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Abstract

We present results from two treatment / control experiuments in the 8.MReV: Me-
chanics ReView massive open online course (MOOC) run on edX.org during summer
2014. We compare the efficacy of physics homework problems: (1) traditional physics
problems involving many skills, (2) deliberate-practice activities that train individual
skills using the drag-and-drop format, and (3) analogous deliberate practice activ-
ities in multiple choice format. Using a common assessment, our results suggest
that traditional instruction is more effective than deliberate practice activities cast
in the multiple-choice format; comparison of traditional problems and drag-and-drop
dleiberate practice is so far inconclusive. Some evidence suggests users prefer the
drag-and-drop format over multiple-choice and are more engaged in such problems.

In a separate experiment, we investigate the validity of the pre-test/post-test
methodology in a MOOC environment where students receive feedback on the pre-
test and can view the correct answer after finishing a pre-test problem. It seems
that little learning occurs during the pre-test and that exposure to a problem on the
pre-test usually does not provide students an advantage on the post-test.

Thesis Supervisor: David E. Pritchard
Title: Cecil and Ida Green Professor of Physics
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Chapter 1

Learning Experiments in a MOOC

In recent years massive open online courses (MOOCs) have emerged as a new model

of education open to millions of students worldwide. Moreover, MOOCS offer re-

searchers a wealth of data about the way that students learn through interactions with

course material and each other. Much initial research into learning within MOOCs

used patterns of resource usage to investigate broad questions in education about

what student characteristics and behaviors correlate with learning 11, 2, 3].

In a complex field like education, the most reliable inferences about more fine-

grained questions such as the efficacy of particular instruction techniques rely on

experiments involving treatment and control groups to isolate effects. MOOCs are

potentially a powerful environment in which to conduct education treatment/ control

(henceforth A/B) studies because of the large sample size and extensive user informa-

tion collected. Moreover, MOOCs are natural place to study many questions related

to problem format, interactivity, and computer-assisted learning. However, the anal-

ysis of A/B experiments in MOOCs is somewhat complicated by low completion rates

and self-selection effects.

In this thesis we describe two A/B studies in the 2014 iteration of 8.MReVx: Me-

chanics ReView, run on the edX platform. The nature of the edX platform and the

structure of 8.MReVx2014 in particular are described in Chapter 2.

Chapter 3 focuses on a study that explores two issues related to the design of more

effective problems to build physics expertise: the deliberate practice of elementary

9



skills and the roll of interactive problem format. The solution of many standard prob-

lems in introductory classical mechanics requires the simultaneous execution of many

skills and in such problems struggling students sometimes have difficulty identifying

the source of their confusion. In studying expertise among world-class performers,

Ericsson [4] identified deliberate practice-practice characterized by a singular focus

on elementary skills, repetition, feedback, and the opportunity for improvement-as

particularly important to the development of expertise. We investigate whether this

deliberate practice framework, informed by research on expert-novice differences in

physics, can be used within a MOOC to efficiently build problem-solving expertise

by training specific skills. Additionally, we ask how the choice of problem format

influences the effectiveness of our deliberate practice activities. In particular, we

investigate how performance and learning compare when multiple-choice deliberate

practice activities are replaced by informationally equivalent drag-and-drop problems,

specifically designed to minimize extraneous cognitive load.

Chapter 4 describes a brief followup to an earlier study that measured learning

in the 2013 iteration of 8.MReVx: Mechanics ReViewusing gain in score from a pre-

test to a post-test [3]. Unlike in traditional pre-test/post-test settings, users in a

MOOC receive feedback during the pre-test and are able to view the correct answers

after finishing each problem. We present preliminary results suggesting that for most

problems this difference is unimportant.

As with any large endeavor, running a massive open online course and analyzing

the gathered data is a group effort. My role in this work was twofold: I helped to

develop many of the deliberate practice activities discussed in Chapter 3 and was also

primarily responsible for analyzing student data relevant to the experiments discussed

here, once response and time-on-task matrices had been constructed by other team

members.

10



Chapter 2

Anatomy of 8.MReVx: Mechanics

ReView

2.1 Background

The online course 8.MReVx: Mechanics ReView began as a 3-week residential course

offered between the Fall and Spring semesters to MIT students who struggled in

the Fall semester required course 8.01: Classical Mechanics. The residential version,

8.MReV: Mechanics ReView, was offered for the first time in January 2009 and taught

using flipped-classroom methods. During the summer of 2012 8.MReV: Mechanics

ReViewwas offered as a free, massive open online course (MOOC) on the LON-CAPA

platform. Since then, Mechanics Re View has been offered as the MOOC 8.MReVx

on the edX during Summer 2013 and Summer 2014.

The Summer 2014 iteration of 8.MReVx was one of the first edX MOOCs to

use the split-test functionality to implement controlled content experiments. In this

chapter we describe the structure of an edX course with particular focus on the 2014

iteration of 8.MReVx: Mechanics ReView and the implementation of split-test content

experiments within edX.
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2.2 An edX Course

2.2.1 Structure of a Generic Course

The vast majority of edX course content is viewed by students within a "Courseware

Tab". The structure of edX Courseware is depicted in Figure 2-1 and largely mirrors

the hierarchical structure of a traditional textbook:

" At top level, Courseware contains several chapters. Each chapter represents

material for a given time period. Often, courses contain one chapter per week.

" Each chapter can contain several sequentials, analogous to sections in a textbook.

" Each sequential contains several verticals, analogous to pages in a textbook.

" Each vertical can contain an unlimited number of nodes. Chapters, sequentials,

and verticals are purely organization structures that contain content. Nodes

are the content, and can be of a variety of types e.g., HTML nodes (for text,

examples, or figures), video nodes, or interactive problem nodes.

OPTION RESPONSE (4pompoawondnw in#. )d*
1Ns a sq apI ,rn.Wh Is d10 poin (both are proMm nodfs)

Two sequentials
in this chapter

STRING RESPONSE (1 pak p=...

Figure 2-1: The hierarchical edX course structure
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Content becomes visible to students when it is "released". Release and due dates

are set sequential by sequential, though it is common to release all sequentials within

a chapter simultaneously.

In addition to the Courseware tab that contains course content, edX courses con-

tain other tabs such as Progress, Course Info, and Discussion. The course discussion

forums can be accessed either by the Discussion tab or by the discussion nodes em-

bedded within verticals.

2.2.2 Problem Nodes

Although edX courses are structured much like a traditional textbook, their content

can be much more interactive. Each problem node has a h button that provides

immediate feedback to users as to whether their submission was correct or incorrect.

(Additionally, it is possible to provide more nuanced feedback to address particular

errors). Each problem node can be assigned a particular number of attempts (possibly

infinite), corresponding to the number of times a student is allowed to hit the k

button for that problem.

Problem nodes can be constructed in several formats ranging from multiple choice

to symbolic input to drag-and-drop activities. Each problem node can contain several

parts termed input-fields. The first problem node in Figure 2-1 contains four input-

fields; the second contains one input-field. When the user submits an answer with

the k button, all input-fields are graded simultaneously. Input-fields are usually

graded independently from one another and correct /incorrect feedback is given on

each input field.

Problem nodes are the only component of and edX course that can be graded.

Each problem can be assigned a number of points (possibly fractional). When graded,

problem node points are split evenly among input-fields. For the purpose of calculat-

ing a total course grade, each sequential that contains graded problems can then be

assigned to differently weighted categories (e.g., homework, quiz).

13



2.3 Structure of 8.MReVx

2.3.1 Course Schedule

The 2014 iteration of 8.MReVx: Mechanics ReView contains 12 weeks of graded ma-

terial and 2 weeks of ungraded, optional material. In most cases, material for each

week corresponds to three chapters within the course-one chapter for instruction

material, one chapter for that week's homework, and one chapter for a weekly quizi

(see Table 2.1). The material for a given week was released three weeks before it was

due, with the quiz and homework for a given week due simultaneously.

To these general rules there are a few exceptions in which the homework, quiz, or

both for two consecutive weeks is combined (e.g., the first two weeks of the course).

Moreover, the first six weeks of the course were released simultaneously.

The relatively large 3-week delay between release dates and due dates was intended

to allow users flexibility in their summer schedules. This seemed especially important

because 8.MReVxruns during the summer when long vacations are common.

Table 2.1: A partial course outline for 8.MReVx: Mechanics ReView-2014

Chapter Grading Category Release Date Due Date

Week 1-2 1: Newton's Laws of Motion Checkpoints Thursday, 5/29/2014 3 weeks+3 days later
Week 1-2 2: Interactions and Forces Checkpoints Thursday, 5/29/2014 3 weeks+3 days later
Week 1-2 Homework for Weeks 1-2 Homework Thursday, 5/29/2014 3 weeks+3 days later
Week 1-2 Quiz for Weeks 1-2 Quiz Thursday, 5/29/2014 3 weeks+3 days later

Week 7 7: Linear Momentum Checkpoints Sunday, 7/20/2014 3 weeks later
Week 7 Homework for Week 7 Homework Sunday, 7/20/2014 3 weeks later
Week 7 Quiz for Week 7 Quiz Sunday, 7/20/2014 3 weeks later
Week 8 8: Mechanical Energy Checkpoints Sunday, 7/27/2014 3 weeks later
Week 8 Homework for Week 8 Homework Sunday, 7/27/2014 3 weeks later
Week 8 Quiz for Week 8 Quiz Sunday, 7/27/2014 3 weeks later

'Why separate each week's material into three chapters-why not put all sequentials for the same
week within one chapter? 8.MReVx2O14 inherited this structure from 8.MReVx2O13, in which quiz
due dates were delayed from the corresponding homework due date by one week. At the time, this
was most easily achieved within the edX platform by separating instruction material, homework,
and quiz into separate chapters.

14



2.3.2 Course Grading

In order to "pass" the course and receive an edX Honor Code Certificate, students

in 8.MReVx: Mechanics ReView needed to earn a grade of at least 60 %. Graded

problem nodes fell into one of five categories:

" Checkpoints, 7% of total grade: embedded within instructional material. Five

sequentials (roughly one-tenth of all checkpoints) worth of checkpoints were

dropped.

" Homework Problems, 34% of total grade: there was roughly one homework

assignment per week, as described above.

" Quiz Problems, 36 % of grade: there was roughly one quiz assignment per week,

as described above.

" Midterm Exam, 7% of the grade: A cumulative midterm exam was given in lieu

of a week-9 quiz.

" Final Exam, 16% of total grade: A cumulative final exam was given due one

week after the last graded instructional chapter. (The final exam was also given

before week 1 as an ungraded pre-test. The pre-test was hidden from students

after its due date.)

Table 2.2 shows the number of input fields and problem nodes per category.

Table 2.2: Number of input fields and problem nodes per grading category 2

Checkpoint Homework Quiz Midterm Final

Input Field 462 350 107 13 23
Problem Node 226 253 52 13 17

Most graded problems allowed students multiple attempts. Checkpoint and home-

work problems frequently allowed students up to 10 attempts, except when this would
2 Because of split-test experiments, different users are exposed to a slightly different number of

problems. These numbers are averages over split-test experiments.
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significantly increase the chance of correctly answering by guessing. For example, a

five-choice multiple-choice Checkpoint or Homework problem might be given 2 or 3

attempts, but a numerical response Checkpoint or Homework problem would usually

be given 10 attempts. In contrast, quiz problems and Pre-Test/ Midterm/Final-Exam

problems were generally given 3 or fewer attempts.

2.3.3 Discussion Forum

8.MReVx: Mechanics ReView uses the edX Discussion feature to promote interaction

between students. All students can make posts to the discussion forum, and were

encouraged to ask general questions about physics or specific questions about physics

problems within the course. However, students were explicitly told that posting final

answers to graded course problems before their due dates was not permitted.

8.MReVx2O14 benefitted from the hard work of 87 dedicated "Community TAs",

the vast majority of whom were recruited from the pool of certificate-earners in

8.MReVx2O13. Many community TAs were very activate in 8.MReVx2O14, answering

questions and policing the discussion forums. In the few instances when the final

answer to a graded problem was posted before a due date, it seemed that community

TAs quickly edited the original post to remove this information.

2.3.4 Split-Test ("A/B") Experiments in 8.MReVx2O14

Usually, all students in an edX course see exactly the same content. In Spring 2014,

edX released the ability for courses to implement split-tests. In a single split-test,

the entire user population is partitioned into two or more groups and each group

is given separate course material. The split-test process is illustrated in Figure 2-

2. 8.MReVx: Mechanics ReView-2014 used split-tests to implement seven separate

learning experiments distributed throughout the course.

Several aspects of edX split tests are important to note:

e A split test can contain any type of edX content: html pages, problems, videos,

etc, and can be graded or ungraded

16



" A single course can contain any number of split tests.

* A single split test can contain two or more groups.

" All users participate in all split tests. Users cannot opt-out of a split test

without opting-out of the course itself.

* Users assignment to groups within a split-test is random.

" Split tests can be implemented at either the sequential level (so that group A

and group B see different sequentials within the same chapter) or vertical level

(so that group A and group B see different verticals within the same sequential).

" Split tests are stable throughout the course-that is, the same partitioning of

users can be used in different parts of the course. For example, Partition 1

could be used the first week, partition 2 the third week, and partition 1 could

be used again during the tenth week.

Student Awareness

The About Page on edx.org for 8.MReVx2O14 where students enroll in the course ex-

plicitly informed students that the course contained split-test experiments and that

not all students would receive the same material. Additionally, some students be-

came aware of specific split-test experiments through the discussion forums because

although the A group and B groups in a two-group "A/B" experiment have separate

courseware material, the discussion forum is not separated by group.

17
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Chapter 3

Experiment: Deliberate Practice and

a Comparison of Problem Formats

Over the past several decades there has been extensive research exploring the nature of

expertise and the differences between experts and novices in physics, chess, athletics,

music, and other fields. Initial work by Ericsson in the 1990s [4] showed that in

many fields the transition from novice to expert has more to do with practice than

innate talent. However, not all practice leads to expertise. Deliberate practice-

characterized by a singular focus on elementary skills, repetition, immediate feedback,

opportunities for improvement, and self-reflection-was identified as a specific type of

practice especially important to the development of expertise. Cognitive load theory

[5] suggests that deliberate practice can be enhanced by reducing extraneous cognitive

load, freeing the learner's working memory to focus on the salient aspects of deliberate

practice activities rather than irrelevant details such as those related to problem

format.

In this chapter we describe our most ambitious split-test experiment in 8.MReVx: Me-

chanics ReView 2014. This experiment asks two separate but related questions. First,

we investigate whether the deliberate practice framework, informed by research on

expert-novice differences, can be used to design activities that efficiently build physics

expertise in introductory mechanics students. Second, we ask how the choice of prob-

lem format affects learning in our MOOC. In particular, we investigate how perfor-
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mance and learning compare when multiple-choice deliberate practice activities are

replaced by informationally equivalent drag-and-drop problems, specifically designed

to minimize extraneous cognitive load.

We begin by discussion previous work on the nature and development of expertise,

then describe the setup of the deliberate practice study undertaken in Units 10, 11 and

12 of 8.MReVx2O14. We present and discuss results about problem content (deliberate

practice vs traditional problems) separately from problem format (multiple choice vs

drag-and-drop).

3.1 Background

3.1.1 The Nature of Expertise

The first step in designing material to build physics expertise is identifying differences

between experts and novices. Research on expertise has revealed important differences

between the way that novices and experts approach problems and organize their

knowledge.

e Experts quickly identify important information and this information triggers

meaningful inferences.

One way experts quickly identify important features is by "chunking" pieces into

meaningful patterns. Chess masters can quickly memorize board positions by

chunking pieces into strategically relevant clusters [6] and electrical engineers

chunk components in circuit diagrams into functional substructures [7]. Some

work 18] suggests that in physics, novices have more difficulty using key features

to trigger relevant inferences than identifying the features themselves.

e Experts organize knowledge around important ideas and principles.

Experts in physics have been shown to categorize problems [9] and plan solutions

[81 by underlying principle (e.g., conservation of momentum) whereas novices

categorize problems and plan by surface features (e.g., the problem contains a

spring).

20



" Expert's knowledge is conditionalized-experts know in what situations their

knowledge and tools are valid.

* Experts exhibit fluent retrieval of their knowledge.

3.1.2 Training Expertise through Deliberate Practice

Consider the following introductory mechanics problem:

("Kick the stick") A stick of length f is at rest along the y-axis and is

suddenly kicked at one end in the x-direction. Immediately after the stick

is kicked, its center-of-mass moves rightward at speed v. At what angular

speed w does the stick rotate after being kicked?

An expert might apply conservation of angular momentum to quickly solve this prob-

lem. Table 3.1 lists the numerous elementary skills, many of which an expert may

perform automatically, that are needed for a correct solution.

1. parsing the question and perhaps generating a pictorial representation
2. identifying the relevant physical model (e.g., conservation of angular momen-

tum),
3. selecting a useful reference point for angular momentum,
4. identifying the stick's moment of inertia
5. decomposing a rigid body's angular momentum in spin and orbital contribu-

tions
6. selecting a useful expression for each contribution to angular momentum

(e.g., L = ' x mv', L = rimv, L = rmv1 , or L = Iw) and identifying the
relevant variables,

7. (depending on the approach in Step 6) evaluating a cross product.

Table 3.1: Elementary skills needed to solve the "Kick the stick" problem.

This is an example of a problem that might be assigned in a standard introductory

mechanics class to emphasize the crucial role that picking an appropriate reference

point plays in applying the conservation of angular momentum. Throughout a tra-

ditional course, physics students are primarily trained by being assigned many such

problems relating to various topics. These problems are "full-game" problems in that

21



they require the coordinated execution of many skills, as in a game of chess or an

athletics competition. Physics students are sometimes given simpler practice prob-

lems that ostensibly focus on a single skill-for example, a problem asking students

to calculate the angular momentum of a rigid body. Often times, such a task may

appear as a single chunk to an expert, but actually involves multiple steps (e.g., steps

5-7 above).

Because the above problem requires so many elementary skills, struggling students

may not be able to identify the source of their confusion if they are told their answer

is incorrect. Even students who do successfully complete the problem may not be able

to identify the key features of their solution among so many steps. Ericsson's original

work on the development of expertise [4] and subsequent studies [10, 11, 12] suggest

that practicing primarily through such "full game", real-world scenarios is not an

effective way to build expertise. Instead, novices should supplement full games with

deliberate practice. Deliberate practice activities (DPAs) have several key features.

" Deliberate practice activities focus on one or two elementary skills.

- This allows students and instructors to quickly identify deficiencies and

competencies and may make it easier for students to identify the "take-

away message" of each problem.

" Deliberate practice activities have short duration, high repetition, and provide

immediate feedback.

- Short duration provides more opportunities for feedback in a fixed prac-

tice time. Immediate feedback and high repetition provides an opportunity

for learning, allowing students to make adjustments between problem at-

tempts.

In our study, we use the idea of deliberate practice to develop short physics problems

each of which is designed to target one or two elementary skills, including many of

those in Table 3.1.
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Our effort to develop deliberate practice activities to build expertise in physics, a

highly cognitive, open-ended domain, differs from previous work in two fundamental

ways. First, the deliberate practice framework was developed mostly in music, typing,

and athletics, all domains with a heavy emphasis on kinesthetic skills (see [13, 14, 15]

for reviews), though chess, a highly cognitive skill, has also been studied [4, 11].

More recent work has examined the role of deliberate practice in other cognitive areas

including professional writing [161 and medicine [17, 18]. The only study of which

we are aware that advocates deliberate practice in physics education [19] focused

much more heavily on interactive lectures and peer-instruction than the principles of

deliberate practice. Second, previous research has tended to use deliberate practice

only as a lens through which to view existing material in order to gain insight on the

development of expertise, not for the construction of instructional tools. Gifford's

Doctor-Coach pedagogy [171 is a notable exception to this trend.

3.2 Methods

3.2.1 Participants

The participants were users in the MOOC 8.MReVx: Mechanics ReView 2014. Of the

roughly 15,000 users who signed up for 8.MReVx2014, only 614 ever interacted with

this particular experiment. Not all of these 614 users interacted significantly with

the experimental content, and hence not all will be included in our analysis-the

conditions for inclusion in analysis will be discussed in more detail below.

3.2.2 Study Setup

Figure 3-1 depicts the structure of our study, which takes place during the last three

graded units of our course (Unit 10: Rotation & Translation; Unit 11: Angular

Momentum; Unit 12: Gravity and Orbits). All students in our course are randomly

split into three groups (A, B, or C). The split into groups is stable over the course

of our study. During each unit (10, 11, and 12) all students receive homework in two
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treatment common common treatment common common treatment common common
homework homework quiz homework homework quiz homework homework quiz

Group A 

trUdtions
Group B Traditional

Group C tradtional

Unit 10: Rotation and Unit 11: Angular Unit 12: Gravity and
Translation Momentum Orbits

Figure 3-1: Each group receives homework in two problem sets, including common
problems and treatment problems, described in Section 3.2.3. Learning in each group
is evaluated through common end-of-unit quizzes testing transfer from common ma-
terial. Treatment assignment is rotated during the study.

problem sets:

" The first set contains the treatment, which varies from group to group. The

treatment consists either of traditional homework problems (control) or one of

two variations of deliberate practice activities that differ in format (multiple

choice, MC, vs drag-and-drop, DD).

" The second set contains traditional, "full-game" homework problems common

to each group.

In order to evaluate the efficacy of deliberate practice, each unit culminates in a

quiz that is common to all groups. The quiz consists of traditional problems only

(conceptual and numeric/ symbolic response). Quiz problems are designed to test

transfer from material common to each of the three group homeworks. Some (not

all) quiz and common homework problems have been used in previous iterations of

the 8.MReVxMOOC.

In order to treat all participants in our study equally, the treatment assigned to

each group rotates between each unit. Thus, Group C received the traditional control

problems in Unit 10, deliberate practice problems in the drag-and-drop format during

Unit 11, and deliberate practice problems in the multiple-choice format during Unit

12.
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3.2.3 Treatments

Our study uses three treatments that differ in problem design (traditional vs. deliber-

ate practice activities, DPA) and problem format (multiple-choice deliberate practice,

MC vs. drag-and-drop deliberate practice, DD).

Traditional Treatment

The traditional problem sets are a mix of conceptual and full-game problems imple-

mented through the multiple-choice, checkbox, drop-down, numerical input, and sym-

bolic math input problem formats. The full-game problems vary in complexity from

single-principle (e.g., the problem uses conservation of energy only) to multi-principle

(several conservation laws or net force laws are used). Some of these problems are

broken into parts, others are not. These problems mirror homework in a standard

physics course, in previous iterations of the 8.MReVx MOOC, and are similar in style

to the common problems and quiz problems given to all groups in Units 10, 11, and

12.

Deliberate Practice Treatments

The deliberate practice treatment consists of short problems targeting specific ele-

mentary skills used in solving full-game problems. Table 3.2 gives some examples of

the elementary skills our problems are designed to target. (We believe these skills

are useful to students on the common follow-up assessment, though the assessment

requires additional skills as well.) Because the deliberate practice problems take a

relatively short amount of time by their very nature, we are able to include several

problems (usually at least 4) on each specific skill. Feedback and the opportunity to

improve is a crucial part of deliberate practice and for this reason we wrote thorough

solutions (many containing useful figures) to all deliberate practice problems. Solu-

tions are viewable after a student has either successfully completed the problem or

has been marked incorrect on all available attempts.

Table 3.3 shows the number of problems on the deliberate practice and tradi-
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Unit Skill

10 basic application of Newton's 2nd Law in linear and rotational form
10 identifying the type and direction of frictional forces that accelerate rolling

objects
10 identifying the mathematical relationships imposed by physical constraints

(e.g., rolling without slipping or ideal rope or rope does not slip)
11 identifying the appropriate quantities to be used for r, ri, vi, and 0 in

angular momentum expressions L = rmv sin 0 = rmV = rmv1
11 identifying angular momentum reference points with specific properties
12 relating gravitational potential energy graphs and physical situations
12 identifying forces that do work and provide torque to change energy and

angular momentum
10, 11, 12 identifying situations in which various conservation laws apply and why

(Finding Error Problems)

Table 3.2: Some elementary skills targeted by deliberate practice activities

Table 3.3: Number of physics problems on treatment homework

Unit 10 Unit 11 Unit 12

Deliberate Practice (DD) 21 19 19
Deliberate Practice (MC) 21 19 19

Traditional 6 10 6
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tional homework treatements. Although the deliberate practice treatment contains

many more problems than the traditional treatment, both treatments cover the same

material and are intended to take roughly the same amount of time. To help isolate

the effect of deliberate practice, we also wrote solutions to all problems used in the

traditional treatment'

One type of deliberate practice activity-Finding Error problems-were used in

all three units and deserve explanation. These activities present students with a

physics problem and a solution to this problem that may or may not contain an er-

ror. Students are asked to decide whether or not the solution does in fact contain an

error, and if it does, students must indicate what is the error and what information

in the problem statement indicates that this is an error. Like worked example and

problem completion tasks [5, 20], these Finding Error problems aim to help students

focus on especially important aspects of problem by eliminating tasks such as alge-

braic manipulation that are only tangentially related to the physics and contribute

to extraneous cognitive load.

Multiple Choice vs. Drag-and-Drop

In order to investigate the influence of problem format on the effectiveness of deliber-

ate practice, we created two versions of the deliberate practice treatment. One version

(MC) administers deliberate practice activities through the standard multiple-choice

(MC), drop-down, and checkbox problem formats. The second version (DD) uses

edX's drag-and-drop (DD) problem format exclusively. The drag-and-drop problem

format is a very flexible problem format in which users drag objects onto a target im-

age to indicate the answer to a question. It was hypothesized that the multiple-choice

format might cause users to split their attention between different parts of the page

(the choices and the problem statement) thereby increasing extraneous cognitive load

through the "split-attention effect" [5, 21]. In contrast, drag-and-drop problems tend

to collocate the problem statement and the figure, reducing cognitive load.

'Common problems do not have staff-created solutions. Student-created solutions may exist in
the course wiki.
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What Is r? What Is a?

0rl 0 al

0 r2 0 q2
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(a) Student Task: select appropriate values of r and a to be used in

L = rmv sin a by marking multiple-choice radio buttons.

h

r3

(b) Student Task: select appropriate values of r and a to be used in

L = rmv sin a by dragging indicator to figure.

Figure 3-2: Comparison of multiple-choice and drag-and-drop format for a variable
identification deliberate practice activity.
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The deliberate practice activities in each treatment are as similar as possible within

the constraints imposed by the different formats. Figure 3-9 shows two versions of

the same deliberate practice activity, one in each format. The problem asks users

to indicate what quantities should be used as the angle a and the distance r in the

expression L = rmv sin a.

There is an important difference between the two formats that could potentially

confound comparison of results between formats when users are given multiple at-

tempts at an activity, as they are in all cases. The drag-and-drop activity corresponds

to a single edX input-field (users indicate r and a simultaneously) whereas the mul-

tiple choice version corresponds to two separate input fields (users indicate r and a

separately). As a consequence, when users hit k , the multiple choice version

indicates whether the value of r is correct /incorrect and whether the value of a is

correct /inorrect, whereas the drag-and-drop version only indicates whether the pair

(r, a) is correct /incorrect. That is, the multiple choice group receives more feedback

per attempt.

3.3 Efficacy of Deliberate Practice

3.3.1 Results

Of the 614 users who accessed at least some of the material in this split test experi-

ment, not all of them accessed a significant fraction of the material. Figure 3-3 depicts

attempt rates for the treatment homework and common quiz in Units 10, 11, and 12.

In all three units a large group of students attempted all of the treatment homework

and all of the quiz (upper right corner) and a large group of students attempted none

of the homework and none of the quiz (lower right corner). The relatively small off-

diagonal values in these completion heat maps indicate a high correlation between

attempting the homework and attempting the quiz.

In order to guarantee that the users we consider interacted with the treatment

homework to a significant extent, we restrict our attention in the remainder of this
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Figure 3-3: Treatment Homework and Quiz joint completion rates for Units 10, 11,
and 12. A total of (219,205,280) during units (10,11,12) students completed at least

70 % of the treatment homework and at least 70 % of the common quiz.
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section to only those who completed at least 70 % of the treatment homework and at

least 70 % of the common quiz. This cut-off leaves a total of 219 students for Unit

10, 205 students for Unit 11, and 280 students for Unit 12. Note that post-selection

does not guarantee that users completed the common quiz assessment before they

completed the treatment homework.

Quiz 10 Scores Analysis ( FirstCorrect)
Completition Cutoffs: At least 70% of Treatment HW and Quiz

1 00 -

0 75 -

0
W

C 0 50 -

0 25 -

0 00 -

treatment
DD

MC

TRD

Problem (input-field)

Figure 3-4: Comparison of first-attempt quiz scores for the three treatment groups:
traditional instruction (TRD), deliberate practice in the drag-and-drop format (DD),
and deliberate practice in the multiple-choice format (MC). Bar height indicates the
mean score for that group. Error bars show one standard error in the mean. The
number above each bar indicates the number of users from each group who attempted
that quiz question. Total quiz score is calculated per user with unanswered questions
ignored.
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Quiz 11 Scores Analysis ( FirstCorrect )
Completition Cutoffs: At least 70% of Treatment HW and Quiz
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Quiz 12 Scores Analysis ( FirstCorrect )
Completition Cutoffs: At least 70% of Treatment HW and Quiz
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Figure 3-4: continued

The performance of each treatment group on common quizzes is summarized in

Figure 3-4 and Table 3.4. Generally, users were permitted about 3 attempts on quiz

questions in 8.MReVx2014. These scores are based only on first attempt, which shows

the largest differences between groups. Using first-attempt-correct as the correctness

criterion also helps ensure that the total scores are at least somewhat normally dis-
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Total Score, Quiz 10 Total Score, Quiz 11 Total Score, Quiz 12
treatment group N mean sd group N mean sd group N mean sd

Delib. Prac. (DD) A 78 0.61 0.23 C 72 0.47 0.22 B 87 0.59 0.22
Delib. Prac. (MC) B 71 0.56 0.24 A 64 0.43 0.24 C 103 0.61 0.20
Traditional (TRD) C 70 0.62 0.23 B 69 0.47 0.23 A 90 0.65 0.18

p (ANOVA) 0.23 0.52 0.22

Table 3.4: Comparison of the Total Quiz Score, calculated per person based on first-
attempt correct rates, for each of the three treatment groups on Units 10, 11, and 12.
Standard one-way ANOVA was used to calculate p-values to test whether all three
means are equal.

Table 3.5: Differences in total quiz score, averaged over quizzes 10, 11, and 12

comparison difference in means sd Z-score p-value

DD - MC 0.023 0.021 1.11 0.27
MC - TRD -0.047 0.021 -2.22 0.026
TRD - DD 0.023 0.021 1.14 0.26

tributed and not skewed too far toward the upper limit of 1. Because users needed

to earn only 60 % of the points available in our course to earn a certificate, we did

not penalize students for skipping questions when calculating the per-user quiz total

score. That is, total score for each user on a given quiz was computed by

number of quiz questions answered correctlytotal score for user =. (.)
number of quiz questions attempted

(Recall, however, that only those users who completed at least 70 % of the treatment

and quiz are included in this analysis, so relatively few scores were dropped.) Per-user

total scores are independent from one another and can be analyzed using standard

statistical methods. Using a one-way ANOVA, we did not detect a significant differ-

ence in the mean total scores for any particular chapter. However, on all three quizzes

the group receiving traditional instruction did out-perform the group receiving delib-

erate practice problems in the multiple choice format, having a higher total quiz score

4.7% averaged over the three units (see Table 3.5). Using a t-test, this difference was
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significant at p = 0.027; no other cumulative differences were significant.

Although there are no obvious differences in quiz score, it is conceivable that

different treatment groups spent different amounts of time-on-task for solving each

quiz problem. To investigate this possibility, we analyzed edX log files to determine

the time per problem for each user. For this analysis, we used the "molecular time"

algorithm as our operational definition of time-on-task, which is intended to include

time spent viewing a problem and time spent on related resources when estimating

time-on-task Roughly speaking, the molecular time algorithm includes all time be-

tween opening a problem and finishing a problem, including time spent on other tasks

between these two events, as long as time spent on other tasks is not too large. For

a detailed description of this algorithm, see Appendix A.

Figure 3-5 shows the time-on-task (molecular timing algorithm) for each prob-

lem node in the common quiz for Unit 11. Because timing data is highly skewed,

we used the nonparametric Mann-Whitney U-test to perform pairwise comparison

between groups of time-on-task during the quiz. For continuous random variables

such as time-on-task, the Mann-Whitney U-test can be interpreted as testing for a

difference in median [22]. No between-group differences in total time spent on quiz

are statistically significant at p < 0.1. (Two differences between groups in time spent

on specific problems were significant, both at p = 0.04. However, since there are 18

quiz problems, 3 groups, and 54 pairwise comparisons in total, it is not at all unlikely

that these two differences occurred by chance).

3.3.2 Discussion

Despite receiving (and completely at least 70 % of) markedly different treatment

homework as preparation for the common quizzes, the deliberate practice and tra-

ditional instruction groups took similar amounts of time to complete the common

quizzes in units 10, 11, and 12, and no significant difference in quiz score was ob-

served between groups for a given unit. When all three quizzes are considered, the

data suggest that the traditional treatment outperforms the multiple-choice deliberate

practice treatment, but no meaningful conclusions about the efficacy of drag-and-drop
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Quiz 11, Time related to Problem
Includes users who completed 70% of Treatment HW and Quiz
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Figure 3-5: Molecular time per problem (node) on Quiz 11. Boxes show the 2nd and

3rd quartile, solid line shows median.

deliberate practice relative to traditional instruction can be made. What factors could

be contributing to the lack of observed effects?

First, we note that users in 8.MReVx2014 can complete the treatment homework

and quiz in any order they desire. We have included all students who completed at

least 70 % of the treatment homework and quiz, irrespective of the order of completion.

Second, we have not attempted to account for initial skill differences in students.

To address both of these issues, an analysis of this experiment is currently in

progress that (1) postselects to include only users who completed a significant portion

of the treatment before the quiz and (2) estimates user skills using item response

theory (IRT) [231 rather than raw score. By using IRT, it will be possible to compare

the estimated skills for each user before and after each treatment (with pre-skill based

on prior student work within the course and post-skill based on common assessment).

This analysis may also give insight into whether deliberate practice activities are more

effective for low skill students rather than high skill students.

Third, we note that the quizzes are composed of traditional problems. It is possible
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that the deliberate practice activities did not effectively train the skills we targeted,

or that these skills were not the main stumbling blocks to users attempting the quiz.

To investigate both these possibilities, we suggest that in future iterations of this

experiment, the quiz contain a few single-skill assessment problems that target the

same elementary skills as the deliberate practice activities.

A final possible impediment to observing results is related to the active popula-

tion in our course. We described deliberate practice as characterized by a focus on

elementary skills, repetition, self-reflection, and immediate feedback. To a certain

extent, all of these characteristics (except possibly immediate feedback, which in our

MOOC is provided in all cases by the edX platform) can all be viewed as personality

traits rather than activity traits. In discussing deliberate practice, Chi wrote [24]

It is very difficult to say whether deliberate practice is the result of some

personality or individual attributes, such as motivation or persistence, or

whether it is the nature of the designed deliberate practice task that is

critical for achieving elite status.

Our attempt to design deliberate practice activities can be viewed as an attempt

at designing activities that arouse these traits in students. However, MOOCs have

notoriously high drop-out rates and it seems entirely possible that by the tenth week

of 8.MReVx2014 when this study took place, all but the most serious and motivated

students had already dropped-out. In other words, students who may have benefitted

from activities designed to promote deliberate practice may have already left the

course.

3.4 Comparison of Drag and Drop vs Multiple Choice

Problem Formats

3.4.1 Results

We now describe the performance of the two deliberate practice groups on the delib-

erate practice activities themselves. The activities for each group were designed to
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contain equivalent content, and differed only in format: one group received drag-and-

drop (DD) activities, the other received multiple-choice (MC) activities. Two deliber-

ate practice activities from Unit 11 (FindingError_11.3 and FindingError 11.6)

contained (unintentional) errors and are eliminated from this and subsequent analy-

sis. Users were allowed multiple attempts on each activity. Figure 3-6 compares the

first-attempt-correct and eventually-correct rates for both groups on each activity.

Student's t-test was used to detect differences in the first-attempt-correct rates be-

tween groups for each activity, and the associated p-values are shown in Figure 3-6.

In nine of the deliberate practice activities there was a difference in the DD and MC

group first-attempt-correct rates significant at the p < 0.05 level. In none of the three

homework assignments was there an overall first-attempt-correct or eventually-correct

difference significant at the p < 0.05 level.

Unit 10, Deliberate Practice Format Comparison
users completed at least 70% of Treatment HW

1 00 -

treatment

1 0050 -0DD
Mc

0.25-

00 0~- 0 0 >w- Qq 0\9 4\? \00 000,2\ 9'~ ~
Problem

Figure 3-6: Success rates for the drag-and-drop format group (DD) and multiple-
choice format group (MC) on analogous deliberate practice activities. Solid bar height
indicates the fraction of students in each group who answered a particular DPA
correctly on the first attempt. Error bars show one standard error in the mean.
Transparent bar height indicates the fraction fraction of students who eventually
answered each question correctly. The number above each bar indicates the number
of users from each group who attempted that deliberate practice activity question.
For each activity, a t-test was used to detect differences in the mean value of first-
attempt-correct rates. The associated p values are shown underneath each pair of
bars, with p values less than 0.05 highlighted in red.
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Unit 11, Deliberate Practice Format Comparison
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Unit 12, Deliberate Practice Format Comparison
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Figure 3-6: continued

For those users who eventually answered correctly, Figure 3-7 shows the distribu-

tion of time-until-correct and attempts-until-correct by group for each deliberate prac-

tice activity. Because each vertical within the deliberate practice activity homework

assignment contained several problem nodes, we chose to measure time-per-attempt

using the atomic timing algorithm, which includes only time during which the user

was viewing and interacting with the activity and does not include time spent on

related resources. See Appendix A for details.

We again used the Mann-Whitney U-test to detect differences in the time and
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attempt distributions for each group. For continuous time data, the U-test can be

interpreted as testing for a difference in medians between groups. The U-test cannot

be interpreted this way for discrete attempt data, but can still be interpreted as

testing whether one distribution of attempts is generally larger than another2

Homework 10.1 Atomic Times
Indudes users who completed 70% of HWO.1

15 -

10-

S

treatment
DD

*MC

V,,-* 9,0' d-\ 00 SpO Vp ,"F- 09 019 VQ 0" Vr' -'0 -,O -,,0

,.P- V. - -\o-t'\e_'- V 1 s 011 Le ON ov 6V , aot *0 , 6g;s

04 G y I'- N0 oe Co", C'& o- ov '0
yd"' 0 5* NN NR), ,I, \b, 'o\-Or'

QP db
Pmblern (node)

Homework 10.1 Number of Attempts
Includes users who eventually answered correctly and completed at least 70% of Treatment HW

10-

8-

6-

4-
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ODD

$MC

Problem (node)

(a)

Figure 3-7: Distributions of time-until-correct and attempts-until-correct for each

group on the deliberate practice activities. Times were calculated using the atomic

timing algorithm. In each plot, solid lines within the box indicate distribution median,
boxes represent the 2nd and 3rd quartile, and overlaid diamonds represent distribution

mean. Mann-Whitney U-test p values are shown for each activity.

2In particular, for discrete data, the U-test is a rule to decide whether two random variables

X and Y differ in stochastic ordering. X is said to be stochastically less than Y, X -< Y, if

Pr[X greater than c] < Pr[Y greater than c] for all c C R [25].
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Compared to Multiple-Choice, how enjoyable Compared to Multiple-Choice, how intuitive
are Drag-and-Drop problems? are Drag-and-Drop problems?
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much less enjoyable just as enjoyable much more enjoyable much less intuitive just as intuitive much more intuitive
than Multiple Choice as Multiple Choice than Multiple Choice than Multiple Choice as Multiple Choice than Multiple Choice

rating rating

Figure 3-8: Results of survey questions comparing the drag-and-drop and multiple-
choice formats.

At the end of the course (one week after Unit 12 was due), all users were given

the option of participating in the course Exist Survey. Two questions on the survey

asked to compare the intuitiveness and enjoyableness of the drag-and-drop format

relative to multiple-choice format on a seven-point Likert scale. Before answering

these questions, users were reminded that they experienced drag-and-drop format

problems in one of Units 10, 11, 12 and multiple-choice format problems in another

of these units.Figure 3-8 shows the results of this survey for all users who responded.

" Enjoyableness: Of the 322 users who responded, 26 % indicated that the DD

and MC formats are equally enjoyable; 54% indicated that the DD format is

more enjoyable than the MC format; and 20 % indicated the DD format is less

enjoyable.

" Intuitiveness: Of the 327 users who responded, 33 % indicated that the DD

and MC formats are equally intuitive; 47% indicated that the DD format is

more enjoyable than the MC format; and 20 % indicated the DD format is less

intuitive.

3.4.2 Discussion

Several interesting differences are visible between the drag-and-drop format and multiple-

choice format deliberate practice problems.

First, we notice that although there was no significant difference in overall first-

attempt-correct or eventually-correct rates, nine individual problems did exhibit first-
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attempt-correct differences significant at the p < 0.05 level. Table 3.6 displays data

for these nine problems. In 8 of these 9 problems showing significant first-attempt-

correct differences, the DD group outperformed the MC group.

This finding is consistent with the hypothesis that our drag-and-drop problems

have lower extraneous cognitive load, freeing the user's working memory to focus

on problem solving. However, as discussed in Section 3.3.1 we did not observe a

significant difference between the DD and MC groups' performance on the common

assessment. Thus, although we have seen some evidence that reducing extraneous

cognitive load can increase local problem solving ability, we did not observe increased

learning as measured by transfer.

Table 3.6: Nine deliberate practice activities with significant first-attempt-correct

DD MC
Unit problem meanise N mean se N p

0.81 O 100 07 04044 4 :0 1
US~~~~ ~ h M$ p .4e00W10 02 6 7 100 '0.

~~ 
0 .3

Unit 11 01_idVar ang_2 0.46 t 0.052 92 0.75 t 0.045 95 3.8e-05

Unit 2 17 FindEttord d 006 W 061 2

*Problems for which the DD group outperformed MC are shaded gray

Of the 9 problems showing significantly different first-attempt-correct rates, "01_id-

Varang_2" stands out as the only problem in which the multiple choice group sig-

nificant outperformed the drag-and-drop group. This problem, depicted in Figure ??

was an Identify Variables activity. In the drag-and-drop version of this problem, the

correct answer was to drag the r indicator to r2 and to leave the a indicator in its

tray (since the appropriate value of a, namely a = 0, is not displayed in the target

figure). This was the only Identify Variables activity in which the correct answer

was to leave one of the indicators unused, and we hypothesize that it was this aspect
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(a) Student Task: select appropriate values (b) Student Task: select appropriate values

of r and a to be used in L = rmv sin a of r and a to be used in L = rmv sin a by

by marking multiple-choice radio buttons. dragging indicator to figure. Correct answer

Correct answer is (r, a) = (r2, 0). is to indicate r2 and leave the a indicator in

its tray.

Figure 3-9: Comparison of multiple-choice and drag-and-drop format for a variable

identification deliberate practice activity.

of the activity that made the problem artificially hard for the DD group. In future

versions of this activity, we will implement a more active mechanism by which the

user indicates the idea "a = 0", e.g., by having two more draggable objects, =

and =

Although the DD group performed significantly better than the MC group on

several problems on the first attempt, the MC group had higher eventually-correct

rates in many cases, especially in Units 11 and 12 and especially on the Finding Error

activities. (In all cases, the multiple choice group had equal or fewer attempts than the

drag-and-drop group.) This effect probably results from two causes. First, multiple

choice problems are susceptible to guessing strategies when multiple attempts are

given since the number of options is finite. In contrast, many drag-and-drop problems

have a very large of options, since grading is based on the coordinates of the draggable

objects. Second, as discussed in Section 3.2.3, the multiple choice group receives more

feedback per attempt.

The time-on-task data also exhibits trends. First, we observe that when multiple

problems of a similar type are given (e.g., Identify Variables, or Find the Reference

Point activities, or multiple Which Force activities) in a row, the time-per-problem
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tends to decrease. This makes sense, as users are acquiring a familiarity with the

problem type.

More interestingly, we observe that on several problems, the drag-and-drop group

spends more time per problem and uses fewer attempts to get the problem correct.

These trends are especially apparent in the Finding Error activities used in Units

Eleven and Twelve. For the 12 finding error activities considered in these units:

e The DD median time was larger in 11 of the 12 cases, and the effect was signif-

icant at p < 0.05 in 5 of these cases (U-test).

e The DD median number of attempts was smaller in 8 of the 12 cases, and the

attempt distributions were significantly different at p < 0.05 in all 8 of these

cases (U-test).

e Additional analysis shows the DD group median time per attempt was larger

in all 12 cases, and significant at p < 0.05 (U-test) in 10 of the 12 cases.

Time-on-task is often used as a measure of cognitive load, and we may suspect that

the DD group actually experienced higher cognitive load during these Finding Error

activities. However, since the DD group used fewer attempts in many cases, it seems

that this increased cognitive load was germane to problem solving rather than extra-

neous cognitive load related to problem format. One explanation for these findings is

that the drag-and-drop group found their Finding Error activities to be more inter-

esting and more interactive, and hence were willing to engage more with the material.

This interpretation seems to be supported by the exit survey, on which a majority of

respondents indicated they found drag-and-drop problems to be more enjoyable and

more intuitive.

3.5 Conclusions

We observed some evidence that drag-and-drop activities have higher success rates

than their multiple-choice counterparts, suggesting that drag-and-drop can be used
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to reduce extraneous cognitive load. Users tended to spend more time on drag-and-

drop problems, especially of the Finding Error type, but often arrived at the correct

answer in fewer attempts. Survey results indicate that a majority of users find drag-

and-drop problems more intuitive and more enjoyable, possibly explaining why users

are willing to spend more time per attempt on activities.

We observed no significant evidence that deliberate practice activities, rendered in

the drag-and-drop or multiple-choice format, result in better learning as measured by

transfer on a post-assessment. We suggest that future work into the role of deliberate

practice on learning in MOOCs should focus on low-skill populations in the hopes of

observing a stronger effect. Also, we suggest that large-scale learning experiments be

carried out within the early few weeks of a MOOC when the low-skill population is

presumably larger. Moreover, learning experiments early in a MOOC seem to have a

better chance of observing retention effects.
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Chapter 4

Experiment: Does Pre-Test Feedback

enhance Post-Test performance?

4.1 Background

A standard method for measuring learning is to administer the same assessment

before (pre-test) and after (post-test) instruction. This technique has been used

extensively in education research in residential environments and was recently used in

a MOOC environment to demonstrate equal learning among different student cohorts

in 8.MReVx2013 [3].

The pre-/post-testing in 8.MReVx2O13 differed from traditional residential pre-

/post-testing in several significant ways:

1. users were given multiple attempts on each problem and were given correct /incorrect

feedback after each attempt;

2. users were able to see the correct answer to a problem after finishing the prob-

lem;

3. the pre- and post-tests were "open", i.e., users could take advantage of outside

resources (for the post-test, this includes instruction material that had been

released within 8.MReVx).
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4. Except for a due date two-weeks after release, no time-limit was imposed on the

pre-test or the post-test;

How important are these differences between the MOOC and residential pre-/post-

test methodologies? 8.MReVx2O14 included an experiment to investigate whether

feedback and the ability to see the correct answers on the pretest would enhance

student performance on identical problems on the post-test twelve weeks later.

4.2 Study Setup

Figure 4-1 shows the setup for the pre/post-test memory experiment. At the begin-

ning of the course, all students had the opportunity to complete a pre-test and at the

end of the core all student had the opportunity to complete a post-test. All students

received the same post-test; twos different versions of the pre-test were given. The

post-test contained fifteen separate problems corresponding to 23 edX input fields

(some problems have multiple parts). Post-test problems can be grouped into four

item categories according to which group saw the items on the pre-test:

" Two problems (3 edX input fields, il-i3) appeared only on pre-test version A

* Two problems (4 edX input fields, i4-i7) appeared only on pre-test version B

" Nine problems (12 edX input fields, i8-19) appeared on both pre-test versions

A and B

" Two problems (4 edX input fields, i20-i23) were unique to the post-test, and

did not appear on either pre-test version.

The problems appeared in different orders on the pre-test and post-test. The

numbering of input fields in Figure 4-1 does not correspond to the order in which

they appeared on either test.

Users were allowed multiple attempts (usually 2-4) on the pre/post-test problem

nodes and were not penalized for using multiple attempts. The pre-test was ungraded;

the post-test was displayed as the course "final exam" and was worth 9 % of each user's
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Grou. A

Pre-test
Group B

~ ~ ~~-- --~ ~ ~~-- - -~ - -~ - - ~- -~- - ~ ~~- - - ~- -~ -

12 weeks
of instruction

For both Pre-test and post-test:
-2-4 attempts on each
pretest question

-correct/incorrect feedback
on each attempt

-correct answer viewable
after question finished

Post-test

Figure 4-1: Setup for the pre/post-test memory experiment. All students see the same
common post-test after 12 weeks of instruction, but two slightly different versions of
the pre-test were given at the beginning of the course.

total grade. Users received correct/incorrect feedback on each input field after hitting

the check button for each attempt, and were able to view the correct answer after

either using all their attempts or correctly answering the question.

Twelve weeks of instruction were available between the pre-test and the post-test.

The pre-test was hidden from students after the second week of instruction, and was

not visible to students after that time.

4.3 Results and Discussion

A total of 516 users attempted the 8.MReVx2O14 post-test; not all users attempted

all problems on the post-test. On average, users attempted 85 % of problems on the

post-test. Each user was assigned to either version A or version B of the pre-test, but

not all of these 516 users completed the pre-test.

To avoid score saturation, we use first-attempt-correct rate to quantify perfor-

mance on the pre- and post-tests. Figure 4-2 shows the mean first-attempt-correct

rates on each pre- and post-test input field for three groups of students:

* Group A (N = 198) includes of users who were assigned to version A of the

pre-test and attempted at least some items on the pre-test
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Figure 4-2: Pre-test scores for groups A and B, and post-test scores for groups A, B,

and N. Error bars show one standard error in the mean.

Table 4.1: First-Attempt-Correct Rates by user group and item category for post-test

Group A Group B Group N

item category N mean sd sem N mean sd sem N mean sd sem

pre-test A 165 0.788 0.,26& - 04021 146 ;0.70. .&215 0,02* :05, 0484 Q.427 0.034.

pre-test B 165 0.830 0.239 0.019 151 0.816 0.229 0.019 92 0.715 0.307 0.032

pre-test A, B 112 0.714 0.172 0.016 106 0.06 0.191 0.019 56 0.616 0.235 0,029

unique to post-test 169 0.750 0.245 0.019 146 0.723 0.249 0.021 90 0.656 0.279 0.029
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" Group B: (N = 186) includes of users who were assigned to version B of the

pre-test and attempted at least some items on the pre-test

* Group N: (N = 132) includes of users who were assigned to version A or B of

the pre-test but did not attempt any items on the pre-test.

The performance of each user group (A, B, N) on each of these item category

(seen by A on pre-test, seen by B on pre-test, seen by A and B on pre-test, seen by

neither on pretest) is summarized in Table 4.1. The mean first-attempt-correct rate

for each user group on each item category is calculated on the subset of users that

attempted all items in that particular item category.

The most striking feature of Figure 4-2a is that users who attempted the pre-test

(either group A or B) consistently had higher first-attempt-correct rates on the post-

test than users who did not attempt the pre-test (group N). This is true across all

item categories, including items that were unique to the post-test. This suggests that

the stronger performance of groups A and B is not due to a memory effect whereby

students learned from the pre-test, but rather is due to a self-selection effect where

weaker students in group N chose not to participate in the pre-test.

Because users were assigned randomly to pretest version A or pretest version B,

we expected that groups A and B would perform similarly on post-test items seen

common to both pre-test versions or unique to the post test. We expected that user

group A would have a slight advantage on the set of items unique to pre-test version

A and that group B would have a slight advantage on the set of items unique to

pre-test version B.

In contrast to our expectation, group A had higher mean first-attempt-correct

rates on all item categories. This suggests that students in group A are somewhat

more skilled than students in group B. To determine whether group A had an ad-

vantage on the items that appeared on pre-test version A, we compare the difference

in mean first-attempt correct rates between groups A and B on all item categories,

shown in Table 4.2.

Table 4.2 shows that group A did somewhat better across all item categories on

51



Table 4.2: Difference in post-test first-attempt-correct rates for Groups A and B

post-test first-attempt-correct

item category meanA - meanB semA semB

pre-test A O.M O4gI .023

pre-test B 0.014 0.019 0.019

pre-test A, B O.Of5 %E$6 0:019
unique to post-test 0.027 0.019 0.021

the post-test and that the difference was larger on items they had seen on the pretest.

We take the difference in differences

(mean group A - mean group B ) - (mean group A - mean group B ) = 0.075 (4.1)
pre-test A pre-test A pre-test A,B pre-test A,B

as a measure of A's advantage due to exposure to problems on the pre-test, rather than

do A's apparent higher overall skill. Although this difference in differences is positive,

it is significant only at p = 0.058 (see Appendix B). Thus it seem that, averaged over

all items, transfer from pre-test to post-test did not contribute significantly to group

A's higher score.

However, one item on the post-test, i2, showed an especially large difference in

performance between groups A and B, and is worthy of particular discussion. This

item was seen only by group A on the pre-test and group A performed over three

standard deviations better than group B on this item (Table 4.3). Thus transfer

from pre-test to post-test may have contributed to group A's superior performance

on this particular item, and we suggest that the item's peculiar format may explain

why transfer was observed for this item alone. Item i2 was a "problem-decomposition"

activity in which the user is presented with a complex physics problem and asked

whether the problem is best broken into 1, 2, or 3 subparts. This type of activity

is rare in 8.MReVx2O14: excluding the pre- and post-tests, only two such problem-

decomposition activities appeared in the course1 . Thus, group A would have been

'The homework assignment for Unit 8: Mechanical Energy and Work contained two problem-

decomposition activities.
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exposed to 50 % more items of this format than group B upon entering the post-test.

In contrast, for items of more standard format (e.g., numerical calculation, symbolic,

or multiple choice conceptual) both groups would have been exposed to roughly equal

amounts of such problems throughout the course.

Table 4.3: Post-test performance on Item i2

Group A Group B Difference
N mean sem N mean sem mean sem

181 0.724 0.0333 160 0.538 0.0395 0.186 0.0517

4.4 Conclusions

Our experiment showed little evidence for enhancement of post-test scores due to

students seeing the same items on the pre-test, even though the pre-test gave cor-

rect/incorrect feedback and provided students with the correct answer after finishing

the item. This bodes well for those who plan to use pre-/post-testing to measure

learning in MOOCs where experiment designers may not have complete control over

the platform.
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Appendix A

Brief Description of the Atomic and

Molecular Timing Algorithms

To estimate the amount of time students spend working on each problem in the

8.MReVx2O14 our group analyzes the edX JSON log. Here we give a brief description

of the "atomic" and "molecular" timing algorithms written by Giora Alexandron. The

atomic timing algorithm estimates the amount of time students spend working on a

particular problem without the use of other in-course resources, while the molecu-

lar timing algorithms estimates the amount of time a student spends working on a

problem plus related in-course resources.

A.1 Time interacting with problem ("atomic" time)

The edX log files contain records of several types of events including page and prob-

lem load events, problem check events, and show solution events. One challenge to

measuring the time spent on a particular problem without including related in-course

resources is that edX log files do not record when a user leaves a particular page. A

large approximation used by the atomic timing algorithms is that the user only ever

has a single edX page open at a time. (Users with multiple browser tabs or browser

windows open on 8.MReVx2014 clearly violate this approximation.) Under this ap-

proximation, whenever the user enters a new page, the user has stopped viewing the
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previous page; both timing algorithms begin by adding artificial [LEAVE PAGE] events

to the log files.

The "atomic" timing algorithm first breaks the log file into disjoint time intervals.

" Start event: Every interval begins at at [problem get] or [problem check]

event.

" End event: Once an interval has started, the interval ends at the next [LEAVE

PAGE] or [problem-check] event.

It is assumed that during this interval, the user is working on some problem on the

vertical containing the problem that triggered the start event. The time interval is

then attributed to the next problem that has a [problem-check] event. This is

illustrated in Figure A-1

Additionally, very short and very long intervals are discarded. If an interval has

length less than 10 seconds, we assume the user is navigating edX rather than working

on a problem. If an interval is greater than 30 minutes in length, it is assumed the

user is not actively engaged with the content. Such intervals are assigned a duration

of 0 s instead of their actual length.

timestaqp event type resource

We infer that the user is working
on a problem, but has decided
not to check it. The elapsed time
is attnbted to the next check
event. (problem -a)

this interval is ignored by the
atomic timing algorithm

time attributed to problem-a

time attributed to problem-a
time attributed to problermb

ti

t2

t3
t4

t5

t6

t8

t9
tlo
til

t12
t13

[goto page]

[problem ge t]
[problem get]

[LEAVE PAGE]

[goto page]

[LEAVE PAGE]
[go to page]

[problem-ge t]
[problem get]

[problem check]

[problem check]

[problemcheck]

[vertical_1_wi thproblems]

[problem a]

[verticali1 problem part b]

[vertical 1_withproblem]

[vertical_2_with _html]

[vertical 2 with html]
[vertical1 with problem]

[problem_a]

[problem_b]

[problem a]

[problem a]

[problem_a]

Figure A-1: Annotated schematic
rithm.

of a log file analyzed by the atomic timing algo-
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A.2 Total time on problem and related resources

("molecular" time)

The "molecular" timing algorithm attempts to estimate the total time spent on a

particular problem and related resources by taking the time difference between the

last [problem-check] and first [problem-get] events for a particular problem. Any

period of user activity between these two events that lasts less than 10 seconds is

ignored (assumed to correspond to site navigation) and any period of user activity

longer than 30 minutes is also ignored.

Because the [problem-check] events for all problems on a given vertical occur

simultaneously, the molecular timing algorithm does not work well if multiple un-

related problems occur on a single vertical. For this reason, most verticals within

8.MReVx2O14 contain only one edX problem node or multiple problem nodes that

are sub-parts of the same physics problem, and hence time spent on part is reasonably

attributed as time "related to" another part.
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Appendix B

Calculating Advantage Due to

Exposure on Pre-test

To quantify the advantage gained by group A on the post-test problems that appeared

on version A of the pre-test, we compare the difference in first-attempt-correct rates

between groups A and B on the item categories "seen by A (on pre-test)" and "seen

by A and B (on pre-test)". Let

0 XA onA denote the first-attempt-correct rate averaged over users in group A

and over the post-test items that were seen by group A and not by B on the

pre-test.

* XB onA denote the first-attempt-correct rate averaged over users in group B and

over the post-test items that were seen by group A and not by B on the pre-test.

* XA on Com denote the first-attempt-correct rate averaged over users in group A

and over the post-test items that were seen by both groups on the pre-test.

* XB on Corn denote the first-attempt-correct rate averaged over users in group

group B and over the post-test items that were seen by both groups on the

pre-test.

We assume that each of these random variables is independent from one another and

that they are normally distributed due to the averages being taken over relatively
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large sample sizes (at least 100 users in each case; see Table 4.2.

We take the difference XAon A - XB on A as measuring two effects:

1. The advantage of group A on items A due to the difference in skill between

groups A and B

2. The advantage of group A on items A due to expose to these items on the

pre-test

and take XA on Corn - XB on Com as a measure of group A's advantage due to difference

in skill alone. To isolate the effect of exposure to items on the pre-test, we consider

the difference

XA's pre-test advantage = (XA on A - XB on A) - (XA on Corn - XB on Corn) - (B.1)

which is also normally distributed. We estimate the mean and variance of XA's pre-test advantage

using the data in Table B.1:

XA's pre-test advantage = (YA on A - XB on A) - (XA on Corn X XB on Corn) = 0.075 (B.2)

sA's pre-test advantage A on A + SB on A + SA on Corn B on Corn =0.040. (B.3)

We wish to test the hypothesis that exposure to items on the pre-test affects post-test

performance on the same items. To that end, we construct the the t-statistic [22]

XA's pre-test advantage - 1.89. (B.4)
SA's pre-test advantage

Under the null hypothesis (PA's pre-test advantage = 0), a t-statistic at at least this large

in magnitude occurs with probability

P lul>1.89 \;e-U2/2du = 0.058, (B.5)

where we used the standard normal distribution to approximation the t distribution

due to our fairly large sample size.
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Table B.1: First-Attempt-Correct Rates by user group and item category for post-test

Group A Group B

item category N mean sd sem N mean sd sem

pr tt A 165 0.788 0.268 0.021 146 O.7Q5 0.275 Q.023
pre-test B 165 0.830 0.239 0.019 151 0.816 0.229 0.019

pre-test A, B 112 0.714 0.172 0'.016 196 0.706 0.191 0.019
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