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Abstract

Through a combination of experiments and modeling, I explored how inactivation of
antibiotics by antibiotic-resistant bacteria affects the evolution of antibiotic resistance
in two simple microbial communities. First, I examined the interaction between a re-
sistant strain and a sensitive strain of the bacteria Escherichia coli in the presence
of the -lactam antibiotic ampicillin. Second, I investigated whether two strains of
Escherichia coli can form a cross-protection mutualism in a multi-drug environment
containing the antibiotics ampicillin and chloramphenicol. In both experimental sys-
tems, I found that inactivation of antibiotics by resistant bacteria is an important
cooperative behavior which enables microbes to help each other survive in otherwise
lethal antibiotic concentrations. The rich dynamical behaviors that arise even in these
simple systems highlight the inherent challenge in deciphering the workings of more
complex microbial communities.
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Chapter 1

Introduction

The discovery of penicillin in 1928 marked a significant advancement in humanity's

fight against disease. However, shortly after the discovery of antibiotics, researchers

were already concerned about the ability of microbes to adapt and develop antibiotic

resistance. It is not clear whether anyone could have anticipated just how fast this

adaptation would occur. Indeed, just a few years after penicillin was made com-

mercially available, bacterial infections resistant to treatment with penicillin were

observed in patients 11, 2]. Ever since, humanity has been locked in an arms race

against bacteria, striving to find new antibiotics as older antibiotics lose their po-

tency.

The emergence of antibiotic resistance in bacteria has become a significant health

concern 12, 3]. Many pathogenic bacteria that were once susceptible to antibiotic

treatment have since acquired genes for antibiotic resistance. In the U.S., at least 2

million people get infected each year by bacteria that are resistant to one or more

antibiotics [4]. These infections directly result in the death of at least 23,000 people [4].

Moreover, as a result of tougher drug regulations and high costs associated with

developing new antibiotics, the rate at which new antibiotics have been brought into

the market has been declining steadily 12, 5]. On the whole, humanity's arsenal of

effective treatments against bacterial infections seems to be diminishing.
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1.1 Mechanisms of Antibiotic Resistance

Significant effort has been devoted to understanding how bacteria become resistant.

The efficacy of many antibiotics depends on their ability to bind either the cell wall

or a target inside the cell, and disrupt the normal operations of the cell. Sensitive

bacteria can become resistant by "finding" a way of preventing the drug from binding

to its target.

Researchers have uncovered an abundance of mutations that enable the bacteria

to achieve this goal. Some mutations can modify the permeability of the cell wall,

preventing the antibiotic from ever entering the cell 16, 7]. Other mutations can

modify the structure of the target site, preventing the antibiotic from binding to the

target even if the antibiotic manages to get inside the cell [8, 9]. Yet another strategy

involves creating more of the target - in essence, creating "back up" options for the

cell 11, 10]. Some of these mutations involve no more than a few nucleotide changes

in the genome, making such mutations relatively easy to acquire.

However, bacteria have been evolving in the presence of antibiotics for millions

of years, and have developed a much richer arsenal of resistance mechanisms than

just the "passive" mechanisms of antibiotic resistance mentioned above 111, 121. Two

examples of such mechanisms include efflux pumps and antibiotic-resistance enzymes;

both mechanisms are extremely common and clinically relevant [13-15]. Bacteria can

use efflux pumps to simply pump the antibiotic outside of the cell [16J. Enzymes that

grant resistance to antibiotics usually work by modifying the antibiotic, rendering

the antibiotic dysfunctional 113, 14]. However, antibiotic-resistance enzymes can also

restructure the target of the antibiotic, preventing the antibiotic from binding to this

target 112, 17].

One would rightly suspect that such elaborate mechanisms are too complicated

to evolve de-novo on a short notice. Unfortunately, it turns out that there is no

need to evolve them de-novo. Amongst the many important discoveries in the field

of microbial genetics was the discovery of horizontal gene transfer - that genes could

be transmitted between unrelated bacteria. Bacteria can pick up DNA from their
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surroundings on their own or acquire DNA from viruses or extra-chromosomal pieces

of DNA called plasmids that are exchanged between cells [18, 191. Therefore, as long

as the genes encoding the necessary mechanisms are present nearby, sensitive bacteria

can gain access to the genes via horizontal gene transfer. An important implication

of this discovery is that human pathogens can use the soil as a large reservoir of

antibiotic resistance genes 120-231.

As our understanding of antibiotic resistance advances, increasingly intricate mech-

anisms of antibiotic resistance are being discovered. Only relatively recently did we

understand that genetically identical cells can exhibit large variation in their behav-

ior 124]. Such heterogeneous behavior has been implicated in the ability of bacterial

populations sensitive to antibiotics to survive antibiotic treatment 125]. What hap-

pens is that a small fraction of the cells in a bacterial population randomly chooses

to enter a dormant state. In this dormant state, the cells do not attempt to divide,

which makes them less vulnerable to environmental threats. Thus, upon exposure to

antibiotics, such cells are more likely to survive antibiotic treatment than the rest of

the population. Eventually these dormant cells resume growth, but by that time the

antibiotic may be already gone. The failure of antibiotic treatment in this scenario

is particularly interesting because none of the cells is genetically resistant to antibi-

otics. Specifically, dormant cells that "wake up" and resume growth are as sensitive

to antibiotics as they were before entering the dormant state.

1.2 The Evolution of Antibiotic Resistance

Tremendous progress was made in understanding how various processes contribute to

the evolution of resistance. Loosely speaking, evolution is the set of processes that

determine which new variants (mutants) can appear and the processes that determine

how the frequency of different variants changes with time. Thus, one avenue of

research has been concerned with understanding the availability of mutations that

increase the level of resistance while a complementary avenue of research has been

focused on understanding the spread of resistance variants.
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In studying which mutations were available to bacteria, researchers found that

the set of available mutations seemed to be context specific. For example, because

mutations can interact with one another constructively and destructively, the order in

which mutations are acquired can affect the likelihood of particular paths to increased

resistance 126, 27]. Overall, the starting genotype, the environment and the strength

of the selective pressure exerted by antibiotics can all affect the likelihood of different

evolutionary paths to increased resistance 128-331.

Many clinical professionals worry that the misuse of antibiotics has increased the

rate at which resistance evolves 13, 34]. For example, many patients stop taking

antibiotics once the symptoms of the infections disappear. By terminating the treat-

ment too early, the antibiotics may fail to properly eradicate the infection, requiring

additional treatment later. The prolonged use of antibiotics could provide a longer

window of time during which antibiotic resistance could evolve. Hence, a major line

of research has been focused on understanding which antibiotics should be prescribed,

for how long those antibiotics should be prescribed for, and how to get patients to

better comply with treatment procedures [35].

In many studies, an implicit working assumption is that once a resistant mutant

emerges, this mutant quickly increases in abundance until it dominates the entire

bacterial population. This assumption is reasonable in many situations because the

selective pressures exerted by antibiotics are very strong. Therefore, without any

additional information, one would rightly expect that only the fittest (most resistant)

bacteria would survive antibiotic treatment.

However, evidence from a multitude of microbial studies suggests that microbes

live in communities [361. The aggregation of bacteria in groups allows bacteria to help

each other in unfavorable environments. One particularly important group behavior

is the formation of bacterial communities called bio-fi1ms. Bio-iimis are spatially

structured communities in which the cells "stick" to each other 137-391. Because bio-

films form on and stick to surfaces, they are a particular nuisance in bio-medical

instrumentation. Antibiotics often fail to penetrate the core of bio-films, so cells

at the core are exceedingly likely to survive antibiotic treatment whether they are
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resistant or sensitive. As a result, bio-films are responsible for many cases of chronic

infections, where treatment by antibiotics helps to alleviate the infections, but fails

to remove the bio-film that causes them.

Bio-films are not the only cooperative behavior in which microbes engage. The

scientific community has come to appreciate a variety of mechanisms by which bac-

teria collectively "resist" antibiotics [40, 41]. A simple example of another collective

behavior involves the deactivation of antibiotics by resistant bacteria. Bacterial cul-

tures that contain more cells can clear antibiotics quickly and resume growth faster.

In the medical community, this effect is referred to as the inoculum effect, where in-

fections composed of more cells can withstand higher antibiotic concentrations. The

inoculum effect can be a problem when treating infections using #-lactam antibi-

otics 142]. Collective behaviors in bacteria range from the aforementioned biofilms

to coordinated group responses mediated by the exchange of signaling molecules for

communication 140, 41, 43].

The ability of bacteria to behave collectively is predicated on the presence of pos-

itive interactions between microbes. Positive interactions are interactions in which

one microbe helps to increase the fitness of another microbe. Such interactions may

help relatively unfit microbes to survive antibiotic treatment. Hence, these interac-

tions may have a significant role in shaping microbial communities in the presence of

antibiotics.

The study of positive interactions has long fascinated researchers. These inter-

actions are fundamental in many complex systems, ranging from the organization of

human societies to the evolution of multi-cellular life [44]. A long lasting debate in

evolutionary biology has been concerned with how cooperative behaviors evolve and

persist in populations. Because cooperative behaviors are amenable to exploitation

by cheaters, it was not immediately clear which factors could maintain cooperative

behaviors. The cumulative effort of many studies has resulted in tremendous progress

in understanding these factors in general terms [451. However, these factors must be

worked out in any specific system if one needs to understand its behavior.

A common mechanism of antibiotic resistance in bacteria involves the production
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of enzymes that modify and deactivate antibiotics 113, 14]. Because resistant cells

clear the antibiotic from the environment, they may be able to allow sensitive cells

to survive in otherwise lethal concentrations 146-48]. Although this is a common

mechanism of resistance, the question of how it might affect the evolution of antibiotic

resistance has received little attention.

In this thesis, we will explore how inactivation of antibiotics by resistant cells

shapes the dynamics of simple microbial communities growing in the presence of an-

tibiotics. The thesis is composed of two experimental case studies. In Chapter 2, we

examine the interaction between a resistant strain and a sensitive strain of the bacte-

ria Escherichia coli in the presence of the -lactam antibiotic ampicillin. In Chapter

3, we investigate whether two strains of resistant bacteria can form a cross-protection

mutualism in a multi-drug environment containing the antibiotics ampicillin and chlo-

ramphenicol. In both studies, we find that inactivation of antibiotics by resistant cells

is an important interaction, enabling different bacterial strains to coexist and survive

in otherwise lethal antibiotic concentrations. The rich dynamical behaviors that arise

even in these simple systems highlight the inherent challenge in deciphering the work-

ings of more complex microbial communities. We expect that our results may help

provide insight into the evolution of antibiotic resistance and perhaps into how an-

tibiotic resistance spreads during the course of antibiotic treatment.
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Chapter 2

Bacterial Cheating Drives the

Population Dynamics of Cooperative

Antibiotic Resistance Plasmids

2.1 Overview

Inactivation of #-lactam antibiotics by resistant bacteria is a "cooperative" behavior

that may allow sensitive bacteria to survive antibiotic treatment. However, the fac-

tors that determine the fraction of resistant cells in the bacterial population remain

unclear, indicating a fundamental gap in our understanding of how antibiotic resis-

tance evolves. Here, we experimentally track the spread of a plasmid that encodes a

#-lactamase enzyme through the bacterial population. We find that independent of

the initial fraction of resistant cells, the population settles to an equilibrium fraction

proportional to the antibiotic concentration divided by the cell density. A simple

model explains this behavior, successfully predicting a data collapse over two orders

of magnitude in antibiotic concentration. This model also successfully predicts that

adding a commonly used -lactamase inhibitor will lead to the spread of resistance,

highlighting the need to incorporate social dynamics into the study of antibiotic re-

sistance.
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2.2 Introduction

A frequent mechanism of antibiotic resistance involves the production of an enzyme

that inactivates the antibiotic 113, 14]. The acquisition of such an enzyme through a

plasmid often imposes a metabolic cost on the individual cell 149-511; however, since

resistant cells inactivate the antibiotic, reducing its extracellular concentration, they

help protect the entire bacterial population [52, 53]. Hence, antibiotic inactivation can

be viewed as a cooperative behavior, suggesting that sensitive "cheater" bacteria that

do not help to break down the antibiotic may be able to survive antibiotic treatment

when in the presence of resistant cells.

Previous studies have provided valuable insight into the evolutionary processes

that govern the spread of antibiotic resistance 13, 26, 30, 31, 34]. However, despite

the clinical importance of antibiotic resistance phenotypes, there has been a relative

dearth of quantitative analysis of cooperative bacterial growth in the presence of an-

tibiotics. Many microbiologists have observed the presence of "satellite colonies" sur-

rounding a resistant colony on an agar plate containing the O-lactam ampicillin. The

presence of satellite colonies, which are composed of cells that are in principle unable

to grow in ampicillin, is evidence of the extremely cooperative nature of ampicillin re-

sistance. Indeed, recent experiments have detected coexistence between resistant and

sensitive cells using a resistance enzyme that was genetically modified to inactivate

the antibiotic outside the cell [46, 54]. Furthermore, it is known in the clinic that

bacteria carrying even wild-type enzymes may provide protection to pathogenic but

otherwise sensitive bacteria [52, 55, 56]. The ability of sensitive bacteria to survive

antibiotic treatment suggests that the spread of plasmids that encode cooperative

antibiotic resistance genes should exhibit non-trivial population dynamics.
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2.3 Results

2.3.1 Population dynamics of antibiotic resistance plasmids

To probe the population dynamics of such plasmids, we co-cultured a sensitive strain

of E. coli bacteria with an isogenic strain containing an additional plasmid encoding

a -lactamase enzyme. The enzyme hydrolytically inactivates the antibiotic 157],

providing high-level resistance against ampicillin. In our experiments, the bacterial

culture was grown to saturation over 23 hours in the presence of ampicillin. The

saturated culture was then diluted (initially by 100x) into fresh media containing the

same initial antibiotic concentration, serving as the starting culture for the following

day. Using flow cytometry, we were able to track how the fraction of resistant cells

changed over time (Materials and Methods, Fig. B-1,B-2).

We found that in the presence of resistant bacteria, sensitive bacteria survived and

even thrived at a clinically relevant 1581 antibiotic concentration of 100 pg/mL, which

is fifty-fold larger than their minimum inhibitory concentration (MIC) (Fig. 2-1A,

Fig. B-3). A bacterial population with a high fraction of resistant cells inactivated

the antibiotic quickly, allowing its sensitive cells to increase in frequency. Over time,

the resistant fraction decreased until finally settling to a value of ~0.25. To test

whether this fraction corresponded to an equilibrium fraction, we started a culture

at a fraction below the supposed equilibrium. One might have expected the resistant

fraction to gradually converge to the equilibrium value. Instead, the resistant fraction

initially overshot the equilibrium, jumping to -0.95, and only then proceeded to decay

to the equilibrium. The resistant fraction at the end of the day therefore depends

non-monotonically on the resistant fraction at the beginning of the day.

2.3.2 Using difference equation maps to study population dy-

namics

Since the final cell density after 23 hours of growth was approximately constant regard-

less of the starting conditions (Fig. B-4,B-5,B-6), the only parameter that changed
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from day-to-day was the fraction of resistant cells. To examine how the final resistant

fraction depended on the initial resistant fraction on a given day, we used the time

course data (Fig. 2-1A) to generate a "difference equation" map (Fig. 2-1) relating

the fraction of resistant cells at the end and beginning of each day. As expected, the

difference equation is non-monotonic as a result of the "overshoot" discussed previ-

ously, and the equilibrium fraction can be obtained by finding where the difference

equation map crosses the 45-degree line. In principle, if the underlying difference

equation is known, one can estimate the dynamics of the population over time by

repeated application of the difference equation (or by the process of cobwebbing il-

lustrated in Fig. 2-1).

In an attempt to map the difference equation using data from a single day (instead

of the eight-day time-course used in Fig. 2-1A, B), we started cultures at a range of

different initial resistant fractions and measured the resulting final resistant fractions

after a single day of growth (Fig. 2-1C). Such maps obtained over a single day of

growth recapitulated the dynamics observed over multiple days, but with a slight

overestimate of the equilibrium resistant fraction (Fig. 2-1B, Fig. B-7). As might be

expected, cultures grown at higher antibiotic concentrations had a larger equilibrium

fraction of resistant cells (Fig. 2-1C). However, the difference equations revealed

thiat over a broad range of conditions, the sensitive cells could invade when present

at low frequency. Starting with a resistant fraction below the equilibrium leads to

an initial overshoot in the fraction of resistant cells in the population. After the

overshoot, the resistant fraction proceeds to evolve to the equilibrium fraction, which

is independent of the initial composition of the population. The resistant cells are not

driven extinct by the sensitive "cheater" cells because #-lactamase is largely contained

within the periplasmic space of the resistant cells [53, 59, 60], thereby giving them

some preferential access to e 'Deneits of' Lheir "cooperative" behavior [611. Since

both resistant and sensitive cells can invade the population when present at low

frequency, we observe coexistence of the two strains even in our well-mixed liquid

cultures 161-631. This coexistence between "cooperators" and "cheaters" is similar

to what is observed when individuals are playing the cooperative "snowdrift" game
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161], although it is important to note that our experimentally observed overshoot in

resistant fraction over time (Fig. 2-1) indicates that the interactions between different

cell types here is much richer than is assumed in the standard models in game theory.
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Figure 2-1: In the presence of resistant cells, sensitive cells can survive at
otherwise lethal antibiotic concentrations. (A) Experimental time traces show-
ing the evolutionary dynamics between sensitive E. coli and an isogenic strain

that is resistant as the result of a plasmid containing a /-lactamase gene. A
single resistant and a single sensitive colony were used to create 3 cultures with

a different initial fraction of resistant cells. These 3 cultures were then grown

for one day in the absence of ampicillin to make sure that resistant and sensi-
tive cells experienced the same growth conditions (see Materials and Methods).

Then, every 23 hours, the fraction of resistant cells was measured using flow
cytometry, and the cultures were diluted by a factor of 100x into fresh media

containing 100 pg/mL ampicillin. Each data point represents a single flow cy-
tometry measurement. (B) The orange time trace that starts at 10that shows

how the resistant fraction on day n+1 depends on the fraction on day n. The
light orange line is an estimation of the difference equation. A simple trick to
estimate the time dynamics with a difference equation is to use cobwebbing

(dark orange lines), in which the daily dynamics are obtained by bouncing back
and forth between the data line and the dashed diagonal line. (C) For each
antibiotic concentration (indicated adjacent to each curve), a difference equa-
tion map was obtained experimentally by starting populations at 24 different
initial fractions and measuring the final fraction after 23 hours of growth. The
intersection of a given difference equation map with the diagonal line represents
the equilibrium fraction for that particular condition.
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2.3.3 A simple model captures the population dynamics

To better understand the population dynamics, we developed a simple model that

describes the growth of the bacteria in the presence of antibiotics (Fig. 2-2A, B, Fig.

B-8). For the range of antibiotic concentrations we probed, the resistant cells were

essentially unaffected and grew at a constant rate of yR (Fig. B-8, B-9B, B-10). We

assumed that sensitive cells grow at a rate ys > -yR for antibiotic concentrations below

their MIC, but die at a rate -yD for higher concentrations (Fig. B-3,B-8,B-9). Plating

experiments showed that, in addition to cell death, we should incorporate a short lag

phase that follows after inoculation of the bacteria into fresh media, during which

bacteria neither divide nor die (Fig. B-9). We modeled antibiotic degradation phe-

nomenologically using Michaelis-Menten kinetics with a maximum rate per cell Vmax

and an effective Michaelis constant Km (A). While this model clearly neglects many

aspects of bacterial growth in antibiotics, it successfully captures the key features of

the dynamics (Fig. 2-iC, Fig. 2-2C) and predicts conditions that enable coexistence

between resistant and sensitive cells (Fig. 2-2D).
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Figure 2-2: A simple model describes the population dynamics of a cooper-
ative antibiotic resistance plasmid in the /3-lactam antibiotic ampicillin. (A)
Growth rates of resistant (blue) and sensitive (red) bacteria as a function of

antibiotic concentration. Free of the metabolic cost associated with resistance,
sensitive cells grow faster than resistant cells ('7s > 7y2) at antibiotic concen-

trations below the MIC of the sensitive bacteria. Above the MIC, sensitive

cells die at a rate of 7YD- (B) The population dynamics within a single com-

petition cycle (one day). During the lag phase (t < tiag), neither cell type
divides nor dies, but the antibiotic is constantly hydrolyzed by resistant cells.

After the lag phase, each sub-population grows at a rate that depends on the

extracellular antibiotic concentration. At time Tbs, the extracellular antibiotic

concentration drops below the MIC of the sensitive cells. Cell growth ceases
when the total population density reaches saturation. Inset: The time trace

of the resistant fraction within a single day. (C) The model gives rise to dif-

ference equations that resemble experimental data (Fig. 2-iC, Fig. 2-3A, B).
(D) The equilibrium resistant fraction predicted by our model as a function

of the antibiotic concentration and the initial cell density. According to the

model, coexistence between resistant and sensitive cells is possible at antibiotic

concentrations above the MIC of sensitive cells.

26



We obtained an exact analytic solution of this model that describes the dependence

of the equilibrium resistant fraction, fR, on the initial antibiotic concentration, Aj,

and initial cell density, Ni. The model predicts that the equilibrium fraction scales

in the following manner:

Ai + Km ln(Ai/MIC) - MIC Ai>KmMIC Ai
VmaxNi Vmax Ni

This relationship is surprisingly insensitive to many parameters, including the

length of the lag phase, rate of cell death, and cost associated with resistance (A).

In particular, our analytic solution of the model predicts that the resistant fraction

at equilibrium increases approximately linearly with the antibiotic concentration, a

prediction borne out in experimental difference maps obtained at multiple antibiotic

concentrations (Fig. 2-3A, B, C). Moreover, the model predicts that the equilib-

rium fraction is inversely proportional to the starting cell density. This prediction

was experimentally confirmed by measuring the difference equations at four differ-

ent starting cell densities. In each case, the equilibrium resistant fraction increases

linearly with antibiotic concentration, but with slopes that decrease with increasing

initial cell density (Fig. 2-3A, B, C). We therefore find a surprising simplicity to the

population dynamics of the antibiotic resistance plasmid in the population, despite

the biological complexity of the interaction between the cells and the antibiotic.

In addition to providing significant insight into the population dynamics, the

model can quantitatively describe the experimental data. To acquire realistic param-

eters for the model, we measured the growth rate of resistant bacteria (_YR=1.1/hr,

Fig. B-9) and the relative growth rate of sensitive bacteria (Ys/7R=1.15, Fig. B-11).

Together these allowed us to deduce the overall metabolic cost of carrying the plasmid

(7s - 7R=~0.17/hr), which includes the cost of plasmid maintenance, of expressing

the -lactamase enzyme, and of expressing a red-fluorescent protein used for tracking

the resistant fraction (Fig. B-1). Control experiments using another plasmid that did

not express a fluorescent protein exhibited similar population dynamics (Fig. B-12).

We proceeded to measure the death rate of sensitive bacteria in the presence of the
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antibiotic (2.8/hr, Fig. B-9) and the lag time before cell growth/death (1 hr, Fig.

B-9).

Using these experimentally measured parameters, we then fit our 30 measured

equilibrium fractions (in Fig. 2-3C) to obtain estimates of MIC = 1.1 pg/mL, Vma,

= 106 molecules / (CFU-sec), and Km = 6.7 pg/mL. This MIC is slightly lower than

our measured value (-2 pg/mL, Fig. B-3) because antibiotic concentrations below

the measured MIC already partially inhibit the growth of sensitive bacteria (Fig. B-

3). In addition, our fitted value for the maximum rate of hydrolysis per cell Vmax

is reasonable since a single enzyme can hydrolyze as many as ~ 103 molecules per

second [601. Although the estimate of Km agrees with literature values (from 4.9

to 26.5 pg/mL [64-66]), we note that the KM in our model is a phenomenological

parameter because antibiotic hydrolysis occurs both inside and outside the cells [59,

651. The resistant fraction at equilibrium in our model increases linearly with the

antibiotic concentration for A > Km, but deviates slightly from linearity for A < KM

due to the Michaelis-Menten kinetics of antibiotic degradation (Fig. 2-3C). This

simple model not only captures the behavior of the equilibrium fractions, but also

successfully predicts the experimental difference equations using the same parameter

values (Fig. 2-3A, B, Fig. B-13).

Another way to think about the scaling predicted by the model is that, at equi-

librium, the number of resistant cells is proportional to the antibiotic concentration

(NRi - fA.Ni ~ Ai). Indeed, a plot of the equilibrium density of resistant cells against

the antibiotic concentration revealed a striking collapse of the data extending over

two orders of magnitude in the antibiotic concentration (Fig. 2-3D). Intuitively, more

resistant cells would be required to deactivate larger amounts of the antibiotic within

a fixed period of time. Non-intuitively, the model predicts that the time necessary

for a bacterial population to saturate in the presence of the antibiotic is minimized

at a resistant fraction that corresponds neither to the equilibrium fraction nor to a

fully resistant population (Fig. B-14). Given the similarity between our experimental

difference equations and the well-known "logistic equation" from theoretical ecology

[671, we used our model to characterize when the equilibrium fraction is expected
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to become unstable, leading to oscillations around the equilibrium. We found that

the equilibrium fractions should become unstable as the antibiotic concentration de-

creases; however, the size of the oscillations does not become large enough to observe

experimentally (Fig. B-15).
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Figure 2-3: Experimental difference equations confirm model predictions re-
garding the equilibria and dynamics of resistant and sensitive bacteria. (A-B)
Experimental difference equations obtained at two dilution factors (100x and

200x) and different antibiotic concentrations. At a given antibiotic concentra-
tion, an increase in the dilution ratio leads to stronger selection for resistance.
Each difference equation plotted in a, b includes data obtained on 3 different
days. Measurement error from flow cytometry was typically smaller than sym-
bol size. (C) The equilibrium fractions as a function of ampicillin concentration
at four different dilution factors (see Fig. B-13 for difference equations). The
relationship is approximately linear for antibiotic concentrations higher than
Km. The equilibrium fractions were extracted from the difference equation
plots by determining the intersection between the difference equations and the
diagonal line (dashed line in (A)). Error bars represent standard error of the
mean (n=3). (D) Plotting the initial density of resistant cells at equilibrium as
a function of antibiotic concentration reveals a data collapse that extends over
two orders of magnitude in the concentration. (A-D) Solid curves show a single
fit of the model to all the experimental data.
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2.3.4 Addition of a -lactamase inhibitor selects for resistance

Given the predictive power of the model, we explored the expected consequences of

adding a O-lactamase inhibitor such as tazobactam, which is used clinically together

with many 0-lactam antibiotics [57, 59, 68]. Tazobactam competitively binds #-
lactamase enzymes [68, 69] and prevents them from hydrolyzing the antibiotic, leading

to an increase in the effective Michaelis constant KM. A sufficiently large increase

in the Michaelis constant (Km) can significantly compromise the ability of resistant

cells to degrade the antibiotic, leading to complete inhibition of bacterial growth (Fig.

B-16). However, if the increase in Km is not sufficiently large, the resistant cells may

survive the treatment, but the larger KM would hinder their ability to protect sensitive

cells against the antibiotic. Specifically, since the equilibrium fraction of resistant cells

is proportional to Km, the model predicts that adding a -lactamase inhibitor will

lead to an increase in the resistant fraction. We have tested this prediction and found

that the addition of tazobactam can indeed result in a completely resistant population

(Fig. 2-4A, Fig. B-17).

Not only does the model provide qualitative insight, it also makes surprisingly

accurate quantitative predictions about the population dynamics that take place in

the presence of the inhibitor. Although the actual mechanism of inhibition is more

complicated [571, we modeled tazobactam as a competitive inhibitor, which increases

the Michaelis constant KM to Keff = KM - (1 + [I]/K1 ), where [I] and K, are the

inhibitor concentration and dissociation constant, respectively. Since the equilibrium

fraction increases linearly with KM, the model predicts that it should also increase

linearly with the inhibitor concentration [I]. To probe this predicted dependence of

the equilibrium fraction on the inhibitor concentration, we measured the equilibrium

fractions from maps of difference equations obtained at varying tazobactam concen-

trations (Fig. 2-4B, C). We successfully fit the new 31 equilibrium fractions (Fig.

2-4C) using one additional free parameter KI, confirming the predicted linear de-

pendence on the inhibitor concentration. The K, from the fit (4.6 ng/mL) was well

within literature values (3 to 11.4 ng/mL [69-71]). Remarkably, using the value of
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Figure 2-4: As predicted by the model, addition of the -lactamase inhibitor

tazobactam increases the fraction of resistant cells in the population. (A) Sen-

sitive E. coli cells increase in frequency when grown in 20 pg/mL ampicillin in

the absence of tazobactam; however, the addition of the inhibitor at a concen-

tration of 1000 ng/mL results in a completely resistant bacterial population.

Cultures were diluted daily by a factor of 100x into fresh media containing 20

pg/mL ampicillin. Error bars represent standard error of the mean of 4 different

bacterial cultures. (B) Experimental difference equation maps for 4 different

concentrations of the inhibitor tazobactam (in ng/mL) at a background of 20

pg/mL ampicillin and dilution factor of 100x (see Fig. B-17 for more difference

equations). Each difference equation map contains data obtained on 3 different

days. (C) As predicted by the model, the equilibrium fractions depend linearly

on the concentration of the inhibitor tazobactam with a slope that depends on

the ampicillin concentration. The equilibrium fractions were extracted from the

difference equation plots by determining the intersection between the difference

equations and the diagonal line (dashed line in (A)). Error bars represent stan-

dard error of the mean (n=3). (B-C) Solid curves show a fit of the model to all

the experimental data with a single free parameter of K, = 4.6 ng/mL (other

parameters held fixed).

K, obtained from the fits to the equilibrium fractions successfully recapitulated the

dynamics across the entire range of the difference equations (Fig. 2-4B, Fig. B-17).
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To verify that our conclusions were not limited to tazobactam, we tried the 3-

lactamase inhibitor sulbactam, which is often administered together with ampicillin

clinically 158, 68, 69]. We found that at least for our experimental conditions (E.

coli bacteria inoculated at an initial cell density - 10' cells/PL), the addition of

sulbactam can lead to the accelerated spread of resistant bacterial cells in a range of

clinically relevant antibiotic concentrations (Fig. B-18).

2.4 Discussion

We have presented a quantitative analysis of the population dynamics that stem from

the cooperative nature of antibiotic inactivation, and which can lead to coexistence

between sensitive cells and resistant cells. Our analysis was based on two key fea-

tures: (1) the presence of a metabolic cost associated with being resistant, and (2) the

inactivation of the antibiotic by resistant cells. When both features apply, our model

suggests that resistant and sensitive cells may coexist at high concentrations of the

antibiotic, with the fraction of resistant cells approximately proportional to the antibi-

otic concentration divided by the cell density. We found that this simple dependence

on antibiotic concentration and cell density successfully predicts the equilibrium frac-

tion of resistant cells over two orders of magnitude in antibiotic concentration (Fig.

2-3D).

This model not only agrees quantitatively with experimental data, but it also

provides insight into the conditions that enable coexistence between resistant and

sensitive cells. For example, a recent study observed coexistence with a mutated

/-lactamase enzyme that inactivated the antibiotic outside of the cell [54], allowing

resistant cells to efficiently "share" their resistance with the bacterial population to

support coexistence. However, in our study, we were able to observe coexistence

even with a wild-type /3-lactamase enzyme, which is primarily periplasmic [591. To

properly interpret these results, it is important to recognize that the site of antibiotic

inactivation determines the degree of preferential protection offered to resistant cells.

Furthermore, as long as resistant cells are sufficiently protected to be unaffected by
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the antibiotic, only the overall rate of antibiotic inactivation is important in deter-

mining the dynamics between resistant and sensitive cells. Hence, even if antibiotic

inactivation occurs inside the cell, it is still a cooperative behavior that may allow

sensitive cells to survive.

The interplay between initial cell density and antibiotic concentration is often im-

portant in determining growth dynamics in antibiotics [42, 72]. Likewise, our model

suggested that the key parameter in governing the population dynamics was not the

antibiotic concentration, but the ratio between the antibiotic concentration and the

initial cell density. Specifically, we found that at high cell densities, resistant cells

could protect sensitive cells against antibiotic concentration as high as 200 pg/mL

(Fig. 2-3A), which is a hundred-fold higher than the minimum inhibitory concentra-

tion of sensitive cells. Given the cooperative nature of antibiotic inactivation, it is

likely that other ecological factors will be important to consider when attempting to

understand the evolution of antibiotic resistance [73-75].

One might worry that our conclusions may be limited to laboratory strains since

natural strains would be better adapted to plasmids found in the wild. However,

our model and experiments argue that the equilibrium fraction depends only weakly

on the fitness cost of carrying the resistance plasmid (Fig. B-19). Compensatory

mutations that alleviate the cost of resistance [49-51] will increase the time it takes

the population to settle into its equilibrium fraction, but will not significantly change

that fraction. Since our model only uses a few key phenotypic traits to characterize

the outcome of bacterial growth in the antibiotic, it should be broadly applicable in

describing both intra-species [54] and inter-species [46] dynamics.

Within the framework of our model an important qualitative difference between

using a bactericidal versus a bacteriostatic antibiotic is that the overshoot of the

resistant fraction above the equilibrium fraction should only appear when using a

bactericidal antibiotic (Fig. 2-1A, Fig. B-20). The lower the initial resistant fraction

is, the longer it takes for the antibiotic to be inactivated, and the more opportunity

there is for a bactericidal antibiotic to kill the sensitive strain and promote the growth

of the resistant strain.
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Throughout our experiments, we limited ourselves to antibiotic concentrations

which do not affect the growth of resistant cells. However, at high enough concentra-

tions, a bactericidal antibiotic may lead to lysis of resistant cells and the subsequent

release of their beta-lactamase enzymes into the extra-cellular space [761. Since these

enzymes inactivate the antibiotic even faster extracellularly, the death of resistant

cells may further increase the cooperative nature of bacterial growth in the antibiotic

177]. Such a scenario may explain the observed non-monotonic selection for resistance

and difference equation maps that deviate from our model at high concentrations of

the 1 -lactam antibiotic piperacillin (Fig. B-21).

Understanding how the fraction of resistant bacteria changes with time is a central

goal in studying antibiotic resistance. This already difficult task is further complicated

by cooperative behaviors that allow resistant microbes to "share" their resistance with

the rest of the bacterial population. The cooperative nature of antibiotic inactivation

causes the fitness of resistant cells to decrease as their fraction in the bacterial popula-

tion increases (i.e., it leads to negative frequency dependent selection [54], Fig. 2-3A,

B). Overall, this enables coexistence between resistant and sensitive cells, even in the

absence of the spatial structure present in biofilms 178-80], interactions between bac-

teria and antibiotic degradation products [811, bacterial persistence 1821, and indole

production [831. Since antibiotic inactivation is a frequent mechanism of antibiotic

resistance [14], similar population dynamics may appear with other classes of antibi-

otics (e.g., macrolides, aminoglycosides) and with chromosomally encoded enzymes.

However, despite the potential ubiquity of cooperative antibiotic resistance, the social

aspect of antibiotic resistance remains under-appreciated, highlighting the importance

of quantitatively characterizing social interactions to gain a thorough understanding

of the maintenance of phenotypic and genotypic diversity within populations.
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2.5 Materials and Methods

2.5.1 Strains

All strains are derived from Escherichia coli DH5a. The resistant strain contained the

pFPV-mCherry plasmid [84] (also see Addgene plasmid 20956), expressing a TEM-1

,3-lactamase enzyme and an mCherry fluorescent protein. In addition, the resistant

and sensitive strains expressed cerulean and yellow fluorescent protein genes, respec-

tively, under the promoter PiacUV5, and a kanamycin resistant gene, both carried on

the plasmid pZS2501+11 [85, 86] (origin of replication: pSC101). Control experi-

ments in which the cerulean and yellow fluorescent markers were swapped gave nearly

identical difference equation maps (Fig. B-22).

2.5.2 Competition Experiments

All cultures were grown in a shaker at 500 rpm and 37 C. Before the competition

experiments, single colonies of resistant and sensitive strains were grown separately

in 5 mL lysogeny broth (LB) together with antibiotics for selection for 23 hours. The

saturated cultures (corresponding to a density of ~ 107 cells/pL) were diluted by a

factor of lOnx and co-cultured at different fractions in 96 we--ptefonaTnPgLB

and 5 pg/mL of kanamycin for another 23 hours to synchronize the growth state of

both strains (see Fig. B-11). All competition experiments were carried out using syn-

chronized mixed cultures. The cultures were diluted into 96 well-plates containing 5

pg/mL of kanamycin, LB, and appropriate concentrations of ampicillin, tazobactam

and sulbactam, and grown for another 23 hours. In multi-day experiments, cultures

were serially diluted into 96-well plates containing freshly prepared media with appro-

priate concentrations of antibiotics. Control experiments showed that the population

dynamics were similar regardless of whether kanamycin was absent or present at 5

pg/mL (Fig. B-23). In addition, control experiments showed that similar growth

dynamics apply in other -lactam antibiotics (Fig. B-24). Fractions were determined

using flow cytometry on a BD-LSR II and confirmed by plating (Fig. B-1,B-2).
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Chapter 3

Seasonality Gives Rise to Oscillatory

Dynamics in a Bacterial

Cross-Protection Mutualism

3.1 Overview

Understanding how bacteria survive and respond to antibiotic exposure is important

both clinically and ecologically. A common mechanism of antibiotic resistance in-

volves the inactivation of antibiotics by resistant bacteria. Inactivation of antibiotics

is a cooperative behavior, which can allow resistant bacteria to protect sensitive bac-

teria against antibiotics, altering the dynamics of how antibiotic resistance spreads.

However, despite the prevalence of antibiotic inactivation as a mechanism of antibi-

otic resistance, how it affects the population and evolutionary dynamics of microbial

populations remains poorly understood, particularly in the presence of more than one

antibiotic. Here, we investigate whether two Escherichia coli strains can protect each

other in the presence of chloramphenicol and ampicillin. Our experiments reveal that

the two strains can form an effective cross-protection mutualism, helping each other

survive in antibiotic concentrations that inhibit growth of either strain alone. More-

over, we find that "seasonality" (introduced by periodic dilution into fresh media sup-
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plemented with antibiotics) gives rise to large oscillations in the relative abundances

of the two strains, with an oscillation period longer than the period between succes-

sive antibiotic exposures. While the mutualism remains stable in modest antibiotic

concentrations, the mutualism collapses at high antibiotic concentrations due to the

oscillations which destabilize the mutualism. The ability of the two strains to form

a successful cross-protection mutualism without requiring a period of co-evolution

indicates that similar mutualisms may frequently arise in course of the antibiotic

treatment and in natural environments such as the soil.

3.2 Introduction

Mutualisms are reciprocal positive interactions between two species. Because mu-

tualisms are thought to be fundamentally important in many ecosystems, ecologists

have devoted significant time studying their evolution, stability, and ecological func-

tion [87-94]. One of the best studied mutualisms is the one formed between flowering

plants and their pollinators. In this mutualism, the pollinator mediates the repro-

duction of the plant and in return receives nutrition 194]. More broadly, positive

interactions are abundant in nature and can take on many forms: one species can in-

crease the fitness of another by providing nutrition, protection, or transportation [94,

951, and the benefits from a positive interaction may arise immediately or at a later

time.

The desire to understand the basic forces that shape microbial communities has

created a recent surge of interest in microbial mutualisms [96-102]. So far the majority

of studies of microbial mutualisms have focused on cross-feeding [97-99, 103] due to

the apparent abundance of this type of interaction. However, another potentially

frequent microbial interaction involves the protection of one microbe by another [40,

41, 83], which could lead to the formation of cross-protection mutualisms. Protective

interactions are especially interesting in the context of antibiotic resistance, where

they may influence the spread of antibiotic resistance genes [47, 104].

A common mechanism of antibiotic resistance in bacteria involves the production
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of enzymes that modify and deactivate the target antibiotic [13, 14]. Resistant cells

can protect sensitive cells by reducing the concentration of active antibiotics in the

environment, allowing their sensitive neighbors to survive in otherwise lethal con-

centrations [46-48]. Hence it is conceivable that cooperative antibiotic deactivation

could allow a bacterial community composed of multiple resistant bacterial strains

to survive in a multi-drug environment, even if some strains were not individually

resistant to each drug present. In this work, we investigate whether two bacterial

populations can form a cross-protection mutualism in a two-drug environment and

explore the dynamical properties of this mutualism.

3.3 Results

3.3.1 A cross-protection mutualism

To explore the possibility of a microbial cross-protection mutualism, we developed

a model system that consists of two strains of E. coli, each of which is resistant

to a different antibiotic. Each strain produces an enzyme that deactivates one of

the two antibiotics in the environment, thereby potentially allowing the other strain

to survive the presence of the antibiotic. The first strain is ampicillin-resistant as a

result of a plasmid carrying a gene encoding a -lactamase enzyme, which deactivates

ampicillin (Fig. 3-1A). This enzymatic deactivation can take place in the extracellular

medium, thus leading to immediate benefits to the sensitive partner. The second

strain is chloramphenicol-resistant as a result of a plasmid carrying a gene encoding

the chloramphenicol acetyltransferase Type I enzyme, which deactivates the antibiotic

chloramphenicol [105]. Although this enzymatic deactivation occurs inside the cell,

diffusion of chloramphenicol between the media and the interior of resistant cells may

cause the extra-cellular concentration of the antibiotic to decrease enough to allow the

growth of sensitive cells. Given that each strain has the potential to provide at least

partial protection to the other strain, it may be possible that the two strains could

help each other survive in environments containing both antibiotics (Fig. 3-1A).
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To probe the extent to which the partnership between the two strains enables

survival, we propagated the strains together with daily dilutions into fresh media

(Fig. 3-1B, see also Materials and Methods). We found that the co-culture was able to

survive for at least ten days with daily a 100-fold dilutions into fresh media containing

10 pg/ml ampicillin and 11 pg/ml chloramphenicol (Fig. 3-1E, C-1). These antibiotic

concentrations are fourfold larger than the minimum inhibitory concentration (MIC)

of the sensitive strain to each antibiotic, suggesting that survival of the co-culture

relies on each partner of the mutualism protecting the other. Indeed, we found that

neither of the two strains could survive this environment alone (Fig. 3-1C-D). Our

two antibiotic resistant strains therefore form an effective obligatory mutualism that

allows for survival in antibiotic concentrations that are many times higher than those

at which the strains can survive on their own.

An important aspect of the mutualism between these two strains is that the co-

culture survives many days of growth and dilution (Fig. 3-1E, C-1). It would have

been possible for the mutualism to allow the co-culture to grow (and even saturate)

over the first day but for the co-culture not to survive subsequent dilution-growth

cycles. Indeed, we found that our co-culture saturated during the first day of growth

up to even higher antibiotic concentrations but that the population collapsed soon

thereafter (Fig. C-2, C-1). Initial growth of the co-culture therefore does not guaran-

tee that the mutualism is stable: in addition to maintaining a high total population

density, a mutualism requires that the underlying subpopulation dynamics are sus-

tainable.

3.3.2 Seasonality gives rise to strong oscillatory dynamics

Tok exloete Pupulationl dynamuics 01 tMe m.Cutua-1lm, Wt co-culturedJ Our t-Wo stra-ins

in a variety of antibiotic concentrations and measured the population sizes of each

partner strain using a combination of spectrophotometry and flow cytometry. Spec-

trophotometry enabled us to measure the total population size of the co-culture. Flow

cytometry allowed us to measure the relative abundances of each strain because the

antibiotic resistant plasmids also encoded different colored fluorescent proteins (see
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Figure 3-1: Two strains of resistant bacteria can form a mutualism in a multi-
drug environment by protecting each other from antibiotics. (A) In an environ-
ment containing the antibiotics ampicillin and chloramphenicol, a mutualism
might form between bacteria producing a beta-lactamase enzyme (which pro-
tects against ampicillin) and bacteria producing a chloramphenicol acetyltrans-
ferase enzyme (which protects against chloramphenicol). Both resistant genes
are carried on plasmids (see Materials and Methods). (B) In our serial dilu-
tion experiments, we periodically diluted microbial cultures into fresh growth
medium, replenishing the supply of nutrients and antibiotics. To track popu-
lation dynamics, we determined the size of each subpopulation by combining
spectrophotometry measurements of the total culture density together with flow
cytometry measurements of the relative abundances of each subpopulation. (C)
A chloramphenicol resistant mono-culture can survive in high concentrations of
chloramphenicol but cannot survive alone in ampicillin concentrations above 2
pg/ml. (D) Similarly, an ampicillin resistant mono-culture can survive in high
concentrations of ampicillin but cannot survive alone in chloramphenicol con-
centrations above 2.2 pg/ml. (E) A co-culture of the two strains can survive
above the concentrations at which the individual strains survive alone, indicat-
ing that the two populations form an obligatory mutualism. The populations
shown in (C,D,E) were subject to five daily dilution cycles at 10OX.
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Materials and Methods, Fig. C-3). Combining the results of these two measurements,

we calculated the subpopulation sizes.

The population dynamics of the co-culture in the region of obligatory mutualism

revealed remarkable oscillations in the abundances of the two partner strains (Fig.

3-2). These oscillations typically had a period of three days, and the ratio of the frac-

tions spanned four orders of magnitude (Fig. 3-3A). Importantly, these oscillations

occurred with a period (three days) longer than the period of the daily dilution (one

day), meaning that the oscillations are not a trivial consequence of the daily growth-

dilution cycle. We therefore conclude that, in addition to the positive-negative feed-

back loops often found in predator-prey systems, cross-protection mutualisms can

exhibit oscillations in population abundances as well.

To see why this cross-protection mutualism might exhibit oscillations, we should

consider the dynamics of the two bacterial populations and the two antibiotics. Sup-

pose that initially one of the strains is significantly more abundant than the other.

This strain rapidly deactivates its "target" antibiotic, allowing its mutualistic partner

to start growing. A key ingredient driving the oscillations is the inability of the first

strain to start growing until its partner becomes abundant. After reaching a large

population size, the partner strain can deactivate the antibiotic that inhibited the

growth of the first strain, allowing the first strain to finally start growing. However,

at this point, it is too late for the first strain to catch up with its partner which

is far more abundant. Because in each cycle the strain that starts out being more

abundant ends up being less abundant, the mutualism might exhibit period 2 oscilla-

tions. Asymmetries in how the two bacterial populations respond to antibiotics and

deactivate antibiotics can give rise to oscillations with more interesting periods.

A simple mechanistic model incorporating the basic time dynamics of the two

strains and the two antibiotics can indeed yield an obligatory mutualism with period

three oscillations (Fig. C-4). Moreover, this model and the reasoning provided in

the previous paragraph suggest that the oscillations that we observe experimentally

are due to the "seasonality" imposed as a result of our daily dilution (Fig. C-6, C-7,

C-5). In particular, our model predicts that in a continuous culture experiment in
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Figure 3-2: The subpopulation sizes of the two mutualists oscillate over a
broad range of antibiotic concentrations, both in and out of the region where
the mutualism is obligatory. Many of the mutualisms settled into a period-3-like
oscillation, which had a period longer (period 3) than the period between suc-
cessive exposures to antibiotics (period 1). These oscillations were substantial
in magnitude with the relative abundances of the two mutualists changing by
as much as 104-fold. The red region of each subplot represents the size of the
ampicillin resistant subpopulation and the blue region represents the size of the
chloramphenicol resistant subpopulation. In this experiment, the co-cultures
were diluted by a 100-fold every 24 hours into fresh media supplemented with
antibiotics. When subject to a smaller dilution strength (10-fold), the mutual-
ism survived in even larger antibiotic concentrations and the oscillations shifted
to higher antibiotic concentrations (Fig. C-10).
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which the antibiotics are constantly added (and cells constantly removed) there will

be no oscillations in the population abundances (Fig. C-5).

To test this prediction we performed a (pseudo) continuous experiment by diluting

the co-cultures every hour by a small amount (1.2-fold) into fresh medium supple-

mented with ampicillin (10 pg/ml) and chloramphenicol (5.1 pg/ml), mimicking a

chemostat operating at a fixed dilution rate (Fig. 3-3B). We found that with fre-

quent dilution the co-culture was able to form a stable mutualism, with the strain

fractions reaching a stable equilibrium without oscillations. The dilution time and

amount in these experiments was chosen so that the effective "dilution rate" would

be equivalent to that in our batch culture experiments, but a stable equilibrium was

observed even for higher dilution rates (Fig. C-8). Moreover, within the daily di-

lution experiments we could also remove the oscillations by reducing the amount by

which we diluted each day (Fig. C-9, C-10). These experiments confirm that it is

the seasonality of periodic dilutions that is driving the oscillations that we observe in

daily batch culture.

A major question for any oscillations observed in populations is whether the os-

cillations are due to a true limit cycle that has a well-defined amplitude and period.

This is important because the classic Lotka-Volterra model of predator-prey popula-

tions displays oscillations that are neutrally stable and therefore have an amplitude

and period that is determined by the initial conditions [106]. To probe the nature of

the oscillations that we observe in our experiments, we initiated co-cultures at a wide

range of starting fractions in the same antibiotic concentrations (10 pg/ml ampicillin

and 5.1 pg/ml chloramphenicol). Because these populations grew to the carrying

capacity by the end of each cycle, the fraction of the ampicillin resistant subpopula-

tion was sufficient to specify the trajectories. Consistent with our oscillations being

a true limit cycle, we found that a wide range of starting conditions all led to the

same period-3-like oscillation pattern (Fig. 3-4A). Although this oscillation pattern

is suggestive of a period 3 limit cycle, the combination of experimental noise and time

required to converge to the limit cycle make it difficult to distinguish period 3 from

longer periods (e.g., period 6). We note that while in this example all the trajectories
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Figure 3-3: "Seasonality" (imposed by periodic dilution of the co-culture into
fresh media containing antibiotics) gives rise to oscillations in the relative abun-
dances of the two mutualists. (A) Under periodic exposure to antibiotics, the
relative abundances of the two mutualists in the co-culture oscillate by as much
as 10 4-fold. (B) Under (pseudo)-continuous exposure to antibiotics, the relative
abundances of the two mutualists converge to an equilibrium ratio. To transi-
tion from the periodic / seasonal regime (subplot A) to the (pseudo)-continuous
regime (subplot B), we decreased the time between consecutive dilutions from
AT = 24 hrs to AT = 1 hr and the dilution strength from 100-fold to 1.2-fold.
The dilution amount in the (pseudo)-continuous regime was chosen so that the
death rate due to dilution, ln(dilution strength)/AT, would be equivalent be-
tween the two regimes. In these experiments, the amount of antibiotic added in
each cycle was sufficient to raise the concentration of ampicillin and chloram-
phenicol to 10 pg/ml and 5.1 pg/ml, assuming that all the antibiotic from the
previous cycle was fully inactivated.
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ended up oscillating in phase with one another, in general the phase of the oscillations

depends on the starting condition. We observed stable, limit cycle oscillations in a

range of antibiotic concentrations, both in and out of the region where the mutualism

was obligatory (Fig. C-11, C-12).

3.3.3 Oscillations can destabilize the mutualism

At the antibiotic concentrations in which we observe an obligatory mutualism it is

perhaps expected that survival of the co-culture requires starting with sufficiently

large concentrations of each partner in the mutualism. To test this expectation, we

measured trajectories of co-cultures starting at a broad range of initial conditions, in-

cluding extreme relative subpopulation fractions and very low cell densities. We found

that the ability of the mutualism to survive and converge to the limit cycles depends

on its initial subpopulation composition: specifically, when the initial population size

of either mutualist was too small, the mutualism collapsed (Fig. 3-4B).

Based on our measurements of the population dynamics over a broad range of

conditions, we propose a simple time-discrete framework to provide a qualitative ex-

planation of the population dynamics of the mutualism in the presence of periodic

antibiotic exposure (Fig. 3-4C). In this framework, depending on the initial popula-

tion composition, the mutualism either converges to a limit cycle or collapses. The

boundary that separates the set of trajectories that map to each fate is referred to as

the separatrix (we note that since this system displays discrete dynamics the separa-

trix does not have to be well-defined in this way, but we believe that this approach

adequately describes our experimental data).

This framework suggests a simple explanation for why the mutualism might col-

lapse as the eniviroment deteriorates (eitiie via inicreased antibiotic concentrations

or via increased dilution rates): deteriorating the environment could push the limit

cycle oscillation closer to the separatrix, increasing the likelihood that the oscillations

would push the population composition of the mutualism too far to oscillation one

side (Fig. 3-5A).

To test the intuition provided by this model, we proceeded to map the separatrix
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Figure 3-4: In the presence of seasonality, the mutualism has a limit cycle
in which the two mutualists stably coexist while oscillating. (A) Examining
the mutualisms where the total population size remained close to the carrying
capacity, we found that the fraction of the ampicillin resistant subpopulation
settled to a period-3-like oscillation. (Color coding indicates the phase of the
oscillation.) (B) The ability of the mutualism to survive and converge to the
limit cycle depends on its subpopulation composition. When the population
of either mutualist is too small, the mutualism collapses. (C) A discrete-time
framework of an obligatory mutualism featuring a "healthy state" characterized
by a limit cycle and a "collapsed state", with a boundary (called a separatrix)
separating the sets of subpopulation compositions converging to the two states.
(A-B) Experiments were carried out in an environment inside the region of
obligatory mutualism (100x dilution strength, 24 hr dilution cycle, 10 pg/ml
ampicillin, 5.1 pg/ml chloramphenicol). (B-C) Open circles indicate population
compositions that have not converged yet to the limit cycle.
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in relatively modest antibiotic concentrations (Fig. 3-5B, 3-4B, 10 pg/ml ampicillin,

5.1 pg/ml chloramphenicol). We assumed that the current population composition

probabilistically determines its future composition independent of history (i.e., that

the dynamics follow a Markov process). We approximated the separatrix as the

set of population compositions that lead to a 50% probability of reaching a healthy

population size in the next cycle (cutoff at 2 - 108 cells/well). Indeed, failure to reach

a healthy population size frequently led the mutualism to collapse shortly afterwards

(Table C.1). We confirmed that, in this environment, the limit cycle was far away from

the separatrix, consistent with our observation that any mutualism that successfully

converged to the limit cycle was stable for a long time (Fig. 3-4B).

To study how the mutualism collapses, we mapped the separatrix in progressively

harsher environments containing more chloramphenicol. As expected, increasing the

amount of chloramphenicol pushed the limit cycle and separatrix toward each other

(Fig. 3-5B, C-13). Importantly, only one extreme of the limit cycle got close to the

separatrix. Specifically, the collapse was caused by losing too much of the ampicillin

resistant subpopulation, which prevented the mutualism from attaining a high density

in the following cycle (Fig. 3-5B). As might be expected from trajectories ventur-

ing close to the separatrix, as the antibiotic concentration increased the trajectories

became more erratic, gradually losing their characteristic period 3 oscillation (Fig.

3-5B, C-14, C-15).

3.3.4 Evolutionary stability of the mutualism

Up to now we have focused on the ecological stability of the mutualism allowing

survival of the co-culture in a multi-drug environment. It is also important to consider

the evolutionary stability of the mutduaism; i.e., the aUiluty -C the mutai.m t

survive invasion. For example, the base DH5a E. coli strain lacking both plasmids

that encode resistance is sensitive to both antibiotics, and would therefore rely on the

mutualistic strains for survival (Fig. C-16). On the other hand, this strain does not

pay the metabolic cost associated with maintaining the plasmid, giving it a growth

advantage relative to either resistant strain in the absence of antibiotics. As such, it
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Figure 3-5: The mutualism collapses in harsher environments because the os-
cillations skew the ratio between the two mutualists, destabilizing the mutual-
ism. (A) In the time-discrete framework of the obligatory mutualism, increasing
the antibiotic concentration brings the limit cycle and the separatrix closer to
one another. Upon hitting the separatrix, the limit cycle disappears, leading
to the subsequent collapse of the mutualism. (B) In the relatively benign en-
vironment (100x dilution strength, 24 hr dilution cycle, 10 pg/ml ampicillin,
5.1 tg/ml chloramphenicol), the limit cycle was far away from the separatrix,
indicating that in this environment the mutualism should persist indefinitely.
However, in environments with higher chloramphenicol concentrations, the limit
cycle and the separatrix were significantly closer, destabilizing the mutualism
and causing it to collapse. To determine the location of the separatrix, we esti-
mated the probability that a particular initial population composition reached
a healthy population size in the next cycle (cutoff at approximately half the car-
rying capacity or 2. 108 cells/well). The separatrix was approximated as the set
of population compositions that led to a 50% probability of reaching a healthy
population size in the next cycle. Because stochasticity "blurs" the separatrix,
the limit cycle does not hit the separatrix suddenly; rather, the probability of
the population to survive worsens as it crosses the separatrix. In these experi-
ments, the co-cultures were diluted by a 100-fold every 24 hours into a medium
containing 10 pg/ml of ampicillin and the indicated amount of chlorampheni-
col. Points correspond to snapshots of the different co-cultures measured over
the course of the experiment, showing data after the first two cycles of growth.
Color-coding indicates the inferred phase of the oscillation whenever a robust
oscillation pattern was detected. No experimental measurements were taken for
the white region in the bottom-left of the subplots.
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can be considered a cheater strain, because it benefits from the mutualists but does

not contribute to the common good.

This reasoning led us to ask whether or not a sensitive strain could exploit the

mutualists for protection against antibiotics, proliferate in the population, and desta-

bilize the mutualism or alter the limit cycle oscillations. Interestingly, we found that

the sensitive strain, when seeded at a low subpopulation fraction on the first day

along with the mutualistic resistant strains, did not affect the survival of the mu-

tualism (Fig. C-17). Upon further inspection, we found that sensitive cells arise

naturally due to plasmid loss, and comprise a few percent of the total population in

our original experiments probing the mutualism (Fig. C-18). This multi-drug envi-

ronment therefore leads to coexistence of all three bacterial strains: the two resistant

strains together with the sensitive strain.

In contrast to a sensitive strain, a double resistant strain is self-sufficient and does

not require protection from the mutualistic strains to survive (Fig. 3-6A). The double

resistant strain carries both plasmids conferring antibiotic resistance. While a double

resistant cell can grow in the presence of both antibiotics (up to higher antibiotic

concentrations than allowed by the mutualism and before deactivation allows the

single resistant cells to grow), its growth rate in the absence of antibiotics is lower

because of the fitness cost associated with having two plasmids. We note that over the

time course of our experiments we did not observe any double resistant cells arising

naturally (unsurprising since the plasmids we used are not conjugative).

To explore whether the double resistant strain could invade and/or displace the

mutualism, we added a small fraction of double resistant cells to mutualism cultures

six days into a coexistence experiment (Fig. 3-6BC). Strikingly, upon introducing

the double resistant strain, the oscillations disappeared. In addition, we found that

the double resistant population was able to take root in the culture, eventually dis-

placing the ampicillin resistant strain. Presumably this happens because the fitness

cost due to the inhibition of growth by chloramphenicol is larger than the fitness cost

associated with acquiring the chloramphenicol resistance plasmid. Once the ampi-

cillin resistant cells are gone, the double resistant cells protect the chloramphenicol
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Figure 3-6: Upon successful invasion of the mutualism by a double resistant
strain, the oscillations vanish, suggesting that the existence oscillations depends
on how resistance is allocated in the microbial population. (A) A double resis-
tant strain is self-sufficient and does not require protection from the mutualistic
strains to survive. (B) In the absence of the invader, the ampicillin and chlo-
ramphenicol resistant subpopulation oscillate. (C) After introduction of the
double resistant strain on the seventh day to a replicate culture of (B), the
double resistant invader established in the microbial population, squeezing out
the ampicillin resistant subpopulation and removing the oscillations.

resistant cells from ampicillin, resulting in one-sided cooperation where the double

resistant cells are cooperators and the chloramphenicol resistant cells are cheaters.

This situation parallels a previously studied system where ampicillin resistant cells

protected sensitive cells and where the two populations settled to an equilibrium

fraction [471.

3.4 Discussion

In this work, we have shown that a pair of antibiotic deactivating E. coli strains can

successfully and readily form an obligatory mutualism in a multi-drug environment.

Because the capacity to form the mutualism only depends on the production of re-

sistance enzymes, the mutualism does not require a period of co-evolution as long as

the enzymes are readily expressed. Although we implemented this mutualism in two

otherwise isogenic strains of E. coli, such cross-protection interactions could occur

between different species. Given the generality of this cooperative resistance mecha-

nism, we speculate that such interactions could lead to similar obligatory mutualisms
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in natural bacterial populations, such as in soil bacteria [11, 20].

The persistent survival over many dilution cycles that we observed suggests that

this obligatory mutualism can survive indefinitely over a broad range of antibiotic

concentrations. However, we note that while studying the stability of the mutualism

over time, we found that some co-cultures survive transiently in the presence of the

antibiotics only to collapse later (Fig.3-2, C-2). This finding is reminiscent of a

previously published report exploring the possibility of a bacterial mutualism between

an ampicillin-resistant strain and a kanamycin-resistant strain, where the authors

found that the co-culture was viable only the first day of growth [107], presumably

because kanamycin deactivation was not sufficiently cooperative. This observation

highlights the need to explore conditions in which the mutualism is stable over the

long-term.

While exploring the dynamical behavior of the cross-protection mutualism, we

found that periodic exposure to antibiotics gave rise to oscillations in the subpopu-

lations sizes of the two mutualists, with an oscillation period longer than the time

between consecutive antibiotic exposures. Ecologists have been long fascinated by

the mechanisms that can give rise to cyclical dynamics in natural populations [67,

108-113]. Well-studied mechanisms typically involve consumer-resource interactions

(e.g., predator-prey, host-parasite), which can cause population oscillations either on

their own or in combination with exogenous forcing either random or periodic [109].

In comparison, mutualistic interactions are generally considered to be stabilizing.

While the possibility of limit cycle oscillations in mutualisms has been explored in a

few recent theoretical studies [92, 93, 114-116], there is scant experimental evidence

supporting their existence in natural populations. A noteworthy experimental study

by Shou et al. of a synthetic cross-feeding mutualism in yeast did find oscillatory dy-

namics in the population sizes of the mutualists within the course of a single growth

cycle [98]; however, evidence that the subpopulation ratio was converging toward

a fixed point by the end of the cycle suggests that periodic forcing would not give

rise to oscillations in this system. Hence, while periodic forcing seems to be able

to generate limit cycles in our microbial mutualism, such oscillations may be more
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characteristic of cross-protection interactions rather than cross-feeding interactions

(see supplementary materials).

The abundance of antibiotic inactivation enzymes found in microbial soil commu-

nities 120-22] and in clinically relevant pathogens [521 suggests that cross-protection

mutualisms may frequently arise naturally and may have interesting implications for

the evolution of antibiotic resistance. Since many plasmids carrying genes conferring

resistance are readily spread via horizontal gene transfer 1, 13, 18], the type of co-

operative interactions explored here may be able to evolve rapidly. Furthermore, the

ability of the two strains to protect each other and survive in a multi-drug environ-

ment may provide a possible path for a multi-drug resistant strain to evolve. Although

our experimental system used plasmids that do not conjugate (and we did not ob-

serve horizontal gene transfer during the timescale of our experiments), the results of

our double-resistant invasion experiment suggest that even if a double-resistant strain

were to arise, the tradeoff between producing a resistance enzyme and overall fitness

can prevent the double-resistant strain from fixing. We expect that our results may

provide insight into the evolution of antibiotic resistance in the soil (which serves as a

large reservoir of resistance genes), and perhaps into how antibiotic resistance spreads

during the course of multi-drug treatment in the clinic.

Materials and Methods

Strains

All strains are derived from Escherichia coli DH5a, which was sensitive to both

ampicillin and chloramphenicol (Fig. C-16). The chloramphenicol resistant strain is

an E. coli DH5a strain transformed with the pBbS5c-RFP plasmid [1171. The plasmid

encodes a gene for monomeric red fluorescent protein and a gene for chloramphenicol

acetyltransferase (type I) enzyme. It has a pSC101 origin of replication. The plasmid

was obtained from Jay Keasling (Addgene plasmid #35284). The ampicillin resistant

strain is an E. coli DH5a strain transformed with a plasmid encoding a gene for the /3-
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lactamase enzyme (TEM-1) and an enhanced yellow fluorescent protein (EYFP). The

plasmid was assembled using the 2011 BioBrick distribution kit [118]. We combined

a constitutive promoter (J23116) with a sequence encoding a ribosome binding site,

EYFP and 2 stop codons (E0430). This construct was cloned into a vector containing

the BioBrick pSB6A1 backbone. The double resistant strain was transformed with

both plasmids.

Experiments

Initial single cultures of our strains were grown for 24 hours in culture tubes (3

or 5 ml) in LB supplemented with antibiotic for selection (50 pg/ml ampicillin, 25

pg/ml chloramphenicol for the ampicillin-resistant strain and the chloramphenicol-

resistant strain respectively) at 37 C and shaken at 300 rpm. The following day,

co-cultures of the two strains were grown at varying initial population fractions in

LB without antibiotics. Subsequently, serial dilution experiments were done in well-

mixed batch culture. Every cycle, the culture was diluted by a fixed amount into

fresh LB medium supplemented with the antibiotics ampicillin and chloramphenicol.

Except for where noted otherwise, each cycle lasted about ~ 23.5 hrs and cultures

were diluted by a hundred fold. Cultures were shaken at 500 rpm at a temperature of

37'C. Growth medium was prepared using BD's DifcoTM LB Broth (Miller) (Cat#

244620). Ampicillin stock was prepared by dissolving ampicillin sodium salt (Sigma-

Aldrich Cat# A9518) in LB at a concentration of 50 mg/ml. The solution was filter

sterilized and stored frozen at -80 0C and thawed before use. Chloramphenicol stock

was prepared by dissolving chloramphenicol powder (Sigma Cat# C0378) in 200 proof

pure ethanol (KOPTEC) at a concentration of 25 mg/ml. This solution was filter

UriIizeu aUM sUoreu at -2U C.

Measurement and Data Analysis

At the end of each growth cycle, we took spectrophotometry (Thermo Scientific Var-

ioskan Flash at 600nm) and flow cytometry (Miltenyi Biotec MACS Quant VYB)
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measurements of the culture to determine subpopulation sizes. Relative abundances

were confirmed by plating (Fig. C-3). Data analysis were performed using a combi-

nation of Mathematica, matplotlib [119], and IPython [1201.

55



Appendix A

Modeling antibiotic resistance

A. 1 Overview

Here, we present a model of bacterial growth in the antibiotic. We show that the

way the equilibrium fraction scales with the initial antibiotic concentration, Aj, and

cell density, Ni, is independent of many aspects of bacterial growth in the antibiotic.

As long as the antibiotic is inactivated according to Michaelis-Menten kinetics, the

equilibrium fraction scales approximately as feq OC (Ai + Km ln(Ai))/Ni.

Section (A.2) defines the parameters used in the models. Section (A.3) provides

a summary of the analytical expressions of the equilibrium fractions for different

model variations. Section (A.4) shows how various aspects of bacterial growth in the

antibiotic are incorporated into the models. Two of the models are solved in section

(A.5). Finally, in section (A.6), we discuss the model used in the main text.

A.2 Definition of Parameters

Parameter Definition

"YR growth rate of resistant cells

7s growth rate of sensitive cells

ID death rate of sensitive cells
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Parameter Definition

Vmax hydrolysis rate

KM Michaelis-Menten constant

Ai initial antibiotic concentration

MIC antibiotic concentration above which sensitive cells die

AA Ai - MIC > 0

Ai initial resistant fraction

ff final resistant fraction

feq fe = = ff is the equilibrium fraction

NRi= NR(O) initial number of resistant cells

NRf NR(Tsat) final number of resistant cells

Nsi Ns(0) initial number of sensitive cells

Nsf NS (Tsat) final number of sensitive cells

Ni = NR + Ns5  the initial number of both resistant and sensitive cells

Nsat = NRf + Nsf saturation number of both resistant and sensitive cells

RTg for t < Tiag resistant cells neither divide nor die

Tiag for t < iag sensitive cells neither divide nor die

Tsat time at which saturation is reached

Tb time at which the antibiotic is broken down



A.3 Analytic Solutions for the Equilibrium Fraction

# Lag Phase Cell Death J Antibiotic Inactivation feq

1 x) ( =1,=0 X TSA = V__NRi AA
Vmax Ni In( S) YS

2 X Tg Tllg = 0 XA -Vmax N(t) ^

Vmax Ni{ [( )S 1]}

3 X TIa Ts =0 XA VmN(t) A AA+KM ln(
lag lag dt A+KM V, a YS -1}

4 X r/g l 'ag = / = -VmaXNR(t) AA
VmaxNi{ f[(M )S+Y _D

5 / yy i =A -V____N_____

~ 'lg 'agt - V axN~t)VmaxNi{R +l [( .) S-1]}

6 / Tj'g q=Tg 5 0 / d= -Vmax NR(t)
VmaxN{ijag+ [(-L)S+Y 1]}

7 / r =r 0 / dA -Vmax Nt ) As AA+KM in(~
A+ VmarNi{Tiag+ ( )+S _D1}

8 / R#S / AA -VmaxNR t) A A

6 lag lag T-0 vdt =A+KM N t M 7 7RD~1] g A _

____ VmaxNi{rfs'YSD (N ) YS+ -1]}

//=A A AA+KM In(j)
V aN AKM V maxNi{ f -vj (7 r>) n(N )}
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A.4 Summary of Models

Here, we explain models 1, 4, and 8 in more detail, writing down the system of

differential equations that corresponds to each model. In all the models, we assume

that cell growth ceases when the total cell density reaches the saturation density

(Nsat). Hence, if Tsat corresponds to the time when NR + Ns Nat, then for t Tsat:

dNR
dt

0

dNs
dt

A.4.1 Model 1

Here, resistant cells divide at a characteristic rate of YR. Sensitive cells divide at a

rate of 7ys when the antibiotic concentration, A, is below their MIC value. When the

antibiotic concentration is above their MIC, sensitive cells do not divide. Antibiotic

is broken down at constant rate proportional to the initial number of resistant cells

(NRi = fRNj).

- RNR

_ sNs

0

= -VmaxNRi
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dNR
dt

dNs
dt

dA
dt

A < MIC

A > MIC



A.4.2 Model 4

Next, we incorporate cell death into the model, saying that for antibiotic concentration

above the MIC of sensitive cells, sensitive cells die at a rate -- yD. This gives the set

of equations:

dNR
dt

dNs
dt

d A

- -yRNR

isNs

-YD Ns

A < MIC

A > MIC

d = - VmaxNR

Note that in this example, antibiotic breakdown at time t is proportional to the

number of resistant cells at time t (rather than the initial number of resistant cells).

A.4.3 Model 7

To more realistically model bacterial growth in the antibiotic, we can use Michaelis-

Menten Kinetics for antibiotic inactivation; i.e., V = -VmaxNz A In addition,

we can introduce a lag phase during which cells neither grow nor die, giving:

For t < Tag:

dNR 0
=t 0

dt
dNs 0
dt
- A

=A -VmaxNRA
dt A-+KM

For t > TIag:
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dNR

dNs _ sNs A < MIC

dt -DNS A> MIC

dA A
d= -VmXNRAdt A+ Km

Whether it is necessary to incorporate Michaelis-Menten Kinetics or not depends

on the values of Km and MIC . If Km < MIC , then antibiotic breakdown proceeds

essentially at saturation for antibiotic concentrations above the MIC.

A.5 Sample Derivation of Equilibrium Fractions

The models presented thus far describe how bacteria grow in the antibiotic during the

course of a single day. These models provide a way to investigate the evolutionary

dynamics between resistant and sensitive cells by allowing one to determine how the

final resistant fraction, ff, after 23 hours of growth depends on the initial resistant

fraction, fi, antibiotic concentration, Aj, and cell density, Ni. It is straightforward

to integrate these models numerically to find the required dependence; however, it

is challenging to gain intuition from numerical solutions. Fortunately, we can obtain

an exact analytical expression for the dependence of equilibrium resistant fraction

(fi = f = feq) on the initial antibiotic concentration and cell density.

We will first derive two useful relations between the initial and final cell densities

that hold at the equilibrium fraction, and then proceed to use these relations to derive

an analytical expression for the equilibrium fraction.

A.5.1 Equilibrium Relations

At equilibrium, ff = fi. This is equivalent to saying that:
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NRJ NR,

Nsat Ni

Therefore,

NRf Nsat (A.1)
NRi N

If we use the same logic as above but start from the expression1 - f = I - fi, we get:

Nsf Nsat (A.2)
Nsi Ni

A.5.2 Solving Model 1

Model 1 (see A.4.1) ignores lag and cell death, and it assumes that antibiotic hydrol-

ysis proceeds at a constant rate proportional to the initial cell density of resistant

cells. Due to its simplicity, we can solve this model without doing much algebra.

Step 1: Solve for the time when the antibiotic concentration drops below

the MIC

dA
_-7 = _VaNPI;dt

AA
= VmaxNRi

Tb

AA
Tb

VmaxNRi

Step 2: Solve for the saturation time

Let's start with the equation (A.1):

NRf Nsat

NRi Nj

For this simple model, the number of resistant cells increases with time according
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to the equation: NRf = NRje1RIsat; therefore, N - eRTsat , so:NRi

eYRTsat Nsat
eys Ni

giving:

1 Nsa
Tsat = Iln( )sat

'YR Ni

Step 3: Solve for the equilibrium fraction

NSf = Nsat (A.2)
Nsi Ni

Since the sensitive cells do not start growing until the antibiotic is broken down,

the number of sensitive cells increases with time according to the equation: Nsf =

Nsjeys(rt--); therefore, =NSi eYS(Tsat-rb). Combining this with the previous expres-

sion, we get:

eT s(Tsat-Tb) - Nsat
Ni

1 Nea
Tsat - Tb - In( sat)

Nhs Ni

Next, we substitute in the expressions we got for Tsat and Tb:

1 Ns-- ln( sat)
'YR No

AA

VMaxNai

AA I N-_= -- !ln(Y
VmaxNRi 'YS

1 1 Nea
= ( -)ln( Sat)

'YR '-s Ni

AA 1 Nsat a
= -lm( ),s

VmaxNifeq 'YR Ni

feq = AA N l
VmaxNi Ln(N)s
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A.5.3 Solving Model 7

Model 7 (see A.4.3) incorporates a few more features, so the algebra is a bit messier,

but the same general procedure applies.

Step 1: Solve for the time when the antibiotic concentration drops below

the MIC

The antibiotic is inactivated according to Michaelis-Menten kinetics:

r/ A A

dt= -VmaxNR AK,

where NR(t < Tiag) = NRj and NR(Tag < t < Tsat) - NRje -R(tsat). We need to

solve this differential equation to find the time, Tb, at which the antibiotic concentra-

tion drops below the MIC of sensitive cells.

A KMd A VmaxNRdt
A

I VmaxNRdt

TZA + /, -n ANA/f TrnAIMmVIA))I{"-
f 7b

10
MIC

-- AA + Km ln( Ai = VmaxNRi (Tag

VmaxNRadt

1
+ e

7R

TIag) jag)

/ A- Ml(A - 1
A A + Km In( A ) = VmaxNRi(Tlag + I - 1R())ag

MIC -YR

AA-+ Kmln(A,-)

Vmax NRi tag

1
+ ~~~~(eYR(Tb-TIa9)-1

Let's introduce 7b* = Tbo + Tj, where T-0 = - and , KM n( hen,T* b VmaxNRi Tb VmaxNRi.Thn

T* = Tiag +

1
- ((IR(Tb lag)

7YR

1
I-(e'Y (Rb-- 1.g)

'-R

- ) Tb' Tiag
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eYR(Tb-ag) -- 1 -- YR (Tb* - Tiag)

YR(Tb - Tlag) ln(1 + 'YR(Tb- Tlag))

1
Tb = Tlag + -n(1 + 7R(TIb- Tlag))

YR

Step 2: Solve for the saturation time

NRf _Ns(at

NRi Ni
N ̂R(Ta - 7N1a (A.1)

eYR(Tsat- ag) = Nsat

Ni
7YR(Tsat - Tiag) l(st

1 Nsa
Tsat = Tiag + 1ln( sat)

'-Y Ni

Step 3: Solve for the equilibrium fraction

Nsf Nsat

Nsi Ni(A2

e s(Tsat-Tb)--D(rb-Ttag) =
Nsat

N

'YS(Tsat - Tb) - -YD( Tb - Tlag) Nat

N t
Ys Tsat + YD'Tlag -- Ys + -yD) Tb-I(Na

In Nsat) DFl(-s+D)Tb =I(Nsat
Ni +N

(-Ys + -iD)Tlag - (NY + YD)Tb = (1 -S)In( Nsat)
'-YR Ni

(-s + -YD)Tlag - (-Ys + -YD)(Tlag + n1 + YR(Tb Tlag))) = (1 -
Tys Ns
^)In( Nsat

-ln(1 +IR(Tb* - Tiag)

1+YR(Tb* Tag)

YR -s S Nat

-S + YD Ni

Nat _,R-YS
-- ( N
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Nsat ) S- _Y
/RTb* - 'YRTlag + (N SatfD - 1

AA + KM In( A) N YS- R

"YR Vi = 'RTlag+( satS+YD -1
VMax NR Ni

AA + Kmln( A)
feq = a {_+ 1}

VmaxNi{Tiag + -L[(Nst ),s+_YD -
(A.3)

A.6 Fitting Experimental Data

To fit the experimental data, we used model #7 which incorporates cell death,

Michaelis-Menten hydrolysis and lag time (see section A.4.3). We fit the equilib-

rium fractions (Figure 3C) to the full analytical solution of this model (Eq. A.3),

acquiring estimates for the parameters MIC, Vmax, Km.

We then plugged the values of MIC, Vmax, KM into the differential equations

describing model #7 (see section A.4.3) and integrated the differential equations

numerically to recapitulate the difference equation maps (Figure 3A, B).

To fit the data with the tazobactam inhibitor (Figure 4C), we used equation A.3,

modifying KM - Keff = Km - (1 + []/K). We fit the data using a single free

parameter (Ki). (Other parameter values were held fixed. The values of MIC, Vmax

and Km were set to those acquired in the fit of Figure 3C.)

A.6.1 Qualitative Behavior of the Equilibrium Fraction

The analytical expression of the equilibrium fraction is (Eq. A.3):

AA + Km ln( A)
feq 

I

VmaxNi{Tiag + (- 1II}

Because in our experiments Ni varies by less than an order of magnitude and

77D << 1, the equilibrium fraction can be approximated by the expression:
'YS +-Y

AA + KM In( A)
feq C Vmax I (A.4)
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where C =_I
Tlag -'4Q- [ S 'l D -1]

Using the numbers in section (A.6.2), C works out to be ~ 0.84 hr- 1 for a dilution

factor of 100x, and ~ 0.78 hr- 1 for a dilution factor of 800x. This amounts to less

than a 10% change in C, which means that C can be treated essentially as a constant.

With C a constant, equation A.4 implies that the equilibrium fraction (feq) scales

approximately inversely with the initial cell density (Ni).

Furthermore, for initial antibiotic concentrations higher than the dissociation con-

stant (Ai >> Km), the contribution of the logarithmic term becomes small and the

expression simplifies to:

AA
feq VmaxNi

This relationship indicates that plotting the number of resistant cells at equilib-

rium (fRi) vs. the initial antibiotic concentration (Ai) should yield a line with a slope

of (Vfa):

C C C
fRi = feq x N z-AA= 7Ai- MIC

Vmax Vmax Vmax

A.6.2 Parameter Values for Simulations

The following table lists the parameters used for simulations (see supplementary fig-

ures for details):

Parameter Meaning Value Source
Meaning____meas__red

7YR growth rate of resistant cells 1.1 hr- measured
experimentally

measured
relative fitness of sensitive cells 1.15

'YR _experimentally

'_YD death rate of sensitive cells 2.8 hr-' measured

experimentally
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Parameter Meaning Value Source

measured
Tiag lag time ~ Ilhr

experimentally'

11 cell density at saturation (after 1.2 measured
Nsat II1.2 x 107 cel

23 hours of growth) pL experimentally

6 molecules determined from
Vmax hydrolysis rate 10~cellx second

Michaelis-Menten constant for determined from
Km 6.7 Ag

ampicillin inactivation mL fit

dissociation constant for determined from
K, 4.56 "-g

tazobactam-enzyme complex n fit

minimum inhibitory 1 11determined from

concentration of sensitive cells __ fit

'The lag time shows some variability. For simplicity, we took it to be 1 hour. Changing the value
of the lag time mainly changes the fit value for Vmax, but it hardly affects the dynamics.
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Appendix B

Supporting Figures for Chapter 2

69



A

10 0 10'i o
FITC-A

Background noise.
Measured by flowing
pure PBS into the
flow cytometer.

Pure PBS Medium

'1

ClkRFP

10 10 t
PE-TxRed YG-A

-1-2% of noise
registers as
CFP events.

LL.

- 2 10 10 1
PE-TxRed YO-A

Gates used to count resistant
and sensitive cells show very
low background noise.

Determining the Fraction of Resistant Cells

B

FITC-A

Noise
(Also present when
running a pure
PBS sample)

It
4:-

'-I00

ft
U.

121 0102 P 1 d 10
5E-Tx ed YOA

Gate used to
count resistant
cells (RFP+CFP)

Y

if N 102 10 95
131 10 PE-TxRed YG-A

Gate used to
count sensitive
cells (YFP)

Figure B-1: Measurement of resistant fraction using flow cytometry. Shown
is raw data from the flow cytometer: (A) PBS medium with no cells, and
(B) a mixture of resistant and sensitive cells in PBS. To calculate the fraction
of resistant bacteria, the number of fluorescent events registered in the gates
corresponding to resistant and sensitive cells is counted (B). In addition, we
measure the rate of false positives due to noise (A), and use it to correct the
fraction of resistant bacteria. Because the noise level is low, the difference
between corrected and uncorrected fractions is only -0.01-0.03. The error in
the fraction due to binomial counting statistics is small (-0.01) since there are
thousands of events.
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Figure B-2: Calibration of resistant fraction. The fraction of resistant cells
measured by plating is equivalent to that measured on the flow cytometer. Sen-
sitive and resistant cultures were grown from single colonies in 5 mL of LB
with antibiotics at 37 C for 23 hours. The saturated sensitive and resistant
cultures were mixed at different ratios yielding 12 mixed cultures. For each
mixed culture, the fraction of resistant cells was determined using flow cytome-
try (Fig. B-1). In addition, each mixed culture was plated on an LB-agar Petri
dish, and the fraction of resistant cells was determined by counting the number
of resistant and sensitive colony forming units (CFUs). Resistant and sensitive
cells had different fluorescent markers, and were easy to tell apart using a flu-
orescent microscope. Error bars represent binomial counting error. The error
associated with the fraction determined using flow cytometry is smaller than
the size of the symbol.
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Figure B-3: Growth of sensitive cells in the antibiotic. The minimum in-
hibitory concentration (MIC) was determined by the lowest ampicillin concen-
tration that inhibited bacterial growth (i.e., yielding no visible cell growth). In
the experiment shown above, this concentration corresponds to ~1.8 [g/mL,
and was not affected by the addition of 5 pg/mL of kanamycin. Notably, ampi-
cillin starts to affect the growth of sensitive cells even at concentrations below
the MIC. This fact is ignored by our model, which implies that the model's
MIC may be slightly different from the measured MIC. To measure the MIC,
sensitive cells were grown in 5 mL of LB and 5 pg/mL of kanamycin for 23
hours. The saturated culture was then diluted into media containing different
ampicillin concentrations and grown for 23 hours starting at an initial cell den-
sity of ~ 4 .10 3 CFU/mL. The 23 hour growth cycle was used to closely mimic
the competition experiments. Our MIC was measured at a low cell density
to more accurately characterize the effect of antibiotic on killing single cells.
Alternatively, measuring the MIC using the standard cell density of ~ 5. 10'
CFU/mL and 20 hours of growth, yielded an MIC of -2 pg/mL. Regardless of
the method used to measure the MIC, ampicillin starts to affect the growth of
sensitive cells even at concentrations below the MIC.
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Figure B-4: Final cell density is independent of ampicillin concentration.

Shown is the cell density after 23 hours of growth in LB with 5 pg/mL of

kanamycin and varying concentrations of ampicillin. Experiments were carried

out at a dilution factor of 100x. Circles correspond to individual data points,
squares to the means, the black error bars to the standard deviations, and the

red error bars to the standard errors of the mean. Cell density corresponds

to the optical density measured at 600 nm. Experiments were repeated on 3

different days (trials 1-3). These are the three experiments from which Fig. 2-3

was generated.
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Figure B-5: Final cell density is independent of tazobactam concentration.
Shown is the cell density after 23 hours of growth in LB with 5 pg/mL of
kanamycin, 2 pg/mL of ampicillin and varying concentrations of tazobactam.
Experiments were carried out at a dilution factor of 100x. Circles correspond to
individual data points, squares to the means, the black error bars to the stan-
dard deviations, and the red error bars to the standard errors of the mean. Cell
density corresponds to the optical density measured at 600 nm. Experiments
were repeated on 3 different days (trials 1-3). These correspond to the three
experiments from which Fig. 2-4B, C were generated.
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Figure B-6: Final cell density vs initial fraction and time. Cells were grown for
23 hours in LB with 5 pg/mL of kanamycin, and 100 pg/mL of ampicillin. (A)
Shows the dependence of the final cell density (OD600) on the initial resistant
fraction at the end of the first day. The final cell density depends weakly on the
initial resistant fraction. (B) A histogram of the final cell density at the end of
the first day. (C) The saturated cultures were propagated at a dilution factor of
100x over multiple days. The final cell density does not change significantly with
time. The blue error bars represent the standard deviation while the black error
bars represent the standard error of the mean. Final cell density corresponds to
the optical density measured at 600 nm. Data comes from the same experiment
as used to generate Fig. 2-1A in the main text.
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Figure B-7: Difference equations obtained on consecutive days. The difference
equation obtained on the first day (green squares) slightly overestimates the
resistant fraction seen on consecutive days (black circles). Cultures were grown
in LB with 5 pg/mL kanamycin, 100 pg/mL ampicillin at a dilution factor of
10Ox.
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Figure B-8: Intra-day growth dynamics in ampicillin of bacterial populations
containing both resistant and sensitive cells. Bacterial populations containing
resistant and sensitive cells were grown in 200 pL of LB with specified concen-
trations of ampicillin. Every 30 to 60 minutes, 1 pL of each bacterial culture
was transferred into 199 pL of PBS, and the sample was measured on the flow
cytometer. Each measurement yielded the number of resistant and sensitive
cells (red and blue lines in the insets), as well as the fraction of resistant cells
(black lines) during one time point in the course of bacterial growth in the
antibiotic.

The data shows that at lower initial antibiotic concentrations and higher ini-
tial fractions of resistant cells, sensitive cells grow virtually unhindered by the
antibiotic. In contrast, at higher antibiotic concentrations and lower initial
fractions of resistant cells, the antibiotic can kill a significant fraction of the
sensitive cells before it is inactivated. In addition, consistent with our modeling
assumptions, sensitive cells can recover and resume growth after experiencing
cell death.

The measurement at time t = 0 was carried at a higher cell density on the flow
cytometer (different dilution into PBS), yielding cell counts that were artificially
higher than the cell counts for t > 0. Consequently, we omitted the cell counts
for t = 0, but we did include the fraction of resistant cells since it is unaffected
by the different cell density.

The error bars on the fraction of resistant cells show the error associated with
small cell numbers (approximated as ff(1 - f)/N, where f is the fraction of
resistant cells and N is the total number of cells). This error is less than 5% for
most measurements (since N > 100 cells).

When measuring the fraction of resistant cells continuously over the course
of bacterial growth, rather than just at the initial and final times as is done
elsewhere in this study, one must worry about additional sources of noise. One
issue is that the fluorescence of sensitive cells decreases during the first few
hours of growth, leading to overestimation of the fraction of resistant cells. In
addition, it is possible that sensitive cells can still lyse in PBS if they were
on the verge of lysing before being diluted into PBS. This means that the
measured fraction of resistant cells may exhibit some dependence on the time
elapsed between dilution into PBS and the subsequent measurement on the
flow cytometer. Re-measurements of the same samples in PBS gave mostly the
same fractions of resistant cells (i.e., within the shown error bars); however, a
few of the fractions were off by -10-15%. Nonetheless, most of the dynamics
are dominated by significantly larger changes in fraction than can be caused by
noise.

Cultures were grown at 37 C in a shaking incubator in the absence of
kanamycin. Also, please see the discussion in Fig. B-24 regarding the change in
the equilibrium fractions.
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Figure B-9: Growth dynamics in ampicillin of sensitive cells and resistant

cells grown separately. Resistant and sensitive cells were grown at 37 C in 5

mL of LB and 5 pg/mL of kanamycin with either 0 pg/mL or 100 pg/mL of

ampicillin. Every 20 minutes, the number of Colony Forming Units (CFUs),

N, was obtained by plating cultures on LB-agar Petri dishes. (A) Sensitive

cells exhibit a lag phase 30-120 minutes, and die at a rate of -2.8/hr when

ampicillin is present. (B) Resistant cells exhibit a lag phase of -80-100 minutes,

and grow at a rate of - 1.1/hr, regardless if grown either in the absence or

presence of ampicillin. In modeling growth in the antibiotic, we took the lag

time of both resistant and sensitive cells to be 1 hour long. The different markers

correspond to different trials. No represents the number of CFUs at time 0 in

each trial.
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Figure B-10: Resistant cells in ampicillin. The growth of resistant cells is
unaffected at the range of antibiotic concentrations probed in our experiments
(up to ~200 pg/mL). Resistant cells were inoculated at an initial cell den-
sity corresponding to a dilution of ~ 10 from saturation into a 96-well plate
with 200 ML of LB supplemented with ampicillin. The plate was placed into
a shaking incubator at 37 C, with optical density measurements taken every
~15 minutes. This strain is equivalent to the one used in the main text except

for its kanamycin resistance plasmid which encodes a yellow fluorescent protein
instead of a cyan fluorescent protein.
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Figure B-11: Sensitive cells grow faster than resistant cells in the absence of
the antibiotic ampicillin.

3 sensitive and 3 resistant cultures were grown from single colonies in 5 mL of
LB with antibiotics at 37 C for 23 hours. Each of the three saturated sensitive

culture was mixed with one of the three saturated resistant cultures. The frac-

tion of resistant cells in the mixed cultures was measured using flow cytometry
(Day -1). The mixed cultures were then diluted by a factor of 100x into a 96-
well plate in which they were grown in 200 pL of LB with 5 pg/mL kanamycin
for a day. The fraction of resistant cells in the saturated cultures grown in the

96-well plates was measured using flow cytometry (Day 0). Cultures were prop-
agated for another day (Day 1) under the same growth conditions as in Day

0 (diluted by factor of 100x into 96-well plate with 200 pL of LB at 5 pg/mL
kanamycin), and the fractions of resistant cells were measured again using flow
cytometry.

The relative fitness between the sensitive and resistant cells was calculated for

each day of growth using the equation r = ln(Nsf/Nsj)/ln(NRf/Nj), where

Nsi, Nsf, NRj, NRf are the initial sensitive cell density, final sensitive cell den-

sity, initial resistant cell density, and final resistant cell density, respectively.
The densities of the subpopulations were determined by combining flow cy-
tometry measurements (yielding fractions of each subpopulation) together with

optical density measurements at 600 nm (yielding total density of bacterial
population). The initial densities correspond to those of the freshly inoculated
culture, whereas the final densities correspond to those of the saturated cul-
ture (after a day of growth). For each culture, error bars in the relative fitness
represent the standard error of the mean over multiple replicates.

Importantly, we found that the relative fitness on Day -1 is an unreliable mea-
sure of the relative fitness between the two strains. Prior to being co-cultured
together on Day -1, the two strains were grown separately in 5 mL of LB. We
suspect that random differences between the growth histories of the two strains
when grown separately lead to fluctuations in the relative fitness measured on
Day -1.

For the following days (Days 0 and 1), the two strains experienced the same
growth histories, and the measurements of the relative fitness across different
cultures yielded consistent results. Consequently, all experiments were carried
out after co-culturing the two strains together for a day in the absence of ampi-
cillin before using them to measure difference equation maps.

The value of the relative fitness, r, used for modeling was the average of the
relative fitness values across the three cultures obtained on Day 1 (r=1.15).
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Figure B-12: Difference equation with a different plasmid. The evolutionary
dynamics are not specific to the type of plasmid that encodes the -lactamase
gene. Shown are difference equations that were mapped for a resistant strain in
which the resistance was carried by the pBR322 plasmid (New England Biolabs,
Beverly, MA, identical to TEMwt). Unlike the resistance plasmid used in the
main text, this plasmid does not encode a fluorescent protein. Quantitative
differences are expected as hydrolysis rates, growth rates, lag times may vary
between different plasmids; however, the qualitative features of the evolutionary
dynamics remain robust; i.e., phenotypes have high fitness when rare, and for
every ampicillin concentration, there is a characteristic fraction of resistant cells
at equilibrium. Data was acquired in LB with 5 pg/mL of kanamycin at 100x
dilution.
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Difference equation maps at different dilution factors. Each
difference equation was measured on 3 different days. The 100x and 200x dif-
ference equations shown in the main text (Fig. 2-3A, B) only include a subset
of the data. Solid curves represent a single fit of the model to all experimental
data.
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Figure B-14: A fraction of resistant and sensitive cells maximizes population
growth rate. Simulations indicate that the fraction that maximizes the popula-
tion growth rate (the time to reach saturating cell density) corresponds neither
to the equilibrium fraction nor to an entirely resistant population. Notably, at
the equilibrium fraction, the population growth rate is not substantially lower
than that of a purely resistant population. This simulation was carried for the

100 ptg/mL ampicillin and 100x dilution factor condition.
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Figure B-15: Oscillatory dynamics. Equilibrium points can be stable or un-

stable. As the antibiotic concentration decreases, the slope of the difference

equation at the fixed point increases in magnitude, and the equilibrium points

become unstable. For an unstable equilibrium point, the resistant fraction starts

to oscillate about that fixed point. Shown are the results of simulations of the

evolutionary dynamics over the course of 50 days. For each antibiotic concen-

tration and dilution factor, the population was started at an initial resistant

fraction slightly offset from the equilibrium fraction, and the first 10 days of

simulation were disregarded. (A) Shown are the mean resistant fraction (dark

thick line, color), the standard deviation of the resistant fraction (lighter color)

and the location of the fixed point (black dashed line). Note that for unstable

fixed points, the mean fraction is slightly higher than the equilibrium fraction

due to the asymmetric nature of the oscillations. (B) Shown is the standard
deviation as a function of the ampicillin concentration. The size of the fluctua-
tions is generally small (standard deviation lower than 0.1), making it difficult
to tell apart the oscillations from experimental noise in this system. The pa-
rameters used in the simulations were acquired from fits to the experimental
data (described in the main text). Parameter values are provided in section
A.6.2.
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Figure B-16: Selection for resistance in ampicillin and tazobactam. (A) While
high concentrations of the inhibitor successfully kill the bacterial population,
low and intermediate concentrations of the inhibitor accelerate the spread of re-
sistant cells. Heat maps showing (B) the final density of resistant subpopulation
(blue is high density) and (C) the final density of entire bacterial population
(white is high density) as a function of the antibiotic and inhibitor concentra-
tions. Subplot (A) corresponds to a slice of subplots (B) and (C) subplots at a
fixed ampicillin concentration of 50 pg/mL. In these experiments, a saturated
culture with ~10% resistant cells was diluted by a factor 100x into a medium
of LB supplemented with ampicillin and tazobactam. After 23 hours of growth,
the density of resistant and sensitive cells was measured by combining flow cy-
tometry measurements with an optical density measurement at 600 nm. No
kanamycin was present in these experiments.

Also, please see the discussion in Fig. B-24 regarding the change in the equilib-
rium fractions.

87

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25



C 1.0 Ampicillin 2 pg/mL
Tazobactam (ng/mL)

:.8 V 0 0 0.0

0.6 0 0 41.0
00 69.8

0.4 0 0 118.6
o 0 201.6

0.2 0 0 342.7
;- 0 00 582.6

0 0.2 0.4 0.6 0.8 1.0
Initial Resistant Fraction

Ampicillin 20 pg/mL
0 .m Tazobactatn (ng/mL)

00.8 66 0.0
1 0 1.7

0.6 , 00 2.9
- 0 4.9

-0.4 00 8.4
0 0 14.2

-60.2  
@ 0 24.1

U- 041.0
0 0.2 0.4 0.6 0.8 1.0
Initial Resistant Fraction

C
0
U

E

U-
.4-j

-E

4i

AQ

G)
cc

LL

1.0 Ampicillin 5 pg/mL

0.8 -r -

0.6 0

0.4

0.2 'o

00 0.2 0.4 0.6 0.8 1.A
Initial Resistant Fraction

r 1.0 Ampicillin 100 pg/mL
.0 T

0 0.8
U-

'C 0.6- y
W V
1-1' 0.4 -

-0.2-
C ' #

0 0.2 0.4 0.6 0.8 1.0
Initial Resistant Fraction

Tazobactam (ng/mL)
@ 0 0.0
@ 0 8.4
@ 0 14.2
@ 0 24.1

0 0 41.0
o 8 69.8
@ 0 118.6
@ 0 201.6

azobactam (ng/mL)
0 0 0.0
00 1.7

@ 0 2.9
* 0 4.9
0 0 8.4
o ( 14.2
@ 0 24.1
@ 0 41.0

Figure B-17: Difference equation maps in the presence of the inhibitor
tazobactam. Each difference equation was measured on 3 different days. The
data and analysis presented in Fig. 2-4B, C use these difference equation maps.
Data was collected at a dilution factor of 100x. Solid curves represent a single
fit of the model to all experimental data.
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Figure B-18: Selection for resistance may be possible at clinically relevant
concentrations. Clinically, ampicillin is combined often with the -lactamase
inhibitor sulbactam. Depending on how the drugs are administered, the peak
serum concentration of ampicillin may be between 40 pg/mL - 150 pg/mL while
that of sulbactam may be between 10 pg/mL - 120 pg/mL [58, 68, 121]. (A-C)
Resistant cells spread at an accelerated rate in the lower concentration ranges
of ampicillin/sulbactam while at the higher concentration ranges the growth of
the bacterial population is inhibited.

Although resistant cells proliferate across a range of clinically relevant concen-
trations in our experiments, we want to stress that the minimum inhibitory
concentrations of ampicillin/sulbactam is expected to change with the microor-
ganism, and with the initial cell density of the bacterial population. Moreover,
the use of ampicillin together with sulbactam is clinically known to be effective
against many bacterial infections.

Subplot (B) shows a heat map of the final density of resistant subpopulation
(blue is high density). Subplot (C) shows a heat map of the final density of
entire bacterial population (white is high density) as a function of the antibiotic
and inhibitor concentrations. Subplot (A) corresponds to a slice of subplots (B)
and (C) at an ampicillin concentration of 50 pug/mL.

In these experiments, a saturated culture with -10% resistant cells was diluted
by a factor 100x into a medium of LB supplemented with ampicillin and sulbac-
tam. After 23 hours of growth, the density of resistant and sensitive cells was
measured by combining flow cytometry measurements with an optical density
measurement at 600 nm. No kanamycin was present in these experiments.

Also, please see the discussion in Fig. B-24 regarding the change in the equilib-
rium fractions.
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Figure B-19: Effects of the cost of resistance on the equilibrium fraction and
the time to reach equilibrium. (A) The equilibrium fraction depends only weakly
on the cost of resistance. For example, if the cost of resistance (A-y = YS - -YR)
decreases by 50% - which corresponds the relative growth rate (r = -ys/-yR)

decreasing from 1.15 to 1.07 - the equilibrium fraction increases by ~8% (fe, ~
0.43 -+ feq ~ 0.47) for the 100 pg/mL ampicillin and 100x dilution factor
condition. (B) The time to reach equilibrium can change significantly with
the cost of resistance. In this simulation, for each relative growth rate, the
population was started at a resistant fraction of 0.99, and the time to reach
a fraction within 0.1 of the equilibrium was determined. The simulation was
carried out for the 100 pg/mL ampicillin and 100x dilution factor condition.
As the cost of resistance approaches 0 (r = 1), the time to reach equilibrium
increases. Note that when the cost of resistance is precisely 0 (r = 1), the
equilibrium fraction becomes degenerate. In this case, as long as the antibiotic
is cleared within the lag time, the fraction of resistant cells does not change
since with r = 1, the growth rates of resistant and sensitive cells are identical.
Parameter values values are provided in section A.6.2.
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Figure B-20: Difference between bactericidal and bacteriostatic antibiotics.
Time course and difference equation map for the death rate of sensitive cells
set to (A) 2.8/hr vs. (B) 0/hr. The plots show that the killing of sensitive
cells by the antibiotic is responsible for the overshoot of the fraction above the
equilibrium fraction when starting at a low initial fraction of resistant cells and

for the "V" shape of the difference equation maps. This occurs because below
the equilibrium fraction, there are not enough resistant cells to inactivate the
antibiotic before it starts to affect the growth of sensitive cells. By killing
sensitive cells, a bactericidal antibiotic exerts stronger selection for resistant
cells than a bacteriostatic antibiotic that just inhibits the growth of sensitive
cells. Simulations were run for an antibiotic concentration of 100 pLg/mL and a
dilution factor of 1O0x. Other parameter values can be found in the modeling
section of the Supplementary Materials.
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Figure B-21: Non-monotonic behavior in piperacillin. (A) Difference equa-
tion map collected in the antibiotic piperacillin. This difference equation maps
behaves in accordance with model expectations at low antibiotic concentra-
tions. However, it deviates from predicted behavior at high concentrations of
the antibiotic, in which the difference equation maps start to curve down at
low initial fractions of resistant cells. (B) Final fraction of resistant cells as a
function of the antibiotic concentration revealing non-monotonic selection for re-
sistance with increasing antibiotic concentrations. The non-monotonic behavior
is significant: the final resistant fraction reduces from nearly 1 at intermediate
piperacillin concentrations to -0.1 at high piperacillin concentrations, revealing
nearly complete cancellation of selection for resistance at high antibiotic con-
centrations. For all shown data points, the cultures grew to the same saturation
density. Subplot (B) is a cross section through subplot (A) corresponding to an
initial fraction of resistant cells at ~4%. Data was acquired at a 100x dilution
in an LB medium in the absence of kanamycin.

One possible explanation for the deviation from our model and the non-
monotonic behavior is that, at the higher antibiotic concentrations, resistant
cells begin to lyse releasing #-lactamase enzymes into the extra-cellular space
[76]. Extracellularly these enzymes hydrolyze their antibiotic more quickly
(higher substrate concentration), leading to the survival of more sensitive cells.
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Figure B-22: Controls showing difference equations obtained with fluorescent

markers swapped. The resistant and sensitive strains used in the main text

expressed CFP and YFP, respectively. To show that the evolutionary dynamics

were independent of any differential cost involved in expressing CFP vs. YFP,
we created control strains in which we swapped the fluorescent markers in places.

(A) Difference equation obtained with resistant and sensitive strains from the

main text. (B) Difference equation obtained with CFP and YFP swapped.

Data was acquired in LB with 5 pg/mL of kanamycin at 100x dilution.
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Figure B-23: Addition of 5 pg/mL kanamycin does not significantly affect

the evolutionary dynamics. Both resistant and sensitive cells carry a plasmid

that encodes for fluorescence and kanamycin resistance. To make sure that this

plasmid was not lost during multi-day experiments, a background concentration

of 5 pg/mL of kanamycin was added. Kanamycin was used only as a precau-

tion, and its absence or presence (at 5 pg/mL) did not affect the evolutionary

dynamics. Difference equations were mapped for 4 different antibiotic concen-

trations in (A) no kanamycin or in (B) 5 pg/mL kanamycin. Data was acquired

at 100x dilution.
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Figure B-24: Population dynamics in different -lactam antibiotics. Examples
of difference equation maps collected in the -lactam antibiotics (A) ampicillin

and (B) carbenicillin. (C) Equilibrium fractions extracted from difference equa-
tion maps for the -lactam antibiotics ampicillin, piperacillin, penicillin G and

carbenicillin. Consistent with model prediction, the equilibrium fractions are

approximately linear in the antibiotic concentration. Deviations from linearity
can appear at low concentrations due to the non-zero KM of Michaelis-Menten
hydrolysis of the antibiotic (see main text for explanation). Black dashes lines

represent the range over which a line was fit to the data to calculate the slope.

(D) The values of the slopes of the equilibrium fraction vs. the antibiotic con-
centrations acquired at high antibiotic concentrations. The ratio between these

slopes should be proportional to the inverse ratio of the hydrolysis rates of

these antibiotics. TEM-1 hydrolyzes the antibiotics ampicillin, penicillin G,
piperacillin and carbenicillin with approximate kcats of 1200/s, 1100/s, 1000/s

and 110/s, respectively [1221. Hence, the model would predict that the slope
of carbenicillin as compared to the other antibiotics should be about 10 times

larger, which is close to experimental observations. Error bars only capture the
error from the linear fit.

We note that the equilibrium fractions for ampicillin are significantly different
than those presented in the main text (the equilibrium fractions are off by a
factor of -2-3). The data for this figure (and for supplementary figures 8, 16,
18, and 21) was collected more than a year after the data presented everywhere
else in the paper. We do not know what has caused this drift, but we have
eliminated differences in the antibiotic stock, in strains or in protocol as possible
explanations. The drift could be caused by other parameters that we do not
normally control for (e.g., humidity, different filter for de-ionized water, batch-
to-batch variations in LB). If anything, the equilibrium fractions here show that
the sensitive strains can survive in even larger antibiotic concentrations than
indicated in the main text.

Data in subplots (A-D) was acquired at a 100x dilution in an LB medium in
the absence of kanamycin.
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Appendix C

Supporting Materials for Chapter 3

C.1 Oscillations in models of mutualisms

Mutualistic interactions are generally thought to be stabilizing, with the relative

abundances of the two mutualists converging to a fixed ratio over time [92, 98, 123,

124]. Nonetheless, oscillatory dynamics have been observed in a number of theoretical

studies of mutualisms [92, 93, 114-116]. The mechanism giving rise to sustained

oscillations in many of these studies was mathematical in nature. Specifically, these

models incorporated time delays either by using delay differential equations or else by

being discrete in time. Such time delays can give rise to exceedingly rich dynamical

behavior, including limit cycles and chaos [67, 108, 125]. The use of time delays in

ecological models is a practical way of capturing the effects of unknown ecological

processes [113, 1261; however, since, at the end of the day, some of the ecological

processes remain unknown, the distal cause of any observed oscillations can remain a

mystery.

In this section, we show that a few simple mechanistic models of mutualisms

can exhibit oscillations in the population abundances of the mutualists when subject

to periodic forcing. Importantly, these oscillations occur with a period longer than

the period of the driving force. Our failure to observe non-trivial oscillations in a

model incorporating only population sizes leads us to suspect that explicitly modelling

the interaction between the two mutualists is necessary to recover this dynamical
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behavior.

At least anecdotally, we observed more stability in models of cross-feeding interac-

tions than in models of cross-protection interactions when subject to periodic forcing.

However, without more rigorous analysis, we advise against interpreting these sim-

ulation results too readily since it is not clear how to fairly compare between the

models.

C.1.1 Phenomenological model

We begin by exploring a simple phenomenological model of an obligatory mutualism

in which the interactions are mediated solely by population densities:

dNi = 'y1N1 N2 (1 - N1+N 2 ) - 6N
dt K ) 61

(C.1)
dN 2 =' 2 N2 N1(1 - _ N-) -6N 2

Here, -Yi and 7Y2 are the growth rate of the two mutualists (N1 and N2 ). K is

the carrying capacity. 6 is the death rate. At low densities, the growth rate of each

mutualist increases with the abundance of its partner. The logistic term incorporates

competition for a common limiting resource.

We investigated the dynamics of this mutualism under periodic forcing in two

ways: (i) by driving the death rate periodically 6(t) = 1(cos(wt) + 1), and (ii) by

subjecting the population to periodic bottlenecks of constant strength, mirroring

our experiments. In the second scheme, the death was entirely due to the periodic

bottlenecks, so 6 was set to zero. We were unable to produce oscillations with a period

longer than that of the periodic forcing using either approach (Fig. C-21, C-22).

C.1.2 Cross-feeding mutualism

To examine the dynamics of a cross-feeding mutualism, we introduced two state

variables R1 and R2 to keep track of the nutrient concentrations produced by each

partner.
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dN1 = 1 1f(R 2 )N1 (1 - N, N2 )dtK

dN 2f (R1 )N2(1 _ NN2)

dt iK (C.2)

dR 1 p 1N1 - 1321N2f (R1 )

= p 2N2 - / 12 NIf (R 2 )

Here, N and N2 are the population sizes of the two mutualists. R1 and R2

are the two resources exchanged in the cross-feeding interaction. -Y and -Y2 are the

growth rates of the two mutualists. f describes how the growth rate depends on the

resource abundance. We examined linear (type I, f(R) = R) and saturating (type

II, f(R) = R) functional responses. K is the carrying capacity. pi and P2 are

resource production rates. 021 and O12 are resource consumption rates. The logistic

term incorporates competition for a common limiting resource.

To explore the dynamics of this model in the presence of seasonality, we subjected

the population to periodic bottlenecks of constant strength. Specifically, at the end

of each cycle, we propagated a fraction of the population into a new environment,

mirroring our experimental set up. The simulation results of this cross-feeding model

were nuanced with regard to the range of parameters that supported oscillations.

Specifically, no oscillations were observed when we propagated the population without

carrying over leftover resources. In contrast, carrying over some of the remaining

resources when propagating the population produced large oscillations in the relative

abundances of the two mutualists. While these oscillations were substantial when

using the linear consumption function (f(R) = R), the magnitude of oscillations

diminished significantly after switching to the more realistic saturating consumption

function (f(R) = R ). Thus, it seems like it is possible to get oscillations with this

model, but under somewhat restrictive conditions.
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At
Antibiotic Concentration

Growth rate in the cross-protection toy model (Eq. C.3)

C.1.3 Cross-protection mutualism

To examine the dynamics of the cross-protection mutualism, we introduced the state

variables A1 and A 2 to keep track of the antibiotic concentrations:

__= (-HF + 1 f+)N 1 (1 - N1+N)

dN2 = (-Y7 + 1 '% )N2 (1 - N +N2)

dt 2 7A,/tl K(C.3)

dA1 -c 1A1 N1dt

dAZ -CAN
dtc 2 A2N2

Here, -y and -y2 are the growth rate of the two mutualists (N1 and N2). K is the

carrying capacity. A1 and A 2 are the antibiotic concentrations. A' and A' set the

scale of antibiotic sensitivity. ci and c2 are antibiotic inactivation rates. The model

allows for cell death in both populations (-y' and -y'). The logistic term incorporates

competition for a common limiting resource.

To explore the dynamics of this model in the presence of seasonality, we subjected

the population to periodic bottlenecks of constant strength. Specifically, at the end

of each cycle, we propagated a fraction of the population into a new environment,

mirroring our experimental set up. The simulation results of this model were insen-

sitive to whether we carried over leftover antibiotic or not. We found that this model

easily gave rise to oscillations with periods longer than the period between subsequent
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bottlenecks, especially to period 2 oscillations (Fig. C-6). We also found that the

addition of cell death seemed to destabilize the oscillations rather than strengthen

them. This destabilization occurred because cell death made the mutualism more

likely to collapse (Fig. C-7).

C.1.4 A model incorporating experimental features

To better understand our experimental data, we proceeded to explore the population

dynamics using a cross-protection model that incorporated features that are charac-

teristic of the growth of bacteria in the presence of antibiotics:

dN 1  Y1 [A 2]N 1(1 - N, N2 )

-= 1 2 [ A1]N 2(1 _ N1 N2 )
dt K(C.4)

dA1 = A1 N1(t = 0)dt =-maxK+Alk

dA 2 - CAN
dt -c 2A2 N2

0 t < tiag1t[A2] (C.5)

1+A/1 C5  t> tiag

0 t < tag

72 [A1] = 2, t > t1ag and A1 < MIC (C.6)

-4D t tiag and A 1 > MIC

In this model, N1 and N2 represent the ampicillin and chloramphenicol resistant

populations, respectively, while A1 and A 2 represent the concentrations of the antibi-

otics ampicillin and chloramphenicol. The dynamics in the presence of the ampicillin

were described in detail in a previous study [47]. The dynamics of growth in the

presence of chloramphenicol were described in details in [1271.
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We found that this set of differential equations was adequate to reproduce period-

3 like oscillations reminiscent of our experimental data (see Fig. 3-4 for details).

However, to reproduce the oscillations at similar ranges of antibiotic concentrations,

we had to decrease the death rate of chloramphenicol resistant cells (YD) as compared

to the measured death rate of cells sensitive to ampicillin (Fig. C-4, also see [47]).

The simplest interpretation of the need to use a lower death rate is that the actual

growth rate of sensitive cells is not a step function in the antibiotic concentration,

but rather a smoother function, with a death rate at low antibiotic concentrations

that is smaller than the maximal death rate. Overestimating the death of the chlo-

ramphenicol resistant population skews the ratio between the two mutualists, leading

to a collapse of the mutualism.

Given the highly non-linear form of the differential equations and the large pa-

rameter space, the output from these equations is sensitive to variations in parameter

values and in functional forms (e.g., a step function vs. a smooth response to the

antibiotic). Exhaustively exploring a large parameter space is a challenging task,

which means that there may be other combinations of parameter values and func-

tional forms that could reproduce robust period-3 like oscillations. Hence, this model

should be viewed with some skepticism.

Despite the aforementioned complications, both this model (Eq. C.4) and its

simpler variant (Eq. C.3) make a simple qualitative statement: the oscillations that

we observe experimentally are due to the "seasonality" imposed as a result of our daily

dilution (Fig. C-6, C-4, C-5). In particular, doing our experiments in a (pseudo)-

continuous regime should remove the oscillation in the population abundances (Fig.

C-8). This prediction was confirmed experimentally (Fig. 3-2, C-8).

102



C.2 Mapping the separatrix

To map out the separatrix, we needed to estimate the probability that a mutual-

ism composed of an ampicillin resistant population (Nt) and a chloramphenicol re-

sistant population (Ne) at time t will reach a "healthy" population size (Ntt" >

2 - 108 cells/well, Table C.1) at time t + 1. We assumed that the dynamics were in-

variant in time. Using this simplification, we divided all the trajectories into 2-step

segments and calculated an indicator variable, H, for each segment as follows:

0 Ntotal < 2 - 108 cells/well
H (Ni', Ni2) = fIa 10 (C.7)

{1 Nota' > 2. 08 cells/well

Here, we replaced the time indexes t and t + 1 in favor of the i (initial) and f
(final) to make the time invariance assumption explicit. To avoid too much writing,

we'll let Y denote an arbitrary position in (N1, N2) space, and 'k denote the posi-

tion of the kth data point. To estimate the probability that a population reaches a

"healthy" population size (P(H = 117)), we used Gaussian radial basis functions for

interpolation between measured data points. Specifically,

data with H=1

n1(ji) = S Wk (AA)
k

data with H=O

no(x)= Wk(XiA)
k

where Wk is the weight assigned to the kth data point. Basically, we use existing

data points to estimate the number of times that the population reaches a healthy

population size (ni) and the number of times it does not (n0 ) when starting at a

position Y. The weight given to each data point k decays as a Gaussian in the

distance between the data point Fk and the position of interpolation Y:
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Wk (, A ) - ce-d('ik 2 /(2. 2 , (C.8)

where c and - are some constants. d(z, Y) is the distance between the vector 'X

(XA, XB) and the vector , = (yA, yB) in logarithmic space; i.e., d(z, Y)2 = (logio(XA) -

logio(yA)) 2 + (logio(X) - logio(yB)) 2 .

Finally, the estimator for the probability of the population to reach a "healthy"

population size is simply the fraction of populations that started in "similar" condi-

tions and reached a "healthy" population size:

P(H = 1) = ni
ni + no

Plugging in the expressions for no and n, from above gives:

data with H=1

T Wk( ,A)
P(H = 1 o-) = a d (C.9)

E Wk(Z k)
_k

This estimator is independent of the value of the constant c that appears in the

weights (Eq. C.8) since c cancels out between the numerator and denominator.

C.2.1 Maximum likelihood

We used a maximum likelihood approach to determine the best value of - to use

in conjunction with the estimator of Eq. C.9 (see Fig. C-19 for results). In this

analysis, we split the experimental data into two parts: a training data set (Dtrain)

and a test data set (Dtest). Given a particular choice of -, we trained the model using

the training data set and then used this model to evaluate the probability of the test

data set.
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P(Dtest Io-, Dtrain) =

In P(Dest J, Dtrain) =

In P(Dest Io-, Dtrain) =

P(Dk stju, Dtrain)
k

In P(D k stl-, Dtrain)
k

E In P(H = hk lo, Dtrain)
k

Here, Dk. refers to kth test point, and hk to value of the indicator of the kth

point.

& = argmax, In P(Dest -, Dtrain) (C.10)
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Table C.1: An indicator for population health

state at t+1 Healthy (N >2.0e+08) Unhealthy (2.0e+08 >N >3.4e+06) Presumed Extinct (3.4e+06 >N)

state at t

5.1 pg/ml chloramphenicol

Healthy (N >2.0e+08) 0.97 0.03 0.00

Unhealthy (2.0e+08 >N >3.4e+06) nan nan nan

Presumed Extinct (3.4e+06 >N) 0.00 0.02 0.98

7.6 sg/ml chloramphenicol

Healthy (N >2.0e+08) 0.83 0.17 0.00

Unhealthy (2.0e+08 >N >3.4e+06) 0.92 0.00 0.08

Presumed Extinct (3.4e+06 >N) 0.00 0.01 0.99

11.4 pg/ml chloramphenicol

Healthy (N >2.0e+08) 0.80 0.19 0.01

Unhealthy (2.0e+08 >N >3.4e+06) 0.66 0.00 0.34

Presumed Extinct (3.4e+06 >N) 0.00 0.02 0.98

17.1 pg/ml chloramphenicol

Healthy (N >2.0e+08) 0.76 0.20 0.04

Unhealthy (2.0e+08 >N >3.4e+06) 0.42 0.00 0.58

Presumed Extinct (3.4e+06 >N) 0.00 0.02 0.98

25.6 pg/ml chloramphenicol

Healthy (N >2.0e+08) 0.76 0.22 0.02

Unhealthy (2.0e+08 >N >3.4e+06) 0.30 0.04 0.66

Presumed Extinct (3.4e+06 >N) 0.00 0.03 0.97

38.4 pg/ml chloramphenicol

Healthy (N >2.0e+08) 0.46 0.40 0.13

Unhealthy (2.0e+08 >N >3.4e+06) 0.24 0.00 0.76

Presumed Extinct (3.4e+06 >N) 0.00 0.01 0.99

106



To analyze the collapse of the mutualism, we needed a good indicator of popu-
lation health. An obvious choice for an indicator of population health is simply
the total population size. We defined the population to be "healthy" if the total
population size was above 2- 10 cells/well (about half of the carrying capacity).

This indicator is very convenient in practice because the population size of large
populations can be reliably measured using spectrophotometry; however, being
based only on the total population size, this indicator ignores other potentially
relevant information, such as the relative abundances of various subpopula-
tions, meaning that it may not work. To show that this indicator was useful,
we needed to demonstrate that it had at least some predictive power about
whether the population was about to collapse. Thus, to evaluate the quality of
the indicator, we analyzed the trajectories of many populations across multi-
ple environments. In our analysis, we discretized measurements of population
sizes into 3 non-overlapping intervals: (i) "presumed extinct" (N < 3.4 - 106

cells/well, which is close to the limit of detection), (ii) "unhealthy" (3.4 - 106

cells/well < N < 2. 108 cells/well, and (iii) "healthy" (N > 2 - 108 cells/well).
Then, for each environment, we used all the populations trajectories to estimate
the conditional probability of switching from one interval at time t to another
interval at time t + 1; i.e., estimating P(Zt+= = zt) , where Z is a
discrete random variable, which can assume 1 of 3 possible values corresponding
to the 3 intervals. Reassuringly, the "presumed extinct" region remained true
to its name: co-cultures which entered this region were unlikely to later attain
larger population sizes. Examining the conditional probabilities further showed
that this indicator was indeed a good measure of population health. When the
population size dropped to less than half of the carrying capacity, it was more
likely to go extinct afterwards. Moreover, this indicator was better at harsher
environments.

In these experiments, we started 96 co-cultures with different initial subpopu-
lation compositions and measured the total population size of each co-culture
over time. The six environments had different chloramphenicol concentrations:
5.1, 7.6, 11.4, 17.1, 25.6, 38.4 pg/ml, but were otherwise the same (100x dilu-
tion strength, AT = 24 hr, 10 pg/ml ampicillin). It is important to note that
the conditional probability is not a proper statistic because there is a hidden
variable (the relative abundances of each mutualist), but no obvious way of
correctly averaging over it. To make our analysis a bit less dependent on the
particular choice of the initial population compositions, we removed the first
two days of each trajectory, allowing the dynamics to "equilibrate".
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Day1 Day4 Day7
A

0.0 1.0 1.5 2 2 3.4 51 7.6 11.417.125.63.457.7 0.0 1.0 1.5 2.2 3.4 5.1 7.6 11417.125.630.457.7 0.0 1.0 1.5 2.2 3.4 5.1 7.6 11.417.125.636.457 7

0 0 0

2 2 2
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50 s0 s0

100 100 100

200 200 200

B chloramphenicol (,pg/ml) 0.5
0,0 1.0 1.5 2.2 34 5.1 7.6 1117125.6384577 00 1.0 1.5 2,2 34 5.1 7.6 11417,125636457.7 0.0 1.0 1.5 2.2 34 51 7.6 11417.125.638,457.7

0 0 0

Figure C-i: Comparison between the obligatory region found in two indepen-
dent experiments at lO0x dilution.

Optical density measurements were done at 600 nm. For reference, an optical
density of 1 unit corresponds to approximately 4.- 108 cells/well. Cultures were
grown in 200 pul of medium.
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0.0 1.0 1.5 2.2 3.4 5.1 7.6 11.4 17.1 25.6 38A 57.7 0.0 1.0 1.5 2.2 3.4 5.1 7.6 11.4 17.1 25.6 384 57.7

chloramphenicol (pg/ml)

Figure C-2: To systematically examine how the dynamics depend on the
antibiotic concentrations, we varied both antibiotic concentrations while fixing
the dilution strength at 100x. The co-cultures were started at a high cell density
(close to the carrying capacity) on the first cycle to make it easier for the co-
culture to survive. The initial ratio between the ampicillin and chloramphenicol
resistant subpopulations was 1:4. In the range of antibiotics probed, every single
population survived the first growth cycle, but shortly thereafter a significant
fraction of these populations went extinct. Nonetheless, after a few cycles,
many of the co-cultures stopped collapsing, revealing a substantial range of
antibiotic concentrations where the mutualism is successful. A subset of this
data is shown in Fig. 3-2. Optical density measurements were done at 600 nm.
For reference, an optical density of 1 unit corresponds to approximately 4 .108
cells/well. Cultures were grown in 200 pl of medium. Black lines denote the
range of antibiotic concentrations above which neither mono-culture can grow
on its own (Fig. 3-1).
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Measured fraction of
ampicillin resistant cells

1.0

0.8 -
ampicilin, chloramphenicol, dilution strength

E i 0.0 pg/ml, 0.0 pg/ml, lox
10.6 ---- 10.0 pg/ml, 10.0 pg/ml, lox

10.0 pg/ml, 1.5 pg/ml, lOx

0.0 pg/ml, 0.0 pg/ml, 10Ox
. 10.0 pg/ml, 10.0 pg/ml, 10Ox

C 10.0 pg/ml, 1.5 pg/ml, 100x

0.2.... .

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Using agar plating

Figure C-3: Flow cytometry and CFU counting measurements are consis-

tent with each other. Shown is the fraction of ampicillin resistant cells out of

only fluorescent cells that was measured using each method; equality in frac-

tion measurements implies equality in relative abundance measurements. The

agreement between flow cytometry and agar plating measurements is excel-

lent. In the presence of antibiotics, there is a small systematic discrepancy

(Af < -0.03) between the two methods, with flow cytometry usually giving a

lower fraction of ampicillin resistant cells than measured using agar plating. A

reasonable guess is that in the presence of antibiotics, a small fraction of the

ampicillin resistant population is not fluorescent enough to be detected by flow

cytometry.

We are careful in pointing out that only fluorescent cells were considered be-

cause non-fluorescent cells (sensitive cells) were present on agar plates at small

quantities (see discussion about emergence of sensitive cells in Fig. C-18). Of

course, since the fraction of sensitive cells was so small, doing the analysis with-

out correcting for non-fluorescent cells hardly changes the result. The error bar

shown corresponds to the approximate error in the fraction, ferr ~ f Nf)

See Fig. C-18 for further details about the data and experiment.
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Figure C-4: A model incorporating known experimental features can exhibit

robust period 3-like oscillations across a range of antibiotic concentrations (Eq.
C.4, C-12). Cells were grown for a period of time (AT) in a medium contain-
ing both antibiotics. At the end of the growth period, the cell populations

(and any left-over antibiotic) were diluted into a fresh medium (which was also

supplemented with antibiotics).

At high concentrations of the antibiotic ampicillin, the death rate of sensitive

cells was previously measured to be - 2.8/hr [47]. However, to get a survival

region similar to what we measure experimentally, we had to nearly completely
turn off the death rate, reducing it to 0.2/hr. Likely, this discrepancy just
reflects that this model does not adequately capture the dynamics of cell death.

In this model, the rate of ampicillin inactivation is proportional to the initial

density of ampicillin resistant cells (Eq. C.4, di 1 oc -N 1 (t = 0)). We tried

altering this rate to be proportional to the concurrent density of ampicillin
resistant cells (' oc -N 1 (t = t)), but could not find robust period 3 like os-

cillations (although oscillations were still present). Exhaustively exploring such
a large parameter space is a challenging task, so there may be combinations
of parameter values that could produce robust period-3 like oscillations. How-

ever, given our present understanding, the interpretation of this result would be

that period 3-like oscillations is driven by extra-cellular beta-lactamase enzymes
carried over from the previous dilution cycle.

The parameter values used in the simulation are provided in the table below.
These values should be close to experimentally measured values, with the ex-

ception of the death rate.

Model Parameter Meaning Value Used

growth rate of ampicillin resistant cells in absence of chloram- 1.18/hr
phenicol

R
Y2 growth rate of chloramphenicol resistant cells in absence of 1.21/hr

ampicillin
2D death rate of chloramphenicol resistant cells at high ampicillin 0.2/hr

concentrations
MIC2  

ampicillin concentration above which chloramphenicol resistant 2.5 pg/ml
cells start to die

IC50 chloramphenicol concentration at which the growth rate of 0.7 ptg/ml
ampicillin resistant cells drops by half

KM Michaelis-Menten constant for ampicillin inactivation 6.7 pg/ml

K carrying capacity (density) ~ 2.3 - 10
6

cells/pl
V volume of container in which cells were grown 200 Al

Nmin lowest viable population density (finiteness of population size) 1 1 cell = 10O
8

K - V
C2  

inactivation rate of chloramphenicol 30/(hr - K)

Vmax hydrolysis rate of ampcillin 22500 mll HTK

tiag lag time during which no growth occurs (but antibiotic can be 1 hr
inactivated)

fold dilution fold dilution between cycles 10Ox
AT time between cycles 24 hr
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chloramphenicol (pg/ml)

0.0 1.0 1.5 2.2 34 5.1 7.6 11.4 17.1 25.6 38.4 57.7
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anpicillin resistant
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chloramphenicol resistant
population

0

12

Figure C-5: A model incorporating known experimental features exhibits no
oscillations in a (pseudo)-continuous regime (Eq. C.4, compare with Fig. C-4).

The parameter values used in the simulation are provided in the table below.
These values should be close to experimentally measured values, with the ex-
ception of the death rate.

Model Parameter Meaning Value Used

^yR growth rate of ampicillin resistant cells in absence of chloram- 1.18/hr
phenicol

-Y2 growth rate of chloramphenicol resistant cells in absence of 1.21/hr
ampicillin

y death rate of chloramphenicol resistant cells at high ampicillin 0.2/hr
concentrations

MIC2  ampicillin concentration above which chloramphenicol resistant 2.5 Ag/ml
cells start to die

IC5 0  chloramphenicol concentration at which the growth rate of 0.7 pg/ml

ampicillin resistant cells drops by half
KM Michaelis-Menten constant for ampicillin inactivation 6.7 pg/ml

K carrying capacity (density) ~ 2.3. 10
6

cells/pI
V volume of container in which cells were grown 200 pl
Nmin lowest viable population density (finiteness of population size) ~ 1 cell = 10-

8
K - V

C 2  inactivation rate of chloramphenicol 30/(hr - K)

Vmax hydrolysis rate of ampcillin 22500 m -K
tiag lag time during which no growth occurs (but antibiotic can be 0 hr

inactivated)
fold dilution fold dilution between cycles 1.2x
AT time between cycles 1 hr
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Figure C-6: A "generic" cross-protection mutualism subject to periodic di-

lution exhibits oscillations of a period longer (period 2) than the driving pe-

riod. Other periods can be produced by changing the form of the functional
response to the antibiotic; for example, using a step function response instead

of the smooth function used in Eq. C.3. This simulation was carried out in

the absence of cell death. Including cell death in our simulations seemed to

significantly reduce the ability of the mutualism to oscillate (Fig. C-7).

Parameters used in simulation: C= 50.0, C2 = 100.0, K = 1.0, At = 1.0, At=
1.0, R = 1. 0, y - 1.1, yf = 0, 'y = 0. Population densities at the beginning
of the first cycle were NMi = 0.006, N2i = 0.004. The differential equations were
integrated for AT = 24. Parameters are in arbitrary units. At the end of the
growth cycle, the population was diluted by a factor 100x. This process was
repeated for a number of cycles.
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Figure C-7: Including cell death in our simulations seems to cause the mutu-
alism to collapse, which reduces regions where the mutualism can exhibit stable
oscillations in the ratio between the two subpopulation sizes. This simulation
has the same parameters as the simulation in Fig. C-6, except that the death
rates are nonzero (yD = 0.2, = 0.2).
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variety of different population compositions. (A) Snapshots of the subpopula-

tion abundances as a function of time. The populations that manage to survive

converge toward an equilibrium point with ampicillin and chloramphenicol pop-

ulation densities of 0.02 pD, 0.7 OD, respectively. We color-coded each point

along the trajectory according to the overall population density measured on

cycle 6. A copper color was assigned if the population density on cycle 6 was

larger than 0.5 GD, and a black color otherwise. Hence, for an overview of the

trajectories that result in survival, one can simply focus on the set of all copper-

colored points. Points corresponding to total population densities lower than

-0O.05 GD were removed from the subplots because that density corresponds to

the limit of detection. For this reason, the number of black points (i.e., popula-

tions with a density smaller than 0.5 GD) decreases with time as some of these

populations collapse. We note that the limit of detection is specifically for the
total population density, not the relative population abundances. Hence, mea-
surements of populations near the equilibrium point are well-above the limit

of detection (since the total population size is '-0.7 GD which is significantly

larger than r'0i.05 GD). (B) A few selected trajectories over time.

Experiment was done at 10 [zg/ml ampicillin and 10 Mig/ml chioramphenicol.

The time between cycles was 2 hr and the dilution strength was 2x. Optical

density measurements were done at 600 nm. For reference, an optical density

of 1 unit corresponds to approximately 4.- 108 cells/well. Cultures were grown

in 200 M1l of medium.
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Figure C-9: Population dynamics measured in environments of different di-
lution strengths. In these experiments, the ampicillin and chloramphenicol
concentrations were fixed at 10 p[g/ml and 5.1 pg/ml, respectively. When sub-
ject to a stronger dilution, the mutualism starts the growth cycle at a smaller
population size. Because smaller populations take longer to inactivate the an-
tibiotics, the mutualism may be unable to survive. Consistent with this logic,
we found that, at a dilution strength 500x, the mutualism collapsed within a few
cycles. At intermediate dilution strengths, the mutualism was able to establish
successfully, but with oscillations in the ratio between the population sizes of
the mutualists. At still smaller dilutions, the oscillations disappeared as might
be expected in light of the stability of the mutualism in the continuous regime
(Fig. 3-3B, C-8).
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Figure C-10: Population dynamics across different antibiotic concentrations
at a dilution strength of 10x. The range of antibiotic concentrations at which
the mutualism successfully formed was significantly larger at a dilution strength
of 10x as compared to a dilution strength of 100x (Fig. C-12). Similarly, the
oscillatory dynamics shifted to higher antibiotic concentrations and exhibited a
more variable period.
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Figure C-11: Oscillations in the ratio between the two mutualist subpopula-

tions appear even at antibiotic concentrations where the mutualism is no longer

obligatory. In these experiments, the dilution strength was fixed at 100x, the

time between dilutions at 24 hours and the chloramphenicol concentration at 2

pg/ml. In this environment, the ampicillin resistant mono-culture can survive

on its own (Fig. 3-1).
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Figure C-12: Population dynamics across different antibiotic concentrations
at a dilution strength of 100x. The region of obligatory mutualism corresponds
to antibiotic concentrations in which neither of the strains can survive on its
own. This region starts at ampicillin concentrations above 2 [g/ml and chlo-
ramphenicol concentrations above 2.2 pg/ml (Fig. 3-1). In much of this, suc-
cessful mutualisms exhibit strong period 3 like oscillations. However, oscillatory
dynamics can be seen at lower antibiotic concentrations as well, albeit with ad-
ditional periods. Although some of the trajectories look aperiodic, it is difficult
to know whether these trajectories are truly chaotic, or whether a combina-
tion of experimental noise and a slow time to converge produced the observed
dynamics. A subset of this data was used to create Fig. 3-2.
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Figure C-13: Trajectories approach the separatrix as the environment deteri-
orates. For simplicity, we use the same proxy for the "health" of a population
(Nota > 2.- 108 cells/well) across all environments. However, in harsher envi-
ronments it is more difficult to recover from a low population size (Table C.1).
This observation means that in harsher environments, the true separatrix could
be closer to the trajectories than the shown separatrix.

The data points represent all experimental data from day 2 and on. Color-
coding represents the inferred phase of the oscillations (Fig. C-14, C-i5).

In estimating the separatrix and the basins, we created 500 different realization
of the experimental data by re-sampling the original data (Fig. C-20). We
computed the probability surface P(H = 1 N1, N2 ) for each realization and
are reporting the probability surface averaged across all realizations. When
interpolating the probability surface, we used the same smoothing parameter
independent of the environment (a- = 0.34, Fig. C-19). Please refer to page
103 for more information.
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Figure C-14: Most of the mutualisms that survive converge to a period 3 like
oscillation within the time frame of the experiment. We tracked multiple co-
cultures that were started at different initial subpopulation compositions. The
trajectories are color-coded according to the phase of the oscillations. When
detecting periods, the first two time points are ignored to allow some extra time
for the trajectory to converge to the limit cycle. Experiments were carried at
100x dilution strength, 24 hr dilution cycle, 10 pg/ml ampicillin, 5.1 pg/ml
chloramphenicol.

The oscillation period is detected automatically by looking for peaks in the
auto-correlation function of the (normalized) ampicillin resistant population
size over time. For brevity, let us use x(t) to denote the population size at
time t, and z(t) - x-E[x]j, where E[x] and Var[x] are the sample average

,\/Var[x]'
and sample variance of x. We then use z to compute the auto-correlation
function Gs [At] = EZi(t' + At)z(t'), applying zero-padding as necessary. The
assigned period is T = argmaxetOG [At] as as long as Gj [T] was above a
pre-defined threshold (C), otherwise no period was assigned. We note that we
are specifically looking for At # 0 since At = 0 is a trivial maximum of the
auto-correlation function. Empirically, we found that using C = 0.2 was good
enough for classifying trajectories (confirmed by visual inspection); however,
since this method produces an "all-or-nothing" answer (i.e., the entire trajectory
is assigned a period or not), it may miss some trajectories that take a bit longer
to converge to the limit cycle.
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Figure C-15: In harsher environments, where the populations are more likely
to collapse, the characteristic period 3 oscillation pattern is lost. We tracked
multiple co-cultures that were started at different initial subpopulation composi-
tions. The trajectories are color-coded according to the phase of the oscillations.
Experiments were carried at 100x dilution strength, 10 pg/ml ampicillin, 11.4
pg/ml chloramphenicol. Please see Fig. C-14 for details on how periods were
computed.
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Figure C-16: The sensitive DH5a only survives at low antibiotic concentra-
tions. Plotted is the population density at a dilution factors of 10x (A) and
100x (B).

Optical density measurements were done at 600 nm. For reference, an optical
density of 1 unit corresponds to approximately 4 - 108 cells/well. Cultures were
grown in 200 pl of medium.
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Figure C-17: Addition of a sensitive DH5a strain at a fraction of about 10%
of the total population did not significantly affect the region of survival after

7 days of growth. Experiments were carried out at a dilution strength of lO0x
(subplots A, B) and a dilution strength of l0x (subplots C, D). Optical density
measurements were done at 600 nm. For reference, an optical density of 1 unit

corresponds to approximately 4 - 108 cells/well. Cultures were grown in 200 pd
of medium.
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Figure C-18: A sensitive mutant strain could emerge from within the mu-
tualism via loss of the resistance plasmid. To check whether a sensitive strain
could emerge in our experiments, we tracked the relative abundances of differ-
ent subpopulations in co-cultures which initially contained only ampicillin and
chloramphenicol resistant cells at a 1:1 ratio. Because fluorescent markers were
carried on the resistance plasmids, sensitive strains, which lost the resistance
plasmid, were not fluorescent. The lack of fluorescence meant that we could not
detect this strain using flow cytometry; however, fortunately, all 3 strains gave
rise to colonies of different color when grown on agar plates (red-fluorescent,
yellow-fluorescent or non-fluorescent colonies). Hence, to measure the relative
abundances of the different subpopulations, we inoculated a small volume from
the co-culture onto Petri dishes containing agar and LB (but no antibiotics),
and counted the different colonies. For each data point, at least 50 colonies
were counted (in total), with the majority of data points having more than
100 colonies. We confirmed that non-fluorescent colonies were sensitive to both
ampicillin and chloramphenicol, as would be expected if these colonies were
formed by sensitive cells that lost their resistance plasmid.

The data reveals that although sensitive cells seem to emerge in our co-cultures,
these cells are unable to proliferate in the presence of antibiotics, remaining at
fractions smaller than -5% of the bacterial population. Since sensitive cells
never reach high abundances, they are unlikely to affect the dynamics observed
in our experiments (e.g., Fig. 3-2 3-3 3-4). Consistent with this expectation,
the condition corresponding to a dilution strength of 100x, 10 pg/ml ampicillin,
and 10 pg/ml chloramphenicol, exhibited period 3 oscillations using counts of
colony forming units (Fig. 3-2).

In the subplot titles, ampicillin and chloramphenicol concentrations are reported
in pg/ml.
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Smoothing scale (a)
Figure C-19: The smoothing parameter -was determined to be 0.34 (dimen-
sionless) using maximum likelihood. For each potential value of o-, we trained a
model (see page 103) to predict whether a given mutualistic population would
attain high cell density in the next cycle. For training we used half of the data
available from each environment (Fig. C-20), with training data selected by
randomization. Then, we evaluated the likelihood of the seeing the remainder
of the data under each model. We note that we trained the model simulta-
neously in all the different environments, restricting the model to use a single
value of o regardless of the environment. The kink in the likelihood function is
a manifestation of the infamous zero-frequency problem where a model assigns
zero probability to a particular data point, causing the likelihood to blow up.
In this analysis, the easiest way of dealing with this problem was to filter out
the misbehaving predictions. In our case, filtering out such data points creates
discontinuities (kinks) in the likelihood function, but does not affect the point
of maximum-likelihood. As a sanity check, we plotted (in a dashed gray line)
what the likelihood should be when o -+ ox; i.e., when treating all populations
identically regardless of their composition.
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Figure C-20: Experimental data overlaid on top of the interpolated proba-

bility surface P(H = 1 N1 , N2 ). This surface represents the probability that a

mutualistic population composed of an ampicillin resistant population of size

N and a chloramphenicol resistant population of size N2 will reach a high cell

density in the next cycle. The same smoothing parameter (u- = 0.34, Fig. C-19)

was used for all environments. Please refer to page 103 for more information.
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Figure C-21: A driven phenomenological model of obligatory mutualism oscil-
lates at the driving frequency. We did not find parameters for which the model
exhibited oscillations of a longer period than the period of the driving force.
(A) Shows oscillations in the population size that are locked with the driving
frequency. (B) Same as (A), but the population sizes are sampled once per cy-
cle of the driving force (shown to emphasize that the period is locked with the
driving force). The model used for this simulation is described in Eq. C.1. Pa-
rameters used in the simulations are -y1 = 3, -2O= 0.5, K = 1, Jo = 0.1, w = 0.5.
Initial population sizes were N1(t = 0) = 0.5, N2 (t = 0) = 0.5.
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Figure C-22: A simulation in which a phenomenological model of obligatory
mutualism was subjected to periodic dilutions did not exhibit oscillations. (A)
Shows stable coexistence between the two mutualists. (B) This model can still
give rise to some interesting behavior, where the population size of one of the
mutualists peaks for a short while before the entire population proceeds to
collapse. The model used for this simulation is described in Eq. C.1.

Parameters in (A) -yi = 10, -Y2 = 100. Parameters in (B): 1yi = 1, Y2 = 250.
Common parameters: K = 1,60 = 0.0. Initial population sizes were N1 (t =
0) = 0.5, N2 (t = 0) = 0.5. The differential equations were integrated for a
duration AT = 100. At the end of the growth cycle, the population was diluted
by a factor 100x. This process was repeated for a number of cycles.
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