non-local effects. The EPR paradox

is the apparent instantaneous movement of information between entangled particles,

in contradiction with the speed limit from relativity. The authors argued that the

particles had pre-determined properties that were simply hidden from quantum me-

chanics - using these hidden variables, one is able to avoid violating locality. Both

Bohr and Heisenberg opposed this realism of Einstein's, but for different reasons.

While Bohr was interested in metaphysical speculations about the underlying nature

of reality, Heisenberg argued - apparently to his mentor's frustration - that what

mattered were the outcomes of experiments and nothing more:

It is possible to ask whether there is still concealed behind the statistical

universe of perception a 'true' Universe in which the law of causality would

be valid. but such speculation seems to us to be without value and mean-

ingless, for physics must confine itself to the description of the relationship

between perceptions. 3

This view was codified as the Copenhagen Interpretation, 4 which asserts that

quantum mechanics is all there is - there are no hidden variables, local or other-

wise. The wavefunction is an exhaustive representation of what we can know about

a system before a measurement is made. An important corollary of this is that once

a measurement is made, the overall wavefunction instantly "collapses" in such a way

that probabilities of non-observed outcomes vanish, including at spatially-separated

'N. Bohr, Causality and Complementarity, Supplementary papers edited by Jan Faye and Henry Folse
as The Philosophical Writings of Niels Bohr, Vol. IV. Woodbridge: Ox Bow Press, 1998.

2 A. Einstein, B. Podolsky, and N. Rosen. Phys. Rev. 47, 777 (1935).
3W. Heisenberg, "Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und

Mechanik." Zeitschrift far Physik, 43 (1927), 172-198.
4 According to Wikipeida, the term "Copenhagen Interpretation" was coined by Heisenberg in his 1929

lectures at the University of Chicago, as Kopenhagener Geist [spirit] der Quantentheorie.

10



points. This mysterious, non-local collapse is precisely what unsettled Einstein and

elicited objections and skepticism from others.

In the 1960s, Bell derived a set of inequalities that would allow an experimenter to

test whether there were any variables hidden from quantum mechanics. Specifically,

Bell demonstrated that no locally causal theory could reproduce the predictions of

quantum mechanics about spatially separated systems. That is, no theory in which

the outcomes of future measurements are already determined by local measurements

could match the predictions of quantum mechanics. 5 Each test of Bell's inequality

has yielded a violation of the classical bound,6 prompting us to abandon locality and

other reasonable assumptions about the world: we must apparently come to terms

with instantaneous wavefunction collapse.

1.1.2 MACROSCOPIC SUPERPOSITIONS?

In the spirit of Bell and EPR, Leggett and Garg ask,7 To what extent can our classical

intuitions guide our view of the microscopic world? Specifically, does our expectation

to have a macroscopic object in a definite state, and not in a superposition of states,

apply to microscopic systems?

The authors formalized two expectations we have about the macroscopic world:

macroscopic realism and noninvasive measurability. The first says that the outcome

of an observation is well-defined before the measurement is made - I'm still speeding

down the highway at 75 mph even if neither I nor a police officer make a measurement

of the speed. Noninvasive measurability is my expectation that the observation's out-

come is not substantially affected by the measurement - the police officer's radar gun

will not affect the speed of my car.

Asher Peres wrote that realism has "at least as many definitions as there are au-

5J.S. Bell, "On the Einstein Podolsky Rosen Paradox." Physics I, 195-200 (1964).
6 Subject to some lingering loopholes; see, for example, J. Gallicchio, A.S. Friedman, and

D.I. Kaiser, "Testing Bell's Inequality with Cosmic Photon: Closing the Setting-Independence Loophole."
Phys. Rev. Lett. 112, 110405 (2014). arxiv:1310:3288v2.

7A.J Leggett and A. Garg, "Quantum Mechanics versus Macroscopic Realism: Is the Flux There when
Nobody Looks?" Phys. Rev. Lett. 54 9 (857), 4 March 1985.
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thors."8 We will define realism to be the independence of an object's properties from

external measurement and observation. On the other hand, the Copenhagen Interpre-

tation, as expressed by what is referred to as Bohr's "indefinability thesis," says (in

philosophical jargon) that the

truth conditions of sentences ascribing a certain kinematic or dynamic

value to an atomic object are dependent on the apparatus involved, in such

a way that these truth conditions have to include reference to the experi-

mental setup as well as the actual outcome of the experiment. 9

Classical physics obeys these two assumptions, whereas quantum mechanics does

not. Leggett and Garg derived an inequality that is obeyed by theories and worlds

satisfying both macroscopic realism and non-invasive measurability.10 Consider a

macroscopic variable that can take on two values, say Q = 1, and its two-time corre-

lation function

Cij = (Q(t)(t3 )), (1.1)

where Q(t) is the operator corresponding to the observable Q. If macroscopic realism

and noninvasive measurability are obeyed, then the Leggett-Garg inequality places

classical limits on a combination of the correlations: for three measurements,

-3 < C12 + C23 - C13 1, (1.2)

or more generally, for an n-measurement Leggett-Garg parameter,

-n<K, n-2 n=3,5,7...
(1.3)

-(n -- 2)<5K n n- 2, n =4, 5,6 ...

where K, = C12 + ... + Cn_1 n - Cn1.

8 A. Peres, "Quantum Limitations on Measurement of Magnetic Flux," Phys. Rev. Lett. 61, 2019 (1988).
9Jan Faye, "The Copenhagen Interpretation of Quantum Mechanics." Stanford Encyclopedia of Phi-

losophy, 2014.
10 This discussion follows the discussion in Emary, Lambert, and Nori, "Leggett-Garg Inequalities." 31

January 2014, arXiv:1304.5133.
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To see where this comes from, at least for the case of K3, note that the correlation

function can be written as

CiQ= Z QQ Pi (Qi, Q), (1.4)
Qi,Qj= 1

where Pi. (Qi, Qj) is the joint probability of measuring Qi = 1 at time ti and Q3 = t1

at time tj.11 The assumption of realism means that the observables Q have definite

values throughout the measuring process, so the probability distribution Pij (Qi, Q3)

is the marginal distribution of some other distribution that includes a third Q:

Pi (Q, Q) = Pi(Q 1, Q2 , Q 3 ). (1.5)
Qk= 1, k#i,j

So far we have said nothing about the independence of P21 (Qi, Q2, Q3), P32 (Qi, Q2, Q3),

and P31 (Qi, Q2, Q3). If we include the assumption of non-invasive measurement, how-

ever, we see that each of these distributions must be the same, since the measurement

will not affect the subsequent evolution of the system. Thus, the LG-string may be

written

K3 = C21 + C32 - C31

E ( E P(Q1 , Q 2 ,Q 3 ) + P(Q1 , Q2 ,Q 3)- P(QiQ2,Q 3 )
QiQj= 1QQ, ksi,2 Qk, k#2,3 Qk, kA1,3

(1.6)

Carrying through the algebra, and using the convexity of probabilities L = 1, one

finds

K3 = 1 - 4(P(+1, -1, +1) + P(-1, +1, -1)), (1.7)

yielding the bounds K3 = -3 for P(+1, -1, +1) = P(-1, +1, -1) = 1, and K3 = 1 for

P(+1, -1, +1) = P(-1, +1, -1) = 1. This yields the Leggett-Garg inequality (LGI),

-3 <C12 + C23-13<1. (1.8)

1 To see an example of this in practice, cf sec. 3.1.
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The LGI can also be proven in terms of hidden-variable theories, but I do not

reproduce that demonstration here.12

It is worth noting that the correlation functions Cij = (QiQj) are classical quan-

tities, and no vagueness arises from the fact that we do not specific which of Qj and

Qj happened first. To find the LG parameter K for a quantum system, the correlation

functions are set to be equal to their symmetric combination,

Cij = 2 (i~j + Qji), (1.9)

where I follow David Kaiser's notes [?] in distinguishing the symmetrized correlation

function by using a script font.

Emary, Lambert, and Nori use this description to show that the maximum vio-

lation of K 3 is 1.5. They assume that each operator Qs can be written as a linear

combination of Pauli matrices. 13 Setting Q, = d, -, the authors find that

1
(QiQj + QjQi) = di ) = di - . (1.10)

2

Defining 0 m to be the angle between the vectors a, and am+1, the LG parameter K3

can be written as

K3 = cos(0 1) + cos(0 2 ) - cos(0 1 + 02). (1.11)

The maximum of K3 occurs for all angles 0 = 7r/3,

max(K3) = 1.5. (1.12)

As described in Emary, Lambert, and Nori (2014) and Joe Formaggio's notes of

April 27, 2015 [10], LGI violation is closely related to the commutators of the operators

12See, for example, Emary, Lambert, and Nori (2014) 2.2, also Dressel et al. (2011); J. Kofler and
C. Brukner, "Condition for macroscopic realism beyond the Leggett-Garg inequalities." Phys. Rev. A 87,
052115 (2013); and O.J.E. Maroney, Detectability, "Invasiveness and the Quantum Three Box Paradox."
arXiv:1207.3114 (2012).

'3One cannot exactly write weak measurements as a linear combination of Pauli matrices, which is
something that ought to be addressed.
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Figure 1-1: An interesting schematic comparing the setup of experiments testing the

Bell (above) and Leggett-Garg (below) inequalities. While Bell experiments measure

different qubits at spatial separation, Leggett-Garg tests measure the same qubit at

different times. Figure taken from Palacios-Laloy et al., (2010).
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Qi. Setting Qi = di . 6, one finds

[ Qi'Q01 = 2i& - (ali x ay) (1.13)

For more on this, see Emary, Lambert, and Nori (2014) 3.1.

Note that there is a clear analogy between the LGI and the Bell inequality. While

the latter places a limit on a function of correlations of measurements taken at space-

like separated points, the Leggett-Garg inequality limits a function of correlations at

different points in time. Sometimes the LGIs are called the temporal Bell inequalities.

Both inequalities test realism, coupled with locality in the case of the Bell inequalities,

or with non-invasive measurability in the case of the Leggett-Garg inequality.

1.2 TESTING THE LEGGETT-GARG INEQUALITY

1.2.1 EXPERIMENTAL PROGRESS

The first experimental violation of a Leggett-Garg inequality was reported by Palacois-

Laloy et al.,1 4 who studied a superconducting qubit subjected to continuous weak mea-

surements. Since then, violations of the LGI have been found in photon systems,15

diamond defect centers,1 6 NMR systems,17 and more.

Each of these experimental LGI violations can be circumvented by exploiting a

"clumsiness loophole": the observed violation could be explained by some uninten-

tional invasiveness in the measurement scheme.' 8 In other words, it might be possi-

ble that the excess correlations observed are due not to the absence of superpositions,

1
4 A. Palacios-Laloy et al., "Experimental violation of a Bell's inequality in time with weak measure-

ment." Nat. Phys. 6, 442 (2010).
15See, for example, Goggin et al., "Violation of the Leggett-Gart inequality with weak measurements

of photos." Proc. Natl. Acad. Sci. USA 108, 1256 (2011); J. S. Xu et al., "Experimental violation of the
Leggett-Garg Inequality under decoherence." Sci. Rep. 1,101 (2011); J. Dressel et al., "Experimental
violation of two-party Leggett-Garg inequalities with Semiweak Measurements." Phys. Rev. Lett. 106.
040402 (2011).

"See, for example, Y. Suzuki, P. Neumann, and H.F. Hoffman, "Experimental violation of Leggett-
Garg Inequalities in quantum measurements with variable resolution and back-action." New J Phys. 14,
103022 (2012).

V. Athalye, S. Singha Roy, and T.S. Mahesh, "Investigation of the Leggett-Garg Inequality for Pre-
cessing Nuclear Spins." Phys. Rev. Lett. 107, 130402 (2011).

'8 Emary, Lambert, and Nori (2014).
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but to interactions between the system and the measuring device. It is impossible to

demonstrate that a physical measurement is ideally non-invasive; the best strategy

is to exploit ideal negative measurements.19

1.2.2 WEAK MEASUREMENT SCHEMES

When testing the Leggett-Garg inequality in the lab, a measured violation may be

attributed either to the failure of macroscopic realism or to an unwitting invasivity of

the measurement. In order to actually probe macroscopic realism, the measurements

leading up to the final one must interfere minimally with the system. Leggett and

Garg introduced the idea of ideal negative measurements (see footnote above). How-

ever, there is some room between projective and negative measurements for weak

ones.

Weak measurements were first proposed by Aharonov, Albert, and Vaidman in

1988.20 Their results do not fully distinguish between possible outcomes of the mea-

surement process, providing the experimenter with less information than if she had

performed a projective measurement. An adherent of the Copenhagen interpretation

would say that weak measurements cause a partial collapse of the wavefunction.

From a classical point of view, weak measurements are made using an ambiguous

detector.21 Suppose the detector has a continuous output variable q as a response to

the system variable Q = 1, with conditional probability P(qJQ). Then, the expecta-

tion value of q can be constructed as

(q) = dq [qP(q|+)P(+) + P(q|-)P(-)], (1.14)

19An ideal negative measurement is one in which we are certain no interaction with the system took
place. For example, suppose we would like to measure the charge of a particle and select the particles
with zero charge to undergo further tests. We can set up an electric or magnetic field between the
particle source and a screen with a hole at which the source is pointed. If we shoot a particle toward
the screen and detect no hit on the screen, the particle has no charge and it interacted with no field as
it travelled, with this absence of interaction making this process an ideal negative measurement of the
particle's neutrality.

20Y. Aharonov, D.Z. Albert, and L. Vaidman, "How the result of a measurement of a component of the
spin of a spin-1/2 particle can turn out to be 100." Phys. Rev. Lett. 60, 1351 (1988).21This section follows 4.1 in Emary, Lambert, and Nori (2014).
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where P(Q) is the probability density function of the original variable Q. Note that it

is possible for one to measure (q) outside the bounds on Q.

The quantum-mechanical analogy of this is implemented using Kraus operators.

The expectation value of the variable Q is

(Q) = Tr p5, (1.15)

where , is the density operator. Performing a weak measurement of Q which gives

outcome q can be described as causing the system to change from to K(q)3Kt(q),

where the K are the Kraus operators associated to outcome q. The example given in

Emary, Lambert, and Nori is

K(q) = -/ 4 exp [-A(q - Q)2, (1.16)
7r

where A parameterizes the strength of the measurement. For example, A -+ 0 corre-

sponds to Kraus operators K(q) -+ E, a fully weak measurement with no information

gain, while A -+ oo corresponds to a projective measurement with a definite outcome.

Note that weak measurements are not fully non-invasive - the ambiguity of the

result reflects the weakness of the measurement, while the non-invasivity comes from

the fact that a process does not affect the future evolution of the system. Thus, while

projective measurements are invasive, weak measurements may or may not be, and

to varying degrees. An adherent of the Copenhagen interpretation might say that

a weak measurement causes some negligible amount of wavefunction collapse, and

so the measurement is minimally invasive. However, this explanation might not be

accepted by adherents of macrorealism who do not admit any ideas of wavefunction

collapse. Emary, Lambert, and Nori conclude their discussion of this confusion with

the worrying statement,

How to counterfactually assert that the measurement is non-invasive is

just as much of a problem with weak measurements as it is with strong

ones. This problem seems to have gone unaddressed in the literature.
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CHAPTER 2

SOLAR NEUTRINOS

Neutrinos from the sun provide an interesting system in which to probe the Leggett-

Garg inequality. To date, all violations of the LGI have been in terrestrial laboratories.

2.1 CREATION OF NEUTRINOS IN THE SUN

Standard Solar Models (SSMs) are founded on four basic assumptions.1 First, to

a good approximation, the Sun balances gravitational forces with outward-directed

pressure from thermonuclear reactions. Second, energy is transported throughout

the sun by radiation and by convection. Third, the source of most of the Sun's energy

is proton fusion via the proton-proton chain (see fig. 2-1),

2e- + 4p -+4 He + 2ve + 26.73 MeV. (2.1)

And finally, each SSM should give the appropriate solar mass, age, radius, and lumi-

nosity.

The different processes in the pp-chain produce neutrinos of different energies. For

example, the neutrinos produced by the reaction p + p-+ 2H + e+ + v have a maximum

energy of 0.42 MeV, while those produced in the reaction 8B -* 8Be + e+ + v have a

'W. C. Haxton et al., "Solar neutrinos: Status and prospects," Ann. Rev. Astron. Astrophys. 51 21
(2013). arXiv:1208.5723 [astro-ph.SR].
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p+p-2H+e*+v,

99.76%

p+e-+ p -'H+v,

10.24%

'H+p-+'He+y

83.30%

3He+He -+ 4He+2p 3

99.88%

7Be + e- U +v.

7Li+p -2 4He

ppI ppII

16.70%

I
He +"He - 'Be+ Y

I
'H +p-+

4 e + e + V,

-1 0.12%

'Be+ p -+B +y

'S -, 'Be*+ *+ v

ppI

Figure 2-1: Diagram showing the main three branches of the pp-chain, denoted pp

I, pp II, and pp III. Each of the three branches produces neutrinos with different

energies, with a minor branch (shown furthest to the right) producing the highest

energy neutrinos. Figure originally from Haxton, Robertson, and Serenelli (2013).
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Figure 2-2: Solar neutrino spectrum. Figure originally from Serenelli, Haxton, and

Pena-Garay (2011).

maximum energy of around 15t1 MeV. Figure 2-2 shows the solar neutrino spectrum

together with uncertainties as of 2011.

2.2 FLAVOR OSCILLATIONS

Experiments have shown that neutrino mass/energy eigenstates jvi), 1v2), 1V3) are

not the same as the weak interaction states Iv,), Iv,), Iv,). The Maki-Nakagawa-

Sakata (MNS) matrix gives the mixing between these two bases, Iva) = Ej U* Ivi),

where a indexes flavor states e, p, and r 2

The theory of neutrino oscillations is founded on three main ideas.3

2 This section is based on the discussion in Duan, Fuller, Qian, "Collective Neutrino Oscillations,"

Ann. Rev. Nucl. Part. Sci. 60:569 (2010) and on Mehta, "Topological Phase in Two Flavor Neutrino Os-

cillations," arxiv:0901.0790v 2 .
3 C. Giunti and C. Kim, Fundamentals of Neutrino Physics and Astrophysics. Oxford: Oxford Univer-
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1. Neutrinos that are produced or detected via charged-current interactions are

given by flavor states va).

2. Each massive component of a flavor neutrino with momentum jhas that same

momentum -' - that is, all the mass and flavor components propagate in the

same direction.

3. The propagation time is equal to the distance the neutrino travels - while un-

justified in the case of a plane-wave approximation of neutrino oscillations, the

group velocity of the wave packet is close enough to the velocity of light.

Consider a model with a 2-dimensional neutrino flavor space, spanned by either

(jvi) , v2)) or by (Ive) ,v,)), where Iv,) is some combination of V, and v,. Assuming

that general-relativistic effects are unimportant, the flavor state V) obeys

d,0
i = HV, (2.2)

dT

where r is the distance along the world line of the neutrino and

H (p m2  1 y+VC - w cos 20 w sin 2(

24p 2 w sin 20 - (Vc -w cos 26)

Here, p - E is the momentum of the neutrino, 0 is the vacuum mixing angle, 6m2

is the difference of the masses-squared, w is 3m2/ 2p, Vc is the effective potential due

to "coherent forward scattering of neutrinos with electrons," through charged current

interaction (Vc = \'2GFne), VN is the effective potential due to "coherent forward

scattering of neutrinos with neutrons," through neutral current interactions (VN =

V2GFn-).4

Note that there is a value of VC for which the diagonal elements of the mixing

matrix vanish, and for which flavor oscillations occur regardless of what 0 # 0 is.

This resonance gives the Mikheyev-Smirnov-Wolfenstein (MSW) Effect. On the other

22
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hand, note that if the vacuum mixing angle vanishes, no flavor mixing can occur (in

vacuum or in matter). Setting the matter terms VC = VN = 0 returns the vacuum

case,

H= ( + m2) + 1  -w cos 20 w sin 20 (2.4)
4p 2 w sin 20 w cos 20

2.2.1 TRANSITION PROBABILITIES

This section follows the discussion in Bilenky, Giunti, and Grimus (1999).5 First we

discuss the general setup for neutrino flavor transitions, and then specialize to the

vacuum and matter cases.

Nuetrino oscillations, generated by the interference of different massive neutrinos,

were first suggested by Pontecorvo in the 1950s.6 Suppose there are two generations

of massive neutrinos. Let a index flavor states ve, ,, and k the mass eigenstates

v1 , v2 . The flavor state va can be written in terms of the mass states ik as

2

1Va) =Y U* kv) , (2.5)
k=1

where Unk is a unitary mixing matrix. Since the mass eigenstates obey the Schrddinger

equation,
2 2

V =,Uk I=vk(t)) = ZUke-iEt k k)- (2.6)
k=1 k=1

In detectors, neutrinos are measured in their flavor basis, Iv3), where 3 indexes Ve, vp.

That is,

Iv'Y(t)) ZAa-/3(t) vf), (2.7)

where
2

Acs l(t) = 1 Ufke-iEktU*k. (2.8)
k=1

'S.M. Bilenky, C. Giunti, and W. Grimus, "Phenomenology of Neutrino Oscillations."
Prog. Part. Phys. 43 (1999), 1-86. hep-ph/9812360v4.6B. Pontecorvo, Sov. Phys. JETP 6 429,1957.
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The transition probability is then the square of the amplitude:

2 2

P(Va -+ vp) = U$3e-iEtU * (2.9)
k=1

The same relationship applies for antineutrinos but with U replaced by U*, so

2

Ad_4(t) = E Ugke-iEtU ak. (2.10)
k=1

The unitarity of U gives, for an n-generation neutrino space,

n 2

P(va -+ vf) = 
6 af + UpUa (e-iLm k1/2E _

k=2

where L ~ t in the ultrarelativistic approximation. For n = 2, this is

P(Va -+ vp) = ja6 + U/ 2 U*2 (e - 1)12, (2.12)

where I used w = m2 / 2p. The first thing to note is that if the mixing matrices

are the identity matrix, or if wL < 1, then no flavor transitions can occur (that is,

P(a -+ #) = 6c1). In order to get flavor transitions, we need to have non-trivial mixing

matrices and also satisfy wL > 1. Further, note that comparing the expressions for

the amplitudes shows that

P(a -+ ,) = P(d /) (2.13)

This is an expression of CPT symmetry / Lorentz invariance.

VACUUM FLAVOR TRANSITIONS

Consider the transition probability for the case of two neutrino generations, 7 given

above by

P(Va -+ v13) =|o +U/3 2 U*2 (eiwL - 1)12. (2.14)

7 Giunti and Kim (2007).
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Let's parameterize the mixing matrix by U, 2 = sin 0 (and so U/2 cos 0), giving

1)
P(V- v1) = sin2(26) (1 - cos(wL)) (a # /) (2.15)

= sin2 (26) sin2 (wL) (a # /) (2.16)

P(va -- V(") = 1 - P(V' -+ v) (2.17)

19
= 1 - - sin2(20) (1 - cos(wL)) (2.18)

2

More concretely,

1 [ ( m 2 L MeV
P(va -+ uj) = sin2 (20) 1 - cos (2.53 eV2 M E (2.19)

The amplitude of the oscillation is given by sin2 20 = 4(Ut U) 2 , and the oscillation

length is
4irE

Losc = = 2.5 - 1011 m ~ 1.6 times Earth-sun distance. (2.20)

Neutrino oscillations can be observed if the oscillation length is not much larger than

the source-detector length. In other words, the condition for observable oscillations

6m2 > E/L becomes L > Lo", which is conveniently true in the case of the Earth-sun

distance 1.5 - 1011 m.

Experiments detecting neutrino oscillations can only detect the energy-averaged

transition probability. So at large L/E the observable transition probability reduces

to the constant 1- 1 sin 2 26, and the oscillatory behavior of the probability is enveloped

as shown in fig. 2.2.1.

MATTER FLAVOR TRANSITIONS

Wolfenstein, as well as Mikheyev and Smirnov, pointed out that neutrino oscillations

can be "significantly modified by the passage of neutrinos through matter because of

the effect of coherent forward scattering."8 Again limiting ourselves to the case of two

25
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Figure 2-3: Transition probabilities for vacuum oscillations. The dark black line takes

into account averaging over a Gaussian energy spectrum with mean E and standard

deviation E/10. Figure from hep-ph/9812360.

neutrino generations, let O = (a, a#)T, so that the evolution equation reads

d (aa (
-i = H (2.21)

where H is given at the beginning of this section.

The sun does not have constant density, but for simplicity let's first consider a

constant-density matter distribution Ne = const. With the benefit of hindsight, we

define the matter mixing angle to be

sin 20m = 20 (2.22)

[(1 - NI/Nres)2 + tan2 20I(2

where the "resonance density"

res = 6m 2 cos 20 (2.23)
e 2 EGF(2.23)

Then the transition probability can be shown to have the same form as the vacuum
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case,9

P(ve -+ vt,) = sin2 2(0,,) sin2 (wL) = sin2 2(0..) sin2 (L/2L,1 ), (2.24)

where L, is the oscillation length in matter, defined by

L, = 27r 2E/6m2  (2.25)
( 1- Ne/Nees) 2 cos2 20 + sin2 20

This is what we find for constant-density matter distributions. Now suppose that

Ne = Ne(t), where t - to = r is the distance travelled from the core of the sun towards

the surface. In the case of the sun, the density profile is very close to exponential:

Ne(t) = Ne(to) exp - , (2.26)
(_ro

where ro = 0.1 Run. The change in the matter mixing angle is given by

dO= - 1 s -fl (2.27)
dw 2 6m2  dT (

where VC is the effective potential induced by charged current interations. Recall that

the MSW resonance occurs for Ves = 6m2 cos 20 (where 0 is the vacuum mixing angle).

In this case, one can show10 that in the matter basis, the evolution equation becomes

d ai 1 - m2 -4Ei do- a,
i-I = - d.r (2.28)

d7- al 4 E 4Eido- 6m 2  
a2

The terms involving dm/dr induce transitions between matter eigenstates Ivi) and

Iv2). If these terms, however, are smaller than 3m2 , matter eigenstates are unlikely to

flip. To distinguish between these cases, we can define an adiabaticity parameter

3m2  
_ (3m2) 2

6Mr .(M) (2.29)
4EId~m/dr 2E sin(20m) IdVc/dr| (

The adiabatic case occurs if y(r) >> 1, and transitions between the matter eigenstates

9J. Beringer et al. (PDG), PR D86, 010001 (2012).
l0 Giunti and Kim (2007) 9.3
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are negligible. In this case, the Ivi) and Iv2 ) evolve independently, and

ai(T) = exp (i j, M 2()') dr') (23(0)

f0 4E(y ) (2.30)
a2 (T) = exp ( 1-i 5 T) dr' a2(0).

Then Giunti and Kim show that the survival probability for electron neutrinos is

P.(-v) + c(26a) Cos(2,al)+ I sin(2g itial) sin(26nal) cos Sm2 
(rT)d,2e 2M 2 M (10 4E )

(2.31)

The energy-averaged survival probability in this case is

1 1
(P(ve -* Ve))E = 1 + I coS(2 0,itial) cos(20). (2.32)

Now let's consider the non-adiabatic case: the off-diagonal terms in eq. 2.28 are

significant enough to cause transitions between Ivi) and jv2). The transitions are

maximized at the minimum of the adiabaticity parameter -y(T); this point is called the

maximum violation of adiabaticity or MVA. This point occurs when

d2 cos(20m)1  = 0. (2.33)
d-r2 - r=rMV A

In terms of the effective potential, this is 1

3 cos(20m) sin(20m) (dr V) + 6m2 sin(26) d2 = 0. (2.34)
L- dTITA.I VA

So in the case of solar neutrinos, we imagine electron neutrinos traveling from a high-

density region through matter of decreasing density. If the neutrinos cross the reso-

nance point TR non-adiabatically, then transitions between the mass eigenstates can

occur. One can show that the amplitudes of the two mass eigenstates at any point

28
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after the non-adiabatic resonance crossing are

aiir) = [cos(9itial eiF(rR)AR + sin(91 itia1)e-ir(TR)AR exp (.T 6r2(T')dT
TR (2.35)

= coS(oinitial )ei(R)A R + Sin( itial)eir(TR)A R exp j 4 )dT

where we defined, for convenience,

6rng2(-r'
F (TR) = J

T  4E dr-', (2.36)

and where A! is the amplitude associated to the transition between mass eigenstates

1k -~ vj at the resonance.

After doing all the calculations, the Parke formula gives the average survival prob-

ability,

(P(Ve - ) = + - Pc) cos(2initial) cos(20), (2.37)

where P, is the crossing probability, which depends on the matter density profile. For

an exponential distribution Ne(r) ~ e-r,

- exp (-7r(i - tan 2 0) YR/2) - exp (-7UYR(1 - tan2 )/(2 sin2 (
1 - exp (-7r-yR(1 - tan2 0)/(2 sin2 9))

where 'yR = y(irR) is the adiabaticity parameter at resonance crossing.

2.3 ENERGY-DEPENDENT TRANSITION PROBABILITIES

The probability that a neutrino will emerge from the sun as an electron-flavor neu-

trino is a function of its energy. For E < 1 MeV, 35% of neutrinos change flavor while

traveling from the core of the sun to its outer limb, as a result of the MSW effect. On

the other hand, for E > 10 MeV, 70% of neutrinos change flavor. Thus, the neutrinos'

energy can shed light on the flavor state of neutrinos that exit the sun. See fig. 2-4.

Note that as neutrinos travel from the sun to terrestrial detectors, the energy

state and the flavor state evolve independently: the only "entanglement" between the
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Figure 2-4: The central curve is the prediction of the MSW effect. Figure from ref. [13].

energy and flavor states occurs within the sun. In fact, the energy of the neutrino

doesn't change at all as it travels to the Earth. Further, the energy of the neutrino

and its flavor are measured independently by detectors. So the energy can tell us

about the flavor state of the neutrino when it exited the sun.

Recall that the Leggett-Garg inequality involves the two-time correlation func-

tions of a dichotomic variable. We define the dichotomic variable Q as corresponding

to neutrino flavor, so that its eigenvalues are lIve) = Ive) and 1 v,,) = - Ivj). We

define the set (lve) , Iv,,)) to be an orthonormal basis for the flavor space, so that

(Ve lIVe) = 1 (vI I Vt) = 1 (Ve jvp) = 0. (2.39)

Note that this means that a third neutrino flavor is not included in our discussions;

rather, it is absorbed into the definition of Iv,).

The quantum circuit corresponding to this process is shown in fig. 2-5. For the sake

of keeping the analogy going, let's define the energy state E = IL) as corresponding to

E < 1 MeV, and E = IH) as corresponding to E > 10 MeV. Then we have a CNOT gate:
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Figure 2-5: Quantum circuit illustrating how we might use the energy of neutrinos to

probe their flavor state as they exit the sun. Note that this is not a weak measurement

scheme: the controlled operation is reversed. Rather than controlling on the target

system, the flavor ket is flipped controlled on the energy state. At time t 3 the flavor

and energy states are independently projectively measured, and the result of the "now"

energy measurement tells us about what a flavor measurement at t2 would have been.

the flavor vector flips from le) to Iv,), and vice versa, if E = JH), but is conserved if

E = IL). So this version of Q2 is not a weak measurement, but nor is it a projective

measurement. The advantages to this idea are that it's significantly simpler than a

full implementation of the weak measurement formalism. Second, it's adjustable: we

can change the number of cuts as necessary to maximize our test of the LGI.
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CHAPTER 3

TESTING THE LGI WITHOUT

WEAK MEASUREMENT

3.1 ToY MODEL

In this section we present an idealized version of the neutrino's evolution from its

creation in the sun's core, through the sun and the vacuum, towards the detectors

here on Earth. For now, let's assume that transition probabilities are constant in both

energy bins, and that the MSW effect acts as a 'flip' of the flavor state, controlled

on energy: at some fixed point along the sun-earth ray, the CNOT-like operation de-

scribed in 2.2.2 takes place. In this section, we assume that the CNOT flip is ideal:

each low-energy neutrino remains electron-flavored and each high-energy neutrino is

flipped to muon-flavor.

3.1.1 DERIVATION OF K

Let's introduce the notation from David Kaiser's notes dated 17 April 2015 [15]. We

are interested in a flavor-observable Q and define Q Ive) = +1, Q jv,) = -1. The flavor

kets form an orthonormal basis, so that (vaIv,) = 6ag, where a, 3 = e, p.

The solar core radiates electron-flavor neutrinos with some energy distribution.
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We can write the initial state of the neutrinos at t = t1 as

It,) = alL) Ive) + b H) lve) , (3.1)

where IL, H) gives the energy (low or high) of the neutrino, and 1a12+bI2 = 1. Upon ex-

iting the sun at t = t2, assuming a perfect CNOT operation, the high-energy neutrinos

all flip flavor to muon neutrinos:

It2 ) = alL) lve) + b lH) vp). (3.2)

Finally, the neutrinos undergo vacuum oscillations as they travel to the Earth, arriv-

ing in the state

It3) = a IL) (c Ive) + d jvt)) + b l H) (e Iv.) + f lvl,)) . (3.3)

The new coefficients c - f depend on the neutrino energy, vacuum mixing angle, and

mass splitting.

To find the LG parameter, we must calculate the two-time correlation functions

Ci, which are defined in ref. [15] by

Cij = Z ati)3(t)Pa3(ti,tj)
(3.4)

= (Ztti)/3(tj)I(ti IvO)(PItj) |2
a,/3

Note that in general we should be considering Cij = C[jj], but, as we will show later, it

appears as though these two quantities are the same.

For now, however, we find that

C12 =I(t1lve)(Velt2)1
2 --I(t1IVp)(VeIt2)1

2 - I(tIVe)(VIIt2)1
2 + (t1Iv )(v lt2)2

I (tvI e) (Ve l t2 )1 2 
- 1 (til Ve) (VA I t2 )12  (3.5)

= (a* (LI + b* (HI)a IL) -| I(a* (LI + b* (HI)b IH) 2 (3.6)
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= |a*a|2 _jb*b1 2

= 21a 14 - 1 (3.7)

C13 I(tilVe)(Vejt3) 1
2 - I(tiIVj,)(velt3)I

2 - I(tilVe)(VpIt3)1
2 + (t1VA)(v A16)12

= (a* (LI+ b* (HI)(ac IL) +be|H))1 2 _ I(a* (LI +b* (HI)(ad IL) +bf IH))1 2  (3.8)

= |a*ac + b*be|2 - |a*ad + b*bf 2

= |a|4(1cI2 - 1d|2 ) + |b 4 (|eI2 _ IfI2) + |a| 2 |b|2(c*e + ce* - d*f - df

where we may define an interference term I = c*e + ce* - d*f - df*. If each of these

complex numbers is written c = IcleOe, then we can see that I is real:

I= cel (eioc-ioc + edoc - o* - Idf I (eOfO-iOd + eiOdiOf)

= 2|ceI cos(Oe - 0,) - 2IdfI COS(Od - Of) (3.9)

- 2|ceI COS(Oec) - 2|df I cos(Odf)

The final correlation function is

C23 = I(t2IVe)(veIt3)I
2 - I(t 2 Vli)(Vejt 3)12 - I(t 2 |IVe) (VIIt3 )I2 + (t2 vp) (vtIt3)12

=Ia* (LI ac IL) 2 - Ib* (HI be H)|2 I-a* (LI ad IL) 2 + Ib* (Hj bf |H) 12 (3.10)

= IaI4(IcI 2 - Id1 2 ) +|b 4(If1 2 _ le12 )

Then the Leggett-Garg parameter K is given by

K = 2|a| 2 - 1 + 2|b| 4(If| 2 _ Iei2) - |a| 2Ib 2I. (3.11)

After rearranging and using IaI 2 +Ib 12 = 1, the full LGI reads

-1 < a 2 + (1 - aI2) 2 (1fI 2 _ Ie1 2) - IaI2(1 - IaI2)(2Icel cos(Oec) - 2IdfI cos(Odf)) 1

(3.12)
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3.1.2 APPLICATION TO NEUTRINOS

So far the above has been completely general and not taken into account anything we

know about neutrino physics or even two-level systems. Before going any further, let's

consider what we can learn from the fact that the neutrinos' energies don't change as

they travel through the sun and vacuum to the Earth.

The probability of finding a low-energy neutrino immediately after its creation in

the solar core is

P(L, ti) = I (t, IL)(L~ti) 12

= Ia* (vel (LI IL) (LI a IL) lVe) 2 (3.13)

= Ia* (ve1 a ive) 12 = |a14

I claim that the fact that neutrinos' energies are constant implies that the probability

of a randomly chosen neutrino to be in a given energy bin remains constant as well.

Thus, P(L, ti) should be equal to P(L, t3 ), which is

P(L,t3 ) = I(t3 IL)(LIt 3 )1 2

=|(a*c* (L (vel + a*d* (LI (vI) IL) (LI (ac IL) Ive) + ad IL) IV,) ) 12 (3.14)

= Ia*a c*c + a*a d*d1 2

= ja 14(1cI2 + Id12) 2

Requiring P(L, ti) = P(L, t3 ) means that IdC 2 + Jd12 = 1. Similarly, P(H, ti) = P(H, t3 )

means requiring that Ie1 2 + If 12 1.

Using IeI2 + If 12 = 1 and ICl 2 + 1d12 = 1 in eq. 3.11 gives

K = 4 (a2 - 1) a2 (cos(Oce)Abs (V1 - d 2 1 - f2) - IdfI cos(Odf)) (3.15)

+ 2 (a 2 _ 1)2 (2f2 _ 1) + 2a2 _ I
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3.1.3 LGI VIOLATION

In the toy model, without specifying if we're working with a neutrino or a photon or

other system, and dropping the absolute value signs for simplicity, the LGI is

-3 < -1 + 2a 2 + 2(1 - a2) 2 (f 2 
- e2 ) - a2 b2 (21ceI cos(0ec) - 21dfI cos(Odf)) 1 (3.16)

From the normalization of the state at t3 , we know that

ac2 +b 2 2 +a 2 d2 +b 2 2 =1. (3.17)

Plugging this constraint into the LG-string and maximizing numerically, we find that

Kmax = 1.5, which occurs for a = b = 1/v/2, c = e = 0, d = f = 1, and for interference

angles 0ce = 1.16255... and Odf = 2.r. Using a = b = 1/V and Odf = 27, the LGI reduces

to

-3 < 1 (-2 cos(0c6 )Lce + 2IdfI - e2 + f 2 ) < 1 (3.18)

Then using e2 + f 2 = c2 + d2 = 1, we can have a two-parameter LG-string near the

point of maximum violation (that is, near a = b = \F/2 and so on):

K= -cos(ce)Abs(z/1 - d2f/ _ 2) + ldfI +f 2 
- 1 (3.19)

2

These functions is plotted in figs. 3-1 - 3-3. As the interference angle 0ce increases,

a larger portion of the (d, f) parameter space is able to lead to LGI violation.

Recall that in our original description of the neutrino state at time t = ,

t3) = a IL) [c le) + d I"v)] + b JH) [e lve) + f 1v,)] (3.20)

Then according to the results visible in the figures, we need to have the complex

coefficients d and f out of phase, and we are more likely to see LGI violation if the

low- and high-energy states are heavily weighted to one of the neutrino flavors.
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Figure 3-1: For 0c, = 0. The LG parameter does not exceed the classical bounds.

(Recall that in this and all the figures on this page, we've set a2  b2= 1/2, c2 = 1- d

and e2  1 -
2).
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Figure 3-2: For 0, = 7r/2. The classical bound of K < 1 is starting to be violated for

this value of ain, but only very extreme values of d and f can cause LGI violation.
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Figure 3-3: For 0,e = 7r. Here a larger portion of the parameter space leads to LGI

violation.
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3.2 FROM TOYS TO PHYSICS

We discuss two methods of making the toy model more general. First, we expand the

model in terms of the parameters of neutrino evolution, measurement, and so on. The

second subsection explores what happens to the LG parameter if the CNOT flip is

not ideal - that is, if only some fraction of the high-energy neutrinos become muon

neutrinos, and if some fraction of low-energy neutrinos become muon-flavored.

3.2.1 PHYSICAL PARAMETERS

GENERAL EXPRESSION FOR K IN TERMS OF PHYSICAL PARAMETERS

Consider for now the evolution of our neutrino state through the vacuum. Starting as

jt2 ) = a lL) ve) + b lH) jv,) , (3.21)

it arrives on our planet in the state

|t3) = a|L) (clve) + dvli)) + b|H) (e lve) + f Iv)). (3.22)

The Hamiltonian governing this evolution is

( m 2  1 -w cos(20)
Hvac = (P + 4p)I+ wsin(2)

w sin(20)
,

w cos(20)/
(3.23)

where 6m2 is the mass-squared splitting, w = 6m 2 /2p, and 0 is the vacuum mixing

angle.

Now, let's denote the low-energy and high-energy ws as wL and wH, respectively.

Recalling the notation for flavor vectors i$(e, p) = (ae, a,,)T, let's write the low-energy

part and high-energy part of It2), respectively, as

)H (t2 ) = (3.24)
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And the low- and high-energy parts of It), respectively, as

ac\
V)L (3) = I

( ad

be
'H (t3) = I.

bf

Our goal is to find a way to go from It2 ) to jt3) using the Hamiltonian given above.

Specifically, we need to figure out how to make the following viable

i d1)L = IHL'OL
dt

(3.26)i H= HIHOHdt

Considering for now only the low-energy case, we have that

OL(t3)= eXp -if0 HLdt)VL(t2)

= exp (-iHLAt) 0L(t2)

= exp int WL cos(20)/2 -iAt WL sin(20)/2 L(t2)
e -ix t 7L sin(20)/2 -iAt WL cos(20)/2)

cos(wL At/2) + i cos(20) sin(wLAt/2) -i sin(

-i sin(wLAt/2) sin(20) cos(wLAt/2)

cos(wLAt/2) + i cos(20) sin(WLAt/2)

-i sin(WLAt/2) sin(20)

-isin(

COS(WLAt/2)

WLAt/2) sin(20)

- i cos(20) sin(WLAt/2) )

WLAt/2) sin(20) a

- i cos(20) sin(WLAt/2)) W

(3.27)

This tells us that

c = cos(wLAt/2) + i cos(20) sin(wLAt/2)
(3.28)

d = -i sin(wLAt/2) sin(20)

Likewise, repeating this calculation for the high-energy case, we find that

e = cOS(WHAt/2) + i cos(20) sin(wHAt/2)
(3.29)

f = -i sin(wHAt/2) sin(20)
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Note that it is extremely convenient that given the above, we find that

Ic12 + IdI2 = 1 = 1eI2 + f 12 . (3.30)

Next, let's explore if our ideal CNOT is viable in terms of the physical parameters.

The low- and high-energy states we begin with at It i ) are, respectively,

bL (tl) = bH (tl )

That is, there is no muon component at all. Once the CNOT operates on the system,

we get

OL(t2 ) = , 'H (t2) ( (3.32)

For now, let's assume that the Hamiltonian describing the MSW effect does not depend

on how far the neutrino is along its path - that is, the CNOT happens at a specific

point along the particle's trajectory. This allows us to write, for the state with energy

E = L, H,

OL(t2) = exp f- A HEdt) ?L (L)

= exp (-HEAt) 'E(tl)

= exp-i (Vc - w cos(20)) At/2

-iw sin(20)At/2

(3.33)

-iw sin(20)At/2 
0E(t1)

i(Vc - wcos(20))At/2J

The matrix exponential is rather complicated. Defining the quantity

E = 2wVc cos(26) - V2 - w 2

for convenience, we find that for the low-energy states, two equations are true:

1 = i cos(20) sihli (1LAt) - i i sinh (BLAt + cosh (BLAt)
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and

0 ~ -i sin(20) sinh (A tEL (3.36)

Likewise for the high-energy states, we find

0 ~ WH cos(20) sinh (7 HAt) - sinh (EHAt + cosh (7HAt) (3.37)
H (2- H (2-

and

b = -ia sin(20) sinh -At=H (3.38)

It is these four equations (3.35 - 3.38) that define the CNOT gate in terms of physical

parameters.

3.2.2 RELAXING THE CNOT

Now we need to understand what happens if the CNOT operation is not perfect. The

neutrinos at time ti are in the state

Iti) = a IL) ve) + b H) ve) , (3.39)

and we can model the non-ideal CNOT operation as having created the state

It2 ) = '1 L) IiVe) + 2 IL) Ivy) + 3H) lILe) +4 H) Ivy,.) (3.40)

where the & are complex. In order to see how this comes from eq. 3.39, we can write

It2 ) as

It 2 ) = a' IL) (RL lVe) + EL IVp)) + b' H) (77H IVe) + CH IV)) , (3.41)

where a', b' are not yet equal to a, b, and where EL,H represents the departure from a

perfect CNOT (in which case CL,H -+ 0). With a perfect CNOT we'd expect T
L,H -4 1-

Note that since the neutrinos'energy distribution does not change, the total ampli-

tude associated with IL) must be the same for It,) and It 2). So Ja1 2 = la'1 2 (7 12 + EL 2 ).

Likewise for |H), we require that IbI 2 = Ib'I2 (IqHI 2 + ICH12). For simplicity we can
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choose to set a' = a and b' = b, which leaves us with the constraints

I1LI2 + (ELI2 = 1, I?7HI + (HI = 1 (3.42)

These q, c parameters will depend on the mass splitting of the neutrinos, the matter

and vacuum and mixing angles, and the neutrino energy.

Finally, we don't need to make any modification to our notation for the state of the

neutrinos when they reach the Earth:

|t6) = a|IL) (c Ive) + d jvt)) + b|IH) (e |v.) + f Ivp)) ; (3.43)

what's new is that now we have that c, d, e, and f are functions of 7 L, 77H, CH, EL, in

addition to depending on the vacuum mixing angle, mass splitting, and energy. For

now we keep these parameters general.

Now we can proceed to calculate the correlation functions.

C12 =I(t1Ive)(VUeIt2)I 2 - I(t1Il')(VeIt2)I
2 - I(t1Ive)(vp.It2) 2 + I(t1Iv,)(vttIt2)I

2

=I (a* (LI + b* (HI) (ariL IL) + bH IH)) 12 - I (a* (LI + b* (HI) (aL IL) + bJH |H)) 12

= a* a?7L + b*bEH - Ia aL + b*bH 12

=|IaI4(IL|2 - eLI2) + IbI(|EHI2 - JH 12) + IaI2IbI2 (*EH + LEH - 71;[CL - HEL*

(3.44)

Note that in the limit that EL,H -* 0 and 7 L,H -+ 1, we recover the ideal CNOT case,

eq. 3.7. We expect to have the same C13 as before:

C13 = I(t1IVe)(VeIt 3)I2 - I(tiIVtt)(VeIt3)1
2 - (tive)(v,1t3 )12 + I (t Iv)(vtI t3)

2

= I(a* (LI + b* (HI)(ac IL) + be IH))I 2 - I(a* (LI + b* (HI)(ad IL) + bf IH ))1 2

= |a*ac + b*beI2 - Ia*ad + b*bf 12

= IaI 4(IcI 2 - IdI2) + 1bI 4(1e12 - If 2) + IaI2 IbI 2(c*e + ce* - d*f - df*)

= |aI4 (IcI2 - IdI2) + 1b| 4(Ie| 2  
2 If12) + Ia12|b|2 [2Ice cos(Oe - 0,) - 2IdfI CoS(Od - Of)]

(3.45)
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The final correlation function is

C23 = |(t2IVe)(Ve It3)12 - I(t2I V')(Ve It3) 2 I- I(t2Ive)(upI t3)I2 + I(t2Ivy)(VIuIt 3)12

=|I{a**(LI +b*E* (HI )(acIL) +beIH ))| 2 |I(a*c* (LI+b*1* (HI )(acIL) + beIH ))| 2

-I (a*T* (LI + b** (HI) (ad IL) + bf H) )12 + I (a*E* (LI + b*I* (HI) (ad IL) + bf |H) )|2

- |a*aq* c + b*be*e1 2 - |a*aE* c + b*bre|2 - Ia* aq* d + bb' *f 2 + Ia*ac* d + b*b*y f 2

=|a|'(IrL1 2 1C12 + ELI 2 - IL 121C2_ I7LIh12) + II4( H 12 I 2 + IH2fI TH 12 le 12_ e EH 121f12) +

+ |a12 IbI2 (E6IL(ce* - df*) + CH4L (c*e - d*f) - ELqH(ce - d - EL7JH(c e- d

- IaI(IrLI2 - IEL I)(Ic2 - Id12) + IbI4 (IH 1
2 

- IEH 2) (If2 - le2)

+|a| 2 |bI2 [(4 'L - EL7H)(ce - df*) + (EH?7 - EL77 )(c e - d*f)]

(3.46)

Here the modified interference term is the sum of a complex number (6* T7L - E*L 77H)(ce* -

df*) and its complex-conjugate (EH?* - EL?7*H)(c*e - d*f), so we know the full interfer-

ence term is real.

The full Leggett-Garg parameter in this case reads

K =|IaI(IL 
2  EL 2 ) +IbI 4(I EH 2 _ 17H 2 ) + 12 Ib1 2 (,qEH + ?7LE*H ~T- EL - HE*L)

+| aI4(InL 12 
- EL I2 )(ICI 2 _ IdI2) + II(InH 12 _ IEH2(If 2 _ le2)

+|a| 2Ib1 2 [(HE* L - E L H)(ce* - df*) + (EHTq - EL7 c)(C*e - d*f)]

- (1a1 4 (Ic|2 - |dI2 ) + |bI4(IeI 2 _ If12) + |a|2 |bI2 (c*e + ce* - d*f - df*))

(3.47)

Dropping the absolute value signs for simplicity:

K=a4 [(T- E)(1 + c 2 -d 2) - c 2 +d 2

+ b4 [(T2 _ C2  2 _ 2 - 1) + f 2  2
H (3.48)

+ a2b2 [(EH 'L - ELIqH - l)(ce* - df) (EHTIj - ELq* - l)(c*e - d*f)]

+ a2 b 2 [L*EH + ?JLEH - 4IEL - ?7HCL]
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Plugging in the normalization constraints that a 2 + b 2 = 1 and q2 + E = 1 gives

K=a 4 [(2Tq2 - 1)(1 + c 2 - d2 ) - c2 + d2

+ (1 - a2 ) 2 [(272I - 1)(f 2 _ - 1) + 2- e 21

+ a2 (1 - a2) [(H L - ENLH - 1)(Ce* - df*) (CHr4* - cEL7*H - 1)(c*e - d*f)]

+ a 2 (1 - a2) [1L*EH + L EH - ?IH E L - 71H EL]

(3.49)

The term proportional to a2 (1 - a2 ) can be written

= (CH L + H71L) - (EL H + CL'iH ) - (Ee + cE) + (if + df) + ({H77LcE + 77H7Lce)

- (iHnLdf + EHlLdf - (ELfHCE + CL7 e) + (H6 yj-d- + EL Hjf)

(3.50)

Each term can be written following the pattern

EH1L + H
T% = 2lEH 7Ll COS(OH0), (3.51)

where 0
,,H7L = OCH - 0 7L . Doing this for each term allows us to write the LG parameter

as

K = a (1 + 4C2(71 - 1)) - 4(1 - a2),2 +

2a2(1 - a2)(|ceI COS(Oce) - ldfI cos(Odf)) - (1 + ICEHqLI COS(O'H IL) - lELqHi cos(OELnH))

+ 2a2 (1 - a 2 )(1 + jdfj sin(adf) - cel sin(Oee)) - (ICHL sin(EHOL) - EL?}H sin(LIH))

(3.52)
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3.3 CLOSING

While there is still a lot of work to be done, it's clear that some regions of parameter

space in this CNOT model can indeed give rise to LGI violation. The next steps are to

calculate what these regions are in terms of the physical neutrino parameters, and to

see if solar neutrinos satisfy the restrictions.

The possibility of testing the Leggett-Garg inequality using astrophysical sources

is very exciting, as is the prospect of an LGI test that does not involve weak measure-

ments.
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ENSEMBLE MEASUREMENT

This appendix describes how one might test the LGI using ensemble measurements,

rather than observations made on the same qubit. The protocol presented in Moussa

et al. and applied in the NMR PRL is an example of a weak measurement scheme. 1

The extent to which a weak measurement can be treated as one that does not disturb

the target system is addressed in Knee et al., Comment on 'A Scattering Quantum

Circuit for Measuring Bell's Time Inequality,' New J. Phys. (2012) arXiv:1207.2786.

Assuming that the assumption of noninvasive measurement is satisfied, the LGI is

testing the assumption of macroscopic realism.

The counterintuitive part of the Moussa scheme is that all the entanglement proce-

dures do not involve any operation on the ancilla; rather, they involve only operations

that are "controlled on" the ancilla. So even though the ancilla itself doesn't change,

performing a standard measurement on it at the end will still give us information

about the target system.

Here I follow the derivations in the LGIV-NMR paper and in Moussa et al., al-

beit with simplified notation. These papers provide the necessary connection between

the LGI (which in its original formulation probes one system many times) and mea-

surements on multiple systems.2 Consider a d-dimensional target system prepared in

the state pT and a single probe/ancifla qubit prepared in pp. The composite state is

given by p = pp 0 pT. Let S be a dichotomic observable with spectral decomposition

'Weak measurements being first proposed in Y. Aharonov, D.Z. Albert, and L. Vaidman,
Phys. Rev. Lett. 60 (1988) 1351.

2 Moussa, Ryan, Cory, and Laflamme, "Testing Contextuality on Quantum Ensembles with One Clean
Qubit," PRL 104, 160501 (2010).
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S = P+ - P-, where P+ = I+) (+I and P_ = I-) (-I are "projection operators onto the

+1 and -1 eigenspaces of S."3 We define a unitary transformation

Us = 1 0 P+ - Z 0 P- , (53)

where Id is the d-dimensional identity operation 4 , and Z is the Pauli Z operator &z.

This transformation amounts to a controlled phase flip. To see this, note that we can

write the above as

1 1
us = - (12 + Z) 0 (P+ + P)+- (12 - Z) ® (P+ - P-) (54)

2 2 21
=Id =S

= 10) (010 ff + +11) (11 (9 S. (55)

Thus the action of Us is such that if the probe qubit is in the state 10), the system

is left alone; if the probe qubit is in the state 11), the measurement S = P+ - P- is

applied to the system.

The important claim in these papers is that "the ensemble measurement of the

probe give correlation between successively measured commuting observables of the

target."5 In the case we're interested in (namely, measuring two-time correlation

functions), the set of observables is &x (ti)_N, and we will calculate the two-time

correlation function of the outcomes of &x (ti). For simplicity I'll just write X (ti) and

Z(ti) to denote the Pauli X and Z operators evaluated at time ti.

The two-time correlation function (TTCC) is C = (X(ti)X(tj)), where X(t) is

applied to the target system. Our goal is to express this in terms of measurements

on the probe qubit. Suppose that the probe is prepared in the state J+) so that the

overall density matrix is p = (1+) (+)P ( PT. The evolution of the density matrix

under Us(ti, tj) = Us(tj)Us(ti) is p' = U(tj, ti) p Ut(ti, tj).

The probability of the outcome v is given by the trace of p'P,. So the probability of

getting the final probe measurement to read +1 is

3 Moussa, Ryan, Cory, and Laflamme (2010).
4 The identity operation corresponds to doing nothing to the system.
'Moussa, Ryan, Cory, and Laflamme (2010).
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Applied to probe Applied to target

trPT P' J+) (5

= trPT U(t3 ,ti) p Ut(ti,tj) (1+) (+ 0f) (5

= trPT U(ti)U(ti) p Ut(ti)Ut(ti) (1+) (+W 0 ) (5

U(ty ) U(ti)

= trPT ('( 0 P+(t,) + Z(t,) 0 P-(ti)) (1 0 P+(ti) + Z(ti) 0 P-(ti)) (1+) (+ PT)

6)

7)

8)

(59)

(ff & P+ (ti) + Z (ti) 0 P- (ti)) t (ff 0 P+ (ti) + Z (ti) & P_ (ti)) t ( +) (+| 10 )
Ut (tj) Ut (ti)

=trPT (i 0 P+j P+i + Zi 0 P+j P-i + Zj 0 P-j P+i + Zj Zi 0 P- Pi) (I+) (+| OPT)

(60)

(E 0 P+jP+i + Zi 0 P+jP-i + Zj O P-jP+i + ZjZi & P-jP- )t (1+) (+10 1)

where I've really condensed notation, so that Zj - &z(tj) and P+j = P+(tj). Since

projection operators are their own adjoints, it seems likely that the correct expansion

for the third factor is

T3 = trPT 1 0 (P+jP+i)t + Zi 0 (P+jP-i)t + Z 0 (P-jP+i)t + (Z3 Zi)t 0 (pjp_.)t

(61)

= trPT 1 0 P+iP+ + Zz 0 P-iP+j + Z7 0 P+iP-j + Z Zj 0 P-P3 j (62)

Plugging this into the above gives

p(+) = trpT ( PP++i + Zi 0 P+jP-i + Zi 0 PjP+i + Z Zi 0 P-jP-i) (1+) (+ 0 pT)

(1 0 P+iP+j + Z, 0 P-iP+j + Z7 0 P+iP-j + Z-1Z 0 P-Pij ) (1+) ( 0 1)

(63)

= trT [(P+iP+j + P-iP-j)pT] (64)
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Analogous algebra to get p(-1) = trT [(P+ip-j + P-iP+j)PT-

Recall that earlier we had (X 0 1) = p(+l) - p(-1). Applying the above,

(X 0 1) = trT [(P+iP+ + P-iP-j - P+ip-j - PiP+j)PT]

= trT [((P+i - P-i)P+j - (P+i - P-i)P-j)PT

= trT [(P+i - -i)(P+j - P-j)PT]

= trT [XiXj PT

(65)

(66)

(67)

(68)

But this is just the expectation value of XiXj, so

(X 0 1) = (XsXI) = Cil, (69)

exactly the two-time correlation coefficient (TTCC) we were looking for. We now have

an expression for the TTCC in terms of unitary operations applied to the target system

controlled on the probe qubit, "followed by an ensemble measurement of the Pauli X

operator on the probe" qubit.6

'Moussa, Ryan, Cory, and Laflamme (2010).
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