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Abstract

To understand the new physics and richness of quantum many-body system phenomena is
one of the stimuli driving the condensed matter community forward. Importantly, the new
insights and solutions for condensed matter theory sometimes come from the developed and
developing knowledge of high energy theory, mathematical and particle physics, which is
also true the other way around: Condensed matter physics has been providing crucial hints
and playgrounds for the fundamental laws of high energy physics. In this thesis, we explore
the aspects of symmetry, topology and anomalies in quantum matter with entanglement
from both condensed matter and high energy theory viewpoints. The focus of our research
is on the gapped many-body quantum systems including symmetry-protected topological
states (SPTs) and topologically ordered states (TOs). We first explore the ground state
structures of SPTs and TOs: the former can be symmetry twisted and the latter has ro-
bust degeneracy. The Berry phases generated by transporting and overlapping ground state
sectors potentially provide universal topological invariants that fully characterize the SPTs
and TOs. This framework provides us the aspects of symmetry and topology. We establish
a field theory representation of SPT invariants in any dimension to uncover group cohomol-
ogy classification and beyond - the former for SPTs with gapless boundary gauge anoma-
lies, the latter for SPTs with mixed gauge-gravity anomalies. We study topological orders
in 3+1 dimensions such as Dijkgraaf-Witten models, which support multi-string braiding
statistics; the resulting patterns may be analyzed by the mathematical theory of knots and
links. We explore the aspects of surface anomalies of bulk gapped states from the bulk-edge
correspondence: The gauge anomalies of SPTs shed light on the construction of bosonic
anomalies including Goldstone-Wilczek type, and also guide us to design a non-perturbative
lattice model regularizing the low-energy chiral fermion/gauge theory towards the Standard
Model while overcoming the Nielsen-Ninomiya fermion-doubling problem without relying
on Ginsparg-Wilson fermions. We conclude by utilizing aspects of both quantum mechan-
ical topology and spacetime topology to derive new formulas analogous to Verlinde's via
geometric-topology surgery. This provides new insights for higher dimensional topological
states of matter.

Thesis Supervisor: Xiao-Gang Wen
Title: Cecil and Ida, Green Professor of Physics
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Chapter 1

Introduction

1.1 Background: Emergence, Reductionism and Many-Body

Quantum Physics

Emergence and reductionism respectively represent the hearts of condensed matter physics

(CMP) and high energy physics (HEP). Emergence describes remarkable collective phe-

nomena. For example, given a set of elastic springs, initial conditions and their laws of

interactions, intriguing properties such as resonances occur in a mattress formed by springs

at the macroscopic level. Emergence emphasizes that certain many-body collective modes

cannot be easily extrapolated from a few-body behavior. CMP, with emergence at its heart,

asserts that to discover the collective laws of many-body quantum matters from the given

individual basic components (such as qubits, quantum rotors, spins, bosons or fermions)

requires as much creative effort as discovering the fundamental laws of a single component.

In short, it is about P.W. Anderson's "more is different[1J." Reductionism, on the other

hand, posits that we can "see the world in a grain of sand," as proclaimed by William Blake.

For example, reductionism assumes that colliding massive objects like nuclei and then ob-

serving what-and-how fragments result from that collision determine the fundamental laws

among the basic elements. The core distinction of CMP and HEP leads to differing working

concepts and values.

However, past physics history suggests that the combined knowledge can enrich our

understanding. For example, the Anderson-Higgs mechanism describing the origin of all

particles' mass in HEP is rooted in Anderson's CMP theory on plasma oscillation and
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superconductivity. The macro-scale inflation theory of the universe of HEP cosmology is

inspired by the micro-scale supercooling phase transition of CMP. There are many more

successful and remarkable examples, such as those examples concerning the interplay of

fractionalization, quantum anomalies and topological non-perturbative aspects of quantum

systems such as quantum Hall states (see [2, 3, 4, 5, 61 for an overview), which we will

gradually explore later. In this thesis, we explore the aspects of symmetry, topology and

anomalies in quantum matter from the intertwining viewpoints of CMP and HEP.

Why do we study quantum matter? Because the quantum matter not only resides in an

outer space (the spacetime we are familiar with at the classical level), but also resides in an

inner but gigantic larger space, the Hilbert space of quantum systems. The Hilbert space R

of a many-body quantum system is enormously huge. For a number of N spin- 1 particles, the

dimension of R grows exponentially as dim() = 2 N. Yet we have not taken into account

other degrees of freedom, like orbitals, charges and interactions, etc. So for a merely 1-

mole of atoms with a tiny weight of a few grams, its dimension is dim(R) > 2 6.02x 1023!

Hence, studying the structure of Hilbert space may potentially guide us to systematically

explore many mathematical structures both ones we have imagined and ones we have not yet

imagined, and explore the possible old and new emergent principles hidden in all branches

of physics, including CMP, HEP and even astro- or cosmology physics.

In particular, we will take a modest step, focusing on the many-body quantum systems

at zero temperature where there are unique or degenerated bulk ground states well-separated

from energetic excitation with finite energy gaps, while the surfaces of these states exhibit

quantum anomalies. These phases of matter are termed symmetry-protected topological

states (SPTs) and topologically ordered states (TOs).

1.1.1 Landau symmetry-breaking orders, quantum orders, SPTs and topo-

logical orders: Classification and characterization

What are the phases of matter (or the states of matter)? Phases of matter are the collective

behaviors of many-body systems described by some macroscopic scale of parameters. The

important concepts to characterize the "phases" notions are universality, phase transitions,

and fixed points [7]. The universality class means that a large class of systems can exhibit

the same -or similar behavior even though their microscopic degrees of freedom can be very

different. By tuning macroscopic scale of parameters such as temperature, doping or pres-
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sure, the phase can encounter phase transitions. Particularly at the low energy and long

wave length limit, the universal behavior can be controlled by the fixed points of the phase

diagram. Some fixed points sit inside the mid of a phase region, some fixed points are critical

points at the phase transition boundaries. A powerful theory of universality class should

describe the behavior of phases and phase transitions of matter.

Lev Landau established one such a powerful framework in 1930s known as Landau

symmetry-breaking theory [8]. It can describe many phases and phase transitions with

symmetry-breaking orders, including crystal or periodic charge ordering (breaking the con-

tinuous translational symmetry), ferromagnets (breaking the spin rotational symmetry) and

superfluids (breaking the U(1) symmetry of bosonic phase rotation). Landau symmetry-

breaking theory still can be captured by the semi-classical Ginzburg-Landau theory [9, 10].

However, it is now known that there are certain orders at zero temperature beyond

the semi-classical Landau's symmetry-breaking orders. The new kind of order is referred

as quantum order [11], where the quantum-many body behavior exhibits new phenomena

without the necessity of classical analogy. The full scope of quantum order containing gapless

or gapped excitations is too rich to be properly examined in my thesis. I will focus on the

gapped quantum order: including SPTs 112, 13] and topological orders (TOs) [14, 15]. The

first few examples of TOs are integer quantum Hall states (IQHs) discovered in 1980 [16] and

fractional quantum Hall states (FQHs) in 1982 [17, 18]. Quantum Hall states and TOs are

exotic because they are not distinguished by symmetry-breaking, local order parameters, or

the long-range correlation. These new kinds of orders require a new paradigm going beyond

the old paradigm of Landau's theory.

Classification and characterization of quantum phases of matter: So what ex-

actly are SPTs and TOs? SPTs and TOs are quantum phases of matter with bulk insulating

gaps while the surfaces are anomalous (such as gapless edge modes) which cannot exist

in its own dimensions. One important strategy to guide us understand or even define the

phases of matter is doing the classification and characterization. By doing classification, we

are counting the number of distinct states (of SPTs and TOs) and giving them a proper

label and a name. For example, giving the spacetime dimension and the symmetry group,

etc; can we determined how many phases there are? By doing characterization, we are list-

ing their properties by physical observables. How can we potentially measure them in the

experiments?
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Below we organize the key features of SPTs and TOs first, in Table 1.1. There are a

few important concepts for physical measurement we need to introduce: (i) ground state

degeneracy, (ii) entanglement and (topological) entanglement entropy, (iii) fractionalized

charge and fractional statistics.

Symmetry-Protected Topological states (SPTs) & Topological Orders (TOs):

Short/Long ranged entangled states at zero temperature.
+-+ No/Yes deformed to trivial product states by local unitary transformations.
No/Likely nontrivial topological entanglement entropy.
No/Likely bulk fractionalized charge -+ edge may have fractionalized charges.
No/Likely bulk anyonic statistics -+ edge may have degeneracy.
No/Yes spatial topology-dependent GSD.
No/Yes non-Abelian Berry's phases on coupling const moduli space

Table 1.1: Some properties of SPTs and TOs.

The ground state degeneracy (GSD) counts the number of linear independent ground

states 10) on a topology-dependent manifold (such as a d-sphere Sd or a d-torus Td) by

solving the Schr6dinger equation: HIV) = Egdl'O) with the ground state energy Egd. The

possibility of the energy spectrum is shown in Fig.1-1. In the infinite volume limit (thermo-

dynamic limit at zero temperature limit), the gapless phase has continuous energy spectrum

from the ground states. The gapped phase has finite AE in the energy spectrum E. Topo-

logical order has robust GSD where the number usually depends on the system-topology

(the exception can be chiral topological orders such as the integer quantum Hall state with

v = 1 filling-fraction or the E8 bosonic quantum Hall state [191, they have GSD-1). For

example, a filling-fraction -FQH state of Laughlin type, has a 3 or 3 9 fold degeneracy on a

2-torus or a genus g-Riemman surface respectively. On the other hand, SPTs has a unique

ground state independent of the spatial topology. In this sense, by measuring GSDs, TOs

are potentially easier to be "distinguished and detected" than SPTs.

Entanglement describes how a system of (quantum) states are correlated between

subsystems, say A and B; and describes how the system cannot be described indepen-

dently in the form of a pure product state Ii') = PV'A) 0 JOB) 0 .... Even though the

full Hilbert space RAB is the tensor product form RAB = RA 0 tB, and the full ba-

sis of 7 AB can be spanned by product states { U)A J)B}, but the generic state would

14



Energy spectrum E

gapless gapped gapped & gapped
topology-dept non-
degenerate: degenerate:
Topological SPT?
Order

Figure 1-1: Quantum matter: the energy spectra of gapless states, topological orders and
symmetry-protected topological states (SPTs).

be: 10) = E., cu,,Iu)A ( Iv)B more general than a pure product state. Entangle-

ment entropy quantifies the entanglement by measuring how the subsystems are entangled

with each other (see an introduction in [20, 21]). Von Neumann entropy is defined by:

S(pA) = -r[pAlogpA] = S(pB) where PA = TrB(PAB) and PB = TrA(PAB), here PAB is

the density matrix, and PAB = II)(TI with the eigenstate sector IT). More generally, one

can define Renyi entropy Sa(PA) =ilogTr(p') = Sa(PB), where a -+ 1 then the Renyi

entropy becomes the Von Neumann entropy. For the gapped 2+1D topological orders, ' the

von Neumann entropy SA = aIOAI - +. ... The DA part is due to the area law, where the

possible contribution to the entanglement between two regions A and B should come from

the regions near the boundary of A, namely DA. The ... term tend to be infinitesimal as

I&AI -- oo. Topological entanglement entropy (TEE)122, 23] is the universal part captured

by -y = log = log( ~ d2) where D is the total quantum dimension and di is the quantum

dimension for each particle labeled by i. Basically the quantum dimension di dictates the

physical observables GSD of topological orders. The quantum dimension characterizes the

dimension growth of the Hilbert space when an additional particle i is inserted. This Hilbert

space is named as the fusion Hilbert space V(M) with a spatial manifold M. For example,

by putting n anyons on a sphere, GSD = dim(V(M)) oc (di)". We shall explain more the

'The spacetime dimensionality definition used throughout the thesis is that d + 1D means d-spatial and

1 temporal dimensions, and dD means d-spatial dimensions.
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meaning of D and di later in the chapters.

Fractionalized charge and fractional statistics are introduced in a review of selected

papers in [6], [5]. Due to interactions, the emergent quasi-excitations of the system can

have fractionalized charge and fractional statistics respect to the original unit charge. To

define fractional statistics as a meaningful measurable quantities in many-body systems, it

requires the adiabatic braiding process between quasi-excitations in a gapped phase at zero

temperature. The wavefunction of the whole system will obtain a e '0 phase with a fractional

of 27r value of 6. The excitation with fractional statistics is called anyon.

The first known experimental example exhibits all exotic phenomena of (i) spatial topology-

dependent GSD, (ii) entanglement and TEE, (iii) fractionalized charge and fractional statis-

tics, is the FQHs with v = 1/3-filling fraction discovered in 1982 [17, 181. FQHs is a truly

topologically ordered state. Some of other topological orders and SPTs may not have all

these nontrivial properties. We should summarize them below.

For SPTs:

" Gapped-bulk short ranged entangled states (SREs).

" No topological entanglement entropy.

" No bulk fractionalized charge -+ edge may carry fractionalized charge

" No bulk anyonic statistics (GSD = 1) -+ gapped edge may have degeneracy.

" The bulk realizes the symmetry with a global symmetry group G onsite (here we

exclude the non-onsite space symmetry such as spatial translation or point group

symmetry, etc; the time reveal symmetry can still be defined as an anti-unitary on-site

symmetry). The symmetry-operator is onsite, if it has the form: U(g) = Oj Uj (g), g E

G. It can be written as the tensor product structure of Uj(g) acting on each site j.
The boundary realizes the symmetry G non-onsite, exhibiting one of the following:

(1) gapless edge modes, or (2) GSD from symmetry breaking gapped boundary, or (3)

GSD from the gapped surface topologicatorder on the boundary.

For intrinsic topological orders:

" Gapped-bulk long ranged entangled states (LREs).

" Robust gapless edge states without the symmetry protection.
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0 (usually) with topological entanglement entropy.

* (usually) Bulk fractionalized charge.

* (usually) Bulk fractionalized statistics.

* (1) Spatial topology-dependent GSD.

* (2) Non-Abelian (Berry) geometric structure on the Hamiltonian's coupling

constant moduli space.

Some remarks follow: The "usually" quoted above is to exclude some exceptional cases such

as IQHs and E8 QH states. The short ranged entangled (SREs) and long ranged entangled

states (LREs) are distinguished by the local unitary (LU) transformation. SREs can be

deformed to a trivial direct product state in the real space under the LU transformation;

SREs is distinguished from a trivial product state on each site only if there is some symmetry-

protection so that along the path connecting the state to a trivial product state breaks the

symmetry. LREs on the other hand cannot be connected to a trivial product state via

LU transformation even if we remove all the symmetries. Thus the LU transformation is

an important concept which guide us to classify the distinct states in SPTs and TOs by

determining whether two states are connected via LU transformations.

The essences of orders: Apart from the summary on physical comparison of Table 1.1,
we comment that for there are microscopic or field theories, trying to capture the essences of

Landau's symmetry-breaking order, TOs and SPTs. For example, Landau's theory and

Bardeen-Cooper-Schrieffer (BCS) theory is powerful for understanding symmetry-

breaking orders, but the essence of symmetry-breaking order is indeed emphasized later

as the long range correlation, symmetry-breaking local order parameters and the long-range

order [see C.N.Yang's review on the (off-diagonal) long range order[24J. Then, there are

Laughlin's theory for FQHs of topological orders, and there are topological quantum field

theory (TQFT) [25, 261 approach of topological phases. But what is the physical essence

of topological orders? After all, Laughlin's approach focus mainly on the wavefunction,

and TQFT only capture the low energy long-wavelength physics and TQFT may not full

classify or describe topological phases of matter in any dimension. The essence of topological

orders is not the quantized Hall conductance (which will be broken down to non-quantized

if the particle number conservation is broken). The essence of topological orders should
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not depend on the notion of symmetry. The essence of topological orders is actually the

topological GSD, the non-Abelian geometric phases and the long-range entanglement. For

topological orders, there are degenerate ground states depending on the spatial-topology,

and we can characterize the topological order by adiabatically transporting the ground state

sectors. However, for SPTs, unfortunately we do not have the concept of non-Abelian

geometric phases. How do we capture the essence of SPTs? There are indeed such a tool we

can develop, named symmetry-twist [27, 28, 291. The essence of SPTs can be captured by

twisting the symmetry, namely we can modify the boundary conditions on some branch cut

acting on the Hamiltonian by modifying the Hamiltonian along the cut. This will transport

the original state to another unique ground state different by a U(1) phase. We can obtain

the U(1) phase by overlapping the the two states. Importantly, this U(1) phase will be

a universal SPT invariant only if we close the orbit in the symmetry-twist phase space by

transporting the states to the original state. Moreover, regarding the low energy field theory

of SPT, the quantum field theory (QFT) formulation of SPT is not transparent as the usual

TQFT for topological orders without symmetry (only gauge redundancy). We will present

these issues in Chap.3.

Further illumination on SPTs and topological orders can be found in review articles listed

in Sec.1.4 under [30, 31, 32, 33, 1.5J.
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1.1.2 Evidence of SPTs and topological orders: Experimental progress

Other than the previous mentioned IQHs and FQHs, there are further rapidly-developing

experiments realizing both TOs and SPTs experimentally (exp.) and theoretically (theo.).

Fxamples of SPTs are Haldane spin-i chain protected by spin rotational symmetry[34, 351

and the topological insulators [30, 31, 36, 37, 381 protected by fermion number conservation

U(1) and time reversal symmetry Z2T. See Table 1.2 for a short summary. The full review

on the theory or experimental progress is beyond the focus and the scope of my intention.

The readers can look for the cited references for more details.

* Symmetry breaking phases:

-500 (bc) Ferromagnet (exp.)

* Topologically ordered states (TOs)

1904 Superconductor (exp.) [Onnes 041 (Z2 topo. order)
1980 IQH states (exp.) [von Klitzing 80 [1611 (with no topo. excitations, free fermion)
1982 FQH states (exp. theo.) [Tsui-Stormer-Gossard 82, Laughlin 83 [17, 1811
1987 Chiral spin liquids (theo.) [Kalmeyer-Laughlin 87, Wen-Wilczek-Zee 89]
1991 Non-Abelian FQH states, (theo.) [Moore-Read 91, Wen 91] (CFT, slave particle)
1991 Z2-spin liquids (theo.) [Read-Sachdev 91, Wen 91, Kitaev 971
1992 All Abelian FQH states (theo.) [Wen-Zee 92] (K-matrix)
2000 px + ip.-superconductor (theo.) [Read-Green 00]
2002 Hundreds symmetry enriched topological orders (theo.) [Wen 02] (PSG)
2005 All 2+1D topo. orders with gapped edge (theo.) [Levin-Wen 051 (UFC)
2009 v = 5/2 non-Abelian FQH states (exp. ?) [Willett et al 091

* SPTs (no topological order and no symmetry-breaking, also called topological states despite
having no topological order)

1983 Haldane phase (theo.) [Haldane 831
1988 Haldane phase (exp. CsNiCl3) [Morra-Buyers-Armstrong-Hirakawa 881
2005 Topological insulators (TI)
2005 TI 2D (theo.) [Kane-Mele 05 [39], Bernevig-Hughes-Zhang 06 [4011
2006 TI 3D (theo.) [Moore-Balents, Fu-Kane-Mele, Roy [36, 37, 38]]
2007 Topological insulators (TI: exp.) [Molenkamp etal 07 [41]]
2010 Topological crystalline insulators (TCI: theo. Fu et al 10, 12 [42, 43])
2012 Topological crystalline insulators (TCI: exp. 12 [44, 45, 46])
2011 SPT states in any dim. for any symm. (theo.) [Chen-Gu-Liu-Wen 11 [12, 13]]

Table 1.2: Theory and experiment progress for TOs and SPTs in a simplified timeline.
Here topological insulator in 2D means the Quantum Spin Hall effect (QSH). Here "exp."
abbreviates the experiment and "theo." abbreviates the theory.
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1.2 Motivations and Problems

1.2.1 Symmetry, Topology and Anomalies of Quantum Matter

With the background knowledge on quantum matter, let us now motivate in a colloquial style

of colloquium on how the symmetry, topology and anomalies can be involved in quantum

matter. This overview can guide us to pose new questions and the statement of the problems

in the next in Sec.1.2.2.

Symmetry, in everyday terms, means the system stays invariant under certain transfor-

mation. To describes the states of matter governed by symmetry, Ginzburg-Landau (G-L)

theory 181 semi-classically dictates the global symmetry realized onsite and locally. How-

ever, quantum wavefunctions become fuzzy due to Heisenberg's uncertainty principle and

spread non-onsite. The symmetry operation can also act non-onsite - the symmetry con-

cept is enriched when understood at a fully quantum level. This new concept of non-onsite

symmetry can be realized on the boundary of some bulk gapped insulating phases, it un-

earths many missing states buried beneath G-L theory. States are identified via local-unitary

transformations, distinct new states are termed SPTs [12, 131.

Anomalies are phenomena that cannot be realized in their own spacetinie dimensions.

A classical analogy is that two-dimensional (2D) waves propagate on the surface of the ocean

require sonme extended dinmension, the 3D volume of bulk water. Similarly, quantum anoma-

lies describe the anomalous boundary physics at the quantum level [41 - the obstruction

to regularizing classical symmetries on the boundary quantized lattice without an extended

bulk. One of the earlier attempts on connecting quantum anomalies and topological defects

are done by Jackiw [6] and Callan-Harvey [47j. In their work, the use of field theory is

implicitly assumed to represent many-body quantum system. In my work, I will directly

establish the quantum anomalies realized on a discretized regularized lattice of many-body

quantum system.

The field theory regularization at high energy in HEP corresponds to the short distance

lattice cutoff in CMP. Using the lattice cutoff as a mean of regularization, we have the

advantage of distinguishing different types of global symmetry operations, namely onsite and

non-onsite. We learn that the quantum variables of onsite symmetry can be promoted to

dynamical ones and thus can be easily "gauged." In contrast, non-onsite symmetry manifests
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"short-range or long-range entangle" properties, hence hard to be gauged: it is an anomalous

symmetry. By realizing that such an obstruction to gauging a global symmetry coincides

with the 't Hooft anomalies [481, we are led to the first lesson:

"The correspondence between non-onsite global symmetries and gauge anomalies."

The correspondence is explicit at the weak gauge coupling. Ironically, we find that gauge

anomalies need only to be global symmetry anomalies. Gauge symmetries are not sym-

metries but redundancies; only global symmetries are real synunetries. Meanwhile, the

non-onsite symmetry is rooted in the SPT boundary property. Thus we realize the second

lesson:

"The correspondence between gauge anomalies and SPT boundary modes [49, 501."

Topology, in colloquial terms, people may mistakenly associate the use of topology

with the twisting or the winding of electronic bands. More accurately, the topology should

be defined as a global property instead of local geometry, robust against any local pertur-

bations even those breaking all symmetries. Thus topological insulators and SPTs are not

really topological, due to their lack of robustness against short-range perturbations break-

ing their symmetry (see also Table 1.4). Our key observation is that since the boundary

gapless modes and anomalous global symmetries of SPTs are tied to gauge anomalies, the

further robust boundary gapless modes of intrinsic topological orders must be associated to

some anomalies requiring no global symmetry. We realize these anomalies violate space-

time diffeomnorphism covariance on their own dimensions. This hints at our third lesson:

'The correspondence between gravitational anomalies and TO's boundary modes [49, 511."

Prior to our recent work [52], the previous two-decades-long study of topological orders in

the CMP community primarily focuses on 2D topological orders using modular SL(2,Z) data

[151. Imagine a bulk topological phase of matter placed on a donut as a 2-torus; we deform

its space and then reglue it back to maintain the same topology. This procedure derives the

mapping class group MCG of a 2-torus T2 , which is the modular group MCG(T2 )-SL(2,7)

generated by an S matrix via 900 rotation and a T matrix via the Dehn twist. Modular

SL(2,Z) data capture the non-Abeliang geometric phases of ground states [53] and describe

the braiding statistics of quasiparticle excitations. Clearly topological orders can exist in
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higher dimensional spacetime, such as 3+1 iD, what are their excitations and how to charac-

terize their braiding statistics? This is an ongoing open research direction.

Regularizing chiral fermion or chiral gauge theory on the lattice non-perturbatively is a

long-standing challenge, due to Nielsen-Ninomiya's no-go theorem on the fermion-doubling

problem [541. Mysteriously our particle physics Standard model is a chiral gauge theory, thus

the no-go theorem is a big challenge for us to bypass for understanding non-perturbative

strong interacting regime of particle physics. Fermion-doubling problem in the free fermion

language is basically saying that the energy band cross the zero energy even times in the

momentum k-space of Brillouin zone due to topological reason, thus with equal number

of left-right moving chiral modes - the fermions are doubled. It suggests that the HEP

no-go theorem is rooted in the CMP thinking. Providing that our enhanced understanding

through topological states of matter, can we tackle this challenge?

Moreover, the nontrivial bulk braiding statistics of excitations and the boundary quan-

tum anomalies have certain correspondence. Will the study of the bulk-edge correspondence

of TOs/SPTs not only guide us to understand exotic phases in CMP, but also resolve the

non-perturbative understanding of particle physics contents, the Standard Model and be-

yond in HEP problems?

1.2.2 Statement of the problems

The above discussion in Sec. 1.2.1 had outlined our thinking and the strategy to solve certain

physics issues. But what exactly are the physics issues and problems? Here let us be more

specific and pin down them straightforwardly and clearly. In my thesis, I attempt to address

the six questions Q.I-VI below and analytically formulate an answer to them:

(Q.I). SPT invariant and its field-theory representation [29, 55J: Topological or-

ders (TOs) and SPTs are very different. For TOs, there are topology-dependent degenerate

ground states on a topology-nontrivial manifold (such as d-torus Td). We can transport the

ground states and determine the non-Abelian geometric phases generated in the coupling

constant moduli-space. More conveniently, we can overlap the wavefunctions to obtain the

amplitude data. These are the universal topological invariant of TOs. How about SPTs?

The challenge is that, with symmetry-protection and without symmetry-breaking, there is

only a unique ground state. Can we obtain the universal SPT invariants? If it is obtainable

from a lattice model, then, is there a field-theory representation of SPT invariants? Can
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we recover the group-cohomology classification of SPT and more beyond than that using

continuous field theory approach?

(Q.II). Bosonic anomalies [56, 571: Quantum anomalies occur in our real-world physics,

such as pion decaying to two photons via Adler-Bell-Jackiw chiral anomaly [58, 591. Anoma-

lies also constrain beautifully on the Standard Model of particle physics, in particular to

the Glashow-Weinberg-Salam theory, via anomaly-cancellations of gauge and gravitational

couplings. The above two familiar examples of anomalies concern chiral fermions and con-

tinuous symmetry (e.g. U(1), SU(2), SU(3) in the weak coupling limit). Out of curiosity, we

ask: "Are there concrete examples of quantum anomalies for bosons instead? And anomalies

for discrete symmetries? Can they be formulated by a continuous field theory and a reg-

ularized lattice model? Are they potentially testable experimentally in the lab in the near

future?"

(Q.III). Topological gapping criteria. Topological degeneracy on a manifold with

gapped domain walls and boundaries [60, 611: By now 2D topological orders are well-

studied. We understand the proper label of a single 2D topological order by a set of "topo-

logical invariants" or "topological order parameters"- the aforementioned modular SL(2, Z)

S, T matrices and the chiral central charge c_. The S, T matrices can be derived from

geometric phases and encode the quasiparticle (or anyon) statistics. Non-zero chiral cen-

tral charge c_ implies the topological gapless edge modes. However, it is less known how

separate topological orders are related. To this end, it is essential to study the following

circumstance: there are several domains in the system and each domain contains a topolog-

ical order, while the whole system is gapped. In this case, different topological orders are

connected by gapped domain walls. Under what criteria can two topological orders be con-

nected by a gapped domain wall, and how many different types of gapped domain walls are

there? Since a gapped boundary is a gapped domain wall between a nontrivial topological

order and the vacuum, we can meanwhile address that under what criteria can topological

orders allow gapped boundaries? When a topologically ordered system has a gapped bulk,

gapped domain walls and gapped boundaries, how to calculate its GSD on any orientable

manifold?

(Q.IV). Define lattice chiral fermion/gauge theory non-perturbatively [501: The

Standard Model is a chiral gauge theory with chiral fermions -- where the weak-interaction
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gauge fields couple to the right-hand and the left-hand fermions differently. We know the

perturbative Lagrangian definition of the Standard Model since 1970. However, we do

not know whether the Standard Model can be regularized on the lattice, due to the Nielsen-

Ninomiya fermion-doubling no go theorem. And we do not have a non-perturbative definition

of Standard Model as a Hamiltonian quantum mechanical theory. We ask: "Whether there is

a local short-range finite quantum Hamiltonian system realizing onsite symmetry G defined

on a spatial lattice with a continuous time, such that its low energy physics produces a

anomaly-free chiral matter theory of symmetry G?"

(Q.V). String and particle exotic braiding statistics [52, 62]: Higher dimensional

topological orders are the new research frontier and are mostly not yet systematically ex-

plored. In 3+1D, the excitations can involve not only particle excitations but also string

excitations. We can ask: How to (at least partially) classify and characterize 3+1D topo-

logical orders? How to characterize the braiding statistics of strings and particles? How to

formulate or construct certain 3+1D topological orders on the lattice? What is the physical

interpretation of braiding statistics data?

(Q.VI). Topological invariants, as quantum statistics derived trom spacetime

surgery [Chap.6: We have mentioned that the mapping class group data from overlap-

ping the wavefunction from a spatial manifold mapped back to another wavefunction on

the same spatial manifold, such as the modular SL(2, Z) data S and T matrices on T2_

torus, provide the universal topological invariants for topological orders (TOs). Now, we

can digest that, the (projective) representations of these modular transformation and the

mapping class group encode the information of TOs, thus encode the information of quan-

tum topology. However, it seems that the mapping class group, or more generally the spatial

topology dictates certain hidden rules governing the quantum topology. We can ask: How

the spacetime topology and the quantum topology are related or associated with each other?

Can the spacetime topology constrains the existence of certain quantum phases? Reversely,

or more profoundly and philosophically, can the quantum topology constrains the existence

of specific spacetime topology?
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1.3 Summary of the key results

Now we shall summarize the key results and answers to the above questions, in a less-formal

but physical intuitive manner. The general perspective on topological states in terms of

symmetry, topology and anomalies is simple, organized in Table 1.3.

Aspects of: Realization in the topological states

Symmetry SPTs with global symmetry, classical topology and gauge or mixed

gauige-gravity anomalies
Topology Topological orders with quantum topology and gravitational anomalies
Anomalies Phenomena happens on the boundary of topological states. The

properties are connected to the quantum nature of the bulk, such as

the symmetry-protection in SPTs or exotic braiding statistics in TOs.

Table 1.3: Perspective on topological states in terms of symmetry, topology and anomalies.

Classical topology: homotopy, mapping and winding numbers, K-theory.
Topology -+ Quantum topology: algebraic topology, (co-)homology, tensor category.

Spacetime topology: fiber bundles, geometric-topology, surgery theory.

Table 1.4: The interplay of classical, quantum and spacetime topology.

The topology issues studied in SPTs and topological orders are rather different. For SPTs,

it is kind of classical topology, concerning the continuous mapping, in terms of homotopy,

mapping and winding numbers, or K-theory. Classical topology is less robust, and SPTs are

not stable against local perturbation which breaks the symmetry. For topological orders, it

concerns quantum topology, which is more algebraic and more robust. Topological order is

robust against any local perturbation. See Table 1.4 for a summary.

We summarize the answers in A.I-VI corresponding to the previous questions Q.I-VI.

(A.I). SPT invariant and its field-theory representation [29, 55]: Even though SPT

has a unique ground state on a closed manifold without symmetry-braking, we achieve to

simulate analogous geometric phase of SPTs. The key idea is to do the symmetry twist,

due to the existence of a global symmetry group G. To define the symmetry twist, we note

that the Hamiltonian H = & H. is invariant under the global symmetry transformation
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U = fa U sites U namely H = UHU . If we perform the symmetry transformation U'

HxEOR U1, only near the boundary of a region R (say on one side of OR), the local term Hx

of H in the Hamiltonian near the boundary of R will be modified: H. -+ Hilx near aR. It is

important to remark that the original symmetry U(g) is local, unitary and onsite and has

a tensor product structure, but the symmetry-twist transformation is not unitary and not

a symmetry transformation. Instead, the symmetry-twist operation is a modification to the

original Hamiltonian. In short,

U(g) = OjUj(g), U(g)HU(g)~' = H, g E G.

H Z= Hx sym.twst along S H + HlnearaR (1.1)
x xgaR xEOR

Suppose the branch cut OR is between the sites indices xo,j and xzji varying j while

moving along the OR, and suppose the interacting Hamiltonian are nearest neighbored

interacting with the local term Hxix. We stress that the symmetry twist can be per-

formed as part of symmetry transformation to modify H' as H x ----- > H-=

U2 j(g)Hx0 jxljUT.Tj(g)-l, however the symmetry twist maintains Hx+,j 9 1  H .

Thus overall the symmetry twist is not a symmetry transformation but a modification on

H to H'.

The above is a lattice Hamiltonian approach. Can we interpret in terms of a continuous

field theory perspective? For systems that realize topological orders, we can adiabatically

deform the ground state |X .S.(g)) of parameters g via:

(4 'g.s.(g + 6g)I g.s.(g)) - - . . Zo ... (1.2)

to detect the volume-independent universal piece of spacetime partition function, Z0 , which

reveals non-Abelian geometric phase of ground states. We can use Zo with the symmetry

twist to probe the SPTs. A symmetry twist implies a change along a codimension-1 surface,

which modifies the SPT partition function from Zo to Zo(sym.twist). Just like the geometric

phases of the degenerate ground states characterize topological orders [51], we believe that

Zo(sym.twist), on different spacetime manifolds and for different symmetry twists, fully

characterizes SPTs. The symmetry twist is similar to gauging the on-site symmetry except

that the symmetry twist is non-dynamical. We can use the gauge connection 1-form A to
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describe the corresponding symmetry twists, with probe-fields A coupling to the matter

fields of the system. So we can write

Zo(sym.twist) = eiso(syi.twist) = iso(A). (1.3)

Here So(A) is the SPT invariant that we search for. This is a partition function of classical

probe fields, or a topological response theory, obtained by integrating out the matter fields

of SPTs path integral [29, 55].

(A.II). Bosonic anomalies [56, 57]: We classify and characterize several types of bosonic

anomalies found on the boundary of bosonic SPTs, as an example on 1+1D edge. One has

induced fractional quantum numbers via symmetry-breaking (similar to Jackiw-Rebbi [63]

and Goldstone-Wilczek [641 effects); one has degenerate zero modes (carrying the projective

representation protected by the unbroken part of the symmetry) either near the OD kink of

a symmetry-breaking domain wall, or on a symmetry-preserving 1D system dimensionally

reduced from a thin 2D tube with a mnonodromy defect ID line embedded. More generally,

the energy spectrum and conformal dimensions of gapless edge modes under an external

gauge flux insertion (or twisted by a branch cut, i.e., a monodromy defect line) through the

ID ring can distinguish many SPT classes. The last one exhibits the many-body Aharonov-

Bohm (A-B) effect [57]. The aforementioned edge properties are explicitly formulated in

terms of (i) a long wavelength continuum field theory involving scalar chiral bosons [65,

66, 67, 56], for a generic finite Abelian symmetry group G = f. ZN,.- We can express the

multiplet (non-)chiral boson action Sedge - f KLLdtdx49t#ki&2j with a K-matrix: K =

( 1)G ( 0 1 (0 1 . and a multiplet of scalar bosons: #1 = (01, 0', 02, 0', with

chiral-anti-chiral pair of scalar modes (4, ' One of our key formulas is the symmetry

operator S completing the group cohomology classification,

S =exp dx ( a+
u,V,wE{1,2,3}

+ -- 0 + #N(N2 N3 )EUVW W -Ox#V(x))1, (1.4)
27r (27r) 2 N123

where pi, pil, pm are nontrivial SPT class indices. Here our discrete formulations: (ii) Matrix

Product Operators and (iii) discrete quantum lattice models provide crucial insights to derive

(i) the field theory formulation. The symmetry transformation can be readily checked by
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calculating SO 1 S 1 with the commutation relations given above. Our lattice approach yields

a regularization with anomalous non-onsite symmetry for the field theory description.

(A.III). Topological gapping criteria. Topological degeneracy on a manifold with

gapped domain walls and boundaries [60, 611. The observation in the third lesson

guides us to study, under what mechanisms, would edge modes protected to be gapless: (i)

the chirality, associated with perturbative gravitational anomalies and gauge anomalies; (ii)

the global symmetry protection; (iii) the bulk nontrivial statistics [60, 681: even for non-

chiral states, global gravitational anomalies can protect gapless edge modes [61]. Conversely,

to determine the edge mode gapping criteria of TOs, we use both TQFT [601 as well as using

SL(2, Z) modular data and category theory [611. Once the boundary modes are gapped, we

can introduce the new concept of boundary degeneracy for ground states on a generic (open

or closed) manifold of gapped boundaries and domain walls [60, 681, which provides richer

information than the old concept of bulk degeneracy on a closed manifold. Intuitively a

gapped boundary is labeled by a set of anyons where they share trivial self and mutual

braiding statistics. We can call this set of particles as condensible particles. In the Abelian

TOs, this set of anyons, with the fusion as operator, form a mathematical group structure

like a lattice. 2 We derive the GSD for TOs on a manifold with gapped boundaries, here in

an intuitive simplified level, as the order of a quotient group between two lattices of Hilbert

space,

GSD lattice of condensible anyons
lattice of condensible non-fractionalized particles

subject to the implicit constraint on neutrality condition of anyon transporting between all

gapped boundaries. Our generic result of boundary GSD recovers the known result of bulk

GSD for a level k or K-matrix Chern-Simons theory (k = 3 for a filling-fraction -FQH

state discussed in Sec.1.1.1) with

GSD = kg, or I det K19 .

on a genus g-Riemman surface. We predict that the Z2 toric code [691 and Z2 double-semnion

model (more generally, the Zk gauge theory and the U(1)k x U(1)_k non-chiral fractional

quantum Hall state at even integer k) can be numerically and experimentally distinguished,

by measuring their boundary degeneracy on an annulus or a cylinder. For a more generic

2 For experts in Chern-Simons TQFT, it is the Chern-Simons quantized lattice Hilbert space.
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non-Abelian TOs, we formulate gapped domain walls and GSD in terms of modular data

S and T in Chap.4. Since gapped domain walls talk to each other through long-range

entanglement, the GSD with domain walls reveals more physics than that without domain

walls. We foresee its practicality in experiments, since we can read even more physics by

putting the system on open surfaces with gapped domain walls.

(A.IV). Define lattice chiral fermion/gauge theory non-perturbatively is a long-

standing challenge, due to Nielsen-Ninomiya's no-go theorem on the fermion-doubling prob-

lem [54}. However, based on our framework, we carefully examine this theorem to discover

at least two approaches to bypass the challenge (see Fig.1-2 (a)): One approach is known

to be Ginsparg-Wilson (G-W) fermions [70, 71, 72, 73, 741 fulfilling the chiral symmetry

non-onsite, where we find G-W fermions are the boundary modes of some SPTs. The second

approach [50] is a bulk trivial insulator placed on a cylinder with gappable boundary modes

of onsite symmetry. We introduce proper interactions within the mirror sector to have one

gapped boundary and leave the light sector gapless with chirality on the other boundary

this approach belongs to the mirror-decoupling framework independently studied since

Eichten-Preskill [75]. This observation guides us to our topological non-perturbative proof

(a) Ginsparg-Wilson's Our approach

qL

= =0
Nontrivial SPT Trival SPT

TopologicalInsulator) (Trnal t

L T T-K 1 .- L=0 ) t -K-t=O
qR L=Kt

Figure 1-2: (a) Gilzparg-Wilson fermions can be viewed as putting gapless states on the
edge of a nontrivial SPT state (e.g. topological insulator). Our approach can be viewed as
putting gapless states on the edge of a trivial SPT state (trivial insulator) and introduce
proper strong interactions to gapped out the mirror sector (in the shaded region). (b) The
equivalence of the boundary gapping criteria and the 't Hooft anomaly matching conditions.
Our proof is based on a bulk theory of Abelian SPT described by a K-matrix Chern-Simons
action 4n f al A daj. A set of anyons, labeled by a matrix L, with trivial mutual and
self statistics is formulated as LT - K-1 - L = 0. This condition is equivalent to a I-loop
anomaly-matching condition for fermions, or more generally as tTKt = 0 for both bosons
and fermions, where t is a matrix formed by the charger coupling between matter fields and
external gauge fields (as solid lines and wavy lines respectively in the Feynman diagram).

[501, the fourth lesson on anomalies, on
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"the equivalence of 't Hooft anomaly matching conditions and the boundary gapping criteria.

See Fig. 1-2 (b) for the equivalence relation in a picture. What we discover reinforces Niels

Bohr's insight: "the hallnark of a deep truth [here the fermion-doubling theorem] is that its

negation is a further deep truth."

(A.V). String and particle exotic braiding statistics and higher dimensional TO

lattice models [52, 62]: We initiate the characterization of higher dimensional topological

orders and their braiding statistics of string/particle excitations [76, 77, 521. For example, we

place a bulk topological phase in a 3D Rubik's cube with parallel faces identified as a 3-torus,

and deform the space but end up maintaining the same topology - this yields SL(3,Z) data.

The SL(d,Z) matrix data can be viewed from two perspectives: first, using the spacetime

path integral, the initial and final wavefunction-overlapping yields those data by the above

deformation process on d-torus. Second, using the mathematical Representation Theory,

the modular data are encoded by gauge groups and cohomology twist inputs. We have

derived both approaches and depicted vivid physics connections to multi-string braiding. In

addition, we systematically construct a lattice Hamiltonian realization of Dijkgraaf-Witten

twisted gauge theory [781 for 3+1D [62], which achieves an extension of Kitaev quantum

double models in 2+1D [691 to the generalized twisted cases and to higher dimensions.

(A.VI). Topological invariants, as quantum statistics derived from spacetime

surgery [Chap.6]: The interplay between quantum topology and spacetime topology is ex-

amined, in a few simple examples. By performing the surgery theory of geonietric-topology

on the spacetime, we show that the quantum fusion rule and quantum statistics are con-

strained by the intrinsic properties of spacetime topology. The exotic quantum statistics

is defined in the adiabatic braiding process in the gapped phases of matter with topologi-

cal orders, therefore the spacetime topology strictly constrains the quantum topology thus

dictates the possible gapped phases of matter.

1.4 Outline of thesis and a list of journal publications

The thesis is organized to address the questions in Sec.1.2.2 and illuminate more in depth

in the Sec.1.3.

In Chapter 2, we warm up by discussing the concepts of geometric phase, wavefunction

overlapping and topological invariants.

30



In Chapter 3, on Aspects of Symmetry, we address the issue in Q.I and A.I on the

procedure to do the symmetry-twist, on the SPT invariant derived from the lattice model or

and its field-theory representation. We also address part of the issues in Q.II and A.II on

bosonic anomalies and their SPT invariants and SPT observables. The reason we discuss part

of anomaly issue here is that remarkably the anomalous edge global symmetry corresponds

to the (gauge) anomalies. The global symmetry can be coupled to a weakly-coupling gauge

fields or external probe fields. So anomalous symmetries manifest quantum anomalies. The

issues of anomalous symmetry and anomalies are intertwined.

In Chapter 4, on Aspects of Topology, we work out Q.1II and A.1II, topological gapping

criteria, topological degeneracy on a manifold with gapped domain walls and boundaries.

We tackle the challenge of Q.V and A.V on string and particle exotic braiding statistics and

TO lattice models in 3+1D.

In Chapter 5, on Aspects of Anomalies, we address Q.IV and A.IV on a non-perturbative

definition of lattice chiral fermion/gauge theory. Other part of discussions are extension of

previous topics from Q.I and A.I on SPT field-theory representation with mixed gauge-

gravity anomalies, and Q.II and A.II on bosonic anomalies.

In Chapter 6, we address the issue in Q.VI and A.VI on quantum statistics data as

topological invariants derived from spacetime surgery. We formulate the constraints of

braiding statistics and fusion analogous to Verlinde's formula in 2+1D and 3+1D. This

approach should be applicable to any spacetime dimension. A more complete study will be

reported elsewhere in the future publication.

Review articles: For a colloquium overview of topological insulators and supercon-

ductors can be found in [30, 311. An earlier version of overview on topological phases is

in [321. An intuitive but less-formal guide to topological insulators and SPTs can be found

in [331. A more recent review on topological order is in [15]. Obviously I must thank S.

Coleman's wonderful book [21 and its inspiration on my thesis and its title. Two impor-

tant reviews on quantum field theory and anomalies: Treiman-Witten-Jackiw-Zumino[4]

and Farhi-Jackiw[3.

Part of the thesis is the overview and the summary for part of the work published

elsewhere.

1. Juven Wang and Xiao-Gang Wen. Boundary Degeneracy of Topological Order. Phys.Rev.,

B91(12):125124, 2015. ArXiv e-prints 1212.4863. [60]
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2. Peng Ye and Juven Wang. Symmetry-protected topological phases with charge and

spin symmetries: Response theory and dynamical gauge theory in two and three di-

mensions. Phys.Rev., B88(23):235109, 2013. ArXiv e-prints 1306.3695. [67]

3. Juven Wang and Xiao-Gang Wen. A Lattice Non-Perturbative Hamiltonian Con-

struction of 1+1D Anonialy-Free Chiral Fermions and Bosons - on the equiva- lence of

the anomaly matching conditions and the boundary fully gapping rules. 2013. ArXiv

e-prints 1307.7480. [501

4. Luiz H. Santos and Juven Wang. Symmetry-protected many-body Aharonov- Bohm

effect. Phys.Rev., B89(19):195122, 2014. ArXiv e-prints 1310.8291[571

5. Juven Wang, Luiz H. Santos, and Xiao-Gang Wen. Bosonic Anomalies, Induced Frac-

tional Quantum Numbers and Degenerate Zero Modes: the anomalous edge physics

of Symmetry-Protected Topological States. 2014. ArXiv e-prints 1403.5256 [561

6. Juven Wang and Xiao-Gang Wen. Non-Abelian string and particle braiding in topo-

logical order: Modular SL(3,Z) representation and (3+1) -dimensional twisted gauge

theory. Phys.Rev., B91(3):035134, 2015. ArXiv e-prints 1404.7854 [521

7. Juven C. Wang, Zheng-Cheng Gu, and Xiao-Gang Wen. Field theory represen- tation

of gauge-gravity symmetry-protected topological invariants, group coho- umology and

beyond. Phys.Rev.Lett., 114(3):031601, 2015. ArXiv e-prints 1405.7689 [79]

8. Tian Lan, Juven C. Wang, and Xiao-Gang Wen. Gapped Domain Walls, Gapped

Boundaries and Topological Degeneracy. Phys.Rev.Lett., 114(7):076402, 2015. ArXiv

e-prints 1408.6514 [61]

9. Yidun Wan, Juven C. Wang, and Huan He. Twisted Gauge Theory Model of Topo-

logical Phases in Three Dimensions. 2014. ArXiv e-prints 1409.3216 [62]

10. Zheng-Cheng Gu, Juven C. Wang, and Xiao-Gang Wen. Multi-kink topolog- ical terms

and charge-binding domain-wall condensation induced symnmetry- protected topologi-
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Chapter 2

Geometric phase, wavefunction

overlap, spacetime path integral and

topological invariants

2.1 Overview

In this chapter, we work through the familiar concept of geometric phase, firstly emphasized

by Berry. The hint and the similar idea have been noticed by Pancharatnam, Aharonov-

Bohm and others that there is an extra geometric phase in addition to the familiar dynam-

ical phase when we perform the adiabatic evolution on the physical system governed by

Hamiltonian. What Berry emphasized is that when the adiabatic evolution trajectory in

the Hamiltonian coupling constant space is closed, then this trajectory-dependent geometric

phase is a physical measurable invariant quantity- this particular geometric phase is invari-

ant in a sense of gauge invariance. Wilczek-Zee noticed the non-Abelian geometric matrix

for adiabatically evolving degenerate states. Wen had the insights to discover topological

orders (TOs) and its GSD for quantum Hall fluids and apply the non-Abelian geometric

matrix together with Chern-Sinions theory of Witten's TQFT to characterize and classify

TOs. Here we digest the development of these ideas in a coherent physical way, and will

develop this approach further to study TOs and SPTs in any dimensions in Chap.3, 4 and

6.
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2.2 Geometric (Berry's) phase and the non-Abelian structure

2.2.1 Geometric (Berry's) phase

Start with the study of wavefunction TI(T (t)) evolving under the time-dependent Hamilto-

nian H = H(T(t)) of some time-dependent coupling constant T. In general, for a series of T'

parameters, we will simply denote them as the parameter T. Our goal is determine I(r(t))

by solving

HIT(T(t))) = in h t II (r (t))).

Let us assume XP'(r(t)) starts at t = 0 from an energy-eigenstate I(r(O)) = 0(r(0))

OEO (T(t)) with an eigen-energy Eo. At every moment we can still find a set of eigenstate

O(T(t)) as bases following H(r(t))#(T(t)) = E(r(t))#(r(t)).

We consider the adiabatic evolution (without sudden exchange energy with external

environment), here in the sense that the time scale dt of changing the energy dE are bounded

between two other scales. One scale is the energy gap of higher/lower excitations, defined

as A ~A =- jEj - Eo . The other scale is the energy splitting 6 between nearly degenerate

ground states around the energy scale E0.1 The adiabatic evolution requires that the energy

changes at the unit time: -- x unit time = e and the rate of change for a unit energy:

dE 1/T axe bounded by:
dt-unit energy ar

A > T ~ F, or equivalently A- 1 < T ~ e. (2.1)

How the scale 6 is set in depends on the physics we look for. If we like to focus on a single

eigenstate without being interfered by other nearly degenerate states, then we will have to

set a finer condition: A > 6 >> T- ~ e, or equivalently, ZA-- < 6- < T _ E-. Indeed,

this is difficult, and it will be easier if we start with an isolated eigenstate instead of the

troublesome nearly degenerate states! However, one interesting piece of physics emerges

when we consider the nearly degenerate states together. We will explore in Sec.2.2.2, the

geometric phase becomes non-Abelian if we are in the time scale where all nearly degenerate

1 A deep side remark: For some miraculous situation, say, ground states of certain many-body systems
such as topological orders, the degenerate states are topologically robust to stay together as nearly degenerate
in the energy spectrum. However, to hold the nearly degenerate into an exact degeneracy requires some
extra symmetry. This extra symmetry may not be robust against local perturbation, and this symmetry is
not required for topological orders. In other words, the topological ground state degeneracy is not an exact
degeneracy, but only an approximate degeneracy!
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states are important:

A >> T- 1 ~ e > J, or equivalently A- 1 < T ~ ei < 6-1. (2.2)

Now let us stick to the simplest condition Eq. (2.1) for a moment with an isolated eigen-

state. We will generalize it to degenerate states in Sec.2.2.2. In this adiabatic evolution,

it is reasonable to write a generic wavefunction 4(r(t)) = e-' ft dsEo(s) . -#(-(t)). The

first piece is dynamical phase which exists even for a time-independent Hamiltonian. The

second piece en can be solved, and one finds the geometric phase:

/ r(t) 

a
r(O), dT' (O(T(t)) Ii aak(TMt)) (2.3)

Several properties of -y are derived:

(i) 7 is a pure phase, -y E R because (q$+ ) is an imaginary number. The wavefunction

maintains unitary in the same eigenstate.

(ii) It has no explicit h-dependence. So we may say the geometric phase remains even at

the classical limit h -+ 0.

(iii) It is geometric and trajectory-dependent. But it has no explicit time-dependent and it

is parametrization independent to r, thus y does not change no matter how fast or slow

the process is as long as the process stays adiabatic. In contrast, the dynamical phase is

explicitly time-dependent.

(iv) It can be written in terms of gauge potential as A - Aa dr0 = (O(r(t))i d4 J(r(t))) dra,

so Y = -4 = K d'r A(T),. In the most general case, A is a connection on a U(1)-

bundle with a base-manifold in the r-parameter space. If the U(1)-bundle is trivial, the

connection A becomes a Lie-algebra valued 1-form, more specifically a 1-form gauge field.

(v) A choice of eigenbasis up to U(1) phase becomes the gauge transformation, if we change

the eigenstate by a unitary transformation 0'(r) = Q(T)#(r) where Q-Q = QtQ = 1, then

the gauge field A' = A + i(dQ)W- 1 => A' = Aa + i(D7)Q- 1. For a single energy level,

Q(T) = e f(0), so the gauge field is transformed as A' = A - df.

(vi) A universal feature of the geometric phase -y arises, if the trajectory is closed with an

enclosed region R. Namely, because f df = 0, the -y does not depend on the choices

of eigenbasis and the basis ("gauge") transformation. If there are multiple parameters

of Tr = (r1 , 2,...), we further define the field strength as: FO = &aAo - O 3A, =
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i(( 0) - ( 0 10)), so

'Yenclosed = A J A(-r) dT JF JFR , dra A dTfl (2.4)
J OR iaR JR J

However, we stress and clarify that the 1-form "gauge field" A and the 2-form "field-strength

curvature" F here are not those in the usual dynamical gauge theory, since it lives in the

probed coupling constant T with values determined by semi-classical external probes.

(vii) We can rewrite the geometric phase -y in terms of Kubo formula or the linear response

theory form. Insert a complete eigenbasis identity matrix I = E.j I#Ej) (OEg into the F.0-

term (be aware, not just for the single eigenstate or nearly degenerate states with energy

Eo(T(t)), but the whole energy spectrum Ej) and then use the analogous Hellmann-Feynman

relation (#EjI IEo) + (Ej - Eo)(OEj |I ), plug in Eq.(2.4), we obtain:

7enclosed E((O o E O O 19 )) aA dT7-3 (2.5)
J R 070 OyO aTO Ogc

IE H OEj(j EQ IEO) (EOI 11 Ej)(OEjIA IEO a
fR 07 -E O) 9 dT' A d-rO. (2.6)

IR. (Eg -Fo)2

We will comment more on the deeper meanings of Eq.(2.5) and Eq.(2.6) after introducing

the more general non-Abelian geometric matrix structure (also called non-Abelian Berry

phase or non-Abelian gauge structure) emerged in degenerate energy states.

2.2.2 Non-Abelian Geometric (Berry's) Structure

We can generalize the approach above to the case with N-fold degenerate energy states of

energy E0 , firstly performed by Wilczek and Zee [531. For degenerate states I#E, a)
with a = 1, ... ,N, we define the 1-form gauge field as

A = Aba,a dTa I i 1b(T))dr- (2.7)

We can prove that Aab is Hermitian: Aab = A. If the coupling T is defined to be real,

we have A = A. The gauge transformation becomes an Q(r) transformation between

degenerate states: 1#') = Qab #b). We find A' = QbAdc(QD-)ca + i(aT& cMQ~ a

namely,

A' = QAQ- 1 + i(dQ)(Q-'). (2.8)
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(viii) -y as a rank-N matrix: The geometric meaning of Eq.(2.4) still holds for non-Abelian

geometric structure, where -y now becomes a rank-N matrix Na for N-degenerate states

at E0 . The geometric phase factor c 7 for Schr6dinger equation becomes a non-Abelian

rank-N matrix:

[C -ylb = P[e i fA, d']M (2.9)

with the path ordering P. For N-degenerate states, we can generalize Eq.(2.5) and Eq.(2.6)

by replacing kkEO) by oE)a) -JEO,a). The modification of Eq.(2.6) requires a higher order

perturbation theory to fix the singular O((Ej-Eo) 2 ) piece, but the term written in Eq.(2.6)

still exists for Ej # Eo.

(ix) We remark that the meanings of Eq.(2.5) and Eq.(2.6) are rather different. First,

Eq.(2.5) only evaluates the single eigenstate kkEo) or nearly degenerate states IOEO.,) with

the same energy E0 , and study its-trajectory enclosed region R's local curvature F in the

Hamiltonian coupling constant space. Second, the form in Eq.(2.6) with a second-order

perturbation form O((Ej - Eo)-2) is associated to the fact that the curvature F has a

second-order derivative. However, Eq.(2.6) also gather extra information about the nearby

higher/lower energy excitations I#Ej), the variation of the full Hamiltonian H, and how

dense these excitations with energy Ej are around EO in the spectrum.

We stress that, from Eq.(2.5) and Eq.(2.6) and the remark (ix),

Geometric phase captures important properties encoded in the target eigenstates, (such

as degenerate ground states, say IO,,)) as in Eq.(2.4) and (2.5). Moreover, geometric

phase also encodes information about the nearby excitation states, as in Eq.(2.6). In

Chap.4 we will utilize this fact to compute the Abelian or non-Abelian braiding statistics

of energetic excitations of strings and particles by studying the geometric phase or

non-Abelian geometric structure of degenerate ground states. Non-Abelian geometric

structure only means that -y is a matrix, the braiding statistics can still be Abelian or

non-Abelian statistics.

We remark on the parametrization of the parameter space:
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The usual gauge theory has a form A = A,, (x)dx" with explicit spacetime dependence

XJL, for a gauge group G, then the A is a connection of a G-bundle. The "gauge field"

A = A(7r)dT' we study depends on the Hamiltonian coupling constant T space. The

"gauge group' depends on the accidental global symmetry of degenerate ground states.

such as U(N) = U(1) x SU(N) for N-fold degeneracy. The state [T) lives in the Hilbert

space.

2.3 Quantum Hall Liquids: From one electron to many elec-

trons on the torus to the effective Chern-Simons theory

Here we like to introduce an additional idea, to use the Berry phase and geometric matrix

structure to characterize and classify 2D quantum Hall liquids. For an interacting system

with N electrons described by the toy-model Hamiltonian [801:

1-2 N
H O- - u('))2 + Z vK(ic: - rj (2.10)

i<j

with a higher order derivative interacting potential VK(( = K (-1)" 6(z)&. The

coordinates of i-th electron is zi = xi + iyi. On the other hand, Laughlin wavefunction was

proposed to be an ansatz for the FQHs with a filling fraction v = 1/K:

--1-E I P,1
'PK({Zi) - zj) c (2.11)

with fB = Vhc/eB and 27re2 B = hc/e = <ho as a unit flux. It is an only approximate

ansatz for the real system, because it does not take into account a finite size system with

a finite radius confining potential and the Coulomb interactions. However, the Laughlin

wavefunction turns out to be an exact ground state of the above Hamiltonian on a 2D

plane for an appropriate vector potential A = !(-By, Bx) in a symmetric gauge and the

background magnetic field B. More generally, we can consider a single or multilayer niany-

body electronic systems as a FQHs described by a wavefunction with a Kjj K-matrix data,

{ 

= [(z ) -zJ))Kij E 2),i KI
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It is believed that the generic system with this type of wavefuinction and their phases at long

wavelength / low energy can be encoded into an effective action of Abelian Chern-Simons

theory:

S= Klj aj A daj. (2.13)

For example, one can check physics observables such as the Hall conductance:

e2  nh e2  ne q * K 1 q e 2
-Y = v- = (_) (2.14)

h eB h B 27r h(

Here q is the charge coupling to the external electromagnetic field. Below we would like to

study the Berry's geometric phase and matrix by putting the TO systems on a 2-torus T2 .

We will discuss both the many electron Hamiltonian pictures and the effective Chern-Simons

theory picture to capture the geometric matrix. One crucial remark we will come back to

justify is that, in order to characterize and classify topological states of matter:

It is important to study the geometric matrix -y of a wavefunction on a spatial manifold

with nontrivial topology, such as a Td torus. We will see that while the U(1) geometric

phase arises for a contractible closed trajectory of r(t), the geometric matrix may only

arise for a non-contractible closed trajectory. A non-contractible closed trajectory in

the Hamiltonian coupling constant T space occurs when the different coupling constants

are identified as the same family of Hamiltonian, due to the spatial nontrivial-topology

manifold.

2.3.1 One electron to many electrons of FQHs on a 2-torus

Haldane-Rezayi [811 gave an explicit one-electron wavefunction under magnetic field on T

which can be generalized to many electrons wavefunction. Let us say the T 2 identifies the

coordinate z = x + iy to z ~ z + 1 and z ~ z + r. Consider H= -4- (&. - iA(r)2, with

the uniform external magnetic field in the Landau gauge A = (AX, Ay) = (-By, 0). At the

lowest Landau level, the degenerate ground states have the following form:

EBY2

)= (Z (x,y) = f(z)c-? , (2.15)

where f(z) includes an odd elliptic theta function 0.(z I T) = exp[i7r-r(n + a)2 +

i27r(n + a)z] on a 2-torus geometry. The wavefunction boundary conditions constrained by
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z + 1 and z z + T gives rise to a relation B = 27rwl between the external B field and
Ty

an integer NO which counts the total number of flux quanta penetrating through the torus.

For many electrons on a 2-torus, we can generalize the wavefunction to:

T({zi}1) = ID({xi, yi}) = f({zi}) C- ' (2.16)

The detailed studies of wavefunction of many electrons can be found in in Ref.[801. To

induce non-contractible loop in the Hamiltonian coupling constant space, we can imagine

the periodicity of the spatial T2 torus also gives the identification of different Hamiltonian

coupling constants, for example, by threading the B flux with some periodic values through

the torus. To study the Berry phase of non-Abelian geometric matrix for many-body wave-

function seems more difficult [80]. Instead, we can define the modified translation operator,

called magnetic translation operator, to incorporate the flux effect into translation. The non-

commutative features of magnetic translation operators capture similar physics like Berry

phase. However, in the next we will study the geometric matrix directly, by implementing

an effective low energy field theory to capture the essential degrees of freedom at ground

states.

2.3.2 The effective Chern-Simons theory and its geometric matrix

In the beginning of this section, we mention that TOs and topological states of matter of

many electrons can be captured by a Chern-Simons (CS) theory Eq.(2.13), one can add an

additional kinetic Maxwell term fj A *fj where fi = dal to introduce dynamics. Such an

approach is firstly used in [14] for a level-k CS theory to study chiral spin liquids, then later

it is generalized to study a generic Abelian FQHs by a Kij-matrix CS theory [821. For a

T2 torus of the size L, x L2 , we can express a,,(x) - 0 (X) + dii(x) with global and local

degrees of freedom respectively. Here x (xo X1, X2), xo = t and i = 0, 1, 2 for spacetime

coordinates. The gauge invariant physical observable ei f aidx . e'Oi is from the global

part, and 0 1i is compact. We can choose a temporal gauge ajo = 0, then the action becomes:

S = f dt 19 (OI1J2 - 0412 0J1) + - ImdOOJ2+ S(d), where the first part concerns the global

Oji, the S(d) concerns the local dji. The kinetic term with mi3 =- Mr'(r)

depends on the coupling constant T from microscopic interactions of many-body systems or
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lattice models. The Hamiltonian in the effective Oij degrees of freedom is:

H =- (m(T)) (&I - iArji)(O01j - iAoj), (2.17)

where Ali depends on 0, T and the K matrix, and we intentionally omit the local excitation

H(d). We can do a coordinate transformation (0il, 912) - (Xi, Y1), so that the Hamiltonian

can be rewritten as: H = V EI(y, - iAix)2 + (6y, - iAiy) 2 . We can view T = Rer +

iIT = Tx + iTy, the compact periodicity is adjusted and identified as

(0il, 012) (Oil + 27r, 012) ~ (911, 012 + 27r) ~ (O0l + 2nrr, 012 + 2mw); n,m c Z.

(XI, Y)~ (X + 1,Y11)~- (XI + 7x, + -yO~ (XI + x, Y + -y ). (2.18)

And we know the ground state wavefunction for this field theory Hamiltonian is in the same

form as Haldane-Rezayi's one-electron Hamiltonian in Sec.2.3.1, we learn:

One-electron ground state wavefunction under an external magnetic field B on T2 has

the equivalent form as the ground state wavefunction of the effective level-K Chern-

Simons field theory by adding the kinetic Maxwell term, where K = 327, or more

precisely for the general K-matrix: (Aix, Ay) = gKij(-Y, 0), so B1 = (V x A)r =

2K 1 . The kinetic Maxwell term gives dynamics to the Hamiltonian field theory, while
-1Y

its mass matrix m('r) depends on the coupling constant r.

Because of the periodicity of Oli, we can identify a set of Hamiltonian of the different

coupling constants (Tx, ry) as the same family. Namely,

(01, 02) - (01, 02) = (01 - 02, 02), then (m'(r)) 1  (m.(7 + 1))1 (2.19)

(01, 02) - (1', 2) (02, -01), then (m'(T)) 1  (m(1/T)) 1  (2.20)

More generally T -+ " with a, b, c, d E Z and det(a) = 1, so T is generated by the

SL(2, Z) group. The full ground state ID, (a r)) can be solved from Eq.(2.17) H + H(&) in

a good basis with a GSD = Idet KI-number of independent states (n = 1, ... , dot KI), so

I<Dn(a I T)) can be expressed in terms of global part 16,(0 1 T)) and local part 1I,,(d I T)), so
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I b,(a T T)) = V'r(O I T))k<D,(& I T)). One can compute the geometric matrix -YI and obtain:

cidr7)=(<bn(T)j<b1(T')) -P[cxp[i J-tT'df(<bs(~r) +-|<b(~))]]
f(0)=T

(n(T) I0.(T')) P[cxp[i d4(9(f) I@iQI))]]c -4

= (4(r) 10l(T')) - e . (2.21)

The first line is generic true by definition. Remarkably the second line is true if T and

T' couplings are identified as the same family of Hamiltonian, 2 namely, identified by the

SL(2, Z) group; the end of the computation shows that,

When r -- r' is generated and identified by SL(2, Z) group, then the geometric matrix

CIn contains the universal piece contributed by a matrix ( (T) 1'01(T')) (the non-

Abelian geometric matrix). On the other hand, the remained contribution is simply a

path-dependent non-universal U(1) factor: e' 00

Moreover,

We can use the generators of SL(2, Z) group to extract the geometric matrix data:

T4=('On(T)11(T 1)) and S,1 = (y(T)j'1(-r- 1)), which takes the inner product of

two wavefunctions from two different Hamiltonian identified in the same family and in

the same Hilbert space.

In [821, it is checked that

"The braiding statistics of anyon excitations (computed by using Chern-Simons theory by

adding source terms: a~j1 with jA contains the anyonic charge vector q)" coincides with

"the non-Abelian Berry's geometric phase / matrix calculation for the degenerate ground

states using a non-contractible loop trajectory in the coupling constant space T. At least

for Abelian CS theory, both results agrees on = = exp[i27iK i up to a total

U(1) phase."
This result shows that ground states indeed encode information of higher energy quasi-

excitations such as their braiding statistics, and this also agrees with the observation made

in the remark after (ix) in Sec.2.2.2.

2 And if the parallel transport of (<b,(~r)1 (<i'-)) adjusts its basis to absorb the non-Abelian matrix.
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2.4 Intermission: Summary of different related approaches,

mapping class group and modular SL(d, Z) representation

From the study of geometric phase insights above, we are able to take several routes to

extend this geometric phase/matrix idea further. First route, is to, instead of taking (i)

inner product of two wavefunctions of two different Hamiltonians, we can directly take (ii)

wavefunction overlap between two different ground states of the same Hamiltonians. This

is proposed as the wavefunction overlap approach [51, 831.

Wavefunction overlap: Given two independent states of degenerate ground states J'a)
and IiP) with any element 0 as the transformation of the wavefunction which is induced by

the automorphism group AMG of the spatial manifold M (a way of mapping the manifold

to itself while preserving all of its structure): AMG(M). We can compute the projective

representation of Oc,, by:

('V''I0OI) = e-#V -OC-. (2.22)

The first term e-v is the volume-dependent term due to the overlapping factor depends

on the number of lattice sites Nattice by: #Nlattice o #"V where all these # are non-universal

numbers. The ... terms are non-universal subleading terms eO(l/V) approaches to 1 as

V -> oo. More specifically, for topological orders with gappable boundaries, it is possible

to use the 0-th homotopy group of the AMG(M): the mapping class group MCG(M) =

7ro[AMG(M )] to fully characterize topological orders [51, 83]. We will give one explicit

analytic example using toric code, in Sec.2.5.

Spacetime path integral or partition function: Second route, instead of taking

an adiabatic evolution by tuning the Hamiltonian coupling constants, we can compute the

spacetime path integral between two wavefunctions under time evolution. In this case,

the Hamiltonian coupling constants need not to be tuned. Actually we need not to know

the Hamiltonian, but just know the spacetime path integral. Indeed this will be the main

approach of my thesis, outlined in Sec.2.6.

Symmetry-twist and wavefunction overlap for SPT: Just like Berry phase ap-

proach which tunes and modifies the Hamiltonian, the modification of Hamiltonian is also

a useful tool if there is only a unique ground state, such as SPTs. We will combine the

wavefunction overlap for different SPT Hamiltonians related by symmetry-twist in Sec. 2.7.
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The discussion here follows Ref.[28, 29, 551.

MCG: Let us summarize the particular MCG of Td torus which we will focus on exten-

sively [521.

MCG(Wd) = SL(d, Z). (2.23)

For 3D, the mapping class group SL(3, Z) is generated

and tiy:

0

$Xyz =I1

0

0

0

1

1

0 ,

0

0

by the modular transformation $xYz

1

1

0

0

01.

11
(2.24)

For 2D, the mapping

Sxy and fxy:

class group SL(2, Z) is generated by the modular transformation

0 -1)

-(1 0 - (0 1
(2.25)

In the case of the uninmodular group, there are the unimnodular matrices of rank N forms

GL(N, Z). Su and Tu have determinant det(Su) = -1 and determinant det(Tu) = 1 for

any general N:

0

1

Su- 0

0

0

0

1

0

0

0

0
0

... (-)N

... 0

... 0

... 0

Tu=

1

0

0

0

1

1

0

0

0

0

0

(2.26)

Note that det(Su) = -1 in order to generate both determinant 1 and -1 matrices. For the

SL(N, Z) modular transformation, we denote their generators as S and T for a general N
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with det(S) = det(T) = 1:

0 0 0 ... (-1)N-1\

100... 0

S= 0 1 0 ... 0 , T U=Tu. (2.27)

0 0 0 ... 0

Here for simplicity, let us denote S"" as S3D, SY as 5 2D, TY = T3D = T2D. Recall that

SL(3, Z) is fully generated by generators S3D and T3D. Some relations of S and T are:

S2D = (T3 S3D) 3 (S3DT3D) 2 S3DT3. (2.28)

By dimensional reduction (note T2D = T3D), we expect that,

5 2D = (S2DT3D) 6 = 1, (S2DT3D) 3 = ec_ D = e C (2.29)

c_ carries the information of central charges. The complex U(1) factor e C- implies that

the representation is projective. We can express

0 1 0

R -1 1 0 = (T3DS3D) 2T 3DDT3DS3DT3DS3D- (2.30)

0 0 1

One can check that

S3DS3D 3D = R (S3DR) 4 = (RS3D) 4 = 1, (2.31)

(S3DR 2 ) 4 = (R 2 S3 D) 4 = (S3DR 3)3 = (R3S3D) 3  (2.32)

(S3DR 2S3D) 2 R2 = R2 (S3DR 2 S3D) 2 (mod 3). (2.33)

Such expressions are known in the mathematic literature, part of them are listed in Ref.1841.

For the sake of clarity on the notation, we will use 0 (S, 5, T or T, etc) for the real-

spAce operation on the wavefunction. We will use the mathcal notation 0 (S, T, etc) for

its projective representation in the ground state basis.
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2.5 Wavefunction overlap on the Kitaev's toric code lattice

model

Now I follow the wavefunction overlap statement described in Sec.'2.4 to exact analytically

extract the geometric matrix. We will consider an exact solvable model: Kitaev's toric code

in 2D, which is a Z2 gauge theory. Consider this toric code on a 2-torus T2 system with a

Hamiltonian composed by Pauli matrices:

H = -- E, A1 - >Ep Bp

4, = a aV,- = a, 2ax 3 ax4, BP = a1 -0=

(2.34)

(2.35)o.z -plap,2 ap,3 ap.4

A, is the vertex operator, By is a plaquette operator; both operators act on the nearest

(a) (b)

Figure 2-1: (a) The square lattice toric code model with A and Bp operators. (b) The
e-string operator with end point e-charge (Z2 charge) excitations, created by a product of

H az. The m-string operator with end point m-charge (Z2 flux) excitations, created by a
product of H a. See an introduction to toric code in [69, 21j.

four neighbored links. Note that A = 1, so the eigenvalues of A,, Bp are +1. Notice

[A,, A',] = [A, Bp] = [BV, Bp,] = 0 for all choices of vertices and plaquette v, v', p, p'

Let us denote 10) = I T) and 11) = 11), which satisfies a-10) = a-z 1) = +1 1). There

are many ground states and niany possible bases. The candidate ground states we will start

with are the equal-weight superpositions of m-loop (corresponds to the I ) state) or e-loop
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(corresponds to the 14) state) configurations:

) = 4( *(1 + Az,))0000 ... ) H( *(1 + At,))I TI ... ) (2.36)

14) =fl( (1 + B,)) -- + ... ) (2.37)
P

Note that: Bp|() = +), A 17 |) = |(). Due to that A2 , 1, we have

At,' fl(i + Av)0000...) = f(i + A)I0000 ... ), (2.38)
V V

Since the right hand side AV, will simply shift those operators without AV, to with one AV,

(another operator HI(1 + AV)); and shift those operators with A, to the operator without

A,, (another operator H,(1 + AV)). So

EAV, FJ(1 + A,)10000 ... ) = N f(1 + A,)0000 ... ) (2.39)
V/ V V

B, B (1 + A,)10000 ... =f (1I + A) Bp|0000 ... ) Np j(1 + A)0000 ... )
p v V p

(2.40)

here Np is the number of plaquette. On the torus, we have Np = N, hence Hj ) = -N,().

So I ) is one of the lowest energy states, the ground states. The initial state we like to

consider can be a fluctuation of the m loops (Ic) state) or e loops ([4,) state). We will focus

on I ) creates m string loop, where m is the flux on the plaquette.

Now we like to generate other linear independent states from Ia). We define T2 torus

with two non-contractible directions X and Y. The definitions are the following:

(1) The operator WV; (or denoted as W\-, see also Chap.6) connecting the non-contractible

directions X with a series of o,: H oz, the e string operator (the end points create two e),

which flips the operator A, = H, UX. The Wy is the e-string along the X direction.

(2) The operator W, (or denoted as Fx, see also Chap.6) connecting the non-contractible

directions X with a series of ax: H ux, the m string operator (the end points create two m),

which flips the operator Bp = H, a,. The W; is the m-string along the X direction.

(3) The operator W% (or denoted as Wy, see also Chap.6) connecting the non-contractible

directions Y with a series of oz: H o,, the e string operator (the end points create two e),

which flips the operator A, = HV uX. The W'V" is the e-string along the Y direction.
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(4) The operator W, (or denoted as Fy in Chap.6) connecting the non-contractible direc-

tions Y with a series of o-,: H o-2, the rn string operator (the end points create two m),

which flips the operator Bp =~ , . The WI is the m-string along the Y direction.

Note that [Wi, W, = [W;, WTi] = 0. W; We = W W;, and WW;x = -W; WV.

Let us start from the superposition of fluctuating m-loop state of J ) = H, ( (1+A,))0000 ... ).

It is important to note that

WfxI) = 1) ) =) (2.41)

adding a non-contractible e-loop W; along x direction on superposed fluctuating m-loop

state gives the same state 1i). However, adding a non-contractible m-loop W; on I()
gives different state. We require an even number of o-z, rn2 overlapping on the IV )=

H oUz R,(1 + l, Ox)10000 ... ) = F,(1 + 1 oX) jo-0O0000 ... ) = K ).

Let us choose W;, W4/ operator as the chosen measurements from all the Hilbert space

operators; we wish to simultaneously diagonalize the two operators in the eigenstate basis.

Meanwhile we wish to define the trivial vacuum ground state 10) as the state where there is

only trivial measurement observed by the Wi 's e loop and W 's Tn. loop along the x direc-

tion. Namely, there is no e or m-string non-contractible loop along the y direction. The goal

is to find a relation between 19) and Ia): 10) = E c(ni,n2,n3,nn4) (VV)"' (HWY,)n2( ')3

(WY)L4I() which satisfies W; I) = 10) and WiD1) = 10). It turns out that our 1 ) as the su-

perposition of the fluctuating rn loop states is important to determine IU). We will find that

ID) simply be the superposition of the 1 ) and the state with a non-contractible

m-loop winding around the x-direction:

1
10) = -() + WI l()). (2.42)
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To prove this, define I(a, b)) = (W;)a(W.)bjK):

Wl(a, b)) = (W )a+1(Wf a )b( ) = |(a+ 1, b)) (2.43)

WII(a, b)) = I(a, b + 1)) (2.44)

Wl I(a, b)) = (1)1(W)a+1(WV)I(WY)I ) = (-1)'I(a, b)) (2.45)

W% I(a, b)) = (-1)aI(a, b)) (2.46)

Here Wxi ') = K) is a nontrivial step. We have contractible loop states r) = P(ax)I00 ... ),

and Wi(Uz)F(u-)I00...) oc F(a,)I00...). This should imply that WxI ) = WeEK) = 1K)

if we have the m-loop superposed state being acted by e-non-contractible loop along any

direction on an even lattice site system.

Define: I( , b)) ((0, b))I(1, b))) we see that WI ( , b)) = (-1)bI( , b)), W I(t, b))

= I(tb)) so Wf(+, 0)) - W;'(+, 0)) = ( 0)).

0) (+,0)) = T('i) + WlV?)) (2.47)

Now, 1I) has no non-contractible e, m along y direction detectible by WY, WV . So all we

need to do is creating e and m along y direction by W' for e and Wn for m.

ID) = -(f(0,)) + (1,0))) = - (1) + WLj K)) (2.48)

le) = Wfl) = ((0, 0)) - 1(1,0))) = (1) - IVl( )) (2.49)

im) = WTI ) = (1(0, 1)) + 1(1, 1))) = r2(W1) + WV WVlK)) (2.50)

Iem) = TVe'Wm I) = (I(0, 1)) - 1(1, 1))) = I (WiK) - W,, K )). (2.51)

Now we can do the modular SL(2, Z) transformation S which sends (x, y) -+ (-y, x).

210) = (I(0, 0)) + 1(0, 1))) = 2(0) + le) + tm) + tem)) (2.52)

SIe) = W' -) = ((0,0)) - j(0, 1))) = (10) + e) - Im) - lem)) (2.53)

SIM) = WrL') = ((-,0)) + (-1, 1))) = -(9) - le) + im) - lem)) (2.54)

SXe0) = W WltD) = -((-1, 0)) - (-1, 1))) (10) - |e) - tm) + lem)).(2.55)
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Clearly, we have now obtained the ideal S matrix in the ideal quasi-particle basis using the

wave function overlap approach:

(01S10) (GISle) (DIS m) (DISIem) ( 1 1

(ejSjg) (elSle) (elSi[m) (elSiem) ( 1 6 -1 -)
(mjSG) (miSle) (m]Sim) (miSlem) 1

(emJSG) (emiSle) (emiSim) (emlSlen) J)-1 -1

This can also be obtained as minimal entangled states (MES), through another approach

by entanglement entropy [851.

Comparison: The final comment is that the adiabatic Berry phase / geometric

matrix calculation has the drawbacks of requiring tuning Hamiltonian coupling constants

thus demanding to access a large class of systems; but it has the advantages of dealing

with non-translational-symmetry, non-periodic and non-lattice system. On the other hand,

the wavefunction overlap has advantages of fixing a single Hamiltonian with different

degenerate ground states; but it has the drawbacks of restricting to translational-symmetry,

periodic and equal-size-lattice system and to the given symmetry of lattice systems (usually

easier to extract S but harder to extract T) [85]. There is also a drawback that in general

there is a volume-dependent factor (4',jIoI) = c* -a,/ ... , although in our square-

lattice toric code example, we did not observe the volume-dependent term in S, but it indeed

occurs in T, at least for square and triangle lattice studied in [831.

2.6 Spacetime path integral approach for the modular S and

T in 2+1D and 3+1D: group cohomology cocycle

Below we will describe the spacetime path integral approach with discretized lattice trian-

gulation of spacetime. There are two versions, one is for topological order where degrees

of freedom live on the links (Sec.2.6.1) while gauge theory summing over all possible gauge

configurations, the other is SPTs where degrees of freedom live on the sites (Sec.2.6.2). In

short, on any closed manifold, the former has iZToI > 1, but the former is restricted to

IZSPT = 1.
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2.6.1 For topological orders

Some kinds of (but not all of) topological orders can be described by twisted gauge theory,

those are gauge theories with cocycle topological terms. See Appendix of Ref.[52 for a review

of cocycles and group cohomology. For a pretty generic twisted gauge theory, there is indeed

another way using the spacetime lattice formalism to construct them by the Dijkgraaf-Witten

topological gauge theory. [781 We can formulate the path integral Z (or partition function)

of a (d + 1)D gauge theory (dD space, 1D time) of a gauge group G as,

Z = 1 eiShY] 1: ei27(Wd+1,Y(Mtri))(n1od2r) = 1 I E ]J(Wd+1'i({9g4b}) IV,,dCTi

0y 1y {G9b}
(2.57)

where we sum over all mappings -y : M -+ BG, from the spacetime manifold M to BG,

the classifying space of G. In the second equality, we triangulate M to Mtri with the edge

[VaVb] connecting the vertex Va to the vertex vb. The action (Wd+1,y(Mtri)) evaluates the

cocycles Wd+1 on the spacetime (d+1)-complex Mtri. By the relation between the topological

cohomology class of BG and the cohomology group of G: Hd+2(BG, Z) = Rd+1 (G, R/Z),[781

we can simply regard Wd+1 as the d + 1-cocycles of the cohomology group jd+1 (G, R/Z). The

group elements gab are assigned at the edge [vatb]. The IGI/IGIN/ factor is to mod out the

redundant gauge equivalence configuration, with the number of vertices N,. Another extra

IG| 1 factor mods out the group elements evolving in the time dimension. The cocycle wd+1

is evaluated on all the d + 1-simplex Tj (namely a d + 2-cell) triangulation of the spacetime

complex. In the case of our 3+1D, we have the 4-cocycle w4 evaluated at the 4-simplex (or

5-cell) as

3 g3.1

-' /

0 ' 2 =w 4 (90 1 912 92 3 93 4 ) (2.58)

goi 1

Here the cocycle W4 satisfies cocycle condition: 6w4 = 1, which ensures the path integral Z on

the 4-sphere S4 (the surface of the 5-ball) will be trivial as 1. This is a feature of topological

gauge theory. The e is the sign of the orientation of the 4-simplex, which is determined by
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the sign of the volume determinant of the 4-simplex evaluated by f = sgn(det( 61 , 02, 03, 04)).

............... '..I

Figure 2-2: The illustration for O(A)(B) (XA1 QB). Evolution from an initial state con-
figuration 141j,,) on the spatial manifold (from the top) along the time direction (the dashed

line - --) to the final state |kPWa,) (at the bottom). For the spatial Td torus, the mapping

class group MCG (Td) is the modular SL(d, Z) transformation. We show schematically the

time evolution on the spatial T2 , and T3. The T3 is shown as a T2 attached ail S' circle at

each point.

We utilize Eq.(2.57) to calculate the path integral amplitude from an initial state con-

figuration il the spatial manifold evolving along the time direction to the final state

|e),see Fig.2-2. In general, the calcuation can be done for the mapping class group

MCG on any spatial manifold M4space as MCG(Mapyece). Here we focus oin MAslxl(ce =T3 and

MCG(j3) = SL(3, Z), as the modular transformation. We first note that | bi) =O|B),

such a generic SL(3, Z) transformation 6 under SL(3, Z) representation can be absolutely

generated by $2"' and t"Y of Eq. (2.24),[841 thus O = O(63 t'y) as a function of $'Y', toy.

The calculation of t he modular S L(3, Z) transformation from IW XPj) to I T,"t) = I TA) by fill-

ing the 4-cocycles W4 into the spacetimle-complex-triangulationi renders the amplitude of the

matrix element O(A)(B):

O(S zzTxY)(A)(B) = (TA I6( xyz, -f) ) (2.59)

both space and time are discretely triangulated, so this is a spacetime lattice formalisml.

Tile modular transformations 5 Y, -fx.-, 5x'yz of Eq.(2.24),(2.25) act oil the 3D real space

54



as

$" -(x, y, z) = (-y, x, z), (2.60)

Txn - (x, y, z) = (x + y, y, z), (2.61)

SV - (x, y, z) = (z, x, y). (2.62)

More explicitly, we present triangulations of them:

y y
3A3 4 4' 2'

SXY t (2.63)

gyy
2* 3 2* 3' 4

TxY : t (2.64)

21 2 
z z
57 8Y 3,V

$S"Y : t.(2.65)

The modular transformation SL(2, Z) is generated by Sxy and ity, while the SL(3, Z) is gen-

erated by xy'Z and txy. The dashed arrow - -- represents the time evolution (as in Fig.2-2)

from 'Iin) to I|Jst) under STy, t"Y, $xyZ respectively. The $xy and txy transformations on

a T3 torus's x-y plane with the z direction untouched are equivalent to its transformations

on a T2 torus.

2.6.2 For SPTs

For convenience we can interchange the non-homogeneous cocycles (the lattice gauge theory

cocycles) and the homogeneous cocycles (SPT cocycles). The definition of the lattice gauge

theory n-cocycles are indeed related to SPT n-cocycles.

wn(A 1 , A 2 , ... , A) = vn(A 1A 2 ... A-,., A 2 .. .An, ... , An, 1) = v(A 1 , A 2 ,. . ,An, 1). (2.66)
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here A -- AjAj 1 ... A,,. Let us focus on 2+1D SPTs with 3-cocycles,

W3 (A, B, C) = v3(ABC, BC, C, 1) => 03(g01, 912, g23) (2.67)

W3(9091 ,9192 ,92931) = v3(9093 ,9 193 1,9293,1) v3(90,91, 2 , 3 )

Here A = goi, B = 912, C = 923, with g.. -bag 1 . We use the fact that SPT n-

cocycle v., belongs to the G-module, such that for r are group elements of G, it obeys

r - Un(ro, ri, ... , _ 1) = v(rro, rr,.. . , rr_, r) (here we consider only Abelian group

G = ]Ji ZN.). In the case without time reversal symmetry, so group action g on the G-

module is trivial.

In short, there is no obstacle so that we can simply use the lattice gauge theory 3-cocycle

w(A, B, C) to study the SPT 3-cocycle v(ABC, BC, C, 1). All we need to do is computing

the 2+1D SPT path integral ZSPT (i.e. partition function) using 3-cocycles w3 ,f36

ZSPT = IGI-N Z J(W 3'(gVag~l}) (2-68)
{gv}i

Here Gl is the order of the symmetry group, N, is the number of vertices, w3 is 3-cocycle,

and si is the exponent 1 or -1 (i.e. the complex conjugate t) depending on the orientation of

each tetrahedron(3-simplex). The summing over group elements g, on the vertex produces

a symmetry-perserving ground state. We consider a specific M 3 , a 3-complex, which can

be decomposed into tetrahedra (each as a 3-simplex). There the 3-dimensional spacetime

manifold is under triangulation (or cellularization) into many tetrahedra.

2.7 Symmetry-twist, wavefunction overlap and SPT invari-

ants

Let us consider a 2D many-body lattice system as an example, we can write a generic

wavefunction as J4'o) = Zg, } ({gi1 ,}{ ,,}), here l{gi,,i,}) is a tensor product

(0) states for each site {i, iyj} assigned with a group element gii,. Now we would like to

modify the Hamiltonian along a branch cut described in the Chap.1, say along the x and y

axes shown in Fig.2-3. H = E Hx sxn.tRoI' DR Z gDR HT + Ex OR H j.|x near aR-

In order for the ordering sequence of applying hx and hy (which is applied first: hx or
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h . h 

(a) (b)

Figure 2-3: S-move is 900 rotation. We apply the symmetry-twist along x and y axis, where

hx and h. are the twisted boundary condition assigned respect to its codimension directions.

(a) A system on T2 with hx and h. symmetry twists. Here T2 has the same size in x and

y directions in order to have meaningful wavefunction overlap. (b) The resulting symmetry

twists after the 5-move.

h h hr

h hx

(a) (b) (c)

Figure 2-4: T-move is the Dehn twist followed by a symmetry transformation hx in the

shaded area. (a) A system on T2 with hx and hy symmetry twists. (b) The resulting

symmetry twists after the T-move. (c) After a local symmetry transformation hx in the

shaded region with a counterclockwise orientation hx acting on the boundary of the shaded

region, the symmetry twists previously shown in (b) become the the new symmetry twists

in x- and y-directions.

hy ) makes no difference for their energy costs (near the branch cut there is still some tiny

energy cost 3 ), we have [hx, hu] = 0.

For the sake of simplicity, we will consider a perfect square lattice with equal periodicity

Lx = Ly. Write Qh,,,({gx,,1,}) as the wave function of I4'h,1,) where hx, hy are the

parameter labels of symmetry-twist and gix,iy are the variables:

iii: ,',) = 4,,h ({gz,,1,})I gi,,i,}). (2.69)
{g ,i}

It is conjectured that the two symmetry-twists hx, hy are good enough, at least for Abelian

SPT of group G since there are |G12-states, in a sense that its gauged theory is TOs with

exactly the same number of degeneracy on the T2 : 1G12 .

3 For a T
2 torus, we have a non-contractible closed loop. In general, if the symmetry twist is on a branch

cut of a non-contractible closed loop, the spectra will be modified. if it is on a branch cut of a contractible

closed loop, the spectra will not be modified.



Naively, we may guess the wavefunction overlap for SL(2, Z) transformation are:

{g9i7 ,i<}{},xi

(2.70)

However, this form is close to the answer, but not entirely correct. Here a and / should

specify the data of symmetry twists. Moreover, because of the SL(2, Z) transformation on

the spatial T2 torus, the symmetry twists a and 3 should also be constrained and related.

The symmetry twists a and 13 should be the same symmetry twists after taking into account

the SL(2, Z) transformation. This means that we will overlap two wavefunctions in the same

family of Hamiltonian, both twisted by the same symmetry-twist.

The state Ih,) changes under the modular transformation. Let us define

IT- > Ih~h(h, i)I)~.i}

19i.T.iy Igi ,iy}| h,,,&,) = T~y(9z i~vl|gos h., ,h, ({g -(,no) gi ,,i}) (2.71)

We note that the state h. ) and the state I|h'h ) have the same symmetry twists if

(h', h') = (hY , hx). Thus we can define a matrix

S(h' h'),(hX~h-!j) = 6h' - 1,h- o(Th',h' I ,h,) = (h1,h1),,.(h,,) h1,h , ) (2.72)

However, I'ITh) and I'hwh ) always have different branch cuts of the symmetry twists (see

Fig. 2-4(b)). To make their symmetry twists comparable, we perform an additional local

symmetry transformation hx in the shaded region Fig. 2-4(b), which changes 1I Th,) to

,T,). Now ITT ) and hl) have the same symmetry twists if (h', h') (hr, h hx)

(see Fig. 2-4(c)). Thus we define a matrix

There is an additional operation called group actions U(g), which sends group ele-

ments to other elements in conjugacy class: h -> ghg- 1 . In general, U(g)IT(hx,hV)) =

Utgh,,g-,ghg-1),(hr,h,) gh.-,ghog-1). The factor U,h.y(g) is a U(1) phase occurs when
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evolving I'J(h,,h,)) to 'q'gh. g1,ghyg ) state. The nontrivial geometric matrix element is:

J 69)(h',,h),(hh,hV) ',gh' -1h,ghyg- ('1(gh,9g',ghg1) I r(g) VP(h,,h,))

=h high~g-16h',g,9y-1 Uh,,h,(9). (2.74

More generally, for any combination of SL(2, Z) transformation, we find that 4

0(h'r,h, ),(hr ,hy) = 01h ( 4 ',6to..-hThy)Nhh' Ixkha.,hy) (2.75)

here 1Q ) is obtained from Z 'h,,h,({Ya.(ix,iy)}){9.i,iy}) subject to an additional

change on a shaded area in order to have the same branch-cut configuration as ;'h.,h,).

In general, there are an area dependent factor with non-universal constants cs, cT:

S(hs,h' ),(h,,hy) - c L2
o(1L)6(hh'),-(h,h)(h,,h,)

T(hh'),(h,hy) = c-CTL 2 +o(1/L) T(h',h' ),'-(hx,hy) hx,hy)

U9)(h1,h'),(hx,hy) = 'h',gh~g-1'h',,ghyg-1Uhx,h,(9). (2.76)

Importantly the U move has no additional volume-dependent factor because it is a group

action which does not deform through any diffeomorphism or MCG elements. Our goal

is to extract the geometric matrix: S(h,,h), T(hx,h,), Uhx,hy (g). However, such geometric

matrices are not yet universal enough. When (h', h') 5 (hx, hg), the complex phases

Shx,hy, Thx,, Uh,,h, (ht) are not well defined, since they depend on the choices of the phases

of I'(h,hy)) and I'I(h',h/)). To obtain the universal geometric matrix, we need to send

I T (hx,hy)) back to IT(hx,h,))- the product of Shx,h,, Thx,h,, Uhx,h, (ht) around a closed orbit

(hr, hy) -+ (h', h') -+ - - (hx, hy) is universal (see Fig. 2-5). We believe that those

products for various closed orbits completely characterize the 2+1D SPTs. The same idea

applies to SPTs in any dimension.

4 Here a,. -O'-o--(h.,hy) is defined as (0 )O'(0 1)(). In particular, o- S, and o, -'T- = T.

It is checked by considering the invariant inner product form (h,, hx) - (k, ) (h', h' (i', y')
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* 0 li 0* 0
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Figure 2-5: The geometric matrix computed from a closed orbit (here in the (hr, h.) space)
gives rise to a universal SPT invariants.
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Chapter 3

Aspects of Symmetry

In Sec.3.1, we extend the idea of symmetry-twist as a similar way of gauging and a way

to couple to external probed field, therefore we can develop an effective probed field action

and partition functions for SPT. In Sec.3.2, we express SPT invariants in terms of physical

observables such as fractional quantum numbers and degenerate zero modes.

3.1 Field theory representation of gauge-gravity SPT invari-

ants, group cohomology and beyond: Probed fields

Gapped systems without symmetry breaking[9, 861 can have intrinsic topological order.

However, even without symmetry breaking and without topological order, gapped systems

can still be nontrivial if there is certain global symmetry protection, known as Symmetry-

Protected Topological states (SPTs). Their non-trivialness can be found in the gapless /

topological boundary modes protected by a global symmetry, which shows gauge or grav-

itational anomalies.[49, 87, 56, 88, 89, 90, 50, 91, 92, 51] More precisely, they are short-

range entangled states which can be deformed to a trivial product state by local unitary

transformation[93, 941 if the deformation breaks the global symmetry. Examples of SPTs

are Haldane spin-i chain protected by spin rotational symmetry[34, 351 and the topological

insulators protected by fermion number conservation and time reversal symmetry.

While some classes of topological orders can be described by topological quantum field

theories (TQFT),[26, 25] it is less clear how to systematically construct field theory with a

global symmetry to classify or characterize SPTs for any dimension. This challenge origi-

61



nates from the fact that SPTs is naturally defined on a discretized spatial lattice or on a

discretized spacetime path integral by a group cohomology construction[12, 781 instead of

continuous fields. Group cohomology construction of SPTs also reveals a duality between

some SPTs and the Dijkgraaf-Witten topological gauge theory.[78, 951

Some important progresses have been recently made to tackle the above question. For

example, there are 2+1D Chern-Simons theory, non-linear sigma models, and an orbifolding

approach implementing modular invariance on ID edge modes. The above approaches have

their own benefits, but they may be either limited to certain dimensions, or be limited to

some special cases. Thus, the previous works may not fulfill all SPTs predicted from group

cohomology classifications.

In this work, we will provide a more systematic way to tackle this problem, by construct-

ing topological response field theory and topological invariants for SPTs (SPT invariants) in

any dimension protected by a symmetry group G. The new ingredient of our work suggests a

one-to-one correspondence between the continuous semi-classical probe-field partition func-

tion and the discretized cocycle of cohomology group, Hd+1 (G, R/Z), predicted to classify

d + ID SPTs with a symmetry group G. Moreover, our formalism can even attain SPTs

beyond group cohomology classifications.[91, 92J

3.1.1 Partition function and SPT invariants

For systems that realize topological orders, we can adiabatically deform the ground state

|'g.,.(g)) of parameters g via:

(4'9 .S.(g + 6g)1I'g.s.(g)) ... Zo ... (3.1)

to detect the volume-independent universal piece of partition function, Z0 , which reveals

non-Abelian geometric phase of ground states. For systems that realize SPTs, however,

their fixed-point partition functions Zo always equal to 1 due to its unique ground state on

any closed topology. We cannot distinguish SPTs via Zo. However, due to the existence of

a global symmetry, we can use Zo with the symmetry twist To define the symmetry twist,

we note that the Hamiltonian H = EZ H, is invariant under the global symmetry transfor-

mation U = lal sites U, namely H = UHU- 1 . If we perform the symmetry transformation

U' = HrOR U only near the boundary of a region R (say on one side of OR), the local term
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H, of H will be modified: H, -+ H Ix near OR. Such a change along a codimension-1 surface

is called a symmetry twist, see Fig.3-1(a)(d), which modifies Zo to Zo(sym.twist). Just

like the geometric phases of the degenerate ground states characterize topological orders,

we believe that Zo(sym.twist), on different spacetime manifolds and for different symmetry

twists, fully characterizes SPTs.

The symmetry twist is similar to gauging the on-site symmetry[95 except that the

symmetry twist is non-dynamical. We can use the gauge connection 1-form A to describe

the corresponding symmetry twists, with probe-fields A coupling to the matter fields of the

system. So we can write

Zo(symn.twist) = eiSo(sym-twist) = eiSo(A). (3.2)

Here So(A) is the SPT invariant that we search for. Eq.(3.2) is a partition function of

classical probe fields, or a topological response theory, obtained by integrating out the

matter fields of SPTs path integral. Below we would like to construct possible forms of

So(A) based on the following principles: (1) So(A) is independent of spacetime metrics (i.e.

topological), (2) So(A) is gauge invariant (for both large and small gauge transformations),

and (3) "Almost flat" connection for probe fields.

U(1) SPTs- Let us start with a simple example of a single global U(1) symmetry. We

can probe the system by coupling the- charge fields to an external probe 1-form field A

(with a U(1) gauge symmetry), and integrate out the matter fields. In 1+1D, we can

write down a partition function by dimensional counting: Zo(sym.twist) = exp[ i L f F]

with F -- dA, this is the only term allowed by U(1) gauge symmetry Ut(A - id)U

A + df with U = e'f. More generally, for an even (d + 1)D spacetime, Zo(sym.twist) =

exp[ i 0 a f F A F A ... 1. Note that 0 in such an action has no level-quantization
(d+ )!(27r)-

(0 can be an arbitrary real number). Thus this theory does not really correspond to any

nontrivial class, because any 0 is smoothly connected to 0 = 0 which represents a trivial

SPTs.

In an odd dimensional spacetime, such as 2+1D, we have Chern-Simons coupling for

the probe field action Zo(sym.twist) = exp[ i ! f A A dA]. More generally, for an odd

(d+1)D, Zo(sym.twist) = cxp[ i d+ 27k(d+2)/2 f A A F A ... ], which is known to have level-
( 2 )! (2i)

quantization k = 2p with p E 7 for bosons., since U(1) is compact. We see that only quantized
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Au A dAv A1AA2AA3

2D yIL
(a) 'x (b) . (..cx ) " X

AuA AvAdAw A 1 AA 2 AA 3 AA 4

3D

(d)z/'

Figure 3-1: On a spacetime manifold, the 1-form probe-field A can be implemented on a

codiinension-1 symmetry-twist (with flat dA = 0) modifying the Hamiltonian H, but the
global symmetry G is preserved as a whole. The symmetry-twist is analogous to a branch
cut, going along the arrow - - -> would obtain an Aharonov-Bohm phase c0 9 with g C G
by crossing the branch cut (Fig.(a) for 2D, Fig.(d) for 3D). However if the symmetry twist

ends, its ends are monodromy defects with dA : 0, effectively with a gauge flux insertion.
Monodromy defects in Fig.(b) of 2D act like OD point particles carrying flux, in Fig.(e) of

3D act like ID line strings carrying flux. The non-flat monodromy defects with dA ? 0
are essential to realize f A dA and f AuA, dAn, for 2D and 3D, while the flat connections

(dA = 0) are enough to realize the top Type f A 1 A2 ... Ad+1 whose partition function on a

spacetime Td+1 torus with (d + 1) codimension-1 sheets intersection (shown in Fig. (c) , (f) in

2+11D, 3+1D) renders a nontrivial element for Eq.(3.2).

topological terms correspond to non-trivial SPTs, the allowed responses So(A) reproduces

the group cohomology description of the U(1) SPTs: an even dimensional spacetime has no

nontrivial class, while an odd dimension has a Z class.

H ZN. SPTs- Previously the evaluation of U(1) field on a closed loop (Wilson-loop) f A,

can be arbitrary values, whether the loop is contractable or not, since U(1) has continuous

value. For finite Abelian group symmetry G = H. ZN,1 SPTs, (1) the large gauge trans-

formation Au is identified by 27r (this also applies to U(1) SPTs). (2) probe fields have

discrete ZN gauge symmetry,

JAT, = 0 (mod 27), AU = 2 N (mod 27r). (3.3)

For a non-contractable loop (such as a S' circle of a torus), n. can be a quantized integer

which thus allows large gauge transformation. For a contractable loop, due to the fact

that small loop has small f A, but n. is discrete, f A, = 0 and nu = 0, which imply the
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curvature dA = 0, thus A is flat connection locally.

(i). For 1+1D, the only quantized topological term is: Zo(sym.twist) = exp[ i kil f A1 A 2]-

Here and below we omit the wedge product A between gauge fields as a conventional notation.

Such a term is gauge invariant under transformation if we impose flat connection dA1 =

dA2 = 0, since 6(A 1 A2 ) = (6A 1 )A 2 +A 1 (6A 2) = (dfi)A 2 +A 1 (df2 ) = -f1 (dA 2)-(dA1 )f2 =

0. Here we have abandoned the surface term by considering a 1+1D closed bulk spacetime

M 2 without boundaries.

* Large gauge transformation: The invariance of Zo under the allowed large gauge trans-

formation via Eq.(3.3) implies that the volume-integration of f 6(A1A 2 ) must be invariant

mod 2N, namely (2 k (2 7 k' = 0 (mod 27r). This rule implies the level-quantization.

* Flux identification: On the other hand, when the ZNi flux from A,, ZN2 flux from A 2

are inserted as ni, n2 multiple units of 27r/N1, 27r/N2 , we have k 1 f A1 A 2 = kl (27)nin2.N1 N2 12

We see that kj1 and k' = ku N N2 give rise to the same partition function Zo. Thus they

must be identified (2w)k ~ (27r)kll + NMN2 , as the rule of flux identification. These two

rules impose

N1N2 I
Zo(sym.twist) = exp[ i P11 (2) f A1 A 2], (3.4)

(2)12 IM2

with k1 = ~ N1 N2
with kil = pll)N N, Pll E ZN 12 . We abbreviate the greatest common divisor (ged)

N12....= gcd(Ni, N2,..., N). Amazingly we have independently recovered the formal group

cohomology classification predicted as 'j2 (H, ZN, D/Z) ZN -

(ii). For 2+1D, we can propose a naive Zo(sym.twist) by dimensional counting, exp[ i k1l f A 1 A2A 3],

which is gauge invariant under the flat connection condition. By the large gauge transfor-

mation and the flux identification, we find that the level k1 il is quantized,thus

Zo(sym.twist) = exp[ i pJIN I A 1 A2 A 3J, (3.5)
(27r)2N123 , 3

named as Type III SPTs with a quantized level pil E ZN12 3 . The terminology "Type"

is introduced and used in Ref.[96J and [521. As shown in Fig.3-1, the geometric way to

understand the 1-form probe field can be regarded as (the Poincare-dual of) codimension-1

sheet assigning a group element g E G by crossing the sheet as a branch cut. These sheets

can be regarded as the symmetry twists[?, ?I in the SPT Hamiltonian formulation. When

three sheets (yt, xt, xy planes in Fig.3-1(c)) with nontrivial elements gj E ZNj intersect
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at a single point of a spacetime V3 torus, it produces a nontrivial topological invariant in

Eq.(3.2) for Type III SPTs.

There are also other types of partition functions, which require to use the insert flux

dA - 0 only at the monodromy defect (i.e. at the end of branch cut, see Fig.3-1(b)) to

probe them:

Zo(syn.twist) = exp[ i - J A, dAV], (3.6)
27r 3y

where u, v can be either the same or different gauge fields. They are Type I, II actions:

P1,1 f A1 dA 1 , P11,12 f A1 dA 2 , etc. In order to have e RM3 A dA 2 invariant under the large

gauge transformation, pn must be integer. In order to have e i P M3 Al 1 well-defined,

we separate A1 = A1 + Af to the non-flat part A 1 and the flat part Al . Its partition

function becomes e 2 fM3 Af dAi. The invariance under the large gauge transformation of

A1 requires pi to be quantized as integers. We can further derive their level-classification

via Eq.(3.3) and two more conditions:

i dA, = 0 (mod 27r), f dA = 0. (3.7)

The first means that the net sum of all monodromny-defect fluxes on the spacetime manifold

must have integer units of 27r. Physically, a 27r flux configuration is trivial for a discrete

symmetry group ZN,. Therefore two SPT invariants differ by a 27r flux configuration on their

monodromy-defect should be regarded as the same one. The second condition means that

the variation of the total flux is zero. From the above two conditions for flux identification,

we find the SPT invariant Eq.(3.6) describes the ZN, SPTs mI c ZN = 3 (ZlNI, R/Z) and

the ZNi x ZN2 SPTs pu E ZN 12 C 1 3 (ZNI X ZN2, IR/Z).

(iii). For 3+1D, we derive the top Type IV partition function that is independent of

spacetime metrics:

Zo(sym.twist) = exp[i pivN1 N 2 N3 N ' A 1A 2 A3 A4}, (3.8)
(27r)3 N1234 fM4

where dAj = 0 to ensure gauge invariance. The large gauge transformation 6A of Eq.(3.3),

and flux identification recover pjv E ZN12 34  ( 1 ZN, R/Z). Here the 3D SPT in-

variant is analogous to 2D, when the four codimension-1 sheets (yzt, xzt, yzt, xyz-branes
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in Fig.3-i(f)) with flat Aj of nontrivial element gj C ZNj intersect at a single point on

spacetime y4 torus, it renders a nontrivial partition function for the Type IV SPTs.

Another response is for Type III 3+1D SPTs:

ri fpn1N1N2
Zo(syM.twist) = exp[i JM42 A1A 2 dA 3 , (3.9)

which is gauge invariant only if dA1 = dA 2 = 0. Based on Eq.(3.3),(3.7), the invariance

under the large gauge transformations requires pm C ZN123 . Eq.(3.9) describes Type III

SPTs: pm E ZN 123  i=1 ZN,, R/Z)-

Yet another response is for Type II 3+1D SPTs:

Zo(sym.twist) = exp[i J ll~1N2A1A2dA2]. (3.10)
JM4 (2,7)2N12

The above is gauge invariant only if we choose A1 and A 2 such that dA1 = dA 2 dA 2 = 0.

We denote A 2 = A 2 + AF where A 2 dA 2 =0, dAF = 0, f A2 = 0 mod 2/N 2, and AF= 0

mod 2w/N2 . Note that in general dA2 # 0, and Eq.(3.10) becomes e 1 2 A 1A4 dA 2

The invariance under the large gauge transformations of A 1 and AF and flux identification

requires pn E ZN 12 = 7j
4(12 1 ZN,, R/Z) of Type II SPTs. For Eq.(3.9),(3.10), we have

assumed the monodromy line defect at dA = 0 is gapped; for gapless defects, one will need

to introduce extra anomalous gapless boundary theories.

3.1.2 SPT invariants and physical probes

Top types: The SPT invariants can help us to design physical probes for their SPTs, as

observables of numerical simulations or real experiments. Let us consider:

Hid+1 NjZo(sym.twist)= exp[ip =1 - 1f AjA 2 . Ad+1, a generic top type fJ+ ZN, SPT

invariant in (d + 1)D, and its observables.

* (1). Induced charges: If we design the space to have a topology (Sl)d, and add the unit

symmetry twist of the ZN1 , ZN2,..., ZNd to the S1 in d directions respectively: f, Aj =

2w/Nj. The SPT invariant implies that such a configuration will carry a ZNd+ charge

Nd+l
P N123 ... (d+ 1)

* (2).Degenerate zero energy modes: We can also apply dimensional reduction to probe

SPTs. We can design the dD space as (Sl)d~ 1 x I, and add the unit ZN, symmetry twists
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along the j-th S' circles for j = 3,. .. , d + 1. This induces a 1+1D ZN x ZN, SPT

invariant exp[ i p N NIN 2 f A1 A 2] on the ID spatial interval I. The OD boundary of
N123... (d 1) 27rN1 2

the reduced 1+1D SPTs has degenerate zero modes that form a projective representation

of ZN x ZN2 symnietry.[56 For example, dimensionally reducing 3+1D SPTs Eq.(3.8) to

this 1+1D SPTs, if we break the ZN3 symmetry on the ZN4 monodromy defect line, gapless

excitations on the defect line will be gapped. A ZN3 symmetry-breaking domain wall on

the gapped monodromy defect line will carry degenerate zero modes that form a projective

representation of ZN x ZN2 symmetry.

* (3).Gapless boundary excitations: For Eq.(3.8), we design the 3D space as S1 X M2 , and

add the unit ZN4 symmetry twists along the S' circle. Then Eq.(3.8) reduces to the 2+1D

ZN x ZN2 x ZN3 SPT invariant exp[ i piv N i N f A1A 2A 3 J labeled by piv N123 C

ZN 123 c R
3 (ZN1 X ZN2 x ZN3 , IR /Z). Namely, the ZN4 monodromy line defect carries gapless

excitations identical to the edge modes of the 2+1D ZN x ZN2 x ZN3 SPTs if the symmetry

is not broken.

Lower types: Take 3+1D SPTs of Eq.(3.9) as an example, there are at least two ways to design

physical probes. First, we can design the 3D space as M2 X I, where M2 is punctured with

N3 identical monodromy defects each carrying n3 unit ZN3. flux, namely dA3 = 27rn3

of Eq.(3.7). Eq.(3.9) reduces to exp[ i Pinfl 3 2 f A4A2], which again describes a 1+11D(27)N12  ~ wihaandsrbsa11

ZN1 X ZN2 SPTs, labeled by p111n3 of Eq.(3.4) in K 2 (ZNI x ZN2 , R/Z) = ZN12 . This again

ha)sI nn briundr-eeeat-elmds

Second, we can design the 3D space as Si X M 2 and add a symmetry twist of ZN along

the Si: Js A4 = 27rn1I/NI, then the SPT invariant Eq.(3.9) reduces to exp[ i p nN 2 fA 2 dA 3 ,

a 2+1D ZN 2 x ZN3 SPTs labeled by pil -N 2 of Eq.(3.6).

& (4).Defect braiding statistics and fractional charges: These f A dA types in Eq.(3.6), can

be detected by the nontrivial braiding statistics of monodromy defects, such as the parti-

cle/string defects in 2D/3D. Moreover, a ZN monodromy defect line carries gapless exci-

tations identical to the edge of the 2+1D ZN 2 x ZN3 SPTs. If the gapless excitations are

gapped by ZN2-symmetry-breaking, its domain wall will induce fractional quantum numbers

of ZN3 charge,[56] similar to Jackiw-Rebbi[63 or Goldstone-Wilczek[64 effect.

U(1)' SPTs- It is straightforward to apply the above results to U(1)"' symmetry. Again,

we find only trivial classes for even (d + 1)D. For odd (d + 1)D, we can define the lower type

action: Zo(sym.twist) = exp[ i _ 22rk f A. A F, A .. .]. Meanwhile we emphasize
( 2 )! (27r) (+)2
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that the top type action with k f A1 A 2 ... Ad+1 form will be trivial for U(1)' case since

its coefficient k is no longer well-defined, at N -> oo of (ZN)' SPTs states. For physically

relevant 2+ 1D, k E 2Z for bosonic SPTs. Thus, we will have a Z1 x Zm"(m-1)/2 classification

for U(1)' symmetry.

We have formulated the spacetime partition functions of probe fields (e.g. Zo(A(x)),

etc), which fields A(x) take values at any coordinates x on a continuous spacetime manifold

M with no dynamics. On the other hand, it is known that, (d + 1)D bosonic SPTs of sym-

metry group G can be classified by the (d+1)-th cohomology group ' d+1(G, IR/Z) (predicted

to be complete at least for finite symmetry group G without time reversal symmetry). From

this prediction that bosonic SPTs can be classified by group cohomology, our path integral

on the discretized space lattice (or spacetime complex) shall be mapped to the partition

functions of the cohomology group - the cocycles. In this section, we ask "whether

we can attain this correspondence from "partition functions of fields" to "cocycles of group

cohomology?" Our answer is "yes," we will bridge this beautiful correspondence between con-

tinuum field theoretic partition functions and discrete cocycles for any (d + 1)D spacetime

dimension for finite Abelian G = ] ZNs.

3.1.3 Correspondence

The partition functions have been treated with careful proper level-quantizations via large

gauge transformations and flux identifications. For G = H. ZN, the field A,, B,,, C., etc,

take values in ZN,1 variables, thus we can express them as

A 2wrgu 27rg1 hu 2________AN %C 2~rguhulu (3.11)
Nu Nu Nu

with gu, hu, lu E ZN.. Here 1-form Au takes gu value on one link of a (d+ 1)-simplex, 2-form

Bu takes gu, hu values on two different links and 3-form Cu takes 9u, hu, lu values on three

different links of a (d + 1)-simplex. These correspondence suffices for the flat probe fields.

In other cases, we also need to interpret the non-flat dA # 0 at the monodromy defect

as the external inserted fluxes, thus we identify

dAu r27r(gu + hu - [gu + hu])
Nd~(3.12)
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partition function Z (d + 1)-cocycle Od+1
TI 2

7ri )j
Oi exp(i pI f Ai) exp -s-V al

111 exp(i$ pf A1 A2 ) J exp " alb2

211 exp(i f Ai dAj) exp ai(bi + ci - [bi + ci]))

exp(ipi f C) exp ( 4"2aibici)

211 exp(iP f Ai dA 2 ) exp al1(b2 + c 2 - [b2 + c 2 ]))
N, N2  (2ipjexp(ipjj 2W)Nif AlB 2 ) exp "-i aib2 c 2

211 exp(ip f A 1 A2 A 3 ) exp " aib2c3

311 exp(i 1 AIA2dA2) exp 2rip) (aib2 )(c 2 + d2 - [c2 + d 2 ]))I ~~.XF~~lfP 1 ('1 2 ) (2yir 2 112U2 (N 1 .N)

exp N AjC2 ) exp(29 "aib2 c2 d2 )ex~pI 2 (2)N

311 exp(ifpn 2 A2 A 1 dA 1 ) exp (a2bi)(ci + di - [ci + dii))

exp(ipjj N N f A2 Ci) x(2 a2bicidi)e (2 NM2 fAC exp (12

311 exp(iP 2 3) ' f(AiA 2 )dA 3 ) exp (N N-) (aib-2 )(c 3 + d3 - [c3 + d 3]))
exp(i 1 NN f AIA 2 B3 ) exp ( " ajb2 c3 d3 )

31 p ) 2 
N (A3A1)dA 2) exp 11 (12 3) a3bi)(c2 + d2 - [c2 + d21))

exp(i pi A3 A41B 2 ) exp ( " a3bic2d2)
3+1 [exp(i PIf A 1 A2 A 3 A4) exp ( aib2 3 d4 )

41A exp(i Ai idA) exp al(bi + cl - [bi + ci])(di + ei - [di + efl)

411 exp(ipv NN4 f A1 A 2 A 3 A 4 A 5 ) exp ('V aib2c 3 d4 e5 )

Table 3.1: Some derived results on the correspondence between the spacetime partition
function of probe fields (the second column) and the cocycles of the cohomology
group (the third column) for any finite Abelian group G = H ZN.. The first column
provides the spacetime dimension: (d + 1)D. The even/odd effect means that whether their
corresponding cocycles are nontrivial or trivial(as coboundary) depends on the level p and
N (of the symmetry group ZN) is even/odd. Details are explained in Sec 3.1.4.

here [g, + h] = g, + h. (mod N). Such identification ensures dA, is a multiple of 27r

flux, therefore it is consistent with the constraint at the continuum limit. Based on the

Eq. (3.11) (3.12), we derive the correspondence in Table 3.1, from the continuum path integral

Zo(sym.twist) of fields to a U(1) function as the discrete partition function. In the next

subsection, we will verify the U(1) functions in the last column in Table 3.1 indeed are the

cocycles wd+1 of cohoniology group. Such a correspondence has been explicitly pointed out

in our previous work Ref.[521 and applied to derive the cocycles.
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Partition function Z Rd+ Kunneth formula in d+1 (G, IR/Z)

Oil e( P-- j A 1  ' N1  [ HI(ZN1,R/Z)

1) 1 e(iP -. j A,1A2) ZN12 (N,, R Z H(N:, RZ

21-1 e(i P. - A1 dA1 ) ZN1  3 (ZN1,OU/Z)

211 eVP.. Ai dA 2 ) ZN12 N /Z) OZ '(ZN,, R/Z)

2+1 e(ip.. j A 1A2A3 ZN1 23  [' (ZN1, IR/ SZ H'(ZN2, IR/Z)]Z ? (ZN3, 1/Z)

3+1 e (i p.. AlA 2 dA 2) ZN 12  R'(ZN 1 , R/Z)NZ 3 (ZN2 Y/Z)
311 e(i P.. f -42 A-idA 1) ZN 12  R1(ZN 2 , R/Z)[Z R3 N 1 R/Z)

31-1 ep..(A 1 A 2 )A 3) ZN123  [ N1 , R/Z) Z'(ZN2 , R/Z) GZ H1 ZN3, 1R/Z)
3+1 e(i p.. j (A 1 dA 2 )A 3 ) ZN123  [K'(ZNIIR/Z) OZ N'(ZN2 , R/Z)] Wz (Z N IR/Z)
311 e(ip.. J A 1 A2 A3 A 4 ) IZN1234 [R (ZN) 9Z 1 (ZN2 )] oz '(ZN 3 ) Z '(ZN4 )

4-1 0p..J A 1 dAidA 1) ZN H5 N1  -N

4 1 e(i p.. f A 1 dA 1 dA 2) ZN12  3 tZN1  R Z R/ K )N 2  IR/Z)

41-1 e(i P.. j A2 dA 2 dA 1) ZN12  H3 (ZN 2 , R/Z) GZ 'ZN 1 , PIZ)

4-11 e(P -f A 1 dA 1 A 2 A 3) ZN 123  [3 (ZN1, IR/Z) 0Z H'(ZN2,IR/Z)I NZ W'(ZN3 , /Z)]
4+11 e~'"---A2 dA 2A 1 A) ZN12  [ 3 (ZN2,IR/Z) Z N

411 e( P- f A- dA 2 dA3) ZN123 N IRZ H (ZN, IR/Z) Z K'(ZN3, /Z)
411 e(i p- f AlA2A3 dA3) ZN 123  [['(ZN1 ,R/Z) OZ K'(ZN2, R/Z)I z 3 (ZN 3 , /Z)
4+F1 e(ip..f AidA2A3A4) ZN1234  [[R1 (ZN 1) Z 7(ZN2)I NZ R(ZN 3)] Z W1(ZN4 )

4+1 e(ip--fA1A2dA3A4) ZN1 23 4  [[R1 (ZNi) 9Z W1(ZN2)] OZ R1(ZN 3)] NZ H1(ZN,4 )

4-1-1 e(i p..fA 1 A2 A3 dA 4 ) ZN123 4  [[H1(ZN,) NZ W1(ZN)] NZ HI(ZN3 )] OZ HI(ZN4 )

41l (iP. A 1A 2 A 3A 4 A5 ) ZN12 3 41  Kl(ZN 1) Z'(ZN 2) Z'(ZN3 )0z' (ZN4 ) SZK'(ZN )

Table 3.2: From partition functions of fields to Kiinneth formula. Here we consider a
finite Abelian group G = Fl,, ZN,. The field theory result can map to the derived facts about
the cohomology group and its cocycles. The first column provides the spacetime dimension:
(d + 1)D. Here the level-quantization is shown in a shorthand way with only p.. written,
the explicit coefficients can be found. In some row, we abbreviate R1 (Zn,, DR/Z) = 71 (Zn,).

The torsion product Tort - z evokes a wedge product A structure in the corresponding
field theory, while the tensor product &z evokes appending an extra exterior derivative Ad
structure in the corresponding field theory. This simple observation maps the field theoretic
path integral to its correspondence in Kiinneth formula.

We remark that the field theoretic path integral's level p quantization and its mod rela-

tion also provide an independent way (apart from group cohomology) to count the number of

types of partition functions for a given symmetry group G and a given spacetime dimension.

In addition, one can further deduce the Kiinneth formula from a field theoretic partition

function viewpoint. Overall, this correspondence from field theory can be an independent

powerful tool to derive the group cohonology and extract the classification data.
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Type I Type II Type III Type IV ...
ZN ZN__ ZN _ ZNj_-+- Zgcd .^(N) ZgcdedN(W

_(G,R/Z) 1
H2 (GIR/Z) 0 1
J-L3(G, IR/Z) 1 1 1
W4(G, R/Z) 0 2 2 1
-R(GR/Z) 1 2 4 3 ...

?-L t (G, R/Z) 0 3 6 7 ._.

( G 2 4 ,-/---- ... ... ... ...

Table 3.3: The table shows the exponent of the Zgcd®)(N) class in the cohomology group

)j(G, R/Z) for a finite Abelian group. Here we define a shorthand of Zgcd(Ni,Nj) ZNj~
Zgcdo?(Ni), etc also for other higher gcd. Our definition of the Type m is from its number

(m) of cyclic gauge groups in the gcd class Zgcdo (Ni). The number of exponents can be
systematically obtained by adding all the numbers of the previous column from the top row
to a row before the wish-to-determine number. This table in principle can be independently
derived by gathering the data of Table 3.2 from field theory approach. Thus, we can use
field theory to derive the group cohomology result.

3.1.4 Cohomology group and cocycle conditions

To verify that the last colunm of Table 3.1 (bridged from the field theoretic partition func-

tion) are indeed cocycles of a cohomology group, here we briefly review the cohomology

group Nd+l (G, IR/Z) (equivalently as jid+l (G, U(1)) by IR/Z = U(1)), which is the (d + 1)th-

cohomology group of G over G module U(1). Each class in 7id+l (G, IR/Z) corresponds to

a distinct (d + 1)-cocycles. The n-cocycles is a n-cochain, in addition they satisfy the n-

cocycle-conditions 6w = 1. The n-cochain is a mapping of W(a,, a2, . .., a,,): G' -* U(1)

(which inputs ai c G, i = 1,...,n, and outputs a U(1) value). The n-cochain satisfies the

group multiplication rule:

(w1 - w2)(al, . . ., an) = wj(al, . . ., a.) - w2 (ai, . . , a.), (3.13)

thus form a group. The coboundary operator 6

6c(g1, . ,n+m) c(92,. - ,n+1)c(gi, .. . ,g7 (-1)n+ - c(gi, . ggj+1, -- - W
j=1

(3.14)

which defines the n-cocycle-condition 6w = 1. The n-cochain forms a group C', while the n-

cocycle forms its subgroup Z". The distinct n-cocycles are not equivalent via n-coboundaries,

where Eq.(3.14) also defines the n-coboundary relation: if n-cocycle w,, can be written as
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w, = i, for any (n - 1)-cochain Q,,+, then we say this W." is a n-coboundary. Due

to 62 = 1, thus we know that the n-coboundary further forms a subgroup B . In short,

B"' C Z' C C" The n-cohomology group is precisely a kernel Z" (the group of n-cocycles)

mod out image B (the group of n-coboundary) relation:

'H"(G, R/Z) = Z"/B". (3.15)

For other details about group cohonology (especially Borel group cohomology here), we

suggest to read Ref.[52, 961 and Reference therein.

To be more specific cocycle conditions, for finite Abelian group G, the 3-cocycle condition

for 2+1D is (a pentagon relation),

w(b, c, d)w(a, bc, d)w(a, b, c)
6w (a, b, c, d) = -- ,= 1. (3.16)

w(ab, c, d)w(a, b, cd)

The 4-cocycle condition for 3+1D is

6w (a, b, c,d,e) z--w(b, c, d, e)w(a, bc, d, e)w(a, b, c, de) (3.17)
w(ab, c, d, e)w(a, b, cd, e)w(a, b, c, d)

The 5-cocycle condition for 4+1D is

w(b, c, d, e, f)w(a, bc, d, e, f) w(a, b, c, de, f)w(a, b, c, d, e)
6w(a, b, c, d, e, f) == 1. (3.18)w(ab, c, d, e, f) w(a, b, cd, e, f)w(a, b, c, d, ef)

We verify that the U(1) functions (mapped from a field theory derivation) in the last column

of Table 3.1 indeed satisfy cocycle conditions. Moreover, those partition functions purely

involve with 1-form A or its field-strength (curvature) dA are strictly cocycles

but not coboundaries. These imply that those terms with only A or dA are the precisely

nontrivial cocycles in the cohomology group for classification.

However, we find that partition functions involve with 2-form B, 3-form C or

higher forms, although are cocycles but sometimes may also be coboundaries at

certain quantized level p value. For instance, for those cocycles correspond to the partition

functions ofp fC1, f A 1B 2 , 2 f A1C2, _ f A2C1, 1A 2 B3 ,
(2(2irN 1W 2 A1  2  ) , 2C 17N23f i

.. -1 f A 3A 1B2 , etc (which involve with higher forms B, C), we find that for G = (Z2)

symmetry, p = 1 are in the nontrivial class (namely not a coboundary), G = (Z4 )n symme-
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try, p = 1, 3 are in the nontrivial class (namely not a coboundary). However, for G = (Z3 )"

symmetry of all p and G = (Z)" symmetry at p = 2, are in the trivial class (niamely a

coboundary), etc. This indicates an even-odd effect, sometimes these cocycles are non-

trivial, but sometimes are trivial as coboundary, depending on the level p is even/odd and

the symmetry group (ZN)' whether N is even/odd. Such an even/odd effect also bring

complication into the validity of nontrivial cocycles, thus this is another reason

that we study only field theory involves with only 1-form A or its field strength

dA. The cocycles composed from A and dA in Table 3.1 are always nontrivial

and are not coboundaries.

We finally point out that the concept of boundary term in field theory (the surface

or total derivative term) is connected to the concept of coboundary in the cohomol-

ogy group. For example, f(dA 1 )A 2A 3 are identified as the coboundary of the linear

combination of f A 1A 2 (dA 3 ) and f A1 (dA 2 )A 3 . Thus, by counting the number of distinct

field theoretic actions (not identified by boundary term) is precisely counting the num-

ber of distinct field theoretic actions (not identified by coboundary). Such an observation

matches the field theory classification to the group cohomology classification. Furthermore,

we can map the field theory result to the Kiinneth formula listed via the correspondence:

JAl ~ I(ZN1 , i/Z) (3.19)

AldA 1  W 3 (ZN1 , IR/Z) (3.20)

A, dAi dAI ~ -((ZN1, i/Z) (3.21)

Tor -- Nz A (3.22)

&Z ~ Ad (3.23)

A1 A A 2  ~ (ZN IR/Z) NZ '(ZN 2 , (R/Z) (3.24)

JA1 A dA2  ~ N1 (ZN1, IR/Z) OZ RI (ZN 2 , IR/Z) (3.25)

To summarize, in this section, we show that, at lease for finite Abelian symmetry group

G = H] 1 ZNi, field theory can be systematically formulated, via the level-quantization

developed earlier, we can count the number of classes of SPTs. Explicit examples are or-

74



ganized in Table 3.1 where we show that our field theory approach can exhaust all bosonic

SPT classes (at least as complete as) in group cohomology:

H2 (G, IR/Z) = J ZN, (3.26)
1<i<jsk

-t3(G, IR/Z) = 1 ZN X ZNj X ZN_, (3.27)
1&i<j<i<k

H4f(G, PIZ) = 1 (ZNi )2 X (ZNij) 2 X ZNij. (3.28)
1<i<j~l<m<k

and we also had addressed the correspondence between field theory and Kiinneth formula.

3.1.5 Summary

- The recently-found SPTs, described by group cohomology, have SPT invariants in terms

of pure gauge actions (whose boundaries have pure gauge anomalies[49, 50, 56, 88, 891).

We have derived the formal group cohomology results from an easily-accessible field theory

set-up. For beyond-group-cohoiology SPT invariants, while ours of bulk-onsite-unitary

symmetry are mixed gauge-gravity actions, those of other symmetries (e.g. anti-unitary-

symmetry time-reversal ZT) may be pure gravity actions.[92I SPT invariants can also be

obtained via cobordism theory,[91, 92, 901 or via gauge-gravity actions whose boundaries

realizing gauge-gravitational anomalies. We have incorporated this idea into a field theoretic

framework, which should be applicable for both bosonic and fermionic SPTs and for more

exotic states awaiting future explorations.

3.2 Induced Fractional Quantum Numbers and Degenerate

Zero Modes: the anomalous edge physics of Symmetry-

Protected Topological States

We will now focus on 2+1D bulk/1+1D edge and go further to consider the edge modes of

lattice Hamiltonian with G = ZN, x ZN2 x ZN, symmetry on a compact ring with M sites
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1 M
2 M-1

3

Figure 3-2: The illustration of 1D lattice model with M-sites on a compact ring.

(Fig.3-2). For any finite Abelian group G, we can derive the distinct 3-cocycles:

W(')(A, B, C) = exp (2 a(bj + cj - [bj + ci])) (3.29)

4(A, B, C) = exp a1 (b + c. - [bj + cj])) (3.30)

w 1 (A, B, C) = exp ( 2 ijI ai bjc, (3.31)
gcd(Ni, Nj, N1)

so-called Type I, Type II, Type III 3-cocycles[961 respectively. Since there are at most three

finite Abelian subgroup indices shown in Eq.(3.29),(3.30),(3.31), such a finite group with

three Abelian discrete subgroups is the minimal example containing necessary and sufficient

information to explore finite Abelian SPTs. Such a symmetry-group G may have nontrivial

SPT class of Type I, Type II and Type III SPTs. Apparently the Type I SPTs studied in our

previous work happen,[57 which are the class of p, C Z N , in W 3 (ZN, X ZN2 X ZN 3 , U(1)).

Here and below we denote u, v, w E {1, 2, 3} and u, v, w are distinct. We will also introduce

is the new class where ZN. and ZNo, rotor models "talk to each other." This will be the

mixed Type II class pu E ZN., where symmetry transformation of ZN, global symmetry

will affect the ZN2 rotor models, while similarly ZN2 global symmetry will affect the ZN

rotor models. There is a new class where three ZN1 , ZN2 , ZN3 rotor models directly talk

to each other. This will be the exotic Type III class P123 C ZN12 3 , where the symmetry

transformation of ZNu, global symmetry will affect the mixed ZNo,, ZN, rotor models in a

mutual way.

To verify that our model construction corresponding to the Type I, Type II, Type III

3-cocycle in Eq.(3.29),(3.30),(3.31), we will implement a technique called "Matrix Product

Operators" in Sec.3.2.1. We would like to realize a discrete lattice model in Sec.3.2.2 and a

continuum field theory in Sec.3.2.3, to capture the essence of these classes of SPTs.
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3.2.1 Matrix Product Operators and Cocycles

There are various advantages to put a quantum system on a discretize lattice, better than

viewing it as a continuum field theory. For example, one advantage is that the sym-

metry transformation can be regularized so to understand its property such as onsite or

non-onsite. Another advantage is that we can simulate our model by considering a dis-

cretized finite system with a finite dimensional Hilbert space. For our purpose, to regu-

larize a quantum system on a discrete lattice, we will firstly use the matrix product op-

erators (MPO) formalism (see Ref.[971 and Reference therein) to formulate our symmetry

transformations corresponding to non-trivial 3-cocycles in the third cohomology group in

'H3 (ZN X ZN 2 , U(1)) = ZN1 X ZN2 X ZN12 -

First we formulate the unitary operator S as the MPO:

S = Z tr[ T' 1 9IC . I/iM li, I... , i0)(ji, . . ., M. (3.32)

with the its coefficient taking the trace (tr) of a series of onsite tensor T(g) on a lattice,

and input a state lj1,...,jm) and output another state iji,.. ,ji 1 ). T = T(g) is a ten-

sor with multi-indices and with dependency on a group element g E G for a symmetry

group. This is the operator formalism of matrix product states (MPS). Here physical indices

1, 32,. - , jr and jl, j . . . are labeled by input/output physical eigenvalues (here ZN

rotor angle), the subindices 1, 2,..., M are the physical site indices. There are also virtual

indices a1, a2,. .. , ac which are traced in the end. Summing over all the operation from

{j, j'} indices, we shall reproduce the symmetry transformation operator S. What MPO

really helps us is that

by contracting MPO tensors T(g) of G-symmetry transformation S (here g 6 G) in differ-

ent sequence on the effective 1D lattice of SPT edge modes, it can reveal the nontrivial

projective phase corresponds to the nontrivial 3-cocycles of the cohomology group.

To find out the projective phase eiO(ga,9b,9c), below we use the facts of tensors T(ga),

T(gb), T(ge) acting on the same site with group elements 9 a., 9b, 9c. We know a generic

projective relation:

T(ga - 9b) = 9a ,P'T(ga)T(gb)Pa.,b. (3.33)
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Here Pg,gb is the projection operator. We contract three tensors in two different orders,

(PggbI3)Pgagbgc ~e 6-(g-',,)(i1 0 Pgg)PgQggC. (3.34)

The left-hand-side contracts the a, b first then with the c, while the right-hand-side contracts

the b, c first then with the a. Here ~ means the equivalence is up to a projection out of

un-parallel states. We can derive Pg, aYbby observing that Pg,,gb inputs one state and outputs

two states.

For Type I SPT class, this MPO formalism has been done quite carefully in Ref. [97,[57.

Here we generalize it to other SPTs, below we input a group element with g = (ki, k2 , k 3 )

and ki E ZNI, k2 G ZN2 , k3 E ZN3. Without losing generality, we focus on the symmetry

Type I index pi E ZN, , Type II index P12 C ZN12 , Type III index p123 E ZN12 3 . By index

relabeling, we can fulfill all SPT symmetries within the classification.

We propose our T(g) tensor for Type I, {97, 57] II symmetry with p, C ZNI, P12 E ZN1 2

as

(T(2 () ''(27rki 1 _l1 27rk1 (2)_ 2)(1)b(1)(b 0 '( ( () ' (1) ( "
in !J out'. in 1out )(PP12) ,~N u #in-N

(J d()d ) I() - ) 6(iki Ut - 10/11

d d~5 I~I ( - ')e 1 ' -h 3rN (3.35)

We propose the Type III T(g) tensor with p123 C ZN1 2 3 as

() ) e22 ()(2k 2wk2 2wk 3
, , , ,N 1 ,N 2.N3  N ' N 2 nN3

= p de l (a )PoI PiP23k"'Nk 2 rN 1) . (3.36)

Here we consider a lattice with both 4(u), p(u) as ZNu rotor angles. The tilde notation 5("),

~(u), for example oni N(2), means that the variables are in units of -g, but not in unit

(The reason will become explicit later when we regularize the Hamiltonian on a lattice in

Sec.3.2.2).

Take Eq.(3.35), by computing the projection operator Pg0 ,gs via Eq.(3.33), we derive the
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projective phase from Eq.(3.34):

eiO(gL,9b,9c) -- 2rme ma+mb-[ma+mb]N -(m, ha, bJ (3.37)

which the complex projective phase indeed induces the Type I 3-cocycle (i) (me, ma, mb) of

Eq.(3.29) in the third cohomology group 73(ZN, U(1)) = ZN. (Up to the index redefinition

P, -+ -pl.) We further derive the projective phase as Type II 3-cocycle of Eq.(3.30),

eiG(gagbgc) -- .(2rm ((mn2) 2)) [m(2)+r1.1)N 2 )1/N2 (ii)e =:ewi 1 (in3 , M1, M2) (3.38)

up to the index redefinition P12 -- -P12. Here [ma + mb]N with subindex N means taking

the value module N.

Take Eq. (3.36), we can also derive the projective phase eiO(ga,9b,9c) of Type III T(g) tensor

as

~iOgagb~c)= i
2 ~12EiVU) - ) ~-) )INl N2aN3

-i2rp123 "( Nv Ni) N1 23 r,0 UVW ,mb1. -e W~a~g'g- = Wii (M, Ta, nb) (3.39)

Adjust P123 index (i.e. setting only the P123 index in ) M M to be nonzero, while

others P213 = P312 = 0), and compute Eq.(3.34) with only P123 index, we can recover the

projective phase reveals Type III 3-cocycle in Eq.(3.31).

By Eq.(3.32), we verify that T(g) of Type I, II in Eq.(3.35) renders the symmetry

transformation operator S (P 'P12)

S(P1.P'2) - i21L/N ) P1(2) (2)
N 1  ]7J . i xi- (Oj - (1)),] PI -x~ 1(.0

j=1 j+ N(

here j are the site indices, from 1 to M shown in Fig.3-2.

By Eq.(3.32), we verify that T(g) of Type III in Eq.(3.36) renders the symmetry trans-

formation operator S 2 N3

M A!

S ei2xNL72 /Ne W ) (3.41)
J= 1 u, wE{l,2,3}
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with (N1 N2 N 3  (w2

W uvE,42,3 e\ 27rN 1 2 3  
Nil \i+1 (3.42)

u, ,,wE{1,2,3}

For both Eq.(3.40) and Eq.(3.41), there is an onsite piece (#j) Ie2U 2 )/Nu I) and also ex-

tra non-onsite symmetry transformation parts: namely, exp[i (+~ ))r, CXpEiN +1~-

Ol). and Wm +. We introduce an angular momentum operator L j ()(),

such that the e'2xL>/Nu shifts the rotor angle by } unit, from I0(")) to I + -). The

subindex r means that we further regularize the variable to a discrete compact rotor angle.

Meanwhile p1 = pi mod N1 , P12 = P12 mod N 12 and P123 = P123 mod N 123 , these

demonstrate that our MPO construction fulfills all classes. So far we have achieved the

SPT symmetry transformation operators Eq.(3.40),(3.41) via MPO. Other technical deriva-

tions on MPO formalism are preserved in Supplemental Materials.

3.2.2 Lattice model

To construct a lattice model, we require the minimal ingredients: (i) ZN_ operators (with

ZN. variables). (ii) Hilbert space (the state-space where ZNi1 operators act on) consists

with ZN, variables-state. Again we denote u = 1, 2,3 for ZN,ZN2,ZN 3 symmetry. We can

naturally choose the ZN, variable wu = eir/Nu, such that woN = 1. Here and below we will

redefine the quantum state and operators from the MPO basis in Sec.3.2.1 to a lattice basis

via:

-+' #2g, L " - LU'1 (3.43)

The natural physical states on a single site are the ZN. rotor angle state IOU = 0), I =

27r/N11),..., Iku = 27r(Nu - 1)/Nu).

One can find a dual state of rotor angle state IOU), the angular momentum ILu), such

that the basis from 10.) can transform to ILu) via the Fourier transformation, IO#)

2L,= 7 eiLO"| ILu). One can find two proper operators od"), T(U) which make IOU) and

ILU) their own eigenstates respectively. With a site index j (j = 1,...l M), we can project

0 (,u operators into the rotor angle IO#j) basis, so we can derive 1.) (a) operators as
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N, x N, matrices. Their forms are:

1 0 0 0

0 WU 0 0 )

00 .. 00
0 0 0 N0(

U

0 0 0 ... 0 1

1 0 0 ... 0 0()

r * 0 1 0 ... 0 0 = (#jI e (3"4/)

0 0 1 ... 0 0

. 0 0 ... 1 0)

Operators and variables satisfy the analogue property mentioned in Ref. [571, such as (r(u))Nu-

(,("))N u u)t(u) (u) u). It also enforces the canonical conjugation relation onS73 01 the 0-''cnjgtino

5() and L ) operators, i.e. [ 1 , )] = ik,'Auot,) with the symmetry group index u, v

and the site indices j, 1. Here 1#) and IL) are eigenstates of ' and L operators respectively.

The linear combination of all 11) 1#2) 103) states form a complete N x N2 x N3-

dimensional Hilbert space on a single site.

3.2.2.1 symmetry transformations

Type I, II ZN1 x ZN2 symmetry transformations

Firstly we warm up with a generic ZN lattice model realizing the SPT edge modes on

a 1D ring with M sites (Fig.3-2). The SPT edge modes have a special non-onsite symme-

try transformation, which means that its symmetry transformation cannot be written as a

tensor product form on each site, thus U(g)non-onsite # OiU(g). In general, the symmetry

transformation contain a onsite part and another non-onsite part. The trivial class of SPT

(trivial bulk insulator) with unprotected gapped edge modes can be achieved by a simple

Hamiltonian as -A EX (Tj + T,1). (Notice that for the simplest Z2 symmetry, the Tj op-

erator reduces to a spin operator (oz)j.) The simple way to find an onsite operator which

this Hamiltonian respects and which acts at each site is the Hf1 Tg, a series of Tj. On

the other hand, to capture the non-onsite symmetry transformation, we can use a domain
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wall variable in Ref.[571, where the symmetry transformation contains information stored

non-locally between different sites (here we will use the minimum construction: symmetry

stored non-locally between two nearest neighbored sites). We propose this non-onsite syni-

metry transformation Ujj+l with a domain wall (Ndw)jj+1 operator acting non-locally on

site j and j + 1 as,

p~w pUjj+1 = exp (iN N (6Ndw)jj+1) Nxp[ig(4ld+1 - 'i)rI, (3.45)

The justification of non-onsite symmetry operator Eq.(3.45) realizing SPT edge syime-

try is based on MPO formalism already done in Sec.3.2.1. The domain wall operator

(6Ndw)jj+1 counts the number of units of ZN angle between sites j and j + 1, so indeed

(27r/N)(6Nw)jj+1= (01,i+1 - #1.j)r. The subindex r means that we need to further regu-

larize the variable to a discrete ZN angle. Here we insert a p index, which is just an available

free index with p = p mod N. From Sec.3.2.1, p is indeed the classification index for the

p-th of ZN class in the third cohomology group 'H3(ZN, U(1)) = ZN.

Now the question is how should we fully regularize this Ujj+ operator into terms of ZN

operators o and uj+i. We see the fact that the N-th power of Ujj+1 renders a constraint

UN41 = (Vexpi#1t exp~ir1 1)p = (-rt., +)p. (N .4)

(Since exp [i1,j]ab = (Oa e jI kb) =ab,j.) More explicitly, we can write it as a polynomial

ansatz U = exp[{ EN-1 qa (oaj+1)a]. The non-onsite symmetry operator Ujd+1 re-

duces to a problem of solving polynomial coefficients qa by the constraint Eq. (3.46). Indeed

we can solve the constraint explicitly, thus the non-onsite symmetry transformation operator

acting on a M-site ring from j = 1,.. . , l is derived:

r (N- I )o+ zN' 1--+0

j+1 = e2 -1) (3.47)

For a lattice SPTs model with G = ZN x ZN2 , we can convert MPO's symmetry trans-

formation Eq. (3.40) to a lattice variable via Eq.(3.47). We obtain the ZNu symmetry trans-
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formation (here and below u, V E {1, 2}, u - v):

M
"' J7J T i2r /N. U (qpUJ+1 - Ukj)rj - Cxp[i ' ( ,j+2  &vJ)r

j=1Nuu

T 

i ) -U 4 f ") -pj ,"u -eM 2-( N -1  
1'~

j=1 j=1

______ 27r (N 7-1'g+'Nuv-1(~~,v
.e NuvNuPu N=1 w J-v-l

.e (3.48)

The operator is unitary, i.e. S "' "')S " = 1. Here 0 -M+j aj. The intervals of rotor

angles are

#1,j E I E }Z), 02,j E In E Z},1,,2,j E N12 n E Z}. (3.49)

where g1,3 is ZN1 angle, 02,j is ZN2 angle, 1,j and 4 2,j are ZN1 2 angles (recall gcd (N1 , N2 ) E

N12 ). There are some remarks on our above formalism:

(i) First, the ZN1 , ZN2 symmetry transformation Eq. (3.48) including both the Type I indices

pi, p2 and also Type II indices P12 and p21. Though p1, p2 are distinct indices, but P12 and

p21 indices are the same index, P12 +p21 - P12. The invariance P12 +p21 describes the same

SPT symmetry class.

(ii) The second remark, for Type I non-onsite symmetry transformation (with p, and P2)

are chosen to act on the nearest-neighbor sites (NN: site-j and site-j + 1); but the Type II

non-onsite symmetry transformation (with P12 and P21) are chosen to be the next nearest-

neighbor sites (NNN: site-j and site-j +2). The reason is that we have to avoid the nontrivial

Type I and Type II symmetry transformations cancel or interfere with each other. Though

in the Sec.3.2.3, we will reveal that the low energy field theory description of non-onsite

symmetry transformations for both NN and NNN having the same form in the continuum

limit. In the absence of Type I index, we can have Type II non-onsite symmetry transfor-

mation act on nearest-neighbor sites.

(iii) The third remark, the domain wall picture mentioned in Eq. (3.45) for Type II P12 class

still hold. But here the lattice regularization is different for terms with P12, P21 indices. In

order to have distinct Zgcd (N1 ,N2 ) class with the identification P12 = P12 mod N12 . We will

expect that, performing the N, times ZN. symmetry transformation on the Type II put,
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non-onsite piece, renders a constraint

( , ,p " )N (j)t ( 2 )"", (3.50)

To impose the identification P12 P12 mod N12 and P21 = P21 mod N12 so that we

have distinct Zgcd (N, N2 ) classes for the Type II symmetry class (which leads to impose the

constraint (&))Ni2 _ 2)N 12 =i), we can regularize the (l), o(2 operators in terms
27r

of Zgcd (Ni,N2) variables. With W12 L021 e'N12, we have w,2 1. The - u matrix

has Nu x N. components, for u = 1, 2. It is block diagonalizable with -N- subblocks, andN12  okal

each subblock with N12 x N12 components. Our regularization provides the nice property:
(1 1 ~' ( 1) and t- (2) (2) (2)1 .

T j j = L12 ; and j O 7 = W12 j. Use the above procedure to regularize

Eq. (3.40) on a discretized lattice and solve the constraint Eq. (3.50), we obtain an explicit

form of lattice-regularized symmetry transformations Eq.(3.48). For more details on our

lattice regularization, see Supplemental Materials.

Type III symmetry transformations

To construct a Type III SPT with a Type III 3-cocycle Eq.(3.31), the key observation

is that the 3-cocycle inputs, for example, al E ZN1 , b2 G ZN2 , c3 E ZN3 and outputs a U(1)

phase. This implies that the ZN, symnetry transformation will affect the mixed ZN2 , ZN3

rotor models, etc. This observation guides us to write down the tensor T(g) in Eq.(3.36)

and we obtain the symmetry transformation S = S(2N 3 as Eq.(3.41):

M M

s(P123) - ) (3.51)
j=1 u,v,wE{1,2,3}

There is an onsite piece Tr (#jlei2L 10/Nj) and also an extra non-onsite symmetry

transformation part V +1. This non-onsite symmetry transformation W',+1 acting on

the site j and j + 1, is defined by the following, and can be further regularized on the lattice:

I og(o : )Nv Nv

= TJ (( -,vy(v)) P123 2N123. (3.52)
u,vwE{1,2,3}

here we separate ZN,,ZN 2 ,ZN non-onsite symmetry transformation to W,,'1;, W 1;
yjij+1;Nll j,j+1;N 2 '
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Vj'+1;N3 respectively. Eq.(3.51),(3.52) are fully regularized in terms of ZN variables on a

lattice, although they contain anomalous non-onsite symmetry operators.

3.2.2.2 lattice Hamiltonians

We had mentioned the trivial class of SPT Hamiltonian (the class of p = 0) for 1D gapped

edge:
M

N = AZ(Tj+T) (3.53)
j=1

Apparently, the Hamiltonian is symmetry preserving respect to S(0) ijj1 T, i.e. S( H(

(S())-1 = H( In addition, this Hamiltonian has a symmetry-preserving gapped ground

state.

To extend our lattice Hamiltonian construction to p 5 0 class, intuitively we can view the

nontrivial SPT Hamiltonians as close relatives of the trivial Hamiltonian (which preserves

the onsite part of the symmetry transformation with p = 0), which satisfies the symmetry-

preserving constraint, i.e.

S(P)H(P)(S(P)) - P (-4NN N , (3.54)

More explicitly, to construct a SPT Hamiltonian of ZN x ZN2 x ZN3 symmetry obeying

translation and symmetry transformation invariant (here and below u, V, w E {1, 2, 3} and

u,v , w are distinct):

* [H("g'u""1), T] = 0, * [H(,u""v"') SN] 0 (3.55)

Here T is a translation operator by one lattice site, satisfying Tt Xj T = Xj+, = 1, ... , ,

for any operator Xi on the ring such that XI+1 = X1. Also T satisfies TM = 0. We can

immediately derive the following SPT Hamiltonian satisfying the rules,

]Y(U'Pr'1;'U't0 M N-1 -
-H'"N A (S ) (Tj + r)(S + .. ., (3.56)

j=1U-0

where we define our notations: S( H U{12, S PuI'vPW) and rj ( N - xN2 xN2

(Nx3BNxl 2) DO3N OXj0 2N (3)
DN3xN3 UN1 xN10r 2) N3 xN3  NixNi®ON2 x NT . Here rj is a matrix of (Ni x N2 x N3)

x (NI x N2 x N3 )-components. The tower series of sum over power of (S )) over (rj + r)
will be shifted upon S H (SN?)) -1, but the overall sum of this Hamiltonian is a symmetry-
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preserving invariant.

3.2.3 Field Theory

From a full-refualrized lattice model in the previors section, we attempt to take the low

energy limit to realize its corresponding field theory, by identifying the commutation relation

O(u , = i 6(jtj)6 (ut') (here j, 1 are the site indices, u, v E {1, 2, 3} are the ZN,, ZN 2 , ZN3

rotor model indices) in the continuum as

1
[#OU(x1)' 27r-O'(X2)] = i6(xI - X2)6(Uj) (3.57)

2r

which means the ZN,, ZN2 , ZN3 lattice operators L, ? L2), 42), ) 143) and field

operators 11 0, 2, 0', #3, 0 are identified by

,'-' -- u(xj), L, 7 -r (x,U(). (3.58)

We view #, and 0' as the dual rotor angles as before, the relation follows as Sec.3.2.3. We

have no difficulty to formulate a K matrix multiplet chiral boson field theory (non-chiral

'doubled' version of Ref.[?j's action) as

= 4 1 - 1[ tdx(I - -A 'A -qs 4-kt kkil-o-

requiring a rank-6 symmetric K-matrix,

KSPT = ( )9(O )e( ). (3.60)

with a chiral boson multiplet OI(x) = (01 (X), 0'(x), 02(X), 2(x), # 3 (x), 0'3 (x)). The

commutation relation Eq.(3.57) becomes: [or(xi), Kpyj&:4J(x2)] = 27ri6jj'6(x1 - X2). The

continuum limit of Eq.(3,48) becomes

* L,$Puv) ==exP[ ( dx #'1+p. L dxQk;u+0j dx 0.'p j dx 0.y)|
Nu 0 0 f 0

(3.61)

Notice that we carefully input a tilde on some e fields. We stress the lattice regularization

of 0, is different from #v, see Eq.(3.49), which is analogous to &), &(2) and 17), or2) il
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Sec.3.2.2.1. We should mention two remarks: First, there are higher order terms beyond

SSPT, M 2 's quadratic terms when taking continuum limit of lattice. At the low energy limit,

it shall be reasonable to drop higher order terms. Second, in the nontrivial SPT class (some

topological terms pi $ 0, pij # 0), the det(V) ? 0 and all eigenvalues are non-zeros, so

the edge modes are gapless. In the trivial insulating class (all topological terms p = 0), the

det(V) = 0, so the edge modes may be gapped (consistent with Sec.3.2.2.2). Use Eq.(3.57),

we derive the ID edge global symmetry transformation S(" "'", for example, N '1 2 and

S(P2,P21)N2

1 (x) 2 01W 21

NI '- S '") + . (3.62)
#2 (x) 02 (x) N 1 0

2(X)) \0x)2 \p12

(X) (x) 0

(P,2)(Y4(X)~ (SQ51P21W Li0'1 W 2,7r P21

02 (x) 02(X) N2  1

\02Wx) \02 W) \P2/

We can see how P12, P21 identify the same index by doing a M matrix with M E SL(4, Z)

transformation on the K matrix Chern-Simons theory, which redefines the 0 field, but still

describe the same theory. That means: K -+ K' = MTKM and # -+ 0' = M-l#, and so

the symmetry charge vector q -+ q' = M - 1q. By choosing

1 0 0 0
= 01 0 then the basis is changed to

\P12 0 P2 1

2pI 1 P12+p21 0

0 0 1 0 0 0

The theory labeled by KSPT, q1, q2 is equivalent to the one labeled by K', q', q'. Thus we

show that P12 +p21 - P12 identifies the same index. There are other ways using the gauged

or probed-field version of topological gauge theory (either on the edge or in the bulk) to

identify the gauge theory's symmetry transformation,[671 or the bulk braiding statistics to

determine this Type 1I classification P12 mod(gcd(Ni, N2 )).

The nontrivial fact that when P12 = N12 is a trivial class, the symmetry transformation
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in Eq.(3.62) may not go back to the trivial symmetry under the condition f dx &1

0 dx Jr2 = 27r, implying a soliton can induce fractional charge (for details see Sec.5.2. 1).

Our next goal is deriving Type III symmetry transformation Eq.(3.41). By taking the

continuum limit of

e(u=1,2,3)(v)(iv) j+1,(07) j( ) _, ( C7) 5W) (X) _ ) ( ') x ) ( .3
_+ qt - (x))

we can massage the continuum limit of Type III symmetry transformation Eq.(3.41) to

(gcd(N1 , N2 , N3 ) N12 3 )

S(P123) - x Li K dx 0, '1 .x [1 N1 N2N 13 P123 fL xu"0,jxu(X]
N1 ,N2 N3  e xp ExOda exp NN1 dx e"D#(),x]

{1,2,3}

(3.64)

Here u, v, w E {1, 2, 3} are the label of the symmetry group ZN1 , ZN2 , ZN3 's indices. Though

this Type III class is already known in the group cohomology sense, this Type III field

theory symmetry transformation result is entirely new and not yet been well-explored in the

literature, especially not yet studied in the field theory in the SPT context. Our result is an

extension along the work of Ref.[661,[67J.

The commutation relation leads to

[r(Xi), Ki# (x)] = -27ri 6ip h(Xi - Xj). (3.65)

Here h(xi - xj) = h(xi - xj) - 1/2, where h(x) is the Heaviside step function, with h(x) = 1

for x > 0 and h(x) = 0 for x < 0. And h(x) is h(x) shifted by 1/2, i.e. h(x) = 1/2

for x > 0 and h(x) = -1/2 for x < 0. The shifted 1/2 value is for consistency condition

for the integration-by-part and the commutation relation. Use these relations, we derive
the lobl symety trnsfrmaton (P123)

the global symmetry transformation S 1 ,N2 N3 acting on the rotor fields #,(x), 0'(x) (here

u C {1, 2, 3}) on the ID edge by

(S(P2) (P12 3 -- 27rw
Nj,) ,0()SjN,3 (3.66)

(S(P123)~b (P123'~) ='VI 27/( )-(uQ2 (20.tx) - (ow:~ (L) + 01v(0)) )(-7N,N2 ,N3/Tu 1(Sj,2,N2 33.7

88



NN 2N 3 -Hr h Deg sowhere one can define a Type III symmetry charge Q- P123 Ni . Here the iD edge is on

a compact circle with the length L, here #,(L) are 0,,(0) taking value at the position x = 0

(also x = L). (In the case of infinite 1D line, we shall replace #,(L) by #,(oo) and replace

#.(0) by 4,(-oo). ) But 0,(L) may differ from 0,(0) by 27rn with some number n if there

is a nontrivial winding, i.e.

(L) = Ou,(0) + 27rn = 27r -+ 27rn, (3.68)

where we apply the fact that O (0) is a ZN,, rotor angle. So Eq. (3.67) effectively results in a

shift +E"%wP 12 3 Nu (27rn,, +7rNwn) and a rotation E""Q'-" (2,(x)). Since N1- is neces-N 123  NN 123

sarily an integer, the symmetry transformation (S2N 2,N3  u(I)(S 2N3  will shift by

a 27r multiple if P123 NIA N~n is an even integer.

By realizing the field theory symmetry transformation, we have obtained all classes

of SPT edge field theory within the group cohomology 'H3 (ZN_ x ZN2 x ZN3 , U(1)) with

Pu G ZN 1 , Puv C ZN1, , P123 C ZN 12 3 -
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Chapter 4

Aspects of Topology

In Sec.4.1, we study the topological boundary gapping criteria (or boundary fully gapping

rules). For Abelian TOs, we apply Chern-Simons theory approach shown in Sec.4.1.1. For

non-Abelian TOs, we apply modular S, T data and introduce a new mathematical object

called, the tunneling matrix approach shown in Sec.4.1.2. In Sec.4.2, we study the string and

particle braiding statistics in topological order, based on the modular SL(3,Z) Representation

and 3+1D twisted gauge theory.

4.1 Gapped Domain Walls, Gapped Boundaries and Topolog-

ical (Bulk and Boundary) Degeneracy

4.1.1 For Abelian TOs: Chern-Simons theory approach

4.1.1.1 Physical Concepts

We start by considering a topologically ordered system on a compact spatial manifold with

boundaries, where each boundary have N branches of gapless edge modes. Suppose the

manifold has total q boundaries, we label each boundary as 9,, with 1 < a < q. Let us

focus on the case that the manifold is homeomorphic to a sphere with q punctures (Fig. 4-

1(a)), we will comment on cases with genus or handles (Fig. 4-1(b)) later.

If particles condense on the boundary due to the interactions of edge modes, it can intro-

duce mass gap to the edge modes. (Note that throughout our study, we regard particles as

non-fractionalized particles such as electrons, and we regard quasiparticles as fractionalized

particles such as anyons. From now on, we will use electron as the synonym of particle for
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(a) (b)

Figure 4-1: Topologically ordered states on a 2D manifold with ID boundaries: (a) Illus-
tration of fusion rules and total neutrality, where anyons are transported from one boundary
to another (red arrows), or when they fuse into physical excitations (blue arrows), on a
manifold with five boundaries. (b) A higher genus compact surface with boundaries (thus
with punctures): a genus-3 manifold with five boundaries.

the condensed matter systems.) A set of particles can condense on the same boundary if

they do not have relative quantum fluctuation phases with each other, thus all condensed

particles are stabilized in the classical sense. It requires that condensed particles have rela-

tive zero braiding statistical phase (such as Aharonov-Bohm charge-flux braiding phase and

flux-flux braiding phase), we call these particles with trivial braiding statistics satisfying

Haldane's null and mutual null conditions. Since electrons or particles have discrete elemen-

tary charge unit, we label them as a dimension-N (dim-N) lattice Fe (here the subindex e

implies non-fractionalized particles such as electrons), and label condensed particles as dis-

crete lattice vectors f 0(with CO C Fe) assigned to the boundary 0', We define a complete

set of condensed particles, labeled as a lattice Fro, to include all particles which have null

and mutual null statistics to each other: Fa - Io- .

Notably there are different complete sets of condensed particles. Assigning a complete set

of condensed (non-fractionalized bosonic) particles to a boundary corresponds to assigning

certain type of boundary gapping conditions. The number of types of complete sets of

condensed particles constrains the number of types of boundary gapping conditions, however,

the two numbers may differ from each other.

In principle, each boundary can assign its own boundary condition independently, this

assignment is not determined from the bulk information. This is why the boundary gapping

condition is beyond the bulk-edge correspondence. Below we focus on the non-chiral orders,

assuming all branches of edge modes can be fully gapped out. Later we will derive the criteria
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when the edge modes can be fully gapped out, at least for Abelian topological orders.

Remarkably there exists a set of compatible anyons having trivial braiding statistics

respect to the complete set of condensed particles. In other words, compatible anyons have

mutually trivial braiding statistics to any elements in the complete set of condensed particles.

For a boundary , we label compatible anyons as discrete lattice vectors t p and find all

such anyons to form a complete set labeled as F8 with F9 = {qJ} Here F&o and qPO

both have the discrete Hilbert space structure as lattice. Note that F][ C FC . And F9

and P9- have the same dimension of Hilbert space. If compatible anyons can transport

between different boundaries of the compact manifold, they must follow total neutrality: the

net transport of compatible anyons between boundaries must be balanced by the fusion of

physical particles in the system (Fig. 4-1(a)), so EA '9 C Fe. Transporting anyons from

boundaries to boundaries in a fractionalized manner (i.e. not in integral electron or particle

units), will result in switching the topological sectors (i.e. switching the ground states) of

the system. Given data: Fe, raF, fo, we thus derive a generic GSD formula counting the

number of elements in a quotient group:

GSD = , . ...,9) Ve f E >,e ; E Fe}(4.1)
{(1, .. , ofn) I vfa- E a7} (

We derive the form of GSD = ILI with a group of discrete lattice L. Here |L| means the

number of elements in L, namely the order of L.

4.1.1.2 Ground state degeneracy of Abelian topological order

To demonstrate our above physical concepts in a mathematically rigorous setting, let us

take Abelian topological order as an example. It is believed that Abelian topological order

can be fully classified by the K matrix Abelian Chern-Simnons theory.For a system lives on

a 2D compact manifold M with 1D boundaries OM, edge modes of each closed boundary

(homeomorphic to Sl) are described by a mnultiplet-chiral boson theory, with the bulk action

Sbulk and the boundary action SO:

Sbutk Kru I dt d2 X E"Par,,,Oajp, (4.2)

so = - J dt dx KjjOT jai&4 j - VIjOx'J VOx j + ga cos(lfa,J -41). (4.3)
47r

93



Here Kj, and Vi1. are symmetric integer N x N matrices, al,,, is the 1-form emergent gauge

field's I-th component in the multiplet. In terms of edge modes Ii with I = 1, 2, ... , N,

this means that there are N branches of edge modes. The sine-Gordon term cos(ea -j') is

derived from a local Hermitian gapping term, e v, 'P+Ie - ealI OC cOS( aj -I), where La
has N components under index I with integer coefficients.

In this work, we investigate the question how generic g cos(eal * 4P) terms can fully gap

edge modes, by turning on large g coupling interactions. We emphasize that the pertur-

bative relevancy/irrelevancy of cos(fai * DI) in the renormalization group (RG) language

is imniaterial to our large g coupling limit, since there can have energy gap induced by

non-perturbative effects at the strong interaction. Therefore in this work we will include all

possible Ca terms regardless their RG relevancy.

4.1.1.3 Canonical quantization of K matrix Abelian Chern-Simons theory edge

modes

In order to understand the energy spectrum or GSD of the edge theory, we study the

'quantum' theory, by canonical quantizing the boson field 4 i. Since #i is the compact

phase of a matter field, its bosonization has zero mode 0, and winding momentum POJ, in

addition to non-zero modes:

JT)(, == 1  P +L (,- ,2rix2'1A JA\

The periodic boundary size is L. The conjugate momentum field of 4i(x) is ri(x)
L '= 1K Oxij. This yields the conjugation relation for zero modes: [001, POJ] = i Jrj,

and a generalized Kac-Moody algebra for non-zero modes: [ai,,, aJ,m] = nKf 6n, m. We

thus have canonical quantized fields: [4i(Di), HJ(x2)] = i oJ6 (X1 - X 2 ).

4.1.1.4 Braiding Statistics and Boundary Fully Gapping Rules

Let us first intuitively argue the properties of La as condensed particles on the edge from

cos(eaJ - i) of Eq.(4.3). Let us also determine the set of lattice spanned by the discrete

integer e, vectors: 1 = {-f,}. We shall name 1 as the boundary gapping lattice. Here

a labels the a-th vector in Id. hRom the bulk-edge correspondence, the edge condensed
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particles labeled by the La vector can be mapped to some bulk non-fractionalized particle

excitations fa. It is well-known that the braiding process between two bulk excitations La

and Lb of Eq. (4.2) causes a mutual-braiding statistical phase term to the whole wavefunction:

exp[iaab] = exp[i 27r fa,IKI]- ,JI . (4.5)

We will also denote LIKY bIJ = K lfb. On the other hand, the self-exchange process

between two identical excitations ta of Eq.(4.2) causes a self-braiding statistical phase term

to the whole wavefunction:

exp[iOaa/2] = exp[i7r a,iKTfaj]. (4.6)

Without any global symmetry constraint, then any gapping term is allowed. Below we argue

what are the list of properties that the gapping term satisfies to fully gap the edge modes:

(i) Bosonic self-statistics: Vfa E 1A, L, K 1-I, E 27 even integers. This means that the

self-statistics of La is bosonic, with a multiple 27r phase.

(ii) Local: VLa, Lb E IA, Lai bfJ9,j E Z integers. Winding one La around another Lb yields a

bosonic phase, namely a multiple 27r statistical phase. The bosonic statistics can be viewed

as the local condition.

(iii) Localizing condensate at the classical value without being eliminated by self or mutual

quantum fluctuation: VLa, Lb E F6, La tK-L - 0 so that Zstatistics ~' exP[iOab] = 1, the

condensation is stabilized and survives in the classical sense.

(iv) For the cos(fa, .I) term, ea must be excitations of non-fractionalized particle degrees

of freedom, since it lives on the 'physical' boundary, so ea E Fe lattice, where

Fe = {E CJKIJ I c C Z}. (4.7)
J

This rule imposes an integer charge qgK lfs,,j in the bulk, and an integer charge Qj =

fL _L0(bdx = K-jPg = K7 1fQJ for each branch of edge mode I on the boundary. Here

q, is the charge vector coupling to an external field A, of gauge or global symmetry, by

adding A,,qjJ' to the Sbimk, which corresponds to qiAP',,1 in the Sa.

(v) Completeness: we define F0 is a complete set, by including every possible term L, that

has the self null braiding statistics and has the mutually null braiding statistics respect to
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all the elements t4 E F0 . Namely, mathematically we have Vc E Fe, if eK-ic 0 and

C K~1 ea = 0 for Vya E pc, then f, E FO must be true. Otherwise FO is not complete.

(vi) The system is non-chiral. We require the same number of left moving modes and right

moving modes to fully gap out the edge modes.

In Sec.4.1.1.5 we will use the bulk braiding statistics property of f4 to determine the

gapped edge stability caused by cos(tai * <bi) of Eq.(4.3). We leave a derivation that these

properties above are sufficient conditions in Sec.4.1.1.5.

Indeed the above rules (i)(ii)(iii)(iv)(v)(vi) can be simplified to a set of rules which we

call Boundary Fully Gapping Rules.

4.1.1.4.1 Boundary Fully Gapping Rules For an Abelian topological order described

by a bulk Chern-Simons theory of Eq.(4.2) and a boundary theory of Eq.(4.3), we can add

a set of proper interaction terms cos(faj * <PI) on the boundary to gap out the edge modes.

We will term that the Boundary Fully Gapping Rules, which summarize all the above rules

(i) (ii) (iii) (iv) (v) (vi) to determine the gapping term fa E 1 0 . Here e, is some integer vector,

namely for every component a,I E Z. The F0 satisfies:

(1) Null and mutual null conditions: VWa, c E F, faIK1 -J = 0. This implies self statis-

tics and mutual statistics are bosonic, and the excitation is local. Localized fields are not

eiminated by self 0r Mutual quantuuM iluctuations, so the condensauion survives in the clas-

sical sense.

(2) The dimensions of the lattice F0 is N/2, where N must be an even integer. Namely, the

Chern-Simons lattice Fo assigned to a boundary 0 is spanned by N/2 linear independent

vectors ea. Mathematically, we write F = { E Iafa,I I 'a E Z}.
a=1,2,...,N/2

(3) The system is non-chiral. The signature of K matrix (defined as the number of pos-

itive eigenvalues - the number of negative eigenvalues, as nL - nR) must be zero. The

non-chiral edge modes implies a measurable observable, the thermal Hall conductance, to

be zero ,y = (nRL - nR)E T = 0. Again, N = nL + nR is even.

There is an extra rule, which will be important later when we try to reproduce the bulk
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GSD from the boundary GSD:

(4) 'Physical' excitation: La e ,= {Ej cjKii I cj E Z}. Namely, ea is an excitation of

non-fractionalized particle degree of freedom, since it lives on the 'physical' boundary.

4.1.1.4.2 Comments Here are some comments for the above rules.Since any linear com-

binations of La E Fe still satisfy (1)(2)(3), we can regard Ia as an infinite discrete lattice

group generated by some basis vectors La.

Physically, the rule (3) excludes some violating examples such as odd rank (denoted as

rk) K matrix with the chiral central charge c- = cL - cR # 0 or the thermal Hall conductance

49 f 0, which universally has gapless chiral edge modes. For instance, the dim-I boundary

gapping lattice: {n(A, B, C) I n E Z} of K 3 x 3 = diag(1, 1, -1), with A 2 + B2 - C2 = 0,

satisfies the rules (1)(2), but cannot fully gap out chiral edge modes.

4.1.1.5 Hamiltonian and Energy Gap

Here we will justify the Boundary Fully Gapping Rules in Sec.4.1.1.4 is sufficient to fully

gap the edge modes. Our approach is to explicitly calculate the mass gap for the zero energy

mode and its higher excitations. We will show that if the Boundary Fully Gapping Rules

hold, there are stable mass gaps for all edge modes.

We consider the even-rank symmetric K matrix, satisfying the rule (3), so the non-chiral

system with even number of edge modes can potentially be gappable.

To determine the mass gap of the boundary modes, and to examine the gap in the

large system size limit L -+ oc, we will take the large g coupling limit of the Hamilto-

nian: -g f0 dx cos(fa,i 5) -- Iga(ea, * 4 1 ) 2 L. By exactly diagonalizing the quadratic

Hamiltonian,

H dx V1ijx&,Ixj) + ga(fa,1 . 2L ... , (4.8)

with a D mode expansion Eq.(4.4), we obtain the energy spectra from its eigenvalues. We

realize that:

. Remark 1: If we include all the interaction terms allowed by Boundary Full Gapping
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Rules, we can turn on the energy gap of zero modes (n = 0) as well as the Fourier modes

(non-zero modes n 0). The energy spectrum is in the form of

E ( A2 + #( 2 7rn )2+... (4.9)

where A is the mass gap. Here # means some numerical factor. We emphasize the energy

of Fourier modes (n f 0) behaves towards zero modes at long wave-length low energy limit

(L - oc). Such spectra become continuous at L -- oo limit, which is the expected energy

behavior.

e Remark 2: If we include the incompatible interaction term, e.g. La and e' where

a K-Yt' 5 0, while the interaction terms contain Ea g9 cos(La . -) + g' cos(' - D), we obtain

the unstable energy spectrum:

2rn L (4.10)
En = A~m #( L)2 + #gag'(-)2+... +.. .).(.

The energy spectra exhibits an instability of the system, because at low energy limit (L -

oc), the spectra become discontinuous (from n = 0 to n f 0) and jump to infinity as long

as there are incompatible cosine terms (i.e. g,. -g' 0). The dangerous behavior of (L/n)2

implies the quadratic expansion analysis may not describe the full physics. In that case,

thc dangcrous behavior invalidates localizing of <D field at a . nvaiatsthe

energy gap, and the unstable system potentially seeks to become gapless phases.

* Remark 3: We provide an alternative way to study the energy gap stability. We include

the full cosine interaction term for the lowest energy states, namely the zero and winding

modes:

cos(eaJ - 41) - cos(faJ - (001 + K-jPJ 2+X)). (4.11)

The stability of the energy gap can be understood from under what criteria we can safely

expand the cosine term to extract the leading quadratic terms by only keeping the zero

modes, namely cos(fLa * <DI) ~ 1 - (ai 001)2 + .... The naive reason is the following:

if one does not decouple the winding mode P0, term, there is a complicated x dependence

ill P0 x along the x integration. The non-commuting algebra [#o0, P$J] = idij results in

the challenge for this cosine expansion. This challenge caii be resolved by requiring ea, 4 oI
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and taiK P commute in Eq.(4.11),

[a,i40 , ea,IIKI'JP4,] = aiK jaF (iJij ) =(Ia,jAK7=a,ij)(i) = 0. 412)

In fact this is the Boundary Full Gapping Rule (1) for the self null statistics - the triv-

ial self statistics rule among the interaction gapping terms. We can interpret that there

is no quantum fluctuation destabilize the semi-classical particle condensation. With this

commuting criterion, we can safely expand Eq.(4.11) by the trigonometric identity as

cos(faJ0oI) cos(a,1 K-P 4 , -x) - sin(ea, 140 i) sin(eai K 'PP -x) . (4.13)

Then we integrate over the circumference L. First, we notice that faIKjPj takes integer

values due to faJE 'r and PO, C Z. Further we notice that due to the periodicity of

both cos(... x) and sin(... x) in the region [0, L), so both x-integrations over [0, L) vanish.

However, the exception is faI - K7JP = 0, then cos(eaIKjP4j2 [x) = 1. We derive:

I L

ga dx Eq.(4.11) = gaL cos(ea,i - 0oI) 6 ( e-KJP2,o) (4.14)

The Kronecker-delta function 6V K-jPO) = 1 indicates that there is a nonzero contribu-

tion if and only if fa K]P-I, = 0.

So far we have shown that when the self-null braiding statistics fTK-1f = 0 is true, we

have the desired cosine potential expansion via the zero mode quadratic expansion at the

large gL coupling, 9a f0 dx cos((ai. ) -Li(eai .#i) 2+.... If we include not enough

gapping terms (less than N/2 terms), we cannot fully gap all edge modes. On the other

hand, if we include more than the Boundary Full Gapping Rules (more than N/2 terms with

incompatible terms), there is a disastrous behavior in the spectrum (see Remark 2). We

need to include the mutual-null braiding statistics fe K- 1 4 = 0 so that the energy gap is

stable.

The quadratic Hamiltonian includes both the kinetic and the leading-order of the po-

tential terms:

(2r jK K + ZgaL (a,i -0I) (4.15)

a
By solving the quadratic simple harmonic oscillators, we can show the nonzero energy gaps
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of zero modes. The mass matrix can be properly diagonalized, since there are only conjugate

variables 001, P4,j in the quadratic order. The energy gap is of the order one finite gap,

independent of the system size L,

A ~ O( '2,r gafi ,,1 J KV -K 1-). (4.16)

In the diagonalized basis of the Hamiltonian Eq. (4.1 ), the energy gap AI has the component

I-dependence.

More precisely, we find the dimension of independent gapping terms fa = ea} must

be N/2, namely satisfying Boundary Full Gapping Rules (2). The number of left and right

moving modes must be the same, namely satisfying the non-chiral criterion in Boundary

Full Gapping Rules (3). To summarize, by calculating the stability of energy gap, we have

thus demonstrated that the Boundary Full Gapping Rules (1) (2)(3) are sufficient to ensure

that the energy gap is stable at large g coupling.

Due to the periodicity of 0, its conjugate variable PO forms a discrete quantized lat-

tice. This is consistent with the discrete Hilbert space of the ground states, forming the

Chern-Simons quantized lattice detailed in Sec.4.1.1.6. We will apply this idea to count the

ground state degeneracy of the Chern-Simons theory on a closed manifold or a compact

manifold with gapped boundaries. The Boundary Full Gapping Rules (4) will be required

for computing the boundary GSD and the bulk GSD.

4.1.1.6 Hilbert Space

Since 0 is periodic, so P4, forms a discrete lattice. We now impose the rule (4), so cos(fa,(-

001) are hopping terms along condensed particle vector ea,I in sublattice of Ie in the PO

lattice. We can show that rule (4) is essential to derive the bulk GSD by computing the

boundary GSD under gluing the boundaries.

Let pqP represents some compatible anyon fqp which is mutual null to condensed particles

( by eT K-1pqp =TK-qp = 0. By the rule (1), thus it means that the compatible anyon

fp parallels along some f vector. However, fqp lives on the quasiparticle lattice, i.e. the unit

integer lattice of the P4 lattice. So eqp is parametrized by 1gcd~e, faJ, with the greatest

common divisor defined as Igcd((a) = gcd(I [a,11, 1a,21, ... 1fa,N ).

Now let us consider the Hilbert space of ground states in terms of PO lattice. For the
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Hilbert space of ground states, we will neglect the kinetic term Hkin. = (2r VjK 1 K2P

P012 of the order O(1/L) as L - oo. Recall we label the a-th boundary of a compact spatial

manifold with q punctures as 9,, where a = 1,...,rj. Note that a is the index for a-th f

vector: fa E Fa. If we choose the proper basis f vector, based on the rule (2), we have

a = 1, . . . , N/2. For the a-th boundary a, a complete set of condensed particles forms the

boundary gapping lattice:

fdn{ Z I aca Ia9 E Z}. (4.17)
a=1,...,N/2

Recall I is the I-th branch of KN x N matrix, I = 1, . . . , N.

A complete set of compatible anyon vectors fqp forms the Hilbert space of the winding

mode P lattice:

= {e} = { f. A ' a j9- E Z}, (4.18)qp qp,1I Ja a a
a=1,...,N/2

or simply the anyon hopping lattice. Note a-, rd k are infinite Abelian discrete lattice group.qp

Anyon fusion rules and the total neutrality condition essentially means the bulk physical

charge excitation can fuse from or split to multiple anyon charges. The rules constrain the

set of jia values to be limited on the F, lattice.

To be more precise mathematically, the anyon fusion rules and the total neutrality con-

dition constrain the direct sum of the anyon hopping lattice Faa, with a = 1, ... ,. over all 27

boundaries, must be on the Fe lattice. We define such a constrained anyon hopping lattice

as Lqp ne:

7 N/2 a

Lqpfe - { G j a,I Vj- E Z, ~l cj E Z,
_ |gcd(t'90)1a=1 a=1 a

rl N/2 fe. N

a. d' =Z cKj}. (4.19)
a1 a=1 I gc Vac)=I

4.1.1.6.1 Number of types of boundary gapping conditions As we exactly solve

the number of types of boundary gapping lattices, we find that for rk(K) = 2, we obtain

two boundary gapping lattices. However, when we consider boundary gapping conditions,
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we apply the identification and the trivial statistical rules. We obtain a list of number of

types of boundary gapping conditions M, in Table 4.1, where M. : 2 in general.

Bosonic TOs NV Boundary Conditions GSDT2 = I det KI GSDsi x1 i

Kz2 2 {(1,0),(2,0),...}, 4 1 2( 2) ,
Z2 toric code

Kdiag,2 -0 -2 1 {( 1, 1), (2,2...} 4 2
Z2 double-semion

K 3 02 {(1,0),(2,0),(3,0), ... 13{(0, 1), (0, 2), (0,3) ... }
Z3 gauge theory

K (0 4 {(1,0),(2,0),(3,O),...},Az - 4 0 3 {(0, 1), (0, 2), (0,3),... }, 16 1, 2,4
Z 4 gauge theory {(2, ),(0,2),(2,2).... }

Kadiag,4 0 -4 2 {(1, 1), (2, 2), (3, 3),...}' 16 2,4

U(1)4x U(1) 4 FQH {(1,3), (2, 2), (3, 1), .. .}
Fermionic TOs Aq Boundary Conditions GSDT2 = IdetKI GSDsi x1

K , 3 0 (1, 1), (2, 2), (3, 3), ... }3
U(i1)3 xUi- Q (1, 2), (2, 1),(3,3),... }

Table 4.1: In the first column, we list down some bosonic and fermionic topological orders
and their K-matrices in Chern-Simons theory. Non-fractionalized particles of bosonic topo-
logical orders can have only bosonic statistics, but non-fractionalized particles of fermionic
topological orders can have fermionic statistics. In the second column, we list down their
number of types of boundary gapping conditions )V4. In the third column, we list down
their boundary gapping conditions in terms of a set of compatible and condensable anyons
with trivial braiding statistics. In the fourth column, we list down their bulk GSD= I det KI
on a closed manifold 2-torus. In the fifth column, we list down their boundary GSD on an
annulus (or a cylinder) with all various types of boundary gapping conditions on two edges.
The U(1)k x U(1)-k FQH means the doubled layer chiral and anti-chiral fractional quantum
hall (FQH) states combine to be a non-chiral topological order.

4.1.1.7 Examples of boundary GSD: Mutual Chern-Simons theory, Zk topolog-

ical order, toric code and string-net model

We now take the Zk gauge theory example with a Kz,-matrix Chern-Simons theory to

demonstrate our understanding of two types of GSD on a cylinder with gapped boundaries

in physical pictures. By checking all the fusion and braiding properties of quasiparticle

excitations, we know that the Zk gauge theory and the Kz, - (0 k) Chern-Simnons theory
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are indeed equivalent to the mutual Chern-Simons theory: f dt d 2x cJ'Pai.,Oa2.p. All

these describe the so-called Zk topological order.

Chem-Simons Toric Code String-net

G.S.D.=k
(G.S.D.=2) [Cx]

s S
.rz-string

x-string

G. S.D.=1 R S
(a)(

Figure 4-2: (a) The same boundary conditions on two ends of a cylinder allow a pair of cycles

[cX], [cIZ] of a qubit, thus GSD = 2. Different boundary conditions do not, thus GSD = 1.

(b) The same boundary conditions allow z- or x-strings connect two boundaries. Different

boundary conditions do not.

When k = 2, it realizes Z2 toric code with a Hamiltonian HO - E A, - E, Bp

on a square lattice.[691 Here the convention is that the vertex operator A, = Ha' goes

around four neighbor links of a vertex and the plaquette operator Bp = q oZ goes around

four neighbor links of a plaquette, with Pauli matrices o and o'. Since the Kitaev's toric

code is well-known, the reader can consult other details defined in Ref. [691. There are two

types of gapped boundaries on a cylinder (Fig. 4-2(a)): First, the x boundary (or the rough

boundary, denoted as R in FIG.4-2) where z-string charge e-charge condenses. Second, the

z boundary (or the smooth boundary, denoted as S in FIG.4-2) where x-string "charge"

m-flux condenses.[691 We can determine the GSD by counting the degree of freedom of the

code subspace: the number of the qubits - the number of the independent stabilizers. For

F1 = F02, we have the same number of qubits and stabilizers, with one extra constraint

Hall sites B = 1 for two x-boundaries (similarly, Hal sites Av= 1 for two z-boundaries). This

leaves 1 free qubit, thus GSD = 21 = 2. For Fa 5 F, still the same number of qubits and

stabilizers, but has no extra constraint. This leaves no free qubits, thus GSD = 20 = 1.

We can also count the number of independent logical operators (Fig. 4-2(a)) in the homol-

ogy class, with the string-net picture (Fig. 4-2(b)) in mind. There are two cycles [c.,1, [c,,]

winding around the compact direction of a cylinder. If both gapped boundaries of a cylin-

der are x-boundaries, we only have z-string connecting two edges: the cycle [cz 2 ]. If both

gapped boundaries of a cylinder are z-boundaries, we only have x-string (dual string) con-

necting two edges: the cycle [cx2 ]. We can define the qubit algebra by using the generators
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of [c.], [c22] in the first case and by using the generators of [c,], [c,,] in the second case.

Cycles of either case can define the algebra o,', o a of a qubit, so GSD = 2. If gapped

boundaries of a cylinder are different (one is x-boundary, the other is z-boundary), we have

no string connecting two edges: there is no nontrivial cycle, which yields no nontrivial Lie

algebra, and GSD = 1.

Let us use the string-net picture to view the ground state sectors and the GSD. For both

x-boundaries (z-boundaries), one ground state has an even number of strings (dual strings),

the other ground state has an odd number of strings (dual strings), connecting two edges;

so again we obtain GSD = 2. On the other hand, if the boundaries are different on two

sides of the cylinder, no cycle is allowed in the non-compact direction, no string and no dual

string can connect two edges, so GSD = 1.

Generally, for a Zk gauge theory (as a level k doubled model) on the compact orientable

spatial manifold M without boundaries or with gapped boundaries, without symmetry and

without symmetry-breaking, we obtain its GSD is bounded by the order of the first homology

group H1 (M, Zk) of M with Zk coefficient,or equivalently the k to the power of the first

Betti number bi(M).

4.1.2 For (non-)Abelian TOs: Modular S, T data and the tunneling ma-

trix

By now we understand how to label a 2D topological order by a set of "topological order

parameters" (S, T, c-), analogous to "symmetry-breaking order parameters" for spontaneous

symmetry breaking systems. However, it is less known how different topological orders are

related. To this end, it is important to investigate the following circumstance: there are

several domains in the system and each domain contains a topological order, while the

whole system is gapped. In this case, different topological orders are connected by gapped

domain walls. We now addresses two primary questions: (Q1) " Under what criteria can two

topological orders be connected by a gapped domain wall, and how many different types of

gapped domain walls are there?" Since a gapped boundary is a gapped domain wall between

a nontrivial topological order and the vacuum, we also address that "under what criteria

can topological orders allow gapped boundaries?"

(Q2) " When a topologically ordered system has a gapped bulk, gapped domain walls and

gapped boundaries, how to calculate its ground state degeneracy (GSD) on any orientable
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manifold?"

We have partially achieved results from Abelian TOs and GSD with gapped boundaries.

Here we will take another approach to generalize our theory to non-Abelian TOs and GSD

with gapped domain walls.

4.1.2.1 Main result

Consider two topological orders, Phases A and B, described by (SA, TA, cA) and (SB, TB, cB).

Suppose there are N and M types of anyons in Phase A and Phase B, then the ranks of

their modular matrices are N and M respectively. If A and B are connected by a gapped

domain wall, firstly their central charges must be the same CA = cB. Next we find that the

domain wall can be labeled by a M x N tunneling matrix W whose entries are fusion-space

dimensions Wia satisfying the commuting condition (4.21), and the stable condition (4.22):

Wia E Z, (4.20)

SBW = WSA TBW = WTA, (4.21)

Wia~o s (NB)k wkc(ArA cWiaWjb! E Z(B jw( AC (4.22)
kc

Z denotes the set of non-negative integers. a, b, c,... and i, j, k,... are anyon indices for

Phases A, B. (KA)cb and (gB) k are fusion tensors of Phases A, B.

(4.20) (4.21) (4.22) is a set of necessary conditions a gapped domain wall must satisfy, i.e.,

if there is no non-zero solution of W., the domain wall must be gapless. We conjecture that

they are also sufficient for a gapped domain wall to exist. In the examples studied, W are

in one-to-one correspondence with gapped domain walls. However, for some complicated

examples, a W matrix may correspond to more than one type of gapped domain wall. This

indicates that some additional data are needed to completely classify gapped domain walls.

As a first application of our result, we give a general method to compute the GSD in

the presence of gapped domain walls on any orientable 2D surface. A simple case is the

GSD on a disk drilled with two holes (equivalently a sphere with 3 circular boundaries, see

Fig. 4-5(c)). The gapped boundaries are labeled by three vectors (one-row or one-column

matrices) W(, W(2 , W(. The GSD is ZWk

For gapped boundaries, our criteria can be understood via dimension reduction, i.e.,
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shrinking a ID gapped boundary W to a (composite 1) anyon qVV = aW1a. If the system is

on a 2D surface M 2 drilled with n gapped boundaries WV(', . .. , W('), then the GSD is the di-

mension of the fusion space with anyons qvy(1), .. . , qv(s), GSD = dim[V(M 2 , qW >, - -, qw(.))].

Since gapped domain walls talk to each other through long-range entanglement, the

GSD with domain walls reveals more physics than that without domain walls. We foresee

its practicality in experiments, since we can read even more physics by putting the system

on open surfaces with gapped domain walls. Below we shall properly introduce S, T and W

matrices.

4.1.2.2 Modular S, T matrices

S and T are unitary matrices indexed by anyon types {1, a, b, c,... }. 1 labels the trivial

anyon type. The anti-quasiparticle of a is denoted by a*.

T describes the self statistics. It is diagonal Tab = eio-ab, where eiOa is the phase

factor when exchanging two anyons a. For the trivial type, Ell = cl 0 ' = 1. S describes the

mutual statistics. Sab is the amplitude of the following process with proper normalization

factors: first create a pair of aa* and a pair of bb*, then braid a around b, and finally

annihilate the two pairs. S is symmetric, Sab = Sba. If b = 1, the process is just creation

and annihilation, and Sai > 0. S and T form a projective representation of the modular

group: S4 - I, (ST)3 - 27ic-1/8S2, where I denotes the identity matrix.

The anti-quasiparticle can be read from S2, (S),,b = k-. The fusion tensor A'cb can be

calculated via the Verlinde formula:

Aab SarnSbrnScr i Z. (4.23)
rSim

Gapped domain walls- Below we demonstrate the physical meanings of the gapped do-

main wall conditions (4.20)(4.21)(4.22). First we put Phase A and Phase B on a sphere

S2 , separated by a gapped domain wall. Note that there can be many types of domain

walls separating the same pair of phases A and B. What data characterize those dif-

ferent types of domain walls? We fix the domain wall type, labeled by W, and trap

an anyon a* in Phase A, an anyon i in Phase B and. This configuration is denoted by

(S 2, i, W, a*). The states with such a configuration may be degenerate and the degenerate

The concepts of trapping anyons, composite anyon types and fusion spaces are discussed in [981
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subspace is the fusion space V(S 2 , i, W, a*). Here we propose using the fusion-space dimen-

sions Wia = dim[V(S 2 , i, W1, a*)} E Z to characterize the gapped domain wall W. Below we

will replace the abstract label W by the concrete data W.

There are non-local operators OWia* that create a pair aa* in Phase A, and then tunnel

a through the domain wall to an anyon i in Phase B, OWia* ls2,w) C V(S 2 , i, W, a*),

where I4 'S2,w) is the ground state. Since we care about the fusion states rather than

the operators themselves, we would take the equivalent class [Owia*l {Uwiia*I(OW a -

Uwia* ) Os2,w) = 01. We call [Owia*J as tunneling channels, which correspond to fusion

states in V(S 2 , i, W a*). Therefore, the fusion space dimension Wia is the number of lin-

early independent tunneling channels. So we also refer to W as the "tunneling matrix."

We can compute the dimension of the fusion space V(S 2 , i, W, a*) by first creating a

pair aa* in Phase A, then tunneling a through the domain wall. In the channel where the

tunneling does not leave any topological quasiparticle on the domain wall, a in Phase A will

become a composite anyon qw,a = eiWiai in Phase B. Thus the fusion-space dimension

Wia is also the number of tunneling channels from, a of Phase A, to, i of Phase B. So we

also refer to W as the "tunneling matrix."

The commuting condition (4.21) dictates the consistency of anyon statistics in presence

of gapped domain walls. Since modular S, T matrices encode the anyon statistics, we require

that W should commute with them as (4.21): SBW = WSA, TBW = WTA.

We may as well create a pair ii* in Phase B and tunnel i* to a*. W1 describes such

tunneling in the opposite direction (i.e., W : A -> B, W t : B -* A). W t and W contains

the same physical data. To be consistent, tunneling i* to a* should give the same fusion-

space dimension, (Wt)i. = Wi-a = Wia. This is guaranteed by W(SA) 2 = (SB)2 W and

(82)ab =- 6a*b.

The fusion spaces with four anyons further provide us consistence conditions of W. To see

this, first notice that there are generalised tunneling channels, [OWjza- ,z], which, in addition

to tunneling a to i, also create quasiparticle x on the domain wall. If we combine the

tunneling channels [Ow,ia-,x] and [Owj**,x-, we can create fusion states with a domain wall

W and four anyons i, j, a*, b*, as Fig. 4-3(a). In other words, [Owia*,xOWjb*,x] form a basis

of the fusion space V(S 2 , i, j, 1, a*, b*). Let KI denote the number of tunneling channels

[Ow.,a-,x], and we know that dim V(S 2 , i, j, WV, a*, b*) = KEx CT However, the tunneling

process as Fig. 4-3(b), i.e., fusing a, b to c, using [Owk.*] to tunnel c to k and splitting k to
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i, j, forms another basis of the fusion space. The number of such fusion/tunneling/splitting

channels is Ekc (NB) _Wc(^A)cb. Therefore, we must have

>jC KK Z B'w JA (4.24)
x kc

We are interested in classifying stable gapped domain walls, i.e., the GSD cannot be

reduced no matter what small perturbations are added near the domain wall. For stable

gapped domain walls we have Wia = Kla. Unstable gapped domain walls U split as the sum

of stable ones W(M, W( 2),..., W(N), and Ma - W , for N > 2.

We find that a gapped domain wall is stable if and only if (iff) the tunneling matrix W

satisfies the stable condition (4.22): WiaWjb < Ec(KB) :5kc (K) b. It can be understood

in the following way. Consider the number of channels tunneling a, b to i, j through the

domain wall. We may tunnel a to i and b to j separately. The number of channels is

Wi a VWjb. But this way, we may miss some nontrivial exchanging channels x along the

domain wall as Fig. 4-3(a). If we first fuse a, b to c, tunnel c to k and then split k to i, j,
instead we will obtain the total number of channels t( ) c(^)ab, as Fig. 4-3(b).

The missing of exchanging channels leads to the inequality (4.22). Such channel counting

works only when the gapped domain wall is stable, so (4.22) is a necessary condition. But

(4.21)(4.22) together imply that W 1 = 1, thus W cannot be the sum of more than one stable

tunneling matrix; it must be stable itself. Therefore (4.22) with (4.21) is also sufficient for a

gapped domain wall to be stable. Now if a gapped domain wall W is stable, (4.24) becomes

ke( t) w (jV^ )cab = WiaWjb + Ex KiLgC* > WiaJVb. We know that (4.22) is

necessary for a gapped domain wall to be stable. Furthermore, setting i = j = a = b = 1 we

know that W11  W21 and (4.21) requires that Wi1 > 0, thus W11 = 1 and W cannot be

the sum of more than one stable tunneling matrix; it must be stable itself. Therefore (4.22)

with (4.21) is also sufficient for a gapped domain wall to be stable.

4.1.2.3 Stability of composite domain walls

Let us consider two stable domain walls, W(1) between Phases A and B, and W(2) between

Phases B and C, as in Fig. 4-3(c). When the two domain walls are far separated, they are

both stable. Any small perturbations added near W(l, or near ( cannot reduce the

GSD.
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(a) W (c) w()

Figure 4-3: (a) (b) Tunneling channels. (c) Separated domain walls W(1) and W(2). (d)
Composite domain wall W(2)W(i)

(a) (b) (c) '

.a WNk

(a)

W(1)V Vi W(3) vkA B ., . ... ...

(e) I V (d) 'l
W(2) W(4)

Figure 4-4: Computing GSD by tensor contraction: Cut a complicated manifold (e) into

simple segments, add oriented skeletons and anyon indices. Associate the segments with:

(a) a cylinder with 6 ab, (b) a domain wall with its tunneling matrix Wia, (c) a pair of pants

with the fusion tensor V and (d) a cap with 61.,. Finally, contract all the tensors.

We then shrink the size of the middle Phase B, such that the two domain walls are near

enough to be regarded as a single domain wall. This way we obtain a composite domain

wall, whose tunneling matrix is the composition W(2)W(l), as Fig. 4-3(d). However, this

composite domain wall W(2),) may no longer be stable. Unless Phase B is vacuum, we

allow more perturbations to W(2) W(1) than when W(1) and W(2) are far separated. Some

operators simultaneously acting on both W 1) and W(2) may reduce the GSD, in which case,

the composite domain wall W(2.)g)/V is not stable.

In the special case when Phase B is vacuum, the composite W(2)W( 1 ) remains stable.

One can explicitly check this with (4.22).
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4.1.2.4 GSD in the presence of gapped domain walls

Below we derive the GSD, for a 2D system containing several topological orders separated by

loop-like gapped domain walls. Domain walls cut a whole 2D system into several segments.

Without losing generality, let us consider an example in Fig. 4-4 with topological orders,

Phases A, B, C, D, and four nontrivial domain walls, W(1), W(2), W(3), W(4), on a manifold

Fig. 4-4(e). We first add extra trivial domain walls W = I, so that all segments between

domain walls are reduced to simpler topologies: caps, cylinders or pants. We also add

oriented skeletons to the manifold, and put anyon indices on both sides of the domain walls,

shown in Fig. 4-4(e). Next, see Fig. 4-4(a)(b)(c)(d), for the segments with oriented skeletons

and anyon indices, we associate certain tensors: caps with 6 1,, cylinders with Jab, pants with

AMk in the corresponding topological order, and domain walls with their tunneling matrices

Wia. We may reverse the orientation and at the same time replace the index a with a*.

Finally we multiply these tensors together and contract all the anyon indices. Physically

such tensor contraction computes the total number of winding channels of anyons, which

exactly counts the number of ground states, thus the GSD.

Systems with gapped boundaries are included in our method; just imagine that there

are vacuum on caps connected to the boundaries, e.g., Phases C, D in Fig. 4-4(e) can be

vacuum. Dimensions of generic fusion spaces can also be calculated, by putting the anyon

a on the cap and associating the tensor 6 au instead of 6 1u.

We derive GSD on exemplary manifolds:

1. A stable domain wall W on the sphere: GSD = W11 = 1.

2. A domain wall W on the torus: GSD = Tr(W). Several domain walls 2(1),. . . , WVn)

on the torus, in Fig. 4-5(a): GSD = Tr(W(1) . . . W(')). In particular, Tr[W(1)(V2W( 2 ))t]

counts the types of OD defects between 1D gapped domain walls W(, ()

3. A sphere with punctures: A cylinder with two gapped boundaries WL and WR, in

Fig. 4-5(b): GSD = EZW W WVV. A pair of pants with three gapped boundaries W )

WC2) and ( in Fig. 4-5(c): GSD = EikW.

4. The rocket graph in Fig. 4-4(e): GSD = W )W(2 (gVB)k (APB)j.sw(W .
ia ak ij T rs

a,t J,k r,.s
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(a) (b) (C) W(3)

(2)

Figure 4-5: Some 2-manifolds with gapped domain walls.

4.1.2.5 1+1D gravitational anomaly, topological phase transitions and future

directions

We know that the effective 1+11D edge theory of a 2+1D topological order has a gravita-

tional anomaly. The gravitational anomalies are classified by the bulk topological order

(S, T, c-) [511. When c- $ 0, the edge effective theory has a perturbative gravitational

anomaly which leads to topological gapless edge (i.e., the gaplessness of the edge is ro-

bust against any change of the edge Hamiltonian). Even in the absence of perturbative

gravitational anomaly, c_ = 0, certain global gravitational anomalies [991 (characterized

by (S, T, 0)) can also lead to topological gapless edge [60, 681. Our work points out that

such global gravitational anomalies are described by S, T which do not allow any non-zero

solution W of (4.20)(4.21)(4.22). The corresponding 2D topological order (S, T, 0) will have

topological gapless edge.

Since a domain wall sits on the border between two topological orders, our study on

domain walls can also guide us to better understand the phase transitions of topological

orders.

4.2 Non-Abelian String and Particle Braiding in Topologi-

cal Order: Modular SL(3,Z) Representation and 3+1D

Twisted Gauge Theory

In the 1986 Dirac Memorial Lectures, Feynman explained the braiding statistics of fermions

by demonstrating the plate trick and the belt trick. Feynman showed that the wavefunction

of a quantum system obtains a mysterious (-1) sign by exchanging two fermions, which is

associated with the fact that an extra 27r twist or rotation is required to go back to the orig-

inal state. However, it is known that there is richer physics in deconfined topological phases
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of 2+1D and 3+1D spacetime. (Here d+ ID is d-dimensional space and 1-dimensional time,

while dD is d-dimensional space.) In 2+1D, there are "anyons" with exotic braiding statistics

for point particles [51. In 3+1D, Feynman only had to consider bosonic or fermionic statis-

tics for point particles, without worrying about anyonic statistics. Nonetheless, there are

string-like excitations, whose braiding process in 3+1D can enrich the statistics of deconfined

topological phases. In this work, we aim to systematically address the string and particle

braiding statistics in deconfined gapped phases of 3+1D topological orders. Namely, we aim

to determine what statistical phase the wavefunction of the whole system gains under the

string and particle braiding process.

Since the discovery of 2+1D topological orders, we have now gained quite systematic ways

to classify and characterize them, by using the induced representations of the mapping class

group of the T2 torus (the modular group SL(2, Z) and the gauge/Berry phase structure

of ground states and the topology-dependent ground state degeneracy, using the unitary

fusion categories, and using simple current algebra, a pattern of zeros, and field theories.

Our better understanding of topologically ordered states also holds the promises of applying

their rich quantum phenomena, including fractional statistics and non-Abelian anyons, to

topological quantum computation.

However, our understanding of 3+1D topological orders is in its infancy and far from

systematic. This motivates our work attempting to address:

Q1: "How do we (at least partially) classify and characterize 3D topological orders?"

By classification, we mean counting the number of distinct phases of topological orders and

giving them a proper label. By characterization, we mean to describe their properties in

terms of physical observables. Here our approach to studying dD topological orders is to

simply generalize the above 2D approach, to use the ground state degeneracy (GSD) on

d-torus d = (Si)d, and the associated representations of the mapping class group (MCG)

of Td (recently proposed in Refs.[51]),

MCG(Td) = SL(d, Z). (4.25)

For 3D, the mapping class group SL(3, Z) is generated by the modular transformation $X9
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and T'Y [841.

What are examples of 3D topological orders? One class of them is described by a dis-

crete gauge theory with a finite gauge group G. Another class is described by the twisted

gauge theory,[78] a gauge theory G with a 4-cocycle twist W4 E 7j4(G, IR/Z) of G's fourth

cohomology group. But the twisted gauge theory characterization of 3D topological orders

is not one-to-one: different pairs (G, W4) can describe the same 3D topological order. In this

work, we will use SxY' and tXy of SL(3, Z) to characterize the topological twisted discrete

gauge theory with finite gauge group G, which has topology-dependent ground state degen-

eracy. The twisted gauge theories describe a large class of 3D gapped quantum liquids in

condensed matter. Although we will study the SL(3, Z) modular data of the ground state

sectors of gapped phases, these data can capture the gapped excitations such as particles

and strings. (This strategy is widely-used especially in 2D.) There are two main issues

that we will focus on addressing. The first is the dimensional reduction from 3D to 2D of

SL(3, Z) modular transformation and cocycles to study 3D topological order. The second is

the non-Abelian three-string braiding statistics from a twisted discrete gauge theory

of an Abelian gauge group.

3D c2D -- C C21 3  b=
C Cb (D Gp4 Gb,3b ED

b b

b _ __ _ b --------

(a) (b)

Figure 4-6: (a)The 3D topological order C 3D can be regarded as the direct sum of 2D
topological orders C2D in different sectors b, as C3D = ebC2D, when we compactify a spatial
direction z into a circle. This idea is general and applicable to C3D without a gauge
theory description. However, when C3D allows a gauge group G description, the b stands
for a group element (or the conjugacy class for the non-Abelian group) of G. Thus b acts as
a gauge flux along the dashed arrow -- -> in the compact direction z. Thus, C3D becomes
the direct sum of different C2D under distinct gauge fluxes b. (b)Combine the reasoning
in Eq.(4.37) and Fig.4-6, we obtain the physical meaning of dimensional reduction from a
3+1D twisted gauge theory as a 3D topological order to several sectors of 2D topological
orders: CD = ebC' . Here b stands for the gauge flux (Wilson line operator) of gauge

group G. Here W3 are dimensionally reduced 3-cocycles from 4-cocycles W4. Note that there
is a zero flux b - 0 sector with C2 D = CD.G,(untwist) G
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(*1) Dimensional Reduction from 3D to 2D: for SL(3, Z) modular S, T matrices

and cocycles - For the first issue, our general philosophy is as follows:

"Since 3D topological orders are foreign and unfamiliar to us, we will dimensionally reduce

3D topological orders to several sectors of 2D topological orders in the Hilbert space of ground

states (not in the real space, see Fig.4-6). Then we will be able to borrow the more familiar

2D topological orders to understand 3D topological orders."

We will compute the matrices SXYZ and TY that generate the SL(3, Z) representation in the

quasi-(particle or string)-excitations basis of 3+1D topological order. We find an explicit

expression of SXYZ and TXY, in terms of the gauge group G and the 4-cocycle W4, for both

Abelian and non-Abelian gauge groups. We note that SL(3, Z) contains a subgroup SL(2, Z),

which is generated by SXY and tXy.

In the most generic cases of topological orders (potentially without a gauge group de-

scription), the matrices SXY and TXY can still be block diagonalized as the sum of several

sectors in the quasi-excitations basis, each sector carrying an index of b,

Soy = (bSDb, T" =e bT[", (4.26)

The pair (S[', Ty), generating an SL(2, Z) representation, describes a 2D topological order

CbD. This leads to a dimension reduction of the 3D topological order C3D.

C3D = 2bD4 7CD bCb (4.27)

In the more specific case, when the topological order allows a gauge group G description

which we focus on here, we find that the b stands for a gauge flux for group G (that is, b is

a group element for an Abelian G, while b is a conjugacy class for a non-Abelian G).

The physical picture of the above dimensional reduction is the following (see Fig.4-6): If

we compactify one of the 3D spatial directions (say the z direction) into a small circle, the

3D topological order C3D can be viewed as a direct sum of 2D topological orders C2D with

(accidental) degenerate ground states at the lowest energy.
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(a) (b) (C)

Figure 4-7: Mutual braiding statistics following the path 1 -+ 2 -> 3 4 along time

evolution (see Sec.4.2.4.3.2): (a) From a 2D viewpoint of dimensional reduced C2D, the
27r braiding of two particles is shown. (b) The compact z direction extends two particles
to two closed (red, blue) strings. (c) An equivalent 3D view, the b flux (along the arrow
-- ->) is regarded as the monodromy caused by a third (black) string. We identify the
coordinates x, y and a compact z to see that the full-braiding process is one (red) string
going inside to the loop of another (blue) string, and then going back from the outside. For
Abelian topological orders, the mutual braiding process between two excitations (A and B)
in Fig.4-7(a) yields a statistical Abelian phase eiO(A)(B) oC< (B proportional to the 2D's(A)(B) pootoa ote2'
SxY matrix. The dimensional-extended equivalent picture Fig.4-7(c) implies that the loop-
braiding yields a phase eiO(A)(B),b CC SA( of Eq.(4.47) (up to a choice of canonical basis),b (A) (B) ) u oacoc f aoia ai)
where b is the flux of the black string. We clarify that in both (b) and (c) our strings may
carry both flux and charge. If a string carries only a pure charge, then it is effectively a point
particle in 3D. If a string carries a pure flux, then it is effectively a loop of a pure string in
3D. If a string carries both charge and flux (as a dyon in 2D), then it is a loop with string
fluxes attached with some charged particles in 3D. Therefore our Fig.4-7(c)'s string-string
braiding actually represents several braiding processes: the particle-particle, particle-loop
and loop-loop braidings, all processes are threaded with a background (black) string.

In this work, we focus on a generic finite Abelian gauge group G = Il ZN.j (isomorphic

to products of cyclic groups) with generic cocycle twists from the group cohomology.[78] We

examine the 3+1D twisted gauge theory twisted by 4-cocycle W4 E H 4 (G, R/Z), and reveal

that it is a direct sum of 2+1D twisted gauge theories twisted by a dimensionally-reduced

3-cocycle W3(b) E N3 (G, R/Z) of G's third cohomology group, namely

CC b=G . (4.28)G'Uw 4 - b b,W3(b) 3 DcD(.8

Surprisingly, even for an Abelian group G, we find that such a twisted Abelian gauge theory

can be dual to a twisted or untwisted non-Abelian gauge theory. We study this fact for 3D

as an extension of the 2D examples in Ref.[961. By this equivalence, we are equipped with

(both untwisted and twisted) non-Abelian gauge theory to study its non-Abelian braiding

statistics.

(*2) Non-Abelian three-string braiding statistics - We are familiar with the 2D
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braiding statistics: there is only particle-particle braiding, which yields bosonic, fermionic

or anyonic statistics by braiding a particle around another particle. We find that the 3D

topological order introduces both particle-like and string-like excitations. We aim to address

the question:

Q2: " How do we characterize the braiding statistics of strings and particles in 3+1D topo-

logical orders?"

The possible braiding statistics in 3D learned in the past literature are as follows:

(i) Particle-particle braiding, which can only be bosonic or fermionic due to the absence of

nontrivial braid group in 3D for point particles.

(ii) Particle-string braiding, which is the Aharonov-Bohm effect of ZN gauge theory, where a

particle such as a ZN charge braiding around a string (or a vortex line) as ZN flux, obtaining

a e' phase of statistics.

(iii) String-string braiding, where a closed string (a red loop), shown in Fig.4-7(c) excluding

the background black string, wraps around a blue loop. The related idea known as loop-loop

braiding forming the loop braid group has been proposed mathematically.

However, we will address some extra new braiding statistics among three closed strings:

(iv) Three-string braiding, shown in Fig.4-7(c), where a closed string (a red loop) wraps

around another closed string (a blue loop) but the two loops axe both threaded by a third

loop (the black string). This braiding configuration is discovered recently by Ref.[761, also

a related work in Ref. [771 for a twisted Abelian gauge theory.

The new ingredient of our work on braiding statistics can be summarized as follows: We

consider the string and particle braiding of general twisted gauge theories with the most

generic finite Abelian gauge group G = ]l. ZNM, labeled by the data (G, w4 ). We provide

a 3D to 2D dimensional reduction approach to realize the three-string braiding statistics

of Fig.4-7. We first show that the SL(2, Z) representations (S", T[") fully encode this

particular type of Abelian three-closed-string statistics shown in Fig.4-7. We further find

that, for a twisted gauge theory with an Abelian (ZN) 4 group, certain 4-cocycles (called

as Type IV 4-cocycles) will make the twisted theory to be a non-Abelian theory. More

precisely, while the two-string braiding statistics of unlink is Abelian, the three-

string braiding statistics of Hopf links, obtained from threading the two strings
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with the third string, will become non-Abelian. We also demonstrate that (SXY

encodes this three-string braiding statistics.

4.2.1 Twisted Gauge Theory and Cocycles of Group Cohomology

In this section, we aim to address the question:

Q3: "How to formulate or construct certain 3+1D topological orders on the lattice?"

We will consider 3+1D twisted discrete gauge theories. Our motivation to study the

discrete gauge theory is that it is topological and exhibits Aharonov-Bohm phenomena.

One approach to formulating a discrete gauge theory is the lattice gauge theory.[100] A

famous example in both high energy and condensed matter communities is the Z2 discrete

gauge theory in 2+1D (also called the Z2 toric code, Z2 spin liquids, Z2 topological order).

Kitaev's toric code and quantum double model[691 provides a simple Hamiltonian,

H = -Z Av - ZBp, (4.29)
V p

where a space lattice formalism is used, and A, is the vertex operator acting on the vertex

v, Bp is the plaquette (or face) term to ensure the zero flux condition on each plaquette.

Both A, and Bp consist of only Pauli spin operators for the Z2 model. Such ground states of

the Hamiltonian are found to be Z2 gauge theory with |G1 2 = 4-fold topological degeneracy

on the T2 torus. Its generalization to a twisted Z2 gauge theory is the Z2 double-semions

model, captured by the framework of the Levin-Wen string-net model [101, 111.

4.2.2 Canonical basis and the generalized twisted quantum double model

DW(G) to 3D triple basis

In Chap.??, we have formulated a Dijkgraaf-Witten topological gauge theory as higher di-

mensional TOs. Thus we have answered the question Q3 using the spacetime-lattice path

integral. Our next goal is to construct its Hamiltonian on the space lattice, and to find a

good basis representing its quasi-excitations, such that we can efficiently read the informa-

tion of O(SYZ, TXY) in this canonical basis. We will outline the twisted quantum double model

generalized to 3D as the exactly soluble model in the next subsection, where the canonical

basis can diagonalize its Hamiltonian.
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Canonical basis - For a gauge theory with the gauge group G, one may naively think that

a good basis for the amplitude Eq.(2.59) is the group elements |gr, gy, gz), with gi c G as

the flux labeling three directions of V3. However, this flux-only label Ig', gy) is known to

be improper on the T2 torus already - the canonical basis labeling particles in 2D is la, a),

requiring both the charge a (as the representation) and the flux a (the group element or

the conjugacy class of G). We propose that the proper way to label excitations for a 3+1D

twisted discrete gauge theory for any finite group G in the canonical basis requires one

charge a and two fluxes, a and b:

Ia, a, b) = 1 TZnpe" gg, g", gz) (4.30)
I -G 9gECagZGCb

9xEZgynZ9z

which is the finite group discrete Fourier transformation on Igx, gy, gz). This is a generaliza-

tion of the 2D result in [961 and a very recent 3D Abelian case in [77]. Here a is the charge

of the representation (Rep) label, which is the C( Rep of the centralizers Za, Zb of the

conjugacy classes Ca, Cb. (For an Abelian G, the conjugacy class is the group element, and

the centralizer is the full G.) C(2) Rep means an inequivalent unitary irreducible projective

representation of G. 'b(C) labels this inequivalent unitary irreducible projective C(2) Rep of

G. C(2) is an induced 2-cocycle, dimensionally-reduced from the 4-cocycle C4. We illustrate
a,b

C( in terms of geometric pictures in Eqs. (4.31) and (4.32).

a3 b

Ca(bc) : (4.31)

Z Z

2) 5 8 5
(c, d) t (d) (4.32)

The reduced 2-cocycle Ca(b, c) is from the 3-cocycle W3 in Eq.(4.31), which triangulates a

half of T2 and with a time interval I. The reduced 2-cocycle Ca(b, c) is from 4-cocycle w4 in

Eq.(4.32), which triangulates a half of T3 and with a time interval I. The dashed arrow --

stands for the time t evolution.
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The gy'gz ("g'.) values are determined by the C) projective representation formula:

pl ~~~(d) = ~ C (c, d)p b (cd) (4.33)

The trace term Tr[p~Y"94(gm)] is called the character in the math literature. One can view

the charge ax along x direction, the flux a, b along the y, z.

We first recall that, in 2D, a reduced 2-cocycle Ca(b, c) comes from a slant product

iaw(b, c) of 3-cocycles, [961 [961 which is geometrically equivalent to filling three 3-cocycles

in a triangular prism of Eq.(4.31). This is known to present the projective representation

p (b)p ~(c) = C.(b, c)R (bc), because the induced 2-cocycle belongs to the second cohomology

group 'R2 (G, R/Z).[1021 (See its explicit triangulation and a novel use of the projective

representation in Sec VI.B. of Ref.[561.)

Similarly, in 3D, a reduced 2-cocycle Ca(b, c) comes from doing twice of the slant products

of 4-cocycles forming the geometry of Eq.(4.32), and renders

Cb = ib(Ca(c, d)) = ib(iaw(c, d)), (4.34)

presenting the C( 2 -projective representation in Eq.(4.33), where p'b(c): (Za, Zb) GL (Za, Zb)

can be written as a matrix in the general linear (GL) group. This 3D generalization for the

canonical basis in Eq.(4.30) is not only natural, but also consistent to 2D when we turn off

the flux along z direction (e.g. set b = 0). which reduces 3D's la, a, b) to |a, a) in the 2D case.

Generalizing 2D twisted quantum double model D'(G) to 3D: twisted quantum

triple model? - A natural way to combine the Dijkgraaf-Witten theory with Kitaev's quan-

tum double model Hamiltonian approach will enable us to study the Hamiltonian formalism

for the twisted gauge theory, which is achieved in Ref.[1031,[1021 for 2+1D, named as the

twisted quantum double model. In 2D, the widely-used notation D'(G) implies the twisted

quantum double model with its gauge group G and its cocycle twist W. It is straightforward

to generalize their results to 3+1D.

To construct the Hamiltonian on the 3D spatial lattice, we follow [103] with the form

of the twisted quantum double model Hamiltonian of Eq.(4.29) and put the system on

the T3 torus. However, some modification for 3D are adopted: the vertex operator Av =

1G-1 E[v']=gEG AI acts on the vertices of the lattice by lifting the vertex point v to v'
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living in an extra (fourth) dimension as Eq.(4.35),

(4.35)

2

and one computes the 4-cocycle filling amplitude as Z in Eq.(2.57). To evaluate Eq.(4.35)'s

A, operator acting on the vertex 5, one effectively lifts 5 to 5', and fill 4-cocycles W into

this geometry to compute the amplitude Z in Eq.(2.57). For this specific 3D spatial lattice

surrounding vertex 5 with 1, 2, 3, and 4 neighboring vertices, there are four 4-cocycles w

filling in the amplitude of A .
5

Aplaquette operator B( still enforces the zero flux condition on each 2D face (a triangle

p) spanned by three edges of a triangle. This will ensure zero flux on each face (along the

Wilson loop of a 1-form gauge field). Moreover, zero flux conditions are required if higher

form gauge flux are presented. For example, for 2-form field, one adds an additional B (2 to

ensure the zero flux on a 3-simplex (a tetrahedron p). Thus, EP B. in Eq.(4.29) becomes

Analogous to [103], the local operators A0, Bp of the Hamiltonian have nice commuting

Tpropertes: [AA] = 0 if V [B,, B'J = I, a n ]-- Av =1T4' 19, - A _.

Notice that Ag defines a ground sate projection operator P,= IGL- 1 Eq Ag if we consider a

T3 torus triangulated in a cube with only a point v (all eight points are identified). It can

be shown that both Ag and P as projection operators project other states to the ground

state ia, a, b), and Pla, a, b) = Ia, a, b) and A.la, a, b) x laa, b). Since [Ag, Bp] = 0, one

can simultaneously diagonalize the Hamiltonian Eq. (4.29) by this canonical basis Ia, a, b) as

the ground state basis.

A similar 3D model has been studied recently in [771. There the zero flux condition

is imposed in both the vertex operator as well as the plaquette operator. Their Hilbert

space thus is more constrained than that of [1031 or ours. However, in the ground state

sector, we expect that the physics is the same. It is less clear to us whether the name,

twisted quantum double model and its notation D'(G), are still proper usages in 3D

or higher dimensions. With the quantum double basis la, a) in 2D generalized to a triple
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basis Ia, a, b) in 3D, we are tempted to call it the twisted quantum triple model in 3D.

It awaits mathematicians and mathematical physicists to explore more details in the future.

4.2.3 Cocycle of R'4(G, R/Z) and its dimensional reduction

To study the twisted gauge theory of a finite Abelian group, we now provide the explicit data

on cohomology group and 4-cocycles. Here Wd+1(G, IR/Z) - Rd+1(G, U(1)) by 1R/Z = U(1),

as the (d + 1)th-cohomology group of G over G module U(1). Each class in 7.d+1(G, IR/Z)

corresponds to a distinct (d + 1)-cocycle. The different 4-cocycles label the distinct topo-

logical terms of 3+1D twisted gauge theories. (However, different topological terms may

share the same data for topological orders, such as the same modular data SXYZ and TXY.

Thus different topological terms may describe the same topological order.) The 4-cocycles

w4 are 4-cochains, but additionally satisfy the cocycle condition 6w = 1. The 4-cochain is a

mapping w4 (a, b, c, d): (G)4 -* U(1), which inputs a, b, c, d E G, and outputs a U(1) phase.

Furthermore, distinct 4-cocycles are not identified by any 4-coboundary 6Q3. (Namely, dis-

tinct cocycles W4 and w' do not satisfy w4/w4 =Q3 , for any 3-cochain Q3.) The 4-cochain

satisfies the group multiplication rule: (w4 -w)(a, b, c, d) = w4 (a, b, c, d) -wL(a, b, c, d), thus

forms a group C4 , the 4-cocycle further forms its subgroup Z4 , and the 4-coboundary further

forms a Z4 's subgroup B4 (since 62 = 1). In short, B4 C Z4 C C4 . The fourth cohomol-

ogy group is a kernel Z4 (the group of 4-cocycle) mod out the image B4 (the group of

4-coboundaries) relation: 7j4 (G, R/Z) = Z4 /B 4 . We derive the fourth cohomology group of

a generic finite Abelian G = H 1t ZNj as

?- 4 (G, OR/Z) = fi (ZN) 2 X (ZNgi~) 2 X ZNurm- (4.36)
1<i<j<l<m<k

We construct generic 4-cocycles (not identified by 4-coboundaries) for each type, which had

summarized in Table 3.1.

We name the Type II 1st and Type II 2nd 4-cocycles for those with topological term

indices: Pfiij) E ZNg and P() G N of Eq.(4.36). There are Type III 1st and Type III

2nd 4-cocycles for topological term indices: p,(i) E ZNi,1 and p &,) E ZNig1. There is

also Type IV 4-cocycle topological term index: pIv(ijlm) E ZNjjm-

Since we earlier alluded to the relation C3 D - b C2D, between 3D topological orders

(described by 4-cocycles) as the direct sum of sectors of 2D topological orders (described
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by 3-cocycles), we wish to see how the dimensionally-reduced 3-cocycle from 4-cocycles

can hint at the C2D theory of 2D. The geometric interpretation of the induced 3-cocycle

Cb(a, c, d) ibw4(a, c, d) is derived from the 4-cocycle w4:

Z z
8 y y

Cb(a, c, d) b t (d) (4.37
4 -...-

x

The combination of Eq. (4.37) (with four 4-cocycles filling) times the contribution of Eq. (4.31)

(with three 3-cocycles filling) will produce Eq.(4.32) with twelve 4-cocycles filling. Luckily,

the Type II and III w4 have a simpler form of Cb(a, c, d) = w4 (a, b, c, d)/w 4 (b, a, c, d), while

the reduced form of Type IV w 4 is more involved.

This indeed promisingly suggests the relation in Eq.(4.28), C3D = 3(C ) with Gb

G the original group. If we view b as the gauge flux along the z direction, and compactify z

into a circle, then a single winding around z acts as a monodromy defect carrying the gauge

flux b (group elements or conjugacy classes).This implies a geometric picture in Fig.4-6.

One can tentatively write down a relation,

c 3D - C 29D C2D

C, = (untwist) @b-,O C .w( (4.38)

There is a zero flux b = 0 sector C2D (with W3 = 1) w orywith'G,(untwist) (wt 3 1 here the 2D gauge theoywt

G is untwisted. There are other direct sums of C2D with nonzero b fluLx insertion that

have twisted W3(b).

However, different cocycles can represent the same topological order with the equivalent

modular data, in the next section, we should examine this Eq.(4.38) more carefully not in

terms of cocycles, but in terms of the modular data SXY' and TXY.

4.2.4 Representation for S'YZ and TY

Q4: " What are the generic expressions of SL(3,Z) modular data?"

First, in Sec.2.6, we apply the cocycle approach using the spacetime path integral with

SL(3, Z) transformation acting along the time evolution to formulate the SL(3, Z) modular

data, and then in Sec 4.2.4.2 we use the more powerful Representation (Rep) Theory to

determine the general expressions of those data in terms of (G, W4).
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4.2.4.1 Path Integral and Cocycle approach

The cocycles approach uses the spacetime lattice formalism, where we triangulate the

spacetime complex of a 4-manifold M = T3 x I, (a T3 torus times a time interval I) of

Eq.(2.63),(2.64),(2.65) into 4-simplices. We then apply the path integral Z in Eq.(2.57) and

the amplitude form in Eq.(2.59) to obtain

T )(B) = (*A txYIJB), (4.39)

(A)(B) = AtS I~['B), (4.40)

S (B) = (0ASxYz IIB), (4.41)

GSD = Tr[PI = Z('LAIPIPA). (4.42)
A

Here ITA) and IXPB) are ground state bases on the Td torus, for example, they are Ia, a)

(with a charge and a flux) in 2+1D and la, a, b) (with a charge and a, b fluxes) in 3+1D.

We also include the data of GSD, where the P is the projection operator to ground states

discussed in Sec.4.2.2. In the case of d-D GSD on Td (e.g. 3D GSD on T3 ), we simply

compute the Z amplitude filling in Td x S1 - Td+1. There is no short cut here except doing

explicit calculations.

4.2.4.2 Representation Theory approach

The cocycle approach in Sec.4.2.4.1 provides nice physical intuition about the modular trans-

formation process. However, the calculation is tedious. There is a powerful approach simply

using Representation Theory, we will present the general formula of $XYS, Txy, Sy data in

terms of (G, w4) directly. The three steps are outlined as follows:

(i) Obtain the Eq.(4.34)'s Ca by doing the slant product twice from 4-cocycle W4, or tri-

angulating Eq.4.31. (ii) Derive pb(c) of C(-projective representation in Eq.(4.33), which

p^4b(c) is a general linear matrix.

(iii) Write the modular data in the canonical basis Ia, a, b), 113, c, d) of Eq.(4.30).

After some long computations, we find the most general formula SyZ for a group G
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(both Abelian or non-Abelian) with cocycle twist w4:

z-- (a, a. , bz I Sxy lox3, I f, dzx) (4.43)

TrhCi"";(g.f)* Trp^'rp gy),g , .
9,EC17nz ,,nzg,,

g, ECbnCr,
gz CZqynZg, nCd

Here Ca, Cb, Cc, Cd are conjugacy classes of the group elements a, b, c, d E G. In the case of

a non-Abelian G, we should regard a, b as its conjugacy class Ca, Cb in Ia, a, b). Zg means

the centralizer of the conjugacy class of g. For an Abelian G, it simplifies to

S *zab)(Jcd) (d)* rp d(a)6bc S 6bc(a~a~b)Ox~d101 d,a,b k

rp~bb dz)*Trp j , z'(ay) 6,,c, Sa ,bzcy, -

We write #3 , = /y, d,' = dx due to the coordinate identification under SxyZ. The assignment

of the directions of gauge fluxes (group elements) are clearly expressed in the second line.

We may use the first line expression for simplicity.

We also provide the most general formula of TXY in the |a, a, b) basis:

To"-- ""'" =Trg,,'b
Tr dim(a)

Here dim(a) means the dimension of the representation, equivalently the rank of the matrix

of p^b'6 (c). Since SL(2, Z) is a subgroup of SL(3, Z), we can express the SL(2, Z)'s Sx by

SL(3, Z)'s SxyZ and TxY (an expression for both the real spatial basis and the canonical

basis):

S -Y = ((Txv)-lSxYZ) 3 (SxyzTxy) 2Sxyz(Tx)- 1. (4.45)

For an Abelian G, and when C( (c, d) is a 2-coboundary (cohonologically trivial), the

dimensionality of Rep is dim(Rep) - dim(a) = 1, and the Sxy is simplified:

1rp' 01)* tr'd (ac-')
S b ) G trp^ ' -b ' bd. (4.46)(al~b(O~-d JG trp (a) tr",(d
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We can verify the above results by first computing the cocycle path integral approach in

Sec.4.2.4. 1, and substituting from the flux basis to the canonical basis by Eq.(4.30). We have

made several consistent checks, by comparing our S'y, ITy, $'9 to: (1) the known 2D case

for the untwisted theory of a non-Abelian group, (2) the recent 3D case for the untwisted

theory of a non-Abelian group, (3) the recent 3D case for the twisted theory of an Abelian

group.And our expression works for all cases: the (un)twisted theory of (non-)Abelian group.

4.2.4.3 Physics of S and T in 3D

The SX and TXY in 2D are known to have precise physical meanings. At least for Abelian

topological orders, there is no ambiguity that S"' in the quasiparticle basis provides the

mutual statistics of two particles (winding one around the other by 27r), while TXY in the

quasiparticle basis provides the self statistics of two identical particles (winding one around

the other by 7r). Moreover, the intimate spin-statistics relation shows that the statistical

phase eie gained by interchanging two identical particles is equal to the spin s by e

Fig.4-8 illustrates the spin-statistics relation.[1041 Thus, people also call TxY in 2D as the

topological spin. Here we ask:

Q5: " What is the physical interpretation of SL(3,Z) modular data in 3D?"

Our approach again is by dimensional reduction of Fig.4-6, via Eq. (4.26) and Eq. (4.27):

Sxy = (bSbY, TxY = qaTxy, C3D = ebcD, reducing the 3D physics to the direct sum of 2D

topological phases in different flux sectors, so we can retrieve the familiar physics of 2D to

interpret 3D.

For our case with a gauge group description, the b (subindex of SxY, TxY, C2D) labels the

gauge flux (group element or conjugacy class Cb) winding around the compact z direction

in Fig.4-6. This b flux can be viewed as the by-product of a monodromy defect causing

a branch cut (a symmetry twist[27, 56, 57, 791), such that the wavefunction will gain a

phase by winding around the compact z direction. Now we further regard the b flux as a

string threading around in the background, so that winding around this background string

(e.g. the black string threading in Fig.4-7(c),4-9(c),4-10(c)) gains the b flux effect if there

is a nontrivial winding on the compact direction z. The arrow -- -r> along the compact z

schematically indicates such a b flux effect from the background string threading.
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(a) (b) time

Figure 4-8: Both process (a) and process (b) start from the creation of a pair of particle q
and anti-particle q, but the wordlines evolve along time to the bottom differently. Process
(a) produces a phase ei2

,' due to 2w rotation of q, with spin s. Process (b) produces a
phase eie due to the exchange statistics. The homotopic equivalence by deformation implies
ei

2 rs =ie

4.2.4.3.1 T[TY and topological spin of a closed string We apply the above idea to

interpret Tb, shown in Fig.4-9. From Eq.(4.44), we have T'Y = Ty'z - exp(ie"' 0 ) withbb b. x

a fixed b. label for a given b. flux sector. For each b, T" acts as a familiar 2D T matrix

Ti", which provides the topological spin of a quasiparticle (a, a) with charge a and flux a,

in Fig.4-9(a).

From the 3D viewpoint, however, this la, a) particle is actually a closed string con-

pactified along the compact z direction. Thus, in Fig.4-9(b), the self-2w rotation of the

topological spin of a quasiparticle la, a) is indeed the self-2w rotation of a framed closed

string. (Physically we understand that there the string can be framed with arrows, because

the inner texture of the string excitations are allowed in a condensed matter system, due to

defects or the finite size lattice geometry.) Moreover, from an equivalent 3D view in Fig.4-

9(c), we can view the self-2w rotation of a framed closed string as the self-2w flipping of a

framed closed string, which flips the string inside-out and then outside-in back to its original

status. This picture works for both the b = 0 zero flux sector and the b $ 0 sector under

the background string threading. We thus propose Ty as the topological spin of a

framed closed string, threaded by a background string carrying a monodromy b

flux.

4.2.4.3.2 S[" and three-string braiding statistics Similarly, we apply the same phi-

losophy to do 3D to 2D reduction for Sx", each effective 2D threading with a distinct gauge

flux b. We can obtain Sx' from Eq.(4.45) with SL(3, Z) modular data. Here we will focus on
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Z

z

(a) X.L. (b)..- -- -- ~~ ( )

Figure 4-9: Topological spin of (a) a particle by 27r-self rotation in 2D, (b) a framed closed-

string by 27r-self rotation in 3D with a compact z, (c) a closed-string (blue) by 27r-self flipping,

threaded by a background (black) string creating monodromy b flux (along the arrow - -

->), under a single Hopf link 22 configuration. All above equivalent pictures describe the

physics of topological spin in terms of T". For Abelian topological orders, the spin of an

excitation (say A) in Fig.4-9(a) yields an Abelian phase eiE(A) - T )(A) proportional to the

diagonal of the 2D's T Y matrix. The dimensional-extended equivalent picture Fig.4-9(c)

implies that the loop-flipping yields a phase ei9(A),b b A)(A) of Eq.(4.44) (up to a choice

of canonical basis), where b is the flux of the black string.

2-

(a) (b) (c) -A'

Figure 4-10: Exchange statistics of (a) two identical particles at positions 1 and 2 by a 7r

winding (half-winding), (b) two identical strings by a 7r winding in 3D with a compact z, (c)

two identical closed-strings (blue) with a wr-winding around, both threaded by a background

(black) string creating monodromy b flux, under the Hopf links 22#22 configuration. Here

figures (a)(b)(c) describe the equivalent physics in 3D with a compact z direction. The

physics of exchange statistics of a closed string turns out to be related to the topological

spin in Fig.4-9, discussed in Sec.4.2.4.3.3.

interpreting Sxy in the Abelian topological order. Writing S"' in the canonical basis a, a, b)

I#, c, d) of Eq.(4.30), we find that, true for Abelian topological order

SXY = SY = 1 S2D a,
b (e,a,b)(O,c,d) - IGI a,c (b) ( 4

As we predict the generality in Eq. (4.26), the S" here is diagonalized with the b and d

identified (as the z-direction flux created by the background string threading). For a given

fixed b flux sector, the only free indices are la, a) and [3, c), all collected in S2 D (Explicit

data will be presented in Sec.4.2.5.2) Our interpretation is shown in Fig.4-7. From a 2D
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viewpoint, Sfy gives the full 27r braiding statistics data of two quasiparticle la, a) and 10, c)

excitations in Fig.4-7(a). However, from the 3D viewpoint, the two particles are actually

two closed strings compactified along the compact z direction. Thus, the full-27r braiding of

two particles in Fig.4-7(a) becomes that of two closed-strings in Fig.4-7(b). More explicitly,

an equivalent 3D view in Fig.4-7(c), we identify the coordinates x, y, z carefully to see such a

full-braiding process is that one (red) string going inside to the loop of another (blue) string,

and then going back from the outside.

The above picture works again for both the b = 0 zero flux sector as well as the b 0 sec-

tor under the background string threading. When b # 0, the third (black) background string

in Fig.4-7(c) threading through the two (red, blue) strings. The third (black) string creates

the monodromy defect/branch cut on the background, and carrying b flux along z acting on

two (red, blue) strings which have nontrivial winding on the third string. This three-string

braiding was first emphasized in a recent paper,[76] here we make further connection to the

data S" and understand its physics in a 3D to 2D under b flux sectors.

We have proposed and shown that S'Y can capture the physics of three-

string braiding statistics with two strings threaded by a third background string

causing b flux monodromy, where the three strings have the linking configuration

as the connected sum of two Hopf links 22#2 .

4.2.4.3.3 Spin-Statistics relation for closed strings Since a spin-statistics relation

for 2D particles is shown by Fig.4-8, we may wonder, by using our 3D to 2D reduction

picture, whether a spin-statistics relation for a closed string holds?

To answer this question, we should compare the topological spin picture of T" - T y2b,

exp(i"') to the exchange statistic picture of two closed strings in Fig.4-10. Fig.4-10

essentially takes a half-braiding of the S Y process of Fig.4-7, and considers doing half-

braiding on the same excitations in la, a, b) = 11, c, d). In principle, one can generalize

the framed worldline picture of particles in Fig.4-8 to the framed worldsheet picture of

closed-strings. (ps. The framed worldline is like a worldsheet, the framed worldsheet is

like a worldvolume.) This interpretation shows that the topological spin of Fig.4-9 and the

exchange statistics of Fig.4-10 carry the same data, namely

TX = Ti"' = (SD " )x,) or (S2D a, (* (4.48)
b , ay,a, (b72)) ay,a (b)
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from the data of Eq.(4.44),(4.47). The equivalence holds, up to a (complex conjugate *) sign

caused by the orientation of the rotation and the exchange.

In Sec.(4.2.5.2), we will show, for the twisted gauge theory of Abelian topological orders,

such an interpretation Eq.4.48 is correct and agrees with our data. We term this as the

spin-statistics relation for a closed string.

In this section, we have obtained the explicit formulas of SXYZ, TXY, S'Y in Sec.4.2.4.1,4.2.4.2,

and as well as captured the physical meanings of S'Y, Ty in Sec.4.2.4.3.3. Before conclud-

ing, we note that the full understanding of SYZ seems to be intriguingly related to the 3D

nature. It is not obvious to us that the use of 3D to 2D reduction can capture all physics of

SXYZ. We will come back to comment this issue in the Sec.5.3.10.

4.2.5 SL(3, Z) Modular Data and Multi-String Braiding

4.2.5.1 Ground state degeneracy and Particle, String types

We now proceed to study the topology-dependent ground state degeneracy (GSD), modular

data S, T of 3+1D twisted gauge theory with finite group G = JJi ZN,. We shall comment

that the GSD on T2 of 2D topological order counts the number of quasi-particle excitations,

which from the Representation (Rep) Theory is simply counting the number of charges a

and fluxes a forming the quasi-particle basis la, a) spanned the ground state Hilbert space.

In 2D, GSD counts the number of types of quasi-particles (or anyons) as well as

the number of basis la, a). For higher dimension, GSD on Td of d-D topological order

still counts the number of canonical basis la, a, b,...), however, may over count the

number of types of particles (with charge), strings (with flux), etc excitations. From

a untwisted ZN field theory perspective, the fluxed string may be described by a 2-form

B field, and the charged particle may be described by a 1-form A field, with a BF action

f BdA. As we can see the fluxes a, b are over-counted.

We suggest that counting the number of types of particles of d-dimensions is equivalent

to Fig.4-11 process, where we dig a ball Bd with a sphere Sd-i around the particle q,

which resides on Sd. And we connect it through a S' tunnel to its anti-particle q. This

process causes creation-annihilation from vacuum, and counts how many types of q sectors
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Sd

Figure 4-11: Number of particle types - GSD on Sd x S1.

is equivalent to:

the number of particle types = GSD on Sd-1 x I. (4.49)

with I ~ S for this example. For the spacetime integral, one evaluates Eq.(4.42) on

M -- 1 X S i x S .

For counting closed string excitations, one may naively use 12 to enclose a string, analo-

gously to using S 2 to enclose a particle in 3D. Then, one may deduce the number of string types

GSD on T2 x S1 ? i3, and that of spacetime integral on V4, as we already mentioned earlier

which is incorrect and overcounting. We suggest,

the number of string types = S'Y, TY's number of blocks, (4.50)

whose blocks are labeled by b as the form of Eq.4.26. We will show the counting by Eq.(4.49),

(4.50) in explicit examples in the next.

4.2.5.2 Abelian examples: 3D twisted ZN, X ZN2 X ZV, gauge theories with Type

II, III 4-cocycles

We first study the most generic 3+1D finite Abelian twisted gauge theories with Type II,

III 4-cocycle twists. It is general enough for us to consider G = ZN, x ZN2 x ZN3 with

non-vanished gcd Nij, N.i 1 . The Type II, III (both their 1st and 2nd kinds) twisted gauge

theory have GSD= G13 on the spatial T3 torus. As such the canonical basis Ia, a, b) of the

ground state sector labels the charge (a along x) and two fluxes (a, b along y, z), each of the

three has GI kinds. Thus, naturally from the Rep Theory viewpoint, we have GSD= Gl 3.

However, as mentioned in Sec.4.2.5.1, the Gl3 overcounts the number of strings and par-
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ticles. By using Eq.(4.49),(4.50), we find there are IGI types of particles and 1G types of

strings. The canonical basis la, a, b) (GSD on V3) counts twice the flux sectors. Several

remarks follow:

(1) For an untwisted gauge theory (topological term p.. = 0), which is the direct product of

ZN gauge theory or ZN toric code, its statistics has the form exp (E i (/ 3kak - Qtkdk)) and
k

exp ( ak - ak). This shall be described by the BF theory of f BdA action. With a, #3
k

as the charge of particles (1-form gauge field A), a, b as the flux of string(2-forni gauge field

B). This essentially describes the braiding between a pure-particle and a pure-string.

(2) Both Sxy, TxY have block diagonal forms as SxV, T respect to the b flux (along z)

correctly reflects what Eq.(4.26) preludes already.

(3) TxY is in SL(3, Z) canonical basis automatically and full-diagonal, but SxY may not be in

the canonical basis for each blocks of SxY, due to its SL(2, Z) nature. We can find the proper

basis in each b block. Nevertheless, the eigenvalues of SxY are still proper and invariant

regardless any basis.

(4) Characterization of topological orders: We can further compare the 3D Sx' data

to SL(2, Z)'s data of 2D SxY of 'H3(G, OR/Z). All of the dimensional reduction of these data

(Sxy and Tx' ) agree with 3-cocycle (induced from 4-cocycle w4 ). Gathering all data, we

conclude that Eq. (4.38) becomes explicitly. For example, Type II twists for G = (Z2 )2 as,

2,1= 4C() 21  (4.51)

C,)) 2 ,2wI = C(Z )2 C ,1 (Z)2 W3, (4.52)

Such a Type II w4,1 can produce a b = 0 sector of (Z2 toric code 0 Z2 toric code) of 2D as

C2D)2, some b $ 0 sector of (Z2 double-semions 0 Z2 toric code) as C2D 2 and another

b ( 0 sector C U3,II for example. This procedure can be applied to other types of cocycle

twists.

(5) Classification of topological orders:

We shall interpret the decomposition in Eq. (4.38) as the implication of classification. Let
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us do the counting of number of phases in the simplest example of Type II, G = Z2 x Z2

twisted theory. There are four types in (p12),p1)) E K 4 (G, R/Z) = (Z 2 ) 2 . However,

we find there are only two distinct topological orders out of four. One is the trivial

(Z2 )2 gauge theory as Eq.(4.51), the other is the nontrivial type as Eq.(4.52). There are

two ways to see this, (i) from the full SYZ, T Y data. (ii) viewing the sector of S T, TTY

under distinct fluxes b, which is from a H3 (G, R/Z) perspective. We should beware that in

principle tagging particles, strings or gauge groups is not allowed, so one can identify many

seemingly-different orders by relabeling their excitations.

(6) Spin-statistics relation of closed strings in Eq.(4.48) is verified to be correct here,

while we take the complex conjugate in Eq.(4.48). This is why we draw the orientation of

Fig.4-9,4-10 oppositely. Interpreting T'1 as the topological spin also holds.

(7) Cyclic relation for SXYZ in 3D: For all the above data (Type II, Type III), there is a

special cyclic relation for S'o when the charge labels are equal a = f (e.g. for pure fluxes

a = 0, namely for pure strings):

S ,d S 'b = 1. (4.53)

However, such a cyclic relation does not hold (even at the zero charge) for S 2 D , namelya,c (b)

Sax (b) .Sb S a 1 in general. Some other cyclic relations are studied recently in

Ref.[105, 1061, for which we have not yet made detailed comparisons but the perspectives

may be different. In Ref.[106J, their cyclic relation is determined by triple linking numbers

associated with the membrane operators. In Ref.[105, their cyclic relation is related to the

loop braiding of Fig.4-7, which has its relevancy instead to S2D , not our cyclic relationa.c (b) oucylcratn

of So,, for 3D.a,b,d

4.2.5.3 Non-Abelian examples: 3D twisted (Z,)4 gauge theories with Type IV

4-cocycle

We now study a more interesting example, a generic 31-iD finite Abelian twisted gauge

theory with Type IV 4-cocycle twists with pijlrrt $ 0. For generality, our formula also

incorporates Type IV twists together with the aforementioned Type II, III twists. So all

4-cocycle twists will be discussed in this subsection. Differ from the previous example of
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Abelian topological order with Abelian statistics in Sec.4.2.5.2, we will show Type IV 4-

cocycle W4,IV will cause the gauge theory becomes non-A belian, having non-A belian statistics

even if the original G is Abelian. Our inspiration rooted in a 2D example for Type III

3-cocycle twist will cause a similar effect, discovered in Ref.[96]. In general, one can con-

sider G = ZN, X ZN2 X ZN3 x ZN4 with non-vanished gcd N1234; however, we will focus on

G = (Z )4 with N1234 = n, with n is prime for simplicity. From 'H 4(G, R/Z) = Z21, we have

n21 types of theories, while n20 are Abelian gauge theories, and n20 . (n - 1) types with Type

IV w 4 show non-Abelian statistics.

Ground state degeneracy (GSD)-

We compute the GSD of gauge theories with a Type IV twist on the spatial T3 torus,

truncated from = 1G1 3 
= In4

1
3 = n12 to:

GSDT3,IV (n8 + n9 - n5 ) + 1 0 - n7 - n + n3 ) (4.54)

GSD Abe + GSD b (4.55)

(We derive the above only for a prime n. The GSD truncation is less severe and is in between

GSDT3,IV and IG13 for a non-prime n.) As such, the canonical basis Ia, a, b) of the ground

state sector on I3 no longer has IG13 labels with the IGI number charge and two pairs of IGI x

IG number of fluxes as in Sec.4.2.5.2. This truncation is due to the nature of non-Abelian

physics of Type IV W4,Iy twisted. We explain our notation in Eq.(4.55); the (n)Abel indicates

the contribution from (non-)Abelian excitations. From the Rep Theory viewpoint, we can

recover the truncation back to IG13 by carefully reconstructing the quantum dimension of

excitations. We obtain

Gl 3 = (GSD y) + (GSnDA) - n2 (4.56)

= In 4 +71 5 -n}.-n 4 . (1)'+ {(n 4 )1 - n' - n4 +n} -n 2 
-(n)

2

= {FluxAbel} n- (dim,)2  {FuxIyel} - n2 . (dimn)2

The dimm, means the dimension of Rep as dim(Rep) is m, which is also the quantum di-

mension of excitations. Here we have a dimension 1 for Abelian and n for non-Abelian.

In summary, we understand the decomposition precisely in terms of each (non-)Abelian
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contribution as follows:

flux sectors = G 2  4 In2 
= Fluxjy' + Fluxj Il

GSDT3,1y = GSD Abel + GSD ngbe
T3,IV 3 "IV(4.57)

dim(Rep)
2 = 12 ,2

Numbers of charge Rep = n4 , n2.

Actually, the canonical basis la, a, b) (GSD on T3) still works, the sum of Abelian FluxyAbel

and non-Abelian FluxAbel counts the flux number of a, b as the unaltered IG1 2 . The charge

Rep a is unchanged with a number of GI = n 4 for Abelian sector with a rank-1 matrix

(1-dim linear or projective) representation, however, the charge Rep a is truncated to a

smaller number n 2 for non-Abelian sector also with a larger rank-n matrix (n-dim projective)

representation.

Another view on GSDT3,IV can be inspired by a generic formula like Eq. (4.26)

GSDM xs1 = EE(bGSDb,MI = GSDb,M', (4.58)
b

where we sum over GSD in all different b flux sectors, with b flux along S1 . Here we can

take M x S = T3 and M = T2. For non-Type IV (untwisted, Type II, III) W4 case, we

have Gl sectors of b flux and each has GSDbT2 = 1G2 . For Type IV W4 case G = (Z )4

with a prime n, we have

GSDT3,IV = G 2 + (IGI - 1) .ZnJ2 (1 - IZaj3 + (IZJI2 _ 1) n)

= n + (4 - 1) - n (2 _ -n3 + (n3 -1)- n). (4.59)

As we expect, the first part is from the zero flux b = 0, which is the normal untwisted 2+1D

(ZL)4 gauge theory (toric code) as CZ) with G2 = n8 on 2-torus. The remaining (1G - 1)

copies are inserted with nonzero flux (b : 0) as C2D with Type III 3-cocycle twists ofI I I (Zn) ',W13

Table ??. In some case but not all cases, C2D is C2D . In either case,

the GSDb,T2 for b f 0 has the same decomposition always equivalent to a untwisted Z,,

gauge theory with GSD2 n 2 direct product with

GSD24, = (1 - + (a - 1) - n) = GSD 3 1 1 + GSDT2 3 1 1 , (4.60)
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which we generalize the result derived for 2+1D Type III w3 twisted theory with G = (Z2)3

in Ref.[961 to G = (Z) 3 of a prime n.

To summarize, from the GSD counting, we already foresee there exist non-Abelian

strings in 3+1D Type IV twisted gauge theory, with a quantum dimension n.

Those non-Abelian strings (fluxes) carries dim(Rep) = n non-Abelian charges. Since charges

are sourced by particles, those non-Abelian strings are not pure strings but attached

with non-Abelian particles. (For a projection perspective from 3D to 2D, a nonAbelain

string of C3D is a non-Abelain dyon with both charge and flux of C2D.)

Some remarks follow:

(1) Dimensional reduction from 3D to 2D sectors with b flux: From the above

SXYZ, Txy, there is no difficulty deriving SxY from Eq.(4.45). From all these modular data

Sr', Tx' data, we find consistency with the dimensional reduction of 3D topological order

by comparison with induced 3-cocycle W3 from w4. Let us consider a single specific example,

given the Type IV P1234 = 1 and other zero Type IIIII indices p.. = p... 0,

C 4D ®C2 D P2D 4 e c 2D G 5C2D
(Z) b b- (Z2))X (Z2)3'~L ,W3 (Z2)' ,W3JIXw;3,11IX...

C Z 1 2Z)x(D4 ) ( 5CZ) 4W3111XW 3111X...

The CZ)4 again is the normal (Z2 )4 gauge theory at b = 0. The 10 copies of C)x(D4 )

have an untwisted dihedral D4 gauge theory (1D41 = 8) product with the normal (Z2 ) gauge

theory. The duality to D4 theory in 2D can be expected,[1071 see Table 4.2. (As a byproduct

of our work, we go beyond Ref. [107] to give the complete classification of all twisted 2D w3 of

G - (Z2 ) 3 and their corresponding topological orders and twisted quantum double D'(G)

in Appendices of [52].) The remaining 5 copies C z)2 31 x, 1  must contain the twist

on the full group (Z2 ) 4 , not just its subgroup. This peculiar feature suggests the following

remark.

(2) Sometimes there may exist a duality between a twisted Abelian gauge theory and a

untwisted non-Abelian gauge theory, [1071 one may wonder whether one can find a dual non-

Abelian gauge theory for C3D )4 v? We find that, however, C3D cannot be dual

to a normal gauge theory (neither Abelian nor non-Abelian), but must be a

twisted (Abelian or non-Abelian) gauge theory. The reason is more involved. Let us
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first recall the more familiar 2D case. One can consider G =(Z2 )3 example with C7, ,

with H3(G, R/Z) = (Z 2)7 . There are 26 for non-Abelian types with Type III W3 (the other

26 Abelian without with Type III W3 ). We find the 64 non-Abelian types of 3-cocycles W3 go

to 5 classes labeled W 3 [1], W3 [3d], w3 [3ij, w 3 [5] and w 3 [7], and their twisted quantum double

model DW(G) are shown in Table 4.2. The number in the bracket [..] is related to the number

of pairs of i in the T matrix and the d/i stand for the linear dependence(d)/independence(i)

of fluxes generating cocycles. From Table 4.2, we show that two classes of 3-cocycles for

Class Twisted quantum double D'(G) Number of Types

W3[1] Dw3[I](Z 2
3 ), D(D4) 7

W 3 [3d] Dw3[3a(Z2
3 ), D, 4 (Q8 ) 7

w3[3i] D 3[3 i(Z2
3 ), D(Q8 ), Da1(D4), Da2(D 4) 28

W3[5] DA3[ 5 (Z 2 3), Dala2 (D 4 ) 21

W3[7] D3[7(Z 2
3) 1

Table 4.2: D'(G), the twisted quantum double model of G in 2+1D, and their 3-cocycles

w3 (involving Type III) types in C2D )3 We classify the 64 types of 2D non-Abelian twisted
gauge theories to 5 classe. Each class has distinct non-Abelian statistics. Both dihedral
group D4 and quaternion group Q8 are non-Abelian groups of order 8, as 1D41 = IQ81 =

I(Z2 )31 = 8.

D W3 (Z2)3 of 2D can have dual descriptions by gauge theory of non-Abelian dihedral group

D4 , quaternion group Q8. However, the other three classes of 3-cocycles for D13 (Z2 )3 do

not have a dual (untwisted) non-Abelian gauge theory.

Now let us go back to consider 3D CID with Z 16. From Ref.[1081, we know

3+1D D4 gauge theory has decomposition by its 5 centralizers. Apply the rule of decompo-

sition to other groups, it implies that for untwisted group G in 3D C3D, we can decompose

it into sectors of C2D here Gb becomes the centralizer of the conjugacy class(flux) b:it ino setors Gb,b,

CF = EDb p . Some useful information is:

C(Z) 4 = 16CZ) 4  (4.61)

D = 2D 2 e C (4.62)

Z2 xD 4 - Z 2xD4 e(Z2)3 E 2C Z 4 , (4.63)

r = 2C2 E 3C2 D (4.64)

C3D = 4C2D e 6C 2D (4.65)
dZ2 XQ we Zd ss rt

and we find that no such decomposition is possible from IGI = 16 group to match Eq.(4.6l)'s.
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Furthernore, if there exists a non-Abelian G,AbCe to have Eq.(4.61), those (Z2 )4 , (Z2) x (D4 )

or the twisted (Z 2 )4 must be the centralizers of GnAke. But one of the centralizers (the

centralizer of the identity element as a conjugacy class b = 0) of GLAbl must be GnAbde

itself, which has already ruled out from Eq.(4.61),(4.63). Thus, we prove that C3z )4 is

not a normal 3+1D gauge theory (not Z2 x D4 , neither Abelian nor non-Abelian)

but must only be a twisted gauge theory.

Z
2-

4Z 3

+

~ 0:(a)

z

(b)

Figure 4-12: For 3+1D Type IV W4,V twisted gauge theory C3 D v: (a) Two-string statis-

tics in unlink 02 configuration is Abelian. (The b = 0 sector as C2D.) (b) Three-string
statistics in two Hopf links 22#22 configuration is non-Abelian. (The b = 0 sector
in C2D =2D The b # 0 flux sector creates a monodromy effectively acting as the third

(black) string threading the two (red,blue) strings.

(3) We discover that, see Fig.4-12, for any twisted gauge theory C3D with TypeG,(wU4,1vwL4,..)

IV 4-cocycle w4JV (whose non-Abelian nature is not affected by adding other Type 11,III

W4,..), by threading a third string through two-string unlink 02 into three-string

Hopf links 22#22 configuration, Abelian two-string statistics is promoted to non-

Abelian three-string statistics. We can see the physics from Eq. (4.61), the C2D is Abelian

in b = 0 sector; but non-Abelian in b # 0 sector. The physics of Fig.4-12 is then obvious, by

applying our discussion in Sec.4.2.4.3 about the equivalence between string-threading and

the b # 0 monodromy. causes a branch cut.

(4) Cyclic relation for non-Abelian Sly' in 3D: Interestingly, for the (Z2 )4 twisted

gauge theory with non-Abelian statistics, we find that a similar cyclic relation Eq.(4.53)

still holds as long as two conditions are satisfied: (i) the charge labels are equivalent c = 0
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and (ii) 6 aEfb,d,bd} ' 6dE{a,b,ab} 6 bejda.,da} = 1. However, Eq.(4.53) is modified with a factor

depending on the dimensionality of Rep a:

a'b,d . 'b,da . ',a,b .dim(a) 1. (466)

This identity should hold for any Type IV non-Abelian strings. This is a cyclic relation of

3D nature, instead of a dimensional-reducing 2D nature of S2D , in Fig.4-7.a,c (b)

So far we had obtain some string-particle braiding identity via the representation theory

and the twisted lattice gauge theory model (of Dijkgraaf-Witten topological gauge theory).

In Chap.6, we will explore more possible identities through another more unified approach:

geometric-topology surgerytheory and quantum partition functions.
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Chapter 5

Aspects of Anomalies

We review chiral fermionic Adler-Bell-Jackiw anomalies and quantum Hall states in Sec.5. 1.

The we develop and construct the physical systems with bosonic anomalies in Sec.5.2. We

then attempt to construct a non-perturbative lattice chiral fermion/gauge theory by tackling

the Nielson-Ninomya fermion-doubling no-go theorem in Sec.5.3. With the understanding of

fermionic and bosonic anomalies in topological states of matter, we examine some examples

of mixed gauge-gravity anomalies in Sec.5.4 - by constructing mixed gauge-gravity actions

whose boundaries realize mixed gauge-gravity anomalies. Those mixed gauge-gravity ac-

tions can be regarded as effective probe field actions for SPTs beyond-Group-Cohomology

classification.

5.1 Chiral Fermionic Adler-Bell-Jackiw Anomalies and Topo-

logical Phases

First we present a chiral fermionic anomaly (ABJ anomalies[58, 59]) of a continuous U(1)

symmetry realized in topological phases in condensed matter, in contrast to the bosonic

anomalies of discrete symmetries studied in the next.

Specifically we consider an 1+1D U(1) quantum anomaly realization through ID edge

of U(1) quantum Hall state, such as in Fig.5-1. We can formulate a Chern-Simons action

S = f (K a Ada+ qA A da) with an internal statistical gauge field a and an external U(1)

electromagnetic gauge field A. Its 1+1D boundary is described by a (singlet or multiplet-

)chiral boson theory of a field <D (<DL on the left edge, 4)R on the right edge). Here the

139



field strength F = dA is equivalent to the external U(1) flux in the flux-insertion thought

experiment threading through the cylinder Without losing generality, let us first focus on

the boundary with only one edge mode. We derive its equations of motion as

9,, jb E" F, = o,, Et" A = Jy, (5.1)

8 JL , ( q'E",L ) =L')= +Jy, (5.2)

.jR, = -Jy. (5.3)
27r

We show the Hall conductance from its definition J, =oxyE, in Eq.(5.1), as oy

qK m q/(27r).

Quantum Hall or SPT State

JIB

(a) (b)

Figure 5-1: (a) For topological phases, the anomalous current Jb of the boundary theory

along x direction leaks to J, along y direction in the extended bulk system. <B-flux insertion

d /dt = - f E -dL induces the electric Ex field along the x direction. The effective Hall

effect dictates that JY = UXYEx = acyeP" ,A, with the effective Hall conductance aoy
probed by an external U(1) gauge field A. (b) In the fermionic language, the 1+1D chiral

fermions (represented by the solid line) and the external U(1) gauge field (represented by the

wavy curve) contribute to a 1-loop Feynman diagram correction to the axial current j1. This

leads to the non-conservation of jP as the anomalous current a j = EP'(qK-1q/27r) F,,.

Here jA stands for the edge current. A left-moving current jL = Jb is on one edge, and

a right-moving current jR = -Jb is on the other edge, shown in Fig.5-1. By bosonization,

we convert a compact bosonic phase - to the fermion field V). The vector current is jL +

jR = jV, and the U(1)v current is conserved. The axial current is jL - JR jA, and we

derive the famous ABJ U(1)A anomalous current in 1+1D (or Schwinger's 1+1D quantum

electrodynamic [QED] anomaly).

= t, (j+jjI)+ = , (5.4)

j = am (j - jP) = oxy)- "" Fv. (5.5)
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This simple bulk-edge derivation is consistent with field theory 1-loop calculation through

Fig.5-1. It shows that the combined boundary theory on the left and right edges (living on

the edges'of a 2+1D U(1) Chern-Simons theory) can be viewed as an 1+1D anomalous world

of Schwinger's 1+1D QED. This is an example of chiral fermionic anomaly of a continuous

U(1) symmetry when K is an odd integer. (When K is an even integer, it becomes a chiral

bosonic anomaly of a continuous U(1) symmetry.)

5.2 Bosonic Anomalies

Now we focus on characterizing the bosonic anomalies as precisely as possible, and attempt

to connect our bosonic anomalies to the notion defined in the high energy physics context.

In short, we aim to make connections between the meanings of boundary bosonic anomalies

studied in both high energy physics and condensed matter theory.

We specifically highlight three learned aspects about SPTs-

[1]. Non-onsite symmetry on the edge: An important feature of SPT is that the global sym-

metry acting on a local Hamiltonian of edge modes is realized non-onsite. For a given

symmetry group G, the non-onsite symmetry means that its symmetry transformation can-

not be written as a tensor product form on each site,

U(g)non-onsite =A OA~(g), (5.6)

for g E G of the symmetry group. On the other hand, the onsite symmetry transformation

U(g) can be written in a tensor product form acting on each site i, i.e. U(g)oa.ite = OA(g),

for g E G. (The symmetry transformation acts as an operator U(g) with g E G, transforming

the state lv) globally by U(g)jv).) Therefore, to study the SPT edge mode, one should realize

how the non-onsite symmetry acts on the boundary as in Fig.3-1.

[2]. Group cohomology construction: It has been proposed that d + 1 dimensional(d + 1D)

SPTs of symmetry-group-G interacting boson system can be constructed by the number of

distinct cocycles in the d+1-th cohomology group, 'Wd+1 (G, U(1)), with U(1) coefficient. (See

also the first use of cocycle in the high energy context by Jackiw in Ref.[4]) While another

general framework of cobordism theory is subsequently proposed to account for subtleties

when symmetry G involves time-reversal, in our work we will focus on a finite Abelian

symmetry group G = J7i ZNi, where the group cohomology is a complete classification.
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[3]. Surface anomalies: It has been proposed that the edge modes of SPTs are the source

of gauge anomalies, while that of intrinsic topological orders are the source of gravitational

anomalies.[49J SPT boundary states are known to show at least one of three properties:

*(1) symmetry-preserving gapless edge modes,

.(2) symmetry-breaking gapped edge modes,

.(3) symmetry-preserving gapped edge modes with surface topological order.

We shall now define the meaning of quantum anomaly in a language appreciable by both

high energy physics and condensed matter communities -

The quantum anomaly is an obstruction of a symmetry of a theory to be fully-regularized for

a full quantum theory as an onsite symmetry on the UV-cutoff lattice in the same spacetime

dimension.
According to this definition, to characterize our bosonic anomalies, we will find several pos-

sible obstructions to regulate the symmetry at the quantum level:

* Obstruction of onsite symmetries: Consistently we will find throughout our examples to

fully-regularize our SPTs ID edge theory on the 1D lattice Hamiltonian requires the non-

onsite symmetry, namely, realizing the symmetry anomalously. The non-onsite symmetry

on the edge cannot be "dynamically gauged" on its own spacetime dimension, thus this also

implies the following obstruction.

* Obstruction of the same spacetime dimension: We will show that the physical observables

for gapless edge modes (the case .(1)) are their energy spectral shifts[571 under symmetry-

preserving external flux insertion through a compact ID ring. The energy spectral shift is

caused by the Laughlin-type flux insertion of Fig.5-2. The flux insertion can be equivalently

regarded as an effective branch cut modifying the Hamiltonian (blue dashed line in Fig.5-

2) connecting from the edge to an extra dimensional bulk. Thus the spectral shifts also

indicate the transportation of quantum numbers from one edge to the other edge. This can

be regarded as the anomaly requiring an extra dimensional bulk.

* Non-perturbative effects: We know that the familiar Adler-Bell-Jackiw anomaly of chiral

fermions,[58, 591 observed in the pion decay in particle-physics can be captured by the

perturbative I-loop Feynman diagram. However, importantly, the result is non-perturbative,

being exact from low energy IR to high energy UV. This effect can be further confirmed

via Fujikawa's path integral method non-perturbatively. Instead of the well-known chiral

fermionic anomalies, do we have bosonic anomalies with these non-perturbative effects?
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Figure 5-2: The intuitive way to view the bulk-boundary correspondence for edge modes of
SPTs (or intrinsic topological order) under the flux insertion, or equivalently the monodromy
defect / branch cut (blue dashed line) modifying the bulk and the edge Hamiltonians. SPTs
locate on a large sphere with two holes with flux-in and flux-out, is analogous to, a Laughlin
type flux insertion through a cylinder, inducing anomalous edge modes(red arrows) moving
along the opposite directions on two edges.

Indeed, yes, we will show two other kinds of bosonic anomalies with non-perturbative ef-

fects with symmetry-breaking gapped edges (the case *(2)): One kind of consequent anoma-

lies for Type II SPTs under ZN, symmetry-breaking domain walls is the induced fractional

ZN2 charge trapped near OD kink of gapped domain walls. Amazingly, through a fermion-

ization/bosonization procedure, we can apply the field-theoretic Goldstone-Wilczek method

to capture the I-loop Feynman diagram effect non-perturbatively, as this fractional charge

is known to be robust without higher-loop diagrammatic corrections.[64] We will term this

a Type II bosonic anomaly.

The second kind of anomalies for symmetry-breaking gapped edge (the case 9(2)) is

that the edge is gapped under ZN, symmetry-breaking domain walls, with a consequent

degenerate zero energy ground states due to the projective representation of other

symmetries ZN2 x ZN3 . The zero mode degeneracy is found to be gcd(NI, N2 , N3 )-fold. We

will term this a Type III bosonic anomaly.

We will examine a generic finite Abelian G = J17 ZNv bosonic SPTs, and study what is

truly anomalous about the edge under the case of 9(1) and 0(2) above. (Since it is forbidden

to have any intrinsic topological order in a ID edge, we do not have scenario 0(3).) We focus

on addressing the properties of its 1+1D edge modes, their anomalous non-onsite symmetry

and bosonic anomalies.
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G-Cohomology Bosonic Anomalies and Physical Observables
3-cocycle p E ' 3 (G, U(1)) induced frac charge degenerate modes A(P)
Type I pi ZNi No No Yes

Type II P12 ZN 12  Yes. Of ZN2 charge. No Yes

Type III P123 ZN 12 3  
No Yes. N123-fold. Yes

Table 5.1: A summary of bosonic anomalies as 1D edge physical observables to detect the
2+11D SPT of G = ZN1 x ZN2 x ZN3 symmetry, here we use pi, pij, Pijk to label the SPT class
index in the third cohomology group t3 (G, U(1)). For Type II class P12 E ZN 12, we can use

a unit of ZN1-symmetry-breaking domain wall to induce a fractional ZN2 charge, see
Sec.5.2. 1. For Type III class P123 E ZN12 3 , we can either use ZNj 1-symmetry-breaking domain
wall or use ZN-symmetry-preserving flux insertion (effectively a monodroiny defect) through
1D ring to trap N123 multiple degenerate zero energy modes. For Type I class p1 E ZN1 ,
our proposed physical observable is the energy spectrum (or conformal dimension A(P) as
a function of momentum P, see Ref.[57]) shift under the flux insertion. This energy spectral
shift also works for all other (Type II, Type III) classes. We denote the fifth column as the
energy spectral shift A() with the monodromy branch cut or the flux insertion. This table

serves as topological invariants for Type 1, 11, 111 bosonic SPT in the context of Ref.[271.

5.2.1 Type II Bosonic Anomaly: Fractional Quantum Numbers trapped

at the Domain Walls

We propose the experimental/numerical signatures for certain SPT with Type II class P12 #
0 with (at least) two symmetry group ZN X ZN2 , also as a way to study the physical

measurements for Type II bosonic anomaly. We show that when the ZN symmetry is

broken by ZN domain wall created on a ring, there will be some fractionalized ZN2 charges

induced near the kink. We will demonstrate our field theory method can easily capture this

effect.

5.2.1.1 Field theory approach: fractional ZN charge trapped at the kink of ZN

symmetry-breaking Domain Walls

Consider the ZN1 domain wall is created on a ring (the ZNi symmetry is broken), then the

ZN1 domain wall can be captured by #i (x) for x E [0, L) takes some constant value 0o while

01(L) shifted by 27r2L away from 0. This means that 01(x) has the fractional winding

number:

jL dx O2 1 = # 1 (L) - 01(0) = 27rl, (5.7)

Also recall Eq.(3.61) that the Type II P21 # 0 (and p1 = 0,P2 = 0) ZN2 symmetry
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transformation

S ,Pi) = exp[ (p21 dx ax.j 1 + j dx &')I, (5.8)

can measure the induced ZN 2 charge on a state Kdomain) with this domain wall feature as

S(P2P21)Ii d m il 1P2 7r__l2 P21

S/N2 I|domain) = CXP[ N2 ( (L) - i(O))]|domain) = exp[(2riN N2 )|Idomairn). (5.9)

We also adopt two facts that: First, fo dx Oxi = 21r 2 with some integer n12, where the

1 is regularized in a unit of 27r/N1 2. Second, as ZN 2 symmetry is not broken, both q2 and

' have no domain walls, then the above evaluation takes into account that ff' dx ax' = 0.

This implies that induced charge is fractionalized (nl2/N2)p 21 (recall P12, P21 E ZN 12 ) ZN2

charge. This is the fractional charge trapped at the configuration of a single kink in Fig. 5-3.

On the other hand, one can imagine a series of N12 number of ZN,-symmetry-breaking

domain wall each breaks to different vacuum expectation value(v.e.v.) where the domain wall

in the region [0, xi),[xi, X2), ... , [xN 12 -1, xN 12 = L) with their symmetry-breaking #1 value

at 0, 27r1 2 , . 27r N -1 . This means a nontrivial winding number, like a solitonN12 ' N 12 ' N12

effect (see Fig.5-3), fo dx 1 = 2ir and S2 )domain wall) = exp[(27ri 2)] Idornain wall)

capturing P21 integer units of ZN2 charge at N12 kinks for totally N12 domain walls, in the

configuration of Fig.5-3. In average, each kink captures the p21 /N 12 fractional units of ZN2

charge.

6= 21r ---------- = 27r-------------

O X = ------- ---- -
X) =0x = L

(a) =.-----.-.---------- (b) x =0 x = L (c) X =0 x L

Figure 5-3: (a) We expect some fractional charge trapped near a single kink around x = 0

(i.e. x = 0 + E) and x = L (i.e. x = 0 - c) in the domain walls. For ZN,-symmetry breaking

domain wall with a kink jump A# 1 = 27r ", we predict that the fractionalized (n12 /N 2)p21

units of ZN2 charge are induced. (b) A nontrivial winding fof dx &9q(x) = 27r. This is like a
soliton a soliton (or particle) insertion. For N 1 2 number of ZN1-symmetry breaking domain

walls, we predict that the integer P21 units of total induced ZN2 charge on a 1D ring. In

average, each kink captures a p2 1/N 12 fractional units of ZN 2 charge. (c) A profile of several

domain walls, each with kinks and anti-kinks(in blue color). For ZNi symmetry-breaking

domain wall, each single kink can trap fractionalized ZN2 charge. However, overall there is

no nontrivial winding, fo dx &o#1 (x) = 0 (i.e. no net soliton insertion), so there is no net

induced charge on the whole 1D ring.
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Similarly, we can consider the ZN2 domain wall is created on a ring (the ZN 2 symmetry

is broken), then the ZN2 domain wall can be captured by 02(x) soliton profile for x E [0, L).

We consider a series of N12 number of ZN2-symmetry-breaking domain walls, each breaks

to different v.e.v. (with an overall profile of fo' dx&xO 2 = 27r). By ' 2 Tdomain wall) =

exp[(27rie)j II'dornain wall), the N12 kinks of domain wall captures P12 integer units of ZN,

charge for totally N12 domain wall, as in Fig.5-3. In average, each domain wall captures

p12/N 12 fractional units of ZN charge.

5.2.1.2 Goldstone-Wilczek formula and Fractional Quantum Number

It is interesting to view our result above in light of the Goldstone-Wilczek (G-W) approach.f[64]

We warm up by computing 1/2-fermion charge found by Jackiw-Rebbi[63 using G-W

method We will then do a more general case for SPT. The construction, valid for 1D sys-

tems, works as follows.

Jackiw-Rebbi model: Consider a Lagrangian describing spinless fermions o(x) coupled

to a classical background profile A(x) via a term A 4to 30. In the high temperature phase,

the v.e.v. of A is zero and no mass is generated for the fermions. In the low temperature

phase, the A acquires two degenerate vacuum values (A) that are related by a Z2 symmetry.

Generically we have

(A) cos (O(x) - 6(x)), (5.10)

where we use the bosonization dictionary 4ftU 3 / -+ cos(#(x)) and a phase change AO = 7r

captures the existence of a domain wall separating regions with opposite values of the v.e.v.

of A. From the fact that the fermion density p(x) = Vt(x)/(x) = -a-q$(x) (and the current

JA - btO = L"BaOy), it follows that the induced charge Qaw on the kink by a domain

wall is
Qdw=J Jo+e 11

Qdw = O+,C dx p(x) = dx - #(x) -(5.11)
xo-e xo-e 27r 2'

where xO denotes the center of the domain wall.

Type II Bosonic Anomalies: We now consider the case where the ZN symmetry is

spontaneously broken into different "vacuum" regions. This can be captured by an effective
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term in the Hamiltonian of the form

Hsb = -A cos (01(x) - 9(x)), A > 0, (5.12)

and the ground state is obtained, in the large A limit, by phase locking 01 = 9, which opens

a gap in the spectrum.

Different domain wall regions are described by different choices of the profile 9(x), as

discussed in Sec.5.2.1.1. In particular, if we have 9(x) = Ok(x) and k(x) = (k - 1) 27r/N1 2 ,

for x E [(k - 1)L/N 12 , kL/N 12), k = 1,...,N12. then we see that that, a domain wall

separating regions k and k + 1 (where the phase difference is 27r/N1 2 ) induces a ZN2 charge

given by

1L 1+ekL/N1 2+e P1 _ 1
6 Qk,k+1 = dx p2(x) = I dx P2

JkL/N12 -e 2 kL/N 12 -e N2  N2N12

This implies a fractional of p12/N 12 induced ZN2 charge on a single kink of ZN1-symmetry

breaking domain walls, consistent with Eq.(5.9).

JIL

Figure 5-4: In the fermionized language, one can capture the anomaly effect on induced
(fractional) charge/current under soliton background by the 1-loop diagram. [641 With the
solid line - represents fermions, the wavy line ~ represents the external (gauge) field
coupling to the induced current J (or charge JO), and the dashed line - - represents the
scalar soliton (domain walls) background. Here in Sec.5.2.1.2, instead of fermionizing the
theory, we directly address in the bosonized language to capture the bosonic anomaly.

Some remarks follow: If the system is placed on a ring, (i) First, with net soliton (or

particle) insertions, then the total charge induced is non-zero, see Fig.5-3.

(ii) Second, without net soliton (or particle) insertions, then the total charge induced is

obviously zero, as domain walls necessarily come in pairs with opposite charges on the kink

and the anti-kink, see Fig.5-3.

(iii) One can also capture this bosonic anomaly in the fermionized language using the 1-loop

diagram under soliton background [641, shown in Fig.5-4.
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(iv) A related phenomena has also been examined recently where fractionalized boundary

excitations cause that the symmetry-broken boundary cannot be proliferated to restore the

symmetry.

5.2.1.3 Lattice approach: Projective phase observed at Domain Walls

Now we would like to formulate a fully regularized lattice approach to derive the induced

fractional charge, and compare to the complementary field theory done in Sec.5.2.1.1 and

Goldstone-Wilczek approach in Sec.5.2.1.2. Recall that in the case of a system with onsite

symmetry, such as ZN rotor model on a 1D ring with a simple Hamiltonian of E(Oj+ ),

there is an on-site symmetry transformation S = ]7j -rj acting on the full ring. We can

simply take a segment (from the site r1 to r2) of the symmetry transformation defined as

a D operator D(ri, r2 ) H7'-r T. The D operator does the job to flip the measurement

on (at). What we mean is that (V)Iaelo) and (4'keI4") ($IDt aeDP) = ei27/N(4,IaeI?/)

are distinct by a phase ei27/N as long as f E [ri, r2J. Thus D operator creates domain wall

profile.

For our case of SPT edge modes with non-onsite symmetry studied here, we are readily

to generalize the above and take a line segment of non-onsite symmetry transformation with

symmetry ZN. (from the site r, to r2) and define it as a DN. operator, DN. (ri, r2)

H"=i $y H9= Uj ij+1Wf (from the expression of SN., with the onsite piece r4 and

the non-onsite piece Uj,j+l in Eq.(3.48) and Wjj+l in Eq. (3.52)). This D operator effectively

creates domain wall on the state with a kink (at the r1 ) and anti-kink (at the r2) feature,

such as in Fig.5-3. The total net charge on this type of domain wall (with equal numbers

of kink and anti-kinks) is zero, due to no net soliton insertion (i.e. no net winding, so

f &2.#dx = 0). However, by well-separating kinks and anti-kinks, we can still compute

the phase gained at each single kink. We consider the induced charge measurement by

S(DI4')), which is (SDSt)S|V,) - ei(eo+e)D4), where e 0 is from the initial charge (i.e.

SIV) = eieo 10)) and e is from the charge gained on the kink. The measurement of symmetry

S producing a phase eie, implies a nontrivial induced charge trapped at the kink of domain

walls. We compute the phase at the left kink on a domain wall for all Type 1, 11, 111 SPT

classes, and summarize them in Table 5.2.
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SPTII eieL of D, 1 kI) acted by ZN,, symmetry S,, eieL under a solitonf dx49 = 2[r Frac charge

P1 (P1)D(P1)S(P1)t ,~e ' 1 N
P1 N D NI -+ e'_L = e Ie_ _ e ____No

P12 ( 12)D(2) S(P12)t _ 2ieL & : ie y N12 N1P N 2  E) =_______________________ e___2_________eYe

___JjS(P123 )123)S(P123)t-+CL eL 1NP123 N2  D 2  eie 1237 e No

Table 5.2: The phase eieL on a domain wall D. acted by ZNo symmetry S,. This phase
is computed at the left kink (the site ri). The first column shows SPT class labels p. The.
second and the third columns show the computation of phases. The last column interprets
whether the phase indicates a nontrivial induced ZN charge. Only Type II SPT class with

P12 $ 0 contains nontrivial induced ZN2 charge with a unit of P1 2 /N 12 trapped at the kink

of ZN1-symmetry breaking domain walls. Here n3 is the exponent inside the WI matrix,
n3 = 0, 1,... , N 3 - 1 for each subblock within the total N3 subblocks. N 12 = gcd(N1, N2 )
and N 12 3 - gcd(NI, N2 , N3 ).

Although we obtain eieL for each type, but there are some words of caution for inter-

preting it.

(i) For Type I class, with the ZNi-symmetry breaking domain wall, there is no notion of

induced ZN charge since there is no ZNj 1-symmetry (already broken) to respect.

(ii) (D(')" captures n units of ZN-symmetry-breaking domain wall. The calculation

S((D(P)'nS()t renders a eieL phase for the left kink and a eieR = e-iL phase for the

right anti-kink. We choose the domain operator as a segment of symmetry transformation.

For Type II class, if we have operators (D .2))o acting on the interval [0, xi), while (D 2))l

acting on the interval [ 1 , X 2), .. ., and (D (2))N12 acting on the interval [=N12 1, N12 )

then we create the domain wall profile shown in Fig.5-3. It is easy to see that due to charge

cancellation on each kink/anti-kink, the S 2)(D 2))N12S 2)t measurement on a left kink

captures the same amount of charge trapped by a nontrivial soliton: f dx ax#2 = 27r.

(iii) For Type II class, we consider ZN1-symmetry breaking domain wall (broken to a unit of

A01 = 27r/N12 ), and find that there is induced ZN2 charge with a unit of P1 2 /N 12 , consis-

L
tent with field theory approach in Eq.(5.9),(5.13). For a total winding is dx axq1 = 27r,

there is also a nontrivial induced P12 units of ZN2 charge. Suppose a soliton generate this

winding number 1 domain wall profile, even if p12 = N12 is identified as the trivial class

as P12 = 0, we can observe N 12 units of ZN 2 charge, which is in general still not N 2 units

of ZN2 charge. This phenomena has no analogs in Type I, and can be traced back to the

discussion in Sec.3.2.3.

(iv) For Type III class, with a ZNi-symmetry breaking domain wall: On one hand, the eL
phase written in terms of ZN2 or ZN3 charge unit is non-fractionalized but integer. On the
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other hand, we will find in Sec.5.2.3.1 that the ZN2 , ZN3 symmetry transformation surpris-

ingly no longer commute. So there is no proper notion of induced ZN2 , ZN3 charge at all in

the Type III class.

5.2.2 Type III Bosonic Anomaly: Degenerate zero energy modes (pro-

jective representation)

We apply the tools we develop to study the physical measurements for Type III bosonic

anomaly.

5.2.3 Field theory approach: Degenerate zero energy modes trapped at

the kink of ZN symmetry-breaking Domain Walls

We propose the experimental/numerical signature for certain SPT with Type III symmetric

class P123 $ 0 under the case of (at least) three symmetry group ZN x ZN 2 x ZN3 . Under

the presence of a ZNi symmetry-breaking domain wall (without losing generality, we can

also assume it to be any ZNU), we can detect that the remained unbroken symmetry ZN2 ,

ZN3 carry projective representation. More precisely, under the ZN domain-wall profile,

L

dx Ox#1 = #1 (L) - #1(0) =27r-N, (5.13)

we compute the commutator between two unbroken symmetry operators Eq.(3.64):

-SP3 2 e' VP123 = [log S(p) lo2)g Si 27r n1P123, (5.14)N2 "NN 2  N2  NN 123

where we identify the index (P231 + P312) -+ P123 as the same one. This non-commutative

relation Eq.(5.14) indicates that s 231) and S312) are not in a linear representation, but

in a projective representation of ZN2 , ZN3 symmetry. This is analogous to the commutator

[Tx, Ty] of magnetic translations T2, TV along x, y direction on a T2 torus for a filling fraction

1/k fractional quantum hall state (described by U(1)k level-k Chern-Simons theory):

ei xeiT" = e" lei*ei2l/k _ [Tx, TJ| = -i 27r/k, (5.15)

where one studies its ground states on a T2 torus with a compactified x and y direction

gives k-fold degeneracy. The k degenerate ground states are |'m) with m = 0, 1,.. , k - 1,
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while '/r) = | 4 r+k). The ground states are chosen to satisfy: eiTx |)I = ek I4),

eiTyl [m) - I| mrn+1). Similarly, for Eq.(5.14) we have a T2 torus compactified in 02 and #3
directions, such that:

(i) There is a N123 -fold degeneracy for zero energy modes at the domain wall. We can count

the degeneracy by constructing the orthogonal ground states: consider the eigenstate |Zm)
S(3)S3)0n) 2,r nj 1 23'(32

of unitary operator SN2  , it implies that SN2 -m) e' N 1 2 3 m ) S 3 2)IIm) =

|O@,n+1). As long as gcd(ni p123, N123) = 1, we have N123 -fold degeneracy of |7pn) with

M = 0, ... , N123 - 1.

(ii) Eq.(5.14) means the symmetry is realized projectively for the trapped zero energy modes

at the domain wall.

We observe these are the signatures of Type III bosonic anomaly. This Type III anomaly

in principle can be also captured by the perspective of decorated ZN, domain walls with

projective ZN2 X ZN3 -symmnetry.

5.2.3.1 Cocycle approach: Degenerate zero energy modes from ZN, symmetry-

preserving monodromy defect (branch cut) - dimensional reduction

from 2D to 1D

In Sec.5.2.3.1, we had shown the symmetry-breaking domain wall would induce degener-

ate zero energy modes for Type III SPT. In this section, we will further show that, a

symmetry-preserving ZN, flux insertion (or a monodromy defect or branch cut modifying

the Hamiltonian as in Ref.[571,[271) can also have degenerate zero energy modes. This is the

case that, see Fig.5-5, when we put the system on a 2D cylinder and dimensionally reduce it

to a 1D line along the monodromy defect. In this case there is no domain wall, and the ZN,

symmetry is not broken (but only translational symmetry is brokeu near the monodromy

defect / branch cut).

In the below discussion, we will directly use 3-cocycles W3 from cohomology group

'W3 (G, U(1)) to detect the Type III bosonic anomaly. For convenience we use the non-

homogeneous cocycles (the lattice gauge theory cocycles), though there is no difficulty to

convert it to homogeneous cocycles (SPT cocycles). The definition of the lattice gauge

theory n-cocycles are indeed related to SPT n-cocycles:

Wn (A,, A 2 , ... , An) = un (A 1A 2 .. . An, A 2 ... A, . .. , A,, 1) = v-(Ai, A2 ,... , An, 1) (5.16)
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Figure 5-5: (a) The induced 2-cocycle from a 2+11D M3  M2 x II topology with a

symmetry-preserving ZNs flux A insertion (b) Here M2 = S1 x P is a 2D spatial cylin-

der, composed by A and B, with another extra time dimension 11. Along the B-line

we insert a monodromy defect of ZN1 , such that A has a nontrivial group element value

A = g1'gj- 1 = g21g1  = 3'93 C ZN1 . The induced 2-cocycle 3A(B, C) is a nontrivial

element in 'R2 (ZNo X ZN", U(1)) = ZN,o, (here u, v, w cyclic as e" = 1), thus which carries

a projective representation. (c) A monodromy defect can viewed as a branch cut induced

by a <)B flux insertion (both modifying the Hamiltonians). (d) This means that when we

do dimensional reduction on the compact ring S1 and view the reduced system as a ID

line segment, there are N123 degenerate zero energy modes (due to the nontrivial projective

representation).

here A = AjAj+1 ... A,,. For 3-cocycles

W 3 (A, B, C) = v3 (ABC, BC, C, 1) > 3(901, 912, 923) (5.17)

= W3 (9091,g 921 , 9293 1) = 3(9093 ,91931, 9293 , 1) v3 (go, 91,g2,93)

Here A = gol, B = 912, C = 923, with gab gag-1. We use the fact that SPT n-

cocycle v., belongs to the G-module, such that for r are group elements of G, it obeys

r . vzi(ro, ri,. . . ,1, 1) = v(rro, rr,. . . , rrn1, r) (here we consider only Abelian group

G = ]17i ZNJ). In our case, we do not have time reversal symmetry, so group action g on the

G-module is trivial.

In short, there is no obstacle so that we can simply use the lattice gauge theory 3-cocycle

w(A, B, C) to study the SPT 3-cocycle v(ABC, BC, C, 1). Our goal is to design a geometry

of 3-manifold M3 = M2 x Il with M2 the 2D cylinder with flux insertion (or monodromy

defect) and with the Il time direction (see Fig.5-5(a)) with a sets of 3-cocycles as tetrahedra

filling this geometry (Fig.5-6). All we need to do is computing the 2+1D SPT path integral

ZSPT (i.e. partition function) using 3-cocycles W3 ,[271

ZSPT = IGI-NZ w3s{g. l})) (5.18)

{g i
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Here IGI is the order of the symmetry group, No, is the number of vertices, w3 is 3-cocycle,

and si is the exponent 1 or -1(i.e. t) depending on the orientation of each tetrahedron(3-

simplex). The summing over group elements gv on the vertex produces a symmetry-

perserving ground state. We consider a specific M 3 , a 3-complex of Fig.5-5(a), which can be

decomposed into tetrahedra (each as a 3-simplex) shown in Fig.5-6. There the 3-dimensional

spacetime manifold is under triangulation (or cellularization) into three tetrahedra.

We now go back to remark that the 3-cocycle condition indeed means that the path

integral ZSPT on the 3-sphere S 3 (as the surface the 4-ball B4 ) will be trivial as 1. The

3-coboundary condition means to identify the same topological terms (i.e. 3-cocycle) up to

total derivative terms. There is a specific way (called the branching structure) to determine

the orientation of tetrahedron, thus to determine the sign of s for 3-cocycles W 3' by the

determinant of volume, s det(v 2 ,vgi, v'O). Two examples of the orientation with s =

+1, -1 are:

.93

92

9093 93

90 1-1 92 =W3(gg1 ,g1g2 92g3) (5.19)
A93 .0g-

90 4 91 9092 9192-.9091 99
91

93
92

9193 293

91 92 = w 3 
1 (g0g1 1 ,g1g2-',g2g3 -

1 ). (5.20)
A93 - I_

91 90 .192 9092.01q 9091D

.90

Here we define the numeric ordering gi' < 92' < 93' < g4' < gi < 92 < 93 < 94, and our

arrows connect from the higher to lower ordering.

Now we can compute the induced 2-cocycle (the dimensional reduced 1+1D path in-

tegral) with a given inserted flux A, determined from three tetrahedra of 3-cocycles, see

Fig.5-6 and Eq.(5.21).
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93 A g3 g3 g3 93 A 93
BC ' CABC ABC ABC

9/ A \"1' 9X A Ng" \ 9

- / AC\ ACA'

B B /AB AB/'A ABA

g2 A g2' g2 g2 A g2 g2'

Figure 5-6: The triangulation of a M3 = M2 X N topology (here M2 is a spatial cylinder
composed by the A and B direction, with a Il time) into three tetrahedra with branched
structures.

93 93 93

13A(B, C) (5.21)
91' 91, J, _'q

91 4 92 92 921 911 4 92'

w(A, B, C)- 1 -w(ABA-1, A, C) w(B, A, C)
w(ABA- 1, ACA- 1, A) w(A, B, C)w(B, C, A)

W(9192 ,91'91~ 1,9293

0gi-1,gi2g93 ) (91921, 9293 9191 )

We show that only when w 3 is the Type III 3-cocycle w111 (of Eq.3.31), this induced

2-cochain is nontrivial (i.e. a 2-cocycle but not a 2-coboundary). In that case,

/3A(B, C) = exp[ir (bia2 c3 - a1 b2 c3 - bic 2 a3 )] (5.22)

If we insert ZN, flux A = (a,, 0, 0), then we shall compare Eq.(5.22) with the nontrivial

2-cocycle w2 (B, C) in H 2 (ZN2 X ZN3 , U(1)) = ZN231

W2 (B, C) = exp[i 27r(b2c3 )]. (5.23)
N23

The 13A(B, C) is indeed nontrivial 2-cocycle as W2 (B, C) in the second cohomology group

j2(ZN2 x ZN3, U(1)). Below we like to argue that this Eq.(5.23) implies the projective

representation of the symmetry group ZN2 x ZN3 . Our argument is based on two facts.

First, the dimensionally reduced SPTs in terms of spacetime partition function Eq.(5.23) is

a nontrivial 1+1D SPTs.[79 We can physically understand it from the symmetry-twist as a

branch-cut modifying the Hamiltonian[?, 791 (see also Sec.5.2.4). Second, we know that the

1+1D SPT symmetry transformation 0®UX(g) along the 1D's x-site is dictated by 2-cocycle.
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The onsite tensor S(g) = OXUx(g) acts on a chain of ID SPT renders

S(g)IaL, ... , OR) - W2(OiLg 1 19) -aL,-- ,gaR), (5.24)
W2 (aR 9-1 g)

where aL and aR are the two ends of the chain, with g, aL ,aR, - G all in the symmetry

group. We can derive the effective degree of freedom on the OD edge IaL) forms a projective

representation of symmetry, we find:

W2(O C' B-1,B0(01 B)
S(B)S(C)IaL) = L B)2(L C S(BC)IaL) = W2 (B, C)S(BC)IaL)

wU2(aLC1B-1, BC)
(5.25)

In the last line, we implement the 2-cocycle condition of w2: 6;2 (a, b, c) = W2 aC j 1

The projective representation of symmetry transformation S(B)S(C) = w2 (B, C)S(BC) is

explicitly derived, and the projective phase is the 2-cocycle W2 (B, C) classified by 'H2 (G, U(1)).

Interestingly, the symmetry transformations on two ends together will form a linear repre-

sentation, namely S(B)S(C)IaL, - . , aR) = S(BC)IaL, OR)-

The same argument holds when A is ZN2 flux or ZN3 flux. From Sec.5.2.2, the projective

representation of symmetry implies the nontrivial ground state degeneracy if we view the

system as a dimensionally-reduced 1D line segment as in Fig.5-5(d). From the N123 factor

in Eq.(5.22), we conclude there is N123-fold degenerated zero energy modes.

We should make two more remarks:

(i) The precise 1+1D path integral is actually summing over g, with a fixed flux A as

ZSPT IGKNt' Z{gE};fixed A A(B, C), but overall our discussion above still holds.

(ii) We have used 3-cocycle to construct a symmetry-preserving SPT ground state under

ZN, flux insertion. We can see that indeed a ZN, symmetry-breaking domain wall of Fig.5-

7 can be done in almost the same calculation - using 3-cocycles filling a 2+1D spacetime

complex(Fig.5-7(a)). Although there in Fig.5-7(a), we need to fix the group elements gi = 92

on one side (in the time independent domain wall profile, we need to fix g1 = 92 = 93) and/or

fix g' =g2 on the other side. Remarkably, we conclude that both the ZN 1-symmetry-

preserving flux insertion and ZN, symmetry-breaking domain wall both provides

a N123 -fold degenerate ground states (from the nontrivial projective representation for the

ZN2 , ZN3 symmetry). The symmetry-breaking case is consitent with Sec.5.2.3.1.

155



g3 , 3 0Wz r

A 4v

(a) g2 g2- (b) g2 g2' (C)

Figure 5-7: The ZN, symmetry breaking domain wall along the red x mark and/or

orange + mark, which induces N1 23-fold degenerate zero energy modes. The situation is

very similar to Fig.5-5 (however, there was ZN1 symmetry-preserving flux insertion). We

show that both cases the induced 2-cochain from calculating path integral ZSPT renders

a nontrivial 2-cocycle of 7 2 (ZN 2 X ZN 3, U(1)) = ZN23 , thus carrying nontrivial projective

representation of symmetry.

5.2.4 Type I, 11, 111 class observables: Flux insertion and non-dynamically

"gauging" the non-onsite symmetry

With the Type I, Type II, Type III SPT lattice model built in Chap.3, in principle we can

perform numerical simulations to measure their physical observables, such as (i) the energy

spectrum, (ii) the entanglement entropy and (iii) the central charge of the edge modes.

Those are the physical observables for the "untwisted sectors", and we would like to further

achieve more physical observables on the lattice, by applying the parallel discussion, using

ZN gauge flux insertions through the ID ring. The similar idea can be applied to detect

SPTs numerically. The gauge flux insertion on the SPT edge modes (lattice Hamiltonian) is

like gauging its non-onsite symmetry in a non-dynamical way. We emphasize that gauging

in a non-dynamical way because the gauge flux is not a local degree of freedom on each site,

but a global effect. The Hamiltonian affected by gauge flux insertions can be realized as the

Hamiltonian with twisted boundary conditions, see an analogy made in Fig.5-8. Another

way to phrase the flux insertion is that it creates a monodromy defect[27] (or a branch

cut) which modify both the bulk and the edge Hamiltonian. Namely, our flux insertion

acts effectively as the symmetry-twist[79] modifying the Hamiltonian. Here we outline the

twisted boundary conditions on the Type I, Type II, Type III SPT lattice model of Chap.3.

We firstly review the work done in [571 of Type I SPT class and then extends it to

Type II, III class. We aim to build a lattice model with twisted boundary conditions to

capture the edge modes physics in the presence of a unit of ZN flux insertion. Since the

gauge flux effectively introduces a branch cut breaking the translational symmetry of T (as
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(a) (b

3 W +M.

++

(b)(c)

Figure 5-8: (a) Thread a gauge flux 4 B through a ID ring (the boundary of 2D SPT). (b)
The gauge flux is effectively captured by a branch cut (the dashed line in the blue color).

Twisted boundary condition is applied on the branch cut. The (a) and (b) are equivalent

in the sense that both cases capture the equivalent physical observables, such as the energy

spectrum. The illustration of an effective 1D lattice model with M-sites on a compact

ring under a discrete ZN flux insertion. Effectively the gauge flux insertion is captured

by a branch cut located between the site-M and the site-1. This results in a ZN variable

w insertion as a twist effect modifying the lattice Hamiltonian around the site-M and the

site-1.

shown in Fig. 5-8), the gauged (or twisted) Hamiltonian, say HN, is not invariant respect to

translational operator T, say [Hf, T] ,$ 0. The challenge of constructing H- is to firstly

find a new (so-called magnetic or twisted) translation operator t(P) incorporating the gauge

flux effect at the branch cut, in Fig. 5-8 (b) and in Fig.5-8, say the branch cut is between

the site-M and the site-1. We propose two principles to construct the twisted lattice model.

The first general principle is that a string of M units of twisted translation operator (P)

renders a twisted symmetry transformation SN incorporating a ZN unit flux,

5 ( ) 5 . (U( [ui1a])~' t U(p) [wOti], (5.26)

with the unitary operator (T(P)), i.e. (t())tt(P) = 0. We clarify that U (Np) is from

Eq.(3.47), where U (Np) U(Np) ... means U(Np) is a function of ... variables. ForA/Ii h M.1 UAIl

example, UT'rp [woto1I means that the variable atoa in Eq.(3.47) is replaced by woa Ua

with an extra w insertion. The second principle is that the twisted Hamiltonian is invariant in

respect of the twisted translation operator, thus also invariant in respect of twisted synmetry

transformation, i.e.

[ft(p) ,~v) ] 0, [f , 5(P) - 0. (5.27)

We solve Eq.(5.26) by finding the twisted lattice translation operator

f(P = T T(UN'jG ( 1o))Tl, (5.28)
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for each p C- ZN classes. For the s units of ZN flux, we have the generalization of '(P) from

a unit ZN flux as,

t o = T (U (N [oip o) ) S (5.29)

Indeed, there is no difficulty to extend this construction to Type II, III classes. For

Type II SPT classes (with nonzero indices p12 and p21 of Eq.(3.48), while p1 = P2 = 0)

the non-onsite symmetry transformation can be reduced from NNN to NN coupling term

U}N'2) -+ U NP") , also from U 'j22 1) -* U} f21). The Type II twisted symmetry

transformation has exactly the same form as Eq.(5.26) except replacing the U. For Type

III SPT classes, the Type III twisted symmetry transformation also has the same form as

Eq.(5.26) except replacing the U to W in Eq.(3.52). The second principle in Eq.(5.27) also

follows.

Twisted Hamiltonian

The twisted Hamiltonian H 'Eip12) can be readily constructed from H N 2 P of

Eq. (3.56), with the condition Eq.(5.27). (An explicit example for Type I SPT 1D lat-

tice Hamiltonian with a gauge flux insertion has been derived in Ref. 1571, which we shall

not repeat here.)

Notice that the twisted non-trivial Hamiltonian breaks the SPT global symmetry (i.e. if

p # 0 mod(N), then [1H, L'] 1 0), which can be regarded as the sign of ZN anomaly. [49]

On the other hand, in the trivial state p = 0, Eq. (5.26) yields S 0 ) - j= H$ T,

where the twisted trivial Hamiltonian still commutes with the global ZN onsite symmetry,

and the twisted boundary effect is nothing but the usual toroidal boundary conditions. [?J

(See also a discussion along the context of SPT and the orbifolds [1091.

The twisted Hamiltonian provides distinct low energy spectrum due to the gauge flux

insertion (or the symmetry-twist). The energy spectrum thus can be physical observables to

distinguish SPTs. Analytically we can use the field theoretic mode expansion for multiplet

scalar chiral bosons <DI(x) = 0o +KyJP,6 2x +i Zngo 1,se-x" , with zero modes Oo,

and winding modes PO, satisfying the commutator [0o1, P4,] = i6 1J. The Fourier modes

satisfies a generalized Kac-Moody algebra: [aI,n, aJ,m,] = nK/jr,-m. The low energy
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Hamiltonian, in terms of various quadratic mode expansions, becomes

H [ (2-) 2 [ V- Khlj P1'11,2 + V1Ja1,na j,-nj +... (5.30)
47rL

nO0

Following the procedure outlined in Ref.[57 with gauge flux taking into account the twisted

boundary conditions, we expect the conformal dimension of gapless edge modes of central

charge c = 1 free bosons labeled by the primary states mni, mi, n2, m2) (all parameters

are integers) with the same compactification radius R for Type I and Type II SPTs (for

simplicity, we assume N1 = N2  N):

/T(1P2P2 )iP1 R2D211 2

N - 2 n1 + + + MI +

(2 N) 4I+ l2 +H+ - + 2+(5.31)

which is directly proportional to the energy of twisted Hamiltonian. (p12 or P21 can be used

interchangeably.) The conformal dimension N '"P ( ., ,) is intrinsically related to

the SPT class labels: P1, P2, P12, and is a function of momentum Pu = (nu + P + Pu" )(rn +

}) and Puv = (nu + I + 1 )(mv + -). Remarkably, for Type III SPTs, the nature of

non-commutative symmetry generators will play the key rule, as if the gauged conformal

field theory (CFT) and its correspoinding gauged dynamical bulk theory has non-Abelian

features, we will leave this survey for future works. The bottom line is that different classes

of SPT's CFT spectra respond to the flux insertion distinctly, thus we can in principle

distinguish Type 1, 11 and III SPTs.

5.3 Lattice Non-Perturbative Hamiltonian Construction of

Anomaly-Free Chiral Fermions and Bosons

5.3.1 Introduction

Regulating and defining'chiral fermion field theory is a very important problem, since the

standard model is one such theory. [1101 However, the fermion-doubling problem[54, 111, 112]

makes it very difficult to define chiral fermions (in an even dimensional spacetime) on the

lattice. There is much previous research that tries to solve this famous problem. One ap-

159



proach is the lattice gauge theory,[ 113] which is unsuccessful since it cannot reproduce chiral

couplings between the gauge fields and the fermions. Another approach is the domain-wall

fermion.[114, 1151 However, the gauge field in the domain-wall fermion approach propa-

gates in one-higher dimension. Another approach is the overlap-fermion,[116, 1171 while

the path-integral in the overlap-fermion approach may not describe a finite quantum the-

ory with a finite Hilbert space for a finite space-lattice. There is also the mirror fermion

approach[118, 119, 120, 1211 which starts with a lattice model containing chiral fermions in

one original light sector coupled to gauge theory, and its chiral conjugated as the mirror

sector. Then, one tries to include direct interactions or boson mediated interactions[ 1221

between fermions to gap out the mirror sector only. However, the later works either fail to

demonstrate [123, 124,, 125] or argue that it is almost impossible to gap out (i.e. fully open

the mass gaps of) the mirror sector without breaking the gauge symmetry in some mirror

fermion models.[126]

We realized that the previous failed lattice-gauge approaches always assume non-interacting

lattice fermions (apart from the interaction to the lattice gauge field). In this work, we show

that lattice approach actually works if we include direct fermion-fermion interaction with

appropriate strength (i.e. the dimensionaless coupling constants are of order 1).[49, 1271 In

other words, a general framework of the mirror fermion approach actually works for con-

structing a lattice chiral fermion theory, at least in 1+1D. Specifically, any anomaly-free

chiral fermion/boson field theory can he defined as a finite quantum system on a 1 D lattice

where the (gauge or global) symmetry is realized as an onsite symmetry, provided that we

allow lattice fermion/boson to have interactions, instead of being free. (Here, the "chiral"

theory here means that it "breaks parity P symmetry." Our 1+1D chiral fermion theory

breaks parity P and time reversal T symmetry. Our insight comes from Ref. [49, 127], where

the connection between gauge anomalies and symmetry-protected topological (SPT) states

(in one-higher dimension) is found.

To make our readers fully appreciate our thinking, we shall firstly define our important

basic notions clearly:

(ol) Onsite symmetry means that the overall symmetry transformation U(g) of symmetry

group G can be defined as the tensor product of each single site's symmetry transformation

Ui(g), via U(g) = OiUi(g) with g E G. Nonsite symmetry: means U(g)non-osite # 0iUi(g).
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(o2) Local Hamiltonian with short-range interactions means that the non-zero amplitude of

matter(fermion/boson) hopping/interactions in finite time has a finite range propagation,

and cannot be an infinite range. Strictly speaking, the quasi-local exponential decay (of

kinetic hopping/interactions) is non-local and not short-ranged.

(c3) finite(-Hilbert-space) system means that the dimension of Hilbert space is finite if the

system has finite lattice sites (e.g. on a cylinder).

Nielsen-Ninomiya theorem[54, 111, 1121 states that the attempt to regularize chiral

fermion on a lattice as a local free non-interacting fermion model with fermion number

conservation (i.e. with U(1) symmetry) has fermion-doubling problem[54, 111, 1121 in an

even dimensional spacetime. To apply this no-go theorem, however, the symmetry is as-

sumed to be an onsite symmetry.

Ginsparg-Wilson fermion approach copes with this no-go theorem by solving Ginsparg-

Wilson(GW) relation[70, 711 based on the quasi-local Neuberger-Dirac operator,[72, 73, 741

where quasi-local is strictly non-local. In this work, we show that the quasi-localness of

Neuberger-Dirac operator in the GW fermion approach imposing a non-onsite[97, 571 U(1)

symmetry, instead of an onsite symmetry. (While here we simply summarize the result, one

can read the details of onsite and non-onsite symmetry, and its relation to GW fermion in

[501.) For our specific approach for the mirror-fermion decoupling, we will not implement the

GW fermions (of non-onsite symmetry) construction, instead, we will use a lattice fermions

with onsite symmetry but with particular properly-designed interactions. Comparing GW

fermion to our approach, we see that

" Ginsparg-Wilson(GW) fermion approach obtains "chiral fermions from a local

free fermion lattice model with non-onsite U(1) symmetry (without fermion doublers)."

(Here one regards Ginsparg-Wilson fermion applying the Neuberger-Dirac operator,

which is strictly non-onsite and non-local.)

" Our approach obtains "chiral fermions from local interacting fermion lattice model

with onsite U(1) symmetry (without fermion doublers), if all U(1) anomalies are can-

ncelled."

Also, the conventional GW fermion approach discretizes the Lagrangian/the action on

the spacetime lattice, while we use a local short-range quantum Hamiltonian on ID spatial

lattice with a continuous time. Such a distinction causes some difference. For example, it is
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known that Ginsparg-Wilson fermion can implement a single Weyl fermion for the free case

without gauge field on a 1+1D space-time-lattice due to the works of Neuberger, Lfischer,

etc. Our approach cannot implement a single Weyl fermion on a 1D space-lattice within

local short-range Hamiltonian. (However, such a distinction may not be important if we are

allowed to introduce a non-local infinite-range hopping.)

Comparison to Eichten-Preskill and Chen-Giedt-Poppitz models: Due to the past

investigations, a majority of the high-energy lattice community believes that the mirror-

fermion decoupling (or lattice gauge approach) fails to realize chiral fermion or chiral gauge

theory. Thus one may challenge us by asking "how our mirror-fermion decoupling model

is different from Eichten-Preskill and Chen-Giedt-Poppitz models?" And "why the recent

numerical attempt of Chen-Giedt-Poppitz fails?[1251" We now stress that, our approach

provides properly designed fermion interaction terms to make things work, due to the recent

understanding to topological gapped boundary conditions[60, 681:

* Eichten-Preskill(EP)[1181 propose a generic idea of the mirror-fermion approach

for the chiral gauge theory. There the perturbative analysis on the weak-coupling and

strong-coupling expansions axe used to demonstrate possible mirror-fermion decoupling

phase can exist in the phase diagram. The action is discretized on the spacetime

lattice. In EP approach, one tries to gap out the mirror-fermions via the mass term

of composite fermions that do not break the (gauge) symmetry on lattice. The mass

term of composite ferinions are actually fermion interacting terms. So in EP approach,

one tries to gap out the mirror-fermions via the direct fermion interaction that do not

break the (gauge) symmetry on lattice. 'However, considering only the symmetry of

the interaction is not enough. Even when the mirror sector is anomalous, one can still

add the direct fermion interaction that do not break the (gauge) syrmnetry. So the

presence of symmetric direct fermion interaction may or may not be able to gap out

the mirror sector. When the mirror sector is anomaly-free, we will show in this paper,

some symmetric interactions are helpful for gapping out the mirror sectors, while other

symmetric interactions are harmful. The key issue is to design the proper interaction

to gap out the mirror section, and considering only symmetry is not enough.

* Chen-Giedt-Poppitz(CGP)[125 follows the EP general framework to deal with
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a 3-4-5 anomaly-free model with a single U(1) symmetry. All the U(1) symmetry-

allowed Yukawa-Higgs terms are introduced to mediate multi-fermion interactions.

The Ginsparg-Wilson fermion and the Neuberger's overlap Dirac operator are im-

plemented, the fermion actions are discretized on the spacetime lattice. Again, the

interaction terms are designed only based on symmetry, which contain both helpful

and harmful terms, as we will show.

* Our model in general belongs to the mirror-fermion-decoupling idea. The anomaly-

free model we proposed is named as the 3 L- 5R- 4 L-OR model. Our 3 L- 5 R-4 L-OR is

in-reality different from Chen-Giedt-Poppitz's 3-4-5 model, since we impliment:

(i) an onsite-symmetry local lattice model: Our lattice Hamiltonian is built on

ID spatial lattice with on-site U(1) symmetry. We neither implement the GW fermion

nor the Neuberger-Dirac operator (both have non-onsite symmetry).

(ii) a particular set of interaction terms with proper strength:

Our multi fermion interaction terms are particularly-designed gapping terms which

obey not only the symmetry but also certain Lagrangian subgroup algebra. Those

interaction terms are called helpful gapping terms, satisfying Boundary Fully Gap-

ping Rules. We will show that the Chen-Giedt-Poppitz's Yukawa-Higgs terms induce

extra multi-fermion interaction terms which do not satsify Boundary Fully Gap-

ping Rules. Those extra terms are incompatible harmful terms, competing with the

helpful gapping terms and causing the preformed mass gap unstable so preventing the

mirror sector from being gapped out. (This can be one of the reasons for the failure of

mirror-decoupling in Ref.[1251.) We stress that, due to a topological non-perturbative

reason, only a particular set of ideal interaction terms are helpful to fully gap the

mirror sector. Adding more or removing interactions can cause the mass gap unstable

thus the phase flowing to gapless states. In addition, we stress that only when the

helpful interaction terms are in a proper range, intermediate strength for dimensionless

coupling of order 1, can they fully gap the mirror sector, and yet not gap the original

sector (details in Sec.5.3.4). Throughout our work, when we say strong coupling for

our model, we really mean intermediate(-strong) coupling in an appropriate range. In

CGP model, however, their strong coupling may be too strong (with their kinetic term

neglected); which can be another reason for the failure of mirror-decoupling.[1251
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(iii) extra symmetries: For our model, a total even number N of left/right moving

Weyl fermions (NL = NR = N/2), we will add only N/2 helpful gapping terms under

the constraint of the Lagrangian subgroup algebra and Boundary Fully Gapping

Rules. As a result, the full symmetry of our lattice model is U(1)N/ 2 (where the gap-

ping terms break U(1)N down to U(1)N/ 2 ). For the case of our 3 L- 5 R- 4 L-OR model, the

full U(1) 2 symmetry has two sets of U(1) charges, U(1)1st 3-5-4-0 and U(1)2nd 0-4-5-3,

both are anomaly-free and mixed-anomaly-free. Although the physical consideration

only requires the interaction terms to have on-site U(1)1,t symmetry, looking for in-

teraction terms with extra U(1) symmetry can help us to identify the helpful gapping

terms and design the proper lattice interactions. CGP model has only a single U(1)1st

symmetry. Here we suggest to improve that model by removing all the interaction

terms that break the U(1)2nd symmetry (thus adding all possible terms that preserve

the two U(1) symmetries) with an intermediate strength.

The plan of our attack is the following. In Sec.5.3.2 we first consider a 3 L- 5 R- 4 L-OR

anomaly-free chiral fermion field theory model, with a full U(1) 2 symmetry: A first 3-5-

4-0 U(1)1mt symmetry for two left-moving fermions of charge-3 and charge-4, and for two

right-moving fermions of charge-5 and charge-0. And a second 0-4-5-3 U(1)2nd symmetry

for two left-moving fermions of charge-0 and charge-5, and for two right-moving fermions of

charge-4 and charge-3. If we wish to have a single U(1)1 t symmetry, we can weakly break

the U(i)2nd symmetry by adding tiny local U()2 -symmetry breaking term.

We claim that this model can be put on the lattice with an onsite U(1) symmetry, but

without fermion-doubling problem. We construct a 2+1D lattice model by simply using four

layers of the zeroth Landau levels(or more precisely, four filled bands with Chern numbers

[1281 -1, +1, -1, +1 on a lattice) right-moving, charge-4 left-moving, charge-0 right-moving,

totally four fermionic modes at low energy on one edge. Therefore, by putting the 2D bulk

spatial lattice on a cylinder with two edges, one can leave edge states on one edge untouched

so they remain chiral and gapless, while turning on interactions to gap out the mirrored

edge states on the other edge with a large mass gap.

[NOTE on usages: Here in our work, U(1) symmetry may generically imply copies of U(1)

symmetry such as U(1)A, with positive integer M. (Topological) Boundary Fully Gap-

ping Rules are defined as the rules to open the mass gaps of the boundary states. (Topolog-

ical) Gapped Boundary Conditions are defined to specify certain boundary types which
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are gapped (thus topological). There are two kinds of usages of lattices here discussed in our

work: one is the Hamiltonian lattice model to simulate the chiral fermions/bosons. The

other lattice is the Chern-Simons lattice structure of Hilbert space, which is a quantized

lattice due to the level/charge quantization of Chern-Simions theory.

5.3.2 3 L- 5 R- 4 L- 0 R Chiral Fermion model

The simplest chiral (Weyl) fermion field theory with U(1) symmetry in 1 + ID is given by

the action

ST,free J dtdx i' (at - ax)VL. (5.32)

However, Nielsen-Ninomiya theorem claims that such a theory cannot be put on a lattice

with unbroken onsite U(1) symmetry, due to the fermion-doubling problem.[54, 111, 112]

While the Ginsparg-Wilson fermion approach can still implement an anomalous single Weyl

fermion on the lattice, our approach cannot (unless we modify local Hamiltonian to infinite-

range hopping non-local Hamiltonian). As we will show, our approach is more restricted,

only limited to the anomaly-free theory. Let us instead consider an anomaly-free 3 L- 5 R-4 L-

OR chiral fermion field theory with an action S*A,free,

dtdx (i"01 (at - ax)4 L,3 + i4t 5 (at + O(x)R,5 i01,44 (Ot - Ox)/'L,4 + i4O(at + Ox)VR,o

(5.33)

where 'bL,3, 4R,5, 4'L,4, and VPR.O are 1-component Weyl spinor, carrying U(1) charges 3,5,4,0

respectively. The subscript L(or R) indicates left(or right) moving along -:.(or +&). Al-

though this theory has equal numbers of left and right moving modes, it violates parity and

time reversal symmetry, so it is a chiral theory. Such a chiral fermion field theory is very

special because it is free from U(1) anomaly - it satisfies the anomaly matching condition[48

in 1 + ID, which means 3 qj. - qR. = 32 - 52 +42 - 02 = 0. We ask:

Question 1: "Whether there is a local finite Hamiltonian realizing the above U(1) 3-5-4-0

symmetry as an onsite symmetry with short-range interactions defined on a 1D spatial

lattice with a continuous time, such that its low energy physics produces the anomaly-free

chiral fermion theory Eq.(5.33)?"

Yes. We would like to show that the above chiral fermion field theory can be put on

a lattice with unbroken onsite U(1) symmetry, if we include properly-desgined interactions
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between fermions. In fact, we propose that the chiral fermion field theory in Eq. (5.33)

appears as the low energy effective theory of the following 2+1D lattice model on a cylinder

(see Fig.5-9) with a properly designed Hamiltonian. To derive such a Hamiltonian, we start

from thinking the full two-edges fermion theory with the action S*, where the particularly

chosen multi-fermion interactions SIB,interact will be explained:

S = S4'A,free + STB,free + SQB,interact =dt (ipAFA A + i+B F'/ B

+#1 (( ,)("L,5) (?V,4 ? ,4 )(OR,OVx4R,O) + h.c.)

+92(( L,3 Vx L, 3 )(, 5Vx' 5)- L,4) L,)+h.c.)) (5.34)

The notation for fermion fields on the edge A are '@A (?L,3, 'R,5, 4'L,4, V'R,o) , and

fermion fields on the edge B are QB = ('L,5, OR,3, ?L,O, 'R,4). (Here a left moving mode in

TA corresponds to a right moving mode in 1B because of Landau level/Chern band chirality,

the details of lattice model will be explained.) The gamma matrices in 1+1D are presented

in terms of Pauli matrices, with 70 = -, = i%, - 5 - y0 y1 - -o-,, and F0  -y 0  ' 0,

Jl - 71 1l 715 =- P 0 1 and ji - iF0 .

In 1+1D, we can do bosonization, where the fermion matter field IF turns into bosonic

phase field <, more explicitly ?PL,3 ~ e 3, R,5 ~ e 5, 'L,4 - e 4, IR,0 - e 0 on A edge,
i -> .B -4p - 4BR

?PR,3 - e 3, V)L,5 -e , e' 5 , 4 -' 4 V)L,O - e on B edge, up to normal orderings : e

and prefactors,[?I but the precise factor is not of our interest since our goal is to obtain its

non-perturbative lattice realization. So Eq. (5.34) becomes

S = SA + SB + SIB
free fr? interact

dtdxKAatA&<A - + (Kgatioxb - Viij I 4IaI )

+ J dtdx (gi cos(<B + <B) - 2 + + ( + <bi + <)). (5.35)

Here I, J runs over 3, 5, 4, 0 and K = -Ky =diag(1,-1,1,-1) Vj = diag(1, 1, 1, 1)

are diagonal matrices. All we have to prove is that gapping terms, the cosine terms

with 91, 92 coupling can gap out all states on the edge B. First, let us understand more

about the full U(1) symmetry. What are the U(1) symmetries? They are transformations
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A B A B A 0

(a) R1ROj()J1 C

Figure 5-9: 3-5-4-0 chiral fermion model: (a) The fermions carry U(1) charge 3,5,4,0 for

'V)L,3,1R,5,*L,4,0R,0 on the edge A, and also for its mirrored partners R,3, 'L,5,*R,4*L,0

on the edge B. We focus on the model with a periodic boundary condition along x, and

a finite-size length along y, effectively as, (b) on a cylinder. (c) The ladder model on a

cylinder with the t hopping term along black links, the t' hopping term along brown links.

The shadow on the edge B indicates the gapping terms with G 1 , G2 couplings in Eq.(5.38)

are imposed.

of

fermions 4 -> 4 - eiqO bosons -b --+ ( + q 0

making the full action invariant. The original four Weyl fermions have a full U(1) 4 symmetry.

Under two linear-indepndent interaction terms in SqIB,interact (or S ), U(1) 4 is broken
tnteract

down to U(1) 2 symmetry. If we denote these q as a charge vector t = (q3, q5, q4, q0), we find

there are such two charge vectors tj = (3,5,4,0) and t2 = (0,4,5,3) for U(1) 1,t, U(1)2ld

symmetry respectively.

We emphasize that finding those gapping terms in this U(1) 2 anomaly-free theory is

not accidental. The anomaly matching condition[48 here is satisfied, for the anomalies

q2 - q2 = 32 - 52 +42 - 02 = 02 -42 +52 - 32 = 0, and the mixed anomaly:

3 - 0 - 5 - 4 +4- 5 - 0 - 3 = 0 which can be formulated as

t[ -(KA) . t = 0 , i,j E {1,2} (5.36)

with the U(1) charge vector t = (3,5, 4, 0), with its transpose tT.

On the other hand, the boundary fully gapping rules require two gapping terms,

here g, cos(ei - 4b) + g2 cos(2 - 4b), such that self and mutual statistical angles 9 ij defined

below among the Wilson-line operators fe, ij are zeros,

ij /(27r) =i (K B)- 1 . = 0 , i,j E {1,2} (5.37)
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Indeed, here we have t1 = (1, 1, -2, 2), f 2 = (2, -2, 1, 1) satisfying the rules. Thus we prove

that the mirrored edge states on the edge B can be fully gapped out.

We will prove the anomaly matching condition is equivalent to find a set of gapping

terms ga C0s(fa -<), satisfies the boundary fully gapping rules, detailed in Sec.5.3.7, -.3.8.

Simply speaking, the anomaly matching condition (Eq.(5.36)) in 1+1D is equivalent

to (an if and only if relation) the boundary fully gapping rules (Eq.(5.37)) in 1+1D

boundary/2+1D bulk for an equal number of left-right moving modes(NL = NR, with

central charge CL = CR)- We prove this is true at least for U(1) symmetry case, with the

bulk theory is a 2+1D SPT state and the boundary theory is in 1+1D.

We now propose a lattice Hamiltonian model for this 3 L- 5 R- 4 L-OR chiral

fermion realizing Eq.(5.34) (thus Eq.(5.33) at the low energy once the Edge B is gapped

out). Importantly, we do not discretize the action Eq.(5.34) on the spacetime lattice. We

do not use Ginsparg-Wilson(GW) fermion nor the Neuberger-Dirac operator. GW and

Neuberger-Dirac scheme contains non-onsite symmetry which cause the lattice difficult to

be gauged to chiral gauge theory. Instead, the key step is that we implement the on-site

symmetry lattice fermion model. The free kinetic part is a fermion-hopping model which

has a finite 2D bulk energy gap but with gapless ID edge states. This can be done by using

any lattice Chern insulator.

We stress that any lattice Chern insulator with onsite-symmetry shall work, and we

design one as in Fig.5-9. Our full Hamiltonian with two interacting G1 , G2 gapping terms is

H = ( ( (tij,, t (i) f(j + h.c.) + E (t fIt(i)fq (j) + h.c.) (5.38)
q=3,5,4, (i~j) ,W))

+ G1 (( 3 (j)) (f5(j)) (fl(i)Pt.8 .)2  2 + h.c.
jEB

+G 2 E ((3(j)p t .s.)2 (f(pt.s.) 4(j))1 (o(j)) 1 +h.c.
jEB

where ZjEB sums over the lattice points on the right boundary (the edge B in Fig.5-

9), and the fermion operators f3, f5, f4, fo carry a U(1) 1 t charge 3,5,4,0 and another

U(1)2n1d charge 0,4,5,3 respectively. We emphasize that this lattice model has onsite U(1) 2

symmetry, since this Hamiltonian, including interaction terms, is invariant under a global

U(1) 1,t transformation on each site for any 0 angle: f3 -- f3e30A, f5 fsei5, f4 - f 4 e 4 0,
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fo -+ fo, and invariant under another global U(1)2nd transformation for any 9 angle: f3 -+ 3,

f5 j4, f4e -+ f 4eh5  fo -, foei 9 . The U(1) 1,t charge is the reason why it is named as

3 L-5R- 4 L-OR model.

As for notations, (i, j) stands for nearest-neighbor hopping along black links and ((i, j))

stands for next-nearest-neighbor hopping along brown links in Fig.5-9. Here pt.s. stands

for point-splitting. For example, (f3(j)pt.s.) 2  f3(j)f3(j + 2). We stress that the full

Hamiltonian (including interactions) Eq.(5.38) is short-ranged and local, because each term

only involves coupling within finite number of neighbor sites. The hopping amplitudes tij,3 =

tij,4 and t',j,3 = t', 4 produce bands with Chern number -1, while the hopping amplitudes

= tij,o and '= t produce bands with Chern number +1 (see Sec.5.3.3.3).[128 The

ground state is obtained by filling the above four bands.

As Eq.(5.38) contains U(1)1mt and an accidental extra U(1)2 1 d symmetry, we shall ask:

Question 2: "Whether there is a local finite Hamiltonian realizing only a U(1) 3-5-

4-0 symmetry as an onsite symmetry with short-range interactions defined on a 1D

spatial lattice with a continuous time, such that its low energy physics produces the

anomaly-free chiral fermion theory Eq.(5.33)?"

Yes, by adding a small local perturbation to break U(1)2nd 0-4-5-3 symmetry, we can

achieve a faithful U(1) 1,t 3-5-4-0 symmetry chiral fermion theory of Eq.(5.33). For example,

we can adjust Eq.(5.38)'s H -+ H + 6H by adding:

6H = G'tiry ((f3(i)pt.s.) (f(i)Pt.s.)(f()' h.c.
jEB

e gh ((VL,3ViL,3V3XRL,3)( 4 ,4) + h.c.)

Stiny cos(34 B - 4) - 4D) 4g, cos(' -B). (5.39)

Here we have f' (3, -1, -1, 0). The gtin cos(' DB) is not designed to be a gap-

ping term (its self and mutual statistics happen to be nontrivial: e'T - (KB)- 1 . e/ 0,

f'T- (KB)- 1 - f2 # 0), but this tiny perturbation term is meant to preserve U(1)1 t 3-5-4-0

symmetry only, thus L"T - ti L'T - (KB)- 1 . t, = 0. We must set (IGtiny'I/IGI) < 1 with

IG11 ~ IG21 ~ IGI about the same magnitude, so that the tiny local perturbation will not

destroy the mass gap.

Without the interaction, i.e. G 1 = G2 = 0, the edge excitations of the above four bands

produce the chiral fermion theory Eq.(5.33) on the left edge A and the mirror partners on
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the right edge B. So the total low energy effective theory is non-chiral. In Sec.5.3.3.3, we

will provide an explicit lattice model for this free fermion theory.

However, by turning on the intermediate-strength interaction G 1 , G2 = 0, we claim the

interaction terms can fully gap out the edge excitations on the right mirrored edge B as

in Fig.5-9. To find those gapping terms is not accidental - it is guaranteed by our proof

of equivalence between the anomaly matching condition48 (as tJ - (K)-1 -tj = 0 of

Eq.(5.36) ) and the boundary fully gapping rules[60, 681 (here G 1, G2 terms can gap out

the edge) in 1 + 1 D. The low energy effective theory of the interacting lattice model with

only gapless states on the edge A is the chiral fermion theory in Eq.(5.33). Since the width

of the cylinder is finite, the lattice model Eq.(5.38) is actually a 1+1D lattice model, which

gives a non-perturbative lattice definition of the chiral fermion theory Eq.(5.33). Indeed, the

Hamiltonian and the lattice need not to be restricted merely to Eq.(5.38) and Fig.5-9, we

stress that any on-site synunetry lattice model produces four bands with the desired Chern

numbers would work. We emphasize again that the U(1) symmetry is realized as an onsite

symmetry in our lattice model. It is easy to gauge such an onsite U(1) symmetry to obtain

a chiral fermion theory coupled to a U(1) gauge field.

5.3.3 From a continuum field theory to a discrete lattice model

We now comment about the mapping from a continuum field theory of the action Eq. (5.33)

to a discretized space Hamiltonian Eq.(5.38) with a continuous time. We do not pursue

Ginsparg- Wilson scheme, and our gapless edge states are not derived from the discretiza-

tion of spacetime action. Instead, we will show that the Chern insulator Hamiltonian in

Eq.(5.38) as we described can provide essential gapless edge states for a free theory (without

interactions G 1 , G 2).

Energy and Length Scales: We consider a finite 1+1D quantum system with a pe-

riodic length scale L for the compact circle of the cylinder in Fig.5-9. The finite size width

of the cylinder is w. The lattice constant is a. The mass gap we wish to generate on the

mirrored edge is A,,,, which causes a two-point correlator has an exponential decay:

(,t (r)iP(0)) ~ (e~iE (re(D() ~ll exp(-Jrj/ ) (5.40)
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with a correlation length scale . The .expected length scales follow that

a < < w.< L. (5.41)

The 1D system size L is larger than the width w, the width w is larger than the correlation

length , the correlation length is larger than the lattice constant a.

5.3.3.1 Free kinetic part and the edge states of a Chern insulator

5.3.3.2 Kinetic part mapping and RG analysis

The kinetic part of the lattice Hamiltonian contains the nearest neighbor hopping term

Z(ij) (tij,q ft(i)fq(j)+h.c.) together with the next-nearest neighbor hopping term Z((ij)) (t'jq
hatfqt(i)fq(j) +h.c.), which generate the leading order field theory kinetic term via

tijfq(i)fq(j) ~ )' a i?/4 4q + ... , (5.42)

here hopping constants tij, t';- with a dimension of energy [tij] = [t'I = 1, and a is the lattice

spacing with a value [a] = -1. Thus, [fg(j)] = 0 and ['0q] =. The map from

fq -+ v/a q + .. . (5.43)

contains subleading terms. Subleading terms ... potentially contain higher derivative V'i$q

are only subleading perturbative effects

fq -+ V/a (?!q + + an asmallV Oq +...)

with small coefficients of the polynomial of the small lattice spacing a via asmall = osman(a) ?

(a/L). We comment that only the leading term in the mapping is important, the full ac-

count for the exact mapping from the fermion operator fq to Oq is immaterial to our model,

because of two main reasons:

.(i) Our lattice construction is based on several layers of Chern insulators, and the chirality

of each layer's edge states are protected by a topological number - the first Chern number

C, E Z. Such an integer Chern number cannot be deformed by small perturbation, thus it
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is non-perturbative topologically robust, hence the chirality of edge states will be pro-

tected and will not be eliminated by small perturbations. The origin of our fermion chirality

(breaking parity and time reversal) is an emergent phenomena due to the complex hopping

amplitude of some hopping constant ty or tij E C. Beside, it is well-known that Chern

insulator can produce the gapless fermion energy spectrum at low energy. More details and

the energy spectrum are explicitly presented in Sec.5.3.3.3.

.(ii) The properly-designed interaction effect (from boundary fully gapping rules) is a non-

perturbative topological effect (as we will show in Sec.5.3.8. In addition, we can also

do the weak coupling and the strong coupling RG(renormalization group) analysis to

show such subleading-perturbation is irrelevant.

For weak-coupling RG analysis, we can start from the free theory fixed point, and evalu-

ate asmall?q - - - V9q term, which has a higher energy dimension than Oqta&x'q, thus irrelevant

at the infrared low energy, and irrelevant to the ground state of our Hamiltonian.

For strong-coupling RG analysis at large 91, 92 coupling(shown to be the massive phase

with mass gap in Sec.5.3.8,it is convenient to use the bosonized language to map the

fermion interaction Uinteraction (..,. , ... ) of SqB,interact to boson cosine term ga cos(taI

DI) of SIB . At the large g coupling fixe point, the boson field is pinned down at the

minimum of cosine potential, we thus will consider the dominant term as the discretized

spatial lattice (a site index j) and only a continuous time: f dt ( E j 2 (a, .i,j) 2 + . . ).

Setting this dominant term to be a marginal operator means the scaling dimension of 44,j

is [4Ij] = 1/2 at strong coupling fixed point. Since the kinetic term is generated by an

operator:

e ifka ,eiai9,-) i(4 j+j-pj )

where eiPia generates the lattice translation by eiPka4ei'P'a = 4 + a, but ei) containing

higher powers of irrelevant operators of (4 1 )' for n > 2, thus the kinetic term is an irrelevant

operator at the strong-coupling massive fixed point.

The higher derivative term asmall/q ... Vx?/q is generated by the further long range

hopping, thus contains higher powers of : es* : thus this subleading terms in Eq(.43) are
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(a) (b) M

Figure 5-10: Chiral 7r-flux square lattice: (a) A unit cell is indicated as the shaded darker
region, containing two sublattice as a black dot a and a white dot b. The lattice Hamiltonian
has hopping constants, tie"/ 4 along the black arrow direction, t 2 along dashed brown links,
-t 2 along dotted brown links. (b) Put the lattice on a cylinder. (c) The ladder: the lattice
on a cylinder with a square lattice width. The chirality of edge state is along the direction
of blue arrows.

further irrelevant perturbation at the infrared, comparing to the dominant cosine terms.

5.3.3.3 Numerical simulation for the free fermion theory with nontrivial Chern

number

Follow from Sec.5.3.2 and 5.3.3.2, here we provide a concrete lattice realization for free

fermions part of Eq.(5.38) (with G1 = G2 = 0), and show that the Chern insulator provides

the desired gapless fermion energy spectrum (say, a left-moving Weyl fermion on the edge

A and a right-moving Weyl fermion on the edge B, and totally a Dirac fermion for the

combined). We adopt the chiral 7r-flux square lattice model in Fig.5-10 as an example.

This lattice model can be regarded as a free theory of 3-5-4-0 fermions of Eq.(5.33) with

its mirrored conjugate. We will explicitly show filling the first Chern number[1281 Ci = -1

band of the lattice on a cylinder would give the edge states of a free fermion with U(1) charge

3, similar four copies of model together render 3-5-4-0 free fermions theory of Eq.(5.38).

We design hopping constants tij,3 = t1 e'r/4 along the black arrow direction in Fig.5-10,

and its hermitian conjugate determines tij,3 = tie-i"/ 4 along the opposite hopping direction;

t along , j,3 -t2 along dotted brown links. The shaded blue

region in Fig.5-10 indicates a unit cell, containing two sublattice as a black dot a and a

white dot b. If we put the lattice model on a torus with periodic boundary conditions for

both x, y directions, then we can write the Hamiltonian in k = (k., ky) space in Brillouin

zone (BZ), as H = Ek f H(k)fk, where fk = (fak, fb,k). For two sublattice a, b, we have
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a generic pseudospin form of Hamiltonian H(k),

H(k) = Bo(k) + B(k) f . (5.44)

o are Pauli matrices (o-,, ay, or). In this model Bo(k) = 0 and B = (Bx(k), By(k), Bz(k))

have three components in terms of k and lattice constants ax, ay. The eigenenergy E

of H(k) provide two nearly-flat energy bands, shown in Fig.5-11, from H(k)|@ (k))

E J4' (k)).

For the later purpose to have the least mixing between edge states on the left edge A and

right edge B on a cylinder in Fig.5-10(b), here we fine tune t2 /ti = 1/2. For convenience, we

simply set ti = 1 as the order magnitude of E . We set lattice constants ax = 1/2, ay = 1

such that BZ has -7r < kx < 7r, -7 < ky < 7r. The first Chern number[128] of the energy

band 10 (k)) is

C1= - Ed2 k v k, (0(k)I -ik, I(k)). (5.45)
2r "EBZ

We find C1, = 1 for two bands. The C1 ,_ = -1 lower energy band indicates the clockwise

chirality of edge states when we put the lattice on a cylinder as in Fig.5-10(b). Overall

it implies the chirality of the edge state on the left edge A moving along -. direction,

and on the right edge B moving along +- direction - the clockwise chirality as in Fig.5-

10(b), consistent with the earlier result C1 , = -1 of Chern number. This edge chirality is

demonstrated in Fig.5-12.

E(kx. k~v)0

Figure 5-11: Two nearly-flat energy bands E in Brillouin zone for the kinetic hopping terms

of our model Eq.(5.38).

The above construction is for edge states of free fermion with U(1) charge 3 of 3 L-

5R- 4 L-OR fermion model. Add the same copy with C1,_ = -1 lower band gives another

layer of U(1) charge 4 free fermion. For another layers of U(1) charge 5 and 0, we simply
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adjust hopping constant tij to tie-ir/ 4 along the black arrow direction and tiei7/ 4 along the

opposite direction in Fig.5-10, which makes C1,_ = +1. Stack four copies of chiral ir-flux

ladders with C1,_ = -1, +1, -1, +1 provides the lattice model of 3-5-4-0 free fermions with

its mirrored conjugate.

The lattice model so far is an effective 1+1D non-chiral theory. We claim the interaction

terms (G 1 , G2 # 0) can gap out the mirrored edge states on the edge B. The simulation

including interactions can be numerically expansive, even so on a simple ladder model. Be-

cause of higher power interactions, one can no longer diagonalize the model in k space as the

case of the quadratic free-fermion Hamiltonian. For interacting case, one may need to apply

exact diagonalization in real space, or density matrix renormalization group (DMRG), which

is powerful in 1+1D. We leave this interacting numerical study for the lattice community or

the future work.

E(k,) E(kJ Denaity IAt fA) and (ffin' on the Edge

0---- -- - - -2 ------------- ------- --------- ---____

(a) (C)(b) (c) -

Figure 5-12: The energy spectrum E(k,) and the density matrix (ftf) of the chiral wr-flux
model on a cylinder: (a) On a 10-sites width (9a.-width) cylinder: The blue curves are
edge states spectrum. The black curves are for states extending in the bulk. The chemical
potential at zero energy fills eigenstates in solid curves, and leaves eigenstates in dashed
curves unfilled. (b) On the ladder, a 2-sites width (lay-width) cylinder: the same as the
(a)'s convention. (c) The density (ftf ) of the edge eigenstates (the solid blue curve in (b))
on the ladder lattice. The dotted blue curve shows the total density sums to 1, the darker
purple curve shows (fIfA) on the left edge A, and the lighter purple curve shows (ftfB)

on the right edge B. The dotted darker(or lighter) purple curve shows density (fk,afA,) (or

(U,afB,a)) on sublattice a, while the dashed darker(or lighter) purple curve shows density

(fAbfA,b) (or (ft,bfB,b)) on sublattice b. This edge eigenstate has the left edge A density
with majority quantum number k, < 0, and has the right edge B density with majority
quantum number k, > 0. Densities on two sublattice a, b are equally distributed as we
desire.
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5.3.4 Interaction gapping terms and the strong coupling scale

Similar to Sec.5.3.3.2, for the interaction gapping terms of the Hamiltonian, we can do

the mapping based on Eq.(5.43), where the leading terms on the lattice is

gacos(faj -iI)= Uinteraction(l q,- . x, q,...)) Upoint.spit. ( ),... . asmall... (5.46)

Again, potentially there may contain subleading pieces, such as further higher order deriva-

tives asmanVPq with a small coefficient asmanl, or tiny mixing of the different U(1)-charge

flavors a'maOqji'2 .... However, using the same RG analysis in Sec.5.3.3.2, at both the

weak coupling and the strong coupling fix points, we learn that those asmall terms are only

subleading-perturbative effects which are further irrelevant perturbation at the infrared

comparing to the dominant piece (which is the kinetic term for the weak g coupling, but is

replaced by the cosine term for the strong g coupling).

One more question to ask is: what is the scale of coupling G such that the gapping

term becomes dominant and the B edge states form the mass gaps, but maintaining

(without interfering with) the gapless A edge states?

To answer this question, we first know the absolute value of energy magnitude for each

term in the desired Hamiltonian for our chiral fermion model:

IG gapping termjl> tij, t'j kinetic termt (5.47)

>>IG higher order VX and mixing terms > tij, t' higher order 7q... V2OgI.

For field theory, the gapping terms (the cosine potential term or the multi-fermion

interactions) are irrelevant for a weak g coupling, this implies that g needs to be large

enough. Here the g -- (ga)/a2 really means the dimensionless quantity ga.

For lattice model, however, the dimensional analysis is very different. Since the G

coupling of gapping terms and the hopping amplitude tij both have dimension of energy

[G] = [tij] = 1, this means that the scale of the dimensionless quantity of IGI/It jt is

important. '(The tjjj, jt'. are about the same order of magnitude.)

Presumably we can design the lattice model under Eq. (5.41), a < < w < L, such that

their ratios between each length scale are about the same. We expect the ratio of couplings

of IGI to jtijj is about the ratio of mass gap Am to kinetic energy fluctuation Ek caused by
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tjj hopping, thus very roughly

IGI Am ()- w _ L ' ' (5.48)
Itijt 6Ek (w)- 1 " w a

We expect that the scales at strong coupling G is about

JGJ >jtjjj(5.49)
a

this magnitude can support our lattice chiral fermion model with mirror-fermion decoupling.

If G is too much smaller than Iti -, then mirror sector stays gapless. On the other hand,

if IGI/Itjj3 is too much stronger or simply IGI/Itjjj -- oo may cause either of two disastrous

cases:

(i) Both edges would be gapped and the whole 2D plane becomes dead without kinetic

hopping, if the correlation length reaches the scale of the cylinder width: > 'w.

(ii) The B edge(say at site nyq) becomes completely gapped, but forms a dead overly-high-

energy 1D line decoupled from the remain lattice. The neighbored line (along (n - 1) ) next

to edge B experiences no interaction thus may still form mirror gapless states near B. (This

may be another reason why CGP fails in Ref.[1251 due to implementing overlarge strong

coupling.)

So either the two cases caused by too much strong IGI/tjjj is not favorable. Only IGI >

jtjj -, we can have the mirrored sector at edge B gapped, meanwhile keep the chiral

sector at edge A gapless. 1IG is somehow larger than order 1 is what we referred as the

intermediate(-strong) coupling.

IG| G 0 (1). (5.50)
ItijI

(Our 0(1) means some finite values, possibly as large as 104 , 106, etc, but still finite. And

the kinetic term is not negligible.) The sign of G coupling shall not matter, since in the

cosine potential language, either gi, g2 greater or smaller than zero are related by sifting the

minimum energy vaccua of the cosine potential.

To summarize, the two key messages in Sec.5.3.3 are:

First, the free-kinetic hopping part of lattice model has been simulated and there gapless
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energy spectra have been computed shown in Figures. The energy spectra indeed show

the gapless Weyl fermions on each edge. So, the continuum field theory to a lattice model

mapping is immaterial to the subleading terms of Eq.(5.43), the physics is as good or as

exact as we expect for the free kinetic part. We comment that this lattice realization of

quantum hall-like states with chiral edges have been implemented for long in condensed

matter, dated back as early such as Haldane's work.[?]

* Second, by adding the interaction gapping terms, the spectra will be modified from the

mirror gapless edge to the mirror gapped edge. The continuum field theory to a lattice model

mapping based on Eq.(5.43) for the gapping terms in Eq.(5.46) is as good or as exact as the

free kinetic part Eq. (5.42), because the mapping is the same procedure as in Eq.(5.43). Since

the subleading correction for the free and for the interacting parts are further irrelevant

perturbation at the infrared, the non-perturbative topological effect of the gapped edge

contributed from the leading terms remains.

In the next section, we will provide a topological non-perturbative proof to justify

that the G1 , G 2 interaction terms can gap out mirrored edge states, without employing

numerical methods, but purely based on an analytical derivation.

5.3.5 Topological Non-Perturbative Proof of Anomaly Matching Condi-

tions = Boundary Fully Gapping Rules

As Sec.5.3.2,5.3.3 prelude, we now show that Eq.(3.38) indeed gaps out the mirrored edge

states on the edge B in Fig.5-9. This proof will support the evidence that Eq.(5.38) gives

the non-perturbative lattice definition of the 1+1D chiral fermion theory of Eq.(5.33).

In Sec.5.3.6, we first provide a generic way to formulate our model, with a insulating bulk

but with gapless edge states. This can be done through so called the bulk-edge correspon-

dence, namely the Chern-Simons theory in the bulk and the Wess-Zumino-Witten(WZW)

model on the boundary. More specifically, for our case with U(1) symmetry chiral mat-

ter theory, we only needs a U(1)N rank-N Abelian K matrix Chern-Simons theory in the

bulk and the multiplet chiral boson theory on the boundary. We can further fermionize the

multiplet chiral boson theory to the multiplet chiral fermion theory.

In Sec.5.3.7, we provide a physical understanding between the anomaly matching con-

ditions and the effective Hall conductance. This intuition will be helpful to understand the

relation between the anomaly matching conditions and Boundary Fully Gapping Rules, to
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be discussed in Sec.5.3.8.

5.3.6 Bulk-Edge Correspondence - 2+1D Bulk Abelian SPT by Chern-

Simons theory

With our 3 L-5R- 4 L-OR chiral fermion model in mind, below we will trace back to fill in

the background how we obtain this model from the understanding of symmetry-protected

topological states (SPT). This understanding in the end leads to a more general construction.

We first notice that the bosonized action of the free part of chiral fermions in Eq.(5.35),

can be regarded as the edge states action Sa of a bulk U(1)N Abelian K matrix Chern-Simons

theory Sbulk (on a 2+1D manifold M with the 1+1D boundary 4M):

Sbuk= K f a1 A daj Kjf dt d 2 Paloza, (5.51)
41r , 4,r JM

so= -- dt dx K~iit&P4ax(D - VI-JOX <IDJ. (5.52)

Here a 1 is intrinsic 1-form gauge field from a low energy viewpoint. Both indices I, J run

from 1 to N. Given Kuj matrix, it is known the ground state degeneracy (GSD) of this

theory on the T2 torus is GSD = I det KI.Here Vjj is the symmetric 'velocity' matrix, we

can simply choose V j = 0, without losing generality of our argument. The U(1)N gauge

transformation is aj --+ aj + dfj and 1j -+ 4b + fj. The bulk-edge correspondence is meant

to have the gauge non-invariances of the bulk-only and the edge-only cancel with each other,

so that the total gauge invariances is achieved from the full bulk and edge as a whole.

We will consider only an even integer N E 2Z+. The reason is that only such even

number of edge modes, we can potentially gap out the edge states. (For odd integer N, such

a set of gapping interaction terms generically do not exist, so the mirror edge states remain

gapless.)

To formulate 3 L-5R- 4 L-OR fermion model, as shown in Eq.(5.35), we need a rank-4 K

matrix (0 2JDU ( 1). Generically, for a general U(1) chiral fermion model, we can use a

canonical fermionic matrix

KNxN c a-1 1 e. (r.ot )

Such a matrix is special, because it describes a more-restricted A belian Chern-Simons theory
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with GSD= I det KkN = 1 on the ~2 torus. In the condensed matter language, the uniques

GSD implies it has no long range entanglement, and it has no intrinsic topological order.

Such a state may be wronged to be only a trivial insulator, but actually this is recently-

known to be potentially nontrivial as the symmetry-protected topological states (SPT).

(This paragraph is for readers with interests in SPT: SPT are short-range entangled

states with onsite symmetry in the bulk. For SPT, there is no long-range entanglement,

no fractionalized quasiparticles (fractional anyons) and no fractional statistics in the bulk.

The bulk onsite symmetry may be realized as a non-onsite symmetry on the boundary. If

one gauges the non-onsite symmetry of the boundary SPT, the boundary theory becomes

an anomalous gauge theory.[1271 The anomalous gauge theory is ill-defined in its own di-

mension, but can be defined as the boundary of the bulk SPT. However, this understanding

indicates that if the boundary theory happens to be anomaly-free, then it can be defined

non-perturbatively on the same dimensional lattice.)

K fx matrix describe fermionic SPT states, which is described by bulk spin Chern-NxN

Simons theory of 1 det KI = 1. A spin Chern-Simons theory only exist on the spin manifold,

which has spin structure and can further define spinor bundles. However, there are another

simpler class of SPT states, the bosonic SPT states, which is described by the canonical

form K"xN with blocks of (0 1) and a set of all positive(or negative) coefficients Es lattices

KE., namely,

KNxN 1)@ ( .... (5.54)
K1 0

KNxN =8 ( K @kg)(kKgs)..

The KE, matrix describe 8-multiplet chiral bosons moving in the same direction, thus it

cannot be gapped by adding multi-fermion interaction among themselves. We will neglect

Es chiral boson states but only focus on KN for the reason to consider only the gappable

states. The K-matrix form of Eq.(5.53),(5.54) is called the unimodular indefinite symmetric

integral matrix.

After fermionizing the boundary action Eq.(5.52) with Kf/xN matrix, we obtain multi-

plet chiral fermions (with several pairs, each pair contain left-right moving Weyl fermions
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forming a Dirac fermion).

S = =Mdt dx (iif4r A qT)- (5.55)

N/2 N/2
with ro = y 0, f 1 

- & 1, S -- PPi i = irF0  and 0 =yO- y 1 = ioy, y 5  %

j=1 j=1

Symmetry transformation for the edge states-

The edge states of KJVxN and KNxN Chern-Simons theory are non-chiral in the sense

there are equal number of left and right moving modes. However, we can make them with

a charged 'chirality' respect to a global(or external probed, or dynamical gauge) symmetry

group. For the purpose to build up our 'chiral fermions and chiral bosons' model with 'charge

chirality,' we consider the simplest possibility to couple it to a global U(1) symmetry with

a charge vector t. (This is the same as the symmetry charge vector of SPT states[66, 671)

Chiral Bosons: For the case of multiplet chiral boson theory of Eq.(5.52), the group

element go of U(1) symmetry acts on chiral fields as

g: WU(1)o = ON x N, 6OU(1)e = Ot, (5.56)

With the following symmetry transformation,

SWU(1) 0+ J4Up)= + 9t (5.57)

To derive this boundary symmetry transformation from the bulk Chern-Simons theory

via bulk-edge correspondence, we first write down the charge coupling bulk Lagrangian

term, namely S 0vPA,,&,a,, where the global symmetry current qgJIA - E vPa, is

coupled to an external gauge field A,. The bulk U(1)-symmetry current qJIA induces a

boundary U(1)-symmetry current j-11 =- EA', 1 . This implies the boundary symmetry

operator is Ssyn = exp(i 0 f ax#j), with an arbitrary U(1) angle 0 The induced symmetry

transformation on #1 is:

(Ssyn)01(Ssym)-- = kI - i9 dx[I,4ix~l = 'I+(K-1 )1 q '= #+ t 1 , (5.58)
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here we have used the canonical commutation relation [0J, O4;] = i (K-1 ),,. Compare the

two Eq.(5.57),(5.58), we learn that

tj =- (K-')Ilq'.

The charge vectors tj and q1 are related by an inverse of the K matrix. The generic

interacting or gapping terms[60, 68, 66] for the multiplet chiral boson theory are the sine-

Gordon or the cosine term

So,gap = dt dx ga COS(fa, - 'D). (5.59)

If we insist that Sa,gap obeys U(1) symmetry, to make Eq.(5.59) invariant under Eq.(5.58),

we have to impose

fa,I - 4 --+ a',i - (4' + 60U(1l))mod 21r

sofaI I =0 ,I- K )II - q' = 0.(5.60)

The above generic U(1) symmetry transformation works for bosonic K'0NxN as well as

fermionic KfNxN

Chiral Fermions: In the case of fermionic Kx we will do one more step to fermionize theNxN'

multiplet chiral boson theory. Fermionize the free kinetic part from Eq.(5.52) to Eq.(5.55),

as well as the interacting cosine term:

N

go cos(fai - 4 I) .a ((Vgq)(VxPqj) - - - (VX Oqq)f = Uinteraction(/q, -, q,

(5.61)

to multi-fermion interaction. The E is defined as the complex conjugation operator which

depends on sgn(ea,i), the sign of ta,I. When sgn(ea,I) = -1, we define -0' = Ot and also

for the higher power polynomial terms. Again, we absorb the normalization factor and the

Klein factors through normal ordering of bosonization into the factor ja. The precise factor

is not of our concern, since our goal is a non-perturbative lattice model. Obviously, the U(1)

symmetry transformation for fermions is

I 1?Pq"eA0 = i(K-')1lq.0 (5.62)
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In summary, we have shown a framework to describe U(1) symmetry chiral fermion/boson

model using the bulk-edge correspondence, the explicit Chern-Siomns/WZW actions are

given in Eq.(5.51), (5.52), (5.55), (5.59), (5.61), and their symmetry realization Eq.(5.58),(5.62)

and constrain are given in Eq.(5.60),(5.60). Their physical properties are tightly associated

to the fermionic/bosonic SPT states.

5.3.7 Anomaly Matching Conditions and Effective Hall Conductance

The bulk-edge correspondence is meant, not only to achieve the gauge invariance by canceling

the non-invariance of bulk-only and boundary-only, but also to have the boundary anomalous

current flow can be transported into the extra dimensional bulk. This is known as Callan-

Harvey effect in high energy physics, Laughlin thought experiment, or simply the quantum-

hall-like state bulk-edge correspondence in condensed matter theory.

The goal of this subsection is to provide a concrete physical understanding of the anomaly

matching conditions and effective Hall conductance:

* (i) The anomalous current inflowing from the boundary is transported into the bulk.

We now show that this thinking can easily derive the 1+1D U(1) Adler-Bell-Jackiw(ABJ)

anomaly, or Schwinger's 1+1D quantum electrodynamics(QED) anomaly.

We will focus on the U(1) chiral anomaly, which is ABJ anomaly[58, 591 type. It is well-

known that ABJ anomaly can be captured by the anomaly factor A of the I-loop polygon

Feynman diagrams (see Fig.5-13). The anomaly matching condition requires

A = tr[TaTbT ... =0. (5.63)

Here Ta is the (fundamental) representation of the global or gauge symmetry algebra, which

contributes to the vertices of I-loop polygon Feynman diagrams.

For example, the 3+1D chiral anomaly 1-loop triangle diagram of U(1) symmetry in

Fig.5-13(a) with chiral fermions on the loop gives A = E(q3 - q3). Similarly, the 1+1D

chiral anomaly 1-loop diagram of U(1) symmetry in Fig.5-13(b) with chiral fermions on the

loop gives A = Z(q2 - q2). Here L, R stand for left-moving and right-moving modes.

How to derive this anomaly matching condition from a condensed matter theory view-

point? Conceptually, we understand that
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(a) (b)

Figure 5-13: Feynman diagrams with solid lines representing chiral fermions and wavy lineA

representing U(1) gauge bosons: (a) 3+1ID chiral fermionic anomaly shows A = Eq (qL - qg)
(b) 1+1D chiral fermionic anomaly shows A = Eq(q2 - q2)

A d-dimensional anomaly free theory (which satisfies the anomaly matching condition)

means that there is no anomalous current leaking from its d-dimensional spacetime (as the

boundary) to an extended bulk theory of d + 1-dimension.

More precisely, for an 1+1D U(1) anomalous theory realization of the above statement, we

can formulate it as the boundary of a 2+1D bulk as in Fig.5-1 with a Chern-Simons action

(S = f (K a A da + -A A da)). Here the field strength F = dA is equivalent to the ex-

ternal U(1) flux in the Laughlin's flux-insertion thought experiment threading through the

cylinder (see a precise derivation in the Appendix of Ref.[57]). Without losing generality,

let us first focus on the boundary action of Eq.(5.52) as a chiral boson theory with only

one edge mode. We derive its equations of motion as shown in Sec.5.1 on chiral anomaly

and QH states correspondence. Here we derive the Hall conductance, easily obtained from

its definitive relation Jy = oyE, in Eq.(5.1), axy = qK-1 q/(2-r). Here Jb stands for the

edge current, with a left-moving current jL = ib on one edge and a right-moving current

jR = -jb on the other edge, as in Fig.5-1. We convert a compact bosonic phase <D to the

fermion field iV by bosonization. We can combine currents L JR as the vector current jv,

then find its U(1)v current conserved. We combine currents JL - jR as the axial current

jA, then we obtain the famous ABJ U(1)A anomalous current in 1+1D (or Schwinger 1+1D

QED anomaly). This simple physical derivation shows that the left and right edges' bound-

ary theories (living on the edge of a 2+1D U(1) Chern-Simons theory) can combine to be a

1+1D anomalous world of Schwinger's 1+1D QED.

In other words, when the anomaly-matching condition holds (A = 0), then there is no

anomalous leaking current into the extended bulk theory,as in Fig.5-1, so no 'effective Hall

conductance' for this anomaly-free theory.

It is straightforward to generalize the above discussion to a rank-N K matrix Chern-

Simons theory. It is easy to show that the Hall conductance in a 2+1D system for a generic
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K matrix is (via qj = K 1 tj)

1 1
oXY = q -K-1 - q = -t - K - t. (5.64)

27r 27r

For a 2+1D fermionic system for K1 matrix of Eq. (5.53),

O-2, = t(KN t x 2 -- q 2) 1 A. (5.65)
2,7r 21r 2-7r

Remarkably, this physical picture demonstrates that we can reverse the logic, starting from

the 'effective Hall conductance of the bulk system' to derive the anomaly factor from

the relation

A (anomaly factor) = 27ro-x, (effective Hall conductance) (5.66)

And from the "no anomalous current in the bulk" means that "Q-xv = 0", we can further

understand "the anomaly matching condition A = 27ro-x = 0."

For the U(1) symmetry case, we can explicitly derive the anomaly matching condition

for fermions and bosons.

5.3.8 Anomaly Matching Conditions and Boundary Fully Gapping Rules

This subsection is the main emphasis of our work, and we encourage the readers paying extra

attentions on the result presented here. We will first present a heuristic physical argument

on the rules that under what situations the boundary states can be gapped, named as the

Boundary Fully Gapping Rules. We will then provide a topological non-perturbative

proof using the notion of Lagrangian subgroup and the exact sequence, following our pre-

vious work Ref.[601 and the work in Ref.[681. And we will also provide perturbative RG

analysis, both for strong and weak coupling analysis of cosine potential cases.

5.3.8.1 topological non-perturbative proof

The above physical picture is suggestive, but not yet rigorous enough mathematically. Here

we will formulate some topological non-perturbative proofs for Boundary Fully Gapping

Rules, and its equivalence to the anomaly-matching conditions for the case of U(1)
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symmetry. The first approach is using the topological quantum field theory(TQFT) along

the logic of Ref.[129]. The new ingredient for us is to find the equivalence of the gapped

boundary to the anomaly-matching conditions.

For a field theory, the boundary condition is defined by a Lagrangian submanifold in

the space of Cauchy boundary condition data on the boundary. For a topological gapped

boundary condition of a TQFT with a gauge group, we must choose a Lagrangian subspace

in the Lie algebra of the gauge group. A subspace is Lagrangian if and only if it is both

isotropic and coisotropic.

Specifically, for W be a linear subspace of a finite-dimensional vector space V. Define

the symplectic complement of W to be the subspace WI as

W' = {v E V I w(v, w)= 0, Vw E W} (5.67)

0 1
Here w is the symplectic form, in the matrix form w = with 0 and 1 are the block

(-1 0)
matrix of the zero and the identity. The symplectic complement W' satisfies: (W')' = W,

dim W + dim W' = dim V. We have:

o W is Lagrangian if and only if it is both isotropic and coisotropic, namely, if and only if

W = W1 . In a finite-dimensional V, a Lagrangian subspace W is an isotropic one whose

dimension is half that of V.

Now let us focus on the K-matrix U(l)N Chern-Simons theory, the symplectic form W is

given by (with the restricted al, 1 on OM )

= (3albi) A d(6a1 1j). (5.68)
4-7r

The bulk gauge group U(l)N TA as the torus, is the quotient space of N-dimensional

vector space V by a subgroup A 2- ZN. Locally the gauge field a is a 1-form, which has

values in the Lie algebra of TA, we can denote this Lie algebra tA as the vector space

tA = A(DR.

Importantly, for topological gapped boundary, all, lies in a Lagrangian subspace of tA

implies that the boundary gauge group (- TAo) is a Lagrangian subgroup. We can

rephrase it in terms of the exact sequence for the vector space of Abelian group A , ZN
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and its subgroup AO:

0 -+ A0 A A --+ A/A0 -+ 0. (5.69)

Here 0 means the trivial zero-dimensional vector space and h is an injective map from A0 to

A. We can also rephrase it in terms of the exact sequence for the vector space of Lie algebra

by 0 -+ V -+- t* - t*g -+ 0.b0 t(A/Ao) A tAo0.

The generic Lagrangian subgroup condition applies to K-matrix with the above sym-

plectic form Eq.(5.68) renders three conditions on W:

.(i) The subspace W is isotropic with respect to the symmetric bilinear form K.

e(ii) The subspace dimension is a half of the dimension of tA.

e(iii) The signature of K is zero. This means that K has the same number of positive and

negative eigenvalues.

Now we can examine the if and only if conditions .(i),.(ii),.(iii) listed above.

For .(i) "The subspace is isotropic with respect to the symmetric bilinear form K" to be

true, we have an extra condition on the injective h matrix (h with N x (N/2) components)

for the K matrix:

hTKh = .(5.70)

Since K is invertible(det(K) # 0), by defining a N x (N/2)-component L = Kh, we have

an equivalent condition:

LTK-lL = 0. (5.71)

For .(ii), "the subspace dimension is a half of the dimension of tA" is true if A0 is a

rank-N/2 integer matrix.

For .(iii), "the signature of K is zero" is true, because our KbO and fermionic Kf matrices

implies that we have same number of left moving modes (N/2) and right moving modes

(N/2), with N E 2Z+ an even number.

Lo and behold, these above conditions .(i),.(ii),.(iii) are equivalent to the boundary

full gapping rules listed earlier. We can interpret .(i) as trivial statistics by either writing
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in the column vector of h matrix (h = (71, 72, . -+ , 7N/2) with N x (N/2)-components):

Tla,'KI' J'YbJ' = 0 . (5.72)

or writing in the column vector of L matrix (L (f1, f 2 ,- - N/2) with N x (N/2)-

components):

LaIKj4b,J =0. (5.73)

for any La, Lb E P {E caL,,Itca E Z} of boundary gapping lattice(Lagrangian subgroup).

Namely, the boundary gapping lattice [I9 is basically the N/2-dimensional vector space of

a Chern-Simons lattice spanned by the N/2-independent column vectors of L matrix (L

(fl, F2, . - . , fN/2))

Moreover, we can go a step further to relate the above rules equivalent to the-anomaly-

matching conditions. By adding the corresponding cosine potential ga Cos(La -P) to the

edge states of U(1)N Chern-Simons theory, we break the symmetry down to

U(l)N _+ U(l)N/ 2 .

What are the remained U(1)N/2 symmetry? By Eq.(5.60), this remained U(1)N/ 2 symmetry

is generated by a number of N/2 of tbI vectors satisfying La . tbI = 0. We can easily

construct

tbj = Kf bJ, t _= K_1L (5.74)

with N/2 number of them (or define t as the linear-combination of tb, -- E, c11 , (K'LbJ)).

It turns out that U(1)N/ 2 symmetry is exactly generated by tbI with b = 1. N/2, and

these remained unbroken symmetry with N/2 of U(1) generators are anomaly-free and

mixed anomaly-free, due to

ta,I'KIIJltb,J' = ea,IiKjj,Lb Ad 0 (5.75)

Indeed, ta must be anomaly-free, because it is easily notice that by defining an N x N/2

matrix t _ (tl, t2,. - ,tN/2 ( (1, 72, -. , IN/2) of Eq.(5.70), thus we must have:

tTKt = 0 where t= h. (5.76)
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This is exactly the anomaly factor and the effective Hall conductance discussed in Sec.5.3.7.

In summary of the above, we have provided a topological non-perturbative proof that

the Boundary Fully Gapping Rules, and its extension to the equivalence relation to

the anomaly-matching conditions. We emphasize that Boundary Fully Gapping

Rules provide a topological statement on the gapped boundary conditions, which is non-

perturbative, while the anomaly-matching conditions are also non-perturbative in the

sense that the conditions hold at any energy scale, from low energy IR to high energy

UV. Thus, the equivalence between the twos is remarkable, especially that both are non-

perturbative statements (namely the proof we provide is as exact as integer number values

without allowing any small perturbative expansion). Our proof apply to a bulk U(1)N K

matrix Chern-Simons theory (describing bulk Abelian topological orders or Abelian SPT

states) with boundary multiplet chiral boson/fermion theories.

5.3.8.2 perturbative arguments

Apart from the non-perturbative proof using TQFT, we can use other well-known techniques

to show the boundary is gapped when the Boundary Fully Gapping Rules are satisfied.

it is convenient to map the KNxN-matrix multiplet chiral boson theory to N/2 copies of

non-chiral Luttinger liquids, each copy with an action

dt dx ((ta Ox a + Ox&Ot 0a) - Vi icx DIa j) + g cos(13 ga) (5.77)

at large coupling g at the low energy ground state. Notice that the mapping sends 4-

= (01, 02,... , N/2 1 2, .- ON/2) in a new basis, such that the cosine potential only

takes one field #a decoupled from the full multiplet. However, this mapping has been shown

to be possible if LTK-1L = 0 is satisfied.

When the mapping is done, we can simply study a single copy of non-chiral Luttinger liq-

uids, and which, by changing of variables, is indeed equivalent to the action of Klein-Gordon

fields with a sine-Gordon cosine potential studied by S. Coleman. We have demonstrated

various ways to show the existence of mass gap of this sine-Gordon action For example,

* For non-perturbative perspectives, there is a duality between the quantum sine-Gordon

action of bosons and the massive Thirring model of fermions in 1+1D. In the sense, it is
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an integrable model, and the Zainolodchikov formula is known and Bethe ansatz can be

applicable. The mass gap is known unambiguously at the large g.

* For perturbative arguments, we can use RG to do weak or strong coupling expansions.

For weak coupling g analysis, it is known that choosing the kinetic term as a marginal

term, and the scaling dimension of the normal ordered [cos(/30)] = 2 In the weak coupling

analysis, /2 < 02 = 4 will flow to the large g gapped phases (with an exponentially decaying

correlator) at low energy, while 132 > 02 will have the low energy flow to the quasi-long-range

gapless phases (with an algebraic decaying correlator) at the low energy ground state. At

/ = 13, it is known to have Berezinsky-Kosterlitz-Thouless(BKT) transition. We find that

our model satisfies /32 < 02, thus necessarily flows to gapped phases, because the gapping

terms can be written as ga cos(A) + 9b cos( 6 2) in the new basis, where both 32 3

However, the weak coupling RG may not account the correct physics at large g.

We also perform the strong coupling g RG analysis, by setting the pin-down fields at

large g coupling of g cos(/3) with the quadratic fluctuations as the marginal operators. We

find the kinetic term changes to an irrelevant operator. And the two-point correlator at

large g coupling exponentially decays implies that our starting point is a strong-coupling

fixed point of gapped phase. Such an analysis shows /3-independence, where the gapped

phase is universal at strong coupling g regardless the values of /3 and robust against kinetic

perturbation. It implies that there is no instanton connecting different minimum vacua of

large-g cosine potential for 1+1D at zero temperature for this particular action Eq.(5.77).

In short, from the mapping to decoupled N/2-copies of non-chiral Luttinger liquids with

gapped spectra together with the anomaly-matching conditions proved, we obtain the rela-

tions:

the U(1)N/ 2 anomaly-free theory (qT -K -q = tT K - t = 0) with gapping terms

LTK-1L =0 satisfied.

the K matrix multiplet-chirla boson theories with gapping terms LTKIL = 0 satisfied.

N/2-decoupled-copies of non-Chiral Luttinger liquid actions with gapped energy spectra.
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5.3.8.3 preserved U(1)N/ 2 symmetry and a unique ground state

We would like to discuss the symmetry of the system further. As we mention in Sec.5.3.8.1,

the symmetry is broken down from U(1)N -+ U(1)N/ 2 by adding N/2 gapping terms with

N = 4. In the case of gapping terms e1 = (1,1, -2, 2) and f2 = (2, -2, 1, 1), we can

find the unbroken symmetry by Eq.(5.74), where the symmetry charge vectors are t=

(1, -1, -2, -2) and t2 = (2,2, 1, -1). The symmetry vector can have another familiar linear

combination ti = (3,5,4,0) and t 2 = (0,4,5,3), which indeed matches to our original

U(1)1mt 3-5-4-0 and U(1)2ld 0-4-5-3 symmetries. Similarly, the two gapping terms can have

another linear combinations: ti = (3, -5, 4,0) and f2 = (0, 4, -5, 3). We can freely choose

any linear-independent combination set of the following,

3 0 1 2 3 0 1 2

-5 4 1 -2 5 4 J 1 2
L =,+>t = ..

4 -5 -2 1 4 5 -2 1

0 3 2 1 0 3 -2 -1

and we emphasize the vector space spanned by the column vectors of L and t (the comple-

ment space of L's) will be the entire 4-dimensional vector space Z4 .

Now we like to answer:

(Q4) Whether the U(1)N/ 2 syimnetry stays unbroken when the mirror sector becomes gapped

by the strong interactions?

(A4) The answer is Yes. We can check: There are two possibilities that U(1)N/ 2 symmetry

is broken. One is that it is explicitly broken by the interaction term. This is not true.

The second possibility is that the ground state (of our chiral fermions with the gapped

mirror sector) spontaneously or explicitly break the U(1)N/ 2 symmetry. This possibility can

be checked by calculating its ground state degeneracy(GSD) on the cylinder with

gapped boundary. Using the method developing in our previous work Ref.[601, also in

Ref.[?, ?], we find GSD-1, there is only a unique ground state. Because there is only one

lowest energy state, it cannot spontaneously or explicitly break the remained symmetry. The

GSD is 1 as long as the fa vectors are chosen to be the minimal vector, namely the greatest

common divisor(gcd) among each component of any f, is 1, 1 gcd(fa,1, a,2,. - ., fa,N/2)I = 1,
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such that
(ea,1, fa,2, ... , ea,N/2)

gcd(f.,1, a,2, -.. - , a,N/2

In addition, thanks to Coleman-Mermin-Wagner theorem, there is no spontaneous sym-

metry breaking for any continuous symmetry in 1+1D, due to no Goldstone modes in 1+1D,

we can safely conclude that U(1)N/ 2 symmetry stays unbroken.

To summarize the whole Sec.5.3.5, we provide both non-perturbative and perturbative

analysis on Boundary Fully Gapping Rules. This applies to a generic K-matrix U(1)N

Abelian Chern-Simons theory with a boundary multiplet chiral boson theory. (This generic

K matrix theory describes general Abelian topological orders including all Abelian SPT

states.)

In addition, in the case when K is unimodular indefinite symmetric integral matrix, for

both fermions K = Kf and bosons K = Kbo, we have further proved:

Theorem: The boundary fully gapping rules of 1+1D boundary/2+1) bulk with unbroken

U(1)N/2 symmetry -+ ABJ's U(I)N/ 2 anomaly matching conditions in 1+11).
Similar to our non-perturbative algebraic result on topological gapped boundaries, the 't

Hooft anomaly matching here is a non-perturbative statement, being exact from IR to

UV, insensitive to the energy scale.

5.3.9 General Construction of Non-Perturbative Anomaly-Free chiral mat-

ter model from SPT

As we already had an explicit example of 3 L- 5 R-4 L-OR chiral fermion model introduced in

Sec.5.3.2,5.3.3.3, and we had paved the way building up tools and notions in Sec.5.3.5, now

we are finally here to present our general model construction. Our construction of non-

perturbative anomaly-free chiral fermions and bosons model with onsite U(1) symmetry is

the following.

Step 1: We start with a K matrix Chern-Simons theory as in Eq.(5.51),(5.52) for uni-

modular indefinite symmetric integral K matrices, both fermions K = Kf of Eq. (5.53) and

bosons K = KoO of Eq.(5.54) (describing generic Abelian SPT states with GSD on torus is

I det(K)I = 1.)

Step 2: We assign charge vectors ta of U(1) symmetry as in Eq.(5.56), which satisfies the
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anomaly matching condition. We can assign up to N/2 charge vector t (t1 , t 2 .  tN/2

with a total U(1)N/ 2 symmetry with the matching A - tTKt = 0 such that the model is

anomaly and mixed-anomaly free.

Step 3: In order to be a chiral theory, it needs to violate the parity symmetry. In our model

construction, assigning qLj # qRj generally fulfills our aims by breaking both parity and

time reversal symmetry.

Step 4: By the equivalence of the anomaly matching condition and boundary fully gapping

rules(proved in Sec.5.3.8.1, a proper choice of gapping terms of Eq.(5.59) can fully gap out

the edge states. For NL = NR = N/2 left/right Weyl fermions, there are N/2 gapping terms

(L = (f1, f2,. - - , N/2), and the U(1) symmetry can be extended to U(1)N/ 2 symmetry by

finding the corresponding N/2 charge vectors (t ( ti, t2 , .. . , tN/2)). The topological

non-perturbative proof found in Sec.5.3.8.1 guarantees the duality relation:

LT t=OK-1- K0 t -K- t =O. (5.78)
L=Kt

Given K as a N x N-component matrix of Kf or Kb, we have L and t are both N x (N/2)-

component matrices.

So our strategy is that constructing the bulk SPT on a 2D spatial lattice with two edges

(for example, a cylinder in Fig.5-9,Fig.5-1). The low energy edge property of the 2D lat-

tice model has the same continuum field theory[?] as we had in Eq.(5.52), and selectively

only fully gapping out states on one mirrored edge with a large mass gap by adding sym-

metry allowed gapping terms Eq.(5.59), while leaving the other side gapless edge states

untouched. [127]

In summary, we start with a chiral edge theory of SPT states with cos(fe - f) gapping

terms on the edge B, which action is

S' = Jdtdx(Kj t48q - VJa A4DA)

KBdtdx (KjI4x I VJO ) + J dtdx E g cos(eaI ' I). (5.79)
a
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We fermionize the action to:

Sw = dt dx (it , VamA -P-B P B+UiPteraction ( q, -, x "q,. .)).(5.80)

with p0 , ]1, ]5 follow the notations of Eq.(5.55).

The gapping terms on the field theory side need to be irrelevant operators or marginally

irrelevant operators with appropriate strength (to be order 1 intermediate-strength for the

dimensionless lattice coupling IGt/tijI > 0(1)), so it can gap the mirror sector, but it is

weak enough to keep the original light sector gapless.

Use several copies of Chern bands to simulate the free kinetic part of Weyl fermions,

and convert the higher-derivatives fermion interactions Uinteractiori to the point-splitting

Upoirit.spiit. term on the lattice, we propose its corresponding lattice Hamiltonian

H = (tij,q '(i)fq(j) + h.c.) + E (tfj,q f qt(i)fq(j) + h.c.)
q (i~j) H(i~j))

+ E Upoint.spiit. ((j),.. . q
jEB

Our key to avoid Nielsen-Ninomiya challenge[54, 111, 1121 is that our model has the

properly-desgined interactions.

We have obtained a 1+1D non-perturbative lattice Hamiltonian construction (and realiza-

tion) of anomaly-free massless chiral fermions (and chiral bosons) on one gapless edge.

5.3.10 Summary

We have proposed a 1+1D lattice Hamiltonian definition of non-perturbative anomaly-free

chiral matter models with U(1) symmetry. Our 3 L-5R- 4 L-OR fermion model is under the

framework of the mirror fermion decoupling approach. However, some importance essences

make our model distinct from the lattice models of Eichten-Preskill[118] and Chen-Giedt-

Poppitz 3-4-5 model.[125] The differences between our and theirs are:

Onsite or non-onsite symmetry. Our model only implements onsite symmetry, which

can be easily to be gauged. While Chen-Giedt-Poppitz model implements Ginsparg-Wilson(GW)

fermion approach with non-onsite symmetry To have GW relation {D, -y 5} = 2aDy5D to
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be true (a is the lattice constant), the Dirac operator is non-onsite (not strictly local) as

D(xi, X2) ~ e-lx'-x2 / but with a distribution range . The axial U(l)A symmetry is

modified

6(y)= ZiAi(yw)V(W), 6i(x) = i Ai(x)-Y 5

w

with the operator 5 (x, y) -- -5 - 2ay5D(x, y). Since its axial U(1)A symmetry transfor-

mation contains D and the Dirac operator D is non-onsite, the GW approach necessarily

implements non-onsite symmetry. GW fermion has non-onsite symmetry in the way that it

cannot be written as the tensor product structure on each site: U(OA)non-onsite -4 ®Uj (9 A),

for e6 A E U(1)A. The Neuberger-Dirac operator also contains such a non-onsite symmetry

feature. The non-onsite symmetry is the signature property of the boundary theory of SPT

states. The non-onsite symmetry causes GW fermion diffcult to be gauged to a chiral gauge

theory, because the gauge theory is originally defined by gauging the local (on-site) degrees

of freedom.

Interaction terms. Our model has properly chosen a particular set of interactions satis-

fying the Eq.(5.78), from the Lagrangian subgroup algebra to define a topological gapped

boundary conditions. On the other hand, Chen-Giedt-Poppitz model proposed different

kinds of interactions - all Higgs terms obeying U(1) 1st 3-5-4-0 symmetry (Eq. (2.4) of Ref. [1251),

including the Yukawa-Dirac term:

dtdx 9(g301,3R, 0-3 + g400L,41R,Q g3 50L, 3-R,5Sbh ~ g45 ,4t'R,501 + h c,

(5.81)

with Higgs field Oh (x, t) carrying charge (-1). There are also Yukawa-Majorana term:

dtdX (igZ L,30R,04 ig4 'L,4V)R,0 4 + igM5)L,30R,508 + ig4V L,4)R,509 + h.c.

(5.82)

Notice that the Yukawa-Majorana coupling has an extra imaginary number i in the front,

and implicitly there is also a Pauli matrix o. if we write the Yukawa-Majorana term in the

two-component Weyl basis.

The question is: How can we compare between interactions of ours and Ref.[125J's?

If integrating out the Higgs field Oh, we find that:

(*1) Yukawa-Dirac terms of Eq.(5.81) cannot generate any of our multi-fermion interactions
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of L in Eq.(5.78) for our 3 L- 5 R-4 L-OR model.

(*2) Yukawa-Majorana terms of Eq.(5.82) cannot generate any of our multi-fermion inter-

actions of L in Eq.(5.78) for our 3 L-5R- 4 L-OR model.

(*3) Combine Yukawa-Dirac and Yukawa-Majorana terms of Eq.(5.81),(5.82), one can indeed

generate the multi-fermion interactions of L in Eq. (5.78); however, many more multi-fermion

interactions outside of the Lagrangian subgroup (not being spanned by L) are generated.

Those extra unwanted multi-fermion interactions do not obey the boundary fully gapping

rules. As we have shown in Sec.5.3.8.2, those extra unwanted interactions induced by the

Yukawa term will cause the pre-formed mass gap unstable due to the nontrivial braiding

statistics between the interaction terms. This explains why the massless mirror sector

is observed in Ref.[125J. In short, we know that Ref.[1251's interaction terms are

different from us, and know that the properly-designed interactions are crucial,

and our proposal will succeed the mirror-sector-decoupling even if Ref.[125] fails.

U(1)N -+ U(1)N/ 2 - U(1). We have shown that for a given NL = NR = N/2 equal-

number-left-right moving mode theory, the N/2 gapping terms break the symmetry from

U(1)N -+ U(1)N/ 2 . Its remained U(1)N/ 2 syunetry is unbroken and mixed-anomaly free.

Is it possible to further add interactions to break U(1)N/ 2 to a smaller symmetry,

such as a single U(1)? For example, breaking the U(1) 2,a 0-4-5-3 of 3 L- 5 R-4 L-0 R model

to only a single U(1) 1 t 3-5-4-0 symmetry remained. We argue that it is doable. Adding

any extra explicit-symmetry-breaking term may be incompatible to the original Lagrangian

subgroup and thus potentially ruins the stability of the mass gap. Nonetheless, as long

as we add an extra interaction term(breaking the U(1)2nd symmetry), which is

irrelevant operator with a tiny coupling, it can be weak enough not driving the system

to gapless states. Thus, our setting to obtain 3-5-4-0 symmetry is still quite different from

Chen-Giedt-Poppitz where the universal strong couplings are applied.

We show that GW fermion approach implements the non-onsite symmetry thus GW can

avoid the fermion-doubling no-go theorem (limited to an onsite symmetry) to obtain chiral

fermion states. Remarkably, this also suggests that

The nontrivial edge states of SPT order, such as topological insulators alike, can be obtained

in its own dimension (without the need of an extra dimension to the bulk) by implementing

the non-onsite symmetry as Ginsparg-Wilson fermion approach.
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To summarize, so far we have realized (see Fig. 1-2),

" Nielsen-Ninomiya theorem claims that local free chiral fermions on the lattice with

onsite (U(1) or chiral) symmetry have fermion-doubling problem in even dimensional

spacetime.

* Gilzparg-Wilson(G-W) fermions: quasi-local free chiral fermions on the lattice

with non-onsite U(1) symmetry have no fermion doublers. G-W fermions correspond

to gapless edge states of a nontrivial SPT state.

" Our 3-5-4-0 chiral fermion and general model constructions: local interacting

chiral fermions on the lattice with onsite U(1) symmetry[?] have no fermion-doublers.

Our model corresponds to unprotected gapless edge states of a trivial SPT state (i.e.

a trivial insulator).

We should also clarify that, from SPT classification viewpoint, all our chiral fermion

models are in the same class of Kf = (1 0 ) with t = (1, -1), a trivial class in the fermionic

SPT with U(1) symmetry.[66, 67] All our chiral boson models are in the same class of

Kb = ( % 1) with t = (1, 0), a trivial class in the bosonic SPT with U(1) symmetry.[66, 671

In short, we understand that from the 2+1D bulk theory viewpoint, all our chiral matter

models are equivalent to the trivial class of SPT(trivial bulk insulator) in SPT classification.

However, the 1+1D boundary theories with different U(1) charge vectors t can be regarded

as different chiral matter theories on its own 1+1D.

Proof of a Special Case and some Conjectures

At this stage we already fulfill proposing our models, on the other hand the outcome of

our proposal becomes fruitful with deeper implications. We prove that, at least for 1+1D

boundary/2+1D bulk SPT states with U(1) symmetry, There are equivalence relations be-

tween

(a) " 't Hooft anomaly matching conditions satisfied",

(b) "the boundary fully gapping rules satisfied",

(c) "the effective Hall conductance is zero," and

(d) "a bulk trivial SPT (i.e. trivial insulator), with unprotected boundary edge, states (real-

izing an onsite symmetry) which can be decoupled from the bulk."

Rigorously speaking, what we actually prove in Sec.5.3.8.1 is the equivalence of The-

orem: ABJ's U(1) anomaly matching condition in 1+1D +-- the boundary fully gapping
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rules of 1+1D boundary/2+1D bulk with unbroken U(1) symmetry for an equal number of

left-right moving Weyl-fermion modes(NL = NR, CL = CR) of 1+1D theory.Note that some

modifications are needed for more generic cases:

(i) For unbalanced left-right moving modes, the number chirality also implies the additional

gravitational anomaly.

(ii) For a bulk with topological order (instead of pure SPT states), even if the boundary

is gappable without breaking the symmetry, there still can be nontrivial signature on the

boundary, such as degenerate ground states (with gapped boundaries) or surface topological

order. This modifies the above specific Theorem to a more general Conjecture: Conjec-

ture: The anomaly matching condiiion in (d + 1)D ' the boundary fully gapping rules

of (d + 1)D boundary/(d + 2)D bulk with unbroken G symmetry for an equal number of

left-right moving modes(NL = NR) of (d + 1)D theory, such that the system with arbi-

trary gapped boundaries has a unique non-degenerate ground state(GSD=1),[601 no surface

topological order,no symmetry/quantum number fractionalization [561 and without any non-

trivial(anomalous) boundary signature.

However, for an arbitrary given theory, we do not know "all kinds of anomalies," and

thus in principle we do not know "all anomaly matching conditions." However, our work

reveals some deep connection between the "anomaly matching conditions" and the "bound-

ary fully gapping rules." Alternatively, if we take the following statement as a definition

insteadProposed Definition: The anomaly matching conditions (all anomalies need

to be cancelled) for symmetry G +-4 the boundary fully gapping rules without breaking

symmetry G and without anomalous boundary signatures under gapped boundary. then

the Theorem and the Proposed Definition together reveal that The only anomaly type of a

theory with an equal number of left/right-hand Weyl fermion modes and only with a U(1)

symmetry in 1+1D is ABJ's U(1) anomaly.

Arguably the most interesting future direction is to test our above conjecture for more

general cases, such as other dimensions or other symmetry groups. One may test the above

statements via the modular invariance[68, 109, 1301 of boundary theory. It will also be

profound to address, the boundary fully gapping rules for non-Abelian symmetry, and the

anomaly matching condition for non-ABJ anomaly[49, 1271 through our proposal.

Though being numerically challenging, it will be interesting to test our models on the lat-
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tice. Our local spatial-lattice Hamiltonian with a finite Hilbert space, onsite sym-

metry and short-ranged hopping/interaction terms is exactly a condensed matter

system we can realize in the lab. It may be possible in the future we can simulate the

lattice chiral model in the physical instant time using the condensed matter set-up in the

lab (such as in cold atoms system). Such a real-quantum-world simulation may be much

faster than any classical computer or quantum computer.

5.4 Mixed gauge-gravity anomalies: Beyond Group Cohomol-

ogy and mixed gauge-gravity actions

We have discussed the allowed action So(sym.twist) that is described by pure gauge fields

Aj. We find that its allowed SPTs coincide with group cohomology results. For a curved

spacetime, we have more general topological responses that contain both gauge fields for

symmetry twists and gravitational connections F for spacetime geometry. Such mixed gauge-

gravity topological responses will attain SPTs beyond group cohomology. The possibility

was recently discussed in Ref.[91, 921. Here we will propose some additional new examples

for SPTs with U(1) symmetry.

In 4+1D, the following SPT response exists,

Zo(sym.twist) = exp[i J F A CS3 (F)]

exp[iJ FApI, kEZ (5.83)
3ZJN6

where CS3 () is the gravitations Chern-Simons 3-form and d(CS 3) = Pi is the first Pon-

tryagin class. This SPT response is a Wess-Zumino-Witten form with a surface OV6 = M 5.

This renders an extra Z-class of 4+1D U(1) SPTs beyond group cohomology. They have

the following physical property: If we choose the 4D space to be S 2 x M2 and put a U(1)

monopole at the center of S2: fS F = 27r, in the large M 2 limit, the effective 2+1D theory

on M2 space is k copies of E8 bosonic quantum Hall states. A U(1) monopole in 4D space

is a 1D loop. By cutting M2 into two separated manifolds, each with a 1D-loop boundary,

we see U(1) monopole and anti-monopole as these two ID-loops, each loop carries k copies

of E8 bosonic quantum Hall edge modes. Their gravitational response can be detected by

thermal transport with a thermal Hall conductance,Kxv = 8k!!D!T.
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In 3+1D, the following SPT response exists

Zo(sym.twist) = cxp[ J F A w2 ], (5.84)

where wj is the jth Stiefel-Whitney (SW) class.' Let us design M4 as a complex manifold,

thus w2j = cj mod 2. The first Chern class ci of the tangent bundle of M 4 is also the first

Chern class of the determinant line bundle of the tangent bundle of M 4. So if we choose

the U(1) symmetry twist as the determinate line bundle of M 4, we can write the above as

(F - 27rc1): Zo(sym.twist) = exp[iir fM4 cl A ci]. On a 4-dimensional complex manifold, we

have pi = c2 - 2c2. Since the 4-manifold CP 2 is not a spin manifold, thus w2 y 0. From

fcP2 pI = 3, we see that fcP2 cl A c1 = 1 mod 2. So the above topological response is non-

trivial, and it suggests a Z2-class of 3+1D U(1) SPTs beyond group cohomology. Although

this topological response is non-trivial, however, we do not gain extra 3+1D U(1) SPTs

beyond group cohomology, since exp[{ fg4 F A w 21 = exp[ F fAp4 F A F] on any manifold

K'4, and since the level of f F A F of U(1)-symmetry is not quantized on any manifold [1311.

In the above we propose two mixed gauge-gravity actions, and we rule out the second

example where the bulk action does not correspond to any nontrivial SPTs. Clearly there

are many more types of mixed gauge-gravity anomalies, and there are more examples of

beyond-group-cohomology SPTs one can study by constructing mixed gauge-gravity actions,

for example, those found in Ref.[131].

'To be more precise, we know that wedge product is only defined for differential forms. They are not
defined for SW classes.
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Chapter 6

Quantum Statistics and Spacetime

Surgery

In this chapter, we will apply the geometric-topology techniques, to do the spacetime surgery,

and see how the nontrivial quantum statistics is constrained by the spacetime surgery con-

figuration. An example of surgery on cut and gluing is give in Fig.6-1, explained in the

next.

S3

(a)

s4

3

(b)

Figure 6-1: An illustration of (D2 x S 1) Usi xsi (S1 x D2 ) -S
3 and (D 3 x Sl) Us2Xs (S 2 X

D 2 ) 4. (a) Note that S1 of (Si x D2 ) bounds the boundary of D2 within (D 2 x Sl),
and S' of (D 2 x Sl) bounds the boundary of D 2 within (S1 x D 2 ). The blue part illustrates
(D2 x 51). The red part illustrates (S1 x D2 ). (b) Note that S2 of (S2 x D2 ) bounds the
boundary of D 3 within (D 3 x Sl), and S' of (D3 x 5') bounds the boundary of D2 within

(S2 x D 2 ). The blue part illustrates (D 3 x 5'). The red part illustrates (S2 x D 2 ).
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6.1 Some properties of the spacetime surgery from geometric-

topology

We will discuss the surgery on cutting and gluing of d-manifold Md. We denote that Sd is

a d-sphere, Dd is a d-ball or called a d-disk, Td is a d-torus. The notation for gluing the

boundaries of two manifolds M 1 and M2 is:

M 1 UB;< M 2 - (6-1)

It requires that the boundary of M, and M 2 are the same. Namely,

OM 1 = -OM2 = B. (6.2)

We have a extra mapping W allowed by diffeomorphism when gluing two manifolds. In

particular, we will focus on a W of mapping class group (MCG) in our work. Thus, we can

apply any element of V E MCG(B). For o = 1 as a trivial identity map, we may simply

denote M 1 UB M 2 = M 1 UBJ M 2-

The connected sum of two d-dimensional manifolds M1 an M 2 is denoted as

M1#M 2. (6.3)

Say, we cut a ball Dd (D for the disk Dd or the same a ball B for the Bd) out of the M1

and M 2 . Each of M 1 - Dd and M 2 - Dd has a boundary of a sphere Sd-1. We glue the

two manifolds M1 and M 2 by a cylinder Sd-1 x I where the I is a 1 dimensional interval.

The list of simple (non-exotic) 3-manifolds and 4-manifolds we will focus on includes

those without boundaries and those with boundaries. Also another list of 2-manifolds (as

the boundaries of 3-manifolds) and 3-manifolds (as the boundaries of 4-manifolds), all are

summarized in Table 6.1.

We also include some surgery formulas and MCG applied in the next.
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Manifolds:

3-manifolds without boundaries:
S3, S 2 x SI, (S 1 ) 3 = T3, etc.
3-manifolds with boundaries:
D 3, D2 x SI, etc.
4-manifolds without boundaries:
S4, S3 x S1, S2 x S2, S2 X (Si) 2 

- S 2 x T 2 , (S1) 4  T 4 , etc.
3-manifolds with boundaries:
D4 , D 3 x S1 , D2 x S 2 , D2 x T2 , 4 - D3 X S 1 , 4 - D2 XS2 , S 4  D 2 x T 2, etc.

2-manifolds (as the boundaries of 3-nianifolds):
s2, (Si)2 = T2 , etc.
3-manifolds (as the boundaries of 4-manifolds):
S3, S2 x S1 , (S1 )3 = T 3, etc.

Surgery:

(D2 x Si) USI X S (D2 x S1) = S2 x S1
(D2 X 51) US, X Si;(TX)f (D 2 x 51) = (D 2 x S ) USI XS1T )f (D x SI) = S2 <I

(D2 X 5') USixSI;S, (D 2 x 5') = (D, X Sl) Usixs,;sX, (D , x S ) - 3_

(D3 X SI) US2xSI (S2 x D2) = (D3, x( Sj us s; (S x D ) S4

Mapping Class Group (MCG):
MCG(Td)-SL(d, Z)

Table 6.1: Manifolds, surgery formula and mapping class group (MCG).

6.2 2+1D quantum statistics and 2- and 3-manifolds

6.2.1 Algebra of world-line operators, fusion, and braiding statistics in

2+1D

6.2.1.1 World-line operators around a torus

The particle-like topological excitations are created in pairs at the ends of the corresponding

world-line operator (or Wilson loop operator in gauge theory). A closed world-line operator

is related to a tunneling process of a topological excitation. Let us consider the following

tunneling process around a torus: (a) we first create a quasiparticle or and its anti quasi-

particle dl, then (b) move the quasiparticle around the torus to wrap the torus ni times

in the x direction and n2 times in the y direction, and last (c) we annihilate al and &I.

The whole tunneling process (and the corresponding closed world-line operator) induces a

transformation between the degenerate ground states on the torus 1a) labeled by a:

|a) + (n11,t2)Ia) = 1a')(W(n,,n2)),
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t

x

Figure 6-2: The tunneling processes Wa1 and WY2. The dash lines are the framing of the
world-line of the tunneling processes.

y
(a) (b)

Figure 6-3: (a): The ground state lo = 0) on a torus that corresponds to the trivial
topological excitation can be represented by an empty solid torus S, x Dt. (b): The other
ground state <b, that corresponds to a type or quasiparticle can be represented by an solid
torus with a loop of type a at the center.

We like to point out that in general, the quasiparticle is a size-O point and is not isotropic.

To capture so a non-isotropic property of the quasiparticle we added a framing to world-line

that represent the tunneling process (see Fig. 6-2).

Let W (= W 0) and W., = Wl0 1) (see Fig. 6-2). A combination of two tunneling

processes in the x direction: W, and then Wx2, induces a transformation 1W on

the degenerate ground states. A combination of the same two tunneling processes but

with a different time order: Wx and then WT1 , induces a transformation Wx, Wx2 on the

degenerate ground states. We note that the two tunneling paths with different time orders

can be deformed into each other smoothly. So they only differ by local perturbations. Due to

the topological stability of the degenerate ground states, local perturbations cannot change

the degenerate ground states. Therefore W,, and VV 2 commute, and similarly Way, and

W 2 commute too. We see that W"'s can be simultaneously diagonalized. Similarly, WI's

can also be simultaneously diagonalized. Due to the 90' rotation symmetry, Wj and W,"

have the same set of eigenvalues. But since Wx and WY in general do not commute, we in

general cannot simultaneously diagonalize Wx and WI.

We notice that we can view the torus Dit x S1 as a surface of D t x S, where the

disk Dxt is obtained by shringking the Sx parametried by x to zero. The path integral on
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(a)

Figure 6-4: (a) A general
loops is a complex number

z )

---y -- -

X

1

(b)

local tunneling process.

S ne

2

(b) The amplitude of two linked local

D x S. will produce a state on S x S1, and we will denote such a state as |OD2 xS,). All

other degenerate ground states can be obtained by the action of world-line operators Wai

(see Fig. 6-3) We can define

G = (aj Wy'|OD2 x'). (6.4)

We can also define

Faj 2 = (CWI W Y V,2 IOD2 (6-5)

6.2.1.2 World-line amplitudes

In general, any local linked world-line operatiors correspond to local perturbations (see Fig.

6-4), which are proportional to an identity operator in the subspace of degenerate ground

states. So, local link world-line operatiors is simply a complex number. The two linked

closed world-lines also correspond to a complex number which is defined as , (see Fig.

??). Clearly S line satisfies

Sh"* = Ile (6.6)a1012 = 26rl

A single closed world-line of type-o gives rise to a complex number as well which is defined

as d, and we have

slin = S| =ed (6.7)
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2 y

Figure 6-5: Gluing two solid tori D t x S without twist forms a S2 x S1. The gluing is
done by identifing the (x, y) point on the surface of the first torus with the (x, -y) point on
the surface of the second torus. If we add an additional S twist, i.e. if we identify (x, y) with

(-y, -x), the gluing will produce a S 3 . If we add an additional T twist, i.e. if we identify

(x, y) with (x + y, -y), the gluing will produce a S2 x S1

For Abelian anyons ai and a 2 , s"lin is closely related to the mutual statistical angle 9'1 2

between them

Sline

i10'2 = o il .' (6.8)

We may refer S'1'2 as the generalized mutual statistics even for non-Abelian anyons U1

and U2 . In general 2 ay not be a U(1) phase factor.

6.2.1.3 Representations of mapping class group

We know that the degenerate ground states on a torus form a representation mapping class

0 -1 1 1
group (MCG) SL(2, Z) which is generated by S = , T1):

(1 0 (0 1)

S2 (ST) 3 =C, C 2 =1. (6.9)

The matrix elements

(0 D2 x = (0DtxSiI(WJ )t Ia)(a$I3)(Wy,2 IOD2txSI)

r U(G2 )*sG 6.10)
a/3

can be computed via the path integral on two solid tori D 2 x S , one with a closed world-line

WS, at the center and the other with a closed world-line W'2 at the center. The two solid

tori are glued along the surface Sx x S but with a S= ( twist(x,y)- (-yx)
(see1 0 The r l sa-i is Bw

(see Fig. 6-5). The resulting space-time is S3 = D 2t X S, UB;s D 2t X S1 with two linked
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closed world-lines a and 0-2 (see Fig. 6-4 which describes two linked closed world-lines).

Here M UB N is the union of M and N alone the boundary B = OM -SN.

Combined with the above discussion, we find that

(K = ) (G s)*Saj3GO = S Z(S
3)

s."2 E(Ga)*Saoi, (6.11)

where Z(S 3) is the partition function on S 3, which happen to equal to EZO(Ga)*ScOGO. We

obtain an important relation that connects the representation of MCG and the amplitudes

of local closed world-lines:

EcO(Gck)*SaOG '0'23
0a 1 (- G .S2* (6.12)

Ea3Gy)*ScOGS #10

Here is the amplitude of two linked world-line loops (see Fig. 6-4).

Next, let us consider the partition function on space-time that is formed by disconnected

three manifolds M and N, which denoted as M U N. We have

Z(M U N) = Z(M)Z(N), (6.13)

for fixed-point partition function of topologically ordered state. We divide M into two

pieces, MA and MD: M = MD UOMD lu. We also divide N into two pieces, NU and MD:

N = ND UOND NT. If the boundary of AD and ND is the same sphere S 2 = AMD = OND,

then we can glue MD to NU and Mu to ND to obtain the following identity

MU Ny NB HU
Z --------- " -------- B = Z .----- B ------- B

MD NO MD ND

or Z(AID UB MIU)Z(ND UB NU) = Z(MD UB NU)Z(ND UB M) (6.14)

for fixed-point partition function of topologically ordered state. This is a very usefull relation.
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In particular, we can use it to show that, for loops in S3,

Z
2

3 ) I
Z( )- (6.15)

Since for two linked loops in S3 we have eqn. (6.11), and for three linked loops in S 3 we

have

Z ( = (0D x tSWW 2 xS) = Z(G )*SaiF 3
Ck/3

we find that

Z(G )*Saf3Gg Z(G 1)*S 1F13 = E(Gq )*Sai3 G32 Z(Ga1 )*Sa)3G
ao a/I ao

S n E *,,ine - s1e "23 ,
C1ilO O*14 Na2 3 ='&OrU2'&G37

O4

further, by the symmetric 1 S

_ E
or I

04 Une line -1g52U3 0-4&1dlo
C71 O4

(6.16)

(6.17)

(6.18)

sline sline (S1 "'" -1N
0r1C2 C1U3 k )&10a

qline
I 1&0

tslin " (slin* -1).
0,. Sd1lO2 C710' 7io" ,

- RSa2  = () ne )1 a

13

The above is the Verlinde formula. Compare to the usual: Verlinde formula

AV0b = SamSScm E N.
m Si

(6.19)

(6.20)

(6.21)
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6.2.1.4 Canonical world-line operators and canonical basis

In general the norm of the state WVI0D2 xSi) is proportional to the length of the world-line

operator. We choose a normalization of the local operators that form the world-line properly,

so that

(OD2x |SY1(W0Y)f W(Y70D2 xs")

= (ODtS 2 x (6.22)

is independent of the length and the shape of the world-line operator WS. Here a is the

anti-particle of o- and we have assumed that WY, = (WS)t. For such proper normalized

world-line operators, we conjecture that

(OD2 xSiIW'Wy|ID2 xS (6.23)

assuming (OD, xS I 0D, Xsi) = 1. In this case, G' = 6aa, and = = N., where

Noo'r are integers which describe the fusion of two topological excitations via the following

fusion algebra

010 2 = Na'2or 3. (6.24)

To see the relation F,0 N, = N , we note that

F -71a (OD2 xS'i |W WY W IOD2tXs ). (6.25)
2 X 0'3 9i 02 y

The above can be viewed as a path integral on S 2 x S1 with three world-lines al, a2, &3

wrapping around S1 . Now we view S' as the time direction. Then the path integral on

s2 x Si gives rise to the ground state degeneracy with topological excitations Oi, 0 2 , 0 3 on

the S2 space. The ground state degeneracy is nothing but N, 0 1 which is always an non-

negative integer. Therefore F,, 2 = N0gf = N, 03. The fusion algebra 010-2 = N,23

gives rise to an operator product algebra for the normalizaed closed world-line operators
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G',

x

Figure 6-6: Gluing two solid tori Dx x S with an additional T twist, i.e. identifying (x, y)
with (x + y, -y), will produce a S 2 x S1. The loop of 0 2 in y-direction in the second solid
torus at right can be deformed into a loop of U2 in the first solid torus at left. We see that
the loop is twisted by 27r in the anti-clockwise direction.

(see Fig. 6-7):

W O1W' 2 =Z NO,"2 W, . (6.26)
03

6.2.2 Relations involving T

The matrix elements

(ODXS IwWY02 2XSI)

(0D xsI(W 2)tIoiT3)(IWolIOD2 xS)

y0D XS W K| W t x

_G )*Ta3G (6.27)

can be computed via the path integral on two solid tori D 2 x S1, one with a closed world-

line WY2 at the center and the other with a closed world-line W 1 at the center. The two solid

tori are glued along the surface Sx x S' but with aT= ( twist (x,y) -- (x+y,y)
y ( ~0 1 ),Y ,( ,Y

(see Fig. 6-5. The resulting space-time is S x S2 = D x S' UsxsiT Dj x S with two

un-linked closed world-lines al and 02. But the world-line U2 is twisted by 27r (see Fig. 6-6).

The amplitude of such twisted world-line is given by the amplitude of un-twisted world-line

plus an additional phase cio,2, where 0,/27r is the spin of the a topological excitation. Note

that 0, is also the statistical angle for o. This suggests that

Z (G0,1)*Tc,,GI3 = 6111 2 'Ci"2. (6.28)
aj

3
2
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(a)

(a)

2 0,x

0b 1

(b)

03

x

(c)

Figure 6-7: (a): Two tunneling processes: W 1 and WT2 . (b): The tunneling path of the
above two tunneling processes can be deformed using the fusion of u 1o2 -- 0-3 . (c): The two
tunneling processes, WVV and Wx2 , can be represented by a single tunneling processes, Wi3 .

In the canonical basis, the above becomes a well known result

712 =
6

l12 C6"2 . (6.29)

6.3 3+1D quantum statistics and 3- and 4-manifolds

Importantly the dashed-cut in Eq.(6.14) indicates a Sd sphere. For example, the dashed-cut

in Eq.(6.15) indicates a S2 sphere, where the lower bounded volume is a D 3 ball and the

upper bounded volume is a S3 - D3 ball. This surgery formula works if the cut bounded

volume is a D3 ball with a S2 sphere boundary.

Here we will extend the previous approach to higher dimensions, in 3+1D.

6.3.1 3+1D formula by gluing (D3 x Si) US2XS1 (S2 x D2 ) S4

6.3.1.1 S2 world-sheet linked by two S1 world-lines in S4

Here we give two new 3+1D formulas by the gluing procedures

(D3
X SI) US2xSI (S 2 x D2 ) = (D 3 X SI) US2 xS1 (S2 x D2 =4 (6.30)

with the identity map between their S2 x S1 boundaries. Below we will sure that we can

have a linking between a S2 surface acted by a world-sheet operator and a S' circle acted
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by a world-line operator in S4 . So we have:

S' and S2 linked in S4. (6.31)

We can define the 10) state on D3 X SI as IOD3xSI). Since the S2 = 54 sphere (say

with 0, < coordinates) as the boundary of the D 3 ball is contractible, we cannot have any

non-trivial non-contractible surface operators V,* acting on the state I0 D3XSI). However,

we can create new states (perhaps incomplete basis) by generating world-lines on the non-

contractible S', namely we apply W' P acting on ODp3xsi):

W 'IOD3xs1)

and

(aW'I0D3 xSI) = G'3 x l, (6.32)

(aW WI0ID3 x si) = F'-;D3XS1 (6-33)

On the other hand, we can define the 10) state on S2 x D2 as IOS2xD2). Since the S' = S'

sphere (say with a <p coordinate) as the boundary of the D 2 ball is contractible, we cannot

have any non-trivial loop operators Waf acting On the state JOS2 xD2). Howevei, we can create

new states (perhaps incomplete basis) by generating world-sheet on the non-contractible S2,

namely we apply V,* acting on IOs2xD2):

V OI0s2xD2)

and

(alV A0S2 XD2) = Gp;S2xD21 (6.34)

(aIV V I0s2x D2) = Fip2;g2 xD 2  (6.35)

We can design the 32 world-sheet operator (from the V, 0S2 xD2)) bounds the D3 ball

of the D 3 X S1 spacetime, meanwhile we can also design the S1 world-line operator (from
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the WVIODs1)) bounds the D2 ball of the S2 x D2 spacetine. By doing so, we have:

The S' world-line and the S2 world-sheet linked in S4. (6.36)

Since we glue the two copies boundaries of S2 x S1 via the identity map 0, we have the glued

partition function:

/s4\

Z s2 = (Ga;S2xD2)* DajGf2D3xs1

= ink(s2 'I)Z(S4) = "Link(S2 ,S') 2(GS2 x3 D2)*Da/G ;D i, (6.37)
ao3

gLink(S2,SI) - aO(Ga1;S 2 x D2)* aoG 2 ;D i

Ea'a'(GO;S2xD2)*0cGO ;D3 XS 1
(6.38)

so that 0 Link( S2,S

Now we use the gluing to show that, for the linking of S2

region below indicates a 2-sphere S2.

and S1 in S4, with the gray

(6.39)

Importantly the dashed-cut indicates a S 3 sphere, where

volume is a D4 ball and the upper bounded volume is S4

formula works if the cut bounded volume is a D4 ball with a

the lower bounded

- D4. This surgery

S3 sphere boundary.
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For the linked configuration in S4 we have

S4
S2

Z -(=(OS2xD2 l)IV'W |IVI0D3xSl) = (G2x D2)* aOF2aD3xS

(6.40)

We find that Eq.(6.39) becomes:

Link(S2 I' S 2  Lik(S 2
,S

1
) _ 0Link(S 2 ,S')gLink(S2 S') 6.41)

10 2O'3; 31O'Or4 Ol 02 Ol a3
0'4

(here we cannot use OLink(S 2
,S') Link(S

2 
,S).) where

C,#S1= (G04 3xs1Fca3 (;D3x642)
a

Here N,"4 S means fusing two Si respectively carrying U2 and U3 indices with an outcome

S1 carrying u4, in the spacetime path integral linked by another S2 . The corresponding

braiding process for "two 1D world-lines S' linked by a 2D world-sheet S2 in a 4D spacetimne

S4" is that the two OD particles braid around a 1D string in the spatial slice. Importantly

in the spatial picture the two OD particles are not threaded by 1D string, so we remark that

the fusion algebra N," S2 of fusing two particles 0-2, 0s does not have a based

string-loop a1 dependence. The above is one kind of 3+1D analogy of Verlinde formula.

6.3.1.2 S2 world-sheet linked by two S' world-lines in S4

We have derived Eq.(6.41) which has a S1 world-line linked by two S2 world-sheets in S4.

Now we can reverse the role of S2 and S1, so that a S2 world-sheet will be linked by two S'
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world-lines in S 4 . Notice that

gLink(S',S 2) 4) = ULink(S2 4

a1a2 ( 2 O 1r

= i 2(sS2 Z(G' x) ; = k(S2,Sl) (Gs2xD2)*GO;D3xs, (6.43)Or I G2 .D 3XS)*G"S2xD2 2*O X1

Cc a

We have the orientation dependence (time-orientation and framing) of the braiding process

We again use the gluing to obtain that, for the linking of S2 and S' in S4 , with the gray

region below indicates a 2-sphere S2,

Z ---~J)-------- --- -------- --- -- - ---
3 3

Importantly the dashed-cut indicates a S3 sphere, where the lower bounded volume is a

D4 ball and the upper bounded volume is S4 - D4 . This surgery formula works if the cut

bounded volume is a D4 ball with a S3 sphere boundary.

We find that Eq.(6.44) implies

0Link(SI,S2  
M i 4;S1 pLink(S1,S2) _ gLink(SIS 2)gLink(S1,S 2) (6.45)

O71o 2 A 2U3;S2 a104 - 102 01U3
Or4

(here we cannot use Lik(SS 2
) - ,Link(SS2 ).) where

2 (G-)4 xD 2 Fa2'3;S2xD2. (.4)

Here _[,"ql means fusing two S2 respectively carrying O-2 and o3 indices with an outcome

S 2 carrying o 4 , in the spacetime path integral linked by another S1. The corresponding

braiding process for "two 2D world-sheets S2 linked by a 1D world-line S' in a 4D spacetime

S 4" is that the two 1D strings braid around a OD particle in the spatial slice. Importantly

in the spatial picture the two ID strings cannot be threaded by a GD particle, so we remark
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that the fusion algebra M4 of fusing two strings a2 , 03 does not have a a, base

dependence. It is possible that the S2 world-sheet in the spacetime picture implies that

the string-loop must be shrinkable to a point. Therefore, the string-loop is neutral; in the

specialized case such as a gauge theory, it cannot carry gauge charge. The above is another

kind of 3+1D analogy of Verlinde formula.

6.4 Interplay of quantum topology and spacetime topology:

Verlinde formula and its generalizations

The interplay between quantum topology and spacetime topology is examined. We had

derived generalized Verlinde formulas in Eqs.(6.41) and (6.45). Clearly there are more

relations, which we will report elsewhere in the future publications. By performing the

surgery theory of geometric-topology on the spacetime, we show that the quantum fusion rule

and quantum statistics are constrained by the intrinsic properties of spacetime topology. The

exotic quantum statistics is defined in the adiabatic braiding process in the gapped phases

of matter with topological orders, therefore the spacetime topology strictly constrains the

quantum topology thus dictates the possible gapped phases of matter.
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Chapter 7

Conclusion: Finale and A New View

of Emergence-Reductionism

Thus far we have explored some physical properties and mathematical structures of topo-

logical states of matter of SPTs and topological orders (TOs). We have started from the

very basic notion of quantum mechanical Berry's geometric phase, to reveal its profound

connection to many-body topological states of matter. For example, we use geometric phase

and geometric matrix to define modular S and T matrices which connects to the braiding

statistics of quasi-excitations of TOs, or the SPT invariants such as fractionalized charges

and degenerate zero modes from symmetry-twists of SPTs.

One important ingredient of our work is that the constraints of topologies and the mean-

ing of topologies. We can roughly distinguish them into three types: SPT topology ("classi-

cal" topology), TO topology (quantum topology) and spacetime topology. Our understand-

ing now is developed much beyond what was previewed in Chap.1. We summarize in Table

7.1.

One important message is that, when we combine the concepts of SPT topology (a sort of

"classical" topology compared to the TOs) and spacetime topology, we are able to constrain,

characterize and classify the possible types of SPT probes as symmetry-twists having branch

cuts on the spacetime manifold (Chap.3). This way of thinking leads us to regard the SPTs

as having a closer tie to the spacetime topology. SPTs are not merely some quantum matter

by itself, but quantum matter with symmetry-protection tied to the spacetime topology.
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Qlassical: homotopy, mapping and winding numbers, K-theory.
Topology -> Quantum: algebraic topology, homology, cohomology, tensor category.

Spacetime: fiber bundles, geometric-topology, surgery theory.

"Classical + Spacetime" topology: SPT invariants
"Quantum + Spacetime" topology: TO invariants

(Field-theory Rep. Q.I. Chap.3)
-4(Quantum statistics + spacetime surgery. Q.VI. Chap.6)

Table 7.1: The interplay of classical, quantum and spacetime topology.

Analogously, another important message is that, when we combine the concepts of TO

topology (a sort of "quantum" topology compared to the SPTs) and spacetime topology, we

are able to derive the consistent braiding-fusion formulas such as Verlinde's formula. These

formulas 'further constrain the possible TOs on a given-dimensional spacetime manifold

(Chap.6). This way of thinking leads us to regard the TOs as also having a closer tie to

the spacetime topology. TOs are not merely some quantum matter by itself, but further

exotic quantum matter tied to the spacetime topology with robust topological GSD and

non-Abelian geometric matrix, even without symmetry-protection.

In Table 7.2, we summarize the alternative views of the reductionism of HEP and the

emergence of CMP on the examples we studied throughout Chap.2 to Chap.6. The flow

chart in Figure 7-1 overviews the main ideas and subjects emerge from the development of

the thesis.

There are several future directions:

Gauge-gravity anomalies, SPTs and TOs: In this thesis, we have tentatively sug-

gested connecting gauge anomalies or mixed gauge-gravitational anomalies to the surface

anomalies of SPTs, and connecting gravitational anomalies to the surface anomalies of TOs.

The key concept here is viewing the gauge anomalies and external probed gauge fields as the

phenomena of weakly coupling gauge fields coupled to the global symmetry of SPTs. There

is another (second) kind of anomalies more robust than this. If we break all the possible

global symmetries of topological states, and if there is still any anomalous surface effect, then
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Table 7.2: Dictionary
emergence viewpoints.

between the physics or mathematics used in reductionism and in
Some of the aspects in HEP are done in my work, while some are

adopted from the cited references. In any case, my original work connects them to CMP
issues.

SPT invariants

Spacetime and topological insulator
Algebraicgeometric-topology: lg

3 and 4 manifolds, I topology: Spnlquids & disorder Bosoic anomaly
surgery theory. Group Gauge and mixed gauge-dstone-Wilczek,

Field theory Rep (1405, 1503) Cohomology gravity anomaly: SPT (1405) GSD, etc (1403)

Generalized
Verlinde's formula

Bulk/edge Quantum statistics
TQFT/CPF and fusion algebra of

topological order

String/particle braiding 1 Gapped dom
Modular Rep (1404) (1212,1408)

Quantum many-body system

ain

Lattice chiral fermion model:

Eatap o nal o mae avoid NN fermion-doubling!Ltoplog" rderthm w/out Ginzburg-Wilson

vall/boundaries and GSD fermions (1307) Matrix
$tandard Model Product

$tro Cdo Particle physics Operator

Twisted gaue theory-----~-

Entanglement generalized Kitaev's

Figure 7-1: The flow chart overviews the main ideas and subjects emerge from the devel-
opment of the thesis. The numbers shown above represent the arXiv numbers (year and
month) for my journal publication preprints.
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Reductionism & HEP Emergence & CMP

o Symmetry-twist: 157, Twisted sector of CFTs, Modified Hamiltonian along the
56, 79, 551 gauging the symme- branch cut, or twisted boundary

try, orbifoldsl109 and conditions of wavefunctions or
orientifoldsl 1301 Hamiltonians

* Anomalies: t'Hooft anomaly-matching con- Boundary fully gapping rules;
160, 50, 611 ditions. gapping the mirror sector of cou-
Bulk-edge correspon- Lattice chiral fermion/gauge pled Chern insulators.
dence. theory. Induced fractional quantum num-
Fermion-doubling. Non-onsite symmetry lattice ber and degenerate zero modes
Bosonic anomalies 1571. regularization; Jackiw-Rebbi or computed on a lattice

Goldstone-Wilczek effect.
e Quantum Statistics: Representation theory, quantum Wavefunction overlapping of

152, 621 String and par- algebra, algebraic topology, quantum states
ticle braiding statistics geometric-topology, surgery the- Generalized Kitaev's toric code
o Topological order lat- ory. 691 to twisted quantum double
tice model 152, 621 Dijkgraaf-Witten lattice space- odel [1321 and twisted gauge

time path integral 1781, group theory on the lattice
cohomology, Hopf algebra,
TQFT.



these anomalies do not need to be protected by global symmetries. Thus, they are more

robust than gauge anomalies. They are associated with spacetime diffeomorphism. They

can be viewed as gravitational anomalies - including perturbative gravitational anoma-

lies (computable from a I-loop Feynman diagram) or non-perturbative global gravitational

anomalies. We understand that so far we have only studied some examples to support this

claim. It will be helpful to find more new examples to test and clarify this claim.

Experimental or numerical realization of phases of matter: It will be important

to find the materialization through correlated quantum magnets, electronic Mott insulators

and ultra-cold atoms. It seems that a complete theory on the classification of interact-

ing SPTs and topological insulators/superconductors is still missing [331. Several steps of

progress have been made in specific examples. What we are searching for a consistent-

complete theory is like the Ginzburg-Landau's group theory for symmetry-breaking phases,

and the tensor category theory for 2D TOs. Whether we have the group-cohomology or

cobordism theory or something else to classify SPTs, and what theory we should develop to

fully classify higher-dimensional TOs, are the open challenges to be tackled in the future.

Non-perturbative lattice chiral fermion: We have proposed a simple model for a

non-perturbative lattice chiral fermion model. Currently three main attempts to regularize

the following chiral theory on the lattice are: (i) U(1) chiral fermion [501, (ii) SO(10) chiral

gauge [1271 and (iii) U(1) x Z2 x ZT interacting topological superconductor theory [1331. Our

anomaly-free proof for U(1) chiral fermions is the most rigorous among the three, thanks to

the bosonization technique in ID. The possible next step will be concretely proving that an

anomaly-free SM-like chiral gauge theory can be constructed using the mirror-decoupling

set-up, by looking into larger extra symmetries as we did in [501 outside a tentative gauge

group SO(10) or SU(5). One can search for the potential hidden constraints on the param-

eters of SM or modified-SM when it can be defined non-perturbatively on the lattice, such

as the Higgs scale and top quark mass. This may help to address beyond-SM questions,

such as hierarchy or strong CP problems. There is also the possibility of synthesizing the

idea of mirror-fermion decoupling with other HEP theories with extra dimensions, such as

Kaluza-Klein, Einstein-Bergmann and Randall-Sundrum models. The second issue for this

goal is to implement the simplest 1+1D chiral theory on the lattice. The first attempt

can be programming the tensor network code, using 1D Matrix Product States (MPS) or

Density Matrix Renormalization Group (DMRG). If it is possible, the future directions are
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(1) inventing a new algorithm which can solve a gapless system, going beyond the gapped

one of DMRG, or (2) seeking collaboration with simulation experts in many-body quantum

systems or in lattice QCD. A new algorithm is desirable and profound because the gapless

chiral fermions are highly-entangled states with an entropy S 0C Ld-1 log(L) beyond-the-

area-law (L is the length dimension in d-D), which require a new ground state wavefunction

ansatz and a new simulation theory, such as the Multi-scale Entanglement Renormalization

Ansatz (MERA).

More general statements about anomaly-matching conditions and topological

gapping criteria for higher dimensional theory. In Chap.4 and Chap.5, we discuss

the 1+1D statement between anomaly-matching conditions and topological gapping criteria

with U(1)" symmetry. This concept may hold more generally than the given spacetime

and the given symmetry. It will be remarkable to extend this direction further. It may

be useful to understand the characterization by entanglement entropy (EE), in particular

topological entanglement entropy (TEE). One key feature of topological orders is known

to be their long-range entanglement. TEE shows how quantum wavefunctions can be cor-

related to each other remotely through the entanglement. Up till now, people have been

looking at TEE on the system either at a closed manifold or at the interior without physical

boundaries. Building upon our previous work on gapped boundaries/domain walls [60, 611,

we can investigate EE and TEE on the system on generic open or closed manifolds. It

is an important question, because the gappability of boundary is related to the 't Hooft

anomaly-matching conditions of gauge anomalies or (perturbative or global) gravitational

anomalies. From the reductionism aspect in HEP, the anomaly-matching is the mechanism

of the anomaly-inflow. However, from the emergence aspect in CMP, the same concept is

analogous to Laughlin's flux insertion Gedanken-experiment. One can also check how EE

fits into the mirror-fermion decoupling set-up, and whether the gapped mirror sector (set

at the Planck scale) constrains the light sector with nearly gapless fermions. HEP tends to

view gauge theory as governed by "gauge symmetry," but indeed it has no real symmetries

only redundancies. Ultimately, we can view gauge theory through entanglement. We should

understand how the SM structure can be embedded and ask how new entanglement concepts

beyond EE or TEE can be introduced for strongly-interacting gapless phases.

Topological phase transitions and gapless phases: The topological gapping criteria

for gapped domain walls located between TOs Phases A and B, may be connected to the
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topological phase transitions between TOs Phases A and B. Topological phase transitions

here may not just include the first order phase transition, but also the second order phase

transition. It will be important to see whether extra conditions should be included to derive

the criteria for the second order phase transitions. This information could provide one of

crucial hints for studying robust gapless phases of matter. Another crucial hints can be the

surface gapless states due to anomalies protected by the bulk state of matter.

Further interplay of the spacetime topology and the states of matter topology:

It is likely the approach on spacetime surgery and the quantum amplitudes can be generalized

to study not just TOs but also SPTs, or more generally symmetry-enriched topological states

(SETs, for topological orders with symmetry-protection). There should be a direct program

generalized by extending Chap. 3 to 6.

Many-body entanglement structure: Throughout the thesis, the hidden concept

of entanglement is used, but we have not yet explicitly studied it in depth. Whether the

result we obtained so far (such as anomaly-matching and gapping criteria, string braiding

statistics and generalized Verlinde formula) can be organized in terms of the fundamental

principles of quantum entanglement structure will be left for future questions.

If we digest the reductionism and emergence viewpoints further, the two views are rather

different, but there is not actually an obvious cut between the two philosophies. The prin-

ciples emerging from a many-body system can be reduced to a few guiding principles and

the basic ingredients of qubits or spins and their interactions can be regarded as the funda-

mental blocks of reductionism (thus, emergence gives rise to reductionism). On the other

hand, it also happens that the fundamental laws of reductionism can be re-arranged and

transformed into another set of formulation where the fundamental ingredients are trans-

formed, too (such as the particle-wave duality; this is sort of reductionism gives rise to

emergence). This reminds us of the importance of complementarity of reductionism and

emergence. We should recall that Niels Bohr's coat of arms, "opposites are complementary,"

and John Wheeler's comment on complementarity: "Bohr's principle of complementarity

is the most revolutionary scientific concept of this century and the heart of his fifty-year

search for the full significance of the quantum idea." Perhaps to keep the two complemen-

tary viewpoints will guide us to digest the full profundity of the quantum world and the

beyond-quantum world.
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