Alternative Models for Quantum Computation

by

_ . ARCHIVES
Cedric Yen-Yu Lin MASSACHUSETTS INSTRUTE
OF TECHNOLOLGY
Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of JUN 302015
Doctor of Philosophy in Physics ,
LIBRARIES
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2015
(© Massachusetts Institute of Technology 2015. All rights reserved.
Author.................. _ e
v 4 Department of Physics
May 22, 2015
Signature. cﬂ d
Certified by............ g
h] Edward H. Farhi

Professor of Physics; Director, Center for Theoretical Physics
Thesis Supervisor

Accepted by

Signature redacted

Nergis Mavalvala

Curtis and Kathleen Marble Professor of Astrophysics
Associate Head for Education, Physics

Alternative Models for Quantum Computation
by
Cedric Yen-Yu Lin

Submitted to the Department of Physics
on May 22, 2015, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Physics

Abstract

We propose and study two new computational models for quantum computation, and in-
fer new insights about the circumstances that give quantum computers an advantage over
classical ones.

The bomb query complexity model is a variation on the query complexity model, inspired
by the Elitzur-Vaidman bomb tester. In this model after each query to the black box the
result is measured, and the algorithm fails if the measurement gives a 1. We show that the
bomb query complexity is asymptotically the square of the usual quantum query complexity.
We then show a general method of converting certain classical algorithms to bomb query
algorithms, which then give improved quantum algorithms. We apply this general method
to graph problems, giving improved quantum query algorithmms for single-source shortest
paths and maximum bipartite matching.

Normalizer circuits are a class of restricted quantum circuits defined on Hilbert spaces
associated with Abelian groups. These circuits generalize the Clifford group, and are com-
posed of gates implementing quantum Fourier transforms, automorphisms, and quadratic
phases. We show that these circuits can be simulated efficiently on a classical computer even
on infinite Abelian groups (the finite case is known [1, 2]), as long as the group is decomposed
into primitve subgroups. This result gives a generalization of the Gottesman-Knill theorem
to infinite groups. However, if the underlying group is not decomposed (the group is a black
box group) then normalizer circuits include many well known quantum algorithms, includ-
ing Shor’s factoring algorithm. There is therefore a large difference in computational power
between normalizer circuits over explicitly decomposed versus black box groups. In fact, we
show that a version of the problem of decomposing Abelian groups is complete for the com-
plexity class associated with normalizer circuits over black box groups: any such normalizer
circuit can be simulated classically given the ability to decompose Abelian groups.

Thesis Supervisor: Edward H. Farhi
Title: Professor of Physics; Director, Center for Theoretical Physics

Acknowledgments

I have many people to thank, without whom completing this thesis would be impossible.

First and foremost, I thank Eddie Farhi for being a wonderful advisor and collaborator;
for giving me guidance on research yet allowing me plenty of freedom; and for teaching me
how to be inquisitive, how to think about quantum computation, and how to do science.

I thank Peter Shor for being like a second advisor to me, for his frequent help and
guidance in my research and being a frequent collaborator. I thank Aram Harrow and Scott
Aaroson for frequent discussions and answering many questions, and also for inspiring me
how to think about quantum (and classical) computation.

I thank Eddie Farhi, Aram Harrow, and David Kaiser for the time and effort they have
spent on reviewing my thesis and thesis defense. I also thank Aram, Peter, and Ike Chuang
for serving on my general exam committee.

I thank Robert RauBendorf and Ian Affleck for their support and collaboration at the
beginning of my research career as an undergraduate, and also for introducing me to the
world of quantum computation.

I thank Han-Hsuan Lin, Juan Bermejo-Vega, Maarten Van den Nest, Elizabeth Crosson,
and Shelby Kimmel for being great collaborators and friends. I especially thank Han-Hsuan
and Juan for years of working together, and Shebly for her invaluable help when I was
applying for a postdoctoral position.

I thank Ike Chuang, Scott Aaronson, and Jon Kelner for their phenomenal classes on
quantum and classical computation. In particular I thank Ike for the term project in his
class, which eventually lead to Chapter 5 of this thesis.

I thank David Gosset and Andy Lutomirski for helping me get used to graduate life at
MIT.

I thank Alex Arkhipov, Mohammad Bavarian, Adam Bookatz, Adam Bouland, An-
drew Childs, Richard Cleve, Matt Coudron, Lior Eldar, David Gosset, Daniel Gottesman,
Jeongwan Haah, Stephen Jordan, Robin Kothari, Chris Laumann, Andy Lutomirski, Ashley
Montanaro, Daniel Nagaj, Anand Natarajan, Cyril Stark, Pawel Wocjan, and Henry Yuen
for many useful discussions.

I thank the staff of the CTP, LNS, and the Department of Physics for their help over
the years, and for making our lives so much easier. Special thanks to Scott Morley, Joyce
Berggren, and Charles Suggs for keeping the CTP as nice as it is.

I thank NSERC and the ARO for supporting me financially so that I could concentrate
on research.

I thank my friends for their support and friendship, and for all the good times we’ve had
together.

Lastly, I thank my family for always being there when I need them. I thank my par-
ents Carol and Wen-Chien, my brother Terence, and my grandparents for their unwavering
support and encouragement throughout the years. I am lucky to have them in my life.

Contents

1

3

Introduction 11
1.1 Classical Computation e 11
1.1.1 Turing and the theory of computability 11
1.1.2 Complexity theory oL 13
1.2 Quantum Computation e 15
1.3 Shor’s Algorithm for Factoring 18
1.3.1 The Quantum Fourier Transform 18
1.3.2 Shor’s Algorithm for Order Finding and Factoring 20
1.3.3 Hidden Subgroup Problem L. 21
1.4 Query Complexity and Grover’s Algorithm 22
1.4.1 Black Boxes and Grover’s Problem 22
1.42 Grover'salgorithm 23
1.43 Query Complexity 24
1.5 Organization of thisthesis 26
Upper Bounds for Quantum Query Complexity Based on the Elitzur-
Vaidman Bomb Tester 29
2.1 Introduction e e e 29
2.2 The Elitzur-Vaidman bomb testing problem 31
2.3 Bomb query complexityo o 32
24 Mainresult e e e e e e e e 34
241 Upperbound e 34
242 Lowerbound e 37
2.5 Generalizations and Applications oo 37
2.5.1 Generalizing the bomb query model 38
2.5.2 Using classical algorithms to design bomb query algorithms 39
2.5.3 Explicit quantum algorithm for Theorem 24 40
2.6 Improved upper bounds on quantum query complexity 42
2.6.1 Single source shortest paths for unweighted graphs 42
2.6.2 Maximum bipartite matching o000 44
2.7 Projective query complexity oL 46

Normalizer circuits over infinite-dimensional systems: an introduction 49

3.1 Introduction e e 49
3.2 Outlineofthischapter 52
3.3 SummaryofconceptS.o 52

3.3.1 Thesetting« e 52

3.4

3.5

3.6

3.7
3.8

3.9

3.10

332 Examples e 52

Abelian groups Lo e 55
3.4.1 Z: thegroupofintegers 55
342 T:thecirclegroup o 55
3.4.3 Finite Abeliangroups L 0. 55
344 Blackboxgroups o 56
The Hilbert spaceofagroup 56
3.5.1 Finite Abeliangroups 56
3.52 Theintegers Z« . . e e e 57
3.53 Total Hilbert space 58
Normalizer circuits (without black boxes) 59
3.6.1 Normalizer gates e 59
3.6.2 Normalizer circuits L o o 61
3.6.3 Classical encodings of normalizer gates 62
Normalizer circuits over black box groups 63
Group and Character Theory 66
3.8.1 Elementary Abelian groups 66
3.82 Characters e 67
3.8.3 Simplifying characters via the bullet group. 69
384 Anmihilators. L 70
Homomorphisms and matrix representations 70
3.9.1 Homomorphisms 70
3.9.2 Matrix representations L. 71
Quadratic functions L o 73
3.10.1 Definitions 74
3.10.2 Normal form of bicharacters 74
3.10.3 Normal form of quadratic functions 74

Classical simulation of normalizer circuits for infinite-dimensional systems 77

4.1
4.2
4.3

4.4

4.5

4.6

Introduction L 77
Mainresult e 81
Pauli operators over Abelian groups 82
4.3.1 Definition and basic properties 83
4.3.2 Evolution of Paulioperators 83
Stabilizer states oL 85
4.4.1 Definition and basic properties 85
4.4.2 Support of a stabilizerstate 87
Systems of linear equations over Abelian groups 89
4.5.1 Algorithm for finding a general solution of (4.5.1) 90
4.5.2 Computing inverses of group automorphisms 91
Proof of Theorem 59 92
4.6.1 Tracking normalizer evolutions with stabilizer groups 92
4.6.2 Computing the support of the final state 98
4.6.3 Sampling the support of astate 99

The computational power of normalizer circuits over black-box groups
5.1 Introduction e e e
5.2 Quantum algorithms o oL
5.2.1 The discrete logarithm problem over Z;*
5.2.2 Shor’s factoring algorithm L.
5.23 Ellipticcurves. e e
5.2.4 The hidden subgroup problem
5.2.5 Decomposing finite Abelian groups
5.3 Simulation of black-box normalizer circuits
5.4 Universality of short quantum circuits
5.5 Other Complete problems

Proofs of results in Chapter 2

A.1 Proof of the adversary lower bound for B(f) (Theorem 20)
A.2 Proof of Theorem 24 o
A3 Proofof Theorem 26

Supplementary material for Chapter 3
B.1 Supplementary material for Section 3.9o L.
B.2 Supplementary material for Section 3.10 L.

Proofs of results in Chapter 4

C.1 Existence of general solutions of systems given by (4.5.1)
C.2 Proofof Theorem 66
C.3 Efficiency of Bowman-Burdet’s algorithm
C4 Proofof Lemma 67

Supplementary material for Chapter 5

D.1 Proofof Theorem 80 i i

D.2 Proof of Theorem 87
D.2.1 Group automorphisms oL o
D.2.2 Quadratic phase functions

D.3 Extending Theorem 87 to the Abelian HSP setting

10

Chapter 1

Introduction

This thesis concerns the fields of quantum algorithms and quantum computational complex-
ity. An algorithm, roughly speaking, is a set of instructions to be performed to solve some
computational problem. Computational complexity theory studies the time, memory, and
other resource requirements needed to solve some computational problem. By guantum we
mean that the computers we use are quantum computers, i.e. these computers are allowed
to use quantum effects, such as interference and entanglement.

We will be studying two alternative computational models in the quantum setting. In
Chapter 2 we will be studying the bomb query complexity model, a generalization of the
Elitzur-Vaidman bomb tester (see Section 2.2) to the study of complexity. This model will
yield a method for converting certain classical algorithms to good quantum algorithms. In
Chapters 3, 4, and 5 we will study the model of normalizer circuits; this restricted model of
quantum circuits will allow us to better understand the quantum speedup in Shor’s factoring
algorithm, and perhaps give guidance on the design of future algorithms.

In this chapter we will introduce the concepts of quantum computing that we will need
in this thesis; a knowledge of quantum mechanics is assumed. We will start by introducing
classical computation in Section 1.1, proceed to quantum computation in Section 1.2, and
describe the two most important known quantum algorithms: Shor’s algorithm for factoring
in Section 1.3, and Grover’s search algorithm in Section 1.4. We end this chapter by outlining
the rest of the thesis in Section 1.5.

Most of the material of this chapter is covered in more detail in |3, 4].

1.1 Classical Computation

The classical theory of computation is interested, broadly, in the following type of question:
given a set amount of resources, what computational problems can we solve? At first sight
it is not even clear that these types of questions are meaningful at all, since presumably
the answer would depend on the specific machine we are using. Nevertheless we will see
that models of computation can be introduced that capture the essence of all computers we
know.

1.1.1 Turing and the theory of computability

In 1937, Alan Turing introduced the model of Turing machines [5]. In summary, a Turing
machine consists of an semi-infinite tape along with a finite-sized program and memory used

11

to manipulate the contents of the tape. The input to the Turing machine is the original
contents of the tape, and the output is the contents of the tape after the Turing machine
has finished executing. We will not go into very many details, but Turing made three very
important observations:

1. There exists a universal Turing machine that is capable of simulating an arbitrary
Turing machine on arbitrary input. The universal machine reads the description of a
specific Turing machine 7 and input Z to be simulated from its own input (tape), and
gives the same output that one would have gotten if 7 were executed with input Z.
This property of universality was radical at the time: given a computational task one
wanted to perform, one would have used a machine specifically built to perform that
task. Turing’s work showed that instead of building a computer for every single task,
one could instead build a general-purpose computer and change the software on it to
perform any computation.

2. Given enough time, Turing machines appear to be able to calculate any function com-
putable by a real-world process (e.g. done by pen-and-paper, employing a machine,
measuring an observable of a physical system, etc.). This observation was made inde-
pendently by Turing and his Ph. D. advisor, Alonzo Church!:

Church-Turing thesis: Any real-world computational process can be sim-
ulated with a Turing machine.

The Church-Turing thesis is, in the opinion of the author, somewhat like a natural
law: it cannot be proven mathematically, but can be disproved by a counterexample.
No such counterexamples are known; the computers that we use nowadays can be
simulated by Turing machines. Turing machines can therefore be viewed as a rigorous
mathematical formalization of algorithms.

3. There are functions that cannot be computed by Turing machines. An example is the
Halting Problem: given a description of a Turing machine and input, decide whether
the Turing machine halts or runs forever. Turing showed that there is no algorithm
(Turing machine) that solves the halting problem. This was a profound statement
that came as a surprise to many, especially to David Hilbert. Hilbert had posed the
challenge of finding an algorithm that could, in principle (and enough time), solve all
the problems of mathematics [7]; Turing’s work showed that this was impossible.

We now know many other such problems that are unsolvable even in principle; two
recent examples in physics are deciding whether a quantum many-body Hamiltonian
is gapped or gapless [8, 9], and deciding whether a sequence of Stern-Gerlach-type
measurements have outcomes that never occur [10].

We stress that while it is believed that Turing machines can simulate any natural com-
putational process, we have not said anything about the resources required for such a sim-
ulation.

Finally, it will be convenient to consider a variant of the Turing machine where random-
ness is allowed. Such a probabilistic Turing machine would be able to flip a coin during the
execution of the machine, and execute different instructions depending on the result of the
coin flip. A deterministic Turing machine would still be able to simulate a probabilistic one,

!Church had earlier propsed the equivalent, but much less intuitive, computational model of A-calculus

[6].

12

by simply checking the results of the computation on all possible coin tosses, in accordance
with the Church-Turing thesis. However such a simulation would of course take far more
steps to execute.

1.1.2 Complexity theory

The discussion in the preceding section on Turing machines centered mainly on computability
theory, i.e. studying which functions were in principle computable by an algorithm, and
which functions were not. In practice, however, this is of course not all we care about, since
even if a function is possible to compute in principle, in practice there may be no algorithm
that does so within a reasonable time and memory. Computational complexity theory studies
the resource requirements of computational tasks.

In computational complexity we are often interested in the asymptotic scaling of the time
and space requirements of an algorithm as a function of the problem size or input size, and
not in the precise values of the requirements itself. We will often use the following ‘big-O’
notation:

Definition 1. Let f and g be two nonnegative-valued functions defined on the positive
integers. Then:

e Suppose there is an integer N and a constant C such that f(n) < Cg(n) foralln > N.
Then we say that f(n) = O(g(n)).

e Suppose there is an integer N and a constant C such that f(n) > Cg(n) for alln > N.
Then we say that f(n) = Q(g(n)).

e If f(n) = O(g(n)) and f(n) = Q(g(n)), then we say that f(n) = O(g(n)).

When we analyze the amount of resources needed for an algorithm to run, we will usually
only give a big-O upper bound for it. The actual runtime of an algorithm may very well
depend on the power of the computer it is run on, which we cannot directly analyze; what
we can look at is how well the algorithm scales (e.g. whether the runtime is a polynomial
or exponential in the size of the problem). For example, for a ©(2")-time algorithm, adding
a single bit to the problem size doubles the runtime, and the algorithm is therefore unlikely
to be useable beyond say n = 40. On the other hand, algorithms with polynomial time
complexity are widely used in practice.

A general rule of thumb used by computer scientists is that an algorithm runs efficiently
in practice if its resource requirements (usually time) scale only as a polynomial of the
size of the input. This is of course not a hard and fast rule, as an algorithm with run-
time O(n1%%) can hardly be called efficient while one with runtime O(20-000017) wil] likely
work well in practice. Nevertheless, distinguishing between polynomial and superpolynomial
times does a sufficiently good job of distinguishing between fast and slow algorithms, and is
mathematically convenient. We thus make the following definition:

Definition 2. An algorithm is efficient if and only if its resource requirements (usually the
number of operations used) scale as a polynomial of the length of the input.

For the rest of this thesis, this is the only meaning of the word ’efficient’ that we will
use.

Of course, the complexity of a problem depends on the given computational model.
However, in the 1960s and 1970s (at the beginning of the study of complexity theory)
researchers observed and proposed the following:

13

Extended Church-Turing thesis: Any real-world computational process can be
simmulated, with at most a polynomial increase in the number of steps required, by
a probabilistic Turing machine.

For decades it was thought that the extended Church-Turing thesis was true. This would
make probabilistic Turing machines an ideal computational model to study, since any effi-
cient real-world algorithm would be simulable efficiently by a probabilistic Turing machine.
We shall see however, in Section 1.2 (as well as Shor’s algorithm in Section 1.3), that we now
have good reason to think that the extended Church-Turing thesis is false, because of the
classical difficulty of simulating quantum mechanics. Nevertheless probabilistic and deter-
ministic Turing machines are worthy objects of study, since the class of problems efficiently
solvable are quite robust with respect to the computational model chosen: for example, our
current computers can still be modeled with probabilistic or deterministic Turing machines.

We will introduce the following complerity classes, classes of computational problems
related by some common resource requirement. In the following, a decision problem is a
yes-or-no question: given an input, decide whether or not it satisfies some property. If it
does, we refer to the input string as a YES-instance; otherwise it is a NO-instance.

Definition 3. P is the complexity class of decision problems that can be solved with poly-
nomial time on a deterministic Turing machine, i.e. can be solved efficiently with a classical
deterministic algorithm. :

Definition 4. BPP? is the complexity class of decision problems that can be solved with
polynomial time with a classical randomized, bounded error, algorithm. To be more precise,
a decision problem £ is in BPP if there is a randomized algorithm A that always outputs
0 or 1, and always runs in polynomial time, such that the following holds:

o If a string s is a YES-instance of £, then A given input s outputs 1 with probability
at least 2/3.

e If a string s is a NO-instance of £, then A given input s outputs 0 with probability at
least 2/3.

Note that the time complexity are worst-case bounds; the algorithms referred to above
must run in polynomial time for all inputs. In addition, the precise constants 2/3 used in
the definition of BPP do not matter, as long as it is strictly greater than 1/2; this is because
running a BPP algorithm multiple times and outputting the majority answer can amplify
the success probability to any constant strictly less than 1.

P contains many natural problems, including checking whether all numbers in a list
are positive, checking whether two points are connected in a graph, determining whether a
system of linear equations has a solution, and so on. A natural problem that appeared to
be in BPP but was not known to be in P is the problem of determining whether an integer
was prime; that problem was however recently determined to be in P [11]. Many computer
scientists now believe the conjecture that in fact BPP = P, and classical randomized
algorithms are just as powerful as deterministic ones. In some sense, the complexity classes
P and BPP capture the set of problems that are easy to compute on a classical computer.

Of course, not all problems are easy to compute. A simple example, that we will come
back to multiple times in this thesis, is that of factoring a number. We can cast it as a

2BPP stands for bounded-error probabilistic polynomial time.

14

decision problem as follows: given a positive integer n and a number £ < n, does n has a
nontrivial factor no greater than ¢7 This problem does not seem easy to solve; the brute
force method of trying all integers less than n is not efficient, since it takes time polynomial
in n, which is exponential in the size of the input, the lengths of the descriptions of n and
£, which is O(logn). In fact, there is no known efficient classical algorithm for the factoring
problem.

However, the problem of factoring has the property that if n does have a factor k < ¢,
then it is easy to verify this fact as long as the witness k is given: we simply check that k
divides n. As such, the factoring problem seems difficult to solve, but is easy to verify once
a witness is given. This motivates the definition of the following complexity class:

Definition 5. NP3 is the complexity class of decision problems whose YES-instances can be
checked efficiently with a classical deterministic algorithm, given access to a witness string.
More formally, a decision problem £ is in NP if there is a classical deterministic algorithm
A that always outputs 0 or 1, and always runs in polynomial time, such that following holds:

e If a string s is a YES-instance of £, then there is some witness string w such that A,
given input s and w, outputs 1.

e If a string s is a NO-instance of £, then for all witness string candidates w, A given
inputs s and w outputs 0.

In English, this says that if s is a YES-instance, then there is a short proof w of this fact
that can be efficiently verified. Conversely, if s is a NO-instance, then no purported proof
w can possibly work. The factoring problem thus belongs to NP.

It is clear that P is a subset of NP. Most computer scientists believe that P # NP,
i.e. that there are problems that are hard to solve but are easy to verify, given the solution.
There is no proof of this, however, and proving (or disproving) that P # NP is one of the
seven Millenium Prize Problems selected by the Clay Institute, which carries a million-dollar
prize.

1.2 Quantum Computation

BEarlier in 1982, Richard Feynman had noticed the computational difficulties of simulating
quantum mechanical systems on classical computers: given a system of just 30 qubits
(two-dimensional quantum systems), the size of the Hilbert space is already 230 ~ 109,
and general Hamiltonians acting on such a small system are already difficult to simulate
because of the exponential dimension of the Hilbert space. To Feynman, it made sense to
instead use a quantum computer, a computer built out of quantum mechanical components
and interactions, to simulate such systems, and Feynman outlined a rudimentary design
of such a computer [12]. In 1985, David Deutsch formalized the concept of a quantum
computing with his introduction of quantum Turing machines [13], a generalization of the
Turing machine that incorporates quantum mechanical interactions.?

These insights, that a quantum computer could possibly perform some computational
tasks exponentially faster than a classical one, brought the extended Church-Turing thesis
into question. This was made even more dramatic by Peter Shor’s 1994 discovery [14] of

3Short for nondeterministic polynomial time.
4We will not pay much attention on quantum Turing machines, because quantum circuits are more
common and easier to deal with, but represent an equivalent computational model.

15

an efficient quantum algorithm for factoring an integer, perhaps a more intuitive problem
that was also difficult to solve on a classical computer. Through factoring an integer, a
quantum computer could also break the widely-used RSA cryptosystem [15]; this observation
generated much interest in the field of quantum computing. Shor’s algorithm remains a basis
for many important algorithins and results in quantum computing, including Chapter 5 of
this thesis; we will look at a description of this algorithm in Section 1.3.

In this section, we will concentrate instead on giving an introduction to the basic concepts
of quantum computation. We will not pay any attention to quantum Turing machines;
instead we look at the equivalent, but more common and easier to deal with, quantum
circuit model. For a more detailed introduction to quantum circuits, see [3, Chapter 4] or
[4, Chapter 4]

A quantum circuit can be summarized as follows:

1. A quantum circuit has a quantum state that usually (but not always®) consists of a
number of qubits, or spin-1/2 systems. The state of a single qubit can be written in
the form «|0) + B|1) with |a|?+]8|? = 1; for a system of n qubits the general quantum

state is
D oals), D lesfr=1 (1.2.1)
S

se{0,1}"
where {0, 1}" denotes the set of all length-n boolean (0 or 1) strings.

Initially all qubits are set to 0, except for possibly a portion of the qubits serving as
an input to the circuit.

2. The circuit will apply a sequence of quantum gates to the state, each gate acting only
on one or two qubits.® A quantum gate U is a unitary operation on the Hilbert space:
it satisfies UtU = UU' = I, and so preserves the norm of the quantum state.

3. At the end of the circuit some or all of the qubits are measured in the computational
basis (the Pauli-Z basis). The classical results of the measurement serve as the out-
put of the circuit. It will sometimes be convenient (but never necessary) to allow
measurements being made in the middle of a quantum circuit as well.

Some examples of quantum gates are the Pauli gates:

0 1 0 —i 1 0
X = , Y= , Z= . (1.22)
1 0 i 0 0 -1

Other important gates are the Hadamard gate H, the phase gate S = v/Z, and the /8 gate

1 |1 1 10 e~ /8
H=— , S= , T= , , (1.2.3)
V21 1 0 i 0 /8

5We will also use d-dimensional quantum systems, or qudits, in our circuits.
5This sequence of gates needs to be generated by a Turing machine, to prevent the sequence of gates
encoding some undecidable problem.

16

An example of a two-qubit gate is the CNOT gate:

CNOT =

0

0
(1.2.4)

0

1

S = O O

0
1
0
0

1
0
0

..0 m

CNOT stands for Controlled-NOT: it is a two qubit gate that applies the NOT (or Pauli-X)
operation to the second register, controlled on whether the first register is in the |1) state:

CNOT|0)[0) = |0Y]0), CNOTI|0)[L) = |0)]1) (1.2.5)
CNOT|1)[0) = |1)|1), CNOTL)|1) = |1)]0) (1.2.6)

We refer to the first register as the control register, and the second as the target register.
In the depicition of circuits, the CNOT is denoted with the following symbol:

—— (1.2.7)
—b—

The black dot refers to the control register, while the @ symbol refers to the target. More

generally, if U is a quantum gate then
(1.2.8)
I

1s the controlled-U gate, where U is applied on the second register controlled on whether
the first register is 1.

It turns out that the set of all one- and two-qubit gates are universal: they can implement
any general n-qubit gate, for arbitrary n. There are also finite sets of quantum gates that
are approzimately universal, i.e. it is possible to implement arbitrary gates from them. An
example set of approximately universal gates are {H,S,T,CNOT}. However, if we omit
the T gate, then any quantum circuits composed of only H, S, and CNOT gates can be
simulated efficiently on a classical computer; this is known as the Gottesman-Knill theorem
[16, 17], and is important in the theory of quantum error correction. We will look at a
generalization of this theorem in Chapter 4.

Finally, we define the following complexity class:

Definition 6. BQP7 is the complexity class of decision problems that can be solved with
polynomial time with a quantum, bounded error, algorithm. To be more precise, a decision
problem £ is in BQP if there is an quantum algorithm A that always outputs 0 or 1, and
always runs in polynomial time, such that the following holds:

e If a string s is a YES-instance of £, then A given input s outputs 1 with probability
at least 2/3.

e If a string s is a NO-instance of £, then A given input s outputs 0 with probability at
least 2/3.

"BQP stands for bounded-error quantum polynomial time.

17

Since quantum algorithms are inherently probabilistic (the output is generated by a
measurement), we are mainly interested in bounded-error quantum algorithms, i.e. the
algorithms are allowed to have some small chance of failure. Once again the constant 2/3
does not matter, as long as it is greater than 1/2; this probability can be boosted to any value
strictly less than 1 by running multiple rounds of the algorithm and taking the majority
answer.

For a list of current quantum algorithms, see the online Quantum Algorithm Zoo [18].
We will cover in the following sections Shor’s factoring algorithm [14] and Grover’s search
algorithm [19], probably the two most important quantum algorithms to date.

1.3 Shor’s Algorithm for Factoring

In this section we will describe Shor’s algorithm for factoring [14]. The main building blocks
for this algorithm — the quantum Fourier transform and phase estimation — find numerous
applications in quantum algorithms. We will use quantum Fourier transforms extensively
in our discussion of normalizer circuits in Chapters 3-5; moreover, we will study Shor’s
algorithm itself in a different light in Chapter 5.

Our description of Shor’s algorithm will not follow the more “modern” approach using
phase estimation as given by Kitaev [20], and will instead stay closer to Shor’s original
approach. The purpose of this is to make it fit more manifestly into the normalizer framework
in Chapter 5.

1.3.1 The Quantum Fourier Transform

We will first describe the quantum Fourier transform (QFT). On an m-dimensional Hilbert
space with basis states |0},]1),--- ,|m — 1), the quantum Fourier transform is the following
unitary transformation:

N-1

, 1 .

IJ)_)ﬁ E 62m]k/ |k> (131)
k=0

This unitary gates is named after its strong resemblance to the discrete Fourier transform.
Indeed, the QFT performs a Fourier transform of the coefficients of the quantum state in
the standard basis: it performs the map

m—1 . 1 m—1
2 zjli) = 7= ;_0 yklk), (13.2)
where
Yo = —— mz—l xj€?ok/m (1.3.3)
vm —

is the discrete Fourier transform of {z;}.

The quantum Fourier transform can be approximately implemented very efficiently, for
any m:

Theorem 7. For any m, the quantum Fourier transform can be implemented with error €
with gate complezity

1
(0] (log ? <log log ? + log Z)) . (1.3.4)

18

We will not prove this theorem; see [21] for a review (and references). We will instead
show a weaker construction that implements the QFT ezactly for m = 27, using O(n?)
gates.

Theorem 8. For m = 2" with integer n, the quantum Fourier transform can be implemented
ezactly with gate complezity O(n?).

Proof. This proof follows [3, Chapter 5|. For shorthand, we will express numbers in binary
floating point format, i.e. if 7 = j12671 4 502672 + -+ + 5,20 + o127 4 - + 5,267 then
we will write 7 = j1jo - - Je-Jet1 - - jn. We proceed to analyze Eq. 1.3.1 in this notation:

2n-1
1) = 5 /2 Z eIk /2" |) (1.3.5)

2n/2 Z Z Z €29 i K2 oy oy -+ ki) (1.3.6)

=0 k2 =0 kn =0

2n/2 Z Z Z ®°’2mk‘2 l (1.3.7)

=0k2=0 kn=0 £=1

-5 ® 3 kg (138)
=1 | k=0
1 1i2—¢
=57 ® [10) + 232 |1>] (1.3.9)
=1
— o7 (lo + eanO.]nH)) ('0) + e?nl().]n—ljnIl)) .. (l0> + 621:10.]1]2..‘]"—1.771.|1>) . (1310)

Thus the QFT maps |j) to a product state on n qubits. Defining

O R=|' ° (1.3.11)
= — 5 e—_— e
V211 4 0 et

the following circuit implements the QFT:

) -~ Ba-1HRA] (1.3.12)
|72) : @— -— Rn—2 Rni,—
o) e ' ~
I]n) ° hd @
The outputs are (ignoring normalization) |0) + e2™0-J1J2Jn-1Jn|1) on the topmost qubit,
|0) + 270-72-Jn—1Jn|1) on the second to top, |0) +€>™%In-17»|1) on the second to bottom, and

|0) + €2™0-7|1) on the bottomost qubit. Thus the order of the qubits need to be reversed to
complete the QFT.

a

19

1.3.2 Shor’s Algorithm for Order Finding and Factoring

Let us consider the following problem:

Problem 9 (Order Finding). Given coprime integers a, N > 1, ged(a, N) = 1, find the
least positive integer r such that a”" =1 mod N. We call this r the order of @ modulo N.

It is not difficult to see that such an r must exist: considering the sequence al,a2,---

modulo N, eventually it must repeat itself: say a® = o/ mod N, i < j, and this gives
a’* =1 mod N. What we are interested here is the smallest such integer r.

It turns out that the problem of factoring integers can be reduced to the problem of
order finding. We will sketch here Shor’s algorithm for order finding; this algorithm can
therefore be used (with classical pre- and postprocessing) to factor integers.

In this algorithm we will need the modulo exponentiation operation: given numbers
a, b, and N, it is possible to compute a® mod N using O(logb) multiplications. To see
this, note that we can compute the numbers a,a?,a?,--- ,a2U°ng mod N using O(logb)
multiplications (each item in the list is the square of the previous one); a® is then just the
product of some subset of these numbers. We can therefore implement the controlled modulo
exponentiation gate:

blc) — |b)|ca® (mod N)>. (1.3.13)

We now present Shor’s algorithm. We will not give a complete proof of the correctness
of the algorithm, and only give a sketch.

Algorithm 10 (Shor’s algorithm for order finding [14]).

We will use two registers for this algorithm. The first register is L-dimensional for some
L > NZ?, while the second register is N-dimensional. We will omit all normalization of
quantum states.

1. Initialization: Start in the state |0)|1).

. .. . L—1:
2. Apply the QFT to the first register, obtaining the equal superposition: =0 [7)]1)-
3. Apply the controlled modulo exponentiation gate to obtain E:{,‘:_Ol | j)laj mod N)

4. Measure the second register®. The measurement result is a value a® mod N almost
uniformly chosen from b= 0,--- ,7 — 1. The first register becomes the state

ky

> lkr +1b) (1.3.14)

k=0

where k; is the largest integer such that kyr 4+ b < L. The coeflicients of this state are
almost periodic, but not quite because of the wraparound (unless r divides L).

5. Apply the QFT to this register. If r divides L we would obtain (recall the discrete
Fourier transform of periodic functions; see e.g. [22])

r—1
Z e27rz]b/r
Jj=0

8This step is not necessary, but is kept to simplify the analysis.

%L> (1.3.15)

20

6. Measure the register to obtain j/r, for j nearly uniformly sampled from j = 0,--- ,r—1.
(Even if r does not divide L we would still obtain an approximation of j/r, from which

we can extract the exact fraction j/r using the continued fractions algorithm; see e.g.
[23, Chapter X].)

After running this algorithm for multiple times we obtain multiple samples of fractions
j/r, from which we can obtain r with high probability (by taking the least common multiples
of the denominators of the reduced fractions). This algorithm is efficient, in the sense that
the number of operations required is poly(log N).

Finally, we sketch how we could factor a composite integer N given an algorithm for
order finding. Assume N is odd; if not, 2 is a factor of N. Pick a uniformly random integer
a from the set {1,--- , N —1}. We can find the greatest common divisor of N and a using
Fuclid’s algorithmy; if it is greater than 1, we have found a nontrivial factor of V. Otherwise
a and N are coprime, and we can use the order finding algorithm to find the minimum r > 1
such that o™ = 1 mod N. If 7 is even, a” — 1 = (a"/2 = 1)(a"/2 + 1) mod N. It can be
shown that 7 is even and a™/2 = +1 mod N with probability at least 1 /2, and so in this case
ged(a™/2 — 1, N) is a nontrivial factor of N that can be computed with Euclid’s algorithm.
Repeating this procedure multiple times allows for an arbitrarily high probability of success.

1.3.3 Hidden Subgroup Problem

Shor’s algorithm solves an instance of the hidden subgroup problem, generally phrased as
follows:

Problem 11 (Hidden Subgroup Problem (HSP)). Let G be a finitely generated group and
X a finite set. f: G — X is a function that is constant on cosets of some unknown subgroup
H of G, and distinct on different cosets: f(g1) = f(g2) if and only if g1H = goH. Assume
that we have access to a black box implementing the unitary operation Oy : |g)|z) —
|9z @ f(g)). Find a generating set of H.

Here we assume that any algorithm for the HSP has access to the black box Oy, but
otherwise it uses no information about f. We will have more to say about black boxes in
Section 1.4.

As an example, in the case of order finding we have G =Z, X = {0,--- ,N—1} mod N,
and H = {0,+r,+2r,---}. The function f is implemented as f(z) = a® mod N, which is
constant on cosets of H and distinct on different cosets.

There is an efficient quantum algorithm for the HSP for Abelian G (apparently the algo-
rithm is folklore), but for non-Abelian G an efficient algorithm exists only for special cases.
See [21, 24] for reviews. Many, if not most, quantum algorithms that achieve superpolyno-
mial speedup over classical algorithms are for the HSP or related variants.

We will sketch the algorithm for the HSP when G is finite Abelian. Note that this does
not include the case of order finding, where G = Z, but the similarities should be manifest.

Algorithm 12 (Algorithm for the Abelian HSP). We will use two registers for this algo-
rithm. The first register encodes elements of GG, and the second encodes elements of X. We
will also need to use the quantum Fourier transform over G, defined analogously using the
discrete Fourier transform over G; see Section 3.6 for the precise definition. We will omit
all normalization of quantum states.

1. Initialization: Start in the state |0)|0).

21

2. Create a superposition over all elements of G: }_ . [9)[0).
3. Apply the black box Oy to obtain >+ 19)If(9))-

4. Measure the second register, obtaining the value f(g) for some value of g and leaving
the first register in the state

> lgh). (1.3.16)

heH

5. Apply the QFT over G to this register, to obtain the state

PIRACAIS (1.3.17)

WeHL

where H' is the orthogonal subgroup of H, and &g is the character corresponding to
g.
6. Measure the register to a sample from the orthogonal subgroup H-+.

Repeating this procedure O(log |H|) times yields enough samples of HL to determine H,
with high probability. Classical processing of these samples gives a generating set of H.

We will study this algorithm again in Chapter 5.

1.4 Query Complexity and Grover’s Algorithm

We will introduce Grover’s search algorithm [19] in this section; its key concept, amplitude
amplification, forms the core of many quantum algorithms. Grover’s algorithm essentially
allows us to find a marked item in an unordered quantum database of N items, using only
O(V/'N) operations. Unlike Shor’s algorithm, the speedup here is only quadratic and not
exponential; this is typical of most quantum algorithms for search problems.

We will also take the opportunity to introduce the query complexity model, for Grover’s
algorithm is most naturally presented in this model. We will make use of this model exten-
sively in Chapter 2.

1.4.1 Black Boxes and Grover’s Problem

Grover’s algorithm is usually considered in the following setup. Assume that N = 2", and
suppose that we have a hidden boolean function = : {0,--- ,N — 1} — {0,1}, accessible
only through a black box O, in the following manner:

Ogli)lr) = li)|r ® (1)) (14.1)

where 4 has length n (so the register containing z has dimension N = 2"), r has length 1,
and @ indicates addition modulo 2. This is the most straightforward way of implementing
z(i) as a quantum gate, since any quantum gate is unitary and hence reversible. By saying
that O is a black box we mean that there is no way of looking at the “inner wirings” of O,
and determining its properties that way; the only way of learning information about O, is
to apply it in a circuit.

In the set of numbers S = {0,--- , N — 1}, we will say an element ¢ is either marked
or unmarked: z(2) = 1 if ¢ is marked, and z(i) = 0 otherwise. We only have access to the
function f through the black box O, and we want to find a marked item, if it exists.

22

Problem 13 (Grover’s problem). Given access to x through a black box Oy, find an ¢ such
that x(¢) = 1, or report that no such i exists.

Grover’s algorithm will show that this task can be done with O(v/N) accesses to Oy and
O(v/Nlog N) additional quantum gates.® Classically ©(NN) accesses to the black box are
required, so there is a quadratic speedup with a quantum computer for this problem.

Although Grover’s algorithm is often referred to as a “database search algorithm”, it
can be misleading to think of there actually being N items in the physical world. A more
intuitive visualization is to think of the elements z as being potential solutions to some
combinatorial or mathematical problem, where it is easy to recognize a solution (i.e. to
compute the function f), but difficult to find a solution x itself.

As an example, consider the problem of trying to factor a number &k (and forget about
Shor’s algorithm for the moment). A brute force classical algorithm would be to check if
each number 1,---,|vk| is a factor of k, using O(Vk) operations. Quantumly, we could
implement the black box O, where (i) = 1 if and only if i divides k, 7 € {1,---,|Vk]},
and perform Grover’s algorithm to find a factor of k in O(kl/ 4) operations, a quadratic
speedup over the classical brute force approach. Although there are better algorithms for
both the classical and quantum cases for this problem, this is not the case for many other
problems of interest, and often a quadratic speedup can be obtained by applying Grover’s
algorithm to a classical search problem when the function z(i) can be easily implemented.

Finally, we note that if we keep the second register |r) in the state (|0) — |1))/v/2, one
can check that

0111')'())—\;513 = (-1)*® m% (1.4.2)

This means that using one call to O;, we can implement one call to the phase oracle Uy,
where

Ueli) = (—=1)°®}3) (1.4.3)

We will use the phase oracle U, for Grover’s algorithm in the next section.

1.4.2 Grover’s algorithm

We will only demonstrate Grover’s algorithm for the simplified case where either there is a
unique #* such that z(¢*) = 1, or no such ¢* exists. In other words, there is at most one
marked element. For the case where the number of marked elements is greater than one and
possibly unknown, see [3] for a presentation (and references therein).

Assume that ¢* exists. Intuitively, the algorithm will first create the state

1S) = (|0) + 1) + --- + [N — 1))/V'N, (1.4.4)

the equal superposition over all elements of S = {0,--- , N — 1}. Note that |S) is in the
two-dimensional subspace spanned by the orthogonal states |i*) and

\S¢>=\/_ﬁl____1), (1.4.5)

1€S—{i*}

9Grover’s algorithm is often said to require O(v/N) operations, but it appears to the author that this
confusingly refers to the depth of the circuit, i.e. this counting allows quantum gates to be applied in parallel.

23

the equal superposition of all elements of .S except for the marked element i*. More precisely,
|8) = cosBlSJ‘> + sin 8|i*), (1.4.6)

where
N -1 1
cosf) =4/ ——, sinf=-— 14.7
N vN (147)
In Grover’s algorithm the quantum state will never leave this two-dimensional subspace. In
fact, the algorithm will rotate the state towards the desired state |¢*), with each iteration
being a rotation of angle 20. The algorithm thus needs a total number of O(1/8) = O(v'N)
of iterations.
More precisely, note that

Uz

sl> = ‘Sl>Ux|i*) = —|i*) (1.4.8)

and so in the two-dimensional subspace spanned by |:*) and lS J-}, U, is the reflection about
]S l). Moreover, consider the following operation:

G = H®™(2|0){0| — I)H®". (1.4.9)

This can be implemented efficiently: the operation 2|0){0| — I gives a —1 phase shift unless
the quantum state is 0. Since H®"|0) = |1)) we have that

G =2y | — I (1.4.10)

This says that G is the reflection about the state |¢)). Since the states |¢) and |S1) are
an angle § = arcsin(1/+/N) apart, the unitary operation GU,, (reflection first about |SJ~>,
then [¢)) is a rotation towards [¢*) of angle 20. Grover’s algorithm is simply to apply this
rotation multiple times until we get close to |i*):

Algorithm 14 (Grover’s Algorithm). We will use a single register of dimension N = 2™ (or
n qubits) for the algorithm.

1. Initialization: Prepare the state |) = H®"|0).

2. Apply the operation GU, T times to obtain the state cos((2T" + 1)0)|S*) + sin((2T +
1)0)|i*), where (2T +1)8 ~ = /2, or remain in the state |¢) if there is no marked state.

3. Measure in the computational basis, to obtain with high probability the marked state
i*, if it exists. (We can easily check whether the measurement result is the marked
state by using the oracle O.)

This algorithm uses O(1/6) = O(V/N) applications of GU, and thus O(v/N) accesses
to Uy. Since each application of G requires log N gates, an additional O(v/N log N) gates
are required. Amplitude amplification refers to this idea of amplifying the overlap between
our initial state |¢) and the desired state |i*).

1.4.3 Query Complexity

Grover’s algorithm serves as a good backdrop to introduce the notion of query complezity,
an important concept in the study of quantum algorithms. As in the case with Grover’s

24

problem, assume that we are given access to a boolean function z : {0,--- , N —1} — {0,1},
implemented as a black box Oy:

O:)|r) = |iYr @ 2(5)) (1.4.11)

Instead of thinking of x as a function, it will also often be convenient to treat it as a string of
length N, by simply concatenating its function values: = = zozy - - - T§_1, where z; = z(3).

Given access to O, we wish to compute some function f(z). In the query complexity
model, we are interested only in the number of calls to O, required, and not in the number
of additional gates:

Definition 15 (Query Complexity). Given access to O, the query complezity of a function
f(z) is the number of calls required for an algorithm to compute O,. This varies depending
on what kind of computational resources are allowed:

e For quantum algorithms, we have the quantum query complexity, Qs(f), where § is
the error allowed.

e For randomized classical algorithms, we have the randomized query complexity, Rs(f),
where ¢ is the error allowed.

e For deterministic classical algorithms, we have the deterministic query complexity,

D(f).

We will also often just write Q(f) = Qo.01(f) and R(f) = Rp.01(f); the number 0.01 doesn’t
matter if it is replaced by any number less than 1/2.

A quantum algorithm with access to a black box O looks like the following, where the
Uy’s are unitaries independent of x:

TTH - H H+H H-H + (1.4.12)
Oq O O,

Uo th Uy Us

For example, consider the OR function: OR(z) = 0 if z is the all-zero string (z =
000---000), and OR(z) = 1 otherwise. Classically there is no better way to evaluate the
OR function other than checking each input one-by-one, and hence R(OR), D(OR) = O(N).
In the quantum case, however, Grover’s algorithm (when generalized for an arbitrary number
of marked items) means that Q(OR) = O(v'N).

Another example is that of Shor’s algorithm for order finding, since it solves the following
problem: given a function z(i) {0,--- ,N? —1} — {0, -- , N — 1} satisfying z(3) = x(i +7)
for some r < N, find the smallest such r (which we will call ORDER(z)). In this case «
can still be viewed as a string by concatenating all the outputs z(7) together. The query
complexity of this problem is only poly(log N), unlike Grover’s algorithm. The function
ORDER(z) is a partial function, since ORDER(x) is defined only for strings x satisfying
certain conditions (z(z) = z(i + r) for some 7). In contrast, OR is a total function, since it
is defined for all strings « without preconditions on z.

25

Obviously query complexity is not the only thing that one should worry about when
designing an algorithm, since in addition to the calls to the black box, other quantum gates
are also needed to construct a quantum circuit. A query efficient algorithm is not necessarily
computationally efficient; the most notorious example is perhaps the non-Abelian hidden
subgroup problem, where there is an algorithm using a polynomial number of queries but
exponential number of gates [25]. However, query complexity turns out to be much easier
to work with: often in the design of quantum algorithms, a query efficient algorithm is
first proposed, and then later made computationally efficient. In fact, recent tools have
been developed to construct query efficient (but not time efficient) algorithms, such as the
quantum walk formalism (26, 27, 28, 29|, learning graphs [30], and bomb query complexity
(Chapter 2 of this thesis).

Another reason why query complexity is important is that there are many tools for
proving lower bounds for query complexity. For example, Bennett et al. showed in 1997 [31]
that Q(OR) = Q(v/N): the quantum query complexity for the OR function is lower bounded
by Q(V/N). Note the significance of this result: this says that any algorithms solving Grover’s
algorithm requires at least Q(v/N) operations (since it requires at least Q(v/N) black box
calls). Therefore Grover’s algorithm is optimal in terms of query complexity, and nearly
optimal in time complexity up to a logarithmic factor.

Since Bennett et al.’s breakthrough result, there have been two main methods of proving
query complexity lower bounds: the polynomial method [32], and the adversary method
[33]. These methods have been applied to a wide range of problems; see the online Quantum
Algorithm Zoo (18] for many results. In particular, the general adversary lower bound [34]
has been shown to tightly characterize quantum query complexity [35, 36, 37], but calculating
such a tight bound seems difficult in general. In constrast, to the knowledge of the author
there is no general method of proving time complexity lower bounds, other than proving a
query complexity lower bound. We will make use of the adversary method in Chapter 2.

Finally, we close this section with the following theorem, proved using the polynomial
method:

Theorem 16 ([32]). For total functions f, the query complezities Q(f), D(f), and R(f)
are polynomially related:

R(f) < D(f) = O(Q(f)°)- (1.4.13)

This theorem says that to look for superpolynomial improvements in query complexity,
we need to look for partial functions. Shor’s algorithm is such an example of a superpoly-
nomial speedup. However, there is a long-standing conjecture that this theorem is far from
optimal, and actually D(f) = O(Q(f)?) for total functions; this separation is achieved by
the OR function and Grover’s algorithm.

1.5 Organization of this thesis

We now describe the contents of the rest of this thesis.

Chapter 2 introduces the bomb query model, a variation of the quantum query model in
which after each query we immediately measure the query result, and end the computation
if the result is 1. Although it may appear that nothing useful can be done in this model, we
show that in fact any function computable in the quantum query model can be computed in
the bomb query model, but with a quadratic increase in the number of queries. This exact
characterization is shown using ideas from the Elitzur-Vaidman bomb tester, and the adver-
sary method for query complexity. We then construct a general method to convert certain

26

classical algorithms to bomb query algorithms, and thus improved quantum algorithms; this
method yields the first nontrival quantum query algorithm for maximum bipartite matching.
Finally, we introduce a related model called the projective query model, and speculate how
it may help resolve the conjecture that R(f) = O(Q(f)?) for total functions.

Chapter 3 defines the normalizer circuit model over Abelian groups. A normalizer
circuit is a restricted quantum circuit, defined over Hilbert spaces associated with Abelian
groups, in which only three types of quantum operations are allowed: quantum Fourier
transforms, gates that implement group automorphisms, and gates that impart quadratic
phases. This chapter focuses on only giving basic defintions and properties of such circuits;
in the process we also describe the necessary group theory setting. In the case that the
underlying group is infinite, it is infeasible to list all outputs of automorphisms and quadratic
phase functions; we therefore develop normal form characterizations of automorphisms and
quadratic phase functions to describe such gates succintly.

Chapter 4 gives the first of our two complexity results regarding normalizer circuits:
if the underlying Abelian group is decomposed into primitive subgroups, then normalizer
circuits can be simulated efficiently using a classical computer. (The finite case is known
[1, 2]) We show this by generalizing Pauli gates to the Hilbert space associated with Abelian
groups, and show that normalizer gates normalize the generalized Pauli group. Thus normal-
izer circuits are generalized Clifford circuits, and we show that an extended Gottesman-Knill
theorem holds. The main new technical challenges we overcome are to efficiently represent
stabilizer groups in terms of linear maps (since the stabilizer groups are infinitely generated,
listing a set of generators no longer works); to compute the support of a stabilizer state; and
to develop e-net techniques to sample the support.

Chapter 5 gives the second of the complexity results regarding normalizer circuits: if
the underlying Abelian group is not decomposed (we say such a group is a black box group),
then normalizer circuits contain many algorithms for solving the Abelian hidden subgroup
problem, including Shor’s algorithm for factoring. We then define an extended variant of
the problem of decomposing finite Abelian groups into cyclic subgroups, and show that this
problem is complete for the compelxity class associated with these normalizer circuits. In
other words, decomposing Abelian groups can be done with normalizer circuits over black
box groups, and normalizer circuits over black box groups can be classically simulated given
a black box to decompose Abelian groups. This yields a no-go theorem for finding new
quantum algorithms based on normalizer circuits.

27

28

Chapter 2

Upper Bounds for Quantum Query
Complexity Based on the
Elitzur-Vaidman Bomb Tester

In this chapter we introduce and study the bomb query model, an alternative oracle model of
query complexity. The bomb query model can be obtained from the usual quantum query
model by adding restrictions on how the black box oracle can be applied. We show that
the bomb query complexity is closely related to the usual quantum query complexity; this
result will in turn inspire a general method for obtaining quantum query algorithms from
classical ones.

The work presented in this chapter is joint work with Han-Hsuan Lin, and is mostly
excerpted from [38].

2.1 Introduction

Our main result (Theorem 17) is that the bomb query complexity, B(f), is characterized by
the square of the quantum query complexity Q(f):

Theorem 17.
B(f) = 6(Q(f)?). (2.1.1)

We prove the upper bound, B(f) = O(Q(f)?) (Theorem 19), by adapting Kwiat et
al.’s solution of the Elitzur-Vaidman bomb testing problem (Section 2.2, [39]) to our model.
We prove the lower bound, B(f) = Q(Q(f)?) (Theorem 20), by demonstrating that B(f)
is lower bounded by the square of the general adversary bound [34], (AdvE(f))2. The
aforementioned result that the general adversary bound tightly characterizes the quantum
query complexity [35, 36, 37], Q(f) = O(AdvE(f)), allows us to draw our conclusion.

This characterization of Theorem 17 allows us to give nonconstructive upper bounds
to the quantum query complexity for some problems. For some functions f a bomb query
algorithm is easily designed by adapting a classical algorithm: specifically, we show that
(stated informally):

Theorem 24 (informal). Suppose there is a classical algorithm that computes f(x) in T
queries, and the algorithm guesses the result of each query (0 or 1), making no more than
an expected G mistakes for all x. Then we can design a bomb query algorithm that uses

29

O(TG) queries, and hence B(f) = O(TG). By our characterization of Theorem 17, Q(f) =
O(VTG).

This result inspired us to look for an explicit quantum algorithm that reproduces the
query complexity O(VTG). We were able to do so:

Theorem 25. Under the assumptions of Theorem 24, there is an explicit algorithm (Algo-
rithm 27) for f with query complezity O(VTG).

Using Algorithm 27, we were able to give an O(n®2) algorithm for the single-source
shortest paths (SSSP) problem in an unweighted graph with n vertices, beating the best-
known O(n®/2y/Togn) algorithm [40]. A more striking application is our O(n7/4) algorithm
for maximum bipartite matching; in this case the best-known upper bound was the trivial
O(n?), although the time complexity of this problem had been studied in [41] (and similar
problems in [42]).

Finally, in Section 2.7 we briefly discuss a related query complexity model, which we
call the projective query complezity P(f), in which each quantum query to z is imme-
diately followed by a classical measurement of the query result. This model seems in-
teresting to us because its power lies between classical and quantum: we observe that
P(f) < B(f) = ©(Q(f)?) and Q(f) < P(f) < R(f), where R(f) is the classical randomized
query complexity. We note that Regev and Schiff [43] showed that P(OR) = O(N).

Past and related work

Mitchison and Jozsa have proposed a different computational model called counterfactual
computation [44], also based on interaction-free measurement. In counterfactual computa-
tion the result of a computation may be learnt without ever running the computer. There
has been some discussion on what constitutes counterfactual computation; see for example
[45, 46, 47, 48, 49, 50, 51].

There have also been other applications of interaction-free measurement to quantum
cryptography. For example, Noh has proposed counterfactual quantum cryptography [52],
where a secret key is distributed between parties, even though a particle carrying secret
information is not actually transmitted. More recently, Brodutch et al. proposed an adaptive
attack [53] on Wiesner’s quantum money scheme [54]; this attack is directly based off Kwiat
et al.’s solution of the Elitzur-Vaidman bomb testing problem [39].

Our Algorithm 27 is very similar to Kothari’s algorithm for the oracle identification
problem [55], and we refer to his analysis of the query complexity in our work.

The projective query model we detail in Section 2.7 was, to our knowledge, first consid-
ered by Aaronson in unpublished work in 2002 [56].

Discussion and outlook

Our work raises a number of open questions. The most obvious ones are those pertaining to
the application of our recipe for turning classical algorithms into bomb algorithms, Theorem
24:

e Can we generalize our method to handle non-boolean input and output? If so, we

might be able to find better upper bounds for the adjacency-list model, or to study
graph problems with weighted edges.

30

e Can our explicit (through Theorem 25) algorithm for maximum bipartite matching be
made more time efficient? The best known quantum algorithm for this task has time
complexity O(n?logn) in the adjacency matrix model [41].

e Finally, can we find more upper bounds using Theorem 247 For example, could the
query complexity of the maximum matching problem on general nonbipartite graphs
be improved with Theorem 24, by analyzing the classical algorithm of Micali and
Vazirani [57]?

Perhaps more fundamental, however, is the possibility that the bomb query complexity
model will help us understand the relationship between the classical randomized query com-
plexity, R(f), and the quantum query complexity Q(f). It is known [32] that for all total
functions f, R(f) = O(Q(f)®); however, there is a long-standing conjecture that actually
R(f) = O(Q(f)?). In light of our results, this conjecture is equivalent to the conjecture that
R(f) = O(B(f)). Some more open questions, then, are the following:

e Can we say something about the relationship between R(f) and B(f) for specific
classes of functions? For example, is R(f) = O(B(f)?) for total functions?

e Referring to the notation of Theorem 24, we have B(f) = O(TG). Is the quantity G
related to other measures used in the study of classical decision-tree complexity, for
example the certificate complexity, sensitivity [58], block sensitivity [59], or (exact or
approximate) polynomial degree? (For a review, see [60].)

o What about other query complexity models that might help us understand the rela-
tionship between R(f) and Q(f)?7 One possibility is the projective query complexity,
P(f), considered in Section 2.7. Regev and Schiff [43] have shown (as a special case
of their results) that even with such an oracle, P(OR) = ©(N) queries are needed to
evaluate the OR function.

We hope that further study on the relationship between bomb and classical randomized
complexity will shed light on the power and limitations of quantum computation.

2.2 The Elitzur-Vaidman bomb testing problem

The Elitzur-Vaidman bomb testing problem [61] is a well-known thought experiment to
demonstrate how quantum mechanics differs drastically from our classical perceptions. This
problem demonstrates dramatically the possibility of interaction free measurements, the
possibility of a measurement on a property of a system without disturbing the system.

The bomb-testing problem is as follows: assume we have a bomb that is either a dud
or a live bomb. The only way to interact with the bomb is to probe it with a photon: if
the bomb is a dud, then the photon passes through unimpeded; if the bomb is live, then
the bomb explodes. We would like to determine whether the bomb is live or not without
exploding it. If we pass the photon through a beamsplitter before probing the bomb, we
can implement the controlled probe, pictured below:

) |e) (2.2.1)

|0) explodes if 1

31

In circuit 2.2.1, the controlled gate is I if the bomb is a dud, and X if it is live. The -
first (control) register represents whether the photon probes the bomb or not: if the control
is |1) the photon probes the bomb, and if the control is |0) the photon does not. Thus the
bomb explodes only if the control is found to be in the state |1) and the bomb is live.

It was shown in [39] how to determine whether a bomb was live with arbitrarily low
probability of explosion by making use of the quantum Zeno effect [62]. Specifically, writing
R(0) = exp(i6X) (the unitary operator rotating |0) to |1) in 7/(26) steps), the following
circuit determines whether the bomb is live with failure probability O(#):

|
0 — oA 0 —TaxHA!

I

1]

Lm e e - C C e _ - -—_-____-T -
7/(26) times in total

If the bomb is a dud, then the controlled probes do nothing, and repeated application
of R(6) rotates the control bit from |0) to |1). If the bomb is live, the bomb explodes with
O(6?) probability in each application of the probe, projecting the control bit back to [0).
After O(1/0) iterations the control bit stays in |0), with only a O(8) probability of explosion.
Using O(1/6) operations, we can thus tell a dud bomb apart from a live one with only O(6)
probability of explosion.

2.3 Bomb query complexity

In this section we introduce a new query complexity model, which we call the bomb query
complexity. A circuit in the bomb query model is a restricted quantum query circuit, with
the following restrictions on the usage of the quantum oracle:

1. We have an extra control register |c) used to control whether O is applied (we call
the controlled version C'Oy):

COgle,7,3) = le,r @ (c- xi),). (2.3.1)
where - indicates boolean AND.

2. The record register, |r) in the definition of CO, above, must contain |0) before CO,
is applied.

3. After CO; is applied, the record register is immediately measured in the computational
basis (giving the answer ¢ - z;), and the algorithm terminates immediately if a 1 is
measured (if c-x; = 1). We refer to this as the bomb blowing up or the bomb exploding.

lc) ? le) (2.3.2)
|0y — o — explodes if c- x; = 1
iy — 0

32

Throughout this chapter we assume f has boolean input, i.e. the domain is D C {0,1}".
We define the bomb query complezity Bes(f) to be the minimum number of times the above
circuit needs to be applied in an algorithm such that the following hold for all input z:

e The algorithm reaches the end without the bomb exploding with probability at least
1—e. We refer to the probability that the bomb explodes as the probability of explosion.

e The total probability that the bomb either explodes or fails to output f(x) correctly
is no more than § > €.

The above implies that the algorithm outputs the correct answer with probability at least
1-—4.
The effect of the above circuit is equivalent to applying the following projector on |c, z):

N
My =CPyo=3_10,3)0,il + »_ |1,4)(1,4] (2.3.3)
=1 zi=0
=I- Y |1,i)L,4. (2.3.4)

zi=1

C P, o (which we will just call M, in our proofs later on) is the controlled version of P, g,
the projector that projects onto the indices i on which z; = 0:

Pro= > |9)l. (2.3.5)
z;=0

Thus Circuit 2.3.2 is equivalent to the following circuit :

|e) |c) (2.3.6)
l2) E (1~ c-z)[i)

In this notation, the square of the norm of a state is the probability that the state has
survived to this stage, i.e. the algorithm has not terminated. The norm of (1 — ¢- z;)|;) is
1 if c- z; = O (the state survives this stage), and 0 otherwise (the bomb blows up).

A general circuit in this model looks like the following:

Uo U1 U2 Us

It is not at all clear that gap amplification can be done efficiently in the bomb query
model to improve the error §; after all, repeating the circuit multiple times increases the
chance that the bomb blows up. However, it turns out that the complexity B s(f) is closely
related to Qs(f), and therefore the choice of § affects B, 5(f) by at most a log?(1/6) factor
as long as § > € (see Lemma 18). We therefore often omit ¢ by setting 6 = 0.01, and write
Be.01(f) as Be(f). Sometimes we even omit the e.

33

Finally, note that the definition of the bomb query complexity B(f) is inherently asym-
metric with respect to 0 and 1 in the input: querying 1 causes the bomb to blow up, while
querying 0 is safe. In Section 2.5.1, we define a symmetric bomb query model and its
corresponding query complexity, B, 5(f). We prove that this generalized symmetric model
is asymptotically equivalent to the original asymmetric model, Be,g(f) = ©(Bs5(f)), in
Lemma 21. This symmetric version of the bomb query complexity will turn out to be useful
in designing bomb query algorithms.

2.4 Main result

Our main result is the following:

Theorem 17. For all functions f with boolean input alphabet, and numbers € satisfying
0<e<0.01,

Beooi1(f) =© (

Here 0.01 can be replaced by any constant no more than 1/10.

Proof. The upper bound B s(f) = O(Qs(f)?/€) is proved in Theorem 19. The lower bound
Bes(f) = Q(Qo.01(f)?/e) is proved in Theorem 20. O

Lemma 18. For all functions f with boolean input alphabet, and numbers €, § satisfying
0<e<d<1/10,

Be0.1(f) = O(Bes(f)), Bes(f) = O(Beoa(f)log?(1/6)). (2.4.2)

In particular, if 6 is constant,

Bes(f) = ©(Beo.1(f))- (2.4.3)

Proof. This follows from Theorem 19 and the fact that Qo.1(f) = O(Qs(f)) and Qs(f) =
O(Qo.1(f)log(1/9)). O

Because of this result, we will often omit the 0.01 in B 1 and write simply B..

2.4.1 Upper bound

Theorem 19. For all functions f with boolean input alphabet, and numbers €, § satisfying
0<e<d§<1/10,
Bes(f) = 0(Qs(f)?/e)- (2.4.4)

The proof follows the solution of Elitzur-Vaidman bomb-testing problem ([39], or Section
2.2). By taking advantage of the Quantum Zeno effect [62], using O(ﬂeﬁ) calls to M, we
can simulate one call to O, with probability of explosion O(Qé)- Replacing all O, queries
with this construction results in a bounded error algorithm with probability of explosion

Ol () = O(e).

34

Proof. Let 0 = w/(2L) for some large positive integer L (chosen later), and let R(6) be the
rotation

cosf —sind
(2.4.5)

sinf cos@

We claim that with 2L calls to the bomb oracle M, = CPyg, we can simulate O, by the
following circuit with probability of explosion less than w2/(2L) and error O(1/L).

Ir) x| Ir &)
______ T [P T
|0y —H{ R(0) »—i H R(—0) |0) (discard)
l | | |
1 } P, oP } P, 0 1
A ——) S mofy 1)
repeat L times repeat L times (2.4.6)

In words, we simulate O, acting on |r, i) by the following steps:
1. Append an ancilla qubit |0), changing the state into |r,0,).
2. Repeat the following L times:

(a) apply R(#) on the second register
(b) apply M, on the third register controlled by the second register.

At this point, if the bomb hasn’t blown up, the second register should contain 1 — z;.

3. Apply CNOT on the first register controlled by the second register; this copies 1 — z;
to the first register.

4. Apply a NOT gate to the first register.
5. Repeat the following L times to uncompute the second (ancilla) register :

(a) apply R(—6) on the second register
(b) apply M, on the third register controlled by second register

6. Discard the second (ancilla) register.

We now calculate explicitly the action of the circuit on an arbitrary state to confirm our
claims above. Consider how the circuit acts on the basis state |r,0,4) (the second register
being the appended ancilla). We break into cases:

o If z; = 0, then P,gli) = |i), so the controlled projections do nothing. Thus in Step 2
the rotation R(6)* = R(w/2) is applied to the ancilla qubit, rotating it from 0 to 1.
After Step 2 then, the state is |r,1,%). Step 3 and 4 together do not change the state,
while Step 5 rotates the ancilla back to 0, resulting in the final state |r,0,).

o If z; =1, then P;l¢) =0, and

Mg|0,3) = [0,4), Mg|1,5)=0 (for z; = 1) (2.4.7)

35

Therefore in Step 2 and Step 5, after each rotation R(+6), the projection C'P,q
projects the ancilla back to 0:

M,R(6)]0,%) = Mz(cos6|0) + sinf|1))|i) = cos8|0,¢) (for z; = 1) (2.4.8)

Each application of M;R(f) thus has no change on the state other than to shrink its
amplitude by cosf. The CNOT in Step 3 has no effect (since the ancilla stays in 0),
and Step 4 maps |r) to |r @ 1). Since there are 2L applications of this shrinkage (in
Step 2 and 5), the final state is cos?Z 8|r @ 1,0,4).

We can now combine the two cases: by linearity, the application of the circuit on a
general state) ; ar;|r,) (removing the ancilla) is

Saurd = Y adnid+ Y anicos®E(@)lr @ 1,9) (2.4.9)
Ty r€{0,1},z;=0 re{0,1},zi=1
= Za ; cos?Lei (—[) Ir & z,3) = |¢) (2.4.10)
T2 2L (3]

i

Thus the effect of this construction simulates the usual quantum oracle |r,i) — |r & z;, %)
with probability of explosion no more than

AL T 7T2 2L 7T2
1 cos (E) <1-(1-75) <z (2.4.11)

Moreover, the difference between the output of our circuit, [¢'), and the output on the
quantum oracle, [¢) = 3, ; ar;|r @ x;,1), is

ey =1 =1| > ani@—cos®X(®)lr @ 1,3) (2.4.12)
re{0,1},z;=1
2
<1 cos?t 57% < %. (2.4.13)

Given this construction, we can now prove our theorem. Suppose we are given a quantum
algorithm that finds f(z) with Qs (f) queries, making at most &' = § — e error. We construct
an algorithm using bomb oracles instead by replacing each of the applications of the quantum
oracle Oy by our circuit construction (2.4.6), where we choose

L=[Fas)| (2414)

Then the probability of explosion is no more than
2
—Qs(f) < 2.4.1
sp@e(f) <e (2.4.15)
and the difference between the final states, |;) and |1/)}>, is at most

i ‘
ey — k)l < Qs () < 5 (2.4.16)

36

Therefore

|| Pws) — (sl Pls)| < || Plw)) — @sl Pl)| + [0 Plws) — (7| Pls)|

(2.4.17)

< I (5 =)|+ 1P (95 = e)l
(2.4.18)
<e/2+¢/2=¢€ (2.4.19)

for any projector P (in particular, the projector that projects onto the classical answer at the
end of the algorithm). The algorithm accumulates at most € extra error at the end, giving a
total error of no more than &’ + ¢ = §. This algorithm makes 2LQs (f) < Z’-;Qg,(f) +2Qs(f)
queries to the bomb oracle, and therefore

Bes(F) < Qo) +2Q5-f) (2420
=0 (M) . (2.4.21)
From this we can derive that Bes(f) = O(Qs(f)2/e):
Bes(f) < Bepa,s(f) (2.4.22)
=0 (M) , by 2421 (2.4.23)
=0 (9—‘?—(})—3 . since g <§-— % (2.4.24)
0

2.4.2 Lower bound

Theorem 20. For all functions f with boolean input alphabet, and numbers €, § satisfying
0<e<d<1/10,
Bes(f) = Qoo (f)?/e). (2.4.25)

The proof of this result uses the generalized adversary bound AdvE(f) [34}: we show
that Be(f) = Q(AdvE(f)?/e), and then use the known result that Q(f) = O(Advt(f)) [37].
The complete proof is given in Appendix A.l.

2.5 Generalizations and Applications

We now discuss applications of the result B.(f) = ©(Q(f)?/¢) that could be useful.

37

2.5.1 Generalizing the bomb query model

We consider modifying the bomb query model as follows. We require that the input string
z can only be accessed by the following circuit:

le) —1 lc) (2.5.1)
[0) — o @— AF=(bomb) explodes if 1

i) —_ 15)

|a)

Compare with Circuit 2.3.2; the difference is that there is now an extra register |a), and
the bomb explodes only if both z; = a and the control bit is 1. In other words, the bomb
explodes if ¢ - (z; @ a) = 1. The three registers ¢, 7, and a are allowed to be entangled,
however. If we discard the second register afterwards, the effect of this circuit, written as a
projector, is

My= Y 0,i,a){0i,al+ > |1,i,a)(1,4,al. (2.5.2)

i€{N],ae{0,1} ,a:0:=a

Let Be,g(f) be the required number of queries to this modified bomb oracle M, to calculate
f(z) with error no more than J, with a probability of explosion no more than e. Using
Theorem 17, we show that B and B are equivalent up to a constant:

Lemma 21. If f : D — E, where D C {0,1}¥, and 6§ < 1/10 is a constant, then
Be,é(f) = G(Be,é(f))

Proof. It should be immediately obvious that B, s(f) > Be,g(f), since a query in the B
model can be simulated by a query in the B model by simply setting a = 0. In the following
we show that B s(f) = O(Bes(f)).

For each string = € {0, 1}V, define the string # € {0,1}?" by concatenating two copies
of z and flipping every bit of the second copy. In other words,

; ifi< N
Gi=4 0 resa (2.5.3)
l—z;_n ifi>N

Let D = {z : x € D}. Given a function f : D — {0,1}, define f : D — {0,1} by
f(@ = £(@).]

We claim~ that a B query to x can be simulated by a B query to Z. This can be seen by
comparing M,:

My= Y 10,i,a)(0,4,al+ Y. [L4,a)(1,4,a|. (2.5.4)

i€[N].a i€[N]a:zi=a

and Mj;:

Mz= > 10,003+ > |1,9)1,1]. (2.5.5)

i€2N] 1€[2N]:2;=0

Recalling the definition of Z in 2.5.3, we see that these two projectors are exactly equal if
we encode ¢ as (¢,a), where ¢ =¢ mod N and a = [i/N].

38

Since f(%) = f(z), we thus have Biﬁﬁ(f) = Bes(f). Our result then readily follows; it
can easily be checked that Q(f) = Q(f), and therefore by Theorem 17,

Bos(f) = Bes(f) = © (M)

-0 (4L (2.5.6)

€
O

There are some advantages to allowing the projector M, instead of M. First of all, the
inputs 0 and 1 in z are finally manifestly symmetric, unlike that in M, (the bomb originally
blew up if x; = 1, but not if x; = 0). Moreover, we now allow the algorithm to guess an
answer to the query (this answer may be entangled with the index register ¢), and the bomb
blows up only if the guess is wrong, controlled on c¢. This flexibility may allow more leeway
in designing algorithms for the bomb query model, as we soon utilize.

2.5.2 Using classical algorithms to design bomb query algorithms

We now demonstrate the possibility that we can prove nonconstructive upper bounds on
Q(f) for some functions f, by creating bomb query algorithms and using that Q(f) =
O(y/€Be(f)). Consider for example the following classical algorithm for the OR function:

Algorithm 22 (Classical algorithm for OR). Pick some arbitrary ordering of the N bits,
and query them one by one, terminating as soon as a 1 is seen. Return 1 if a 1 was queried,
otherwise return 0.

We can convert this immediately to a bomb query algorithm for OR, by using the
construction in the proof of Theorem 19. That construction allows us to implement the
operation O, in O(e~!) queries, with O(¢) error and probability of explosion if z; = 1 (but
no error if z; = 0). Thus we have the following:

Algorithm 23 (Bomb algorithm for OR). Query the N bits one-by-one, and apply the
construction of Theorem 19 one bit at a time, using O(1/€) operations each time. Terminate
as soon as a 1 is seen, and return 1; otherwise return 0 if all bits are 0.

Since the algorithm ends as soon as a 1 is found, the algorithm only accumulates ¢ error
in total. Thus this shows B.(OR) = O(N/e).

Note, however, that we have already shown that Q(f) = ©(+/eBe(f)) for boolean f.
An O(N/e) bomb query algorithm for OR therefore implies that Q(OR) = O(VN). We
have showed the existence of an O(v/N) quantum algorithm for the OR function, without
actually constructing one!

We formalize the intuition in the above argument by the following theorem:

Theorem 24. Let f : D — E, where D C {0, l}N . Suppose there is a classical randomized
query algorithm A, that makes at most T queries, and evaluates f with bounded error. Let
the query results of A on random seed sa be Tp,, Tp,, -+, Tps.)’ T(x) < T, where x is the
hidden query string.

Suppose there is another (not necessarily time-efficient) randomized algorithm G, with
random seed sg, which takes as input Tp,,- -+ ,Tp,_, and s, and outputs a guess for the next

39

query result zp, of A. Assume that G makes no more than an expected total of G mistakes
(for all inputs x). In other words,

ESA,sg Z |G(xp17 et 1xpg_1,SA, Sg) - mpt‘ S G Vz. (257)
t=1

Note that G is given the random seed s of A, so it can predict the next guery index of A.
Then B(f) = O(TG/e), and thus (by Theorem 17) Q(f) = O(VTG).

As an example, in our simple classical example for OR we have T'= N (the algorithm
takes at most N steps) and G = 1 (the guessing algorithm always guesses the next query to
be 0; since the algorithm terminates on a 1, it makes at most one mistake).

Proof of theorem 2/. We generalize the argument in the OR case. We take the classical
algorithm and replace each classical query by the construction of Theorem 19, using O(G/¢)
bomb queries each time. On each query, the bomb has a O(¢/G) chance of exploding when
the guess is wrong, and no chance of exploding when the guess is correct. Therefore the
total probability of explosion is O(¢/G) - G = O(e). The total number of bomb queries used
is O(TG/e).

For the full technical proof, see Appendix A.2. |

2.5.3 Explicit quantum algorithm for Theorem 24

In this section we give an explicit quantum algorithm, in the setting of Theorem 24, that
reproduces the given query complexity. This algorithm is very similar to the one given by
R. Kothari for the oracle identification problem [55].

Theorem 25. Under the assumptions of Theorem 24, there is an explicit guantum algorithm

for f with query complezity O(VTG).

Proof. We will construct this algorithm (Algorithm 27) shortly. We need the following
quantum search algorithm as a subroutine:

Theorem 26 (Finding the first marked element in a list). Suppose there is an ordered list of
N elements, and each element is either marked or unmarked. Then there is a bounded-error
quantum algorithm for finding the first marked element in the list (or determines that no
marked elements ezist), such that:

o If the first marked element is the d-th element of the list, then the algorithm uses an
ezpected O(v/d) time and queries.

o If there are no marked elements, then the algorithm uses O(vV N) time and queries, but
always determines correctly that no marked elements exist.

This algorithm is straightforward to derive given the result in [63], and was already
used in Kothari’s algorithm [55]. We give the algorithm (Algorithm 97) and its analysis in
Appendix A.3.

We now give our explicit quantum algorithm.

40

Algorithm 27 (Simulating a classical query algorithm by a quantum one).

Input. Classical randomized algorithm A that computes f with bounded error. Classical
randomized algorithm G that guesses queries of A. Oracle O, for the hidden string z.

Output. f(z) with bounded error.

The quantum algorithm proceeds by attempting to produce the list of queries and results
that A would have made. More precisely, given a randomly chosen random seed s4, the
algorithm outputs (with constant error) a list of pairs (p1(x), Zp, (z)), - - ,(pi,:() (z), Tpio) @)
This list is such that on random seed s4, the i-th query algorithm of A is made at the
position p;(z), and the query result is Tp,(z)- The quantum algorithm then determines the
output of A using this list.

The main idea for the algorithm is this: we first assume that the guesses made by G are
correct. By repeatedly feeding the output of G back into A and G, we can obtain a list of
query values for 4 without any queries to the actual black box. We then search for the first
deviation of the string z from the predictions of G; assuming the first deviation is the d;-th
query, by Theorem 26 the search takes O(+/d;) queries (ignoring error for now). We then
know that all the guesses made by G are correct up to the (dy — 1)-th query, and incorrect
for the d;-th query.

With the corrected result of the first d; queries, we now continue by assuming again
the guesses made by G are correct starting from the (d; + 1)-th query, and search for the
location of the next deviation, ds. This takes O(y/d2 — d1) queries; we then know that all
the guesses made by G are correct from the (d; + 1)-th to (d2 — 1)-th query, and incorrect
for the do-th one. Continuing in this manner, we eventually determine all query results of
A after an expected G iterations.

We proceed to spell out our algorithm. For the time being, we assume that algorithm
for Theorem 26 has no error and thus requires no error reduction.

1. Initialize random seeds s4 and sg for A and G. We will simulate the behavior of A
and G on these random seeds. Initialize d = 0. d is such that we have determined the
values of all query results of A up to the d-th query. Also initialize an empty list £ of
query pairs.

2. Repeat until either all query results of A are determined, or 100G iterations of this
loop have been executed:

(a) Assuming that G always guesses correctly starting from the (d + 1)-th query,
compute from A and G a list of query positions pg+1,Pd+2, - -- and corresponding
results @gy1,8442, - . This requires no queries to the black box.

(b) Using our algorithm for finding the first marked element (Theorem 26, Algorithm
97), find the first index d* > d such that the actual query result of A differs from

the guess by G, i.e. xp, # ag; or return that no such d* exists. This takes
O(yv/d* — d) time in the former case, and O(vT — d) time in the latter.

(c) We break into cases:

i. If an index d* was found in Step 2b, the algorithm decides the next mistake
made by G is at position d*. It thus adds the query pairs (pg+1,@d+1), "
(pax—1,@d+—1), and the pair (pge,1— a@g+), to the list £. Also set d = d*.

41

ii. If no index d* was found in Step 2b, the algorithm decides that all remaining
guesses by G are correct. Thus the query pairs (pg4+1,@d+1),- - , (pf(m)’ dT(x))

are added to £, where T(z) < T is the number of queries made by A.

3. If the algorithm found all query results of A in at most 100G iterations of step 2, use
L to calculate the output of A; otherwise the algorithm fails.

We now count the total number of queries. Suppose g < 100G is the number of iterations
of Step 2; if all query results have been determined, g is the number of wrong guesses by G.
Say the list of d’s found is dy = 0,dy,--- ,dy. Let dg41 = T. Step 2 is executed for g + 1
times, and the total number of queries is

o (S va=a) <o (vE3) - 0 (vre) 25

by the Cauchy-Schwarz inequality.

We now analyze the error in our algorithm. The first source of error is cutting off the loop
in Step 2: by Markov’s inequality, for at least 99% of random seeds sg, sg, G makes no more
than 100G wrong guesses. For these random seeds all query results of A are determined.
Cutting off the loop thus gives at most 0.01 error.

The other source of error is the error of Algorithm 97 used in Step 2b: we had assumed
that it could be treated as zero-error, but we now remove this assumption. Assuming each
iteration gives error ¢, the total error accrued could be up to O(gd’). It seems as if we
would need to set 6’ = O(1/G) for the total error to be constant, and thus gain an extra
logarithmic factor in the query complexity.

However, in his paper for oracle identification [55], Kothari showed that multiple calls to
Algorithm 97 can be composed to obtain a bounded-error algorithm based on span programs
without an extra logarithmic factor in the query complexity; refer to [55, Section 3] for
details. Therefore we can replace the iterations of Step 2 with Kothari’s span program
construction and get a bounded error algorithm with complexity O(\/T_G)

O

Note that while Algorithm 27 has query complexity O(v/T'G), the time complexity may
be much higher. After all, Algorithm 27 proceeds by simulating A query-by-query, although
the number of actual queries to the oracle is smaller. Whether or not we can get a algorithm
faster than A using this approach may depend on the problem at hand.

2.6 Improved upper bounds on quantum query complexity

We now use Theorem 25 to improve the quantum query complexity of certain graph prob-
lems.

2.6.1 Single source shortest paths for unweighted graphs

Problem 28 (Single source shortest paths (SSSP) for unweighted graphs). The adjacency
matrix of a directed graph n-vertex graph G is provided as a black box; a query on the pair
(v,w) returns 1 if there is an edge from v to w, and 0 otherwise. We are given a fixed vertex
Ustart- Call the length of a shortest path from v+ to another vertex w the distance d, of

42

w from wvsgere; if DO path exists, define d, = co. Our task is to find d,, for all vertices w in

G.
In this section we shall show the following:

Theorem 29. The quantum query complexity of single-source shortest paths in an un-
weighted graph is ©(n3/?) in the adjacency matriz model.

Proof. The lower bound of Q(n3/2) is known [64]. We show the upper bound by applying
Theorem 25 to a classical algorithm. The following well-known classical algorithm (com-
monly known as breadth first search, BFS) solves this problem:

Algorithm 30 (Classical algorithm for unweighted SSSP).

1. Initialize d,, := oo for all vertices w # Vstart, Ay, := 0, and L := (Ustart). L is the
ordered list of vertices for which we have determined the distances, but whose outgoing
edges we have not queried.

2. Repeat until £ is empty:

e Let v be the first (in order of time added to £) vertex in £. For all vertices w
such that d,, = co:

— Query (v, w).
— If (v,w) is an edge, set dy, := d,, + 1 and add w to the end of L.

e Remove v from L.

We omit the proof of correctness of this algorithm (see for example [65]). This algorithm
uses up to T = O(n?) queries. If the guessing algorithm always guesses that (v,w) is not
an edge, then it makes at most G = n — 1 mistakes; hence Q(f) = O(VTG) = O(n3/2).1

O

The previous best known quantum algorithm for unweighted SSSP, to our best knowl-
edge, was given by Furrow [40]; that algorithm has query complexity O(n®/2y/Togn).

We now consider the quantum query complexity of unweighted k-source shortest paths
(finding k shortest-path trees rooted from k beginning vertices). If we apply Algorithm 30
on k different starting vertices, then the expected number of wrong guesses is no more than
G = k(n — 1); however, the total number of edges we query need not exceed T = O(n?),
since an edge never needs to be queried more than once. Therefore

Corollary 31. The quantum query complezity of unweighted k-source shortest paths in the
adjacency matriz model is O(k/2n3/2), where n is the number of vertices.

We use this idea — that T' need not exceed O(n?) when dealing with graph problems —
again in the following section.

1Tt seems difficult to use our method to give a corresponding result for the adjacency list model; after all,
the result of a query is much harder to guess when the input alphabet is non-boolean.

43

2.6.2 Maximum bipartite matching

Problem 32 (Maximum bipartite matching). We are given as black box the adjacency
matrix of an n-vertex bipartite graph G = (V = X UY, E), where the undirected set of
edges E only run between the bipartite components X and Y. A maitching of G is a list of
edges of G that do not share vertices. Our task is to find a maximum matching of G, i.e. a
matching that contains the largest possible number of edges.

In this section we show that

Theorem 33. The quantum query complezity of mazimum bipartite matching is O(n7/*) in
the adjacency matriz model, where n is the number of vertices.

Proof. Once again we apply Theorem 25 to a classical algorithm. Classically, this problem is
solved in O(n®?) time by the Hopcroft-Karp [66] algorithm (here n = |V|). We summarize
the algorithm as follows (this summary roughly follows that of [41]):

Algorithm 34 (Hopcroft-Karp algorithm for maximum bipartite matching [66]).

1. Initialize an empty matching M. M is a matching that will be updated until it is
maximum.

2. Repeat the following steps until M is a maximum matching:
(a) Define the directed graph H = (V', E') as follows:

Vi=XUYU{st}
E' ={(s,z) |z € X,(z,y) ¢ M forally € Y}
U{(z,y) |z € X,y €Y, (z,y) € E,(z,y) ¢ M}
U{(y,z) |z € X,y €Y, (z,y) € E,(z,y) € M}
U{w,t)|lyeY, (z,y) ¢ M forallz € X} (2.6.1)

where s and t are extra auxilliary vertices. Note if (s,z1,¥1,Z2, Y2, ,Ze, Ye, 1)
is a path in H from s to ¢, then z; € X and y; € Y for all . Additionally, the
edges (aside from the first and last) alternate from being in M and not being in
M: (z3,y:) € M, (yi,xi+1) € M. Such a path is called an augmenting path in
the literature.

We note that a query to the adjacency matrix of E’ can be simulated by a query
to the adjacency matrix of E.

(b) Using the breadth-first search algorithm (Algorithm 30), in the graph H, find the
length of the shortest path, or distance, of all vertices from s. Let the distance
from s to t be 2¢ + 1.

(c) Find a maximal set S of vertex-disjoint shortest paths from s to t in the graph
H. In other words, S should be a list of paths from s to ¢ such that each path has
length 2¢ + 1, and no pair of paths share vertices except for s and ¢. Moreover,
all other shortest paths from s to ¢ share at least one vertex (except for s and t)
with a path in S. We describe how to find such a maximal set in Algorithm 35.

(d) If S is empty, the matching M is a maximum matching, and we terminate. Oth-
erwise continue:

44

(e) Let (s,21,v1,Z2,Y2," - ,Te, Yo, t) be a path in . Remove the £—1 edges (241, ¥;)
from M, and insert the £ edges (z;,¥;) into M. This increases | M| by 1. Repeat
for all paths in S; there are no conflicts since the paths in S are vertex-disjoint.

Once again, we omit the proof of correctness of this algorithm; the correctness is guar-
anteed by Berge’s Lemma [67], which states that a matching is maximum if there are no
more augmenting paths for the matching. Moreover, O(/n) iterations of Step 2 suffice [66].

We now describe how to find a maximal set of shortest-length augmenting paths in Step
2(c). This algorithm is essentially a modified version of depth-first search:

Algorithm 35 (Finding a maximal set of vertex-disjoint shortest-length augmenting paths).

Input. The directed graph H defined in Algorithm 34, as well as the distances d, of all
vertices v from s (calculated in Step 2(b) of Algorithm 34).

1. Initialize a set of paths S := (), set of vertices R := {s}, and a stack® of vertices
L := (s). L contains the ordered list of vertices that we have begun, but not yet
finished, processing. R is the set of vertices that we have processed. S is the set of
vertex-disjoint shortest-length augmenting paths that we have found.

2. Repeat until £ is empty:

(a) If the vertex in the front of £ is ¢, we have found a new vertex-disjoint path from
stot:

e Trace the path from ¢ back to s by removing elements from the front of £
until s is at the front. Add the corresponding path to S.

e Start again from the beginning of Step 2.

(b) Let v be the vertex in the front of £ (i.e. the vertex last added to, and still in,
L). Recall the distance from s to v is d,.

(c) Find w such that w € R, dy, = d,, + 1, and (v, w) (as an edge in H) has not been
queried in this algorithm. If no such vertex w exists, remove v from £ and start
from the beginning of Step 2.

(d) Query (v,w) on the graph H.
(e) If (v,w) is an edge, add w to the front of L. If w # ¢, add w to R.

3. Output S, the maximal set of vertex-disjoint shortest-length augmenting paths.

We now return to Algorithm 34 and count 7" and G. There is obviously no need to query
the same edge more than once, so T = O(n?). If the algorithm always guesses, on a query
(v, w), that there is no edge between (v, w), then it makes at most G = O(n®/?) mistakes: in
Step 2(b) there are at most O(n) mistakes (see Algorithm 30), while in Step 2(c)/Algorithm
35 there is at most one queried edge leading to each vertex aside from ¢, and edges leading to
t can be computed without queries to the adjacency matrix of H. Since Step 2 is executed
O(4y/n) times, our counting follows.

Thus there is a quantum query algorithm with complexity Q = O(VTG) = O(n™/%).

O

2 A stack is a data structure such that elements that are first inserted into the stack are removed last.

45

To our knowledge, this is the first known nontrivial upper bound on the query complexity
of maximum bipartite matching.3 The time complexity of this problem was studied by
Ambainis and Spalek in [41]; they gave an upper bound of O(n?logn) time in the adjacency
matrix model. A lower bound of Q(n%/ 2) for the query complexity of this problem was given
in [68, 69)].

For readers familiar with network flow, the arguments in this section also apply to Dinic’s
algorithm for maximum flow [70] on graphs with unit capacity, i.e. where the capacity of
each edge is 0 or 1. On graphs with unit capacity, Dinic’s algorithm is essentially the
same as Hopcroft-Karp’s, except that augmenting paths are over a general, nonbipartite
flow network. (The set S in Step 2(c) of Algorithm 34 is generally referred to as a blocking
flow in this context.) It can be shown that only O(min{m!/2,n?/3}) iterations of Step 2
are required [71, 72|, where m is the number of edges of the graph. Thus T = O(n?),
G = O(min{m!/2,n?/3}n), and therefore

Theorem 36. The quantum query complexity of the mazimum flow problem in graphs with
unit capacity is O(min{n32m1/% n1/6}), where n and m are the number of vertices and
edges in the graph, respectively.

It is an open question whether a similar result for maximum matching in a general
nonbipartite graph can be proven, perhaps by applying Theorem 25 to the classical algorithm
of Micali and Vazirani [57].

2.7 Projective query complexity

We end this paper with a brief discussion on another query complexity model, which we
will call the projective query complezity. This model is similar to the bomb query model
in that the only way of accessing x; is through a classical measurement; however, in the
projective query model the algorithm does not terminate if a 1 is measured. QOur motivation
for considering the projective query model is that its power is intermediate between the
classical and quantum query models. To the best of our knowledge, this model was first
considered in 2002 in unpublished results by S. Aaronson [56].

A circuit in the projective query complexity model is a restricted quantum query circuit,
with the following restrictions on the use of the quantum oracle:

1. We have an extra control register |c) used to control whether O, is applied (we call
the controlled version CO;):

COgle,r,3) = |e,7 @ (¢~ zi),1). (2.7.1)
where - indicates boolean AND.

2. The record register, |r) in the definition of CO, above, must contain |0) before CO,
is applied.

3. After COy is applied, the record register is immediately measured in the computational
basis, giving the answer ¢ - z;. The result, a classical bit, can then be used to control
further quantum unitaries (although only controlling the next unitary is enough, since
the classical bit can be stored).

3The trivial upper bound is O(n2), where all pairs of vertices are queried.

46

o) — lc) (2.7.2)
[0) — o c-T;
i) L —— 1)

We wish to evaluate a function f(z) with as few calls to this projective oracle as possible.
Let the number of oracle calls required to evaluate f(z), with at most ¢ error, be Ps(f). By
gap amplification, the choice of § only affects Ps(f) by a factor of log(1/4), and thus we will
often omit 9.

We can compare the definition in this section with the definition of the bomb query
complexity in Section 2.3: the only difference is that if ¢ - z; = 1, the algorithm terminates
in the bomb model, while the algorithm can continue in the projective model. Therefore the
following is evident:

Observation 37. Ps(f) < B.s(f), and therefore P(f) = O(Q(f)?).

Moreover, it is clear that the projective query model has power intermediate between
classical and quantum (a controlled query in the usual quantum query model can be sim-
ulated by appending a 0 to the input string), and therefore letting Rs(f) be the classical
randomized query complexity,

Observation 38. Qs(f) < Ps(f) < Rs(f).

For explicit bounds on P, Regev and Schiff [43] have shown that for computing the OR
function, the projective query complexity loses the Grover speedup:

Theorem 39 ([43]). P(OR) = Q(N).

Note that this result says nothing about P(AN D), since the definition of P(f) is asym-
metric with respect to 0 and 1 in the input.*
We observe that there could be a separation in both parts of the inequality Q < P < B:

Q(OR) = ©(VN), P(OR)=©(N), B(OR)=©(N) (2.7.3)

Q(PARITY) = ©(N), P(PARITY)=O(N), B(PARITY)=©(N?) (2.74)

In the latter equation we used the fact that Q(PARITY) = ©(N) [32]. It therefore seems
difficult to adapt our lower bound method in Section 2.4.2 to P(f).

It would be interesting to find a general lower bound for P(f), or to establish more
clearly the relationship between Q(f), P(f), and R(f).

4We could have defined a symmetric version of P, say P, by allowing an extra guess on the measurement
result, similar to our construction of B in Section 2.5.1. Unfortunately, Regev and Schiff’s result, Theorem
39, do not apply to this case, and we see no obvious equivalence between P and P.

47

48

Chapter 3

Normalizer circuits over
infinite-dimensional systems: an
introduction

In this chapter we will study the model of normalizer circuits over infinite-dimensional sys-
tems. Normalizer circuits were defined in [1, 2] as a generalization of Clifford circuits to
Hilbert spaces associated with (explicitly decomposed) finite Abelian groups, and it was
shown that such circuits could be simulated efficiently with a classical computer. The clas-
sical simulation comes despite normalizer circuits allowing for quantum Fourier transforms,
a crucial element of Shor’s algorithm. We will generalize normalizer circuits to infinite-
dimensional systems associated with infinite Abelian groups, and show the following:

e If the underlying Abelian group is explicitly decomposed into a product of primitive
subgroups, then normalizer circuits over this group are efficiently simulable by a clas-
sical computer. This generalizes the Gottesman-Knill theorem to infinite dimensions.

e If the underlying Abelian group is not explicitly decomposed, however, normalizer cir-
cuits can implement many important quantum algorithms, including Shor’s algorithm
for factoring (and many algorithms for hidden subgroup problems). Thus these circuits
have much more computational power than the first case.

The only difference between the two cases is whether or not the underlying Abelian group
is explicitly decomposed; it appears therefore that the ppwer of Shor’s algorithm comes
from the classical difficulty of decomposing Abelian groups (which is easy for a quantum
computer; see Section 5.2.5, or [73]). We will look at the first assertion in Chapter 4, and the
second assertion in Chapter 5; in this chapter we will introduce and give basic definitions
for normalizer circuits.

The results of Chapters 3-5 are joint work with Juan Bermejo-Vega and Martin Van den
Nest. This chapter is mostly excerpted from [74, 75].

3.1 Introduction

Normalizer circuits [1, 2] are a family of quantum circuits that generalize the so-called
Clifford circuits [17, 16, 76, 77] to Hilbert spaces associated with finite Abelian groups. A
normalizer circuit is a quantum circuit on a Hilbert space indexed by the elements of a finite

49

Abelian group G = Zg4, X --- X Zq,, i.e. the Hilbert space is spanned by states of the form
lg), g € G. Moreover, the gates in a normalizer circuit can only be of the following three
types of gates, which we refer to as normalizer gates:

1. Quantum Fourier transforms (QFTs), over the whole group G or subgroups of G.
2. Automorphism gates, gates that compute automorphisms over G.
3. Quadratic phase gates, gates that compute quadratic functions of G.

These three types of gates can be viewed as a generalization of the Clifford gates: the
quantum Fourier transform generalizes the Hadamard gate, automorphism gates generalize
the CNOT gate, and quadratic phase gates generalize the vZ gate. [1, 2] show that a gen-
eralization of the Gottesman-Knill theorem holds for normalizer circuits: every normalizer
circuit over finite Abelian groups can be efficiently classically simulated.

Infinite-dimensional normalizer circuits

In this chapter we further generalize the normalizer circuit framework, by introducing nor-
malizer circuits where the associated Abelian group G is infinite. We focus on groups of the
form G = F xZ%, where F'is a finite Abelian group, and where Z denotes the infinite additive
group of integers. The motivation for adding Z is that several number theoretical problems
are naturally connected to problems over the integers. For example, it is well known that
the factoring problem is related to the hidden subgroup problem over Z [78, 79, 80, 81].
Normalizer circuits over an infinite group G are composed of normalizer gates, gates of the
three types listed above.

Our main motivation for allowing the integer group Z in the groups we study is to make
a connection with the role of Z in many quantum algorithms for solving number theoretic
problems. For example, Shor’s factoring algorithm [14] can be seen as a hidden subgroup
problem over Z (see [21, 24] or Section 5.2 for other examples). Such quantum algorithms
typically make use of the quantum Fourier transform, and thus QFTs are often seen as the
source of quantumness in these algorithms.

In Chapter 4, we show that if the finite portion of the Abelian group G is explicitly
decomposed, i.e. the decomposition G = Z° x Zg, X --- x Zg, is given, then normalizer cir-
cuits over G can be efficiently simulated by a classical computer (Theorem 59). This result
generalizes the finite Abelian case of [1, 2]. Our result casts some doubt on the view that
QFTs are the source of quantum speedups, since normalizer ciruits are a large class of quan-
tum circuits containing QFTs that can still be classically simulated. Our result also gives a
natural framework to study continuous-variable error correcting codes for superconducting
qubit systems; see the discussion in Section 4.1.

Black box normalizer circuits

We will also consider (mainly in Chapter 5) black box normalizer circuits over Abelian
groups G = Z* X F that are not given to us in a factorized form G =Z% X Zg, X -+- X Zg,;
we refer to such groups G as black bor groups. Even though such a factorized form always
exists, finiding such a decomposition is as hard as factoring [82, 83]. This seemingly trivial
difference in our setting turns out to be tremendous: many quantum algorithms for Abelian
hidden subgroup problems turn out to be black box normalizer circuits, and thus there is a
large difference in computational power between the two cases.

50

In Chapter 5 we will study some well-known quantum algorithms that can be imple-
mented as black box normalizer circuits. In particular, the Cheung-Mosca algorithm for
decomposing a finite Abelian group [84, 73] can be solved with black box normalizer circuits.
We show that this problem of decomposing an Abelian group is complete for the complex-
ity class associated with black box normalizer circuits (Theorem 87): given an oracle to
compute the decomposition of a group, any black box normalizer circuit can be efficiently
classicaly simulated. An equivalent view is the following no-go theorem for the design of
quantum algorithms: no further quantum superpolynomial speedups can be found within
our normalizer circuit framework that are not already achieved by the group decomposition
algorithm (Theorem 89). Section 5.1 lists a more complete summary results.

Contents of this chapter

This chapter will merely introduce and define the normalizer circuit framework; our main
results are given in Chapters 4 and 5. We now discuss the contributiosn of this chapter.

In extending normalizer circuits to infinite groups G, several issues arise that are not
present in the finite group setting. First of all, the quantum Fourier transform (QFT) can no
longer be considered as a usual quantum gate, and instead must be interpreted as a change
of basis. Roughly speaking, the QFT over a group G is a transformation which relates two
bases of the Hilbert space: namely, the standard basis {|g)} and the Fourier basis. The
Fourier basis vectors are related to the character group of G. If G were finite Abelian, it
would be isomorphic to its own character group. This feature is however no longer true for
infinite groups such as Z: the character group of Z is (isomorphic to) a different group, the
circle group T = [0, 1) with addition modulo 1. This group represents the addition of angles
in a circle, up to a constant rescaling of 2. We must therefore view the QFT as a change of
basis, taking a state expressed in the Z basis to the T basis, and vice versa. As we will see
below, this phenomenon has important consequences for the treatment of normalizer gates
over G. In particular, in order to construct a closed normalizer formalism, we must consider
groups of the more general form Z® x T x F and their associated normalizer circuits. Note
that T is a continuous group, whereas Z is discrete (finitely generated).

Since G is infinite, it is also not immediately clear how quadratic functions and ho-
momorphisms over G can be concisely specified. An important technical ingredient in our
simulation is a proof that both quadratic functions and homomorphisms on G have certain
concise normal forms. This is a purely group-theoretic result that, aside from its im-
portance in proving our simulation result in Chapter 4, may find interesting applications
elsewhere in quantum information. For instance, our normal form can be applied to de-
scribe the relative phases of stabilizer states, since it was shown in [2] that such phases are
quadraticl; as a result, one may use it to generalize part of Gross’s discrete Hudson theorem
[85] to our setting?.

!The result in [2] is for finite dimensional systems. However, adopting the definitions in Section 4.4, it is
easy to check that the proof extends step-by-step to the infinite dimensional case.

2Gross’s theorem provides a normal form for odd-dimensional-qudit stabilizer states in terms of quadratic
functions. In addition, it states that a pure state is an odd-dim qudit stabilizer state iff it has non-negative
Wigner function [85]. The second statement cannot hold in our setup, due to the presence of non-local
effects (cf. next section).

51

3.2 Outline of this chapter

Section 3.3 contains a non-technical summary of concepts and several examples of nor-
malizer gates. We then review the Abelian groups we will use in Section 3.4, define Hilbert
spaces associated with Abelian groups in Section 3.5, and finally introduce normalizer cir-
cuits in full detail in Sections 3.6, 3.7.

In Section 3.8 we survey some necessary notions of group and character theory. Finally,
in Section 3.9 we develop a theory of matrix representations of group homomorphisms, and
in Section 3.10 we develop normal forms for quadratic functions.

3.3 Summary of concepts

In this section we give a rough intuitive definition of our circuit model and provide examples
of normalizer gates to illustrate their operational meaning. Our model is presented in full
detail in Section 3.6, after reviewing some necessary notions of group-theory in section 3.5.
The readers interested in understanding the proofs of our main results should consult these
sections.

3.3.1 The setting

Normalizer gates are quantum gates that act on a Hilbert space ¢ which has an orthonor-
mal standard basis {]g)}4ec labeled by the elements of an Abelian group G. The latter can
be finite or infinite, but it must have a well-defined integration (or summation) rule? so that
the group has a well defined Fourier transform. We define a normalizer circuits over G to
be any quantum circuits built of the following normalizer gates:

1. Quantum Fourier transforms implement the (classical) Fourier transform of the
group ¥(x) — ¥(p) as a quantum operation [(z)|z) — [(p)|p). Here, ¥ is a
complex function acting on the group and ¥ is its Fourier transform.

2. Group automorphism gates implement group automorphisms o : G — G as a
quantum gate: |g) — |a(g)). Here, g and a(g) denote elements of G.

3. Quadratic phase gates are diagonal gates that multiply standard basis states with
quadratic phases: |g) — £(g)|g). This means that ¢ — £(g) is a quadratic (“almost
multiplicative”) function with the property £(g + h) = £(g)¢(h)B(g, h), where B(g, h)
is a bi-multiplicative correcting term.

3.3.2 Examples
In order to illustrate these definitions, we give examples of normalizer gates for finite groups
and infinite groups of the form Z° (integer lattices) and T® (hypertori).

Normalizer circuits over finite groups

First we give a few examples of normalizer circuits over finite Abelian groups. (We also refer
the reader to {1, 2], where these circuits have been extensively studied.)

3All groups we study have a well-defined Haar measure.

52

First consider G = Z7'. The Hilbert space in this case is H = H7}, corresponding to
a system of m qudits. The following generalizations of the CNOT and Phase gates are
automorphism and quadratic phase gates, respectively [1}:

SUMyo= > In,z+aydz,yl, Sa= Y exp (Saz(z + d))|z)(z|

z,YEZg TELg

where a € Zg4 is arbitrary. The quantum Fourier transform can also be expressed similarly

as a gate:
Fa=—= > exp (%ﬁ)lmﬂyl

T, YE€Lg

For the qubit case, d = 2, we recover the definitions of CNOT, phase gate S = diag(1,1) and
Hadamard gate, and our main result (Theorem 59) yields the (non-adaptive) Gottesman-
Knill theorem [17, 16].

Another normalizer gate for qudits is the multiplication gate Mg, =) .7, laz){z],
where a is coprime to d, which is an automorphism gate. This single-qudit gate acts non-
trivially only for d > 3.

As an interesting subcase, we can choose the group to be of the form G = Zsn with
exponentially large d. Normalizer gates in this example are Man 4, So», and Fan, as defined
above. The quantum Fourier transform in this case, Fan, corresponds to the standard
discrete QFT used in Shor’s algorithm for factoring [14].

The infinite case G = Z™

Let us now move to an infinite case, choosing the group G = Z™ to be an integer lattice.
Examples of automorphism gates and quadratic phase gates are, respectively,

SUMza = 3 ez +ay)e,yl, Sy = 3 exp (nipa?)fe) al

z,yEZ TEZ

where a is an arbitrary integer and p is an arbitrary real number. The fact that these gates
are indeed normalizer gates follows from general normal forms for matrix representations
group homomorphisms (Theorem 51) and quadratic functions (Theorem 57) that we later
develop.

The case of quantum Fourier transforms is more involved in this case, since the QFT
over Z can no longer be regarded as a quantum logic gate, i.e., a unitary rotation [3]. This
happens because the QFT now performs a non-canonical change of the standard integer
basis {z}.ez of the space, into a new basis {t};cT labeled by the elements of the circle group
T = [0,1). The latter property is due to the fact that the QFT over Z is nothing but the
quantum version of the discrete-time Fourier transform [22] (the inverse of the well-known
Fourier series) which sends functions over Z to periodic functions over the reals. In this
chapter, we will understand the QFT over Z as change of basis between two orthonormal
bases of the Hilbert space Hz. We discuss these technicalities in detail in Section 3.6.

The QFT over Z acts on quantum states as in the following examples (cf. Section 3.6):

53

State before QFT over Z State after QFT over Z

) /T dp 277 |p)
—2nipzr
e T
2 e) Ip)
1
> lrz) = > [&/r)
i

These transformations can be found in standard signal processing textbooks [22].

The infinite case: G =T™

Finally, we choose the group G = T™ be an m-dimensional torus. Two examples of auto-
morphism gates are the sum and sign-flip gates:

SUMry= > |p,g+bp)(pal, Mrs=> |sp)p|
p,g€T peT

where b is an arbitrary integer and s = +1 (again, these formulas come from Theorem 51).

Unlike the previous examples we have considered, any quadratic phase gate over G is
purely multiplicative (i.e., the bi-multiplicative function B(g, k) is always trivial*). In the
case m = 1, this is equivalent to saying that any such gate is of the form

> " exp (2mibp)|p) (p|

peT

with b an arbitrary integer.

Lastly, we take a look at the effect of the quantum Fourier transform over T in some
examples. Similarly to the QFT over Z, this gate performs a non-canonical change of the
standard basis (now {t}tcT changes to {z},cz) and should be understood as a change of
basis that does not correspond to a gate. The QFT over T is the quantum version of the
Fourier series [22].

State before QFT over T State after QFT over T
) > &Py
z€Z

dp e2r:ip:c p '
favem =)
1S k) Solra)y =Y |-ra)
r k€Z: T€ZL T€Z

k/TeT

Comparing the effect of the QFT on Hz and the QFT on Ht, we see that the former is
the “inverse” of the latter up to a change of sign of the group elements labeling the basis;
concatenating the two of them yields the transformation |z) to | — z). This is a general

“This fact can be understood in the light of a later result, Theorem 57 and it is related to nonexistence
of nontrivial group homomorphisms from T™ to Z™, the latter being the character group of T™ up to
isomorphism.

54

phenomenon, which we shall observe again in the proof of some results (namely, Theorem
61).

3.4 Abelian groups
" The most general groups we will consider in this thesis are Abelian groups of the form
G=Z°xT xZn, x --- x Ly, x B, (3.4.1)

where a, b, N1, -- , N, are arbitary integers and B is a finite Abelian black box group, which
we will define in this section. (Sometimes for convenience we will also include the additive
group of real numbers, R, in the set of allowable groups.)

We will discuss each of the constitutent groups in turn.

3.4.1 Z: the group of integers

Z simply refers to the group of integers under addition; it is infinite, but finitely generated
(by the element 1).

3.4.2 T: the circle group

T, the circle group, refers to the group of real numbers in the interval [0, 1) under addition
modulo 1.> Unlike all the other components we will consider, it is both infinite and not
finitely generated. The introduction of T is necessary to allow the use of quantum Fourier
transforms over Z, as we see in the next section.

3.4.3 Finite Abelian groups

Let us start by stating a very important theorem we will use for our results:

Theorem 40 (Fundamental Theorem of Finite Abelian Groups [87]). Any finite
Abelian group F' has a decomposition into a direct product of cyclic groups, i.e.

F=74 XZg, X - X Lg, (34.2)
for some positive integers dy, - - - , dy.

Here Z, is the group of integers modulo d under addition.

Actually finding such a decomposition for a group F may be difficult in practice. For
example, consider the set of integers modulo N that are also relatively prime to N; this
set forms a group under multiplication. (This group is known as the multiplicative group
of integers modulo N, or Z}.) It is not known classically how to decompose Zjy into its
cyclic subgroups. For example, if N = pq for p, ¢ prime then Z;fq = Zp—1 X Zg_1, and hence
decomposing Z,, is at least as hard as factoring pq or, equivalently, breaking RSA [15]. More
generally, decomposing Zl’f, is known to be polynomial time equivalent to factoring [88]. In
the quantum case, however, Cheung and Mosca gave an algorithm [84, 73] to decompose
any finite Abelian group.

5Since the group T" is nothing but an n-dimensional torus, T is sometimes referred as “the torus group”
[86]. T should not be confused with T? the usual (two-dimensional) torus.

55

In equation (3.4.1), the factors Zy, X --- X Zn, represent an arbitrary finite Abelian
group for which the group decomposition is known. The case where the decomposition is
unknown will be covered by the black box group B.

3.4.4 Black box groups

In this thesis, we define a black-box group B [83] to be a finite group whose elements are
uniquely encoded by binary strings of a certain size n, which is the length of the encoding.
The elements of the black-box group can be multiplied and inverted at unit cost by querying
a black-box, or group oracle, which computes these operations for us. The order of a black-
box group with encoding length n is bounded above by 2": the precise order |B| may not be
given to us, but it is assumed that the group oracle can identify which strings in the group
encoding correspond to elements of the group. When we say that a particular black-box
group (or subgroup) is given (as the input to some algorithm), it is meant that a list of
generators of the group or subgroup is explicitly provided.

From now on, all black-box groups in this thesis will be assumed to be Abelian. Although
we only consider finite Abelian black-box groups, we stress now, that there is a subtle but
crucial difference between these groups and the explicitly decomposed finite Abelian groups
in [1, 2]: although, mathematically, all Abelian black-box groups have a decomposition
(3.4.2), it is computationally hard to find one and we assume no knowledge of it. In fact,
our motivation to introduce black-box groups in our setting is precisely to model those
Abelian groups that cannot be efficiently decomposed with known classical algorithms that
have, nevertheless, efficiently classically computable group operations. With some abuse of
notation, we shall call all such groups also “black-box groups”, even if no oracle is needed to
define them; in such cases, oracle calls will be replaced by poly(n)-size classical circuits for
computing group multiplications and inversions.

As an example, let us consider again the group Zy. This group can be naturally modeled
as a black-box group in the above sense: on one hand, for any z,y € Z])f,, zy and z7! can be
efficiently computed using Euclid’s algorithm [89]; on the other hand, decomposing Z}; is as
hard as factoring [88]. Note, in addition, that a generating set of Z}, can found by taking a
linear number of samples® of Z5;.

3.5 The Hilbert space of a group

In this section we introduce Hilbert spaces associated with Abelian groups of the form
GZZGXZNIX-”XZNCXB (351)

where Zy is the additive group of integers modulo NV and Z is the additive group of integers.

3.5.1 Finite Abelian groups

First we consider Zy. With this group, we associate an N-dimensional Hilbert space H
having a basis {|z) : « € Zn}, henceforth called the standard basis of Hy. A state in Hy

5Sampling Z5 can be done by sampling {0,--- ,N — 1} uniformly and then rejecting samples that are
not relatively prime to N; this takes O(loglog N) trials to succeed with high probability. A similar approach
works, in general, for sampling generating-sets of uniquely-encoded finite Abelian groups [90].

56

is (as usual) a unit vector 1) = > (z)|z) with 3 |1(z)|? = 1, where 1(z) € C and where
the sum is over all z € Zy.

For a black box group B, we associate a |B|-dimensional Hilbert space #p with standard
basis states |b),b € B.

3.5.2 The integers Z

An analogous construction is made for the group Z, although an important distinction with
the former case is that Z is infinite. We consider the infinite-dimensional Hilbert space
‘Hz = €2(Z) with standard basis states |z) where z € Z. A state in Hz has the form

) = ¢(a)|z) (3.5.2)

T€Z

with 3~ |¥(z)|? = 1, where the (infinite) sum is over all z € Z. More generally, any normaliz-
able sequence {¢ : x € Z} with }_ |1,|? < 0o can be associated with a quantum state in Hz
via normalization. Sequences whose sums are not finite can give rise to non-normalizable
states. These states do not belong to Hz and are hence unphysical; however it is often
convenient to consider such states nonetheless. Some examples are the plane-wave states,

Ip) =) _e|z) pe0,1). (3.5.3)
z€EZ

Even though the |p) themselves do not belong to Hz, every state (3.5.2) in this Hilbert space
can be re-expressed as

) = /T dp 6(p)lp) (3.5.4)

for some complex function ¢ : T — C, where dp denotes the Haar measure on T, the circle
group (real numbers with addition modulo 1). Thus the states |p) form an alternate basis’
of Hgz which is both infinite and continuous; we call this the Fourier basis. The Fourier basis
is orthonormal in the sense that

(plp’) = é(p - p'), (3.5.5)

where (-) is the Dirac delta function.

In the following, when dealing with the Hilbert space Hz, we will use both the standard
and Fourier basis. This is different from the finite space H where we only use the standard
basis. The motivation for this is the following: note that, similarly to Hz, the space Hy
has a Fourier basis, given by the vectors

|7) == Z ™R 1) for every y € Zy. (3.5.6)
RASYAN

Since both the Fourier basis and the standard basis have equal cardinality, there exists
a unitary operation mapping |y} — |). This operation is precisely the quantum Fourier
transform over Zy (see Section 3.6). Thus, instead of working with both the standard

7Although we use this terminology, the |p) do not form a “basis” in the usual sense since these states
are unnormalizable and lie outside the Hilbert space Hz. Rigorously, the |p) kets should be understood as
Dirac-delta measures, or as Schwartz-Bruhat tempered distributions [91, 92]. The theory of rigged Hilbert
spaces [93, 94, 95, 96] (often used to study observables with continuous spectrum) establishes that the |p)
kets can be used as a basis for all practical purposes that concern us.

57

and Fourier basis, we may equivalently use the standard basis alone plus the possibility of
applying this unitary rotation (which is the standard approach). In contrast, the standard
and Fourier basis in the infinite-dimensional space Hz have different cardinality, since the
former is indexed by the discrete group Z and the latter is indexed by the continuous group
T. Thus there does not exist a unitary operation which maps one basis to the other. For
this reason, we will work with both bases.

3.5.3 Total Hilbert space

In general we will consider consider groups of the form (3.5.1). The associated Hilbert space
has the tensor product form

H=H"QOHN O - @ Hn, ®Hp. (3.5.7)

In this thesis, we treat H as the underlying Hilbert space of a quantum computation with
m := a + ¢+ 1 computational registers. The first a registers Hz are infinite dimensional.
The latter ¢ + 1 registers are finite dimensional, and the last one, Hp, is associated with
some Abelian black box group B.

For each finite-dimensional space Hy; (and Hp) we consider its standard basis as above.
For each Hz we may consider either its standard basis or its Fourier basis. The total Hilbert
space has thus a total 2% possible choices that are labeled by different groups: we call
these bases the group-element bases of Hg. For example, choosing the standard basis
everywhere yields the basis states

lz(1) ®@---@lz(a) @ ly(1)) ®- - @ |y(c) ® |b) z(i) € Z; y(j) € Zn;; bEB, (3.58)

which is labeled by the elements of the group Z* X Zy, X - - - x Zy,. By choosing the Fourier
basis in the a-th space we obtain in turn

|z(1))®: - -®lz(a—1))®|p)@ly(1))®- - -Bly(c—1))®b) (i) € Z; y(j) € Zn;; p€ T; b€ B,
(3.5.9)
which is labeled by the elements of Z%1 x T x Zy, x --- x Zp,.
More generally, each of the 2° tensor product bases of (3.5.7) is constructed as follows.
Consider any Abelian group of the form

G =G x - xGyxZn,®...ZNy,xB G; €{Z,T}. (3.5.10)
The associated group-element basis of Bgr of He is
Bor = {lg) :=1g(1)) ®...|gla+c+1)); g=1(9(1),...,9(a+c+1))€G'}. (3.5.11)

The notation G; = T indicates that |g(%)) is a Fourier state of Z (3.5.3). The states |g) are
product-states with respect to the tensor-product decomposition of (3.5.7). There are 22
possible choices of groups in (3.5.10) (all of them related via Pontryagin duality®) and 22

8From a mathematical point of view, all groups (3.5.10) form a family (in fact, a category) which is
generated by replacing the factors G; of the group Z® x Zy, x - -- X Zn, x B with their character groups G},
and identifying isomorphic groups. Pontryagin duality [97, 98, 86, 99, 100, 101, 102] then tells us that there
are 2° different groups and bases. Note that this multiplicity is a purely infinite-dimensional feature, since
all finite groups are isomorphic to their character groups; consequently, this feature does not play a role in
the study of finite-dimensional normalizer circuits (or Clifford circuits) [1, 2].

58

inequivalent group-element basis of the Hilbert space.
Finally, we note that, relative to any basis Bg, every quantum state (normalizable or
not) can be expressed as

) = L dg ¥(9)l9), (3.5.12)

where the 1(g) are complex coefficients and where X is a subset of X (if X is a discrete set,
the integral should be replaced by a sum over all elements in X).

3.6 Normalizer circuits (without black boxes)

In this section we generalize the normalizer circuits [1, 2] to general infinite-dimensional
Hilbert spaces of the form

H=HP QNN @ - ® Hn,. (3.6.1)

Normalizer circuits over black box groups will be considered in the next section.

In previous works [1, 2], a finite Abelian group G determines both the standard basis of
He and the allowed types of gates, called normalizer gates. A technical complication that
arises when one tries to define normalizer gates over infinite dimensional groups of the form
Z and T is that there are several group-element basis that can be associated with the Hilbert
space H¢ (see previous section). As a result, there is not a natural choice of standard basis
in a normalizer circuit over an infinite Abelian group. To deal with this aspect of the Hilbert
space, we allow the “standard” basis of the computation to be time-dependent: at every time
step ¢ in a normalizer circuit there is a designated “standard” basis Bg,, which must be a
group-element basis, and is subject to change along the computation.

Designated basis Bg. Let G’ be a member of the family of 2° groups defined in (3.5.10)—
note that G thus generally contains factors Zy,, Z and T. We consider the corresponding
group-element basis Bgr = {|g) : ¢ € G'} as defined in (3.5.11). When we set Bg to be
the designated basis of the computation, it is meant that the group G that labels B will
determine the allowed normalizer gates (read below), and that Bgs will be the basis in which
measurements are performed.

3.6.1 Normalizer gates

We now define the allowed gates of the computation, called normalizer gates. These can
be of three types, namely automorphism gates, quadratic phase gates and quantum Fourier
transforms. To define these gates, we assume that the designated basis of the computation
is Bg for some G of the form (3.5.10).

Automorphism gates. Consider a continuous group automorphism « : G — G, i.e. a is
an invertible map satisfying a(g + h) = a(g) + a(h) for every g,h € G. Define a unitary
gate U, by its action on the basis Bg, as follows: Uy, : |h) — |a(h)). Any such gate is called
an automorphism gate. Note that U, acts as a permutation on the basis Bg and is hence a
unitary operation.

Quadratic phase gates. A function x : G — U(1) (from the group G into the complex
numbers of unit modulus) is called a character if x(g+h) = x(g9)x(h) for every g, h € G and

59

X is continuous. A function B : G' x G — U(1) is said to be a bicharacter if it is continuous
and if it is a character in both arguments. A function £ : G — U(1) is called quadratic if it
is continuous and if

§(g+h) =&(9)6(h)B(g, h), forevery g, heG (3.6.2)

for some bicharacter B(g,h). A quadratic phase gate is any diagonal unitary operation
acting on Bg as Dg : |h) — £(h)|h), where £ is a quadratic function of G.

Quantum Fourier transform. In contrast to both automorphism gates and quadratic
phase gates, which leave the designated basis unchanged, the quantum Fourier transform
(QFT) is a basis-changing operation: its action is precisely to change the designated basis Bg
(at a given time) into another group-element basis Bgr, according to certain rules described
next.

Roughly speaking, the QFT realizes the unitary change of basis between standard and
Fourier basis (Section 3.5). More precisely, there are different types of Fourier transforms,
which act on the individual spaces Hy and Hz.

o QFT over Zy. In the case of Hy, both bases have the same cardinality (since the
‘Hy is finite-dimensional) and such a change of basis can be actively performed by
means of a unitary rotation; the QFT over Zy (which we denote Fy) is defined to be
precisely this unitary operation. In the standard basis |x) with x € Zy, the action of
this gate on a state |¢) = > ¥.|z) is

Fale) = 3 9l with) == —= 3 e hp(a), (36.)

YELN T€ZLN

¢ Infinite-dimensional QFTs. Quantum Fourier transforms acting on spaces Hz have
more exotic features than their finite dimensional counterparts. In the first place, these
QFTs are not gates in the strict sense: since the standard basis {|z) : * € Z} and
Fourier basis {|p) : p € T} have different cardinality, they cannot be rotated into each
other (Section 3.5.2). Thus, the QFT is a change of basis between two orthonormal
bases, but not a unitary rotation. In addition, due to this asymmetry, there are two
distinct types of QFTs, defined as follows.

QFT over Z. If the standard basis (Z basis) is the designated basis of Hz, states are
represented as

) = ¢(e)la). (3.6.4)

€L

Gates are defined according to this (integer) basis, which is also our measurement basis.
When we say that the QFT over Z is applied to |1)), we mean that the designated basis
is changed from the standard basis to the Fourier basis. The state does not physically
change®, but normalizer gates applied after the QFT will be related to the circle group
T (and not Z); if we would measure the state right after the QFT, we would also do

9This somewhat metaphoric notation is chosen to be consistent with previously existing terminology
[1, 2].

60

it in the T basis. As a result, the relevant amplitude-expansion of |¢) is

|@=A@¢@m with 9(p) = » _ ¥ P%y(z). (3.6.5)

z€Z

Some readers may notice, at this point, that the QFT over Z is nothing but the inverse
Fourier series, also commonly known as the discrete-time Fourier transform [22].

QFT over T. On the other hand, if the designated basis of Hz is the Fourier basis,
states are represented as

|@=A@¢mm (3.6.6)

When we say that the QFT over T is applied to |1), we mean that the designated basis
is changed from the Fourier basis to the standard basis, and therefore we re-express
the state |¢) as

¥} = Zlﬁ(w)li"} with 9(z) := /po eZ™P2)(p). (3.6.7)

T€Z

Note that the coefficients ¥ (x) in (3.6.7) are the Fourier coefficients appearing in the
Fourier series [22]. Due to this fact, one can always regard ¢(p) as a periodic function
over the real numbers (with period 1), and identify the QFT over T as the quantum
version of the Fourier series [22].

Lastly, note that the QFT over Z may only be applied (as an operation in a quantum
computation) if the designated basis is the standard basis. Conversely, the QFT over
T may only be applied if the designated basis is the Fourier basis.

We now consider the total Hilbert space Ho with designated basis Bg, where G = G X
-+ X Gy with each G; being a group of the form Zy, Z or T. The total QFT over G is
obtained by applying the QFT over G;, as defined above, to all individual spaces in the
tensor product decomposition of Hg. In particular, application of the QFT over G implies
that the designated basis is changed from Bg to Bg, where G' = G| x ... G, is defined as
follows: if G; has the form Zy then G} = G;: if G; = Z then G := T and, vice versa, if
Gi = Z then G} :=T.

Similarly, one may perform a partial QFT by applying the QFT over G; for a subset of the
G;, and leaving the other systems unchanged. The designated basis is changed accordingly
on all subsystems where a QFT is applied.

3.6.2 Normalizer circuits

Roughly speaking, a normalizer circuit of size T is a quantum circuit C = Uy - - - Uy composed
of T normalizer gates U;. More precisely, the definition is as follows.
A normalizer circuit over G = Z%® x Zy, x --- x Zy, acts on a Hilbert space of the
form
Ho=HE @HL® (HN, ® - O HN,),

with arbitrary parameters a, b, ¢, N;. At time ¢t = 0 (before gates are applied), the designated
basis of the computation is the group-element basis Bg () where G(0) is a group from the
family (3.5.10); without loss of generality, we set G(0) = Z® x T® x Zy, x --- x Zy,. The
input, output, and gates of the circuit are constrained as follows:

61

e Input states. The input states are elements of the designated group basis Bg(o), 1-e.
lg) with g € G(0). The registers'® H< and H} are initialized to be in standard-basis
|n), n € Z and Fourier-basis states |p), p € T, respectively!!. It is assumed that
Fourier basis inputs can be prepared within any finite (yet arbitrarily high) level of
precision (cf. Section 4.2).

e Gates. At time ¢t = 1, the gate U; is applied, which is either an automorphism gate,
quadratic phase gate or a partial QFT over G(0). The designated basis is changed
from Bg(gy to Bg(1), for some group G(1) in the family (3.5.10), according to the rules
for changing the designated basis as described in Section 3.6.1.

At time ¢ = 2, the gate U; is applied, which is either an automorphism gate, quadratic
phase gate or a partial QFT over G(1). The designated basis is changed from Bgy)
to Bg(g), for some group G(2).

The gates Us, ..., Uz are considered similarly. We denote by Bg(;) the designated basis
after application of U; (for some group G(¢) in the family (3.5.10)), forallt = 3,...,T.
Thus, after all gates have been applied, the designated basis is Bg(r)-

e Measurement. After the circuit, a measurement in the final designated basis Bg(r)
is performed.

For finite Abelian groups and their associated Hilbert spaces (i.e. the Hilbert space has
the form Hy, ® - --®Hp,), the above definitions of normalizer circuits and normalizer gates
specialize to the previously defined notion of normalizer circuits over finite Abelian groups,
as done in [1, 2.

3.6.3 Classical encodings of normalizer gates

We now show how to give classical descriptions of normalizer gates and circuits. In the
finite Abelian case this was straightforward {1, 2]: a description of a normalizer gate simply
consisted of a list of its effects when applied to certain computational basis states. In the
infinite dimensional case this approach does not work, because the Hilbert space is not
finitely generated. Instead we will show that there exist efficient standard encodings of
normalizer gates.

First, by saying that our encodings are efficient, we mean that the number of bits needed
to store a description of a normalizer gate scales as O(poly m, polylog V;), where m is the
total number of registers of the Hilbert space (3.6.1) and N; are the local dimensions of
the finite dimensional registers (the memory size of each normalizer gate in these encodings
is given in table 3.1). This polynomial (as opposed to exponential) scaling in m is crucial
in our setting, since normalizer gates may act nontrivially on all m registers of the Hilbert
space (3.6.1)—this is an important difference between our computational model (based on
normalizer gates) and the standard quantum circuit model [3], where a quantum circuit is
always given as a sequence of one- and two-qubit gates.

Our standard encodings are as follows:

(i) A partial quantum Fourier transform F; over G; (the ith factor of G) is described by
the index 7 indicating the register where the gate acts non-trivially.

0n a quantum computation we call each physical subsystem in (3.6.1) a “register”.
" The results in this thesis can be easily generalized to input states that are stabilizer states (Section 4.4),
given that we know the stabilizer group of the state.

62

(ii) An automorphism gate U, is described by what we call a matriz representation A
of the automorphism « (Definition 48): an m x m real matrix A that specifies the
action of the map «. Such a matrix representation can be given in a normal form; see
Theorem 51.

(iii) A quadratic phase gate Dy is described by an m x m real matrix M and an m-dim real
vector v. The pair (M, v) specifies the action of the quadratic function £ associated to
D¢. Here we exploit a normal form for quadratic functions given later in Theorem 57.

A normalizer circuit is specified as a list of normalizer gates given to us in their standard
encodings.

In our work, we assume that all maps « and £ can be represented exactly by rational
matrices and vectors A, M, v, which are explicitly given to us'2.

The efficiency of our standard encodings relies strongly on results presented in sections
3.9 and 3.10. In Section 3.9, we develop a (classical) theory of matrix representations
of group homomorphisms, proving their existence (Lemma 50) and providing a normal form
that characterizes the structure of these matrices (Theorem 51). In Section 3.10, we develop
analytic normal forms for bicharacter functions (Lemmas 52, 53) and quadratic functions
(Theorem 57). These results are also main contributions of our work.

We would like to highlight, in particular, that our normal form for quadratic func-
tions (Theorem 57) should be of interest to a quantum audience. It was recently shown
in [2] that quadratic functions over an Abelian group describe the quantum wave-functions
of ‘the so-called stabilizer states. Hence, our normal form can be used to characterize the
complex amplitudes of such states!3.

Lastly, we mention that we allow the matrices A, M and the vector v in (i-iii) to contain
arbitrarily large and arbitrarily small coeflicients. This degree of generality is necessary in
the setting we consider, since we allow all normalizer gates to be valid components of a
normalizer circuit. However, the presence of infinite groups in (3.5.10) implies that that
there exists an infinite number of normalizer gates (namely, of automorphism and quadratic
gates, which follows from the our analysis in sections 3.9 and 3.10). This is in contrast
with the settings considered in [1, 2], where both the group (3.5.1) and the associated set
of normalizer gates are finite. As a result, the arithmetic precision needed to store the
coefficients of A, M, v in our standard encodings becomes a variable of the model (just like
in the standard problem of multiplying two integer matrices).

3.7 Normalizer circuits over black box groups

In this section we define normalizer circuits over black box groups: these circuits will act
over Hilbert spaces of the form in 3.5.7:

128ome automorphisms and quadratic functions can only be represented by matrices with irrational entries
(cf. the normal forms in sections 3.9,3.10). Restricting ourselves to study the rational ones allows us to
develop ezact simulation algorithms. We believe irrational matrices (even with transcendental entries) could
also be handled by taking into account floating-point errors. We highlight that our stabilizer formalism and
all of our normal forms are developed analytically, and hold even if transcendental numbers appear in the
matrix representations of o and £. (It is an good question to explore whether an exact simulation results
may hold for matrices with algebraic coefficients.)

13 As mentioned in the introduction, the result in [2] is for stabilizer states over finite dimensional Hilbert
spaces but it can be easily generalized.

63

Input element Description needs to specify... Bits needed
Element g¢(¢) of infinite group Z, T variable
Input state |g)
Element g(j) of finite group Zy; log N;
Quantum Fourier transform F; logm
Normalizer circuit C Automorphism gate U, m?|| Al
Quadratic phase gate Dg m?||M|lp + m|jv||b

Table 3.1: The encoding size of a normalizer circuit. || X||, denotes the number of bits used
to store one single coeflicient of X, which is always assumed to a rational matrix/vector.
Formulas in column 3 are written in Big Theta notation and do not include constant factors
(which are anyway small).

H=HPOH ®HUN, ® - Hn, ® Hp. (3.7.1)

where B is a finite Abelian black box group. The only additional ingredient compared with
the previous section is the addition of the black box group B, and it is on this that we will
focuson. Let m =a+b+c.

We will only consider settings where quantum Fourier transforms never act on the black
box portion Hp of the total system. This is a natural restriction; in particular, (to our
knowledge) in all existing quantum algorithms that do use QFTs, these QFTs act on systems
of the form Hy, ® --- ® Hy,.. Thus the only gates that act on the black box register Hp
are automorphism gates and quadratic phase gates.

Since the decomposition of B is unknown, we cannot hope for automorphism gates and
quadratic phase gates to be specified as per the normal forms of Theorems 51 and 57.
Therefore we assume that automorphism gates and quadratic phase gates are specified as
efficiently computable rational functions. This limits the class of classical functions that we
consider.

1. Rational.* An automorphism (or an arbitrary function) o : G — G is rational if it
returns rational outputs for all rational inputs. A quadratic function £ is rational if it
can be written in the form £(g) = exp (2nig(g)) where ¢ is a rational function from G
into R modulo 27Z.

2. Efficiently computable. « and ¢ can be computed by polynomial-time uniform
family of classical circuits {a;}, {¢:}. All a4, g; are poly(m,i) size classical circuits
that query the black-boz group oracle at most poly{m, i) times: their inputs are strings
of rational numbers whose numerators and denominators are represented by i classical
bits (their size is O(2¢)). For any rational element g € G that can be represented with
so many bits (if G contains factors of the form T these are approximated by fractions),
it holds that a;(g) = a(g) and ¢;(g9) = q(9).

4We expect this assumption not to be essential, but it simplifies our proofs by allowing us to use exact
arithmetic operations. Our stabilizer formalism can still be applied if the functions a, £ are not rational,
and we expect some version of the simulation result (Theorem 87) to hold even when trascendental numbers
are involved (taking carefully into account precision errors). It is an good question to explore whether an
exact simulation result may hold for algebraic numbers [103].

64

In certain cases (see Section 5.2) we will consider groups like Z}, which, strictly speak-
ing, are not black-box groups (because polynomial time algorithms for group multi-
plication for them are available and there is no need to introduce oracles). In those
cases, the queries to the black-box group oracle (in the above model) are substituted
by some efficient subroutine.

We add a third restriction to the above.

3. Precision bound. For any g or o that acts on an infinite group a bound neyt is
given so that for every i, the number of bits needed to specify the numerators and
denominators in the output of ¢; or «; exactly is at most i + ngyt. The bound noyt
is independent of ¢ and indicates how much the input of each function may grow or
shrink along the computation of the output!. This bound is used to correctly store
the output of maps o : Z* — Z%, o : Z* — T* and to detect whether the output of a
function o : T — T? might get truncated modulo 1.

The allowed automorphism gates U, and quadratic phase gates D¢ are those associated
with efficiently computable rational functions «, £&. We ask these unitaries to be effi-
ciently implementable as well'®, by poly(m, i, Nout)-Size quantum circuits comprising at most
poly(m, 1, nout) quantum queries of the group oracle. The variable ¢ denotes the bit size used
to store the labels g of the inputs [¢g) and bounds the precision level d of the normalizer
computation, which we set to fulfill logd € O(% + nout). The complexity of a normalizer
gate is measured by the number of gates and (quantum) oracle queries needed to implement
them.

In Section 5.2, we will see particular examples of efficiently computable normalizer gates.
We will repeatedly make use of automorphism gates of the form

Ualk1, - -, oy @) — kl,...,km,b'fl--~bf;lm:z>

where k; are integers and b;, x are elements of some black-box group B. These gates are
allowed in our model, since there exist well-known efficient classical circuits for modular
exponentiation given access to a group multiplication oracle [89]. In this case, a precision
bound can be easily computed: since the infinite elements k; do not change in size and all the
elements of B are specified with strings of the same size, the output of & can be represented
with as many bits as the input and we can simply take ngy = 0 (no extra bits are needed).

Many examples of efficiently computable normalizer gates were given in [1, 2], for de-
composed finite group Zy, X --- X Zy,. It was also shown in [1] that all normalizer gates
over such groups can be efficiently implemented.

Finally, a normalizer circuit over G is simply a circuit composed of normalizer gates over
the black box group G, defined analogously to Section 3.6.2: the input state is a basis state,
normalizer circuits are applied at each step of the circuit (changing the designated basis of
the underlying group if the applied gate is a QFT), and at the end of the computation a
measurement is made in the current designated basis.

15For infinite groups there is no fundamental limit to how much the output of @ or ¢ may grow/shrink
with respect to the input (this follows from the normal forms in Theorems 51 and 57.). The number nout
parametrizes the precision needed to compute the function. Similarly to 2., this assumption might me
weakened if a treatment for precision errors is incorporated in the model.

16Recall that, in finite dimensions, the gate cost of implementing a classical function @ as a quantum
gate is at most the classical cost [3] and that computing g efficiently is enough to implement ¢ using phase
kick-back tricks [L04]. We expect these results to extend to infinite dimensional systems of the form #z.

65

Precision requirements

In the model of quantum circuits above, input states and final measurements in the Fourier-
basis {|p),p € T} of Hz can never be implemented with perfect accuracy, a limitation that
stems from the fact that the |p) states are unphysical. This can be quickly seen in two
ways: first, in the Z basis, these states are infinitely-spread plane-waves |p) = >_ e2™i#p|z);
second, in the T basis, they are infinitely-localized Dirac-delta pulses. Physically, preparing
Fourier-basis states or measuring in this basis perfectly would require infinite energy and
lead to infinite precision issues in our computational model.

In the algorithms we study in this thesis (namely, the order-finding algorithm in Theorem
76), Fourier states over Z can be substituted with realistic physical approximations.
The degree of precision used in the process of Fourier state preparation is treated as a
computational resource. We model the precision used in a computation as follows.

Since our goal is to use the Fourier basis |p), p € T, to represent information in a
computation, we require the ability to store and retrieve information in this continuous-
variable basis. Our assumption is that for any set X with cardinality d = | X|, we can divide
the continuous circle-group T spectrum into d equally sized sectors of length 1/d and use
them to represent the elements of X. More precisely, to each element of X we assign a
number in Z4. The element z; € X with index ¢ € Z; is then represented by any state of
the subspace V; 4 = span{l% + A> with |A] < 2_1d} We call the latter states d-approzimate
Fourier states and refer to d as the precision level of the computation. We assume that
these states can be prepared and distinguished to any desired precision d in the following
way:

1. State preparation assumption. Inputs |¢;) with at least % fidelity to some element
of V; 4 can be prepared for any ¢ € Zg.

2. Distinguishability assumption. The subspaces V; 4 can be reliably distinguished.
Note that d determines how much information is stored in the Fourier basis.

Definition 41 (Efficient use of precision'”). A quantum algorithm that uses d-approx.
Fourier states to solve a computational problem with input size n is said to use an efficient
amount of precision if and only log d is upper bounded by some polynomial of n. Analogously,
an algorithm that stores information in the standard basis {|m), m € Z} is said to be efficient
if the states with m larger than some threshold log (mmax) € O(poly n) do not play a role
in the computation.

3.8 Group and Character Theory

3.8.1 Elementary Abelian groups

A group of the form
G=7xRP xZy, x - x Zy, x T (3.8.1)

'"Note that this definition is not necessary to define normalizer circuits but to discuss the physicality of
the model. We point out that there might be better ways to model precision than ours (which may, e.g., lead
to tighter bounds or more efficient algorithms), but our simple model is enough to derive our main results.
We advance that, even if these precision requirements turned out to be high in practice, there exist efficient
discretized qubit implementations of all the infinite-dimensional quantum algorithms that we study later in
the thesis (cf. theorem 79).

66

will be called an elementary Abelian group. We will often use the shorthand notation F' =
Zp, X -+ x Zp, for the finite subgroup in the above decomposition. Note that the Hilbert
space formalism introduced in Section 3.5 does not refer to groups of the form R? (i.e.
direct products of the group of real numbers). However for some of our calculations in later
sections, it will be convenient to include these types of groups in the analysis.

An elementary Abelian group of the form Z, R, T or Zy is said to be primitive. Thus
every elementary Abelian group can be written as G = Gy X - - - X Gy, with each G; primitive;
we will often use this notation. We will also use the notation Gz, Ggr, Gr, Gr to denote
elementary Abelian groups that are, respectively, integer lattices Z®, real lattices R?, finite
groups F and tori T¢. We will also assume that the factors G; of G are arranged so that
GZszG]RXGFXGT.

Next we introduce the notion of group characteristic char(G) for primitive groups:

char(Z) := 0, char(R):=0, char(Zy):= N, char(T):=1. (3.8.2)

Alternatively, we can also define the characteristic as follows: char(G) is the number that
coincides with (a) the order of 1 in G if 1 has finite order (which is the case for Zy and T);
(b) zero, if 1 has infinite order in G (which is the case for Z and R).

Consider an elementary Abelian group G = G X - - - X G,,, where ¢; is the characteristic of
G;. Each element g € G can be represented as an m-tuple g = (g1, ..., gm) of real numbers.
If £ = (x1,...,2Zy,) is an arbitrary m-tuple of real numbers, we say that x is congruent to
g, denoted by x = g (mod G), if

z; =¢; (mod¢;) foreveryi=1,...,m. (3.8.3)
For example, every string of the form x = (Ajcy, ..., Mpcm) With \; € Z is congruent to
0edq.

3.8.2 Characters

Definition 42 (Character [97, 105]). Let G be an elementary Abelian group. A character
of G is a continuous homomorphism x from G into the group U(1) of complex numbers with
modulus one. Thus x(g + h) = x(g)x(h) for every g,h € G.

If G is an elementary Abelian group, the set of all of its characters is again an elementary
Abelian group, called the dual group of GG, denoted by G. Moreover, Gis isomorphic to
another elementary Abelian group, according to the following rule:

G=R*xT’xZ°x F — GR*x 7P x T¢ x F. (3.8.4)

Thus, in particular, R is isomorphic to R itself and similarly Fis isomorphic to F' itself;
these groups are called autodual. On the other hand, Z is isomorphic to T and, conversely, T
is isomorphic to Z. We also note from the rule (3.8.4) that the dual group of Gis isomorphic
to G itself. This is a manifestation of the Pontryagin-Van Kampen duality [97, 98, 86].

We now give explicit formulas for the characters of any primitive Abelian group.

e The characters of R are

Xz(y) = exp (2mizy), for every z, y € R. (3.8.5)

67

Thus each character is labeled by a real number. Note that XzXz' = Xz+or for all
z,z’ € R. The map x — x4 is an isomorphism from R to R, so that R is autodual.

e The characters of Zy are

omi
Xz(y) 1= exp (% :cy), for every z, y € Zy. (3.8.6)

Thus each character is labeled by an element of Z). As above, we have Xz Xz = Xzira
for all z,z' € Zyn. The map z — X is an isomorphism from Zy to Zy, so that Zy is
autodual.

e The characters of Z are
Xp(m) := exp (2mwipm), for every p€ T, m € Z, (3.8.7)

Each character is labeled by an element of T. Again we have xpxpy = Xp4p for all
p,p' € T and the map p — xp is an isomorphism from T to Z.

e The characters of T are
Xm(p) := exp (2wipm), foreverype T, m € Z; (3.8.8)

Each character is labeled by an element of Z. Again we have X;nXm' = Xmtm’ for all
m,m’ € Z and the map m — ., is an isomorphism from Z to T.

If G is a general elementary Abelian group, its characters are obtained by taking products
of the characters described above. More precisely, if A and B are two elementary Abelian
groups, the character group of A x B consists of all products x 4xp with x4 € A and XB € B ,
and where xaxB(a,b) := xa(a)xp(b) for every (a,b) € A x B. To obtain all characters of
a group G having the form (3.8.4), we denote

G* =R*xZ° x T® x F. (3.8.9)
Considering an arbitrary element
B=(T1y e sTay 21y vy 2byt1y-stc, fly---, fa) € G¥, (3.8.10)
the associated character is given by the product

X i= Xry - Xra Xay -+ Xap Xty -+ Xte Xf1 -+ - Xfa (3.8.11)

where the individual characters xr,, Xz Xty Xfy - -- of R,Z, T and Zy, are defined above.
The character group of G is given by

G={x,:peG. (3.8.12)

The rule (3.8.4) immediately implies that (G*)* = G. This implies that the character group
of G* is {xg : g € G}, where x4 is defined in full analogy with (3.8.11). Two elementary but
important features are the following:

68

Lemma 43. For every g € G and p € G* we have

Xu(9) = xg(1)- (3.8.13)

Lemma 44. For every u,v € G* and every g € G it follows that

Xp+v(9) = Xu(9)x0(9) (3.8.14)

Both Lemmas 43 and 44 follow from inspection of the characters of R,Z, T and Zy
defined in (3.8.5)-(3.8.8). The lemmas also reflect the strong duality between G and G*.

Finally, the definition of every character function x,(b) as given in (3.8.5)-(3.8.8), which
is in principle defined for a in R, Zy,Z, T and b in R, Zy, T, Z, respectively, can be readily
extended to the entire domain of real numbers, yielding functions x.(y) with z,y € R.
. Consequently, the character functions (3.8.11) of general elementary Abelian groups G =
G1 X -+ X Gy, can also be extended to a larger domain, giving rise to functions x,(y) where
x,y € R™. With this extended notion, we have the following basic property:

Lemma 45. Let g € G and pp € G*. For every z,y € R™ such that x = g (mod G) and
y = p (mod G*), we have

Xy () = Xu(9)- (3.8.15)

The proof is easily given for primitive groups, and then extended to general elementary
Abelian groups.

3.8.3 Simplifying characters via the bullet group

Let G = G; X - -+ X Gy, be an elementary Abelian group where each G; is of primitive type.
Recall that in Section 3.8.2 we have introduced the definition of the elementary Abelian
group G*, which is isomorphic to the character group of G. Here we define another group
G* (which is Abelian but not elementary), called the bullet group of G. The bullet group
is isomorphic to G* (and hence also to the character group of G) and is mainly introduced
for notational convenience, as working with G* will turn out to simplify calculations. The
bullet group is defined to be G* = G} x --- x Gy, where

. 1 2 N-1
ZN.—{O,W,J—V',..., N modl},

R*:=R*=R; Z*:=2"=T; T*:=T"=2Z. (3.8.16)

Thus the only difference between the groups G* and G* is in the Zy, components. The
groups G* and G*® are isomorphic via the “bullet map”

peG = u®:=ul,...,un €G*, (3.8.17)

where p? := p;/N if p; € Zy and p? = p; if p; belongs to either R,Z or T. The bullet map
is easily seen to be an isomorphism.

One of the main purposes for introducing the bullet group is to simplify calculations
with characters. In particular, for every g € G and p € G* we have

Xu(9) = exp (21& Zﬂ,’gi>. (3.8.18)

1=1

69

3.8.4 Annihilators

Let G be an elementary Abelian group. Let X be any subset of G. The annihilator X1 is
the subset
Xt = {peG*: xu(zx) =1 for every z € X}. (3.8.19)

We can define the annihilator Y1 of a subset Y C G* analogously as
Yt:={z€G: xulz)=1forevery pc Y}. (3.8.20)

By combining the two definitions it is possible to define double annihilator sets xL .=
(X1)L, which is a subset of the initial group G, for every set X C G. Similarly, vy cG*
for every Y C G*. The following lemma states that X and xAL are, in fact, identical sets
iff X is closed as a set, and related to each other in full generality:

Lemma 46 ([98]). Let X be an arbitrary subset of an elementary Abelian group G. Then
the following assertions hold:

(a) The annihilator X is a closed subgroup of G* (and XL is a closed subgroup of G).
(b) XL is the smallest closed subgroup of G containing X .
(c) IfY is a subset of G such that X CY then X* DY+ and XL c v,

We mention that in the quantum computation literature (see e.g. [78, 21, 1, 2]) the
annihilator H+ of a subgroup H is more commonly known as the orthogonal subgroup of H.
Let @ : G — H be a continuous group homomorphism between two elementary Abelian
groups G and H. Then [97, proposition 30] there exists a unique continuous group homo-
morphism o* : H* — G*, which we call the dual homomorphism of «, defined via the

equation
Xor () (9) = xulalg))- (3.8.21)

Note that o™ = « by duality.

3.9 Homomorphisms and matrix representations

3.9.1 Homomorphisms

Let G=G1 x...x G and H = Hy x ... X H, be two elementary finite Abelian groups,
where G;, H; are primitive subgroups. As discussed in Section 3.8.1, we assume that the G;
and H; are ordered so that G = Gz x Ggr X Gr x Gt and H = Hz x Hg x Hp x Hr.
Consider a continuous group homomorphism o : G — H. Let agz : Gz — Gz be the
map obtained by restricting the input and output of o to Hz. More precsiely, for g € Gz
consider the map
(9,0,0,0) € G — 2(g,0,0,0) € H (3.9.1)

and define azz(g) to be the Gz-component of a(g, 0,0,0). The resulting map azz is a con-
tinuous homomorphism from Z to Z. Analogously, we define the continuous group homomor-
phisms axy : Gy — Hx with X, Y = Z,R, T, F. It follows that, for any g = (2,7, f,t) € G,

70

we have

I

azz(z) + azr(r) + azr(f) + azr(t) azz Qgzr OgzF OZT

arz(2) + arr(r) + arr(f) + arr(t) N QRZ ORR ORF ORT T

a(g) =
arpz(z) + apr(r) + apr(f) + arr(t) arz arr opr opr | | f
arz(z) + orr(r) + arr(f) + arr(t) arz atr ot orr/) \t
(3.9.2)

« is therefore naturally identified with the the 4 x 4 “matrix of maps” given in the r.h.s
of (3.9.2).

The following lemma (see e.g. [106] for a proof) shows that homomorphisms between
elementary Abelian groups must have a particular block structure.

Lemma 47. Let o« : G — H be a continuous group homomorphism. Then o has the
following block structure

azz, 0 0 0
QR7Z ORR 0 0

o (3.9.3)
oapz 0 aprp 0

arz QTR OQTF OTT
where 0 denotes the trivial group homomorphism.

The lemma shows, in particular, that there are no non-trivial continuous group homomor-
phisms between certain pairs of primitive groups: for instance, continuous groups cannot be
mapped into discrete ones, nor can finite groups be mapped into zero-characteristic groups.

3.9.2 Matrix representations

Definition 48 (Matrix representation). Consider elementary Abelian groups G = G1 x
-«+ X Gy and H = Hy x --- x H, and a group homomorphism « : G — H. A matriz
representation of « is an n X m real matrix A satisfying the following property:

a(g9) = Az (mod H) for every g € G and z € R™ satisfying x = ¢ (nod G) (3.9.4)

Conversely, a real n x m matrix A is said to define a group homomorphism if there exists a
group homomorphism « satisfying (3.9.4).

It is important to highlight that in the definition of matrix representation we impose
that the identity a(g9) = Az (mod H) holds in a very general sense: the output of the map
must be equal for inputs z, ' that are different as strings of real numbers but correspond
to the same group element g in the group G. In particular, all strings that are congruent to
zero in G must be mapped to strings congruent to zero in H. Though these requirements
are (of course) irrelevant when we only consider groups of zero characteristic (like Z or R),
they are crucial when quotient groups are involved (such as Zy or T).

As a simple example of a matrix representation, we consider the bullet map!®, which is
an isomorphism from G* to G*® . Define the diagonal m x m matrix T with diagonal entries

188trictly speaking, definition 48 cannot be applied to the bullet map, since G* is not an elementary
Abelian group. However the definition is straightforwardly extended to remedy this.

71

defined as

(3.9.5)

Y1) 1/N; if G; = Zn, for some Ny,
1,1) =
' 1 otherwise.

It is easily verified that T satisfies the following property: for every p € G* and x € R™
satisfying ¢ = p (mod G*), we have

u* =Tz (mod G*®). (3.9.6)

Note that, with the definition of T, equation (3.8.18) implies

Xu(g) = exp (Qni Zu’(z)g(z)) = exp (2ni uT Yg). (3.9.7)

i=1

Looking at equation (3.9.6) coefficient-wise, we obtain a relationship u®(i) = %”l (mod 1)
for each factor G; of the form Zy,; other factors are left unaffected by the bullet map. From
this expression it is easy to derive that T~! is a matrix representation of the inverse of the
bullet map'?, i.e. the group isomorphism x* — x (mod G*).

The next lemma (see Appendix B.1 for a proof) summarizes some useful properties of
matrix representations.

Lemma 49 (Properties of matrix representations). Let G, H, J be elementary Abelian
groups, anda : G — H and f : H — J be group homomorphisms with matriz representations
A, B, respectively. Then it holds that

(a) BA is a matriz representation of the composed homomorphism f3 o a;
b) The matriz A* .= Y 'AT Ty is a matriz representation of the dual homomorphism
G
o, where Tx denotes the matriz representation of the bullet map X* — X°.

As before, let G = Gy X -+ X G, be an elementary Abelian group with each G; of
primitive type. Let

ei =(0,...,0,1,0,...,0) (3.9.8)

denote the i-th canonical basis vector of R™. If we regard g € G as an element of R™, we
may write ¢ = Y g(i)e;. Note however that e; may not belong to G itself. In particular, if
G; =T then e; ¢ T (since 1 ¢ T in the representation we use, i.e. T = [0, 1)).

Lemma 50 (Existence of matrix representations). Every group homomorphism « :
G — H has a matriz representation A. As a direct consequence, we have a(g) = Y, g(t)Ae;
(mod H), for every g =3, 9(i)e; € G.

The last property of Lemma 50 is remarkable, since the coefficients g(%) are real numbers
when G; is of the types R and T. We give a proof of the lemma in Appendix B.1.
We finish this section by giving a normal form for matrix representations and char-

acterizing which types of matrices constitute valid matrix representations as in definition
48.

19%We ought to highlight that the latter is by no means a general property of matrix representations. In
fact, in many cases, the matrix-inverse A ™! (if it exists) of a matrix representation A of a group isomorphism
is not a valid matrix representation of a group homomorphism. (This happens, for instance, for all group
automorphisms of the group Zxy that are different from the identity.) In Theorem 51 we characterize which
matrices are valid matrix representations. Also, in Section 4.5.2 we discuss the problem of computing matrix
representations of group automorphisms.

72

Theorem 51 (Normal form of a matrix representation). Let G = G1 X --- X Gy,
and H = Hy x --- x H, be elementary Abelian groups. Let cj,cf;-,di and d; denote the
characteristic of Gj, G}, H; and H;, respectively. Define Rep to be the subgroup of allnxm
real matrices that have integer coefficients in those rows i for which H; has the form Z or
Zg,. A real n x m matriz A is a valid matriz representation of some group homomorphism
a: G — H iff A is an element of Rep fulfilling two (dual) sets of consistency conditions:

¢jA(,j) =0 moddi, dfA*(i,j)=0 mod c}, (3.9.9)
foreveryi=1,...,n,j=1,...,m, and being A* the m x n matriz defined in Lemma 49(b).
Equivalently, A must be of the form

Azz 0 0 0
A A 0 0
A= | RE ORR (3.9.10)
Arz 0 App O
A1z AR Atr ArT.
with the following restrictions:
1. Azz and At are arbitrary integer matrices.

2. Arz, Arr are arbitrary real matrices.

3. Apy, App are integer matrices: the first can be arbitrary; the coefficients of the second
must be of the form
d;

A(’i, _7) = QG5
where o j can be arbitrary integers®®.

4. Atz, ATr and Arp are real matrices: the first two are arbitrary; the coefficients of the
third are of the form A(i,j) = o j/c; where o, j can be arbitrary integers®L.

The result is proven in Appendix B.1. For the normalizer circuits we consider, we will
not need to use the results regarding R.

3.10 Quadratic functions

In this section we study the properties of quadratic functions over arbitrary elementary
groups of the form G = R® x T* x Zb x Zn, % -+ X Zn,. Most importantly, we give
normal forms for quadratic functions and bicharacters. We list results without proof, since
all techniques used throughout the section are classical. Yet, we highlight that the normal
form in Theorem 59 should be of quantum interest, since it can be used to give a normal
form for stabilizer states over elementary groups.

All results in this section are proven in Appendix B.2.

28ince Arz, Arr multiply integer tuples and output integer tuples modulo F' = Zn, X - - - X Zn,, for some
Nis, the coefficients of their ith rows can be chosen w.l.o.g. to lie in the range [0, N;) (by taking remainders).
21Dye to the periodicity of the torus, the coefficients of A1z, Arr can be chosen to lie in the range [0, 1).

73

3.10.1 Definitions

Let G be an elementary Abelian group. Recall from Section 3.6 that a bicharacter of G is
a continuous complex function B : G x G — U(1) such that the restriction of B to either
one of its arguments is a character of G. Recall that a quadratic function £ : G — U(1) is a
continuous function for which there exists a bicharacter B such that

- &(g+h) =£&(9)¢(h)B(g,h) forall g,h€QqG. (3.10.1)

We say that & is a B-representation.

A bicharacter B is said to be symmetric if B(g,h) = B(h, g) for all g, h € G. Symmetric
bicharacters are natural objects to consider in the context of quadratic functions: if £ is a
B-representation then B is symmetric since

B(g,h) = &(g + h)E(g)€(R) = £(h + 9)E(R)E(g) = B(h, g). (3.10.2)

3.10.2 Normal form of bicharacters

The next lemmas characterize bicharacter functions.

Lemma 52 (Normal form of a bicharacter). Given an elementary Abelian group G,
then a function B : G x G — U(1) is a bi-character iff it can be written in the normal form

B(g, h) = xp(g)(h) (3.10.3)

where B is some group homomorphism from G into G*.

This result generalizes Lemma 5(a) in [1]. The next lemma gives a explicit characteri-
zation of symmetric bicharacter functions.

Lemma 53 (Normal form of a symmetric bicharacter). Let B be a symmetric bichar-
acter of G in the form (3.10.8) and let A be a matriz representation of the homomorphism
B. Let Y denote the default matriz representation of the bullet map G* — G* as in (3.9.5),
and M = TA. Then

(a) B(g,h) =exp(2rigT™Mh) for all g,h € G.
(b) M is a matriz representation of the homomorphism G Bae G*.
(c) If z,y € R™ and g,h € G are such that x = g (mod G) and y = h (mod G), then

B(g, h) = exp (2riz" My). (3.10.4)

(d) The matriz M is symmetric modulo integer factors, i.e. M = MT mod Z.
(e) The matriz M can be efficiently symmetrized: i.e. one can compute in classical poly-
nomial time a symmetric matriz M' = M'T that also fulfills (a)-(b)-(c).
3.10.3 Normal form of quadratic functions

Our final goal is to characterize all quadratic functions. This is achieved in Theorem 57. To
show this result a few lemmas are needed.

74

Lemma 54. Two quadratic functions &,&2 that are B-representations of the same bichar-
acter B must be equal up to multiplication by a character of G, i.e. there exists u € G* such
that

1(9) = xu(9)62(9), for every g € G. (3.10.5)

We highlight that a much more general version of Lemma 54 was proven in [107], using
projective representation theory?2.

Our approach now will be to find a method to construct a quadratic function that is a
B-representation for any given bicharacter B. Given one B-representation, Lemma 54 tells
us how all other B-representation look like. We can exploit this to characterize all possible
quadratic functions, since we know how symmetric bicharacters look (Lemma 53).

The next lemma shows how to construct B-representations canonically.

Lemma 55. Let be a bicharacter B of G. Consider a symmetric real matriz M such that
B(g,h) = exp (2rigTMh). Then the following function is quadratic and a B-representation:

Q(g) := o™ (a"Mg+C"9), (3.10.6)

where C is an integer vector dependent on M, defined component-wise as C (i) = M (i,1)c;,
where ¢; denotes the characteristic of the group G;.

Finally, we arrive at the following important result:

Theorem 56 (Normal form of a quadratic function, short). Let G be an elementary
Abelian group. Then a function & : G — U(1) is quadratic if and only if

£(g) = ™ (9™Ma + OTg +207y) (3.10.7)
where C, v, M are, respectively, two vectors and a matriz that satisfy the following:
e v is an element of the bullet group G°*;

e M is the matriz representation of a group homomorphism from G to G*; and

e C is an integer vector dependent on M, defined component-wise as C(i) = M(3,1)c;,
where ¢; is the characteristic of the group G;.

Combined with Theorem 51 and Lemma. 53, this gives the following normal form theorem:

Theorem 57 (Normal form of a quadratic function, extended).

Let G = Z° x Zn, X --- x Zn, x T be an elementary Abelian group. Recall Z% =
{0,1/N,--- ,(N — 1)/N} to be a group under addition modulo 1, and G* = T* x Zy, x
s X Ly, X Zb. Then a function & : G — U(1) is quadratic if and only if

5(9) :eni(gTMg+CTg+2ng) (3108)

where C, v, M are, respectively, two vectors and a matrix that satisfy the following:

22Precisely, the authors show (see [107, Theorem 1]) that if Dy, D» are finite-dimensional irreducible
unitary projective representations of a locally compact Abelian group G, possessing the same factor system
w, then there exists a unitary transformation U and a character x such that U*D1(9)U = xn(g)D2(9)-
In our setup quadratic functions are one-dimensional projective irreps of G and bicharacters are particular
examples of factor systems.

75

e v is an element of the bullet group G*;

e M is the matriz representation of a group homomorphism from G to G®, which neces-
sarily has the form

Mrz Mrr Mrr
]tf[= MF'Z MF'F 0 (3109)
Mz, 0 0

with the following restrictions:

— M3z and Myt are arbitrary integer matrices.

— Mpez and Mtp are rational matrices, the former with the form M (i, j) = o4 ;/N;
and the latter with the form M(i,j) = o4,;/N;, where a;j are arbitrary integers,
and N; is the order of the i-th cyclic subgroup Zny,.

— MpeF is a rational matriz with coefficients of the form

~ - ai!j
M(i,j) = ————=— 3.10.10
(8.1) ged (Ny, Nj) ()
where a; ; are arbitrary integers, and N; is the order of the i-th cyclic subgroup
Zn,

e

— Mgz is an arbitrary real matriz.

The entries of Mpez, Mrp, Mper, and Mtz can be assumed to lie in the interval
[0,1). Moreover, M can be assumed to be symmetric, i.e. Mz, = Myr, Mf.; = Mrp,
MEep = Mpep, and M{; = Mrg.

e C is an integer vector dependent on M, defined component-wise as C(i) = M(,i)c;,
where ¢; is the characteristic of the group G;. (Recall that char(Z) = 0, char(T) = 1,
and char(Zy) = N.)

As discussed in the introduction, Theorem 57 may be used to extend part of the so-called
“discrete Hudson theorem” of Gross [85], which states that the phases of odd-qudit stabilizer
states are quadratic.

The normal form in Theorem 57 can be very useful to perform certain calculations within
the space of quadratic functions, as illustrated by the following lemma.

Lemma 58. Let &, be the quadratic function (3.10.7) over G. Let A be the matriz rep-
resentation of a continuous group homomorphism a : G — G. Then the composed function
Emp 0 « is also quadratic and can be written in the normal form (8.10.7) as Epyr o, with

M = ATMA, v = ATv+ vau, vam = ATCpy — Cyurppa, (3.10.11)
where Cyy is the vector C' associated with M in (8.10.7).

This lemma will be used to prove the main simulation result, Theorem 59 (in the proof
of Lemma 70.)

76

Chapter 4

Classical simulation of normalizer
circuits for infinite-dimensional
systems |

In this chapter we study normalizer circuits over explicitly decomposed infinite Abelian
groups, as defined in Chapter 3. We show that such normalizer circuits can be efficiently
simulated on a classical computer.

The results of this chapter is joint work with Juan Bermejo-Vega and Martin Van den
Nest. This chapter is mostly excerpted from [74].

4.1 Introduction

In the preceding chapter we have introduced and defined the model of normalizer circuits
over infinite Abelian groups. We now proceed to prove the first of our two main complexity
theoretic results: normalizer circuits over explicitly decomposed groups can be efficiently
simulated classically.

To achieve an efficient classical simulation of normalizer circuits over Z® x T® x F
(Theorem 59), we develop new stabilizer formalism techniques which extend the sta-
bilizer formalism for finite Abelian groups developed in [1, 2] (which was in turn a general-
ization of the well-known stabilizer formalism for qubit/qudit systems [17, 16, 76, 108, 109,
110, 111]) . The stabilizer formalism is a paradigm where a quantum state may be described
by means of a group of unitary (Pauli) operators (the Pauli stabilizer group) which leave
the state invariant. An appealing feature of the stabilizer formalism for finite-dimensional
systems is that each stabilizer group is finite and fully determined by specifying a small
list of group generators. This list of generators thus forms a concise representation of the
corresponding quantum state. Furthermore, if a Clifford gate is applied to the state, the list
of generators transforms in a transparent way which can be efficiently updated. Performing
such updates throughout the computation yields a stabilizer description of the output state.
Finally, one can show that the statistics arising from a final measurement can be efficiently
reproduced classically by suitably manipulating the stabilizer generators of the final state.

One major complication arises from the fact that the underlying Abelian group is not
finitely generated: when we define Pauli stabilizer groups later in this chapter, we will see
that the stabilizer groups are no longer finite nor even finitely generated. This means that
the paradigm of representing the group in terms of a small list of generators no longer

77

applies, and a different method needs to be used. We will show how stabilizer groups can
be efficiently represented in terms of certain linear maps; these maps have concise matrix
representations, which will form efficient classical descriptions of the associated stabilizer
group.

A crucial ingredient in the last step of our simulation is a polynomial-time classical
algorithm that computes the support of a stabilizer state, given a stabilizer group that
describes it. This algorithm exploits a classical reduction of this problem to solving systems
of mized real-integer linear equations [112]|, which can be efficiently solved classically.
To find this reduction, we make crucial use of the aforementioned normal forms and our
infinite-group stabilizer formalism (Section 4.6).

Lastly, we mention a technical issue that arises in the simulation of the final measurement
of a normalizer computation: the basis in which the measurement is performed may be
continuous (stemming again from the fact that G contains factors of T). As a result,
precision issues need to be taken into account in the simulation. For this purpose, we
develop e-net techniques to sample the support of stabilizer states.

Relationship to previous work

In the particular case when G is finite, our results completely generalize the results in [1]
and some of the results in [2]. Our normal forms for quadratic functions/stabilizer states
improve those in [2]. However, the simulations in [2] are stronger in the finite group case,
allowing non-adaptive Pauli measurements in the middle of a normalizer computation. It
should be possible to extend the techniques in [2] to our regime, which we leave for future
investigation. Normal forms for qudit stabilizer states based on quadratic functions were
also given in [109].

Prior to our work, an infinite-dimensional stabilizer formalism best known as “the con-
tinuous variable (CV) stabilizer formalism” was developed for systems that can be described
in terms of harmonic oscillators [113, 114, 115, 116, 117, 118], which can be used as “con-
tinuous variable” carriers of quantum information. The CV stabilizer formalism is used in
the field of continuous-variable quantum information processing [113, 114, 115, 116, 117,
118, 119, 120, 121], being a key ingredient in current schemes for CV quantum error correc-
tion [115, 122] and CV measurement-based quantum computation with CV cluster states
[123, 124, 125, 122]. A CV version of the Gottesman-Knill theorem [116, 117] for simulations
of Gaussian unitaries (acting on Gaussian states) has been derived in this framework.

We stress that, although our infinite-group stabilizer formalism and the CV stabilizer
formalism share some similarities, they are physically and mathematically inequivalent and
should not be confused with each other. Ours is applied to describe Hilbert spaces of the
form H3*@QHE@HN, ® - -®Hn, with a basis |g) labeled by the elements of T® x Z? x Zy, x
---XZn,: the last c registers correspond to finite-dimensional “discrete variable” systems; the
first a+ b registers can be thought of infinite-dimensional “rotating-variable” systems that
are best described in terms of quantum rotors®. In the CV formalism [116], in contrast,
the Hilbert space is H with a standard basis labeled by R™ (explicitly constructed as
a product basis of position and momentum eigenstates of m harmonic oscillators). Due
to these differences, the available families of normalizer gates and Pauli operators in each

!The quantum states of a quantum fixed-axis rigid rotor (a quantum particle that can move in a
circular orbit around a fixed axis) live in a Hilbert space with position and momentum bases labeled by T
and Z: the position is given by a continuous angular coordinate and the angular momentum is quantized in
+1 units (the sign indicates the direction in which the particle rotates [126]).

78

framework (see sections 3.6, 4.3 and [116]) are simply inequivalent.

Furthermore, dealing with continuous-variable stabilizer groups as in [115, 116, 118] is
sometimes simpler, from the simulation point of view, because the group R™ is also a finite-
dimensional vector space with a finite basis. In our setting, in turn, G is no longer a
vector space but a group that may well be uncountable yet having neither a basis nor a
finite generating set; on top of that, our groups contain zero divisors and are not compact.
These differences require new techniques to track stabilizer groups as they inherit all these
rich properties. For further reading on these issues we refer to the discussion in [2], where
the differences between prime-qudit stabilizer codes [17, 16, 77] (which can described in
terms of fields and vector spaces) and stabilizer codes over arbitrary spaces Hq, ® - -- @ Hg,,
(which are associated to a finite Abelian group) are explained in detail.

Finally, we mention some related work on the classical simulability of Clifford circuits
based on different techniques other than stabilizer groups: see [127] for simulations of qubit
non-adaptive Clifford circuits in the Schrédinger picture based on the stabilizer-state normal
form of [108]; see [128, 129] for phase-space simulations of odd-dimensional qudit Clifford
operation exploiting a local hidden variable theory based on the discrete Wigner function of
[130, 85, 131]; lastly, see [132] for phase-space simulations of qubit CSS-preserving Clifford
operations based on a Wigner function for rebits.

It should be insightful at this point to discuss briefly whether the latter results may
extend to our setup. In this regard, it seems plausible to us that efficient simulation schemes
for normalizer circuits analog to those.in [127] might exist and may even benefit from the
techniques developed in the present work (specifically, our normal forms, as well as those
given in [2]). Within certain limitations, it might also be possible to extend the results
in [128, 129] and [132] to our setting. We are aware that local hidden variable models
for the full-fledged normalizer formalism studied here cannot exist due to the existence of
stabilizer-type Bell inequalities [133, 134, 135], which can be violated already within the
qubit stabilizer formalism (the G = Z% normalizer formalism). Consequently, in order to
find a hypothetical non-negative quasi-probability representation of normalizer circuits with
properties analogous to those of the standard discrete Wigner function of [85, 131], one would
necessarily need to specialize to restricted normalizer-circuit models? with, e.g., fewer types
of gates, input states or measurements; this is part of the approach followed in [132], where
the positive Wigner representation for qubit CSS-preserving Clifford elements is given.

Currently, there are no good candidate Wigner functions for extending the results of
[128, 129] or [132] to systems of the form HZ“: the proposed omes (see [136, 137, 138]
and references therein) associate negative Wigner values to Fourier basis states (which are
allowed inputs in our formalism and also in [128, 129, 132]) that we introduce in Section 3.5;
for one qubit, these are the usual |+), |—) states. The existence of a non-negative Wigner
representation for this individual case has not yet been ruled out by Bell inequalities, to the
best of our knowledge.

2Note that this might not be true for all quasi-probability representations. The locality of the hidden
variable models given in [130, 131, 128, 132] comes both from the positivity of the Wigner function and an
additional factorizability property (cf. [131] and [132, p.5, Property 4]): in principle, classical simulation
approaches that sample non-negative quasi-probability distributions without the factorizability property are
well-defined and could also work, even if they do not lead to local hidden variable models.

79

Discussion and outlook

Finally, we discuss some open questions suggested by our work as well as a few potential
avenues for future research.

Due to the presence of Hilbert spaces of the form Hgz, our stabilizer formalism over infinite
groups yields a natural framework to study continuous-variable error correcting codes for
quantum computing architectures based on superconducting qubits. Consider, for instance,
the so-called 0-m qubits [139, 140]. These are encoded qubits that, in our formalism, can
be written as eigenspaces of groups of (commuting) generalized Pauli operators associated
to Z and T (cf. sections 4.3-4.4 and also the definitions in [139, 140]). Hence, we can
interpret them as instances of generalized stabilizer codes® over the groups Z and T. We
believe that it should be possible to apply the simulation techniques in this chapter (e.g.,
our generalized Gottesman-Knill theorem) to the study of fault-tolerant quantum-computing
schemes that employ this form of generalized stabilizer codes: we remind the reader that
the standard Gottesman-Knill theorem [17, 16] is often applied in fault-tolerant schemes for
quantum computing with traditional qubits, in order to delay recovery operations and track
the evolution of Pauli errors (see, for instance, [141, 142, 143, 144]).

Also in relation with quantum error correction, it would interesting to improve our
stabilizer formalism in order to describe adaptive Pauli measurements; this would extend
the results in [2] for finite Abelian groups.

In connection with previous works, it would be interesting to study normalizer circuits
over the group R™, to understand how they compare to the Gaussian formalism and to
analyze in a greater level of detail the full hybrid scenario H* ® H%b Q@ HE @ Hy, ®
.-+ ® Hn,. We have left this question to future investigation. However, we highlight that
the formalism of normalizer circuits we present can be extended transparently to study
this case, by considering additional Hilbert spaces of the form %ﬁ?m with associated groups
R™; the stabilizer formalism over groups that we develop, our normal forms and simulation
techniques can be applied to study that context with little (or zero) modifications.

Another question that remains open after our work is whether normalizer circuits over
finite Abelian groups constitute all possible Clifford operations (see a related conjecture in
[2], for finite dimensional systems).

Lastly, we mention that an important ingredient underlying the consistency of our nor-
malizer /stabilizer formalism is the fact that the groups associated to the Hilbert space fulfill
the so-called Pontryagin-Van Kampen duality [97, 98, 86, 99, 100, 101, 102]. From a
purely mathematical point of view, it is possible to associate a family of normalizer gates
with every group in such class, which accounts for all possible Abelian groups that are locally
compact Hausdorff (often called LCA groups). Some LCA groups are notoriously complex
objects and remain unclassified to date. Hilbert spaces associated to them can exhibit exotic
properties, such as non-separability, and may not always be in correspondence with natural
quantum mechanical systems. In order to construct a physically relevant model of quantum
circuits, we have restricted ourselves to groups of the form Z¢ x T® x Zpy, X+ X LN, can
be naturally associated to known quantum mechanical systems. We believe that our results
can be easily extended to all groups of the form Z% x T x Z Ny X - X LN, % R?, which we
call “elementary”, and form a well-studied class of groups known as “compactly generated
Abelian Lie groups” [98]. Some examples of LCA groups that are not elementary are the
p-adic numbers Q, and the adele ring Ay of an algebraic number field F' [86].

3A generalized notion of stabilizer code over an Abelian group was introduced in [2].

80

Outline of this chapter

In Section 4.2 we state the main result (Theorem 59). The remaining sections we develop
the techniques we use to prove the main result.

In Section 4.3 we study the properties of Pauli operators over Abelian groups. In Section
4.4 we present stabilizer group techniques based on these operators. Section 4.5 is a brief
digression for the study systems of linear equations over groups (including systems of mixed
real-integer linear equations) and algorithms to solve these. Finally, in 4.6, we combine the
techniques we have developed to prove our main result.

4.2 Main result

In our main result (Theorem 59 below) we show that any polynomial-size normalizer circuit
(cf. Section 3.6.2 for definitions) associated to any group of the form (3.5.10) can be simulated
efficiently classically. Before stating the result, we will rigorously state what it is meant in
our work by an efficient classical simulation of a normalizer circuit, in terms of computational
complexity.

In short, the computational problem we consider is the following: given a classical
description of a normalizer quantum circuit, its input quantum state and the measurement
performed at the end of the computation (see Section 3.6.2 for details on our computational
model), our task is to sample the probability distribution of final measurement outcomes
with a classical algorithm. Any classical algorithm to solve this problem in polynomial time
(in the bit-size of the input) is said to be efficient.

Theorem 59 (Main result). Let C be any normalizer circuit over any group G = Z x Zb x
Zn, X -+ X Zn, as defined in Section 3.6.2. Let C act on a input state |g) in the designated
standard basis at time zero, and be followed by a final measurement in the designated basis at
time T. Then the output probability distribution can be sampled classically efficiently using
epsilon-net methods.

We remind the reader that, in Theorem 59, both standard and Fourier basis states of
‘Hz are allowed inputs (cf. Section 3.6.2).

In Theorem 59, the state |g) is described by the group element g, which is encoded as
a tuple of m rational* numbers of varying size (see Table 3.1, row 1). The memory needed
to store the normalizer gates comprising C is summarized in table ??, row 2. By “classically
efficiently” it is meant that there exists a classical algorithm (Theorem 73) to perform the
given task whose worst-time running time scales polynomially in the input-size (namely, in
the number of subsystems m, the number of normalizer gates of C) and of all other variables
listed in the “bits needed” column of table 3.1), and polylogarithmically in the parameters
1. A that specify the number of points in a (A, ¢)-net (read below) and their geometrical
arrangement.

Sampling techniques

We finish this section by saying a few words about the (A, ¢)-net methods used in the proof
of Theorem 59. These techniques are fully developed in sections 4.6 and 4.6.3.

We shall show later (Lemma 63) that the final quantum state |¢)) generated by a nor-
malizer circuit is always a uniform quantum superposition in any of the computational basis

#In this thesis we do not use floating point arithmetic.

81

we consider (3.5.11): if G is the group associated to our designated basis, and if X is the
set of € G such that ¢¥(z) # 0, then |¢(x)| = |[¢(y)| for all z,y € X. As a result the final
distribution of measurement outcomes is always a flat distribution over some set X.

Moreover, we show in Section 4.6.3 that X is always isomorphic to a group of the form
K x ZF where K is compact, and that such isomorphism can be efficiently computed: as a
result, we see that, although X is not compact, the non-compact component of X has an
Euclidean geometry. Our sampling algorithms are based on this fact: to sample X in an
approximate sense, we construct a subset Ma . C X of the form

Nae =N: @ Pa, (4.2.1)

where A is an e-net (definition 71) of the compact component K of X and Pp is a r-
dimensional parallelotope contained in the Euclidean component Z*, centered at 0, with
edges of length 2A,...,2A;. We call Ma . a (A, e)-net (definition 72). The algorithm in
Theorem 59 can efficiently construct and sample such sets for any ¢ and A := Aq,...,Ap
of our choice: its worse running-time is O(polylog %,polylog A;), as a function of these
parameters. We refer the reader to Section 4.6 and Theorem 73 for more details.

Treatment of finite-squeezing errors

It follows from the facts that we have just dicussed that when G is not a compact group
(i.e. G contains Z primitive factors) the support X of the quantum state |1/} can be an
unbounded set. In such case, it follows from the fact that |3) is a uniform superposition that
the quantum state is unphysical and that the physical preparation of such a state requires
infinite energy; in the continuous-variable quantum information community, states like |1))
are often called infinitely squeezed states [145]. In a physical implementation, these states
can be replaced by physical finitely-squeezed states, whose amplitudes will decay towards
the infinite ends® of the support set X. This leads to finite-squeezing errors, compared to
the ideal scenario.

In this thesis, we consider normalizer circuits to work perfectly in the ideal infinite-
squeezing scenario. Our simulation algorithm in Theorem 59 samples the ideal distribu-
tion that one would obtain in the infinite precision limit, neglecting the presence of finite-
squeezing errors. This is achieved with the (A, €)-net methods described above, which we
use to discretize and sample the manifold X that supports the ideal output state |1); the
output of this procedure reveals the information encoded in the wavefunction of the state.

4.3 Pauli operators over Abelian groups

In this section we introduce Pauli operators over groups of the form G = Z° x T® x F
(note that we no longer include factors of R¢ because these groups are not related to the
Hilbert spaces that we study), discuss some of their basic properties and finally show that
normalizer gates map any Pauli operator to another Pauli operator. The latter property is
a generalization of a well known property for qubit systems, namely that Clifford operations
map the Pauli group to itself.

Note on terminology. Throughout the rest of this thesis, sometimes we use the symbol
Hr as a second name for the Hilbert space Hz. Whenever this notation is used, we make

5The particular form of the damping depends on the implementation. These effects vanish in the limit
of infinite squeezing.

82

implicit that we are working on the Fourier basis of Hz, which is labeled by the circle group
T. Sometimes, this basis will be called the T standard basis or just T basis.

4.3.1 Definition and basic properties

Consider an Abelian group of the form G = Z* x T® x F' and the associated Hilbert space
He with the associated group-element basis {|g) : ¢ € G} as defined in Section 3.5 . We
define two types of unitary gates acting on Hq, which we call the Pauli operators of G. The
first type of Pauli operators are the X-type operators X¢(g) (often called shift operators in
generalized harmonic analysis):

Xa(9)¥(h) :=¢(h—g), forevery g,heG, (4.3.1)

where the ¥(h) are the coefficients of some quantum state |1} in Hg. These operators can
also be written via their action on the standard basis, which yields a more familiar definition:

Xc(9)|h) =|g +h), forevery g,h €G. (4.3.2)

In representation theory, the map g — Xg(g) is called the regular representation of the
group G. The second type of Pauli operators are the Z-type operators Zg(p):

Za(p)lg) := xu(9)lg), for every g € G, p€ G*. (4.3.3)

We define a generalized Pauli operator of G to be any unitary operator of the form

o= vZc(r)Xc(9) (4.34)

where 7 is a complex number with unit modulus. We will call the duple (u,g) and the
complex number ~, respectively, the label and the phase of the Pauli operator o. Further-
more we will regard the label (u, g) as an element of the Abelian group G* x G. The above
definition of Pauli operators is a generalization of the notion of Pauli operators over finite
Abelian groups as considered in [1, 2|, which was in turn a generalization of the standard
notion of Pauli operators for qubit systems. An important distinction between Pauli op-
erators for finite Abelian groups and the current setting is that the Zg(u) are labeled by
u € G*. For finite Abelian groups, we have G* = G and consequently the Z-type operators
are also labeled by elements of G. »

Using the definition of Pauli operators, it is straightforward to verify the following com-
mutation relations, which hold for all ¢ € G and n € G*:

Xa(9)Xe(h) = Xc(g + h) = Xg(h)Xc(9)
Ze(w)Zc(v) = Za(p +v) = Za(v)Za(n) (4.3.5)
Ze(m)Xa(9) = xu(9)Xc(9) Za(p)

1t follows that the set of generalized Pauli operators of G form a group, which we shall call
the Pauli group of G.

4.3.2 Evolution of Pauli operators

The connection between normalizer gates and the Pauli group is that the former “preserve”
the latter under conjugation, as we will show in this section. This property will be a

83

generalization of the well known fact that the Pauli group for n qubits is mapped to itself
under the conjugation map o — UoUT, where U is either a Hadamard gate, CNOT gate or
(w/2)-phase gate[17, 16]—these gates being normalizer gates for the group G = Zga x ...Zs2
[1, 2]. More generally, it was shown in [1] that normalizer gates over any finite Abelian group
G map the corresponding Pauli group over G to itself under conjugation. In generalizing
the latter result to Abelian groups of the form G = Z® x T? x F, we will however note an
important distinction. Namely, normalizer gates over G will map Pauli operators over G
to Pauli operators over a group G’ which is, in general, different from the initial group G.
This feature is a consequence of the fact that the groups Z® and T? are no longer autodual
(whereas all finite Abelian groups are). Consequently, as we have seen in Section 3.6.1, the
QFT over G (or any partial QFT) will change the group that labels the designated basis of
H from G to G’. We will therefore find that the QFT maps Pauli operators over G to Pauli
operators over G’. In contrast, such a situation does not occur for automorphism gates and
quadratic phase gates, which do not change the group G that labels the designated basis.

Before describing the action of normalizer gates on Pauli operators (Theorem 61), we
provide two properties of QFTs.

Lemma 60 (Fourier transforms diagonalize shift operators). Consider a group of the
form G = Z% x T® x F. Then the X-type Pauli operators of G and the Z-type operator of G*
are related via the quantum Fourier transform Fg over G:

Zg(9) = FeXa(9)Fl (4.3.6)

Proof. We show this by direct evaluation of the operator X(h) on the Fourier basis states
(Section 3.5 definition). Using the definitions introduced in Section 3.8.2 we can write the
vectors in the Fourier basis of G in terms of character functions (definition 42): letting |u)
be the state

)= [a0 = [abxouuie), (43.7)

then the Fourier basis of G is just the set {|u), 1 € G*}. Now it is easy to derive
Xe(9)l) = Xa(9) (/[dhxu<h>|h>) = [aixilo+ 1) = [aww=giw)
o) (/ dh'xu<h'>|h'>) — o)) = Ze (9)l1). (438)

In the derivation we use lemmas 43, 44 and equation (4.3.3) applied to the group G*. O

The next theorem shows that normalizer gates are generalized Clifford operations, i.e.
they transform Pauli operators into Pauli operators under conjugation and, therefore, they
normalize the group of all Pauli operators within the group of all unitary gatesS.

Theorem 61 (Normalizer gates are Clifford). Consider a group of the form G =
Z* x T x F. Let U be a normalizer gate of the group G. Then U corresponds to an
isometry from Hg to Heg for some suitable group G, as discussed in section 3.6. Then the
conjugation map o — UoUT sends Pauli operators of G to Pauli operators of G'. We say
that U is a Clifford operator.

51t is usual in quantum information theory to call the normalizer group of the n-qubit Pauli group “the
Clifford group” because of a “tenuous relationship” [146, Gottesman] to Clifford algebras.

84

Proof. We provide an explicit proof for Pauli operators of type Xg(g) and Zg(u). This is
enough to prove the lemma due to (4.3.5). As before, G = G X - -+ X G, where the G; are
groups of primitive type.

We break the proof into three cases.

e If U is an automorphism gate U, : |h) — |a(h)) then
UaXc(9)UIR) = la(a™"(h) + 9)) = [k + a(g)) = Xc(a(9))IA), (4.3.9)
UaZo(WULIR) = X0 (BNIR) = Xy oy (BB = Z6 (0" () I0). (4:3.10)
e If U is a quadratic phase gate D¢ associated with a quadratic function £ then

DeXg(g)DLIh) = €(g + h)E(R)|g +) = £(9)B(g, k)lg + h)
= £(9)xp(g)(P)lg + h) = £(9) X (9)Z(B(9))Ih), (4.3.11)

where, in the second line, we use Lemma 52. Moreover Dng(u)Dg = Zg(u) since
diagonal gates commute.

e If U is the Fourier transform Fg on the H¢ then
FeXa(9)FL = Za-(g), FoZa(n)F}, = X+ (—p). (4.3.12)

The first identity is the content of Lemma 60. The second is proved in a similar way:

Ze(Wl) = Zo(w) (/ dhx—u(h)lh)) = [atxestira i) = [i on®in
= v — p) = Xa+(—=p)lv), (4.3.13)

where we apply (4.3.7), Lemma 44 and (4.3.2,4.3.3). These formula also apply to
partial Fourier transforms Fg;, since Pauli operators decompose as tensor products.
0O

4.4 Stabilizer states

In this section we develop a stabilizer framework to simulate normalizer circuits over infinite
Abelian groups of the form G = Z® x T® x Zp, % -+ X Zn,. As explained in Sections 3.1
and 4.1, our techniques generalize methods given in [1, 2] (which apply to groups of the
form F = Zn, X --- x Zn,) and is closely related to the (more general) monomial stabilizer
formalism [147].

4.4.1 Definition and basic properties

A stabilizer group S over G is any group of commuting Pauli operators of G with a nontrivial
+1 common eigenspace. Here we are interested in stabilizer groups where the +1 common
eigenspace is one-dimensional, i.e. there exists a state |¢)) such that oly) = |¢) for all
o € 8, and moreover |i) is the unique state (up to normalization) with this property. Such
states are called stabilizer states (over G). This terminology is an extension of the already
established stabilizer formalism for finite-dimensional systems [17, 16, 76, 77, 1, 2].

85

We stress here that stabilizer states |¢) are allowed to be unnormalizable states; in other
words, we do not require |¢) to belong to the physical Hilbert space Hg. In a more precise
language, stabilizer states may be tempered distributions in the Schwartz-Bruhat space S
[91, 92]. This issue arises only when considering infinite groups, i.e. groups containing Z or
T. An example of a non-physical stabilizer state is the Fourier basis state |p) (3.5.3) (we
argue below that this is indeed a stabilizer state). Note that not all stabilizer states for
G = T must be unphysical; an example of a physical stabilizer state within Hq is

/ dp|p). (4.4.1)
T

The stabilizer group of this state is {X1(p) : p € T}, which can be alternatively written as
{Zz(p) : p € T} (Lemma 60). Similar examples of stabilizer states within and outside Hg
can be given for G = Z. Note, however, that in this case the standard basis states |z) with
z € Z (which are again stabilizer states) do belong to Hz.

Next we show that all standard basis states are stabilizer states.

Lemma 62. Consider G = Z® x T x F with associated Hilbert space Hg and standard basis
states {|g) : g € G}. Then every standard basis state |g) is a stabilizer state. Its stabilizer
group s

(Xa(9)Z(k) : 1 € G*}. (44.2)

The lemma implies that the Fourier basis states and, in general, any of the allowed
group-element basis states (11) are stabilizer states.

Proof. Let us first prove the theorem for g = 0, and show that |0) is the unique state that
is stabilized by S = {Zg(p) : p € G*}. It is easy to check that a standard-basis state
|h) with h € G is a common +1-eigenstate of S if and only if x,(h) = 1 for all p € G*
or, equivalently, iff A belongs to G+, the annihilator of G. It is known that G+ coincides
with the trivial subgroup {0} of G* [98, corollary 20.22], and therefore |0) is the unique
standard-basis state that is also a common +1 eigenstate of S. Since all unitary operators
of S are diagonal in the standard basis, |0) is the unique common +1 eigenstate of S.
For arbitrary |g) = X¢(g)|0), the stabilizer group of |g) is Xg(9)SXa(g)!, which equals
{Xu(9)Zc(p) - 1 € G*} (see equation (4.3.5)).
O

Let |¢) be a stabilizer state with stabilizer group S. We define the following sets, all of
which are easily verified to be Abelian groups:

L:={(s,9) € G* x G : S contains a Pauli operator of the form vZ(u)X(g9)};
H:= {g € G : S contains a Pauli operator of the form vZ(1)X(g)};
D:={p € G* : S contains a Pauli operator of the form yZ(u)} (4.4.3)

The groups L, I and H contain information about the labels of the operators in S. We
highlight that, although I and H are subsets of very different groups (namely G and G*,
respectively), they are actually closely related to each other by the relation

HC DY (or, equivalently, D C HY), (4.4.4)

which follows from the commutativity of the elements in S and the definition of orthogonal
complement (recall Section 4.3.1).

86

Finally, let D be the subgroup of all diagonal Pauli operators of S. It is easy to see that,
by definition, D and D are isomorphic to each other.
4.4.2 Support of a stabilizer state

We show that the support of a stabilizer state |1) (the manifold of points where the wave-
function ¥ (zx) is not zero) can be fully characterized in terms of the label groups H, D.
Our next result characterizes the the structure of this wavefunction.

Lemma 63. Every stabilizer state |y) over G is a uniform quantum superposition over some
subset of the form s+ H, where H is a subgroup of G. Equivalently, any stabilizer state |3)
can be writen in the the form

) = /H dh(h)|s + h) (4.4.5)

where all amplitudes have equal absolute value |¢(h)] = 1. We call the s + H the support of
the state.

This lemma generalizes Corollary 1 in [1].
Proof. Let [1)) be an arbitrary quantum state [1) = [dg(g)|g). The action of an arbitrary
Pauli operator U = vZg(u)Xc(h) € S on the state is

Umzyﬂwmwww@m+m=ﬂwwmm=m. (4.4.6)

Recall the definition of H in (4.4.3). Comparing the two integrals in (4.4.6), and knowing
that |x,(z)] = 1 for every x € G, we find that the absolute value of ¢ cannot change if we
shift this function by an element of H; in other words,

for every g € X it holds |¢(g)| = |¢(g + h)| for every h € H. (4.4.7)

Now let Y C X denote the subset of points y € X for which ¥(y) # 0. Eq. (4.4.7) implies
that Y is a disjoint union of cosets of H, i.e.

Y =|Js +H, (4.4.8)
el

where I is a (potentially uncountable) index set, and that |i) is of the form

IW=L@WMW=Z®MMM, (4.49)

where the states |¢,) are non-zero linearly-independent uniform superpositions over the
cosets x, + H:

l$.) = /H dh ¢.(h)[s, + h) (4.4.10)

and [¢,(h)| = 1 for every h. Putting together (4.4.9) and (4.4.10) we conclude that, for any
U € 8, the condition Uly) = |4} is fulfilled if and only if U|,) = |¢,) for every |¢,): this
holds because U leaves invariant the mutually-orthogonal vector spaces V, := span{|s, + k) :
h € H}. Consequently, every state |¢,) is a (non-zero) common +1 eigenstate of all operators

87

in 8. Finally, since we know that |1¢) is the unique +1 common eigenstate of S, it follows
from (4.4.9, 4.4.10) that I has exactly one element and ¥ = s + Hj as a result, |[¢) is a
uniform superposition of the form (4.4.10). This proves the lemma. O

Lemma 64. An element x € G belongs to the support s + H of a stabilizer state |¢) if and
only if ’
Dlz) = |z) for all D€ D. (4.4.11)

Equivalently, using that every D is of the form D = v, Z¢g+(u) for some p € D and that 7,
is determined given u,

supp(|¥)) = {x € G : xu(x) =7 for all p € D}. (4.4.12)

Lemma 64 was proven for finite groups in [1], partially exploiting the monomial stabilizer
formalism (MSF) developed in [147]. Since the MSF framework has not been generalized
to finite dimensional Hilbert spaces, the techniques in [147, 1] can no longer be applied in
our setting’. Our proof works in infinite dimensions and even in the case when the Pauli
operators (4.3.1,4.3.3) have unnormalizable eigenstates.

Proof. Write |¢) as in (4.4.5) integrating over X := s + H. Then, the “if” condition follows
easily by evaluating the action of an arbitrary diagonal stabilizer operator D = v, Zg+ (1)
on a the stabilizer state |1): indeed, the condition

D) =) > /X dz (yuxul(®)) B(z)|z) = /Y dz (o)), (4.4.13)

holds only if y,x,(x) = 1, which is equivalent to D|z) = |z) (here, we use implicitly that
() # 0 for all integration points).

Now we prove the reverse implication. Take € G such that D|z) = |z) for all D € D.
We want to show that |z) belongs to the set s + H. We argue by contradiction, showing
that z ¢ s + H implies that there exists a nonzero common +1 eigenstate |¢) of all S that
is not proportional to |¢), which cannot happen.

We now show how to construct such a |¢).

Let Y = {&(u,9)Z¢c+(1)Xc(g)} be a system of representatives of the factor group
S/D. For every h € H, we use the notation V} to denote a Pauli operator of the form
E(Wn, h) Zg+(vp) X (h). 1t is easy to see that the set of all such V}, forms an equivalence class
in §/D, so that there is a one-to-one correspondence between H and S/D. Therefore, if to
every h € H we associate a Uj, € Y (in a unique way), written as Uy, := &(vp, h) Zga (V) X (R),
then we have that:

(a) any Pauli operator V' € S can be written as V = U, D for some U, € Y and D € D,
(b) UgUn = UgynDyy, for every Uy, Uy, € Y and some Dy, € D.
With this conventions, we take ¢ to be the state

1) = (/Y U U) lz) = (/H thh>) = /H R E(Wh,)Xo, (@ + B[z + h)dh. (4.4.14)

"We believe that the MSF formalism in [147] should be easy to extend to infinite dimensional systems
if one looks at monomial stabilizer groups with normalizable eigenstates. However, dealing with monomial
operators with unnormalizable eigenstates—which can be the case for (4.3.1,4.3.3)—seems to be notoriously
harder.

88

The last equality in (4.4.14) shows that |¢) is a uniform superposition over z+H. As aresult,
|¢) is non-zero. Moreover, |$) linearly independent from |¢) if we assume x ¢ supp(%), since
this implies that supp(¢) = z + H and supp(v)) = s + H are disjoint. Lastly, we prove that
|¢) is stabilized by all Pauli operators in S. First, for any diagonal stabilizer D we get

Dlg) = D (/YdUU) o) = (/YdUU) Dlz) = (/Y dUU) By (4.4.15)

due to commutativity and the promise that D|z) = |z). Also, any stabilizer of the form U,
from the set of representatives Y fulfills

Usld) = U (/H thh) |z) = (/H dh UzUh>) = (fH dh Uz+h) Danlz) (44.16)
= (/H dn’ Uh,> |z) = |¢) (4.4.17)

Hence, using property (a) above, it follows that any arbitrary stabilizer V stabilizes |¢) as
well. O

Corollary 1. The sets H and supp(|¢)) = s + H are closed.

Proof. Tt follows from (4.4.12) that supp(]#)) is of the form zo + DL. Putting this together
with (4.4.5) in Lemma 63 it follows that Hl = D*. Since any annihilator is closed (Lemma
46), H is closed. Since the group operation of G is a continuous map®, s+ H is closed
too. O

4.5 Systems of linear equations over Abelian groups

We take a brief digression from the theory of stabilizers over Abelian groups, and consider
certain systems of linear equations. These systems will be important to us when we try to
sample from the support of a stabilizer state.

Let @ : G — H be a continuous group homomorphism between elementary Abelian
groups G, H and let A be a rational matrix representation of a. We consider systems of
equations of the form

a(z)y=Az=b (mod H), wherex €, (4.5.1)

which we dub systems of linear equations over (elementary) Abelian groups. In this section
we develop algorithms to find solutions of such systems.

Systems of linear equations over Abelian groups form a large class of problems, contain-
ing, as particular instances, standard systems of linear equations over real vectors spaces,

Ax=b, AcR"™ xeR™beR", (4.5.2)
as well as systems of linear equations over other types of vector spaces, such as Z3, e.g.

By=c¢, BeZ}y™ yeZy,ceZy. (4.5.3)

8This is a fundamental property of topological groups. Consult e.g. [98, 86] for details.

89

In (4.5.2) the matrix A defines a linear map from R™ to R", i.e. a map that fulfills A (ax +
by) = A(ax) + A(by), for every a,b € R, x,y € R" and is, hence, compatible with the
vector space operations; analogously, B in (4.5.3) is a linear map between Zs vector spaces.

We dub systems (4.5.1) “linear” to highlight this resemblance. Yet the reader must beware
that, in general, the groups G and H in problem (4.5.1) are not vector spaces (primitive
factors of the form Z or Z,, with non-prime d, are rings yet not fields; the circle T is not
even a ring, as it lacks a well-defined multiplication operation®), and that the map A is a
group homomorphism between groups, but not a linear map between vector spaces.

Indeed, there are interesting classes of problems that fit in the class (4.5.1) and that are
not systems of linear equations over vectors spaces. An example are the systems of linear
equations over finite Abelian groups studied in [2]. Another example are systems of mixed
real-integer linear equations [112, 148|, that we introduce later in this section (equation
4.5.5).

Input of the problem We only consider systems of the form (4.5.1) where the matrix A
is rational. In other words, we always assume that the group homomorphism « has a rational
matrix representation A; the latter is given to us in the input of our problem. Exact integer
arithmetic will be used to store the rational coefficients of A; floating point arithmetic will
never be needed in our work.

Of course, not all group homomorphisms have rational matrix representations (cf. The-
orem 51). However, for the applications we are interested in it is enough to study this
subclass.

General solutions of system (4.5.5) Since A is a homomorphism, it follows that the
set Gso of all solutions of (4.5.1) is either empty or a coset of the kernel of A:

Gsol = 20 +ker A (4.5.4)

The main purpose of this section is to devise efficient algorithms to solve system (4.5.1)
when A, b are given as input, in the following sense: we say that we have solved system
(4.5.1) if we manage to find a general solution of (4.5.1) as defined next.

Definition 65 (General solution of system (4.5.1)). A general solution of a system of
equations Az = b (mod H) as in (4.5.1) is a tuple (2¢, £) where zy is a particular solution of
the system and £ is a continuous group homomorphism (given as a matrix representation)
from an auxiliary group X := R x ZP into G, whose image im & is the kernel of A.

Although it is not straightforward to prove, general solutions of systems of the form
(4.5.1) always exist. This is shown in Appendix C.1.

4.5.1 Algorithm for finding a general solution of (4.5.1)

Observe that if we know a general-solution (zg, £) of system (4.5.1) then we can conveniently
write the set of all solutions simply as Ggo) = zg+1im . This expression suggests us a simple
heuristic to sample random elements in Ggo— which will be an important step in our proof
of our main classical simulation result—based on the following approach:

9Recall that T is a quotient group of R and that the addition in T is well-defined group operation between
equivalence classes. It is, however, not possible to define a multiplication ab for a,b € T operation between
equivalence classes: different choices of class representatives yield different results.

90

(1) Choose a random element v € X using some efficient classical procedure. This step
should be feasible since this group has a simple structure: it is just the product of a
conventional real Euclidean space R® and an integer lattice Z°.

(2) Apply the map v — z¢ + £(v), yielding a probability distribution on Gsor.

A main contribution of our work is a deterministic classical algorithm that finds a general
solution of any system of the form (4.5.1) in polynomial time. This is the content of the
next theorem, which is one of our main technical results.

Theorem 66 (General solution of system (4.5.1)). Let A, b define a system of linear
equations (over elementary Abelian groups) of form (4.5.1), with the group G as solution
space and image group H. Let m and n denote the number of direct-product factors of G
and H respectively and let c;, d; denote the characteristics of G; and d;. Then there exist
efficient, deterministic, exact classical algorithms to solve the following tasks in worst-case
time complezity O(poly(m,n,log || A|lb, log ||b||b, log ¢;, log d;):

1. Decide whether system (4.5.1) admits a solution.
2. Find a general solution (xo,&) of (4.5.1).

A rigorous proof of this theorem is given in Appendix C.2. The main ideas behind it are
discussed next.

In short, we show that the problem of finding a general solution of a system of the form
(4.5.1) reduces in polynomial time to the problem of finding a general solution of a so-called
system of mized real-integer linear equations [112].

Az + B'y =c, wherez' € Z%y € R?, (4.5.5)

where A’ and B’ are rational matrices and ¢ is a rational vector. Denoting by RY the given
space in which c lives, we see that, in our notation, (A B) w=c, where w € Z% x R® is a

particular instance of a system of linear equations over elementary locally compact Abelian
groups that are products of Z and R. Systems (4.5.5) play an important role within the
class of problems (4.5.1), since any efficient algorithm to solve the former can be adapted to
solve the latter in polynomial time.

The second main idea in the proof of Theorem 66 is to apply an existing (deterministic)
algorithm by Bowman and Burdet [112] that computes a general solution to a system of the
form (4.5.5). Although Bowman and Burdet did not prove the efficiency of their algorithm in
[112], we show in Appendix C.3 that it can be implemented in polynomial-time, completing
the proof of the theorem.

4.5.2 Computing inverses of group automorphisms

In Section 3.9.2 we discussed that computing a matrix representation of the inverse a~! of a
group automorphism «a cannot be done by simply inverting a (given) matrix representation
A of a. However, the algorithm given in Theorem 66 can be adapted to applied to solve
this problem.

Lemma 67. Let o : G — G be a continuous group automorphism. Given any matric

representation A of a, there exists efficient classical algorithms that compute a matriz rep-

resentation X of the inverse group automorphism o™t

A proof (and an algorithm) is given in Appendix C.4.

91

4.6 Proof of Theorem 59

In this section we prove our main result (Theorem 59). As anticipated, we divide the proof
in three parts. In Section 4.6.1, we show that the evolution of the quantum state during
a normalizer computation can be tracked efficiently using stabilizer groups (which we
introduced in the previous section). In Section 4.6.2 we show how to compute the support.
of the final quantum state by reducing the problem to solving systems of linear equations
over an Abelian group, which can be reduced to systems of mixed real-integer linear
equations [112] and solved with the classical algorithms presented in Section 4.5. Finally, in
Section 4.6.3, we show how to simulate the final measurement of a normalizer computation
by developing net techniques (based, again, on the algorithms of Section 4.5) to sample
the support of the final state.

4.6.1 Tracking normalizer evolutions with stabilizer groups

As in the celebrated Gottesman-Knill theorem [17, 16] and its existing generalizations [77,
109, 111, 1, 2], our approach will be to track the evolution of the system in a stabilizer
picture. Since we know that the initial state |0) is a stabilizer state (Lemma 62) and that
normalizer gates are Clifford operations (Lemma 68), it follows that the quantum state at
every time step of a normalizer computation is a stabilizer state. It is thus tempting to use
stabilizer groups of Abelian-group Pauli operators to classically describe the evolution of
the system during the computation; this approach was used in [1, 2] to simulate normalizer
circuits over finite Abelian groups. (We remind the reader at this point that qubit and qudit
Clifford circuits are particular instances of normalizer circuits over finite Abelian groups [2].)

However, complications arise compared to all previous cases where normalizer circuits
are associated to a finite group G. We discuss these issues next.

Stabilizer groups are infinitely generated. A common ingredient in all previously
known methods to simulate Clifford circuits and normalizer circuits over finite Abelian
groups can no longer be used in our setting: traditionally!?, simulation algorithms based
on stabilizer groups keep track of a list of (polynomially many) generators of a stabilizer
group, which can be updated to reflect the action of Clifford/normalizer gates. In our set-up,
this is a futile approach because stabilizer groups over infinite Abelian groups can have an
infinite number of generators. Consider for example the state |0) with G = Z, which has a
continuous stabilizer group {Zg(p)|p € T} (Lemma 62); the group that describes the labels
of the Pauli operators is the circle group T, which cannot be generated by a finite number
of elements (since it is uncountable).

Fourier transforms change the group G. In previous works [1, 2|, the group G asso-
ciated to a normalizer circuits is a parameter that does not change during the computation.
In Section 4.3.2 we discussed that our setting is different, as Fourier transforms can change
the group that labels the designated basis (Theorem 61, Eq. 4.3.12; this reflects that groups
(3.4.1,3.5.10) are not autodual.

10 As discussed in section “Relationship to previous work”, there are a few simulation methods [127, 128, 129]
for Clifford circuits that are not based on stabilizer-groups, but they are more limited than stabilizer-group
methods: the Schrédinger-picture simulation in [127] is for non-adaptive qubit Clifford circuits; the Wigner-
function simulation in {128, 129] is for odd-dimensional qudit Clifford circuits (cf. also Section 4.1).

92

In this section we will develop new methods to track the evolution of stabilizer groups,
that deal with the issues mentioned above.

From now on, unless stated otherwise, we consider a normalizer circuit C comprising T’
gates. The input is the |0) state of a group G, which we denote by G(0) to indicate that
this group occurs at time ¢ = 0. The stabilizer group of |0) is {Zg(x) : p € G(0)*}. The
quantum state at any time ¢ during the computation will have the form |¢(t)) = C¢|0) where
C; is the normalizer circuit containing the first ¢ gates of C. This state is a stabilizer state
over a group G(t). The stabilizer group of |¢(¢)) is S(t) := {C¢Zg+ (w)Cl, 1 e G0)*}.

Throughout this section, we always assume that normalizer gates are given in the stan-
dard encodings defined in Section 4.2.

Tracking the change of group G

First, we show how to keep track of how the group G that labels the designated basis changes
along the computation. Let G = G X - - - X G, with each G; of primitive type. Define now
the larger group I' := G* x G. Note that the labels (u, g) of a Pauli operator vZg(u)Xc(9g)
can be regarded as an element of I, so that the transformations of these labels in Theorem 61
can be understood as transformations of this group. We show next that the transformations
induces on this group by normalizer gates are continuous group isomorphisms, that can be
stored in terms of matrix representations. This will give us a method to keep track of G
and G* at the same time. Studying the transformation of T' as a whole (instead of just G)
will be useful in the next section, where we consider the evolution of Pauli operators.

First, note that both automorphism gates and quadratic phase gates leave G (and thusI)
unchanged (Theorem 61). We can keep track of this effect by storing the 2m x 2m identiy
matrix I, (the matrix clearly defines a group automorphism of I'). Moreover, (4.3.12)
shows that Fourier transforms just induce a signed-swap operation on the factors of I'. We
can associate a 2m x 2m matrix S; to this operation, defined as follows: S; acts non-trivially
(under multiplication) only on the factors G} and G;; in the subgroup G} x G; formed by
these factors S; acts as

(n(3),9(1)) € G x G — (g(8), —p(3)) € Gi x G. (46.1)

By construction, IV = S;I". Manifestly, S; defines a group isomorphism S; : I' — I".

Lastly, let G(t) denote the underlying group at time step t of the computation. Define
[(t) := G*(t)xG(t) and let V1,.. ., V; be the matrices associated to the first ¢ gates describing
the transformations of I'. Then, we have T'(t) = V;V;_1--- V4T'(0), so that it is enough to
store the matrix V;V;_j - -- V3 to keep track of the group I'(¢).

Tracking Pauli operators

We deal next with the fact that we can no longer store the “generators” of a stabilizer group.
We will exploit a crucial mathematical property of our stabilizer groups: for any stabilizer
group S arising along the course of a normalizer circuit, we will show that there always exists
a classical description for S consisting of a triple (A, M, v) where A and M are real matrices
and v is a real vector. If we have G = T® x Z X Zy, x - - - x Z, with m = a +b+c, then all
elements of the triple (A, M, v) will have O(poly m) entries. As a result, we can use these
triples to describe the stabilizer state |1) associated to S efficiently classically. Moreover,
we shall show (lemmas 68, 70) that the description (A, M, v) can be efficiently transformed
to track the evolution of |¢/) under the action of a normalizer circuit.

93

Let I'(t) be the group G*(t) x G(t). Recalling the definition of the group L in (4.4.3),
we denote by L(t) C I'(¢) this group at time ¢. We want to keep track of this group in a way
that does not involve storing an infinite number of generators. As a first step, we consider
the initial standard basis state |0), where

L(0) = {(1,0) : u € G(0)*}. (4.6.2)

A key observation is that this group can be written as the image of a continuous group
homomorphism
Ao : (1, 9) € T(0) — (1, 0) € T(0); (4.6.3)

it is easy to verify L(0) = imAg. Therefore, in order to keep track of the (potentially
uncountable) set IL(0) it is enough to store a 2m x 2m matrix representation of Ag (which
we denote by the same symbol):
I 0
Ao = (4.6.4)
00

Motivated by this property, we will track the evolution of the group L(t) of Pauli-operator
labels by means of a matrix representation of a group homomorphism: A; : I'(0) — I'(¢)
whose image is precisely L(t). The following lemma states that this approach works.

Lemma 68 (Evolution of Pauli labels). There erists a group homomorphism A; from
T'(0) to T'(t) satisfying
L(t) = im A;. (4.6.5)

Moreover, a matriz representation of A¢ can be computed in classical polynomial time, using
O(poly(m,t)) basic arithmetic operations.

Proof. We show this by induction. As discussed above, at t = 0 we choose Ag as in (4.6.4).
Now, given the homomorphism A; at time ¢, we show how to compute Ay for every type of
normalizer gate. The proof relies heavily on the identities in the proof of Theorem 61. We
also note that the equations below are for groups of commuting Pauli operators but they
can be readily applied to any single Pauli operator just by considering the stabilizer group
it generates.

o Automorphism gate U,: Let A be a matrix representation of c; then equations (4.3.9)-
(4.3.10) imply

Ao
Aty = A (4.6.6)
0 A

The matrix A*" can be computed efficiently due to lemmas 67 and 49.(b).

e Quadratic phase gate D,: suppose that £ is a B-representation for some bicharacter
B (recall Section 3.10). Let M be a matrix representation of the homomorphism 3
that appears in Lemma 52. Then (4.3.11) implies

I M
AH—I = At. (467)
0 I

94

e Partial Fourier transform Fg;: recalling (4.3.12), we simply have

At +1) = S;A(t), (4.6.8)
with
1 0 \
0 1
1 0
S; = (4.6.9)
0 1
-1 0
\ 0 1

0 1
where the subblock in S; corresponds to the i-th entries of G* and G. [
-1 0

We now show how the phases of the Pauli operators in S(t) can be tracked.
Suppose that there exists (i, g) € L and complex phases v and S such that both

o:=vZ(u)X(g) andT:=pBZ(n)X(g) (4.6.10)

belong to S. Then ot must also belong to S, where o' = FAI with I the identity operator.
But this implies that 73|¢) = |¢), so that v = 3. This shows that the phase of ¢ is uniquely
determined by the couple (u, g) € L. We may thus define a function 7 : L — U(1) such that

S={v(k.9)Z(r)X(g): (n,g) €L} (4.6.11)
Lemma 69. The function v is a quadratic function on L.

Proof. By comparing the phases of two stabilizer operators o1 = vy(u1, 91)Z¢(p1)Xa(91)
and o2 = (12, 92) Za(u2)Xc(g2) to the phase v((g1, h1)+ (g2, h2)) of their product operator
0201, we obtain

Y((p1,91) + (12,92)) = (11, 91)7(12, 92) X2 (91)s (4.6.12)

which implies that v is quadratic. |

Although it does not follow from Lemma 69, in our setting, the quadratic function ~y
will always be continuous. As a result, we can apply the normal form given in Theorem 57
to describe the phases of the Pauli operators of a stabilizer group. Intuitively, v must be
continuous in our setting, since this is the case for the allowed family of input states (Lemma
62) and normalizer gates continuously transform Pauli operators under conjugation; this is
rigorously shown using induction in the proof of Theorem 70.

We will use that these phases of Pauli operators are described by quadratic functions
on L(t) (recall Lemma 69). In particular, Theorem 57 shows that every quadratic function
can be described by means of an m X m matrix M and a m-dimensional vector v. For the
initial state |0), we simply set both M, v to be zero. The next lemma shows that M, v can
be efficiently updated during any normalizer computation.

95

Lemma 70 (Evolution of Pauli phases). At every time step t of a normalizer circuit,
there exists a 2m x 2m rational matriz My and a m-dimensional rational vector vy such that
the quadratic function describing the phases of the Pauli operators in S(t) is {p, ., (as in
Theorem 57). Moreover, M; and v can be efficiently computed classically with O(poly(m,n))
basic arithmetic operations.

Proof. The proof is similar to the proof of Lemma 68. We act by induction. At ¢t = 0
we just take My to be the zero matrix and vy to be the zero vector. Then, given M; and
v; at time ¢, we show how to compute M;y1, v441. In the following, we denote by A the
matrix that fulfills A;1; = AA; in each case of Lemma 68 and write (1/,¢') = A(y, g) for
every (p,g) € I'y. Finally, let § and &1 denote the quadratic phase functions for S(¢) and
S(t + 1), respectively.

e Automorphism gate U,. Let A, A*" be matrix representations of «, . Using
(4.3.9, 4.3.10) we have

Ua
&, 9)Zc(m)Xe(9) —= &1, 9)Za(W)Xa(d) (4.6.13)
«1
with (¢/,¢') = A(u,g) and A = . The matrix A*" can be computed using
0 A

lemmas 67 and 49.(b). The phase & (1, g) of the Pauli operator can be written now as
a function &.41 of (1, g’) defined as

Er(isg) = &AW, 9)) = &(u, 9). (4.6.14)
The function is manifestly quadratic. By applying Lemma 58 we obtain
Mt+1 = A—-TA([tA_l, V41 = A_T'Ut + VA-1 M, (4615)

where vp -1 py, is defined as v4 p in Lemma 58.

e Partial Fourier transform Fg,. The proof is analogous using that A = S;. Since
the Fourier transform at the register ith exchanges the order of the X and Z Pauli
operators acting on the subsystem Hg, (4.3.12), we locally exchange the operators
locally using (4.3.5), gaining an extra phase. Assume for simplicity that 7 = 1 and
re-write G = Gy X -+ X G, a8 G = A x B; let g = (a,b) and p = (a, 8). Then Fg,
acts trivially on Hgr and we get

G, treorder

ft(ﬂ, g)ZGI (a)XGl (a) QU ” (gt(ﬂw g)X(a,O) (a1 0)) ZG‘{ (a)XG} (_a) ®U.

In general, for arbitrary i, we gain a phase factor X(o,. u(),..,0)((0;---,9(),-..,0)).
Using the change of variables (1/,¢') = A{u,g) = Si(i,g), we define &1 to be
function that carries on the accumulated phase of the operator. For arbitrary i we
obtain

Et—f-l(:u‘/y gl) = gt(ll‘ag) X(O,...,u(i),...,O)((O? see ’g(i)a i ’O)) (4616)

The character X (o,..., u(i),...,0)((0; - - - , g(4),. . . ,0)) can be written as a quadratic function

96

EMp e (1 g) With vp = 0 and

(0
O TG(ia 7‘)

Mg = , (4.6.17)

Ta(i,i) 0
\ 0

where YTq(4,¢) is the ith diagonal element of YT (3.8.18). Applying Lemma 58 we
obtain

My = A T(My+ M) A7, v = A7 "0+ vA-1 a4 Mp- (4.6.18)

e Quadratic phase gate D¢. Let £ = {mg 0, be the quadratic function implemented
by the gate and Mp be the matrix representation of 2 as in (52). We know from
Lemma 53 that Mg = Y Mp. Using (4.3.11) and reordering Pauli gates (similarly to
the previous case) we get

Dg¢+reorder

&1, 9)Z(1) Xc(9) (&1 9)601000 (D310 @)) Zo 1+ Bl9)) X5(9)

The accumulated phase can be written as a quadratic function £y ,» with

, 0 O 0 0 , 0
M= M, + - , vi=v+ (4.6.19)
0 Mg 0 2Mg vQ
I M,
Using Lemma 58 and A = (from the proof of Lemma 68) we arrive at:
0 I
My =A""MA™Y, V= ATV vy, (4.6.20)

0

Combining lemmas 68 and 70, we find that the triple (As, My, v¢), which constitutes
a classical description of the stabilizer state |1(¢)), can be efficiently computed for all ¢.
This yields a poly-time algorithm to compute the description (Ar, My, vr) of the output
state |1p7) of the circuit. Henceforth we continue to work with this final state and drop the
reference to T throughout. That is, the final state is denoted by |¢'), which is a stabilizer
state over G with stabilizer is S. The latter is described by the triple (A, M, v), the map
from I'(0) to T is described by A, etc.

97

4.6.2 Computing the support of the final state

Given the triple (A, M, v) describing the final state |1) of the computation, we now consider
the problem of determining the support of |¢)). Recall that the latter has the form z + H
where the label group H was defined in (4.4.3) and = € G is any element satisfying conditions
(4.4.11). Since L = AT'(0) and A is given, a description of H is readily obtained: the m x 2m
matrix P = (0 I) is a matrix representation of the homomorphism (u,9) € ' — g € G.
It easily follows that H = PAI'(0). Thus the matrix PA yields an efficient description for
H. To compute an z in the support of |1), we need to solve the equations (4.4.11). In
the case of finite groups G, treated in previous works [1, 2], the approach consisted of first
computing a (finite) set of generators {Ds,...,D,} of D. Note that = € G satisfies (4.4.11)
if and only if D;|z) = |z) for all 2. This gives rise to a finite number of equations. In [1, 2] it
was subsequently showed how such equations can be solved efficiently. In contrast with such
a finite group setting, here the group G, and hence also the group D, can be continuous,
so that D can in general not be described by a finite list of generators. Consequently, the
approach followed for finite groups does no longer work. Next we provide an alternative
approach to compute an z in the support of |¢) in polynomial time.

Computing D

We want to solve the system of equations (4.4.12). Our approach will be to reduce this
problem to a system of linear equations over a group of the form (4.5.1) and apply the
algorithm in Theorem 66 to solve it. To compute D it is enough to find a compact way to
represent I, since we can compute the phases of the diagonal operators using the classical
description (A, M, v) of the stabilizer group. To compute D we argue as follows. An arbitrary
element of L. has the form Au with u € I'(0). Write A in a block form

Ay
A= (4.6.21)
Az

so that Au = (Aju, Asu) with Aju € G* and Asu € G. Then
D = {Aju : u satisfies Asu = 0 mod G.}

The equation Asu = 0 mod G is of the form (4.5.1). This means we can compute in poly-
nomial time a description for D of the form

D= {&pw: w e R x Z°}, (4.6.22)

where £p is a group homomorphism £p : R® x Z? — G* whose image is precisely D.

Computing the support xo + H

Recalling the support equations (4.4.12) and the fact that |) is described by the triple
(A, M,v), we find that xo belongs to the support of |¢) if and only if

Emo(p, 0)xpu(xo) =1, forall peD. (4.6.23)

98

We will now write the elements ¢ € D in the form ¢ = £pw where w is an arbitrary element

&
in R® x ZP. We further denote & := B . We now realize that
0

o {mo(Epw,0), as a function of w only, is a quadratic function of R* x Zb, since & My 18
quadratic and &p is a homomorphism. Furthermore

Erto(Epw,0) = Eppr(w) with M’ := ETME, v := ETv. (4.6.24)

® xepw(Zo), as a function of w only, is a character function of R* x 7Z® which can be
written as o with w := &y*(zo).

It follows that z satisfies (4.6.23) if and only if the quadratic function £ps . is a character
and coincides with x. Using Lemma 53 and Theorem 57, we can write these two conditions
equivalently as:

wIM'wy =0 (mod Z), for all wy, wy € R® x Z° (4.6.25)
Ey(xo) =ETv (mod R® x T?). (4.6.26)

The first equation does not depend on xg and it must hold by promise: we are guaranteed
that the support is not empty, so that the above equations must admit a solution. The
second equation is a system of linear equations over groups of the form given in Section 4.5,
and it can be solved with the techniques given in that section.

4.6.3 Sampling the support of a state

Back in Section 4.5 we formulated a fairly simple heuristic to sample the solution space
of a linear system of equations over elementary Abelian groups (4.5.1,4.5.4) that exploited
our ability to compute general solutions of such systems (Theorem 66). Unfortunately, this
straightforward method does not yield an efficient algorithm to sample such solution spaces,
which would allow us to efficiently simulate classically quantum normalizer circuits. In the
first place, the heuristic neglects two delicate mathematical properties of the groups under
consideration, namely, that they are continuous and unbounded. Moreover, the second step
of the heuristic involves the transformation of a given probability distribution on a space X
by the application of a non-injective map £ : X — G this step is prone to create a wild
number of collisions, about which the heuristic gives no information.

In this section we will present an efficient classical algorithm to sample solution space
of systems of linear equations over groups. Our algorithm applies appropriate techniques to
tackle the previously mentioned issues. The algorithm relies on a subroutine to construct
and sample from a certain type of epsilon net that allows the collision-free sampling from
a subgroup of an elementary group, where the subgroup is given as the image of a homo-
morphism. This algorithm is sufficient for our purposes, since the solution-space (4.5.4) of
(4.5.1) is exactly xp + im £ for some homomorphism £ and group element zg.

Input of the problem and assumptions

Again let G be of the form

G=T*xZ x Zn, x --- x Zn, (4.6.27)

99

with m = a+ b+ c. We are given a matrix representation £ of a group homomorphism from
R* x ZP to G such that H is the image of £. The matrix £ and the numbers a, 8 provide
a description of the subgroup H.

Throughout the entire section, H is assumed to be closed (in the topological sense).
The word “subgroup” will be used as a synonym of “closed subgroup”. This is enough for
our purposes, since the subgroup H that defines the support of a stabilizer state (and we
aim to sample) is always closed (corollary 1).

Norms

There exists a natural notion of 2-norm for every group of the form G := Z% x R? x Zy, x
-+ x Zn, x T¢ analogous to the standard 2-norm || - ||2 of a real Euclidean space (we denote
the group 2-norm simply by | - ||¢): given g = (gz, gr, 9r, g1) € G,

lglle = || (92, 9r, 9%, 9%) ||, (4.6.28)

where g% (resp. g%) stands for any integer tuple x € Z° (resp. real tuple y € R%) that is
congruent to gr (resp. gr) and has minimal two norm || - ||2. The reader should note that,
although ¢%, g% may not be uniquely defined, the value of ||g||¢ is always unique.

The following relationship between norms will later be useful:

if llglz<3 then |gle=Iglz< 3 (4.6.29)

or, in other words, if an element g € G has small || - |2 norm as a tuple of real numbers,
then its norm ||g||¢ as a group element of G is also small and equal to ||g]|2.

Net techniques

Groups of the form (4.6.27) contain subgroups that are continuous and/or unbounded as
sets. These properties must be taken into account in the design of algorithms to sample
subgroups.

We briefly discuss the technical issues—absent from the case of finite G as in [1, 2] —that
arise, and present net techniques to tackle them.

The first issue to confront, related to continuity, is the presence of discretization er-
rors due to finite precision limitations, for no realistic algorithm can sample a continuous
subgroup H exactly. Instead, we will sample some distinguished discrete subset N; of H
that, informally, “discretizes” H and that can be efficiently represented in a computer. More
precisely, we choose N to be a certain type of e-net:

Definition 71 (e-net!!). An e-net N of a subgroup H is a finitely generated subgroup of
H such that for every h € H there exists n € N with |h — n|¢ <e.

The second issue in our setting is the unboundedness of certain subgroups of G by itself.
We must carefully define a notion of sampling for such sets that suits our needs, dealing with
the fact that uniform distributions over unbounded sets (like R or Z) cannot be interpreted
as well-defined probability distributions; as a consequence, one cannot simply “sample” A or
H uniformly. However, in order to simulate the distribution of measurement outcomes of a
physical normalizer quantum computation (where the initial states |g) can only be prepared

"Qur definition of e-net is based on the ones used in [149, 150, 151, 152]. We adopt an additional
non-standard convention, that A’ must be a subgroup, because it is convenient for our purposes.

100

approximately) it is enough to sample uniformly some bounded compact region of H with
finite volume V. We can approach the infinite-precision limit by choosing V' to be larger and
larger, and in the V' — oo limit we will approach an exact quantum normalizer computation.

We will slightly modify the definition of e-net so that we can sample H in the sense
described above. For this, we need to review some structural properties of the subgroups of
groups of the form (4.6.27)

It is known that any arbitrary closed subgroup H of an elementary group G of the form
(4.6.27) is isomorphic to an elementary group also of the form (4.6.27) (see [98] theorem
21.19 and proposition 21.13). As a result, any subgroup H is of the form H = Heomp ® Hfree
where Heomp is a compact Abelian subgroup of H and Hjye is either the trivial subgroup or
an unbounded subgroup that does not contain non-zero finite-order elements (it is torsion-
free, in group theoretical jargon). By the same argument, any e-net N; of H decomposes in
the same way

Ne = Necomp D N free- (4.6.30)

where N comp is & finite subgroup of Heomp and N free is a finitely generated torsion-free
subgroup of Hgee. The fundamental theorem of finitely generated Abelian groups tells us
that N free is isomorphic to a group of the form Z" (a lattice of rank r) and, therefore, it has
a Z-basis [153]: i.e. a set {by,..., b} of elements such that every n € N, free can be written
in one and only one way as a linear combination of basis elements with integer coefficients:

r
N free = {n = Z n; b;, for some n; € Z} . (4.6.31)
i=1

In view of equation (4.6.27) we introduce a more general notion of nets that is adequate
for sampling this type of set.

Definition 72. Let NV; be an e-net of H and let {6y, .., b} be a prescribed basis of N gree-
Then, we call a (A, €)-net any finite subset N of N, of the form

NA,s = Ne,comp ® Pa, (4.6.32)
where P denotes the parallelotope contained in N; gree With vertices £A16y, ..., £A by,
r
Pa = {n = Z m b;, where n; € {0,+1,42,.._, j:Ai}} . (4.6.33)
i=1

The index of Pa is a tuple of positive integers A := (Aq,...,Ar) that specifies the lengths
of the edges of Pa.

Notice that Na . — A in the limit where the edges A; of Pa become infinitely long and
that the volume covered by Na . increases monotonically as a function of the edge-lengths.
Hence, any algorithm to construct and sample (A, €)-nets of H can be used to sample H in
the sense we want. Moreover, the next theorem (a main contribution of our work) states that
there exist classical algorithms to sample the subgroup H through (A, €)-nets efficiently.

Theorem 73. Let H be an arbitrary closed subgroup of an elementary group G = T® x Zb x

ZnN, X -+ X Ln,. Assume we are given a matriz-representation £ of a group homomorphism
E :R™ x ZP — G such that H is the image of £. Then, there exist classical algorithms to

101

sample H through (A, €)-nets using O(poly(m, a, 3,1og Ni, log ||E||b, log %, log Ai)) time and
bits of memory.

Again, log ||€||» denotes the maximal number of bits needed to store a coefficient of £ as
a fraction. The proof is the content of the next section, where we devise a classical algorithm
with the advertised properties.

Proof of Theorem 73: an algorithm to sample subgroups

We denote by ETr the block of £ with image contained in T® and with domain R¥. Define a
new set £ := (£1Z)® x ZP, which is a subgroup of R* x Z?, and let N := £(L) be the image
of £ under the action of the homomorphism £.

In first place, we show that by setting €1 to be smaller than 2¢/(a+/a|€]), we can ensure
that A is an e-net of H for any ¢ of our choice. We will use that £ is, by definition, a
(Qg/—a)-net of R* x ZP. (This follows from the fact that, for every z € R® there exists
z’ € (€1Z)* such that |z(i) — 2’(z)| < €1/2, so that ||z — 2'||2 < e1/@/2). Of course, we
must have that A" must be an e-net of H for some value of €. To bound this ¢ we will use
the following bound for the operator norm of the matrix Epg:

|Erl5p < calérrl® < aalé]. (4.6.34)

The first inequality in (4.6.34) follows from Schur’s bound on the maximal singular value of
a real matrix. This bound implies that, if two elements x := (z,2) € X and ' := (2/,2) € £
are £11/a/2-close to each other, then

€2 — EX/ll2 < l€mRllopllz — 2’2 < Fav/alEler (4.6.35)

(In the first inequality, we apply the normal form in Theorem 51.) Finally, by imposing
28| £le; <e < L, we get that |€(x — x)lle < € due to property (4.6.29); it follows that A’
is an e-net if &1 < 2¢/(av/al€]) for every £ < 3.

Assuming that €7 is chosen so that A is an e-net, our next step will be to devise an
algorithm to construct and sample an (A,e)-net Na C N. The key step of our algorithm
will be a subroutine that computes a nicely-behaved classical representation of the quotient
group Q = L/ ker £ and a matrix representation of the group isomorphism Eiso : Q — N (we
know that these groups are isomorphic due to the first isomorphism theorem). We will use
the computed representation of Q to construct a (A,e)-net @Qa C @ and sample elements
form it; then, by applying the map &, to the sampled elements, we will effectively sample
a (A, e)-net Na C N; and, moreover, in a clean collision free fashion.

To simplify conceptually certain calculations to come, we will change some notation.
Note that £ is isomorphic to the group £’ := Z*tP and that e11, @ I, 4 is a matrix represen-
tation of this isomorphism. We will work with the group £’ instead of £; accordingly, we
will substitute £ with the map £’ := E(e11, ® Ig) and Q with Q' := L'/ ker £'.

Our subroutine to compute a representation of Q' begins by applying algorithm in Theo-
rem 66 to obtain a (a+/3) X~y matrix representation A of a group homomorphism A : Z¥ — £’
such that im A = ker £ (where v = a + 8+ m). (Theorem 51 ensures that real factors do
not appear in the domain of A because there are no non-trivial continuous group homo-
morphisms from products of R into products of Z.) We can represent these maps in a
diagram:

Zr Ay getB £, N (4.6.36)

102

The worst-case time complexity needed to compute A with the algorithm in theorem 66 is
polynomial in the variables m, a, B, log N;, log || €||b, and log 1.

Next, we compute two integer unimodular matrices U, V such that A =USV and S is
in Smith normal form (SNF). This can be done, again, in poly(m, a, 3, log N;, size(£), log 1)
time with existing algorithms to compute the SNF of an integer matrix (see e.g. [154] for a
review). Each matrix V, S, U is the matrix of representation of some new group homomor-
phism, as illustrated in the following diagram.

7Y A goth 2, N
l‘, ”T (4.6.37)

77 —5 go+h

Since V, U are invertible integer matrices the maps V : Z* — Z* and U : Z*tF
7>+ are continuous group isomorphisms and, hence, have trivial kernels. As a result,
imS = imUAV™! = imU~'4 = U Y(im A) = U~ }(ker’), which shows that ker &
is isomorphic to im S via the isomorphism U~!. These facts together with Lemma 49.(a)
show that & := £'U is a matrix representation of a group isomorphism from the group
Q@ :=L'/im S into V.

Finally, we show that Q' can be written explicitly as a direct product of primitive groups
of type Z and Zg4, thereby computing a finite set of generators of @’ that we can immediately
use to construct (A,¢)-nets Ma. We make crucial use of the fact that S is Smith normal
form, i.e.

(1)

o1

S1

S2

S = ' 0 |= O [, «ses39

Ob
S(a+B) \ O

where the coefficients o; are strictly positive. It follows readily that imS = Z* x 0,Z x
-~ opZ x {0}, and therefore

Q =72 /imS = {0}* X Zy, X -+ X Zg, X ZE. (4.6.39)

As Q' and N are isomorphic the columns of the matrix Eis, = £'U form a generating set of
N. Moreover, since &5, acts isomorphically on (4.6.39), the subgroup A" must be a direct
sum of cyclic subgroups generated by the columns of &igo:

N=h)® & H)®{h)D - @ (b), (4.6.40)

where f;, b; stand for the (a + 7)th and the (b + j)th column of & Equation (4.6.39)
also tells us that the f;s must generate the compact subgroup Neomp and that the 6; form a
Z-basis of Ngree-

The last two observations yield an efficient straightforward method to construct and
sample (A, ¢e)-nets within M. First, set {£;} (resp. {b;}) to be the default generating-set
(resp. default basis) of Meomp and Niree; then, select a parallelotope Pa of the form (4.6.33)

103

with some desired A = (Aj,...,A). This procedures specifies a net Na = Neomp ® Pa
that can be efficiently represented with O(poly(m,a, 8,log Ni,log ||€||b, log L log A;)) bits
of memory (by keeping track of the generating-sets of A” and the numbers A;). Moreover,
we can efficiently sample Ma uniformly and collision-freely by generating random strings of
the form

b c
> oxfit+ Y ub;, (4.6.41)
=1 j=1

where 3 € Z,, and y; € {0,%1,...,+A;}.

104

Chapter 5

The computational power of
normalizer circuits over black-box
groups

In this chapter we study normalizer circuits over black box Abelian groups, as defined in
Chapter 3. We show that such normalizer circuits contain many important quantum algo-
rithms, including Shor’s factoring. Moreover, we show that the extended group decompo-
sition problem is complete for the associated complexity class, meaning that all normalizer
circuits over black box Abelian groups can be classically simulated given an oracle to solve
the decomposition problem.

The results of this chapter is joint work with Juan Bermejo-Vega and Martin Van den
Nest. This chapter is mostly excerpted from [75].

5.1 Introduction

We will study normalizer circuits over black box Abelian groups in this chapter. The dif-
ference between this setting and that of the preceding chapter is that the underlying group
need not be explicitly decomposed into primitive subgroups. This is a subtle yet tremen-
dously important difference: although such a decomposition always exists for any finite
Abelian group [87], finding just one is regarded as a hard computational problem; indeed, it
is provably at least as hard as factoring!. Our motivation to adopt the notion of black-box
group is to study Abelian groups for which the group multiplication can be performed in
classical polynomial-time while no efficient classical algorithm to decompose them is known.
A key example is Z;\(,, the multiplicative group of integers modulofootnote 1, which plays an
important role in Shor’s factoring algorithm [14]. With some abuse of notation, we call any

such group also a “black-box group”?.

'Knowing B = Zd, X - -+ X Za,, implies that the order of the group |G| = d1d2 - - - din. Hardness results for
computing orders [83, 82] imply that the problem is provably hard for classical computers in the black-box
setting. For groups Zx,, computing ¢(N) := |Z| (the Euler totient function) is equivalent to factoring [88].

21t will always be clear from context whether the group multiplication is performed by an oracle at unit
cost or by some well-known polynomial-time classical algorithm. Most results will be stated in the black-box
setting though.

105

Statement of results

This chapter focuses on understanding the potential uses and limitations of black-box nor-
malizer circuits. Our results (listed below) give a precise characterization of their computa-
tional power. On one hand, we show that several famous quantum algorithms, including
shor’s celebrated factoring algorithm, can be implemented with black-box normalizer cir-
cuits. On the other hand, we apply our former simulation results in Chapter 4 to set upper
limits to the class of problems that these circuits can solve, as well as to draw practical
implications for quantum algorithm design.
Our main results are now summarized:

1. Quantum algorithms. We show that many of the best known quantum algorithms
are particular instances of normalizer circuits over black-box groups, including Shor’s
celebrated factoring and discrete-log algorithms; it follows that black-box normalizer
circuits can achieve exponential quantum speed-ups. Namely, the following algo-
rithms are examples of black-box normalizer circuits.

e Discrete logarithm. Shor’s discrete-log quantum algorithm [14] is a normalizer
circuit over Zg_l X Zy (Theorem 74, Section 5.2.1).

e Factoring. We show that a hybrid infinite-finite dimensional version of Shor’s
factoring algorithm [14] can be implemented with normalizer circuit over Z x Zy,.
We prove that there is a close relationship between Shor’s original algorithm and
our version: Shor’s can be understood as a discretized qubit implementation of
ours (theorems 76, 79). We also discuss that the infinite group Z plays a key role
in our “infinite Shor’s algorithm”, by showing that it is impossible to implement
Shor’s modular-exponentiation gate efficiently, even approximately, with finite-
dimensional normalizer circuits (Theorem 80). Last, we further conjecture that
only normalizer circuits over infinite groups can factorize (Conjecture 81).

e Elliptic curves. The generalized Shor’s algorithm for computing discrete loga-
rithms over an elliptic curve [155, 104, 156] can be implemented with black-box
normalizer circuits (Section 5.2.3); in this case, the black-box group is the group
of integral points E of the elliptic curve instead of Z;j.

e Group decomposition. Cheung-Mosca’s algorithm for decomposing black-box
finite Abelian groups [84, 73] is a combination of several types of black-box nor-
malizer circuits. In fact, we discuss a new extended Cheung-Mosca’s algorithm
that finds even more information about the structure of the group and it is also
based on normalizer circuits (Section 5.2.5).

e Hidden subgroup problem. Deutsch’s [157], Simon’s [158] and, in fact, all
quantum algorithms that solve Abelian hidden subgroup problems [159, 160, 20,
161, 78, 79, 80, 81], are normalizer circuits over groups of the form G x @, where
G is the group that contains the hidden subgroup H and O is a group isomorphic
to G/H (Section 5.2.4). The group O, however, is not a black-box group due to a
small technical difference between our oracle model we use and the oracle setting
in the HSP.

¢ Hidden kernel problem. The group O = G/H in the previous section becomes
a black-box group if the oracle function in the HSP is a homomorphism between
black-box groups: we call this subcase the hidden kernel problem (HKP). The

106

difference does not seem to be very significant, and can be eliminated by choosing
different oracle models (Section 5.2.4). However, we will never refer to Simon’s
or to general Abelian HSP algorithms as “black-box normalizer circuits”, in order
to be consistent with our and pre-existing terminology.

Note that it follows from the above that black-box normalizer circuits can render
insecure widespread public-key cryptosystems, namely Diffie-Hellman key-exchange
[162], RSA [15] and elliptic curve cryptography {163, 164].

. Group decomposition is as hard as simulating normalizer circuits. Another
main contribution of this chapter is to show that the group decomposition problem
(suitably formalized) is, in fact, complete for the complexity class Black-Box Nor-
malizer, of problems efficiently solvable by probabilistic classical computers with orac-
ular access to black-box normalizer circuits. Since normalizer circuits over decomposed
groups are efficiently classically simulable ([1, 2], and Chapter 4 of this thesis), this
result suggests that the computational power of normalizer circuits originate precisely
in the classical hardness of learning the structure of a black-box group.

We obtain this last result by proving a significantly stronger theorem (Theorem 87),
which states that any black-box normalizer circuit can be efficiently simulated step by
step by a classical computer if an efficient subroutine for decomposing finite Abelian
groups is provided.

. A no-go theorem for new quantum algorithms. In this chapter, we provide
a negative answer to the question “can new quantum algorithms based on normalizer
circuits be found?”: by applying the latter simulation result, we conclude that any new
algorithm not in our list can be efficiently simulated step-by-step using the extended
Cheung-Mosca algorithm and classical post-processing. This implies (Theorem 89)
that new ezrponential speed-ups cannot be found without changing our setting (we
discuss how the setting might be changed in the discussion 5.1). This result says
nothing about polynomial speed-ups.

4. Universality of short normalizer circuits. A practical consequence of our no-go

theorem is that all problems in the class Black Box Normalizer can be solved using
short normalizer circuits with a constant number of normalizer gates. (We may still
need polynomially many runs of such circuits, along with classical processing in be-
tween, but each individual normalizer circuit is short.) We find this observation inter-
esting, in that it explains a very curious feature present in all the quantum algorithms
that we study [14, 155, 104, 156, 84, 73, 157, 158, 159, 160, 20, 161, 78, 79, 80, 81] (Sec-
tion 5.2): they all contain at most a constant number of quantum Fourier transforms
(actually at most two).

. Other complete problems. As our last contribution in this series, we identify
another two complete problems for the class Black Box Normalizer (Section 5.5):
these are the (aforementioned) Abelian hidden kernel problem, and the problem of
finding a general-solution to a system of linear equations over black-boz groups (the
latter are related to the systems of linear equations over groups studied in Section 4.5.

107

A link between Clifford circuits and Shor’s algorithm

The results in this chapter together with those previously obtained in [1, 2] and Chapter
4 of this thesis demonstrate the existence of a precise connection between Clifford circuits
and Shor’s factoring algorithm. At first glance, it might be hard to digest that two types of
quantum circuits that seem to be so far away from each other might be related at all. Indeed,
classically simulating Shor’s algorithm is widely believed to be an intractable problem (at
least as hard as factoring), while a zoo of classical techniques and efficient classical algorithms
exist for simulating and computing properties of Clifford circuits [17, 16, 76, 77, 108, 110,
109, 165, 127, 111, 166]. However, we will see that these circuits are just different types of
normalizer circuits. In other words, they are both members of a common family of quantum
operations.

Remarkably, this correspondence between Clifford and Shor, rather than being just a
mere mathematical curiosity, also has some sensible consequences for the theory of quantum
computing. One that follows from Theorem 87, our simulation result, is that all algorithms
studied in this chapter (Shor’s factoring and discrete-log algorithms, Cheung-Mosca’s, etc.)
have a rich hidden structure which enables simulating them classically with a stabilizer
picture approach “a la Gottesman-Knill” [17, 16]. This structure lets us track the evolution
of the quantum state of the computation step by step with a very special algorithm, which,
despite being inefficient, exploits completely different algorithmic principles than the naive
brute-force approach: i.e., writing down the coefficients of the initial quantum state and
tracking their quantum mechanical evolution through the gates of the circuit3. Although
the stabilizer-picture simulation is inefficient when black-box groups are present (i.e., it does
not yield an efficient classical algorithm for simulating Shor’s algorithm), the mere existence
of such an algorithm reveals how much mathematical structure these quantum algorithms
have in common with Clifford and normalizer circuits.

In retrospect, and from an applied point of view, it is also rather satisfactory that one
can gracefully exploit the above connection to draw practical implications for quantum
algorithm design: in our work, we have actively used our knowledge of the hidden “Clifford-
ish” mathematical features of the Abelian hidden subgroup problem algorithms in deriving
results 2, 3, 4 and 5 (in the list given in the previous section).

Finally, we regard it a memorable curiosity that replacing decomposed groups with black-
box groups not only renders the simulation methods in Chapter 4 inefficient (this is, in fact,
something to be expected, due to the existence of hard computational problems related to
black-box groups), but also suddenly bridges the gap between Clifford/normalizer circuits
and important quantum algorithms such as Shor’s and Simon’s algorithms.

3Note that throughout this manuscript we always work at a high level of abstraction (algorithmically
speaking), and that the “steps” in a normalizer-based quantum algorithm are always counted at the logic
level of normalizer gates, disregarding smaller gates needed to implement them. In spite of this, we find
the above simulability property of black-box normalizer circuits to be truly fascinating. To get a better
grasp of its significance, we may perform the following thought experiment. Imagine, we would repeatedly
concatenate black-box normalizer circuits in some intentionally complex geometric arrangement, in order
to form a gargantuan, intricate “Shor’s algorithm” of monstrous size. Even in this case, our simulation
result states that if we can decompose Abelian groups (say, with an oracle), then we can efficiently simulate
the evolution of the circuit, normalizer-gate after normalizer-gate, independently of the number of Fourier
transforms, automorphism and quadratic-phase gates involved in the computation (the overhead of the
classical simulation is always at most polynomial in the input-size).

108

Relationship to previous work

Up to our best knowledge, neither normalizer circuits over black-box groups, nor their
relationship with Shor’s algorithm or the Abelian hidden subgroup problem, have been
previously investigated. Normalizer circuits over explicitly-decomposed finite groups Zy, x
-++ X ZN, were studied in [1, 2], while an extension of the formalism to infinite groups of the
form Z* x T® x Zy, x --+ X Zp, is given in Chapter 4.

Clifford circuits over qubits and qudits (which can be understood as normalizer circuits
over groups of the form Z7* and Z7') have been extensively investigated in the literature
[17, 16, 76, 77, 108, 110, 109, 111, 127, 166]. Certain generalizations of Clifford circuits that
are not normalizer circuits have also been studied: [110, 167, 168, 127, 166] consider Clifford
circuits supplemented with some non-Clifford ingredients; a different form of Clifford circuits
based on projective normalizers of unitary groups were investigated in [169].

The hidden subgroup problem (HSP) has played a central role in the history of quantum
algorithms and has been extensively studied before our work. The Abelian HSP (see Section
1.3.3), which is also a central subject of this chapter, is related to most of the best known
quantum algorithms that were found in the early days of the field {157, 158, 159, 160, 20,
161, 78, 79, 80, 81]. Its best-known generalization, the non-Abelian HSP, has also been
heavily investigated due to its relationship to the graph isomorphism problem and certain
shortest-vector-lattice problems [25, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187] (see also the reviews |21, 188, 189] and references therein).

The notion of black-box group, which is a key concept in our setting, was first considered
by Babai and Szméredi in [83] and have since been extensively studied in classical complexity
theory [190, 191, 192, 193, 82]. In general, black-box groups may not be Abelian and do
not need to have uniquely represented elements [83]; in the present work, we only consider
Abelian uniquely-encoded black-box groups.

In quantum computing, black-box groups were previously investigated in the context of
quantum algorithms, both in the Abelian {84, 73, 194] and the non-Abelian group setting
[195, 175, 183, 196, 197, 182, 198, 199]. Except for a few exceptions (cf. [195, 194]) most
quantum results have been obtained for uniquely-encoded black-box groups.

Aside from generalizations of Clifford circuits [1, 2, 17, 16, 76, 77, 108, 110, 109, 165,
127, 111, 166] (which includes normalizer circuits), many other classes of restricted quantum
circuits have been studied in the literature. Some examples (by no means meant to be an
exhaustive list) are nearest-neighbor matchgate circuits {200, 201, 202, 168, 203, 204, 205,
206, 207], the one-clean qubit model {208, 209, 210, 211, 212, 213, 214, 215], circuit models
based on Gaussian or linear-optical operations [119, 116, 117, 216, 128, 129, 217], commuting
circuits [218, 219, 220, 151], low-entangling? circuits [222, 223] , low-depth circuits [224, 225],
tree-like circuits [225, 226, 227, 228, 229], low-interference circuits [230, 231] and a few others
(232, 233].

Discussion and outlook

We finish our introduction by discussing a few potential avenues for finding new quantum
algorithms as well as some open questions suggested by our work.

In this chapter, we provide a strict no-go theorem for finding new quantum algorithms
with black-box normalizer circuits, as we define them. There are, however, a few possible

“Here entanglement is measured with respect to the Schmidt-rank measure (low-entangling circuits with
respect to continuous entanglement measures are universal for quantum computation [221]).

109

ways to modify our setting leading to scenarios where one could bypass these results and,
indeed, find new interesting quantum algorithms. We now discuss some.

One enticing possibility would be to study possible extensions of the normalizer circuit
framework to non-Abelian groups, in connection with non-Abelian hidden subgroup prob-
lems [25, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
187]. We have not addressed this question in the present work. In this direction, the classical
simulability of non-Abelian quantum Fourier transforms was studied in [234].

A second possibility would be to consider more general types of normalizer circuits
than ours, by extending the class of Abelian groups they can be associated with.
However, looking at more general decomposed groups does not look particularly promising:
we believe that the methods of this thesis can be extended, e.g., to simulate normalizer
circuits over groups of the form R?% x Zb x T¢ x Zn, X --- X Ly, x B, with additional
R factors (cf. our discussion in Section 3.9). On the other hand, allowing more general
types of groups to act as black-bozes looks rather promising to us: one may, for instance,
attempt to extend the notion of normalizer circuits to act on Hilbert spaces associated
with multi-dimensional infrastructures [235, 236], which may, informally, be understood
as “infinite black-box groups” We expect, in fact, that known quantum algorithms for
finding hidden periods and hidden lattices within real vector spaces [237, 238, 239, 240]
and/or or infrastructures (235, 236] (e.g., Hallgren’s algorithm for solving Pell’s equation
[237, 238]) could be at least partially interpreted as generalized normalizer circuits in this
sense. Addressing this question would require a careful treatment of precision errors that
appear in such algorithms due to the presence of transcendental numbers, which play no
role in the present work®. Some open questions in this quantum algorithm subfield have
been discussed in [236].

A third possible direction to investigate would be whether different models of normalizer
circuits could be constructed over algebraic structures that are not groups. One could,
for instance, consider sets with less algebraic structure, like semi-groups. In this regard, we
highlight that a quantum algorithm for finding discrete logarithms over finite semigroups
was recently given in [241]. Alternatively, one could study also sets with more structure than
groups, such as fields, whose study is relevant to Van Dam-Seroussi’s quantum algorithm
for estimating Gauss sums [242].

Lastly, we mention some open questions suggested by our work.

In this thesis, we have not investigated the computational complexity of black-box nor-
malizer circuits without classical post-processing. There are two facts which suggest that
power of black-box normalizer circuits alone might, in fact, be significantly smaller. The
first is the fact that the complexity class of problems solvable by Clifford circuits alone is ®L
[110], believed to be a strict subclass of P. The second is that normalizer circuits seem to be
incapable of implementing most classical functions coherently even with constant accuracy
(this has been rigorously shown in finite dimensions [1, 2]).

Finally, one may study whether considering more general types of inputs, measurements

5An n-dimensional infrastructure T provides a classical presentation for an n-dimensional hypertorus
group R™/A = T", where A is an (unknown) period lattice A. The elements of this continuous group are
represented with some classical structures known as f-representations, which are endowed with an operation
that allows us to compute within the torus. Although one must deal carefully with non-trivial technical
aspects of infinite groups in order to properly define and compute with f-representations (cf. [235, 236] and
references therein), one may intuitively understand infrastructures as “generalized black-box hypertoruses”.
We stress, though, that it is not standard terminology to call “black-box group” to an infinite group.

5No such treatment is needed in this chapter, since we study quantum algorithms for finding hidden
structures in discrete groups.

110

or adaptive operations might change the power of black-box normalizer circuits. Allowing,
for instance, input product states has potential to increase the power of these circuits, since
this already occurs for standard Clifford circuits [167, 166]. Concerning measurements, we
believe that allowing, e.g. adaptive Pauli operator measurements (in the sense of [2]) is
unlikely to give any additional computational power to black-box normalizer circuits: in
the best scenario, this could only happen in infinite dimensions, since adaptive normalizer
circuits over finite Abelian groups are also efficiently classically simulable with stabilizer
techniques [2]. With more general types of measurements, it should be possible to recover
full quantum universality, given that qubit cluster-states (which can be generated by Clifford
circuits) are a universal resource for measurement-based quantum computation [243, 244].
The possibility of obtaining intermediate hardness results if non-adaptive yet also non-Pauli
measurements are allowed (in the lines of [216] or [166, theorem 7]) remains also open.

5.2 Quantum algorithms

5.2.1 The discrete logarithm problem over Z;

In this section we consider the discrete-logarithm problem studied by Shor [14]. For any
prime number p, let Z;,‘ be the multiplicative group of non-zero integers modulo p. An
instance of the discrete-log problem over Zz’,‘ is determined by two elements a, b € Z;,‘, such
that a generates the group Z;,‘. Our task is to find the smallest non-negative integer s that
is a solution to the equation a® = bmod p; the number is called the discrete logarithm
s =log, b.

We now review Shor’s algorithm [14, 24] for this problem and prove our first result.

Theorem 74 (Discrete logarithm). Shor’s quantum algorithm for the discrete logarithm
problem over Z;,‘ is @ black-box normalizer circuit over the group Zg_l X Z;,(.

Theorem 74 shows that black box normalizer circuits over finite Abelian groups can
efficiently solve a problem for which no eflicient classical algorithm is known. In addition,
it tells us that black-box normalizer circuits can render widespread public-key cryptosys-
tems vulnerable: namely, they break the Diffie-Helman key-exchange protocol [162], whose
security relies in the assumed classical intractability of the discrete-log problem.

Proof. Let us first recall the main steps in Shor’s discrete log algorithm.

Algorithm 75 (Shor’s algorithm for the discrete logarithm).
Input. Positive integers a, b, where Z\ = (a).
Output. The least nonnegative integer s such that a® = b (mod p).

We will use three registers indexed by integers, the first two modulo p — 1 and the last
modulo p. The first two registers will correspond to the additive group Z,_1, while the third
register will correspond to the multiplicative group Z;,‘. Two important ingredients of the
algorithm will be the unitary gates U, : |s) — |sa) and Uy : |s) — |sb).

1. Initialization: Start in the state |0)]|0)]1).

2. Create the superposition state ﬁ ’;,—ylzo |z)|y)|1), by applying the standard quantum

Fourier transform on the first two registers.

111

3. Apply the unitary U defined by U|z)|y}|z) = |z}|y)|2a*bY), to obtain the state

1
—— Y [2)|y)la"bY)

p—1 z,y=0

This is equivalent to applying the controlled-UY gate between the first and third reg-
isters, and the controlled-Uy between the second and third registers.

4. Measure and discard the third register. This step generates a so-called coset state

1 =2
Zh"*‘ks,“k)a
vp—1 k=0

where v is some uniformly random element of Z,_; and s is the discrete logarithm.

5. Apply the quantum Fourier transform over Z,_; to the first two registers, to obtain

6. Measure the system in the standard basis to obtain a pair of the form (&', k’s) mod p
uniformly at random.

7. Classical post-processing. By repeating the above process n times, one can extract
the discrete logarithm s from these pairs with exponentially high probability (at least
1 —27"), in classical polynomial time.

Note that the Hilbert space of the third register precisely corresponds to Hg if we choose
the black-box group to be B = Z;. It is now easy to realize that Shor’s algorithm for discrete
log is a normalizer circuit over Zy—1 X Zp_1 X Zz’,‘: steps 2 and 4 correspond to applying
partial QFTs over Zy_1, and the gate U applied in state 3 is a group automorphism over
Zp_l)(Z_lXZ;. O

We stress that, in the proof above, there is no known efficient classical algorithm for
solving the group decomposition problem for the group Z; (as we define it in Section 5.2.5):
although, by assumption, we know that Z,; = (a) = Z,_1, this information does not allow
us to convert elements from one representation to the other, since this requires solving the
discrete-logarithm problem itself. In other words, we are unable to compute classically the
group isomorphism Z; & Zp—1. In our version of the group decomposition problem, we
require the ability to compute this group isomorphism. For this reason, we treat the group
Z, as a black-box group.

5.2.2 Shor’s factoring algorithm

In this section we will show that normalizer circuits can efficiently compute the order of
elements of (suitably encoded) Abelian groups. Specifically, we show how to efficiently solve
the order finding problem for every (finite) Abelian black-box group B [83] with normalizer
circuits. Due to the well-known classical reduction of the factoring problem to the problem of
computing orders of elements of the group Zj, our result implies that black-box normalizer

112

circuits can efficiently factorize large composite numbers, and thus break the widely used
RSA public-key cryptosystem [15].

We briefly introduce the order finding problem over a black-box group B, that we
always assume to be finite and Abelian. In addition, we assume that the elements of the
black-box group can be uniquely encoded with n-bit strings, for some known n. The task
we consider is the following: given an element a of B, we want to compute the order |a| of
a (the smallest positive integer » with the property” a” = 1). Our next theorem states that
this version of the order finding problem can be efliciently solved by a quantum computer
based on normalizer circuits.

Theorem 76 (Order finding over B). Let B be a finite Abelian black-box group with
an n-qubit encoding and Hp be the Hilbert space associated with this group. Let V, be the
unitary that performs the group multiplication operation on Hp: Vi|x) = |ax). We denote
by c -V, the unitary that performs V, on Hp controlled on the value of an ancillary register
Hz:
|m, x) —ole |m, a™x), for any m in Z.

Assume that we can query an oracle that implements c -V, in one time step for any a € B.
Then, there exists a hybrid version of Shor’s order-finding algorithm, which can compute
the order |a| of any a € B efficiently, using normalizer circuits over the group Z x B and
classical post-processing. The algorithm runs in polynomial-time, uses an efficient amount
of precision and succeeds with high probability.

In Theorem 76, by “efficient amount of precision” we mean that instead of preparing
Fourier basis states of Hz or measuring on this (unphysical) basis, it is enough to use
realistic physical approximations of these states (cf. Section 3.7).

Proof. For simplicity, we assume that a generating set of B with O(n) elements is given
(otherwise we could generate one efficiently probabilistically by sampling elements of B).

We divide the proof into two steps. In the first part, we give an infinite-precision quantum
algorithm to randomly sample elements from the set Out, = {{& : k € Z} that uses
normalizer circuits over the group Z x B in polynomially many steps. In this first algorithm,
we assume that Fourier basis states of Hz can be prepared perfectly and that there are no
physical limits in measurement precision; the outcomes k/|a| will be stored with floating
point arithmetic and with finite precision. The algorithm allows one to extract the period
|a| efficiently by sampling fractions k/|a| (quantumly) and then using a continued fraction
expansion (classically).

In the second part of the proof, we will remove the infinite precision assumption.

Our first algorithm is essentially a variation of Shor’s algorithm for order finding [14]
with one key modification: whereas Shor’s algorithm uses a large n-qubit register 3 to
estimate the eigenvalues of the unitary V,, we will replace this multiqubit register with a
single infinite dimensional Hilbert space Hz. The algorithm is hybrid in the sense that it
involves both continuous- and discrete-variable registers. The key feature of this algorithm
is that, at every time step, the implemented gates are normalizer gates, associated with the
groups Z x Zy; and T x Z;f, (which are, themselves, related via the partial Fourier transforms
Fz and Fr). The algorithm succeeds with constant probability.

Algorithm 77 (Hybrid order finding with infinite precision).

Since B is finite, the order |a| is a well-defined number.

113

Input. A black box (finite abelian) group B, and an element a € B.

Output. The order s of a in B, i.e. the least positive integer s such that a® = 1.

We will use multiplicative notation for the black box group B, and additive notation for
all other subgroups.

1.

Initialization: Initialize Hz on the Fourier basis state |0) with 0 € T, and Hp on the
state |1), with 1 € B. In our formalism, we will regard |0,1) as a standard-basis state
of the basis labeled by T x B.

. Apply the Fourier transform Fr to the register #z. This changes the designated basis

of this register to be the one labeled by the group Z. The state |0) in the new basis is
an infinitely-spread comb of the form) ., |m).

Let the oracle V, act jointly on Hz x Hp; then the state is mapped in the following
manner:

STmy —s S pm,a™). (5.2.1)

mEZ meZ

Note that, in our formalism, the oracle c-V, can be regarded as an automorphism
gate U,. Indeed, the gate implements a classical invertible function on the group
a(m,z) = (m,a™z). The function is, in addition, a continuous® group automorphism,
since

a((m,z)(n,y)) = a(m +n,zy) = (m+n, (™) (zy))
= (m+n, (a™z)(a"y)) = (m,a™z)(n,a"y) (5.2.2)

= a(m,z)a(n,y).

Measure and discard the register Hg. Say we obtain a® as the measurement outcome.
Note that the function a™ is periodic with period r = |a|, the order of the element.
Due to periodicity, the state after measuring a® will be of the form

> s+ gr) | la®). (5.2.3)

J€Z

After dicarding Hg we end up in a periodic state Y |s + jr) which encodes r = |a].

. Apply the Fourier transform F7 to the register Hz. We work again in the Fourier

basis of Hz, which is labelled by the circle group T. The periodic state > |s + jr) in
the dual T basis reads [22]

r—1

3P| k) (5.2.4)
k=0

Measure Hgz, in the Fourier basis (the basis labeled by T). Since we that the initial
state of the computation is as close to |0) as we wish, the wavefunction of the final
state (5.2.4) is sharply peaked around values p € T of the form k/r. As a result, a high
resolution measurement will let us sample these numbers (within some floating-point
precision window A) nearly uniformly at random.

8This is vacuously true: since the group G := Z x B is discrete, any functtion f : G — G is continuous.

114

7. Classical postprocessing: Repeat Steps 1-7 a few times to obtain randomly sam-
pled multiples {k;/r};. Afterwards by using a (classical) continued-fraction expansion
algorithm [3, 4], the order r can be extracted. This can be done, for instance, with
an algorithm from [245] that obtains r with constant probability after sampling two
numbers &}, E2 if the measurement resolution is high enough: A < 1/2r2 is enough

for our purposes.

There is a strong manifest similarity between Algorithm 77 and Shor’s factoring algo-
rithm: the quantum Fourier transforms Fr in our algorithm Fz play the role of the discrete
Fourier transorm Jan, and c-V, acts as the modular exponentation gate [14]. In fact, one can
regard Algorithm 77 as a “hybrid” version of Shor’s algorithm combining both continuous
and discrete variable registers. The remarkable feature of this version of Shor’s algorithm is
that the quantum part of the algorithm 1-6 is a normalizer computation.

Algorithm 77 is efficient if we just look at the number of gates it uses. However, the
algorithm is inefficient in that it uses infinitely-spread Fourier states |p) = 3, 7 €~ 2"P™|m)
(which are unphysical and cannot be prepared with finite computational resources) and
arbitrarily precise measurements. We finish the proof of Theorem 76 by giving an improved
algorithm that does not rely on unphysical requirements.

Algorithm 78 (Hybrid order finding with finite precision).

1-2 Initialization: Initialize Hp to |1). The register Hz will begin in an approzimate
Fourier basis state \6> = —\/ﬁ S+ |m), i.e. a square pulse of length 2M + 1 in the
integer basis, centered at 0. This step simulates steps 1-2 in Algorithm 77.

3-4 Repeat steps 3-4 of Algorithm 77. The state after obtaining the measurement outcome
a® is now different due to the finite “length” of the comb Z o Im); we obtain

Ly
|y = \71—]3 ; |s + jr), (5.2.5)

where L = L,+ Ly+1 and s is obtained nearly uniformly at random from {0, ...,r—1}.
The values L,, Ly are positive integers of of the form | M/r| —e with —2 < € < 0 (the
particular value of € depends on s, but it is irrelevant in our analysis). Consequently,
we have L = 2| M/r| — (€4 + €).

5 Apply the Fourier transform 7z to the register Hz . The wavefunction of the final
state 1/1 is the Fourier transform of the wavefunction v of (5.2.5). We compute 1,b using
formula (3.6.5):

2ripr(Lp+1) _ e—2niprLa

Ly
. . 1 . . 1 insy €
— 2nipT — 2rip(s+jr) — 2ntips i
"»b(p) § € Q,b(.’))) \/f _ELQ: € \/z (e) e2nipr __ 1

z€Z

. Ly—Lg . Ly—Le
) gy)
- VL sin (mpr) VL Lr(P) (5.2.6)

(to derive the equation, we apply the summation formula of the geometric series and

115

re-express the result in terms of the Dirichlet kernel [99]

(5.2.7)

Measure Hz in the Fourier basis. We show now that, if the resolution is high
enough, then the probability distribution of measurement outcomes will be “polyno-
mially close” to the one obtained in the infinite precision case (5.2.4). Intuitively, this
is a consequence of the fact that in the limit M — oo (when the initial state becomes
an infinitely-spread comb), we have also L — oo and that the function Dy, r(p) con-
verges to a train 3 75 Ok/r(p) of Dirac measures [99]. In addition, for a high finite

value of M, we find that the probability of obtaining some outcome p within a A = &

Lr
window of a fraction % is also high.
Pr(lp— [< &) 1 [+%2 sin? (mLpr) S A sin? () S 4 (5.2.8)
r(lp—F1<5)=~+ —— S~ > 2.
P=ri=2)= T -4 sin® (mpr) T Lsin? (&) T oPr

where we use the mean value theorem and the bound sin(z)? < z2. It follows that
with constant probability (larger than 4/72 = 0.41) the measurement will output some
outcome %—close to a number of the form k/r. (A tighter lower bound of 2/3 for the
success probability can be obtained by evaluating the integral numerically.)

Lastly, note that although the derivation of (5.2.8) implicitly assumes that the finial
measurement is infinitely precise, it is enough to implement measurements with resolu-
tion close to A. Due to the peaked shape of the final distribution (5.2.8), it follows that
Theta(“1&1/7) resolution is enough if our task is to sample %—estimates of these fractions
nearly uniformly at random; this scaling is efficient as a function of M (cf. Section
3.7).

Classical postprocessing: We now set M (the length of the initial comb state) to
be large enough so that % = Tlr < %g; taking log M = O(poly n) is enough for our
purposes. With such an M, the measurement step 6 will output a number p that is
2—:7 close to a % with high probability, which can be increased to be arbitrarily close
to 1 with a few repetitions. We then proceed as in step 7 of Algorithm 77 to compute
the order 7. O

Shor’s algorithm as a normalizer circuit

Our discussion in the previous section reveals strong a resemblance between our hybrid
normalizer quantum algorithm for order finding and Shor’s original quantum algorithm for
this problem [14]: indeed, both quantum algorithms employ remarkably similar circuitry. In
this section we show that this resemblance is actually more than a mere fortuitous analogy,
and that, in fact, one can understand Shor’s original order-finding algorithm as a discretized
version of our finite-precision hybrid algorithm for order finding 77.

Theorem 79 (Shor’s algorithm as a normalizer circuit). Shor’s order-finding algo-
rithm [14] provides an efficient discretized implementation of our hybrid normalizer Algo-
rithm 78.

116

Note that the theorem does not imply that all possible quantum algorithms for order
finding are normalizer circuits (or discretized versions of some normalizer circuit). What it
shows is that the one first found by Shor in [14] does exhibit such a structure.

Proof. Our approach will be to show explicitly that the evolution of the initial quantum state
in Shor’s algorithm is analogous to that of the initial state in Algorithm 78 if we discretize
the computation. Recall that Shor’s algorithm implements a quantum phase estimation [20]
for the unitary V,. Let D be the dimension of the Hilbert space used to record such phase.
We assume D to be odd? and write D = 2M + 1. Then Shor’s algorithm can be written as
follows:

1.

2.

34

Initialize the state |0, 1) on the Hilbert space Hp x HZ;’G’

Apply the discrete Fourier transform 7, on Hp to obtain

D-1 M
S lmlny =3 Imln). (5.2.9)

m=0 -M

So far, we have simulated step 1 in Algorithm 78 by constructing the same periodic
state. These first two steps are also clearly analogous to steps 1-2 in Algorithm 77.

Apply the modular exponentiation gate Ume, which is the following unitary [14]
Umelma T) = Im’ aml'), (5.2.10)

to the state. Measure the register HZX in the standard basis. We obtain, again, a
quantum state of the form (5.2.5), with L <D.

We apply the discrete Fourier transform Fgz, to the register Hyz, again. We claim
now that the output state will be a discretized version of (5.2.6) due to a remark-
able mathematical correspondence between Fourier transforms. Note that any
quantum state |¢)) of the infinite-dimensional Hilbert space Hz can be regarded as a
quantum state of Hp given that the support of |¢) is limited to the standard basis
states |0), |£1),...,|£M). Let us denote the latter state |)p) to distinguish both.
Then, we observe a correspondence between letting Fz act on |¢) and letting F7z,, act

on |[¢p).

T=+M) T=+M
D Py(z) = > e2me (2) (5.2.11)
z=—M r=—M

The correspondence (equation 5.2.11) tells us that, since we have ¥(z) = ¥p(z), it
follows that the Fourier transformed function 9p(k) is precisely the function 1(p)
evaluated at points of the form p = D The final state can be written as

)

-1
b (E) |k). (5.2.12)

o
I

0

which is, indeed, a discretized version of (5.2.6).

®This choice is not essential, neither in Shor’s algorithm nor in Algorithm 78, but it simplifies the proof.

117

7-8 The last steps of Shor’s algorithm are identical to 7-8 in Algorithm 78, with the only
difference being that the wavefunction (5.2.12) is now a discretization of (5.2.6). The
probability of measuring a number & such that -}% is close to a multiple of the form 'f?l
will again be high, due to the properties of the Dirichlet kernel (5.2.7). Indeed, one
can show (see, e.g. [24]) with an argument similar to (5.2.8) that, by setting D = N2,
the algorithm outputs with constant probability and almost uniformly a fraction %
among the two closest fraction to some value of the form k/r (see e.g. [14] for details).

The period r can be recovered, again, with a continued fraction expansion.

O

Normalizer gates over co groups are necessary to factorize

At this point, it is a natural question to ask whether it is necessary at all to replace the
Hilbert space H% with an infinite-dimensional space Hz with an integer basis in order to be
able to factorize with normalizer circuits. We discuss in this section that, in our view, this
is a key indispensable ingredient of our proof.

We begin our discussion by showing rigorously, in the black-box set-up, that no quantum
algorithm for factoring based on modular ezponentation gates (controlled V, rotations) can
be efficiently implemented with normalizer circuits over finite Abelian groups, in a strong
sense.

Theorem 80. Let Hys be the Hilbert space with basis {|0),...,|M — 1)} and dimension
M. Let B be an Abelian black-bozx group with associated Hilbert space Hp. Consider the
composite Hilbert space H = Hpr % Hp and define Upe to be the unitary gate on H defined
as Ume|m,) = |m,a™z), where a,xz € B and m € Zy;. Then, unless M is a multiple of
the order of a, there does not exist any normalizer circuit over H (even of exponential size)
satisfying ||C — Unellop < 1 — 2712,

We prove the theorem in Appendix D.1. We highlight that a similar result was proven
in [1, theorem 2]: that normalizer circuits over groups of the form Zo» x Zy also fail to
approximate the modular exponentiation. Also, we point out that it is easy to see that the
converse of Theorem 80 is also true: if |a| divides M, then an argument similar to (D.1.1)
shows that (m,z) — (m,a™z) is a group automorphism of Zp; x B, and the gate Uy
automatically becomes a normalizer automorphism gate.

The main implication of Theorem 80 is that finite-group normalizer circuits cannot im-
plement nor approximate the quantum modular exponentiation gate between Hg, playing
the role of the target system, and some ancillary control system, unless a multiple M = A|a|
of the order of a is known in advance. Yet the problem of finding multiples of orders is at least
as hard as factoring and order-finding: for B = Z},, a subroutine to find multiples of orders
can be used to efficiently compute classically a multiple of the order of the group ¢(N),
where ¢ is the Euler totient function, and it is known that factoring is polynomial-time
reducible to the problem of finding a single multiple of the form Ap(NV) [88].

We arrive to the conclusion that, unless we are in the trivial case where we know how to
factorize in advanced, a factoring algorithm based on finite-group normalizer gates cannot
comprise controlled-V, rotations. We further conjecture that any other approach based on
finite-group normalizer gates cannot work either.

Conjecture 81. Unless factoring is contained in BPP, there is no efficient quantum algo-
rithm to solve the factoring problem using only normalizer circuits over finite Abelian groups
(even when these are allowed to be black-box groups) and classical pre- and post-processing.

118

We back up our conjecture with two facts. On one hand, Shor’s algorithm for factoring
[14] (to our knowledge, the only quantum algorithm for factoring thus far) uses a modular
exponentiation gate to estimate the phases of the unitary V,, and these gates are hard to
implement with finite-group normalizer circuits due to Theorem 80. On the other hand, the
reason why this does works for the group Z seems to be, in our view, intimately related to
the fact that the order-finding problem can be naturally casted as an instance of the Abelian
hidden subgroup problem over Z (see also Section 5.2.4). Note that, although one can
always cast the order-finding problem as an HSP over any finite group Z,(n) for an integer
J, this formulation of the problem is unnatural in our setting, as it requires (again) the prior
knowledge of a multiple of ¢(IN), which we could use to factorize and find orders classically
without the need of a quantum computer [88].

5.2.3 Elliptic curves

In the previous sections we have seen that black-box normalizer circuits can compute discrete
logarithm in Z;,‘ and break the Diffie-Hellman key exchange protocol. In the proof, we showed
that Shor’s algorithm for this problem decomposes naturally in terms of normalizer gates
over Z, treated as a black-box group.

It is known that Shor’s algorithm can be adapted in order to compute discrete logarithms
over arbitrary black-box groups. In particular, this can be done for the group of solutions
E of an elliptic curve [155, 104, 156], thereby rendering elliptic curve cryptography (ECC)
vulnerable. Efficient unique encodings and fast multiplication algorithms for these groups
are known, so that they can be formally treated as black-box groups. In this section, we show
that a quantum algorithm given by Proos and Zalka [155] to compute discrete logarithms
over elliptic curves can be implemented with black-box normalizer circuits.

Basic notions

To begin, we review some rudiments of the theory of elliptic curves. For simplicity, our
survey focuses only on the particular types of elliptic curves that were studied in [155], over
fields with characteristic different than 2 and 3. Our discussion applies equally to the (more
general) cases considered in [104, 156], although the definition of the elliptic curve group
operation becomes more cumbersome in such settings'®. For more details on the subject, in
general, we refer the reader to [24, 246].

Let p > 3 be prime and let K be the field defined by endowing the set Z, with the
addition and multiplication operations modulo p. An elliptic curve E over the field K s a
finite Abelian group formed by the solutions {z,y) € K x K to an equation

C:y =23+ az+p (5.2.13)

together with a special element O called the “point at infinity”; the coefficients o, 8 in this
equation live in the field K. The discriminant A := —16(4a3 + 27[32) is nonzero, ensuring
that the curve is non-singular. The elements of E are endowed with a commutative group
operation. If P € E then P+ O = O+ P = P. The inverse element —P of P is obtained by
the reflection of P about the z axis. Given two elements P = (zp,yp) and Q = (z@,yq) € E,

0Correspondingly, the complexity of performing group multiplications in [104, 156] is greater.

119

the element P + @ is defined via the following rule:

P+Q= {0 if P = (ep,yp) = (v@, ~¥@) = —Q, (5.2.14)

—R otherwise (read below).

In the case P # @, the point R is computed as follows:

mR=)\2—a:p—xQ 3\ e % it P#Q
- 2
Yr=yp — A(zp — TR) §%:_a if P=Q and yp #0

R can also be defined, geometrically, to be the “intersection between the elliptic curve and
the line through P and @Q” (with a minus sign) [24].

It is not hard to check form the definitions above that the elliptic-curve group F is finite
and Abelian; from a computational point of view, the elements of F can be stored with
n € O(log |K|) bits and the group operation can be computed in O(poly n) time. Therefore,
the group E can be treated as a black box group.

Finally, the discrete logarithm problem (DLP) over an elliptic curve is defined in a
way analogous to the Z;,‘ case, although now we use additive notation: given a, b € E such
that za = b for some integer x; our task is to find the least nonnegative integer s with that
property. The elliptic-curve DLP is believed to be intractable for classical computers and
can be used to define cryptosystems analog to Diffe-Hellman’s [24].

Finding discrete logarithms over elliptic curves with normalizer circuits

In this section we review Proos-Zalka’s quantum approach to solve the DLP problem over
an elliptic curve [155]; their quantum algorithm is, essentially, a modification of Shor’s
algorithm to solve the DLP over Z, which we covered in detail in Section 5.2.1.

Our main contribution in this section is that Proos-Zalka’s algorithm can be imple-
mented with normalizer circuits over the group Z x Z x E. The proof reduces to combining
ideas from sections 5.2.1 and 5.2.2 and will be sketched in less detail.

Algorithm 82 (Proos-Zalka’s [155]).

Input. An elliptic curve with associated group E (the group operation is defined as per
(5.2.14)), and two points a,b € E. It is promised that sa = b for some nonnegative integer
s.

Output. Find the least nonnegative integer s such that sa = b.

1. We use a register H g, where E is the group associated with the elliptic curve (5.2.13),
and two ancillary registers H of dimension N = 2%, associated with the group A =
ZN % Zn. The computation begins in the state |0,0,0), where (0,0) € Aand O € E.

2. Apply Fourier transforms to the ancillas to create the superposition Z(z,y)e 4lz,y,0).

3. Apply the following unitary transfomation:

Z |z,y,0) —<L > |z y,za+ yb). (5.2.15)
(:z:,y)EA (z,y)eA

120

4. Apply Fourier transforms to the ancillas again, and then measure the register Hg,
obtaining an outcome of the form (2/,%’). These outcomes contain enough information

to extract the number s, with similar post-processing techniques to those used in Shor’s
DLP algorithm.

Algorithm 82 is not a normalizer circuit over Zy X Zy x E. Similarly to the factoring
case, the algorithm would become a normalizer circuit if the classical transformation in step
3 was an automorphism gate; however, for this to occur, NV needs to be a common multiple
of the orders of a and b (the validity of these claims follows with similar arguments to those
in Section 5.2.2). In view of our results in sections 5.2.1 and 5.2.2, one can easily come up
with two approaches to implement Algorithm 75 using normalizer gates.

(a) The first approach would be to use our normalizer version of Shor’s algorithm (Theorem
76) to find the orders of the elements a and b: normalizer gates over Z x E would be
used in this step. Then, the number NV in Algorithm 82 can be set so that all the gates
involved become normalizer gates over Zy X Zy x E.

(b) Alternatively, one can choose not to compute the orders by making the ancillas infinite
dimensional, just as we did in Algorithm 77. The algorithm becomes a normalizer
circuit over ZxZx E: as in Algorithm 77, the ancillas are initialized to the zero Fourier
basis state, and the discrete Fourier transforms are replaced by QFTs over T (in step
2) and Z (in step 4). A finite precision version of the algorithm can be obtained in
the same fashion as we derived Algorithm 77. Proos-Zalka’s original algorithm could,
again, be interpreted as a discretization of the resulting normalizer circuit.

5.2.4 The hidden subgroup problem

All problems we have considered this far—finding discrete logarithms and orders of Abelian
group elements—fit inside a general class of problems known as hidden subgroup problems
over Abelian groups [78, 79, 80, 81]. Most quantum algorithms discovered in the early days
of quantum computation solve problems that can be recasted as Abelian HSPs, including
Deutsch’s problem [157], Simon’s [158], order finding and discrete logarithms [14], finding
hidden linear functions [159], testing shift-equivalence of polynomials [160], and Kitaev’s
Abelian stabilizer problem [20, 161].

In view of our previous results, it is natural to ask how many of these problems can
be solved within the normalizer framework. In this section we show that a well-known
quantum algorithm that solves the Abelian HSPs (in full generality) can be modeled as a
normalizer circuit over an Abelian group (0. Unlike previous cases, the group involved in
this computation cannot be regarded as a black-box group, as it will not be clear how to
perform group multiplications of its elements. This fact reflects the presence of oracular
functions with unknown structure are present in the algorithm, to which the group O is
associated; thus, we call O an oracular group. We will discuss, however, that this latter
difference does not seem to be very substantial, and that the Abelian HSP algorithm can be
naturally regarded as a normalizer computation.

121

The quantum algorithm for the Abelian HSP

In the Abelian hidden subgroup problem we are given a function f : G — X from an Abelian
finite!! group G to a finite set X. The function f is constant on cosets of the form g + H,
where H is a subgroup “hidden” by the function; moreover, f is different between different
cosets. Given f as a black-box, our task is to find such a subgroup H.

The Abelian HSP is a hard problem for classical computers, which need to query the
oracle f a superpolynomial amount of times in order to identify H [24]. In contrast, a
quantum computer can determine H in polynomial time O(polylog |G|), and using the same
amount of queries to the oracle. We describe next a celebrated quantum algorithm for this
task [78, 79, 84]. The algorithm is efficient given that the group G is explicitly given'? in
the form G = Zgy, % --- x Zq,, [84, 73, 81}.

Algorithm 83 (Abelian HSP).

Input. An explicitly decomposed finite abelian group G = Zg4, X - -+ X Zg4, , and oracular
access to a function f: G — X for some set X. f satisfies the promise that f(g1) = f(g2)
iff g1 = g2 + h for some h € H, where H C G is some fixed but unknown subgroup of G.

Output. A generating set for H.

1. Apply the QFT over the group G to an initial state |0) in order to obtain a uniform
superposition over the elements of the group 3 . |9)-

2. Query the oracle f in an ancilla register, creating the state

\/—%Z 19, £(9)) (5.2.16)
geG

3. The QFT over G is applied to the first register, which is then measured.

4. After repeating 1-3 polynomially many times, the obtained outcomes can be postpro-
cessed classically to obtain a generating set of H with exponentially high probability
(we refer the reader to [21] for details on this classical part).

We now claim that the quantum part of Algorithm 83 is a normalizer circuit, of a slightly
more general kind than the ones we have already studied. The normalizer structure of the
HSP-solving quantum circuit is, however, remarkably well-hidden compared to the other
quantum algorithms that we have already studied. It is indeed a surprising fact that there
is any normalizer structure in the circuit, due to the presence of an oracular function, whose
inner structure appears to be completely unknown to us!

Theorem 84 (The Abelian HSP algorithm is a normalizer circuit.). In any Abelian
hidden subgroup problem, the subgroup-hiding property of the oracle function f induces a
group structure O in the set X. With respect to this hidden ‘linear structure”, the function f
becomes a group homomorphism, and the HSP-solving quantum circuit becomes a normalizer
ctreuit over G x 0.

The proof is the content of the next two sections.

1n this section we assume G to be finite for simplicity. For a case where G is infinite, we refer the reader
back to Section 5.2.2, where we studied the order finding problem (which is a HSP over Z).

12If the group G is not given in a factorized form, the Abelian HSP may still be solved by applying
Cheung-Mosca’s algorithm to decompose G (see next section).

122

Unweaving the hidden-subgroup oracle

The key ingredient in the proof of the theorem (which is the content of the next section)
is to realize that the oracle f cannot fulfill the subgroup-hiding property without having a
hidden homomorphism structure, which is also present in the quantum algorithm.

First, we show that f induces a group structure on X. Without loss of generality,
we assume that the function f is surjective, so that imf = X. (If this is not true, we can
redefine X to be the image of f.) Thus, for every element x € X, the preimage f~1(z) is
contained in G, and is a coset of the form f~!(z) = g, + H, where H is the hidden subgroup
and f(gz) = z. With these observations in mind, we can define a group operation in X as
follows:

z-y=F(f@)+ W) (5.2.17)

In (5.2.17) we denote by f the function f(x+ H) = f(z) that sends cosets z+ H to elements
of X. The subgroup-hiding property guarantees that this function is well-defined; moreover,
f and f are related via f(z) = f(z+ H). The addition operation on cosets f~}(z) = g, + H
and f~1(y) = g, + H is just the usual group operation of the quotient group G/H [87]:

F @)+ F YY) = (g0 + H) + (9, + H) = (95 + g,) + H. (5.2.18)

By combining the two expressions, we get an explicit formula for the group multiplication in
terms of coset representatives: -y = f(gs + gy). It is routine to check that this operation
is associative and invertible, turning X into a group, which we denote by O. The neutral
element of the group is the string e in X such that e = f(0) = f(H), which we show
explicitly:

T-e=e-T= f(f"l(:c) +f(e) = f(f_l(:c) +H)=x (5.2.19)
The group O is manifestly finite and Abelian—the latter property is due to the fact that
the addition (5.2.18) is commutative.

Lastly, it is straightforward to check that the oracle f is a group homomorphism
from G to O: for any g, h € G let x := f(g) and y := f(h), we have

flg+h)=Fflg+h+H)=f((g+H)+(h+H)=Ff(F @)+ (@) (5220)
=z-y=f(g)- f(h). (5.2.21)

It follows from the first isomorphism theorem in group theory [87] that O is isomorphic to
the quotient group G/H via the map f.

The HSP quantum algorithm is a normalizer circuit

We will now analyze the role of the different quantum gates used in Algorithm 83 and see
that they are examples of normalizer gates over the group G x O, where O is the oracular
group that we have just introduced.

The Hilbert space underlying the computation can be written as Hg ® He with the
standard basis {|g,z) : g € G, x € O}. associated with this group. We will initialize the
ancillary registers to the state |e), where e = f(0) is the neutral element of the group; the
total state at step 1 will be |0,e). The Fourier transforms in steps 1 and 3 are just partial
QF'Ts over the group G, which are normalizer gates. The quantum state at the end of step

Lis >0]g,e).

123

Next, we look now at step 2 of the computation:

D lge) — ﬁzw,f(g))' (5.2.22)

geG

This step can be implemented by a normalizer automorphism gate defined as follows. Let
a: G x O — G x O be the function a(g,z) = (g, f(g) -). Using the fact that f : G — O
is a group homomorphism (5.2.20), it is easy to check that « is a group automorphism of
G x O. Then the evolution at step 2 corresponds to the action of the automorphism gate

Ugy:
Ua D lge) =D ledg,e)) =D g, f(g)- e} =D g, f(g))- (5.2.23)
g g g g

Of course, our choice to begin the computation in the state |0, e) and to apply U, in step 3
is only one possible way to implement the first three steps of the algorithm. We could have
alternatively initialized the computation on some |0,0) state and used a slightly different
gate Upaa = D |9,z + f(9)){(g,z| in step 3. The latter sequence of gates can however be
regarded as an exact gate-by-gate simulation of the former, so that it is perfectly licit to call
the algorithm a normalizer computation—at least up to steps 3 and 4.

Finally, note that in the last step of the algorithm we measure the # ¢ in the standard
basis like a normalizer computation. Therefore, every step in the quantum Algorithm 83
corresponds to one of the allowed operations in a normalizer circuit over G x @. This finishes
the proof of Theorem 84.

The oracular group O is not a black-box group (but almost)

We ought to stress, at this point, that although Theorem 84 shows that the Abelian HSP
quantum algorithm is a normalizer computation over an Abelian group G x O, the oracular
group O is not a black-box group (as defined in Section 3.4.4), since it is not clear how
to compute the group operation (5.2.17), due to our lack of knowledge about the oracular
function which defines the multiplication rule. Yet, even in the absence of an efficiently com-
putable group operation, we regard it natural to call the Abelian HSP quantum algorithm
a normalizer circuit over G x . Our reasons are multi-fold.

First, there is a manifest strong similarity between the quantum circuit in Algorithm
83 and the other normalizer circuits that we have studied in previous sections, which sug-
gests that normalizer operations naturally capture the logic of the Abelian HSP quantum
algorithm.

Second, it is in fact possible to argue that, although O is not a black-box group, it
behaves effectively as a black-box group in the quantum algorithm. Observe that, although
it is true that one cannot generally compute z - y for arbitrary z, y € O, it is indeed always
possible to multiply any element 2 by the neutral element e, since the computation is trivial
in this case: x - e = e - x = x. Similarly, in the previous section, it is not clear at all how to
implement the unitary transformation Uy,lg, z) = |g, f(g) - z) for arbitrary inputs. However,
for the restricted set of inputs that we need in the quantum algorithm (which is just the state
le}), it is trivial to implement the unitary, for in this case U,|g, €) = |g, f(g)); since quantum
queries to the oracle function are allowed (as in step 2 of the algorithm), the unitary can be
simulated by such process, regardless of how it is implemented. Consequently, the circuit
effectively behaves as a normalizer circuit over a black-box group.

Third, although the oracular model in the black-box normalizer circuit setting is slightly

124

different from the one used in the Abelian HSP they are still remarkably close to each other.
To see this, let x; be the elements of X defined as z; := f(e;) where e; is the bit string
containing a 1 in the ith position and zeroes elsewhere. Since the e;s form a generating set
of G, the x;s generate the group O. Moreover, the value of the function f evaluated on an
element g = 5" g(i)e; is f(g) = wﬁ’(l)xg(Q) . 2%™ since f is a group homomorphism. It
follows from this expression that the group homomorphism is implicitly multiplying elements
of the group . We cannot use this property to multiply elements of O ourselves, since
everything happens at the hidden level. However, this observation shows that the assuming
that f is computable is tightly related to the assumption that we can multiply in O, although
slightly weaker. (See also the next section.)

Finally, we mention that this very last feature can be exploited to extend several of our
main results, which we derive in the black-box setting, to the more-general “HSP oracular
group setting” (although proofs become more technical). For details, we refer the reader to
sections 5.3-5.5 and appendix D.3.

A connection to a result by Mosca and Ekert

Prior to our work, it was observed by Mosca and Ekert [80, 84] that f must have a hidden
homomorphism structure, i.e. that f can be decomposed as £ o o where o is a group
homomorphism between G and another Abelian group Q = G/H, and £ is a one-to-one
hiding function from @ to the set X. In this decomposition, £ hides the homomorphism
structure of the oracle.

Our result differs from Mosca-Ekert’s in that we show that X itself can always be viewed
as a group, with a group operation that is induced by the oracle, with no need to know the
decomposition £ o a.

It is possible to relate both results as follows. Since both @ and O are isomorphic to
G/H, they are also mutually isomorphic. Explicitly, if 8 is an isomorphism from Q to G/H
(this map depends on the particular decomposition f = £oa), then @ and O are isomorphic
via the map f o 3.

5.2.5 Decomposing finite Abelian groups

As mentioned earlier, there is a quantum algorithm for decomposing Abelian groups, due
to Cheung and Mosca [84, 73]. In this section, we will introduce this problem, and present
a quantum algorithm that solves it, which uses only black-box normalizer circuits supple-
mented with classical computation. The algorithm we give is based on Cheung-Mosca’s, but
it reveals some additional information about the structure of the black-box group. We will
refer to it as the extended Cheung-Mosca’s algorithm.

The group decomposition problem

In this section, we define the group decomposition problem as follows. The input of the
problem is a list of generators & = (a1, --- , ax) of some Abelian black-box group B. Our
task is to return a group-decomposition table for B. A group-decomposition table is a tuple
(a, B, A, B, c) consisting of the original string o and four additional elements:

(a) A new generating set § = Bi1,. .., B¢ with the property B = (81) @ --- & (B¢). We will
say that these new generators are linearly independent.

(b) An integer vector ¢ containing the orders of the linearly independent generators f;.

125

(c) Two integer matrices A, B that relate the old and new generators as follows:

(61,...,,83) = (al,...ak> A, (al,...ak) = (Bl,...,ﬁe) B. (5.2.24)

This last equation should be read in multiplicative notation (as in e.g. [247]), where
“vectors” of group elements are right-multiplied by matrices as follows: given the ith
column a; of A (for the left hand case), we have 8; = (a1, ..., ax)a; = a‘f‘(l) .- azi(k).

Our definition of the group decomposition is more general than the one given in [84, 73]. In
Cheung and Mosca’s formulation, the task is to find just 8 and ¢. The algorithm they give
also computes the matrix A in order to find the generators f; (cf. the next section). What
is completely new in our formulation is that we ask in addition for the matrix B.

Note that a group-decomposition table (a, 3, A, B, c) contains a lot of information
about the group structure of B. First of all, the tuple elements (a-b) tell us that B is
isomorphic to a decomposed group G = Z, X - -+ X Z,. In addition, the matrices A and B
provide us with an eflicient method to re-write linear combinations of the original generators
o; as linear combinations of the new generators §; (and vice-versa). Indeed, equation (5.2.24)
implies

it afk = (al,,,,ak)x= (ﬂl,---,ﬁe) (Bz), for any x € Z¥,

ﬂ?{l"' i” = (ﬁl,...,ﬁg)y'—"— (al,,,.ak) (Ay), for anyyeZe.

It follows that, for any given z, the integer string y = Bz (which can be efficiently computed
classically) fulfills the condition af* - --a7* = 7' - - Y. (A symmetric argument proves the
opposite direction.)

As we discussed earlier in the introduction, the group decomposition problem is provably
hard for classical computers within the black-box setting, and it is at least as hard as
Factoring (or Order Finding) for matrix groups of the form Z (the latter being polynomial-
time reducible to group decomposition). It can be also shown that group decomposition is
also at least as hard as computing discrete logarithms, a fact that we will use in the proof
of theorems 87, 89:

Lemma 85 (Multivariate discrete logarithms). Let f1,...,8; be generators of some
Abelian black-box group B with the property B = (81) ® --- ® (Be). Then, the following
generalized version of the discrete-logarithm problem is polynomial time reducible to group
decomposition: for a given B € B, find an integer string x such that B7* - -- B¢ = B.

Proof. Define a new set of generators for B by adding the element £y.1 = 3 to the given set
{B;}. The array o’ := (b1, ..., B¢+ 1) defines an instance of Group Decomposition. Assume
that a group decomposition table (¢!, (81, ...,8},), A’, B,) for this instance of the problem
is given to us. We can now use the columns b} of the matrix B’ to re-write the previous
generators F; in terms of the new ones:

b, b,
Bi= (B Bui)es = (Bh,.... B) (Bled) = (B),....8,) b = BV - g™ (5.2.25)
Here, e; denotes the integer vector with e(¢) = 1 and e(j) = 0 elsewhere. Conditions (a-b)

imply that the columns b} can be treated as elements of the group G = Ly X -+ - XL, . Using
this identification, the original discrete logarithm problem reduces to finding an integer string

126

x € G such that b),, = (bY,...,b))xz = > x(i)b; (now in additive notation). The existence
of such an z can be easily proven using that the elements £, ..., B¢ generate B: the latter
guarantees the existence of an z such that

Bevi = (B1,- B0z = (8,....80) Whs st = (B4, Bla) Vs (5.2.26)

which implies (8},...,b)r = (’1,“,,,6:71) by, mod (¢}, - --,¢,). By finding such an z,

. . . /by, (1 b, (m
we can solve the multivariate discrete problem, since B7’ ~-~5§‘ = p; en) ,Bm”’() _

Ber1 = B, due to (5.2.25). Finally, note that we can find z efficiently with existing deter-
ministic classical algorithms for Group Membership in finite Abelian groups (cf. lemma 3 in
2] O

We highlight that, in order for the latter result to hold, it seems critical to use our
formulation of group decomposition instead of Cheung-Mosca’s. Consider again the discrete-
log problem over the group Z; (recall Section 5.2.1). This group Z; is cyclic of order
p — 1 and a generating element a is given to us as part of the input of the discrete-log
problem. Although it is not known how to solve this problem efficiently, Cheung-Mosca’s
group decomposition problem (find some linearly independent generators and their orders)
can be solved effortlessly in this case, by simply returning @ and p—1, since (a) = Z; = Zp_1.
The crucial difference is that Cheung-Mosca’s algorithm returns a factorization Z., x-- - xZ,
of B, but it cannot be used to convert elements between the two representations efficiently
(one direction is easy; the other requires computing discrete logarithms). In our formulation,
the matrices A, B provide such a method.

Quantum algorithm for group decomposition

We now present a quantum algorithm that solves the group decomposition problem.

Algorithm 86 (Extended Cheung-Mosca’s algorithm).
Input. A list of generators @ = (o, ..., o) of an Abelian black-box group BL3,

Output. A group decomposition table (o, 8, A, B, ¢).

1. Use the order finding algorithm (comprising normalizer circuits over Z x B and clas-
sical postprocessing) to obtain the orders d; of the generators a;. Then, compute
(classically) and store their least common multiplier d = lem(dy, ..., dg).

2. Define the function f : Z% — B as f(z) = af(l) e az(k), which is a group homomor-
phism and hides the subgroup ker f (its own kernel). Apply the Abelian HSP algorithm
to compute a set of generators hi, ..., hm of ker f. This round uses normalizer circuits
over ZS x B and classical post-processing (cf. Section 5.2.4).

3. Given the generators h; of ker f one can classically compute a k x £ matrix A (for
some ¢) such that (B1,...,8) = (o1,...,ax)A is a system of linearly independent

13Cheung and Mosca’s original presentation first used Shor’s algorithm to decompose B into Sylow p-
subgroups, and then performed the group decomposition on these subgroups. As they commented, that
step was not strictly necessary, although it would reduce the computational resources required. Also, their
algorithm does not receive a list of generators as an input, but this is not a big difference since such a list
can always be computed in probabilistic classical polynomial-time for a uniquely encoded black-box group.

127

generators [73, theorem 7]. 8, A and the orders ¢; of the 8;s (computed again via an
order-finding subroutine) will form part of the output.

4. Finally, we show how to classically compute a valid relationship matrix B. (This step
is not part of Cheung-Mosca’s original algorithm.) The problem reduces to finding a
k x £ integer matrix X with two properties:

(a) X is a solution to the equation (ay,...,0%)X = (ai,...,ar). Equivalently, every
column z; of X is equal (modulo d) to some element of the coset e; + ker f C ZE.

(b) Every column z; is an element of the image of the matrix A.

It is easy to see that a matrix X fulfilling (a-b) always exists, since for any «;, there
exists some y; such that a; = (81, ...,Be)y: (because the f;s generate the group). It
follows that ; = (aq, ..., ax)(Ay;). Then, the matrix with columns z; = Ay; has the
desired properties.

Our existence proof for X is constructive, and tells us that X can be computed
in quantum polynomial time by solving a multivariate discrete logarithm problem
(Lemma 85). However, X can be more straightforwardly obtained classically, by re-
ducing the problem to a system of linear equations over Abelian groups (Section
4.5). Let H be a matrix formed column-wise by the generators h; of ker f. By con-
struction, the image of the map H : ZT — ZF fulfills imH = ker f. Properties (a-b)
imply that the ith column z; of X must be a particular solution to the equations
z; = Ay; with y; € Z¢ and z; = e; + Hz; mod d, with z; € Z7. These equations can
be equivalently written as a system of linear equations over Z x 7t

(4 -m) ("] =& modd, (wm)eZp <2, (5.2.27)

2

This system of equations can be solved in classical polynomial time using the mtehods
of Section 4.5. The matrix X can then be constructed column wise taking z; = Ay;.

Finally, given such an X, it is easy to find a valid B by computing a Hurt-Waid
integral pseudo-inverse A% of A [148, 112]:

a=aX = a(AA*)X = (aA)(A*X) = (By,..., Be)(A* X). (5.2.28)

In the third step, we used that A# acts as the inverse of A on inputs z € Z¥ that
live in the image of A [148]. Since integral pseudo-inverses can be computed efficiently
using the Smith normal form (see Appendix C.3), we finally set B := A#X.

5.3 Simulation of black-box normalizer circuits

Our results so far show that the computational power of normalizer circuits over black-box
groups (supplemented with classical pre- and post- processing) is strikingly high: they can
solve several problems believed to be classically intractable and render the RSA, Diffie-
Hellman, and elliptic curve public-key cryptosystems vulnerable. In contrast, standard
normalizer circuits, which are associated with Abelian groups that are ezplicitly decomposed,
can be efficiently simulated classically, as we’ve seen in Chapter 4 (see Theorem 59).

128

It is natural to wonder at this point where the computational power of black-box nor-
malizer circuits originates. In this section, we will argue that the hardness of simulating
black-box normalizer circuits resides precisely in the hardness of decomposing black-box
Abelian groups. An equivalence is suggested by the fact that we can use these circuits
to solve the group decomposition problem and, in turn, when the group is decomposed,
the techniques of Chapter 4 render these circuits classically simulable. In this sense, then,
the quantum speedup of such circuits appears to be completely encapsulated in the group
decomposition algorithm. This intuition can be made precise and be stated as a theorem.

Theorem 87 (Simulation of black-box normalizer circuits). Black-boz normalizer
circuits can be efficiently simulated classically using the stabilizer formalism over Abelian
groups if a subroutine for solving the group-decomposition problem is provided as an oracle.

The proof of this theorem is the subject of Section D.2 in the appendix.

Since normalizer circuits can solve the group decomposition problem (Section 5.2.5), we
obtain that this problem is complete for the associated normalizer-circuit complexity class,
which we now define.

Definition 88 (Black-Box Normalizer). The complexity class Black-Box Normalizer
is the set of oracle problems that can be solved with bounded error by at most polyno-
mially many rounds of efficient black-box normalizer circuits (as defined in Section 3.7),
with polynomial-sized classical computation interspersed between. In other words, if NV is
an oracle that given an efficient (poly-sized) black-box normalizer circuit as input, samples
from its output distribution, then

Black-Box Normalizer = BPPY. (5.3.1)

Corollary 2 (Completeness of group decomposition). Group decomposition is a com-
plete problem for the complexity class Black-Box Normalizer under classical polynomial-
time Turing reductions.

We stress that Theorem 87 tells us even more than the completeness of group decompo-
sition. As we discussed in the introduction, an oracle for group decomposition gives us an
efficient classical algorithm to simulate Shor’s factoring and discrete-log algorithm (and all
the others) step-by-step with a stabilizer-picture approach “a la Gottesman-Kniil”.

We also highlight that Theorem 87 can be restated as a no-go theorem for finding new
quantum algorithms based on black-box normalizer circuits.

Theorem 89 (No-go theorem for new quantum algorithms). It is not possible to find
“undamentally new” quantum algorithms within the class of black-box normalizer circuits
studied in this chapter, in the sense that any new algorithm would be efficiently simulable
using the extended Cheung-Mosca algorithm and classical post-processing.

This theorem tells us that black-box normalizer circuits cannot give exponential speedups
over classical circuits that are not already covered by the extended Cheung-Mosca algorithm;
the theorem may thus have applications to algorithm design.

Note, however, that this no-go theorem says nothing about other possible polynomial
speed-ups for black-box normalizer circuits; there may well be other normalizer circuits that
are polynomially faster, conceptually simpler, or easier to implement than the extended

129

Cheung-Mosca algorithm. Our theorem neither denies that investigating black-box normal-
izer could be of pedagogical or practical value if, e.g., this led to new interesting complete
problems for the class Black-Box Normalizer.

Finally, we note that Theorem 87 can be extended to the general Abelian hidden sub-
group problem to show that the quantum algorithm for the Abelian HSP becomes efficiently
classically simulable if an algorithm for decomposing the oracular group O is given to us (cf.
Section 5.2.4 and refer to Appendix D.3 for a proof). We discuss some implications of this
fact in the next sections.

5.4 Universality of short quantum circuits

Since all problems in Black-Box Normalizer are solvable by the extended Cheung-Mosca
quantum algorithm (supplemented with classical processing), the structure of said quantum
algorithm allows us to state the following:

Theorem 90 (Universality of short normalizer circuits). Any problem in the class
Black-Box Normalizer can be solved by a quantum algorithm composed of polynomially-
many rounds of short normalizer circuits, each with at most a constant number of normal-
izer gates, and additional classical computation. More precisely, in every round, normalizer
circuits containing two quantum Fourier transforms and one automorphism gate (and mo
quadratic phase gate) are already sufficient.

Proof. This result follows immediately form the fact that group decomposition is complete
for this class (Theorem 2) and from the structure of the extended Cheung-Mosca quantum
algorithm with this problem, which has precisely this structure. O

Similarly to Theorem 87, Theorem 90 can be extended to the general Abelian HSP
setting. For details, we refer the reader to Appendix D.3.

We find the latter result is insightful, in that it actually explains a somewhat intriguing
feature present in Deutsch’s, Simon’s, Shor’s and virtually all known quantum algorithms for
solving Abelian hidden subgroup problems: they all contain at most two quantum Fourier
transforms! Clearly, it follows from this theorem than no more than two are enough.

Also, Theorem 90 tells us that it is actually pretty useless to use logarithmically or poly-
nomially long sequences of quantum Fourier transforms for solving Abelian hidden subgroup
problems, since just two of them suffice!®. In this sense, the Abelian HSP quantum algo-
rithm uses an asymptotically optimal number of quantum Fourier transforms. Furthermore,
the normalizer-gate depth of this algorithm is optimal in general.

5.5 Other Complete problems

We end this chapter by giving two other complete problems for the complexity class Black
Box Normalizer.

Theorem 91 (Hidden kernel problem is complete). Let the Abelian hidden kernel
problem (Abelian HKP) be the subcase of the hidden subgroup problem where the oracle
function f is a group homomorphism from a group of the form G = Z* X Zy, x --+ X Zn,

M This last comment does not imply that building up sequences of Fourier transforms is useless in general.
On the contrary, this can be actually be useful, e.g., in QMA amplification [248].

130

into a black-box group B. This problem is complete for Black Box Normalizer under
polynomial-time Turing reductions.

Proof. Clearly group decomposition reduces to this problem, since the quantum steps of
the extended Cheung-Mosca algorithm algorithm (steps 1 and 3) are solving instances of
the Abelian kernel problem. Therefore, the Abelian HKP problem is hard for Black Box
Normalizer.

Moreover, Abelian HKP can be solved with the general Abelian HSP quantum algorithm,
which manifestly becomes a black-box normalizer circuit for oracle functions f that are group
homomorphisms onto black-box groups. This implies that Abelian HKP is inside Black Box
Normalizer, and therefore, it is complete.

Note. Although we originally stated the Abelian HSP for finite groups, one can first
apply the order-finding algorithimn to compute a multiple d of the orders of the elements
f(ei), where e; are the canonical generators of G. This can be used to reduce the original
HKP problem to a simplified HKP over the group Z§ x Zy, X --- X Zp, O

The latter result can be extended to the HSP setting to show that the Abelian hidden
subgroup problem is polynomial-time equivalent to decomposing groups of the form O (cf.
Appendix D.3).

Theorem 92 (System of linear equations over groups). Let a be a group homomor-
phism from a group G = Z* X Zn, X --- X Zp, onto a black-box group B. An instance of a
linear system of equations over G and B is given by o and an element b € B. Our task is
to find a general (xzg, K) solution to the equation

a(z)=b, zeg,

where xo is any particular solution and K is a generating set of the kernel of o. This problem
s complete for Black Box Normalizer under polynomial-time Turing reductions.

Proof. Clearly, this problem is hard for our complexity class, since the Abelian hidden kernel
problem reduces to finding K.

Moreover, this problem can be solved with black-box normalizer circuits and classical
computation, proving its completeness. First, we find a decomposition B = (8;) & H =
Ze, X -+ X Z¢, with black-box normalizer circuits. Second, we recycle the de-black-boxing
idea from the proof of Theorem 87 to compute a matrix representation of a, and solve the
multivariate discrete logarithm problem b = 511)(1) ‘.- ,Bg(e), b € H, either with black-box
normalizer circuits or classically (recall Section 5.2.5). The original system of equations can
now be equivalently written as Az = b (mod H). A general solution of this system can be
computed with classical algorithms given in Section 4.5. O

131

132

Appendix A

Proofs of results in Chapter 2

A.1 Proof of the adversary lower bound for B(f) (Theorem
20)

Before we give the proof of the general result that B(f) = Q(Q(f)?) (Theorem 20)), we will
illustrate the proof by means of an example, the special case where f is the AND function.

Theorem 93. For § < 1/10, B.s5(AND) = Q(&).

Proof. Let lzﬁ?) be the unnormalized state of the algorithm with = 1", and |'¢v£"> be the
unnormalized state with z = 1---101---1, z} = 0, right before the (¢ + 1)-th call to M.
Then

[¥Fi1) = Ubra Mal97) (A1)

for some unitary U;yj. For ease of notation, we'll write My = Mj» and My = Mj..q01--1,
where the k-th bit is 0 in the latter case. When acting on the control and index bits,

N
Mo =" 10,i)(0,i|
i=1
N
My = _10,)(0,i] + |1, k)(1, kI. (A.1.2)
i=1
Since the M;’s are projectors,]\/Ii2 = M;. Define
e = (Yi|(I - My)|¢}), i=0,1,---,N. (A.1.3)

Note that (wf;|9},1) = (Vi MZ|¥)) = (¥i|Mil9i) = (Wilvi) — €, for all é = 0,--- N
(including 0!), and hence

~
A

et = (Whlve) — (Wrlvp) < e (A.1.4)

t

i
=)

We now define the progress function. Let

Wi = @PvF) (A.1.5)

133

and let the progress function be a sum over W*’s:

N N
Wi =Y Wf=> (wllyf). (A.1.6)
k=1 k=1

We can lower bound the total change in the progress function by (see [33] for a proof;
their proof equally applies to unnormalized states)

Wo — Wr > (1—24/6(1 — §))N. (A.L.7)
We now proceed to upper bound Wy — Wr. Note that
W =Wy = W08 — (47| MoMy|vt)

= (W11 — Mo)My |) + (4P| Mo(I — M) |0) + (?](I — Mo)(T — M|
(A.1.8)

and since My(I — My) =0, (I — Mp) My = |1,k)(1, k|, we have
WE = Whia < WOIL L kI9E) + (|1 = Mo))| || — M|
< KL, |y || + /€2 (A.1.9)

where we used A.1.3. Summing over k and t, we obtain

Wy — Wy < ::V_jlg: [“(1 klwg)|| + \/Tt]

t=0 k=1

~
—

T-1

N :
ZG?*I—ﬁéh

k=1

N
D (WP, k)L, k) +

k=1 t

<vTN

I

[\

\

sx/TN\ (¢t|(1 Mp)|¥?) + Ne

t

-1
<. |TN Z € + Ne
t=0

< VTN + Ne (A.1.10)

il
=]

lﬂ

Il
]

where in the second line we used Cauchy-Schwarz and the AM-GM inequality. Combined
with Wy — Wz > (1 — 24/0(1 — 9))N (Eq. A.1.7), this immediately gives us

T (1-2 (5(16—(5)—-6)2]\]' (A.L11)

O

We now proceed to prove the general result. This proof follows the presentation given
in A. Childs’s online lecture notes [249], which we found quite illuminating.

134

Theorem 20. For all functions f with boolean input alphabet, and numbers €, § satisfying
0<e<éd<1/10,
Bes(f) = Qoo (f)?/e). (A.1.12)

Proof. We will show that B s(f) is lower bounded by Q(AdvE(f)?/e), where Advt(f) is
the generalized (i.e. allowing negative weights) adversary bound [34] for f. We can then
derive our theorem from the result [37] that Q(f) = O(AdvE(f)).

We generalize the bound on the f = AND case to an adversary bound for B.s on
arbitrary f. Define the projectors

N
To =) 10,6){0,
i=1

IL; =|1,4)(1,i], i=1,---,n. (A.1.13)
It is clear that
N
Mo+ » T;=1 (A.1.14)
=1
Note that M, = CPyy is
M, =T+ Y TL. (A.1.15)
x; =0

Define |¢/F) as the state of the algorithm right before the (¢ + 1)-th query with input x;
then

[¥%11) = U M) (A.1.16)

for some unitary Uy+1. Now if we let
e = (Wr|(I — Mg)|¢y) (A.1.17)
then it follows that (YF{YF) — (¥, |¥F, 1) = €, and thus
T-1
> = W) — WHIvE) <. (A.1.18)
t=0

We proceed to define the progress function. Let S be the set of allowable input strings
xz. Let T" be an adversary matrix, i.e. an § X S matrix such that

1. gy =Ty Vx,y €S;and
2. Ty =0 if f(z) = f(y).

Let a be the normalized eigenvector of I' with eigenvalue £||T'||, where +||T'|| is the largest
(by absolute value) eigenvalue of I'. Define the progress function

We= > Tayalay(Yf[v}). (A.1.19)

z,YyeS

135

For € < § < 1/10 we have that! (see [34] for a proof; their proof applies equally well to

unnormalized states)

[Wo — Wr| > (1-2v6(1—6) —26)|T|

We now proceed to upper bound |Wo — Wr| < 3, |[Wy — W;_1|. Note that

Wt - Wt+1 = Z mea::ay (("/Jflw?) - <¢f+l|'¢g}+l))

z,y€S

= 2 Tayazay ($F|1v) — (W7 1Mo MylY))

z,y€S

= > Tuyaiay (WFII — Mo)MyloY) + WF|Mo(I — M)l

z,YyeS

+ Y Tayabay (WFI(I — Mo)(I — M,)|%Y)
z,yeS

‘We bound the three terms separately. For the first two terms, use

(I-M)My= > IL -

i:i=1,y;=0

=(-Ms) Y T

LT EYi

Define the S x S matrix I'; as

T T N
0 if z; =y

The first term of A.1.21 is

(A.1.20)

(A.1.21)

(A.1.22)

(A.1.23)

N
3D Teyalay(PfI(— Mo)ILJY) = Y D (Ta),, abay(WFI(I — My)IL|pY)

z,YES 1T FYi z,y€S i=1
N ~
=Y tr(Qi:Q))
=1
where

Qi =Y acThly) el

€S

Qs =Y asTl(I — My)[97) {al.

€S

(A.1.24)

(A.1.25)

(A.1.26)

Although both Q; and Q; depend on ¢, we suppress the ¢ dependence in the notation.
Similarly, the second term of A.1.21 is equal to Zf\il tr(QiI‘iQI). We can also rewrite the

! As described in [34], the 28 term can be removed if the output is boolean (0 or 1).

136

third term of A.1.21 as

> Tayaay (Wl — Mo)(I — My)[yf) = tr(QTQ") (A.1.27)
z,yeS
where
Q' =) ax(I — MW7) (zl. (A.1.28)
z€S

Therefore, adding absolute values,

N
We—Wena| < Htr(QiFiQD (A.1.29)
i=1

+|@rQh|] + r@reh

To continue, we need the following lemma:

Lemma 94. For any m,n > 0 and matrices X € C™*", Y € C*", Z € C™*™, we have
[tr(XY Z)| < || XWeY W Zl|p- Here || || and || - ||F denote the spectral norm and Frobenius
norm, respectively.

This lemma can be proved by using that |tr(XY Z)| < |[Y ||| ZX|lsr and || ZX])sr <
I X |7l Z]| 7, which follows from [250, Exercise IV.2.12 and Corollary IV.2.6]. A more acces-
sible proof is found online at [249)].

Then by Lemma 94,

N N
S |r@r@h] < 3 ITiliQilrIQile (A.L.30)
i=1 =1

Since

N N
DollQillE =D laal* 1L
i=1

i=1 xz€S

N
= laz (W71 Malyf)
1

€S =

< Z laa:|2

z€S
=1 (A.1.31)

137

and

N

N
STNQNE =D laal* I — M) gD
=1

=1 xz€S

z€S

< 3 laaPWEI - Mo)IwE)

z€S

= Z laz|*ef

z€S

=1

we have, by Cauchy-Schwarz,

N
D lQillrllQullr < ‘ 1> lacl?e
=1 z€S

Therefore by A.1.30 and A.1.33,

N
1.0t . .
; |tr(erzQi)| < W$%||rz||,

Similartly for tr(Q'T'Q’"), we have

IQF = > laz P I — Ma)WP)|®

z€S

=3 laaPWFI(I — My)|yF)

z€S

=D lasfe

z€S

and using Lemma 94,

tr(QTQ™) < |Q||%|IT
=" las?€f|IT|

€S

Thus continuing from A.1.29, we have that

IWe = Wial <2, [lag|?eF max [[Us]] + > lacPENIT|
z€S €[N z€S

Finally, if we sum the above over ¢t we obtain

T-1 T-1
Wo — Wr| < 2?‘51[33(] Il > ‘ [) lacl2ef + Y Y laceF (T
z€S

t= t=0 z€S

138

N
=" laa2(WF1(I - M) (Z m) (I — Mz)IYP)

(A.1.32)

(A.1.33)

(A.1.34)

(A.1.35)

(A.1.36)
(A.1.37)

(A.1.38)

(A.1.39)

The first term can be bounded using Cauchy-Schwarz:

T-1 T-1
D [D laPe S\ [TD D laales
t=0 \ zeS t=0 z€S

< VeT (A.1.40)

where we used € < e and az|?> = 1. The second term can be summed easily:
t-t T y

T-1
DD laalPeITI < Y laslellT]

t=0 zcS €S
= €||T|. (A.1.41)
Therefore
[Wo — Wr| < 2vVeT m% IIT:] + €||T|- (A.1.42)
2€

Combined with our lower bound |Wy — Wr| > (1 — 24/8(1 — §) — 25)||T}|, this immediately
gives

s 0= 2\/@ -25—¢? | (A.1.43)

max;en [ITil12
Recalling that [34] '

Il

AdvE(S) = max — T Al44
(f) = ma max;e[n) [|Tsl| ()
we obtain?
3 TR 95 _)2
7> =2V 465) 2= & pdvE(f)2. (A.1.45)

We now use the tight characterization of the quantum query complexity by the general
weight adversary bound:

Theorem 95 ([37, Theorem 1.1]). Let f : D — E, where D C {0,1}". Then Qo.01(f) =
O(Adv*(f)).

Combined with our result above, we obtain

Bes(f) =Q (M) . (A.1.46)

€

O

2For boolean output (0 or 1) the 2§ term can be dropped, as we previously noted (Footnote 1).

139

A.2 Proof of Theorem 24

We restate and prove Theorem 24:

Theorem 24. Let f : D — E, where D C {0,1}". Suppose there is a classical randomized
query algorithm A, that makes at most T queries, and evaluates f with bounded error. Let
the query results of A on random seed s be xp,, Zp,, - s Ty T(x) < T, where is the
hidden query string.

Suppose there is another (not necessarily time-efficient) randomized algorithm G, with
random seed sg, which takes as input T, ,--- ,Tp,_, and sa, and outputs a guess for the next
query result =, of A. Assume that G makes no more than an expected total of G mistakes
(for all inputs x). In other words,

T(z)

 DRp Z |g(:L',,1,-~- s Tpe_1 54, 5G) — xpcl <G Vv (A2.1)
t=1

Note that G is given the random seed s of A, so it can predict the next query indez of A.
Then B(f) = O(T'G/e), and thus (by Theorem 17) Q(f) = O(VTG).

Proof. For the purposes of this proof, we use the characterization of B by the modified bomb
construction given in Section 2.5.1. This proof is substantially similar to that of theorem
19.

The following circuit finds z; with zero probability of explosion if z; = a, and with an
O(1/L) probability of explosion if z; # a (in both cases the value of x; found by the circuit
is always correct):

— - - - =7 B
10) —| R(6) - R(6) D X | |z
| ~ ... ~ N
| |
o) T—— —— Iy |a)
L times in total (A.2.2)

where # = 7w /(2L) for some large number L to be picked later, and

cosf —sinf
R(6) = | (A.2.3)

sinf@ cosf
The boxed part of the circuit is then simply [M,(R(9)®I®1)]Y, applied to the state |0, 1, a).
We can analyze this circuit by breaking into cases:

o If z; = a, then M|1)|i,a) = [)]i,a) for any state |¢)) in the control register. Thus
the M,’s act as identities, and the circuit simply applies the rotation R(6)~ = R(x/2)
to the control register, rotating it from 0 to 1. We thus obtain the state |1,%,a); the
final CNOT and X gates add a ® 1 = z; ® 1 to the first register, giving |z;, %, a).

e If x; # a, then

M;|0,4,a) = 0,3,a), Mg|l,i,a) =0 (for z; # a) (A.2.4)

140

Therefore after each rotation R(f), the projection M, projects the control qubit back
to O:

M(R(6) ® I ® I)|0,i,a) = M(cos8|0) +sin8|1))|i,a) = cos0|0,i,a) (for z; # a)
) (A.2.5)
In this case the effect of M, (R(#) ® I ® I) is to shrink the amplitude by cos(6); L
applications results in the state cos”(8)|0,4,a). The final CNOT and X gates add
a ® 1 = x; to the first register, giving |z;, 1, a).

The probability of explosion is 0 if z; = a. If x; # a, the probability of explosion is

2

1 —cos?t (%) < Z—L (A.2.6)

Pick 2
T
L= [T] . (A2.7)

Then the probability of explosion is 0 if z; = a, and no more than ¢/G if x; # a. If the
bomb does not explode, then the circuit always finds the correct value of x;.

We now construct the bomb query algorithm based on A4 and G. The bomb query
algorithm follows A, with each classical query replaced by the above construction. There
are no more than TL ~ 7w2TG/(4€) bomb queries. At each classical query, we pick the guess
a to be the guess provided by G. The bomb only has a chance of exploding if the guess is
incorrect; hence for all z, the total probability of explosion is no more than

T(z)

€

G ES.Aysg Z |g(xp1a 5 Tpp_15 SA, sg) — $pg| <e (A28)
t=1

Thus replacing the classical queries of A with our construction gives a bomb query algorithm
with probability of explosion no more than €; aside from the probability of explosion, this
bomb algorithm makes no extra error over the classical algorithm 4. The number of queries
this algorithm uses is

~ G
Be,6+€(f) < ‘776--’ T7 (A29)
where § is the error rate of the classical algorithm. Therefore by Lemma 21 and Lemma 18,
Be(f) = O(Bepse(f)) = O(Besre(f)) = O (TC/e) (A.2.10)

O

A.3 Proof of Theorem 26

We restate and prove Theorem 26:

Theorem 26 (Finding the first marked element in a list). Suppose there is an ordered list of
N elements, and each element is either marked or unmarked. Then there is a bounded-error
quantum algorithm for finding the first marked element in the list, or determines that no
marked elements ezist, such that:

141

o If the first marked element is the d-th element of the list, then the algorithm uses an
ezpected O(Vd) time and queries.

o If there are no marked elements, then the algorithm uses O(v/ N) time and queries.

Proof. We give an algorithm that has the stated properties. We first recall a quantum
algorithm for finding the minimum in a list of items:

Theorem 96 ([63]). Given a function g on a domain of N elements, there is a quantum
algorithm that finds the minimum of g with expected O(v/N) time and evaluations of g,
making § < 1/10 error.

We now give our algorithm for finding the first marked element in a list. For simplicity,
assume that N is a power of 2 (i.e. logy N is an integer).

Algorithm 97.
1. For £ =20,21,22 ... 2logN _ N

e Find the first marked element within the first £ elements, or determine no marked
element exists. This can be done by defining

. oo if 7 is unmarked
g(i) = { (A.3.1)

¢t if ¢ is marked,
and using Theorem 96 to find the minimum of g. This takes O(V¥¢) = O(V/d)

queries and makes § < 1/10 error for each £. If a marked element ¢* is found, the
algorithm outputs ¢* and stops.

2. If no marked element was found in Step 1, the algorithm decides that no marked
element exists.

We now claim that Algorithm 97 has the desired properties. Let us break into cases:

e If no marked items exist, then no marked item can possibly be found in Step 1, so the
algorithm correctly determines that no marked items exist in Step 2. The number of
queries used is

log, N
> V2i=0(VN) (A3.2)
=0

as desired.

e Suppose the first marked item is the d-th item in the list. Then in Step 1(a), if £ > d,
there is at least a 1 — § probability that the algorithm will detect that a marked item
exists in the first £ elements and stop the loop. Letting a = [log, d], the total expected
number of queries is thus

logo N

a—1 - i 1

§¢2_+g<5 \/_+O(\/_)<f 1+\/_ f +0(Vd) (A33)
= 0(v2%) + O(Vd) (A.3.4)
= 0(Vd). (A.3.5)

142

The probability of not finding the marked item at the first £ > d is at most ¢ , and
thus the total error of the algorithm is bounded by 4.

a

143

144

Appendix B

Supplementary material for Chapter
3

B.1 Supplementary material for Section 3.9

Proof of Lemma 49

First we prove (a). Note that it follows from the assumptions that a(g + k) = A(g + h) =
Ag+ Ah (mod H), B(z +y) = B(z+y) = Bx+ By (mod J), for every g,h € G, z,y € H.
Hence, S o a(g + h) = B(Ag + Ah + zeroy) = BAg + BAh + zeroy (mod J), where zeroy
denotes some string congruent to the neutral element 0 of the group X. As in the last
equation zero; vanishes modulo J, BA is a matrix representation of 8 o c.

We prove (b). From the definitions of character, bullet group and bullet map it follows
that

xu(a(g)) = exp (QKiZu'(i)A(i,j)g(j)) = exp (2ni(A %) - g) for every g € G. (B.1.1)

Let f be the function f(g) := exp(2ni(ATu®) - g). Then it follows from (B.1.1) that f
is continuous and that f(g+ h) = f(g)f(h), since the function x, o @ has these properties.
As a result, f is a continuous character f = x,, where v € G* satisfies v* = Tqv = ATp®
(mod G*®). Moreover, since f = Xp© & = Xa*(p) 1t follows that o*(¢) = v (mod G*) and,
consequently,

a*(p) = Tal(ATu') (mod G*) =YZ'A™Thp (mod G*). (B.1.2)

Finally, since x,(a(g9)) = xz(a(g)) for any z € R™ congruent to p, we get that o*(p) =
TalATT gz (mod G*) for any such z, which proves the second part of the lemma. O

145

Proof of Lemma 50

We will show that each of the homomorphisms «axy as considered in Lemma 47 has a matrix
representation, say Axy. Then it will follow from (3.9.3) in Lemma 47 that

Azz 0 0 0
Arz Aggp O 0

A= , (B.1.3)

Atz Amr Arr ArT.

as in (3.9.10), is a matrix representation of a.

First, note that if the group Y is finitely generated, then the tuples e; form a generating
set of Y. It is then easy to find a matrix representation Axy of axy: just choose the
jth column of Axy to be the element a(e;) of X. Expanding g =), g(¢)e; (where the
coefficients g(i) are integral), it easily follows that Axy satisfies the requirements for being
a proper matrix representation as given in definition 48. Thus, all homomorphisms axy
with Y of the types Z* or F' have matrix representations; by duality and Lemma 49(b), all
homomorphisms axy with X of type T® or F have matrix representations too.

The only non-trivial axy left to consider is agr. Recall that the latter is a continuous
map from R™ to R™ satisfying arr(z + y) = arr(z) + agr(y) for all r,y € R. We claim
that every such map must be linear, i.e. in addition we have

opr(rz) = rogr(x) (B.1.4)

for all r € R. To see this, first note that dagr(kz/d) = korr(x), where k/d is any fraction
(k, d are integers). Thus (B.1.4) holds for all rational numbers r» = k/d. Using that agg is
continuous and that the rationals are dense in the reals then implies that (B.1.4) holds for
all » € R. This shows that arg is a linear map; the existence of a matrix representation
readily follows. (]

Proof of Theorem 51

It suffices to show (a), that any matrix representation A of @ must be an element of Rep
and fulfill the consistency conditions (3.9.9); (b), that these consistency conditions imply
that A is of the form (3.9.10) and fulfills propositions 1-4; and (c), that every such matrix
defines a group homomorphism.

We will first prove (a). Let H; is of the form Z or Zg,. Then, for every j = 1,...,m, the
definition of matrix representation 48 requires that (Ae;)(i) = A(¢, j) (mod H;) must be an
element of H;. This shows that the ith row of A must be integral and, thus, A belongs to
Rep. Moreover, since z := cje; = 0 (mod G) and y := d}e; = 0 (mod H*), (due to the
definition of characteristic) it follows that Az =0 (mod H) and Ay =0 (mod G*), leading
to the consistency conditions (3.9.9).

Next, we will now prove (b).

First, the block form (3.9.10) almost follows from (3.9.3) in Lemma 47: we only have
to show, in addition, that the zero matrix is the only valid matrix representation for any
trivial group homomorphism axy = 0 in (3.9.3). It is, however, easy to check case-by-case
that, if Axy is a matrix representation of axy with Axy # 0, then axy cannot be trivial.

146

Secondly, we prove Propositions 1-4. In Proposition 1, Azz must have integer entries
since Azze;(i) € Z (where, with abuse of notation, 4, j index the rows and columns of Azz).
By duality the same holds for Ay (it can be shown using Lemma 49(b)). In Proposition 2
the consistency conditions (including dual ones) are vacuously fulfilled and tell us nothing
about Agrz, Arr. In Proposition 3, both matrices have to be integral to fulfill that Axy(e;)
(mod Y) is an element of X, which is of type Z® or F’; moreover, for Y = F', the consistency
conditions directly impose that the coefficients must be of the form (3.9.11). (The derivation
is similar to that of lemma 11 in [2]. Lastly, in Proposition 4, all consistency conditions
associated to Atz and Ag are, again, vacuous and tell us nothing about the matrix; however,
the first consistency condition tells us that Ay must be fractional with coefficients of the
form o ;/c;.

Finally we will show (c). First, it is manifest that if A fulfills 1-4 then A € Rep. Second,
to show that A is a matrix representation of a group homomorphism it is enough to prove
that every Axy fulfilling 1-4 is the matrix representation of a group homomorphism from Y
to X. This can be checked straightforwardly for the cases Azz, Arz, Arr, Arz, A1z, ATR
applying properties 1-4 of A and using that, in all cases, there are no non-zero real vectors
congruent to the zero element of Y. Obviously, for the cases where A yy must be zero the
proof is trivial. It remains to consider the cases App, Arp, Arr. In all of this cases, it holds
due to properties 1,3,4 that the first consistency condition in (3.9.9) is fulfilled. Then, for
the case App, Lemma 2 in [2] can be applied to show that App is a group homomorphism;
moreover, for any g € F' and x congruent to g, the first consistency condition implies that
Az = Ag (mod G), which is what we wanted to show. For the cases Arr, Arr, Lemma 2
in [2] can still be generalized (the proof given in [2] for the second statement of Lemma 2
can be directly adapted) and the same argument applies. |

B.2 Supplementary material for Section 3.10

Proof of Lemma 52

The lemma is a particular case of proposition 1.1 in [251]. We reproduce a shortened proof
of the result in [251] (modified to suit our notation) here.

If B is an continuous homomorphism from G into G* then B(g, h) = xg(g)(h) is contin-
uous, since composition preserves continuity. Also, it follows using the linearity of this map
and of the character functions that B(g, h) is bilinear, and hence a bicharacter. Conversely,
consider an arbitrary bicharacter B. The condition that B is a character on the second
argument says that for every g the function fg : h — B(g, h) is a character. Consequently
fo(h) = B(g,h) = Xxu,(h) for all h € G and some p, € G* that is determined by g. We
denote by S be the map which sends g to pg. Using that ¢ — B(g,h) is also a character
it follows that xg(g1¢)(R) = Xp(g)(R)Xp(s)(h) for all h € G, so that B : G — G* is a group
homomorphism. It remains to show that 8 is continuous; for this we refer to the proof in
[251], where the author analyzes how neighborhoods are transformed under this map.

Proof of Lemma 53

We obtain (a) by combining (3.9.7) with the normal form (3.10.3): the matrix M is of the
form YX where X is a matrix representation of 3; (b) follows from this construction. (c)
follows from the normal form in Lemma 52, property (a) and Lemma 45.

147

To prove (d) we bring together (a) and the relationship B(h, g) = B(g, h), and derive
gT"Mh =g"™M"h modZ, foreveryg, hcG. (B.2.1)

Write G = G1 x --- X G, with G; of primitive type. If G; is either finite or equal to
Z or R then the canonical basis vector e; belongs to G. If G; = T then te; € G for all
t € [0,1). If neither G; nor Gj is equal to T, taking g = e;, h = e; in equation (B.2.1) yields
M(i,j) = M(j,i) mod Z. If G; and G are equal to T, setting g = te; and h = se; yields
stM(%,7) = stM(j,i) mod Z for all s,t € [0, 1), which implies that

st(M(,5) — M(j,9)) € Z (B.2.2)

for all s,t € [0,1). This can only happen if M(,j) = M(j,i). The other cases are treated
similarly. In conclusion, we find that M is symmetric modulo Z. This proves (d).

Lastly, we prove (e). Note that we have just shown that M (4, j) = M(5,:) f G; =G; =
T; the same argument can be repeated (with minor modifications) to show M(%,j) = M (j,1)
if either one of G; or G; is of the form R or T. Hence, M(i,7) # M (4,%) can only happen
if G;, G; are of the form Z or Z4. In this case, we denote by A;; the number such that
M(j,3) = M(3,5)+A; ;. (d) tells us that Ayj is an integer. Moreover, by choosing g = g(i)e;,
h = h(j)e; in (B.2.1) it follows that

M(5,1)9(D)h(5) = M(i,5)9(D)h(5) + Bi;g(i)h(j) mod Z, (B.2.3)

As g(3) and h(j) are integers the factor A; ;g(i)h(j) gets cancelled modulo Z and produces
no effect. Finally, we define a new symmetric matrix M’ as M'(i,5) = M(i,5) if i > j, and
M'(i,j) = M(j5,%) if i < j. It follows from our discussion that g"M'h = g"Mh mod Z for
every g,h € G, so that M’ manifestly fulfills (a).

It remains to show that M’ fulfills (b)-(c). Keep in mind that A — Mh (mod G*)
defines a group homomorphism into G°®. From our last equations, it follows that either
M(i, j)h(3) = M'(3,5)h(j) or M(i,5))h(j) = M'(i,5)h(j) mod Z if both G; and G; are
discrete groups. From the definition of bullet group (3.8.16), it is now easy to derive that
Mh = M'h (mod G*®) for every h, and to extend this equation to all tuples x congruent
to h (this reduces to analyzing all possible combinations of primitive factors). As a result,
M’ is a matrix representation that defines the same map as M, which implies (b). The fact
that M’ satisfies (c) follows using the same argument we used for M.

Proof of Lemma 54

We prove that the function f(g) := &1(g)/€2(g) is a character, implying that there exists
w € G* such that x, = f:

_ &g &(h) Blg,h) _
flg+h):= £2(9) &(h) B, B) f(g)f (). (B-2.4)

Proof of Lemma 55

Define the function ¢ : G — R as
q(g) = g"Mg+C7g. (B.2.5)

148

We prove that g(g) is a quadratic form modulo 2Z with associated bilinear form b,(g, h) :=
2gTMh; or, in other words, that the following equality holds for every g, h € G:

q(g+h) =q(g) + q(h) +2g"Mh (mod 2Z). (B.2.6)

Assuming that (B.2.6) is correct, it follows readily that the function Q(g) = exp (rnig(g)) is
quadratic and also a B-representation, which is what we wanted:

Qg+ h) =Q(g)Q(h) exp (2rig"Mh) (B.2.7)

We prove (B.2.6) by direct evaluation of the statement. First we define qp(g) := g"Mg and
gc(g) := C7g, so that q(g9) = qum(g) + gc(g). We will also (temporarily, i.e. only within
the scope of this proof) use the notation g ® h to denote the group operation in G and
reserve g + h for the case when we sum over the reals. Also, denoting G = G1 X ...Gp,
with G; primitive, we define ¢ := (¢, ..., cm) to be a tuple containing all the characteristics
¢ := char(G;). With these conventions we have ¢ ® h = g + h + A o ¢, where) is a vector of
integers and o denotes the entrywise product: Ao c = (Aic1,- .., Amcn). Note that Aoc is
the most general form of any string of real numbers that is congruent to 0 € G (the neutral
element of the group). We then have (using that M = MT):

am (g @ h) = qu(9) + qm(h) + 29" Mh
+29"M(Aoc)+2h"M(Aoc)+ (Ao} ™M(Aoc), (B.2.8)

qc(9 ® h) = qc(g9) + gc(h) + Z M (i, i)A(i)c}. (B.2.9)

Consider an z € R" for which there exists g € G such that x = g mod G. Then "M (\oc¢)
with £ € G must be an integer. Indeed, we have

1= B(g,0) = exp (2niz"M (A o c)), (B.2.10)

where in the second identity we used Lemma 53 together with the property A o ¢ = 0 mod
G. This shows that x"M (X o c) is an integer. It follows that the fourth and fifth terms on
the right hand side of eq. (B.2.8) must be equal to an even integer and thus cancel modulo
27.. Combining results we end up with the expression

q(g®dh)=4q(g) +q(h)+29"Mh+A (mod 2Z), (B.2.11)

where
A:=(Aoc)™M(Noc)+ Y M(i,i)A@E)c. (B.2.12)

We finish our proof by showing that A is an even integer too, which proves (B.2.6).

First, we note that, due to the symmetry of M, we can expand (Ao c)"M(Aoc) as

(Aoc)™™M(Aoc)= Y 2M(i, HADAG)eic; + Y M(3,)A(E)2. (B.2.13)

4,7 1 1<J i

Revisiting (B.2.10) and choosing = = e; and A = e; for all different values of 7, j, we obtain

149

the following consistency equation for M
M (i,§) = ;M(i,7) =0 (mod Z) (B.2.14)

It follows that all terms of the form 2M (4, 7)A(¢)A(j)cic; are even integers. We can thus
remove these terms from (B.2.13) by taking modulo 2Z, yielding

A=Y "M(@,i)AE)%E + Y M(5,i)A(@)c; (mod 2Z) (B.2.15)

= Z M(5,3)c2A(@)(ME) + 1) =0 (mod 2Z), (B.2.16)

where in the last equality we used the fact that A(Z)(A(z) + 1) is necessarily even.

Proof of Lemma 58

The fact that £a7,, 0 & is quadratic follows immediately from the fact that £as,, is quadratic
and that « is a homomorphism. Composed continuous functions lead to continuous func-
tions. As a result, Theorem 57 applies and we know &/ v = €pr, 0 @ for some choice of M,
v,

Let B (g, h) = exp (2rig”Mh) be the bicharacter associated with as,». One can show by
direct evaluation (and using Lemma 49(a) and lemma 53) that By, with M’ := ATM A is the
bicharacter associated to &pr,0 . Let Qpr(g) := exp(ni (9"M'g+ Cf;19)), be the quadratic
function in Lemma 54. By construction, both {7, 0 o and Qap are Bjys-representations
of the bicharacter Byy. As a result, Lemma 54 tells us that the function f(g) := & ©
a(g)/Qn(9) is a character of G, so that there exists v € G* such that x,/(g9) = f(g). We
can compute v’ by direct evaluation of this expression:

Xv'(9) = exp (ni (ATCpr — Cprpr4) 9) exp (2ni (A™0) - g) . (B.2.17)

It can be checked that the function exp (2ni(A”v)g) is a character, using that it is the
composition of a character exp(2mvTg) (Theorem 57) and a continuous group homomorphism
a. Since X, is also a character, the function exp (i (A"Cy — Cyrpr4) 9) is a character too
(as characters are a group under multiplication), and it follows that vaay = (ATCy —
Cartara)/2 is congruent to some element of G* !; we obtain that v/ = ATv + v is
an element of G°*. Finally, we obtain that £y, is a normal form of £, o «, using the

relationship & © a(g) = Qumr(9) f(9) = Qumr(9)xw (9) = Emr r (9)-

1This statement can also be proven (more laboriously) by explicit evaluation, using arguments similar to
those in the proof of Lemma 55.

150

Appendix C

Proofs of results in Chapter 4

C.1 Existence of general solutions of systems given by (4.5.1)

In this section we show that general-solutions of systems of linear equations over elementary
Abelian groups always exist (given that the systems admit at least one solution).
We start by recalling an important property of elementary Abelian groups.

Lemma 98 (See theorem 21.19 in [98] or section 7.3.3 in [86]). The class of elementary
Abelian groups' is closed with respect to forming closed subgroups, quotients by these, and
finite products.?

In our setting, the kernel of a continuous group homomorphism A : G — H as in (4.5.1)
is always closed: this follows from the fact that the singleton {0} C H is closed (because
elementary Abelian groups are Hausdorff [98]), which implies that ker A = A~1({0}) is
closed (due to continuity of A). Hence, it follows from Lemma 98 that ker A is topologically
isomorphic to some elementary Abelian group H' := R® x T x Z°¢ x Zyn, X -+ X ZN,;
consequently, there exists a continuous group isomorphism ¢ from H' to H.

Next, we write the group H' as a quotient group X/K of the group X := R+ x 7¢+d
by the subgroup K generated by the elements of the form char(X;)e;. The quotient group
X/K is the image of the quotient map ¢ : X — X/K and the latter is a continuous group
homomorphism [98]. By composing ¢ and g we obtain a continuous group homomorphism
£ := poqfrom X onto H. The map £ together with any particular solution z¢ of (4.5.1)
constitutes a general solution of (4.5.1), proving the statement.

C.2 Proof of Theorem 66

In this section we show that systems of linear equations over groups (4.5.1) can be reduced
to systems of mixed real-integer linear equations (4.5.5).

Start with two elementary groups of general form G, H. First, notice that we can write
G and H as G =Gy X -+- X G, H = Hy x --- x Hy, where each factor G;, H; is of the form
Gi =X;/aZ, Hy =Y, /d;Z with X;, Y; € {Z,R}; the numbers ¢;, d; are the characteristics
of the primitive factors. We assume w.l.o.g. that the primitive factors of G, H are ordered

1Beware that in [98] the class of elementary groups is referred as “the category CGAL”, which stands for
Compactly Generated Abelian Lie groups.

?In fact, as mentioned in [98], corollary 21.20 elementary LCA groups constitute the smallest subclass of
LCA containing R and fulfilling all these properties.

151

such that both groups are of the form Z* x F x T®: in other words, the finitely generated
factors come first.

We now define a new group X := X x- - - x X,,, (recall that with the ordering adopted X
is of the form Z® x R?) which will play the role of an enlarged solution space, in the following
sense. Let V be the subgroup of X generated by the elements cjes, ..., cmem. Observe that
the group G—the solution space in system (4.5.1)—is precisely the quotient group X/V,
and thus can be embedded inside the larger group X via the quotient group homomorphism
q:X—->G=X/V:

q(x) := (x(1) mod c1,...,x(m) mod ¢) =x (mod G); (C.2.1)

remember also that kerq = V. Now let « : X — H be the group homomorphism defined
as a := Aoq. Then it follows from the definition that a(x) = Ax (mod H), and A is
a matrix representation of a. (This is also a consequence of the composition property of
matrix representations (Lemma 49.(a), since the m X m identity matrix I,, is a matrix
representation of q.) We now consider the relaxed® system of equations

a(x)=b (mod H), wherex e X =27Z*xR°, (C.2.2)

Note that the problem of solving (4.5.1) reduces to solving (C.2.2), which looks closer to a
system of mixed real-integer linear equations. Indeed, let X, denote the set of all solutions
of system (C.2.2); then*

Gsol = q(Xs01) = Gsol = q(x%0) + q(ker o) = xg + ker o (mOd G)a (0'2'3)

Hence, our original system (4.5.1) admits solutions iff (C.2.2) also does, and the former can
be obtained from the latter via the homomorphism q. We further show next that (C.2.2)
is equivalent to a system of form (4.5.5). First, note that the matrix A has a block form
A= (Az AR) where Az, Ar act, respectively, in integer and real variables. Since the
constraint (mod H) is equivalent to the modular constraints mod dy, . .., mod d,, it follows

that x = (XZ XR) € Xsol if and only if
Azxz + Arxr + Dy = ¢, where D = diag(ds,...,d,), y € Z". (C.2.4)

Clearly, if we rename A’ := (AZ D), x = (XZ y), B = Ag and y’ := xR, system (C.2.4)
is a system of mixed-integer linear equations as in (4.5.5). Also, system (4.5.5) can be seen
as a system of linear equations over Abelian groups: note that in the last step the solution
space X is increased by introducing new extra integer variables y € Z". If we let G denote
the group X x Z" that describes this new space of solutions, then (C.2.4) can be rewritten
as

Ag = (A D) g=c, wherege G (C.2.5)

and c represents an element of Y.

Mind that (C.2.4) (or equivalently (C.2.5)) admits solutions if and only if both of (C.2.2)
and (4.5.1) admit solutions. Indeed, the solutions of (C.2.4) and (C.2.2) are—again—related

3Notice that the new system is less constrained, as we look for solutions in a larger space than beforehand.
1t is easy to prove Gsol = q(Xeo1) by showing Geor O q(Xso1) and the reversed containment for the
preimage q~'(Gsol) C Xsol; then surjectivity of q implies Gsol = q(q ™ (Gso1)) € q(Xsol)-

152

via a surjective group homomorphism 7 : X x Z" — X : (x,y) — x. It follows from the
derivation of (C.2.4) that m(Gs) = Xso1 and, consequently, q o 7(Gsol) = Gsol; these rela-
tionships show that either all systems admit solutions or none of them do.

Finally, we use existing algorithms to find a general solution (gg, P) of system (C.2.5)
and show how to use this information to compute a general solution of our original problem
(4.5.1).

First, we recall that algorithms presented in [112] can be used to: (a) check whether a
system of the form (4.5.5,C.2.5) admits a solution®; (b) find a particular solution gq (if there
is any) and a matrix P that defines a group endomorphism of G = X x Z" whose image

im P is precisely the kernel® of A = (A D) (for details see theorem 1 in [112]).

Assume now that (C.2.4) admits solutions and that we have already found a general
solution (gg = (x0,¥0), P). We show next how a general solution (xo, P) of (4.5.1) can be
computed by making use of the map q o w. We also discuss the overall worst-time running
time we need to compute (g, P), as a function of the sizes of the matrix A and the tuple &
given as an input in our original problem (4.5.1) (the bit-size or simply size of an array of
real numbers—tuple, vector or matrix—is defined as the minimum number of bits needed
to store it with infinite precision), size(G) and size(H):

e First, note that (go = (x0,¥0),P) can be computed in polynomial-time in size(A),
size(b), size(G) and size(H), since there is only a polynomial number of additional
variables and constrains in (C.2.4) and the worst-time scaling of the algorithms in
[112] is also polynomial in the mentioned variables. (We discussed the complexity of
these methods in Section 4.5.)

e Second, a particular solution zg of (4.5.1) can be easily computed just by taking
xo = qo7((X0,¥0)) = m(xg) (mod G): this computation is clearly efficient in size(xq)
and size(G).

e Third, note that the composed map P := q o7 o P defines a group homomorphism
P : G = G whose image is precisely the subgroup ker A; a matrix representation of P
(that we denote with the same symbol) can be efficiently computed, since

Pxx P
it P={ " ™| then Pi=(Pxx Pxz) (C.2.6)

Pzx Pzz

is a matrix representation of q o m o P that we can take without further effort.

The combination of all steps above yields a deterministic polynomial-time algorithm to com-
pute a general solution (g, P; G) of system (4.5.1), with worst-time scaling as a polynomial
in the variables m, n, log ||A|lw, log ||b||, log c;, logd;. This proves Theorem 66.

5Mind that this step is actually not essential for our purposes, since in the applications we are interested
on all such systems admits solutions by promise.

SIn fact, the matrix P is also idempotent and defines a projection map on G and ker A is the image of a
projection map: subgroups satisfying this property are called retracts. Though the authors never mention
the fact that P is a projection, this follows immediately from their equations (10a,10b).

153

C.3 Efficiency of Bowman-Burdet’s algorithm

In this appendix we briefly discuss the time performance of Bowman-Burdet’s algorithm [112]
and argue that, using current algorithms to compute certain matrix normal forms (namely,
Smith normal forms) as subroutines), their algorithm can be implemented in worst-time
polynomial time.

An instance of the problem Az + By = C, of the form (4.5.5), is specified by the rational
matrices A, B and the rational vector C. Let A, B, C have ¢ X a, ¢ x b and c entries.
Bowman-Burdet’s algorithm (explained in [112, Section 3]) involves different types of steps,
of which the most time consuming are (see [112, Equations 8-10]):

1. The calculation of a constant number of certain types of generalized inverses introduced
by Hurt and Waid [148];

2. A constant number of matrix multiplications.

A Hurt-Waid generalized inverse M# of a rational matrix M can be computed with an
algorithm given in [148], equations 2.3-2.4. The worst-running time of this procedure is
dominated by the computation of a Smith Normal form § = UMV of M with pre- and
post- multipliers U, V. This subroutine becomes the bottleneck of the entire algorithm, since
existing algorithms for this problem are slightly slower than those for multiplying matrices
(cf. [154] for a slightly outdated review). Furthermore, S, U and V can be computed in
polynomial time (we refer the reader to [154] again).

The analysis above shows that Bowman-Burdet’s algorithm runs in worst-time polyno-
mial in the variables log || A||b, log || B|b, log ||C|lv, a, b, ¢, which is enough for our purposes.

C.4 Proof of Lemma 67

As a preliminary, recall that group homomorphism form an Abelian group with the point-
wise addition operation. Clearly, matrix representations inherit this group operation and
form a group too. This follows from the following formula,

(@ +B)(g) = afg) + B(g) = Ag+ Bg = (A+ B)g (mod G), (C.4.1)

which also states that the sum (A + B) of the matrix representations A, B of two homomor-
phisms a, f is a matrix representation of the homomorphism « + 3. The group structure
of the matrices is, in turn, inherited by their columns, a fact that will be exploited in the
rest of the proof; we will denote by X; the Abelian group formed by the jth columns of all
matrix representations with addition rule inherited from the matrix addition operation.

A consequence of Theorem 51 is that the group X is always an elementary Abelian
group, namely

G;=17 Rightarrow Xj=G=Z“><]beZN1x---xZch']I‘d;
G;=R Rightarrow X; = {0}* x R® x {0} x R%
d
G; =Zn; Rightarrow X; = {0}* x {0}° x (M jZ x -+ X 1 ;L) X (WIJ-Z) ;
Gj=T Rightarrow X; = {0} x {0} x {0}™F x Z™; (C4.2)

where Nij = Ni/ gcd (Ni, Nj).

154

We will now prove the statement of the lemma.

First, we reduce the problem of computing a valid matrix representation X of o™ to
that of solving the equation co 8 = id () is now the given automorphism) where g stands
for any continuous group homomorphism 8 : G — G. It is easy to show that this equation
admits 8 = o~ ! as unique solution, since

aof=id = pB=(aloa)of=alo(aof)=a"l. (C.4.3)

Hence, our task will be to find a matrix X such that g — X ¢ (mod G) is a continuous group
homomorphism and such that AX is a matrix representation of the identity automorphism.
The latter condition reads AXg =g (mod G) for every g € G and is equivalent to

AX Zg(j)ej = Zg(j)ij = Zg(j)ej (mod G), for every g € G, (C.4.4)
J J J

where z; denotes the jth column of X. Since (C.4.4) holds, in particular, when all but one
number ¢(j) are zero, it can be re-expressed as an equivalent system of equations:

9(7)Az; = g(j)e; (mod G), for any g(j) € Gj, for j=1,...,m. (C.4.5)

Finally, we will reduce each individual equation in (C.4.5) to a linear system of equations
of the form (4.5.1). This will let us apply the algorithm in Theorem 66 to compute every
individual column z; of X.

We begin by finding some simpler equivalent form for (C.4.5) for the different types of
primitive factors:

(a) If Gj = Z or G = Zn; the coefficient g(j) is integral and can take the value 1. Hence,
equation (C.4.5) holds iff Az; =e; (mod G).

(b) If G; = R or G; = T we show that (C.4.5) is equivalent to Ax; = e; (mod Xj).
Clearly, (C.4.5) implies g(j)Az; = g(j)ej + zero where zero = 0 (mod G) and where
we fix a value of g(j) € G;. Since Gj is divisible, g(3)’ = g(j)/d is also an element of
G; for any positive integer d. For this value we get ﬂOf—.lAzj = %{—.Zej + zero’. These
two equations combined show that zero = d zero’ must hold for every positive integer
d € Z. Since both zero and zero’ are integral, it follows that the entries of zero are
divisible by all positive integers; this can only happen if zero = 0 and, consequently,
(C.4.5) is equivalent to Az; = e;. Since both Ax; and e; are jth columns of matrix
representations, the latter equation can be written as Az; = e; (mod X;) with X as
in (C.4.2).

Finally, we argue that the final systems (a) Az; = e; (mod G) and (b) Az; = e; (mod Xj)
are linear systems of the form (4.5.1). First notice that for any two homomorphisms 3, S’
with matrix representations X, Y, it follows from (C.4.1) and Lemma 49.(a) that A(X+Y") =
AX + AY is a matrix representation of the homomorphism a o (3 + ') = aof+aoc .
Consequently,

A(X+Y)g=(AX + AY)g (mod G),for every g € G. (C.4.6)

The argument we used to reduce AXg = g (mod G) to the cases (a) and (b) can be applied
again to find a simpler form for (C.4.6). Applying the same procedure step-by-step (the

155

derivation is omitted), we obtain that, if G; = Z or G; = Zy;, then (C.4.6) is equivalent to
A(z; +y;) = Azj + Ay; (mod G); if Gj =R and G =T, we get A(z; +y;) = Az; + Ay;
(mod X;) instead. It follows that the map x; — Az; is a group homomorphism from X; to
G in case (a) and from X; to X in case (b). This shows that systems (a) and (b) are of the
form (4.5.1).

156

Appendix D

Supplementary material for Chapter
5

D.1 Proof of Theorem 80

To prove the result we can assume that we know a group isomorphism ¢ : ZK, — G that
decomposes the black-box group as a product of cyclic factors G = Zn, x --- x Zp,. Let
U, : HB — Hg be the unitary that implements the isomorphism U,|b) = |¢(b)) for any
b e Z;f,. It is easy to check that € is a normalizer circuit over Zy; x G if and only if
(I ®U,)C(I®U,) is a normalizer circuit over Zps x Z: automorphism (resp. quadratic
phase) gates get mapped to automorphism (resp. quadratic phase) gates and vice-versa;
isomorphic groups have isomorphic character groups [97], and therefore Fourier transforms
get mapped to Fourier transforms.

As a result, it is enough to prove the result in the basis labeled by elements of ZKI x G.
The advantage now is that we can use results from [1, 2]. In fact, the rest of the proof will
be similar to the proof of theorem 2 in [1].

We define a := ¢(a). The action of Upe in the G-basis reads Upe|m, g) = |m, ma + g),
in additive notation. Define a fuction F'(m,g) = (m,ma + g). We now assume that M
is not divisible by |a| and that there exists a normalizer circuit C such that [|[C — Upell <
§ with § = 1 — 1/+/2 and try to arrive to a contradiction. This property implies that
IClm, g) — Ume|m, g)|| < § for any standard basis state, and consequently

[(F(m, g)IClm, g} > 1 -6 = 25 (D.1.1)
It was shown in [1] that C|m, g) is a uniform superposition over some subset x+H of G, being
H a subgroup. If H has more than two elements, then C|m, g) is a uniform superposition
over more than two computational basis states. It follows that (n,h|C|m,g) < % for any
basis state |n,h) in contradiction with D.1.1, so that we can assume H = {0} and that
C|m,g) is a standard basis state. Then (D.1.1) implies that |F(m,g)) and C|m,g) must
coincide for every (m,g) € Zp x G, so that C must perfectly realize the transformation
[(m,g)) — |F(m,g)); however, the only classical functions that can be implemented by
normalizer circuits of this form are affine maps [1], meaning that F(m,g) = f(m,g) + b for
some group automorphism f: Zps x G — Zpy x G and some b € Zp; x G.

Finally, we arrive to a contradiction showing that F(m,g) is not affine unless M is a
multiple of |a]. First, by evaluating F(m, g) = f(m, g)+b = (m,ma+ g) at (0,0),(1,0) and

157

elements of the form (0, g), we can compute b and a matrix representation A of the automor-

1 0
phism f [1]: we obtain b = 0, so that F(m, g) must be an automorphism, and A =

a 1
However, for the matrix A to be a matrix representation of a group automorphism, the first
column a; needs to fulfill the equation: Ma; (mod Zps x G) [2, lemma 2]. Expanding this
equation, we finally get that Ma = 0 (mod G), which means that M needs to be a multiple
of the order of «.

D.2 Proof of Theorem 87

In this section we will prove Theorem 87, which we restate here for convenience:

Theorem 87 (Simulation of black-box normalizer circuits). Black-box normalizer
circuits can be efficiently simulated classically using the stabilizer formalism over Abelian
groups if a subroutine for solving the group-decomposition problem is provided as an oracle.

The proof uses results of Section 5.2.5; the reader may wish to review that section before
proceeding with this proof.

Given a black-box normalizer circuit acting on a black-box group G = Z* x T® x Zy, x
-+ X Zp, x B, there are two things we need to do to de-blackbox it, so that the circuit can
be classically simulated:

1. Decompose the black-box portion of G, B, into cyclic subgroups: B = Zy,_,, X -+ x
ZNc+d'

2. Calculate normal forms (Sections 3.9, 3.10) for each of the normalizer gates in the
computation.

Assuming we have access to an oracle for Group Decomposition, Task 1 can already be
done. In this proof we will concentrate on tackling task 2, for group automorphisms and
quadratic phase gates (a quantum Fourier transform is easily specified by the subgroup it
acts on).

D.2.1 Group automorphisms

Suppose we have an abelian group G = Z% X Zy, X - - - X Zp,, X T?; recall that we can represent
each element g € G as an a+ b+ c-tuple of real numbers g = (g1, - - , gm), where each of the
gi’s are only defined modulo the characteristic char(G;) of the group G;, multiplied by some
integer. (We have char(Z) = 0, char(T) = 1, and char(Zy) = N.) Let us first remember
the normal form for group automorphisms:

Theorem 51 (Normal form of a matrix representation). Let G = G; x -+ x G, be
an elementary Abelian group. A real n X m matriz A is a valid matriz representation of
some group automorphism a: G — G iff A is of the form

AZZ 0 0
A= | Apg App 0 (D.2.1)

Atz Arr Arr

158

with the following restrictions:
1. Azz and At are arbitrary integer matrices.

2. Apgz, App are integer matrices: the first can be arbitrary, while the coefficients of the
second must be of the form

N;

Al D =y 5 ——
(:9) = s G a N)

(D.2.2)
where o j can be arbitrary integers, and Nj; is the order of the i-th cyclic subgroup of
F, ZnN,. The coefficients of the i-th rows of these matrices can be chosen w.l.o.g. to
lie in the range [0, N;) (by taking remainders).

3. Atz and Atp are real matrices: the former is arbitrary, while the coefficients of the
latter are of the form A(i,j) = o;/Nj, where a;; can be arbitrary integers, and N;
is the order of the i-th cyclic subgroup of F', Zy,. (Due to the periodicity of the torus,
the coefficients of Atz, ATr can be chosen to lie in the range [0,1).)

Recall the underlying group is G' = Z® x T® x Zy, X -+ X Zy, X B with B = Zy_,, x
-+ X ZN,,, Assume we are given black box access to a group automorphism a : G = G
implemented as a classical function (a uniformly generated circuit family, say). We wish to
find a matrix representation for A for f. We will assume (for the efficiency of this algorithm)
that the size and precision of the coeflicients are upper bounded by some known constant D,
i.e. each element of M can be written as A; j = oy ;/f; ; for integers a j, B;,; with absolute
value no more than D.}

We will show how to find the matrix representation A in two steps:

1. Given access to a, we show how to switch the input and output of « from the black-
box encoding (where the group action is implemented as a black-box circuit) to the
decomposed group encoding (where elements of the group are given as a list of numbers,
and the group action is simply addition of vectors), and vice versa.

2. Once we have achieved this, we can implement classically a rational function f :
Qftmtk _y Qf+m+E that implements o in decomposed form. We will show how to
obtain the matrix representation A from this f.

Switching from black-box encoding to decomposed group encoding.

We need to be able to convert elements back and forth from the black-box encoding and
the decomposed group encoding. We assume our black box group B has already been
decomposed, i.e. we have found linearly independent generators by,--- , by of B such that
B = {51) @ - -+ ® (Be); moreover, we know the order N = N.4; of B;. Define the explicitly
decomposed group Zg = Z N X X ZN‘;; then we need to be able to perform the following
tasks:

!Note that D can be inferred from the precision bound (see Section 3.7) of the automorphism gate. If the
automorphism gate increases the input size by at most n bits, then it follows that the size of the denominator
or numerator of every matrix element can increase by at most D = 2™. A similar argument will hold for
quadratic phase gates.

159

(a) Our first task is to map an element from the decomposed group Zg to the black
box group B. In otherwords, we need to be able to compute the following group
homomorphism ¢:

¢ :Zg — B, o(g) = b‘{(l) . bz(d), for any g € Zg.

(b) Our second task is to convert elements from the original black-box group encoding to
the new encoding defined by Zg. In other words, given an arbitrary b € B, we need
to be able to compute ¢~ (b).

Note that it is always possible to compute ¢(g) = bg(l) .o bﬂ(d) for any g € Zg, since this can
be done using a polynomial number of queries to the black-box group oracle (using repeated
squaring if necessary for the exponentiation). Task (a) is therefore immediate.

As for Task (b), we note that computing ¢~*(b) for an element b € B is equivalent to
finding a list of integers (g(1),---,g(d)) such that bf(l) “e bf;(d) = b. This is a special case
of the multivariate discrete logarithm problem, defined in Lemma 85; from Lemma 85 we
see that Task (b) can be solved efficiently with a polynomial number of calls to the Group
Decomposition oracle.

Finding the matrix representation A

Now by converting the input and output of « to the decomposed group representation, we
may assume that we instead have a classical rational function f : Qotbtetd _, Qatbtetd
such that f can be treated as a group automorphism on G:

f(z) = f(z') mod G if x =2’ mod G. (D.2.3)

(Here we say two vectors are equal modulo G if each pair of corresponding entries are equal
modulo char(G;).) We wish to find a matrix representation A for f. For most entries of A
this is trivial: note that we have

A;j = f(ej); mod ¢ (D.2.4)

where ¢; = char(G;). Hence by evaluating f on the unit vectors e;, we can determine A; ;
modulo ¢;. Thus we can evalute Atp exactly, the coefficients of the i-th rows of Agz and
Apr modulo Zy;, and the coefficients of Ayz and Arp modulo 1. This is sufficient for the
cases listed above; the only case we still need to treat is Apr, whose entries are arbitrary
integers (and ¢; = char(T) = 1 in this case). We can instead evaluate f(e;/a) for some large
integer a:

A;jfa = flej/a); mod ¢; (D.2.5)
which allows us to determine A;; modulo ac; for our choice of a. Choosing o > 2D then
allows us to determine A;; exactly for the case of Arr.

D.2.2 Quadratic phase functions

We will continue to use the matrix representation referenced in the last section. Recall the
following theorem:

160

Theorem 57 (Normal form of a quadratic function, extended). Let G = Z°% x Zy, X
-+« x Zy, x T® be an elementary Abelian group. Define Z% = {0,1/N,--- ,(N —1)/N} to be
a group under addition modulo 1, and let G* = T* X Z}; X -+ X Ly % Z°. Then a function
£ : G — U(1) is quadratic if and only if

£(g) = &7 (47Mo + CTa +2075) (D-2.6)

where C, v, M are, respectively, two vectors and a matrix that satisfy the following:
e v is an element of G*;

e M is the matriz representation of a group homomorphism from G to G*, which neces-
sarily has the form

Mrz Mrr My
M :=| Mpez Mpep 0 (D.2.7)
Mzz 0 0
with the following restrictions:

— Mgz and Myt are arbitrary integer matrices.

— Mp+z and Mtp are rational matrices, the former with the form M (i, j) = o j/N;
and the latter with the form M (i,j) = a; j/N;, where o j are arbitrary integers,
and N; is the order of the i-th cyclic subgroup Zp;,.

— Mpep is a rational matrix with coefficients of the form

ai 7j

M(i, j) = ——2bd___
1) = Ged (N,)

(D.2.8)
where o ; are arbitrary integers, and Nj; is the order of the i-th cyclic subgroup
ZN,.

— M7z is an arbitrary real matriz.

The entries of Mpey, Mrpr, Mpep, and Mtz can be assumed to lie in the interval
[0,1). Moreover, M can be assumed to be symmetric, i.e. Mj,; = My, Mf., = My,
J\/[}.F = A{F.F, and M{Z - AITZ.

e C is an integer vector dependent on M, defined component-wise as C(i) = M(i,1)c;,
where ¢; 1s the characteristic of the group G;. (Recall that char(Z) = 0, char(T) =1,
and char(Zy) = N.)

Recall the underlying group is G = Z* X T® x Zy, X -+ - X Zn, X B with B Zy,_, X+ X
ZN,.4 Assume we are given a quadratic phase gate £, implemented as a classical circuit
family ¢ : G — Q such that

£(g) = M) vy e G. (D.2.9)

Since we can switch between the black-box group and decomposed group encodings (see
Section D.2.1), we can assume the elements of G are treated as a vector in Q@+t+etd,

We wish to write the quadratic function £(g) in the normal form given by Theorem 57,
i.e. find M, c,v as in Theorem 57 such that

E(g) - e-rti (gTMg+CTg+2ng)h (D210)

161

g, and hence M, ¢, and v, are rational by assumption. We will furthermore assume, as
before, that the size and precision of the coefficients are upper bounded by some known
constant D, i.e. each element of M can be written as M;; = «; ;/8;; for integers o j, Bi
with absolute value no more than D.

To do this, let us first determine the entries of M. This can be done in the following
manner: it should be straightforward to verify that

£ +y) = E(@E(y)e™™ = MY (D2.11)
for any x,y € G, and therefore
"™y = q(z + y) — q(z) — ¢(y) mod Z. (D.2.12)

We can use this method to determine nearly all the entries of M exactly, by taking x
and y to be unit vectors e; and e;; this would determine M;; up to an integer, i.e.

M;i; =elMe; = q(e; +¢5) — g(ei) — g(e;) mod Z. (D.2.13)

This determines all entries of M except for those in Mzz and Myt (the other entries can
be assumed to lie in [0,1)). To deal with Mzz we take z = a~le;, and y = e, such that the
coefficient M (4,) is in the submatrix Mzz and 1/« is an element of the circle group with
a < 2D, where D is the precision bound. We obtain an analogous equation

T M.
(%]Wej) = —aw— = g(a'e; + €;) — g(a"te;) — g(ej) mod Z, (D.2.14)

which allows us to determine M; ;: since the number M; ;/« is smaller than 1/2 in absolute
value, the coefficient is not truncated modulo 1. One can apply the same argument to obtain
the coefficients of M, choosing z = ¢;, and y = a’lej.

Once we determine all the entries of M in this manner, we get immediately the vector C
as well (since C(i) = ¢; M (4,%)). It is then straightforward to calculate the vector #. Thus we
can efficiently find the normal form of £(g) through polynomially many uses of the classical

function q.

D.3 Extending Theorem 87 to the Abelian HSP setting

In this appendix, we briefly discuss that Theorem 87 (and some of the results that follow
from this theorem) can be re-proven in the general hidden subgroup problem oracular setting
that we studied in Section 5.2.4. This fact supports our view (discussed in the main text)
that the oracle models in the HSP and in the black-box setting are very close to each other.

Recall that the main result in this section (Theorem 84) states that the quantum algo-
rithm Abelian HSP is a normalizer circuits over a group of the form Zg, x --- x Zg_ x O,
where O is a group associated with the Abelian HSP oracle f via the formula (5.2.17). The
group O is not a black-box group, because no oracle to multiply in O was provided. How-
ever, we discussed at the end of Section 5.2.4 that one can use the hidden subgroup problem
oracle to perform certain multiplications implicitly.

We show next that Theorem 87 can be re-casted in the HSP setting as “the ability to
decompose the oracular group O renders normalizer circuits over Zg, X- - -xZq,, X O efficiently
classically simulable”. To see this, assume a group decomposition table (e, 8, A, B,¢) is

162

given. Then we know O 2 Z,, X --- X Z,, . Let us now view the function a(g) = (g, f(g))
used in the HSP quantum algorithm as a group automorphism of G X Z, x - -+ X Z,,,, where

1 0
we decompose 0. Then, it is easy to check that is a matrix representation of this
B 1

map. It follows that the group decomposition table can be used to de-black-box the HSP
oracle, and this fact allows us to adapt the proof of Theorem 87 step-by-step to this case.

We point out further that the extended Cheung-Mosca algorithm can be adapted to the
HSP setting, showing that normalizer circuits over G x O can be used to decompose O.
This follows from the fact that the function f that we need to query to decompose B using
the extended Cheung-Mosca algorithm (algorithm 86) has precisely the same form as the
HSP oracle. Using the HSP oracle as a subroutine in algorithm 86 (which we can query by
promise), the algorithm computes a group decomposition tuple for O.

Finally, we can combine these last observations with Theorem 91 and conclude that the
problem of decomposing groups of the form O is classically polynomial-time equivalent to
the Abelian hidden subgroup problem. The proof is analogous to that of Theorem 91.

163

164

Bibliography

[1] M. Van den Nest, “Efficient classical simulations of quantum Fourier transforms and
normalizer circuits over Abelian groups,” Quantum Information and Computation O
no. 1, (2012) , arXiv:1201.4867v1 [quant-ph].

[2] J. Bermejo-Vega and M. Van Den Nest, “Classical simulations of Abelian-group
normalizer circuits with intermediate measurements,” Quantum Information and
Computation 14 no. 3-4, (2014) , arXiv:1210.3637 [quant-ph].

[3] M. A. Neilsen and I. L. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[4] P. R. Kaye, R. Laflamme, and M. Mosca, An Introduction to Quantum Computing.
Oxford University Press, 2007.

[5] A. M. Turing, “On computable numbers, with an application to the
entscheidungsproblem,” Proceedings of the London Mathematical Society 2(42)
(1937) 230-265.

[6] A. Church, “An unsolvable problem of elementary number theory,” American Journal
of Mathematics 58 no. 345-363, (1936) .

[7] D. Hilbert and W. Ackermann, Grundziige der theoretischen Logik. Springer-Verlag,
1928.

[8] T. Cubitt, D. Perez-Garcia, and M. M. Wolf, “Undecidability of the spectral gap
(short version),” arXiv:1502.04135 [quant-ph].

[9] T. Cubitt, D. Perez-Garcia, and M. M. Wolf, “Undecidability of the spectral gap (full
version),” arXiv:1502.04573 [quant-ph].

[10] J. Eisert, M. P. Mueller, and C. Gogolin, “Quantum measurement occurrence is
undecidable,” arXiv:1111.3965 [quant-ph].

[11] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Annals of Mathematics
160 no. 2, (2004) 781-793.

[12] R. Feynman, “Simulating physics with computers,” International Journal of
Theoretical Physics 21 (6-7) (1982) 467-488.

[13] D. Deutsch, “Quantum theory, the church-turing principle and the universal
quantum computer,” Proceedings of the Royal Society A 400 (1818) (1985) 97-117.

165

[14] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM Journal on Scientific and Statistical
Computing 26 (1997) , arXiv:quant-ph/9508027.

[15] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM 21 (1978) .

[16] D. Gottesman, “The Heisenberg representation of quantum computers,” in Group22:
Proceedings of the XXII International Colloguium on Group Theoretical Methods in
Physics. International Press, 1999. arXiv:quant-ph/9807006v1.

[17] D. Gottesman, Stabilizer Codes and Quantum Error Correction. PhD thesis,
California Institute of Technology, 1997. arXiv:quant-ph/9705052v1.

[18] S. Jordan, “Quantum algorithm zoo.” http://math.nist.gov/quantum/zoo/.

[19] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(STOC). May, 1996. arXiv:quant-ph/9605043.

[20] A. Y. Kitaev, “Quantum measurements and the Abelian stabilizer problem,”
arXiv:quant-ph/9511026.

[21] C. Lomont, “The hidden subgroup problem - review and open problems,” arXiv
(2004) , arXiv:arXiv:quant-ph/0411037v1.

[22] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems.
Prentice-Hall, 2nd ed., 1996.

[23] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Oxford
University Press, 5th ed., 1979.

[24] A. M. Childs and W. van Dam, “Quantum algorithms for algebraic problems,”
Reviews of Modern Physics 82 (2010) , arXiv:0812.0380v1 [quant-ph].

[25] M. Ettinger, P. Hoyer, and E. Knill, “The quantum query complexity of the hidden
subgroup problem is polynomial,” Information Processing Letters 91 no. 1, (2004) ,
arXiv:quant-ph/0401083.

[26] A. Ambainis, “Quantum walk algorithm for element distinctness,” SIAM Journal on
Computing 37 no. 1, (2007) 210-239, arXiv:quant-ph/0311001.

[27] M. Szegedy, “Quantum speed-up of Markov chain based algorithms,” in Proceedings
of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
2004.

[28] F. Magniez, A. Nayak, J. Roland, and M. Santha, “Search via quantum walk,” SIAM
Journal on Computing 40 no. 1, (2011) 142-164, arXiv:quant-ph/0608026.

[29] S. Jeffery, R. Kothari, and F. Magniez, “Nested quantum walks with quantum data
structures,” in Proceedings of the 24th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1474-1485. 2013. arXiv:1210.1199 [quant-ph].

166

(30]

31]

32]

(33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

(43]

A. Belovs, “Span programs for functions with constant-sized 1-certificates,” in
Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC),
pp. 77-84. 2012. arXiv:1105.4024 [quant-ph].

C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and

weaknesses of quantum computing,” SIAM Journal on Computing 26 no. 5, (1997)
1510-1523, arXiv:quant-ph/9701001.

R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, “Quantum lower bounds
by polynomials,” in Proceedings of the 39th Annual Symposium on Foundations of
Computer Science (FOCS), p. 352. 1998. arXiv:quant-ph/9802049.

A. Ambainis, “Quantum lower bounds by quantum arguments,” in Proceedings of the
32nd Annual ACM Symposium on T heory of Computing (STOC), pp. 636-643. 2000.
arXiv:quant-ph/0002066.

P. Hgyer, T. Lee, and R. Spalek, “Negative weights make adversaries stronger,” in
Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC),
pp. 526-535. 2007. arXiv:quant-ph/0611054.

B. W. Reichardt, “Span programs and quantum query complexity: The general
adversary bound is nearly tight for every boolean function,” in Proceedings of the
50th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 544-551.
2009. arXiv:0904.2759 [quant-ph].

B. W. Reichardt, “Reflections for quantumn query algorithms,” in Proceedings of the
22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 560-569. 2011.
arXiv:1005.1601 [quant-ph)].

T. Lee, R. Mittal, B. W. Reichardt, R. épalek, and M. Szegedy, “Quantum query
complexity of state conversion,” in Proceedings of the 52nd IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 344-353. 2011. arXiv:1011.3020
[quant-ph].

C. Y.-Y. Lin and H.-H. Lin, “Upper bounds on quantum query complexity inspired
by the Elitzur-Vaidman bomb tester,” arXiv:1410.0932 [quant-ph].

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich,
“Interaction-free measurement,” Physical Review Letters 74 no. 24, (1995) 4763.

B. Furrow, “A panoply of quantum algorithms,” Quantum Information and
Computation 8 no. 8, (September, 2008) 834-859, arXiv:quant-ph/0606127.

A. Ambainis and R. Spalek, “Quantum algorithms for matching and network flows,”
in Lecture Notes in Computer Science, vol. 3884, pp. 172-183. Springer, 2006.
arXiv:quant-ph/0508205.

S. Doérn, “Quantum algorithms for matching problems,” Theory of Computing
Systems 45 no. 3, (October, 2009) 613-628.

O. Regev and L. Schiff, “Impossibility of a quantum speed-up with a faulty oracle,”
in Lecture Notes in Computer Science, vol. 5125, pp. 773-781. Springer, 2008.
arXiv:1202.1027 [quant-ph].

167

[44] G. Mitchison and R. Jozsa, “Counterfactual computation,” Proceedings of the Royal
Society A 457 no. 2009, (2001) 1175-1194, arXiv:quant-ph/9907007.

[45] O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat,
“Counterfactual quantum computation through quantum interrogation,” Nature 439
(February, 2006) 949-952.

[46] G. Mitchison and R. Jozsa, “The limits of counterfactual computation,”
arXiv:quant-ph/0606092.

[47] O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. Kwiat,
“Counterfactual computation revisited,” arXiv:quant-ph/0607101.

[48] L. Vaidman, “The impossibility of the counterfactual computation for all possible
outcomes,” arXiv:quant-ph/0610174.

[49] O. Hosten and P. G. Kwiat, “Weak measurements and counterfactual computation,”
arXiv:quant-ph/0612159.

[60] H. Salih, Z.-H. Li, M. Al-Amri, and M. S. Zubairy, “Protocol for direct
counterfactual quantum communication,” Physical Review Letters 110 (2013)
170502, arXiv:1206.2042 [quant-ph].

[51} L. Vaidman, “Comment on "protocol for direct counterfactual quantum
communication" [arxiv:1206.2042],” arXiv:1304.6689 [quant-ph].

[52] T.-G. Noh, “Counterfactual quantum cryptography,” Physical Review Letters 103
(2009) 230501, arXiv:0809.3979 [quant-ph)].

[33] A. Brodutch, D. Nagaj, O. Sattath, and D. Unruh, “An adaptive attack on Wiesner’s
quantum money,” arXiv:1404.1507 [quant-ph].

[54] S. Wiesner, “Conjugate coding,” ACM SIGACT News 15 no. 1, (1983) .

[55] R. Kothari, “An optimal quantum algorithm for the oracle identification problem,” in
Proceedings of the 31st International Symposium on Theoretical Aspects of Computer
Science (STACS), E. W. Mayr and N. Portier, eds., vol. 25 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 482-493. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 2014. arXiv:1311.7685 [quant-ph].

[56] S. Aaronson. Personal communication, 2014.

[57] S. Micali and V. V. Vazirani, “An O(+/|V| - |E|) algorithm for finding maximum
matching in general graphs,” in Proceedings of the 21st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 17-27. 1980.

[58] S. Cook, C. Dwork, and R. Reischuk, “Upper and lower time bounds for parallel
random access machines without simultaneous writes,” SIAM Journal on Computing
15 no. 1, (1986) 87-97.

[59] N. Nisan, “CREW PRAMs and decision trees,” SIAM Journal on Computing 20
no. 6, (1991) 999-1007.

168

[60] H. Buhrman and R. D. Wolf, “Complexity measures and decision tree complexity: A
survey,” Theoretical Computer Science 288 (1999) 2002.

[61] A. C. Elitzur and L. Vaidman, “Quantum mechanical interaction-free measurements,”
Foundations of Physics 23 no. 7, (July, 1993) 987-997, arXiv:hep-th/9305002.

[62] B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” Journal
of Mathematical Physics 18 no. 4, (1977) 756.

[63] C. Diurr and P. Hgyer, “A quantum algorithm for finding the minimum,”
arXiv:quant-ph/9607014.

[64] C. Diirr, M. Heiligman, P. Hgyer, and M. Mhalla, “Quantum query complexity of
some graph problems,” arXiv:quant-ph/0401091.

[65] T. H. Cormen, C. E. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms.
MIT Press and McGraw-Hill, 3rd ed., 2009.

[66] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum matchings in
bipartite graphs,” SIAM Journal on Computing 2 no. 4, (1973) 225-231.

[67] C. Berge, “Two theorems in graph theory,” in Proceedings of the National Academy of
Sciences of the United States of America, vol. 43, pp. 842-844. 1957.

[68] A. Berzina, A. Dubrovsky, R. Freivalds, L. Lace, and O. Scegulnaja, “Quantum
query complexity for some graph problems,” in Lecture Notes in Computer Science,
vol. 2932, pp. 140-150. Springer, 2004.

[69] S. Zhang, “On the power of Ambainis’s lower bounds,” Theoretical Computer Science
339 no. 2-3, (2005) 241-256, arXiv:quant-ph/0311060.

[70] E. A. Dinic, “Algorithm for solution of a problem of maximum flow in a network with
power estimmation,” Soviet Math Doklady 11 (1970) 1277-1280.

[71] A. V. Karzanov, “O nakhozhdenii maksimal'nogo potoka v setyakh spetsial’'nogo vida
i nekotorykh prilozheniyakh,” in Matematicheskie Voprosy Upravieniya
Proizvodstvom, L. Lyusternik, ed., vol. 5, pp. 81-94. Moscow State University Press,
1973.

[72] S. Even and R. E. Tarjan, “Network flow and testing graph connectivity,” SIAM
Journal on Computing 4 no. 4, (1975) 507-518.

[73] K. K. H. Cheung and M. Mosca, “Decomposing finite Abelian groups,” Quantum
Information and Computation 1 no. 3, (2001) , arXiv:cs/0101004.

[74] J. Bermejo-Vega, C. Y.-Y. Lin, and M. V. den Nest, “Normalizer circuits and a
Gottesman-Knill theorem for infinite-dimensional systems,” arXiv:1409.3208
[quant-ph].

[75] J. Bermejo-Vega, C. Y.-Y. Lin, and M. V. den Nest, “The computational power of
normalizer circuits over black-box groups,” arXiv:1409.4800 [quant-ph].

[76] E. Knill, “Non-binary unitary error bases and quantum codes,” tech. rep., Los
Alamos National Laboratory, 1996. arXiv:quant-ph/9608048.

169

[77] D. Gottesman, “Fault-tolerant quantum computation with higher-dimensional
systems,” in Selected papers from the First NASA International Conference on
Quantum Computing and Quantum Communications. Springer, 1998.
arXiv:quant-ph/9802007v1.

[78] G. Brassard and P. Hgyer, “An exact quantum polynomial-time algorithm for
simon’s problem,” in Proceedings of the Fifth Israel Symposium on the Theory of
Computing Systems (ISTCS ’97), ISTCS ’97. IEEE Computer Society, Washington,
DC, USA, 1997. arXiv:quant-ph/9704027.

[79] P. Hgyer, “Conjugated operators in quantum algorithms,” Physical Review A 59
(1999) .

[80] M. Mosca and A. Ekert, “The hidden subgroup problem and eigenvalue estimation
on a quantum computer,” in Selected Papers from the First NASA International
Conference on Quantum Computing and Quantum Communications, QCQC ’98.
Springer, 1998. arXiv:quant-ph/9903071.

[81] I. Damgard, “QIP note: on the quantum Fourier transform and applications.”
http: //www.daimi.au.dk/~ivan/fourier.ps.

[82] L. Babai and R. Beals, “A polynomial-time theory of black-box groups I,” in Groups
St Andrews 1997 in Bath, vol. I of London Mathematical Society Lecture Note Series.
Cambridge University Press, 1999.

[83] L. Babai and E. Szemerédi, “On the complexity of matrix group problems I,” in
Proceedings of the 25th Annual Symposium onFoundations of Computer Science,
1984, SFCS ’84. IEEE Computer Society, 1984.

[84] M. Mosca, Quantum computer algorithms. PhD thesis, University of Oxford, 1999.

[85] D. Gross, “Hudson’s theorem for finite-dimensional quantum systems,” Journal of
Mathematical Physics 47 no. 12, (2006) , arXiv:quant-ph/0602001.

[86] D. Dikranjan, “Introduction to topological groups.” 2010.
[87] J. F. Humphreys, A course in group theory. Oxford University Press, 1996.

[88] V. Shoup, A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, 2nd ed., 2008.

[89] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic. Cambridge
University Press, 2010.

[90] F. Fontein and P. Wocjan, “On the probability of generating a lattice,” Journal of
Symbolic Computation 64 (2014) 3 — 15, arXiv:1211.6246 [quant-ph].

[91] F. Bruhat, “Distributions sur un groupe localement compact et applications 4 | etude
des représentations des groupes p-adiques,” Bulletin de la Société Mathématique de
France 89 (1961) .

[92] M. S. Osborne, “On the Schwartz-Bruhat space and the Paley-Wiener theorem for
locally compact Abelian groups,” Journal of Functional Analysis 19 (1975) .

170

[93] R. de la Madrid, “The role of the rigged hilbert space in quantum mechanics,”
European Journal of Physics 26 no. 2, (2005) , arXiv:quant-ph/0502053.

[94] J. P. Antoine, “Quantum mechanics beyond Hilbert space,” in Irreversibility and
Causality Semigroups and Rigged Hilbert Spaces, vol. 504 of Lecture Notes in Physics.
Springer, 1998.

[95] M. Gadella and F. Gémez, “A unified mathematical formalism for the Dirac
formulation of quantum mechanics,” Foundations of Physics 32 no. 6, (2002) .

[96] M. Gadella, F. Gémez, and S. Wickramasekara, “Riggings of locally compact Abelian
groups.,” Journal of Geometry and Symmetry in Physics 11 (2008) .

[97] S. A. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian
Groups. Cambridge University Press, 1977.

[98] M. Stroppel, Locally Compact Groups. EMS Textbooks in Mathematics. European
Mathematical Society, 2006.

[99] W. Rudin, Fourier analysis on groups. No. 12 in Interscience Tracts in Pure and
Applied Mathematics. Interscience Publishers, 1962.

[100] K. H. Hofmann and S. A. Morris, The Structure of Compact Groups. No. 25 in de
Gruyter Studies in Mathematics. Walter de Gruyter.

[101] D. L. Armacost, The structure of locally compact abelian groups. M. Dekker New
York, 1981.

[102] J. Baez, “The n-category café: Locally compact Hausdorff Abelian groups,” 2008.
http://golem.ph.utexas.edu/category/2008/11/locally_compact__hausdorff_abel.html.

[103] H. Cohen, A Course in Computational Algebraic Number Theory. Springer, 1993.

[104] P. Kaye, “Optimized quantum implementation of elliptic curve arithmetic over
binary fields,” Quantum Information and Computation 5 no. 6, (2005) ,
arXiv:quant-ph/0407095.

[105] C. J. Moreno, Advanced Analytic Number Theory: L-Functions, vol. 15 of
Mathematical Surveys and Monographs. American Mathematical Society, 2005.

[106] A. Prasad and M. K. Vemuri, “Decomposition of phase space and classification of
Heisenberg groups,” arXiv:0806.4064 [quant-ph].

[107] N. B. Backhouse and C. J. Bradely, “Projective representations of Abelian groups,”
in Proceedings of the American Mathematical Society, vol. 36. American
Mathematical Society, 1972.

[108] J. Dehaene and B. De Moor, “Clifford group, stabilizer states, and linear and
quadratic operations over GF(2),” Physical Review A 68 (2003) ,
arXiv:quant-ph/0304125v1.

[109] E. Hostens, J. Dehaene, and B. De Moor, “Stabilizer states and Clifford operations
for systems of arbitrary dimensions and modular arithmetic,” Physical Review A 71
(2005) , arXiv:quant-ph/0408190v2.

171

[110] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Physical
Review A 70 (2004) , arXiv:quant-ph/0406196.

[111] N. de Beaudrap, “A linearized stabilizer formalism for systems of finite dimension,”
Quantum Information and Computation 13 no. 1-2, (2013) , arXiv:1102.3354v3
[quant-ph].

[112] V. J. Bowman and C.-A. Burdet, “On the general solution to systems of
mixed-integer linear equations,” SIAM Journal on Applied Mathematics 26 no. 1,
(1974) .

[113] S. L. Braunstein, “Error correction for continuous quantum variables,” Physical
Review Letters 80 (1998) , arXiv:quant-ph/9711049.

[114] S. Lloyd and J.-J. E. Slotine, “Analog quantum error correction,” Physical Review
Letters 80 (1998) , arXiv:quant-ph/9711021.

[115] D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,”
Physical Review A 64 (2001) .

(116] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto, “Efficient classical
simulation of continuous variable quantum information processes,” Physical Review
Letters 88 (2002) , arXiv:quant-ph/0109047.

[117] S. D. Bartlett and B. C. Sanders, “Efficient classical simulation of optical quantum
information circuits,” Physical Review Letters 89 (2002) , arXiv:quant-ph/0204065.

[118] R. L. Barnes, “Stabilizer codes for continuous-variable quantum error correction,”
arXiv:quant-ph/0405064.

[119] S. Lloyd and S. L. Braunstein, “Quantum computation over continuous variables,”
Physical Review Letters 82 (1999) , arXiv:quant-ph/9810082.

(120] S. L. Braunstein and P. van Loock, “Quantum information with continuous
variables,” Reviews of Modern Physics 77 (2005) , arXiv:quant-ph/0410100.

[121] C. Weedbrook, S. Pirandola, R. Garcia-Patrén, N. J. Cerf, T. C. Ralph, J. H.
Shapiro, and S. Lloyd, “Gaussian quantum information,” Reviews of Modern Physics
84 (2012) .

[122] N. C. Menicucci, “Fault-tolerant measurement-based quantum computing with
continuous-variable cluster states,” Physical Review Letters 112 (2014) ,
arXiv:1310.7596 [quant-ph)].

[123] J. Zhang and S. L. Braunstein, “Continuous-variable gaussian analog of cluster
states,” Physical Review A 73 (2006) .

[124] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A.
Nielsen, “Universal quantum computation with continuous-variable cluster states,”
Physical Review Letters 97 (2006) .

http://link.aps.org/doi/10.1103/PhysRevLett.97.110501.

172

[125] M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum
computing with continuous-variable clusters,” Physical Review A 79 (2009) ,
arXiv:0903.3233 [quant-ph].

[126] G. Aruldhas, Quantum Mechanics: 500 Problems with Solutions. Prentice-Hall of
India, 2010.

[127] M. Van den Nest, “Classical simulation of quantum computation, the gottesman-knill
theorem, and slightly beyond,” Quantum Information and Computation 10 no. 3,
(2010) , arXiv:0811.0898 [quant-ph].

[128] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, “Negative quasi-probability as a
resource for quantum computation,” New Journal of Physics 14 no. 11, (2012) ,
arXiv:1201.1256 [quant-ph].

[129] A. Mari and J. Eisert, “Positive wigner functions render classical simulation of
quantum computation efficient,” Physical Review Letters 109 (2012) ,
arXiv:1208.3660 [quant-ph].

[130] K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, “Discrete phase space based on
fi- nite fields,” Phys. Rev. A 70 (2004) .

[131] D. Gross, “Computational power of quantum many-body states and some results on
discrete phase spaces,” 2008.

[132] N. Delfosse, P. A. Guerin, J. Bian, and R. Raussendorf, “Wigner function negativity
and contextuality in quantum computation on rebits,” arXiv preprint (2014) ,
arXiv:1409.5170 [quant-ph].

[133] N. D. Mermin, “Extreme quantum entanglement in a superposition of
macroscopically distinct states,” Physical Review Letters 65 (1990) .

[134] V. Scarani, A. Acin, E. Schenck, and M. Aspelmeyer, “Nonlocality of cluster states of
qubits,” Physical Review A 71 (2005) , arXiv:quant-ph/0405119.

[135] O. Giihne, G. Toth, P. Hyllus, and H. J. Briegel, “Bell inequalities for graph states,”
Physical Review Letters 95 (2005) , arXiv:quant-ph/0410059.

[136] I. Rigas, L. L. Sanchez-Soto, A. B. Klimov, J. Rehééek, and Z. Hradil, “Non-negative
Wigner functions for orbital angular momentum states,” Physical Review A 81
(2010) , arXiv:0909.1887 [quant-ph].

[137] I. Rigas, L. Sanchez-Soto, A. Klimov, J. Reh4gek, and Z. Hradil, “Orbital angular
momentum in phase space,” Annals of Physics 326 no. 2, (2011) , arXiv:1011.6184
[quant-ph].

[138] M. Hinarejos, A. Pérez, and M. C. Banuls, “Wigner function for a particle in an
infinite lattice,” New Journal of Physics 14 no. 10, (2012) , arXiv:1205.3925
[quant-ph)].

[139] A. Kitaev, “Protected qubit based on a superconducting current mirror,”
arXiv:cond-mat/0609441.

173

[140] P. Brooks, A. Kitaev, and J. Preskill, “Protected gates for superconducting qubits,”
Physical Review A 87 (2013) .

[141] A. M. Steane, “Overhead and noise threshold of fault-tolerant quantum error
correction,” Physical Review A 68 (2003) , arXiv:quant-ph/0207119.

[142] E. Knill, “Quantum computing with realistically noisy devices,” Nature 434 (2005) ,
arXiv:arXiv:quant-ph/0410199.

[143] D. P. DiVincenzo and P. Aliferis, “Effective fault-tolerant quantum computation with
slow measurements,” Physical Review Letters 98 (2007) , arXiv:quant-ph/0607047.

[144] A. Paler, S. Devitt, K. Nemoto, and I. Polian, “Software-based Pauli tracking in
fault-tolerant quantum circuits,” in Proceedings of the Conference on Design,
Automation & Test in Europe, DATE ’'14. European Design and Automation
Association, 3001 Leuven, Belgium, Belgium, 2014. arXiv:1401.5872 [quant-ph].

[145] P. Kok and B. W. Lovett, Introduction to Optical Quantum Information Processing.
Cambridge University Press.

[146] D. Gottesman, “An introduction to quantum error correction and fault-tolerant
quantum computation,” in Quantum Information Science and Its Contributions to
Mathematics, vol. 68 of Proceedings of Symposia in Applied Mathematics. American
Physical Society, 2009. arXiv:0904.2557 [quant-ph].

[147] M. V. den Nest, “A monomial matrix formalism to describe quantum many-body
states,” New Journal of Physics 13 no. 12, (2011) , arXiv:1108.0531v1 [quant-ph)].

[148] M. F. Hurt and C. Waid, “A generalized inverse which gives all the integral solutions
to a system of linear equations,” SIAM Journal on Applied Mathematics 19 no. 3,
(1970) .

[149] P. Hayden, D. Leung, P. W. Shor, and A. Winter, “Randomizing quantum states:
Constructions and applications,” Communications in Mathematical Physics 250
no. 2, (2004) , arXiv:quant-ph/0307104.

[150] Y. Shi and X. Wu, “Epsilon-net method for optimizations over separable states,” in
Automatae, Languages, and Programming, vol. 7391 of Lecture Notes in Computer
Science. Springer, 2012. arXiv:1112.0808 [quant-ph].

[151] X. Ni and M. Van den Nest, “Commuting quantum circuits: efficiently classical
simulations versus hardness results,” Quantum Information and Computation 13
no. 1&2, (2013) , arXiv:1204.4570 [quant-ph].

[152] M. M. Deza and E. Deza, Encyclopedia of Distances. Springer, 2nd ed., 2013.

[153] R. A. Mollin, Advanced Number Theory with Applications. Discrete Mathematics and
its Applications. CRC Press, 2010.

[154] A. Storjohann, Algorithms for Matriz Canonical Forms. PhD thesis, University of
Waterloo, 2000.

174

[155] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algorithm for elliptic
curves,” Quantum Information and Computation 3 no. 4, (2003) ,
arXiv:quant-ph/0301141.

[156] D. Cheung, D. Maslov, J. Mathew, and D. Pradhan, “On the design and
optimization of a quantum polynomial-time attack on elliptic curve cryptography,” in
Theory of Quantum Computation, Communication, and Cryptography, vol. 5106 of
Lecture Notes in Computer Science. Springer, 2008. arXiv:0710.1093 [quant-ph].

[157] D. Deutsch, “Quantum theory, the Church-Turing principle and the universal
quantum computer,” Proceedings of the Royal Society of London. A. Mathematical
and Physical Sciences 400 no. 1818, (1985) .

[158] D. R. Simon, “On the power of quantum computation,” SIAM Journal on Computing
26 (1994) .

[159] D. Boneh and R. Lipton, “Quantum cryptanalysis of hidden linear functions,” in
Advances in Cryptology — CRYPT0’ 95, D. Coppersmith, ed., vol. 963 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1995.

[160] D. Grigoriev, “Testing shift-equivalence of polynomials by deterministic, probabilistic
and quantum machines,” Theor. Comput. Sci. 180 no. 1-2, (1997) .

[161] A. Y. Kitaev, “Quantum computations: algorithms and error correction,” Russian
Mathematical Surveys 52 no. 6, (1997) .

[162] W. Diffie and M. Hellman, “New directions in cryptography,” Information Theory,
IEEE Transactions on 22 no. 6, (1976) .

[163] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied
Cryptography. CRC Press, 1st ed., 1996.

[164] J. A. Buchmann, Introduction to Cryptography. Springer, 1st ed., 2000.

[165] S. Anders and H. J. Briegel, “Fast simulation of stabilizer circuits using a graph-state
representation,” Physical Review A 73 (2006) , arXiv:quant-ph/0504117.

[166] R. Jozsa and M. Van Den Nest, “Classical simulation complexity of extended clifford
circuits,” Quantum Information and Computation 14 no. 7&8, (2014) ,
arXiv:1305.6190 [quant-ph].

[167] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal clifford gates
and noisy ancillas,” Physical Review A 71 (2005) , arXiv:quant-ph/0403025.
http://link.aps.org/doi/10.1103/PhysRevA.71.022316.

[168] R. Jozsa and A. Miyake, “Matchgates and classical simulation of quantum circuits,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science
464 no. 2100, (2008) , arXiv:0804.4050 [quant-ph].

[169] S. Clark, R. Jozsa, and N. Linden, “Generalized clifford groups and simulation of
associated quantum circuits,” Quantum Information and Computation 8 no. 1,
(2008) , arXiv:quant-ph/0701103.

175

[170] S. Hallgren, A. Russell, and A. Ta-Shma, “Normal subgroup reconstruction and
quantum computation using group representations,” SIAM Journal on Computing 32
no. 4, (2003) .

[171] G. Kuperberg, “A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem,” SIAM Journal on Computing 35 no. 1, (2005) ,
arXiv:quant-ph/0302112.

[172] O. Regev, “A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space,” arXiv:quant-ph/0406151.

[173] G. Kuperberg, “Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem,” in Proceedings of TQC13. 2013. arXiv:1112.3333
[quant-ph)].

[174] M. Roetteler and T. Beth, “Polynomial-time solution to the hidden subgroup
problem for a class of non-abelian groups,” arXiv:quant-ph/9812070.

[175] G. Ivanyos, F. Magniez, and M. Santha, “Efficient quantum algorithms for some
instances of the non-abelian hidden subgroup problem,” arXiv:quant-ph/0102014.

[176] C. Moore, D. Rockmore, A. Russell, and L. Schulman, “The power of basis selection
in fourier sampling: the hidden subgroup problem in affine groups.,” in Proceedings
of the 15th ACM-SIAM Symposium on Discrete Algorithms. 2004.
arXiv:quant-ph/0211124.

[177] Y. Inui and F. Le Gall, “Efficient quantum algorithms for the hidden subgroup
problem over a class of semi-direct product groups,” Quantum Information and
Computation 7 no. 5/6, (2007) , arXiv:0412033 [quant-ph].

[178] D. Bacon, A. M. Childs, and W. van Dam, “From optimal measurement to efficient
quantum algorithms for the hidden subgroup problem over semidirect product
groups,” in Proceedings of the 46th IEEE Symposium on Foundations of Computer
Science. 2005. arXiv:0504083 [quant-ph].

[179] D. P. Chi, J. S. Kim, and S. Lee, “Notes on the hidden subgroup problem on some
semi-direct product groups,” Physical Letters A 359 no. 2, (2006) ,
arXiv:quant-ph/0604172.

[180] G. Ivanyos, L. Sanselme, and M. Santha, “An efficient quantum algorithm for the
hidden subgroup problem in extraspecial groups,” in Proceedings of the 24th
Symposium on Theoretical Aspects of Computer Science. 2007.
arXiv:quant-ph/0701235.

[181] C. Magno, M. Cosme, and R. Portugal, “Quantum algorithm for the hidden subgroup
problem on a class of semidirect product groups,” arXiv:quant-ph/0703223.

[182] G. Ivanyos, L. Sanselme, and M. Santha, “An efficient quantum algorithm for the
hidden subgroup problem in nil-2 groups,” in LATIN 2008: Theoretical Informatics,
vol. 4957 of LNCS. Springer, 2008. arXiv:0707.1260 [quant-ph].

176

[183] K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen, “Hidden translation and
translating coset in quantum computing,” in Proceedings of the 35th ACM
Symposium on Theory of Computing. 2003. arXiv:quant-ph/0211091.

[184] D. Gavinsky, “Quantum solution to the hidden subgroup problem for
poly-near-hamiltonian-groups,” Quantum Information and Computation 4 (2004) .

[185] A. M. Childs and W. van Dam, “Quantum algorithm for a generalized hidden shift
problem,” in Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms.
2007. arXiv:quant-ph/0507190.

[186] A. Denney, C. Moore, and A. Russell, “Finding conjugate stabilizer subgroups in
psl(2;q) and related groups,” Quantum Information and Computation 10 no. 3,
(2010) , arXiv:0809.2445 [quant-ph].

[187] N. Wallach, “A quantum polylog algorithm for non-normal maximal cyclic hidden
subgroups in the affine group of a finite field,” arXiv:1308.1415 [quant-ph].

[188] A. Childs, Lecture Notes on Quantum Algorithms. University of Waterloo, 2011.
Published online.

[189] W. van Dam and Y. Sasaki, Quantum algorithms for problems in number theory,
algebraic geometry, and group theory. World Scientific, 2012. arXiv:1206.6126
[quant-ph].

[190] V. Arvind and N. Vinodchandran, “Solvable black-box group problems are low for
pp,” Theoretical Computer Science 180 (1997) .

[191] L. Babai, “Local expansion of vertex-transitive graphs and random generation in
finite groups,” in Proceedings of the Twenty-third Annual ACM Symposium on
Theory of Computing, STOC '91. ACM, 1991.

[192] L. Babai, “Bounded round interactive proofs in finite groups,” SIAM Journal on
Discrete Mathematics 5 no. 1, (Feb., 1992) .

[193] L. Babai, “Randomization in group algorithms: conceptual questions,” in Groups and
Computation II, vol. 28 of Discrete Mathematics & Theoretical Computer Science.
1997.

[194] Y. Zhang, “Quantum algorithm for decomposing black-box finite abelian groups,” in
Proceedings of the Tth Annual International Conference on Foundations of Computer
Science. 2011.

[195] J. Watrous, “Quantum algorithms for solvable groups,” in Proceedings of the 33rd
ACM Symposium on Theory of Computing. 2001. arXiv:quant-ph/0011023.

[196] F. Magniez and A. Nayak, “Quantum complexity of testing group commutativity,” in
Proceedings of 32nd International Colloguium on Automata, Languages and
Programming, vol. 3580 of LNCS. 2005. arXiv:quant-ph/0506265.

[197] S. A. Fenner and Y. Zhang, “Quantum algorithms for a set of group theoretic
problems,” in Proceedings of the 9th Italian Conference on Theoretical Computer
Science, ICTCS’05. Springer, 2005. http://dx.doi.org/10.1007 /11560586 18.

177

[198] F. Le Gall, “An efficient quantum algorithm for some instances of the group
isomorphism problem,” in Proceedings of the 27th International Symposium on
Theoretical Aspects of Computer Science (STACS). 2010. arXiv:1001.0608
[quant-ph].

[199] K. C. Zatloukal, “Classical and quantum algorithms for testing equivalence of group
extensions,” arXiv:1305.1327 [quant-ph].

[200] L. G. Valiant, “Quantum circuits that can be simulated classically in polynomial
time,” SIAM J. Comput. 31 no. 4, (2002) .

[201] E. Knill, “Fermionic linear optics and matchgates,” arXiv:quant-ph/0108033.

[202] B. M. Terhal and D. P. DiVincenzo, “Classical simulation of noninteracting-fermion
quantum circuits,” Physical Review A 65 (2002) , arXiv:quant-ph/0108010.

[203] S. Bravyi, “Lagrangian representation for fermionic linear optics,” Quantum
Information and Computation 5 no. 3, (2005) , arXiv:quant-ph/0404180.

[204] R. Jozsa, B. Kraus, A. Miyake, and J. Watrous, “Matchgate and space-bounded
quantum computations are equivalent,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science 466 no. 2115, (2010) .

[205] M. Van den Nest, “Quantum matchgate computations and linear threshold gates,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science
467 no. 2127, (2011) , arXiv:1005.1143 [quant-ph].

[206] S. Bravyi and R. Konig, “Classical simulation of dissipative fermionic linear optics,”
Quantum Information and Computation 12 no. 11-12, (2012) , arXiv:1112.2184
[quant-ph].

[207] F. de Melo, P. Cwiklinski, and B. M. Terhal, “The power of noisy fermionic quantum
computation,” New Journal of Physics 15 no. 1, (2013) , arXiv:1208.5334 [quant-ph].

[208] A. Ambainis, L. J. Schulman, and U. Vazirani, “Computing with highly mixed
states,” J. ACM 53 no. 3, (2006) , arXiv:quant-ph/0003136.

[209] D. Poulin, R. Laflamme, G. J. Milburn, and J. P. Paz, “Testing integrability with a
single bit of quantum information,” Physical Review A 68 (2003) ,
arXiv:quant-ph/0303042.

[210] D. Poulin, R. Blume-Kohout, R. Laflamme, and H. Ollivier, “Exponential speedup
with a single bit of quantum information: Measuring the average fidelity decay,”
Physical Review Letters 92 (2004) , arXiv:quant-ph/0310038.

[211] D. Shepherd, “Computation with unitaries and one pure qubit,”
arXiv:quant-ph/0608132.

[212] P. W. Shor and S. P. Jordan, “Estimating Jones polynomials is a complete problem

for one clean qubit,” Quantum Information and Computation 8 no. 8, (2008) ,
arXiv:0707.2831 [quant-ph].

178

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

S. P. Jordan and P. Wocjan, “Estimating Jones and Homfly polynomials with one
clean qubit,” Quantum Information and Computation 9 no. 3, (2009) ,
arXiv:0807.4688 [quant-ph].

S. P. Jordan and G. Alagic, “Approximating the turaev-viro invariant of mapping
tori is complete for one clean qubit,” in Theory of Quantum Computation,
Communication, and Cryptography. Springer Berlin Heidelberg, 2014.
arXiv:1105.5100 [quant-ph].

T. Morimae, K. Fujii, and J. F. Fitzsimons, “Hardness of classically simulating the
one-clean-qubit model,” Physical Review Letters 112 (2014) , arXiv:1312.2496
[quant-ph)].

S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” in
Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing,
STOC ’11. ACM, 2011. arXiv:1011.3245 [quant-ph].

V. Veitch, N. Wiebe, C. Ferrie, and J. Emerson, “Efficient simulation scheme for a
class of quantum optics experiments with non-negative wigner representation,” New
Journal of Physics 15 no. 1, (2013) , arXiv:1210.1783 [quant-ph].

D. J. Shepherd, Quantum Complezity: restrictions on algorithms and architectures.
PhD thesis, 2010. arXiv:1005.1425 [quant-ph].

D. Shepherd and M. J. Bremner, “Temporally unstructured quantum computation,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science
(2009) , arXiv:0809.0847 [quant-ph].

M. J. Bremner, R. Jozsa, and D. J. Shepherd, “Classical simulation of commuting
quantum computations implies collapse of the polynomial hierarchy,” Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Science 467 (2011) ,
arXiv:1005.1407 [quant-ph].

M. Van Den Nest, “Universal quantum computation with little entanglement,”
Physical Review Letters 110 (2012) , arXiv:1204.3107 [quant-ph].

R. Jozsa and N. Linden, “On the role of entanglement in quantum-computational
speed-up,” Proceedings of the Royal Society of London. Series A. Mathematical,
Physical and Engineering Sciences 459 (2003) , arXiv:quant-ph/0201143.

G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,”
Physical Review Letters 91 (2003) .

B. M. Terhal and D. P. DiVincenzo, “Adaptive Quantum Computation, Constant
Depth Quantum Circuits and Arthur-Merlin Games,” Quantum Information and
Computation 4 no. 2, (2014) , arXiv:quant-ph/0205133.

I. Markov and Y. Shi, “Simulating quantum computation by contracting tensor
networks,” SIAM Journal on Computing 38 no. 3, (2008) , arXiv:quant-ph/0511069.

D. Aharonov, Z. Landau, and J. Makowsky, “The quantum FFT can be classically
simulated,” arXiv (2006) , arXiv:quant-ph/0611156v2.

179

[227] N. Yoran and A. J. Short, “Efficient classical simulation of the approximate quantum
Fourier transform,” Physical Review A 76 (2007) , arXiv:quant-ph/0611241v1.

[228] D. E. Browne, “Efficient classical simulation of the quantum fourier transform,” New
Journal of Physics 9 no. 5, (2007) , arXiv:quant-ph/0612021.

[229] N. Yoran, “Efficiently contractable quantum circuits cannot produce much
entanglement,” arXiv:0802.1156 [quant-ph].

[230] M. Van den Nest, “Simulating quantum computers with probabilistic methods,”
Quantum Information and Computation 11 no. 9-10, (2011) , arXiv:0911.1624v3
[quant-ph].

[231] D. Stahlke, “Quantum interference as a resource for quantum speedup,” Physical
Review A 90 (2014) , arXiv:1305.2186 [quant-ph].

[232] S. P. Jordan, “Permutational quantum computing,” Quantum Information and
Computation 10 no. 5, (2010) , arXiv:0906.2508 [quant-ph].

[233] M. Schwarz and M. V. d. Nest, “Simulating quantum circuits with sparse output
distributions,” Electronic Colloguium on Computational Complezity (2013) ,
arXiv:1310.6749 [quant-ph].

[234] J. Bermejo-Vega, “Classical simulations of non-abelian quantum Fourier transforms,”
Master’s thesis, Technical University of Munich, 2011.

[235] P. Sarvepalli and P. Wocjan, “Quantum algorithms for one-dimensional
infrastructures,” Quantum Information and Computation 14 no. 1-2, (2014) ,
arXiv:1106.6347 [quant-ph].

[236] F. Fontein and P. Wocjan, “Quantum algorithm for computing the period lattice of
an infrastructure,” arXiv (2011) , arXiv:1111.1348 [quant-ph)].

[237] S. Hallgren, “Polynomial-time quantum algorithms for pell’s equation and the
principal ideal problem,” J. ACM 54 no. 1, (2007) .

[238] R. Jozsa, “Quantum computation in algebraic number theory: Hallgren’s efficient
quantum algorithm for solving pell’s equation,” Annals of Physics 306 no. 2, (2003) ,
arXiv:quant-ph/0302134.

[239] A. Schmidt and U. Vollmer, “Polynomial time quantum algorithm for the
computation of the unit group of a number field,” in Proceedings of the Thirty-seventh
Annual ACM Symposium on Theory of Computing, STOC ’05. ACM, 2005.

[240] S. Hallgren, “Fast quantum algorithms for computing the unit group and class group
of a number field,” in Proceedings of the Thirty-seventh Annual ACM Symposium on
Theory of Computing, STOC ’05. ACM, 2005.

[241] A. M. Childs and G. Ivanyos, “Quantum computation of discrete logarithms in
semigroups,” arXiv:1310.6238 [quant-ph)].

[242] W. van Dam and G. Seroussi, “Efficient quantum algorithms for estimating Gauss
sums,” arXiv:quant-ph/0207131.

180

[243] H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting
particles,” Physical Review Letters 86 (2001) , arXiv:quant-ph/0004051v2.

[244] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical Review
Letters 86 (2001) .

[245] E. Knill, “On Shor’s quantum factor finding algorithm: Increasing the probability of
success and tradeoffs involving the Fourier transform modulus,” 1995.
http://www.c3.lanl.gov/ " knill/papers/on_shors _alg.ps.gz.

[246] D. Lorenzini, An Invitation to Arithmetic Geometry. Graduate Studies in
Mathematics. American Mathematical Society, 1997.

[247] H. Cohen, Advanced Topics in Computational Number Theory. Graduate Texts in
Mathematics. Springer.

[248] D. Nagaj, P. Wocjan, and Y. Zhang, “Fast amplification of QMA,” Quantum
Information and Computation 9 no. 11, (2009) , arXiv:0904.1549 [quant-ph].

[249] A. Childs. http://www.math.uwaterloo.ca/~amchilds/teaching/w13/115.pdf, 2013.
[250] R. Bhatia, Matriz Analysis. Springer-Verlag, 1997.

[251] A. Kleppner, “Multipliers on Abelian groups,” Mathematische Annalen 158 no. 1,
(1965) .

181

