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Abstract

The interaction of many particles can lead to spectacular new phases of matter whose
properties and collective excitations bear little resemblance to the individual particles

and interactions. Understanding how the macroscopic state transforms from one

phase to another provides key insights into the underlying physics. In this thesis, we

study two poorly understood states: the Hidden Order (HO) phase of URu 2 Si2 and

the pseudogap of high T, cuprates.
In the case of URu 2 Si2 , the HO phase causes a significant restructuring of the

Fermi surface. Thermal conductivity and ultrasound measurements suggest that the

lattice degrees of freedom couple strongly to this change. Additionally, torque mag-

netometry and x-ray diffraction suggest a breaking of C4 rotational symmetry. We

directly study the lattice through x-ray scattering. We see no change of the acoustic

phonon dispersions or of the phonon lifetimes from the HO transition. Calculations of

phonon branch contributions to thermal transport suggest that magnetic excitations

are responsible for the increase in thermal conductivity in the HO phase.

For high T, cuprates, the pseudogap state is not well understood. It is not even

clear if it is a true phase transition or if it is a crossover regime. Recent reports of

circular dichroism at the copper K-edge in double-layer BSCCO suggest breaking of

inversion symmetry in the pseudogap. We perform copper K-edge dichroism measure-

ments on carefully aligned BSCCO. Azimuthal rotations reveal the circular dichroic
signal the result of linear bleed through. Polar rotations suggest that the previous

reports were likely caused by misalignment.

Thesis Supervisor: Young S. Lee

Title: Associate Professor
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Chapter 1

Introduction

The interaction of many particles can lead to spectacular new phases of matter whose

properties and collective excitations bear little resemblance to the individual particles

and interactions. Understanding how the macroscopic state transforms from one

phase to another provides key insights into the underlying physics. In the most

general case of a phase transition, a high temperature disordered state has a high

symmetry, which provides for high entropy to minimize the free energy. Upon lowering

the temperature below a critical temperature Te, the system enters an ordered phase

with lower symmetry.

In addition to the broken symmetry, the new phase can be characterized by an

order parameter. Along the coexistence line in phase space, by definition, more than

one phase can occur in equilibrium. The order parameter is the thermodynamic func-

tion that is different between the phases. In the ordered phase, the order parameter

has a non-zero correlation function of the order parameter:

lim (At(O)A(r)) 0 (1.1)

which is satisfied for (A(r)) = 0

As an example, let's consider the transition from a paramagnetic to ferromagnetic

phases. The Hamiltonian for a three dimensional ferromagnetic Heisenberg system
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can be described with the Hamiltonian:

W = j E si - Sj (1.2)
(i~j)

where J < 0 and (i, j) denotes nearest-neighbor lattice site pairing. At high tem-

perature, the spin orientations will be pointing in any direction and have (S(r)) = 0

and thus possess three-dimensional rotational symmetry. Above the Curie tempera-

ture, T, regions of the material can have correlations over finite regions and for which

(S(r)) # 0. Below the Tc, these correlations extend across the entire sample and

the spins have a non-zero expectation, (S(r)) # 0 and become spontaneously aligned

in a specific direction, thereby breaking rotational symmetry. The magnetization,

M oc (S(r)) is the order parameter for a ferromagnet.

In condensed matter physics, the interactions between the multiple degrees of free-

dom in a material lead to a rich array of ordered states. A complete understanding

of these states requires understanding broken symmetries and the order parameter.

In this thesis, we investigate two unusual states whose complete description remains

unknown: the Hidden Order state of URu 2 Si2 and the pseudogap state of the under-

doped cuprates.

URu 2 Si 2 is a heavy-fermion compound that heavily studied since the foundational

work in the mid-1980s. At low temperatures, it undergoes two transitions at To =

17.5 K into the Hidden Order (HO) phase, and a superconducting transition at T, =

1.4K. Despite three decades of work, the nature of the HO remains a mystery.

Several different experimental have shown strong evidence that the HO phase

couples strongly to the lattice. Some diffraction data have shown that for small,

extremely clean samples with high RRR, the crystal structure undergoes and or-

thorhombic distortion in the HO phase.[102] Such a transition breaks C4 rotational

symmetry. Thermal conductivity in all crystallographic directions sharply increases

upon entering the HO phase. The electronic contributions can be estimated through

application of the Wiedemann-Franz law and Hall measurements. This reveals that

the charge carriers contribute only a small fraction of the total thermal conductiv-
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ity. Thus, the change in thermal conductivity is thought to be driven by the lattice.

These lattice excitations are phonons, which must then couple strongly to the Hidden

Order. [92, 41

In this work, we attempt to directly measure the affect of the Hidden Order on

the lattice. Inelastic scattering is the ideal probe to study bulk excitations. The

vast majority of previous scattering work has focused on the magnetic excitations.

Previous work on the phonons have been attempted using inelastic neutron scattering,

but the magnetic scattering obfuscates the phonon signal. For this reason, inelastic

x-ray scattering provide a clean signal of phonon energy and lineshape. This data can

then be analyzed to determine directly how the lattice dynamics couple to the HO

phase. Additionally, we performed high-resolution diffraction to confirm the reported

orthorhombic distortion.

The pseudogap phase of underdoped cuprates has been identified as central piece

to the puzzle of high-Te superconductivity. There has been a long debate about

whether or not the pseudogap is a crossover or a distinct phase. A largely overlooked

report in 2006 claimed to measure x-ray natural circular dichroism (XNCD) at the

copper K-edge in the pseudogap of double layer BSCCO.[541 Such a signal requires

the breaking of inversion symmetry, the origin of which has been proposed as an

electronic chiral order.[74]

Dichroism is simply a polarization dependent absorption. Circular dichroism

has been measured since 1848 when Louis Pasteur showed that a solution of chi-

ral molecules, all with the same handedness, rotate the polarization of linear light. A

rotation was seen even when the molecules were randomly oriented. This rotation is

due to the fact that the eigenmodes of propagation for chiral molecules are circular

light, which have different absorption coefficients depending on handedness.

Circular dichroism is a result of the chirality or angular momentum of the light

interacting with the material as both quantities depend on the handedness of the light.

When the interaction is dependent upon the angular momentum, this is referred to

as Magnetic Circular Dichroism. This effect can be clearly understood in the dipole

limit, in which the the electric field is approximately constant over distance of the

17



interaction. For such an interaction, the electric field then rotates in time and is thus

the effect is odd under time-reversal symmetry.

Alternatively, the interaction can depend on the chirality of the light, in which

case it is dependent upon the rotation of the electric field in space. This effect is

called Natural Circular Dichroism and is even under time-reversal symmetry but odd

under chiral or inversion symmetry. Such an interaction requires multipole terms

beyond the electric dipole term and so in the x-ray regime is significantly weaker

than magnetic circular dichroism.

With recent developments in synchrotrons and optics, dichroism measurements

with x-rays are now possible. By tuning the energy to an edge of a specific element,

absorption is dominated by atomic-like transitions. Because the initial state is a core

state, the excitation is localized and element specific. This allows dichroism to be an

excellent new bulk probe the local symmetry of specific elements in a crystal.

The rest of this thesis is organized as follows. Chapter 2 provides a more expansive

overview into the theories and phenomenology of URu 2 Si2 . In Chapter 3, we present

our experimental x-ray scattering measurements: diffraction data to measure the

crystal structure and inelastic scattering to study the lattice dynamics. Chapter 4 is

a more formal discussion of x-ray dichroism with an emphasis on XNCD. In Chapter 5,

we present out dichroism study on double layer BSCCO and make general conclusions

on sources of error and data misinterpretation of this novel technique.

18



Chapter 2

The Mysterious Case of URu 2Si 2

2.1 Heavy Fermion Physics

Intermatallic compounds containing 4f or 5f electron elements display a vast array of

interesting and unconventional properties. The starting point for understanding many

of these properties is the Kondo lattice model, which expands the Kondo problem of

single magnetic impurities to a full lattice. For high temperatures, the f electrons

are localized and the system can be thought of as an ordinary metal plus a set of

independent localized spins. The magnetic susceptibility follows typical Curie-Weiss

behavior. At temperatures below a critical temperature T*, the f electrons increas-

ingly become delocalized and hybridize with the conduction bands, which quench

the local moments. These itinerant electrons form a band with an extremely heavy

effective mass and the thermodynamic and transport properties are described by

Fermi-liquid theory with heavy quasi-particles. For example, the electronic specific

heat coefficient - is given by

= 3 D(CF) (2.1)

where D(EF) is the density of states at the Fermi energy EF- Because of the heavy band

mass, the density of states is typically quite high. Similarly, at low temperatures, the

magnetic susceptibility deviates from Curie-Weiss behavior as the f electrons become

19



itinerant. Instead, the susceptibility is dominated by Pauli paramagnetism:

XPauli = 2D(EF) (2.2)

Thus for prototypical heavy fermion materials, the Wilson ratio is still close to unity,

as Fermi-liquid theory predicts.

For a single magnetic impurity, the quenched magnetic moment affects resistivity

by creating a strong elastic scattering potential, which gives rise to an increasing

resistivity at low temperatures and a characteristic resistivity minimum around the

temperature at which the quenching occurs. When the same process happens in a

heavy fermion material, the strong scattering at each lattice site develops coherence,

and the resistivity drops at low-temperatures.

These three affects are hall marks of heavy fermion physics. There are many

excellent reviews of the wealth of research in this field, in particular, Piers Coleman's

"Heavy Fermions: electrons at the edge of magnetism." [19]

2.2 Thermodynamic properties of URu 2 Si2

The unusual heavy-fermion superconductor was discovered 30 years ago[78, 77, 63].

The crystal is body centered tetragonal, (space group 14/mmm) with lattice constants

are a = 4.1283 and c = 9.5742. The initial work by Palstra et. al reported two

transitions in URu 2 Si2 based on peaks in the heat capacity, as shown in Fig. 2-1[77].

The peak at ~1K is a superconducting transition. The second transition at 17.5K

into the Hidden Order originally thought to be antiferromagnetic. Later work fit

the electronic component of the specific heat to a C oc exp(-6/kBT) resulted in

concluding that a gap of 11meV opened across approximately 40% of Fermi surface

below 17.5K.[63]

The magnetic susceptibility is shown in Fig. 2-2. At high temperature, it shows

an Ising-like magnetic signal that follows Curie-Weiss behavior until about 150K. The

susceptibility is peaked at ~ 60K, which is indicates the coherence temperature for

20
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Figure 2-1: Specific heat of URu 2 Si2 . The top panel shows C/T versus T2 . The

straight line fit's slope gives phonon contribution to C while the intercept extracts -y,
the electronic contribution. A high gamma is the signature of heavy fermion physics.

In the bottom panel, both the HO and superconducting transitions are apparent as

peaks in the specific heat.[77
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Figure 2-2: Magnetic susceptibility of URu 2 Si 2 . The linear fit to 1/x shows Curie-

Weiss behavior. Deviations begin around 150K. The anisotropy shows Ising like

behavior. [77]

the formation of the heavy Fermi liquid.

2.3 Transport measurements

Resistivity measurements, as shown in Fig. 2-3 show a dramatic downturn around

70K, which is associated with the hybridization of the f electrons of heavy fermion

physics. The resistivity then increases at 17.5K followed by a decrease that is well

by modeling an energy gap with additional Fermi-liquid behavior. These gaps are

estimate to be 90 meV and 68 meV along the c and a axes respectively, which is a

rough agreement with specific heat measurements. [781

Ultrasound measurements show a softening of the C and the (C11 - C12)/2

modes below ~70K[1091. Comparison with with ultrasound data on ThRu 2 Si2 suggest

that the (C11 - C12)/2 mode softening is driven by coupling to electronic degrees of

freedom.[111] Careful temperature and magnetic field dependencies suggest that this

mode couples to electronic changes of the HO phase. This mode is also associated

with an orthorhombic strain field and so causes a lattice instability, which is possibly

related to symmetry breaking electron band instability due to hybridization of the

localized f electrons with the conduction electrons.[113, 110, 1121

Thermal transport measurements show a jump in thermal conductivity in all di-

rections upon entering the HO phase.[4, 92] The electronic contributions to thermal
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Figure 2-3: Resistivity of URu 2Si2 . The top panel shows a maximum in resistivity

around 70K, which is the temperature associated with coherence of the hybridization

of the f electrons. At the HO transition, labeled TN in the lower panel, the jump in

resistivity is thought to come from restructuring of the Fermi surface.

conductivity are analyzed via the Hall effect and the application of the Weidemann-

Franz law. The HO affect on electronic thermal conductivity consists of two coun-

tervailing effects: a reduction of charge carriers due to Fermi surface reconstruction

and a drastic decrease in scattering rate. Both of these effects are corroborated

through measurements of Nernst and Seebeck coefficients. [5, 84] After accounting for

the change in electronic thermal conductivity, there is still significant unexplained

increase. Both Behnia et al. and Sharma et al. conclude that this increase is the

result of lattice contribution. [4, 92]
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2.4 Scattering Experiments

Early neutron scattering measurements show weak antiferromagnetic peaks though

they were not long-range ordered[13]. Later experiments showed sample variation of

the magnetic moment. Additionally, the entropy forming at To, S = fo(6C)/TdT is

approximately 0.2kB ln 2 per formula unit, which if from magnetic ordering, would

require a much larger contribution than has ever been seen measured in neutron

scattering.

The application of 0.5GPa of pressure leads to an increase of the antiferromagnetic

intensity at the Qo = (1,0,0). The corresponding ordered moment along the c-axis was

O. 4PB leading to this phase to be referred to as the Large Moment Antiferromagnet

(LMAF) phase.[2]. This ordered phase reduces the symmetry of the cell to simple

tetragonal. Follow up Larmour diffraction and careful pressure studies led to the

conclusion that measured antiferromagnetic moment in the HO phase is in fact due

to puddles of LMAF induced by local stress fields.[73, 10] This is consistent with the

sensitivity of sample quality on various measured bulk quantities of the HO phase.[22]

It is still unclear whether the measured moment in the HO phase is entirely due to

this parasitic moment, or if there is an intrinsic moment. Recently, considerable effort

has been devoted to determining a lower bound for an in-plane moment.[23, 87]

Since the initial work, several neutron scattering studies have been performed[13,

105, 106, 104, 49, 107, 85, 9, 121. Below To, there are two distinct gapped longitudinal

modes. One with a gap of 1.9 meV is at the commensurate position Qo = (0,0,1),

which is equivalent to (1,0,0) due to the body centered unit cell. The second gap of

4.5 meV is at the incommensurate position of Q, = (1 0.4,0,0). These modes are

longitudinal spin fluctuations, unlike traditional antiferromagnetic low-energy spin

fluctuation.

Above To, the commensurate excitation becomes overdamped and possibly gapless.

This is a possible explanation for the large source of entropy change from the HO

transition.[106] The incommensurate excitation remains gapped above To, but also

becomes overdamped.[11]

24



Significantly less scattering work has been done on phonon excitations. Partly

this is due to the difficulty of separating magnetic from lattice scattering mechanisms.

There is no evidence of changes to the acoustic branches as a function of temperature

though there is perhaps some slight softening of an optic branch. There is no analysis

of phonon widths.[15, 11]

2.5 Symmetry breaking

Torque magnetometry measurements have recently been taken as a function of the

azimuthal angle 0 of the in-plane applied magnetic field. For tetragonal crystal sym-

metry, as well as mirror symmetries present in the 14/mmm space group, Xaa = Xbb

and Xab = 0. This mandates that the decomposition of the torque signal should have

no contribution that shows less than 4-fold rotational symmetry. However, below To,

they measured a 2-fold component, which would require a reduction of symmetry in-

cluding C4 rotational symmetry breaking proposed to be from an electronic nematic

order. This has only been seen on some small crystals (- 50x50x0pm), possibly due

to domains existing in larger samples which provide a signal that averages to zero. [751

Since then, some NMR data have been interpreted to support two-fold anisotropy[501,

which has been refuted by other studies.[69]

Most recently, an x-ray diffraction study revealed an orthorhombic lattice distor-

tion. This is seen as the (880) Bragg peak splitting into two different domains. This

affect has only been seen on ultra clean samples with RRR ~670.[1021 Other studies

since on samples with lower RRR have not seen such a distortion. [971

2.6 Fermi surface measurements

Beyond the indirect evidence of Fermi surface reconstruction, direct measurements

through quantum oscillations, ARPES, and STM/STS have been taken. Shubnikov-

de Haas measurements as a function of pressure show no significant change when the

application of pressure induces a phase transition into the LMAF state. This suggests
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that the symmetry of the HO state must be reduced to simple tetragonal.[39] This

conclusion is also supported by ARPES data which show a heavy band drop below

the Fermi surface in the HO state [89] and a restructuring that follows from a folding

over Qo=(001). This also matches DFT calculations of the Fermi surface.[29]

STM/STS show an asymmetric Fano-like lineshape, which is typical for Kondo

resonances.[62] They see heavy fermion bands forming well above To. Below To,

STS measures a partial energy gap emerge.[90, 3] Point contact spectroscopy (PCS)

measurements, however, see the onset of the gap at higher temperatures (-27 K),

suggestive that the STS measurements are dominated by surface physics.[81, 80]

Cyclotron resonance data show an unexpected splitting of the main Fermi surface

hole pocket upon rotating the plane of the magnetic field in the plane. This is

interpreted as measuring two different domains with mass anisotropy along the (110)

and (110) directions. This is consistent with a nematic Fermi liquid state and the

breaking of C4 symmetry.[100, 101]

2.7 Proposed theoretical models

Table 2.1: List of some proposed theories to explain HO phenomena.

In the 30 years of study, a wide range of theoretical models have been proposed

to explain the HO phase. These theories can roughly be divided into those that treat

the f electrons as localize and those that treat them as itinerant. A whole class

of theoretical models lead to higher rank multipole orders. Itinerant theories have
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Theory References
Multipole order [48, 53, 56, 40, 21]
Incommensurate orbital AFM [18]
Modulated spin liquid [83]
Hastatic order [16, 17, 31]
SDW coupled to induced local moments [681
Helicity order [103]
Chiral density wave [55]
Hybridization wave [28]



proposed numerous unconventional density waves and modulations.

Table 2.1 provides a small subset of the proposed theories to explain the Hid-

den Order phenomena. Readers who are interested in a more comprehensive back-

ground are recommended two excellent review articles by J.A. Mydosh and P.M.

Oppeneer.[70, 71]
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Chapter 3

Scattering Studies on the Hidden

Order Phase of URu2Si2

Scattering is an extremely powerful bulk probe. Elastic scattering measures static

ordering while inelastic scattering measures excitations. There are numerous excel-

lent references on the details of scattering, though with a stronger focus on neutron

scattering.[93, 60, 94]. Here, we present x-ray scattering. Unlike neutrons, which

interact with matter via the strong interaction, x-rays interact primarily via the

Coulomb force. As a result, atomic structure factor for x-rays is proportional to the

number of electrons. Thus; x-ray scattering preferentially sees heavy elements while

the neutron scattering cross-section varies in a less systematic way across the periodic

table.

In this chapter, we present first elastic scattering measurements on URu 2 Si2 to in-

vestigate the crystal structure. Second, we present inelastic scattering measurements

of the acoustic phonon excitations.

3.1 Diffraction studies

The crystal symmetry of URu 2 Si 2 remains an open question. The high temperature

phase is is found to be body centered tetragonal of the ThCr 2 Si2 structure (Space

Group 14/mmm) with a = 4.1283 A and c = 9.5742 A[13] as shown in Fig 3-1 (A).
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Figure 3-1: Structure of URu 2 Si2 . (A) The

and c = 9.5742 A. (B) The ordering pattern
when in the antiferromagnetic phase.

tetragonal unit cell, with a = 4.1283 A
of magnetic movements on the U atoms

Under the application of 0.5 GPa, the crystal antiferromagnetically orders, with a

moment of O. 4 1B per Uranium atom. The antiferromagnetic order, shown in Fig 3-1

(B) doubles the primitive cell to a simple tetragonal.

Quantum oscillation measurements show negligible changes upon crossing from

the hidden order into the antiferromagnetic phase via application of hydrostatic pres-

sure. This suggest that the electronic structure of the hidden order phase must have

the same symmetry as the antiferromagnetic phase[39, 38]. Furthermore, ARPES

measurements from show a Fermi surface restructuring that is consistent with a zone

folding along Qo = (001), which is the antiferromagnetic wave vector[67l. Such a

zone folding is necessitated when the symmetry is reduced to simple tetragonal as

such a doubling of the unit cell halves the Brillouin zone This makes Q=(001) a

good zone center instead of a zone edge. Theoretical calculations of the energy bands

match the experimental evidence when modeling the hidden order phase as simple

tetragonal[29, 76].

More recently, Okazaki et al. performed torque magentometry measurements
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to probe x, the magnetic susceptibility tensor. By applying the magnetic field in

the a-b plane and measuring the toque along the c-axis, they measure the in-plane

components of the susceptibility. An azimuthal (0) rotation can test the rotational

symmetry. Below To, the azimuthal dependence includes components that are peri-

odic in 2#, consistent with a non-trivial Xab. C4 symmetry precludes such a signal,

and therefore, Okazaki et al. conclude that the hidden order phase must break C4

symmetry as an "electronic nematic" phase. These results were only seen in small

(--50pm x 50gm x 10pm), which is associated with domain effects[751.

Tonegawa et al. used cyclotron resonance to measure the angle-dependent electron

mass of the main Fermi surface sheet. The discovered a splitting of a sharp resonance

when the magnetic field is rotated in the a-b plane. They conclude that this splitting

is the result of simultaneously measuring two domains, consistent with the nematic

picture proposed by Okazaki[100l.

Most recently, Tonegawa et al. performed x-ray diffraction. They measure lattice

symmetry breaking in which the C4 tetragonal symmetry is reduced to C2 orthorhom-

bic. This was only seen on few samples with high residual resistivity ratio (RRR.)

The reasoning for this dependence is unclear[102. Follow-up diffraction on low RR

samples did not see an orthorhombic distortion971.

Thus it is still unclear the symmetry of the crystal and the electronic structure

in the hidden order phase. We attempted to measure the crystal structure via x-ray

diffraction to further the investigation into the HO crystal structure.

3.1.1 Details on Orthorhombic distortion

An orthorhombic distortion typically occurs via a small rotation a of one of the

tetragonal axis such that aet and btd are no longer perpendicular. This rotation can

occur in four distinct ways, as shown in Fig. 3-2 (A). The new orthorhombic axes

can be defined as aartho = atet - btet and bartho = atet + btet. These new vectors have

length vr2a(1 &)

This leads to a doubling of the conventional unit cell. It is important to note,

however, that such a distortion does not affect the size of the primitive cell to first
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order in a and therefore the Brillouin zone. A simple tetragonal cell undergoing such a

distortion would become a base-centered orthorhombic cell Bravais lattice. This new

unit cell has twice the volume, but also twice the number of lattice points. Similarly,

a body-centered tetragonal unit cell under a distortion would have a face-centered

orthorhombic cell Bravais lattice. The number of lattice points per cell doubles from

two to four. This is distinct from orthorhombic distortions in other systems.

An alternative manner of breaking C4 symmetry would be if the tetragonal axes

distorted such that atet # btet. This type of orthorhombic distortion leads to two

domain possibilities, shown in Fig. 3-3. This distortion would preserve the mirror

symmetry parallel to the a and b axes. Such mirror plane require Xab = 0, and so this

type of distortion is not expected. The resulting diffraction pattern from domains of

this type of distortion is distinct from the previous pattern and so a careful diffraction

experiment can determine the nature of any distortion. Kernavanois looked for such

a distortion and found no evidence for one.[52]

3.1.2 Experimental Method

The diffraction experiment was carried out at the National Synchrotron Light Source

at Brookhaven National Laboratory on beamline X21. The characteristics of this

diffractometer are shown in Table 3.1.

Energy Range 6 - 16 keV
Monochromater Si(111) or Ge(111)
Resolution (E) 2 * 0-

Flux 2 * 1012 ph/sec
Spot Size l xi1 mm2

Total Angular Acceptance 1 mrad

Table 3.1: X21 Beamline Characteristics

The four-circle diffractometer has a Eularian cradle, as shown in Fig. 3-4, which

provides 0, x, and < angular degrees of freedom. The fourth circle is the 20 arm,

which creates a vertical scattering plane. As the incident x-rays are linearly polarized

with E horizontal, this creates a polarized diffraction, which maximizes intensity at
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Figure 3-2: An orthorhombic distortion occurring via a rotation of the tetragonal axes.

The new orthorhombic unit vectors are aortho = atet - btet and b"'tho = atet + btet.

They have length V2a(1 t a). (A) The distortion can occur in four distinct ways,

leading to possible twining. (B) A reciprocal space map of in plane nuclear Bragg

peaks. Each of the four distortion leads to slightly different diffraction pattern.
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Figure 3-3: An orthorhombic distortion occurring via a stretching/compression of

the tetragonal axes. (A) The distortion can occur in two distinct ways, leading to

possible twining. (B) A reciprocal space map of in plane nuclear Bragg peaks. Each

of the two distortion leads to slightly different diffraction pattern.
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Figure 3-4: Eulerian cradle showing the 0, x, and # rotational degrees of freedom.

all scattering angles.

Successful diffraction experiments require very precise alignment. To ensure the

x-ray beam went through the center of rotation of the goniometer, we mounted a small

pin in the Eulerian cradle. Using a specially mounted scope, we manually rotated the

X and # to align the tip of the pin at the center of rotation. We then moved the table

vertically to put the center coincident with the beam. This was determined manually

using x-ray sensitive photographic paper. We then scanned 20 motor rotation to

determine the zero. Note that the rotations on the Eulerian cradle do not have a

uniquely defined zero position.

Diffraction experiments are significantly better in determining differences in the

magnitude of Q. This is both from resolution of the diffractometers and quality of

sample issues. It is fairly common for crystal samples to have a non-trivial mosaic,

which blurs out any small splitting of Bragg peaks from different domains at the same

JQI. Therefore, if the distortion is of the type in Fig. 3-2, (HHO) Bragg peaks will
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split into different IQ 1. If the distortion is of the type in Fig. 3-3, the splitting in Q I
will be seen at (HOO) Bragg peaks.

As we anticipated seeing an orthorhombic distortion of the type in Fig. 3-2, we

mounted the crystal in a Displex such that (HHL) was in the scattering plane. The

crystal was ~ 1mm x 1mm x 100pm, with the thin direction normal to the c axis.

In this orientation, the (OOL) peaks were in reflection,while the (HHO) peaks were in

transmission geometry. We verified that the sample was in the center of the beam (and

therefore the center of rotation) by vertically moving the Displex until photographs

revealed that the sample cut the x-ray beam in half.

To determine the optimal design for the experiment, we note that diffraction at

higher angle 20 has better resolution. When the resolution is dominated by the

angular acceptance, Bragg's law for diffraction yields:

Q = 2ksinO (3.1)

- Q = tan OAO (3.2)
Q

Note that this is the diffraction angle 0, not the rotation angle 0. We therefore

want to measure at as high in angle as possible. With E = 8.58keV, we could measure

the (440) Bragg peak at 163.5 degrees 20, which was near the maximum possible in

the diffractometer.

To increase our energy resolution, we used a silicon single crystal monochromator.

The crystal was polished along the (111) face. Because of geometric constraints of

the analyzer 20 arm, we used the (444) Bragg peak.

All data was collected by scanning the various motors of the diffractometer. Scans

of the 0, x, and # motors probe diffraction at the same 1Q. The y and 0 motor

rotations change the crystal axes that define the scattering plane. This means that

a rotation of these two motors typically does not change the satisfaction of Bragg's

Law: if the diffraction condition is satisfied, a rotation of x and # maintains that

diffraction peak. The result, however, will be a diffraction peak at a different position
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in real space. For this reason, resolution of these motors is determined purely by the

geometrics of the diffractometer and is extremely poor.

A the 0 rotation moves about Q within the defined scattering plane. Each Bragg

diffraction peak occurs only at a specific location of 0. A scan along 0 gives a convo-

lution of the intrinsic resolution of the diffractometer with the mosaic of the crystal.

Because of this coupling to the mosaic, such a scan is not the most sensitive to

distortions.

A 0-20 scan measures different values of Q1 in the same direction in reciprocal

space. This results in a convolution of the intrinsic resolution of the diffractome-

ter with the distribution of lattice parameters of the crystal. Because the lattice

parameters of a single crystal only varies as the result of strain, the distribution is

small. Thus a 0-20 scan is the most sensitive to a distortion. For a distortion as in

Fig. 3-2, a 0-20 scan at an (HHO) Bragg peak would see peaks from Type I and III

orthorhombicity at a different point that Type II and IV.

3.1.3 Data and Analysis

The lattice parameters change slightly as a function of temperature. The HO transi-

tion is also associated with a change in lattice parameters. As a result, having correct

alignment of the sample changes with temperature.

For this reason, two datasets were collected using two slightly different meth-

ods.The first data set includes a realignment at each temperature. This was done by

quickly performing a 0-20 scan and moving the the 20 value at the maximum inten-

sity. Then we moved the 0 motor to the value at the maximum intensity of a quick

0 scan. In the second set of data, the alignment done at T = 22K was used for all

temperatures. In both datasets, scans were taken first at low temperature and then

sequentially raising the temperature of the sample.

The first method provides better alignment for all the data and so should in

principle reduce the errors associated with misalignment. The slight rotations between

scans, however, can induce slight errors from changes in background scattering and

from slightly changing the parts of the sample illuminated by the x-rays. The second
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set of data reduces these sorts of errors.

The raw data with fits from the first dataset are shown in Fig. 3-5. The second

dataset with fits are shown in Fig. 3-6. The error bars are from Poisson counting

statistics. In both cases, there are two immediately obvious trends. First, there is a

gradual diminishment of the peak intensity as temperature increased. Second, there

is a hump-like feature on the right-hand (high-angle) side of the scans that becomes

more noticeable at higher temperature.

In order to assess the importance of these trends we fit the data and analyze the

fit parameters. The functional form used for the fit the diffraction intensity is

1(20) =Amain 2 w + (3.3)m (i 7r(W2 + 4(20 - 20,max)2))

Asmaii 2 2WsmaI 2 )2)
7~smalluma + 4(20 - 20smau ll

The first term is a Lorentzian to fit the primary peak. A Lorentzian is used purely

as a phenomenological good fit. The free parameters are Amain, W, 2 0rmax which are

the integrated intensity, full width at half maximum, and position of the maximum

intensity respectively. The second term is a Lorentzian to fit the intensity from the

smaller, hump-like feature. Here, the only free parameter is Asmaji. The parameters

WsmalI and 2 0smaU are fixed for each dataset. They are determined from previous fits

with them as free parameters. By reducing the parameter space in this way, the final

fits reveal more clearly the information we are after. Namely, any changes to the

width of the primary peak, changing intensity to the hump feature, and changing

intensity of the primary peak.

The green curve in Figs. 3-5 and 3-6 are the full fit from Eq. 3.3. The red curve

is only the first term in Eq. 3.3, which is the primary peak. The gap between these

curves provides a visual representation of the amplitude of the hump feature.

The integrated intensity of the main peak is shown in Fig. 3-7 (A). The intensity

increases at lower temperature. An orthorhombic distortion should not reduce the

total scattering intensity. It is possible that the result of peak splitting from twinning

would reduce the measured intensity of a single 0-20 as some of the domains would
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Figure 3-5: 0-20 diffraction data taken with realignment at each temperature. Fits

are discussed in the text
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Figure 3-6: 0-20 diffraction data taken without realignment at each temperature. Fits

are discussed in the text
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diffraction peak. (B) Integrated intensity of the hump feature. (C) Position of the

maximum intensity. (D) Full width at half maximum of the main peak. The red

vertical line shows the temperature of the HO transition.
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be poorly aligned. This is the opposite of what our data show.

Experimentally, we noticed that the intensity was not particularly reproducible

as a function of time. As the experiment went on, returning to the same Q position

could result in different measured intensity. It is our belief that the primary source of

changing intensity is not coming intrinsically from the sample, but instead the result

of instabilities of the beam line.

The integrated intensity of the small, hump-like peak is shown in Fig. 3-7 (B). In

the dataset in which the sample was realigned in each scan, the feature goes almost

to zero around the HO transition. That this effect is not seen in the data taken

without realignment suggests that this is also not an inherent feature of the HO

state. Additionally, the trend of a disappearing peak in the HO phase is also opposite

of what would be seen with an orthorhombic distortion.

Fig. 3-7 (C) shows the changing peak maximum. This trend is consistent with

changing lattice parameters as a function of temperature. The kink seen right at the

HO transition is as expected from thermal expansion[25].

Finally, the FWHM of the primary peak is shown in Fig. 3-7 (D). Under a small

orthorhombic distortion, two distinct peaks might not be resolvable. This instead

would appear as an increased width. Our data shows no change of the width as a

function of temperature.

Tonegawa et al. introduce a dimensionless orthorhombicity parameter 6 = bortho-aorth -
bortho+aortho

sin 1 - tf where arthe and bc-rth, are the orthorhombic lattice constants and 201,2 are

the maximum location of two diffraction peaks resulting from twinning. They claim

to see an distortion with 6 - 7 * 10-5.

In order to place bounds on minimal amount of orthorhombicity for which mea-

surements would be sensitive, we note that the data are the convolution between the

instrumental resolution and the underlying distribution of lattice parameters. Make

the following theee assumption:

1. The orthorhombicity is zero above the hidden order transition

2. All four possible orthorhombic domains are roughly equally populated
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The first assumption is necessary to determine the resulting width from the convolu-

tion of resolution and lattice parameters. It is well justified if there is any breaking

of symmetry upon entering the HO phase. The second assumption is not strictly

required, but used in the calculations for ease. Additionally, it is well supported

by the toque magnetometry work, which estimates domains to be on the order of

50 x 50 x 10pm, which is much less than the beam size of 1x1mm 2 [751.

Using these assumptions, we can calculate how orthombic distortions of different

sizes should affect our measurements. A distortion of 6 - 6 * 10- 5 should produce an

measured FWHM of 0.27, which is significantly more than we ever measured. Thus,

we can place an upper bound of any distortion in our measurements at 6 ~ 6 * 10 5 .

Tonegawa et al. see orthorhombicity only on samples with extremely high residual

resistivity ratio (RRR), which is the ratio p(T.300K) Our sample has an RRR of ~ 20,

which is significantly worse than the ~ 670 for the sample in which they saw the

orthorhombicity and comparable to work in which no distortion was measured.[97

Thus, our work does not contradict previous diffraction.

3.2 Inelastic X-ray scattering

Experimental work on thermal transport and thermal expansion of URu 2 Si2 suggest

that crystal lattice couples strongly to the Hidden Order phase. The majority of

previous inelastic scattering data has used neutrons and focused on the magnetic

excitations. This work attempts to directly measure the lattice degrees of freedom

(phonons). X-rays provide a unique probe in that it is primarily sensitive to the

electron cloud in the atomic cores. It is thus strongly sensitive to lattice excitations

but not magnetic excitations.

This challenge of taking such measurements with photons is that it require simul-

taneously the momentum and energy change of - 1 A- and ~ 1 meV, the orders

of magnitude for a phonon. Photons with the requisite momentum are x-rays with

energy ~ 10 keV. Thus energy resolution must be -_ 10-7 in order to measureE

phonon excitations.
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3.2.1 Details of the HERIX Spectrometer

These measurements were carried out at Advanced Photon Source (APS) at Argonne

National Laboratory. The APS a third generation synchrotron. Electrons are pro-

duced from a cathode and accelerated to 450 MeV in a linear accelerator. They then

are injected into the booster synchrotron, where electric fields in four radio frequency

cavities accelerate the electrons to 7 GeV. These electrons are injected into the stor-

age ring, which is 1104 meters in circumference and has 40 straight sections, referred

to as sectors. One of these sectors is used for the injection of electrons. Four are are

dedicated to replenishing the energy lost from x-ray emission via 16 radio frequency

accelerating cavities. The remaining 35 of these sections are optimized for insertion

devices.

Most of the insertion devices are undulatory. These are arrays of permanent mag-

netics, typically vertically oriented with alternating polarity. As the electron beam

passes through, the undulating magnetic field of the array causes the trajectory to

oscillate in the horizontal plane. The resulting radiation cones overlap in constructive

interference, creating a highly collimated and spectrally narrow x-ray beam.

Our measurements were taken on the HERIX spectrometer at Sector 30. The

parameters of this spectrometer are shown in Table 3.2. The critical feature of this

spectrometer is the remarkable energy resolution. This is accomplished through a

series of monochromators. Each monochromator consists of a pair of crystals, which

provide non-dispersive energy selection. In order to achieve the best possible energy

resolution, the temperature of each crystal must be tightly controlled in order to

obtain as small as possible variation in lattice parameters.

The beam entering the station has a FWHM of 10 keV with an incident flux

of 2 * 1013 photons/sec. The first monochromator is the High Heat Load (HHL)

monochromator, which uses the diamond (111) reflection. After leaving the HHL,

the beam has a FWHM of ~ 1.6 eV. Because of the intense flux, considerable heat

is transferred to these crystals. Diamond is used for its low thermal expansion. The

High Heat Load monochromator is water cooled.
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Incident Energy 23.7 keV

Energy Resolution 1.5 meV

Momentum Resolution 0.065 A-'
Energy Transfer Range -200 - 200 meV

Momentum Transfer Range 0 - 7.5 A-'

Flux 2*109 photons/sec

Beam Size 351Lm x 10pm
Number of Detectors 9

Table 3.2: Characteristics of the HERIX spectrometer

Figure 3-8: Schematic of the high resolution monochromator. Each monochromator

crystal is asymmetrically cut. The middle pair does the bulk of the energy dis-

crimination and is carefully maintained at 123K. The other two pairs are at room

temperature.

The crown jewel of the monochromation is the high resolution monochromator

(HRM), which was designed by Toellner.[981 The HRM consists of three pairs of

silicon crystals asymmetrically cut. This is shown schematically in Fig. 3-8. The

majority of the energy discrimination is performed by the middle pair. The two

monochromatic crystals were formed from opposing surfaces from a cut in a monolithic

piece of silicon crystal so they have reciprocal asymmetry parameters. By choosing

appropriate asymmetry parameters, the the energy acceptance bandwidth is smaller

than the intrinsic bandwidth of the Bragg reflection.

Because slight shifts in temperature affect lattice parameters, the second pair of

monochromator crystals must be carefully maintained at 123 K. This is accomplished

with a specially designed cryostat in which helium gas is pumped through a heat

exchanger immersed in liquid nitrogen. Pulsation dampeners reduce the vibrations

from the helium pump.

45



Figure 3-9: Photo of one of the nine analyzers. Each analyzer is curved to increase

the angular acceptance. The inset is an enlargement to show an individual pixel.

The analyzers are made of silicon and are designed for backscattering of 21.724 keV

photons off the (12 12 12) Bragg reflection

High energy resolution from the monochromator is only half of the challenge. The

scattered beam travels down a down a nine meter long arm at the end of which are

nine analyzers. The analyzers must not only provide excellent energy resolution, but

there must also be a wide angular acceptance in order to have sufficient intensity. The

analyzer are therefore curved. This required using a two-dimensional bender. The

analyzer were designed and made by Ayman Said. An analyzer is shown in Fig. 3-9.

The analyzer is made of silicon. It is designed such that 21.724 keV photons are

backscattered of the (12 12 12) Bragg reflection and travel back down the arm to

CdTe solid state detectors. The detectors are only 3.5mm below the direct beam.

This backscattering approaches the 180 degree limit, which maximizes the energy

resolution. A schematic of the whole system is shown in Fig. 3-10.

The spectrometer runs in fixed final energy. Unlike neutron scatter, since the

change in energy is so small compared to the energy of the x-rays, there is little

distinction in terms of the intensities. Furthermore, since the wave vector also changes

by such a small factor over the course of an energy scan, there is no change in the

goniometer or 20 position and no rotation of the resolution function occurs.

One other key experimental difference from neutron spectrometers is that the

46



High-heat-load
monochromator C (I 1 1)

Bimorph focusing mirror AE~- 1.6 eV

CdTe detector Beam size (V x H)=
15 pm x 35 sm

High-resolution monochromator Be compound

AE = 1.1 meV refractive lens

working at T= 123 K

Si (12 12 12)
analyzer

Figure 3-10: Schematic of the HERIX spectrometer (not to scale). The incident

energy is controlled by the high resolution monochromator. The distance from the

sample to the analyzers is 9090mm. The vertical distance between direct beam and

detectors is 3.5mm.

precise nature of the high resolution monochromator does not have an absolute en-

ergy definition. Each scan must go through the elastic peak and the zero energy

transfer position is determined by fitting. This makes it impossible to take single

measurements at precise energies.

Unlike most diffractometers, the scattering plane is horizontal. The x-rays are

horizontally polarized, so this results in 7r polarized scattering (polarization parallel

to the scattering plane). This reduces the scattering intensity from a- polarization.

But because the experiment is performed at a low value of 20, the loss in intensity is

small. Certainly much small than the loss due to changing the x-ray polarization. A

vertical scattering plane is completely infeasible due to the length of the 20 arm.

3.2.2 Experimental set-up

Inelastic scattering data were taken over two separate one-week experiments. All the

experimental data is from the same URu 2Si2 single crystal on which the diffraction

study was performed. This sample is ~1mm x 1mm x 100pm with the thin direction

parallel to the c axis.The crystal was mounted attached to a copper post with varnish

and placed into a cryostat in a four circle Eulerian goniometer identical to Fig. 3-4.
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The sample is sealed inside the cryostat with two beryllium domes. Beryllium is used

since the small atomic number leads to a very low electron density and therefore small

x-ray scattering cross-section.

The crystal is mounted such that X = 0, the cryostat is vertical and (HOL) is

the scattering plane. A 45 degree rotation of x puts (HHL) in the scattering plane.

Measurements of (HOG) and (HHO) Bragg peaks are in transmission. (OL) peaks are

in reflection.

APS had concerns about safety from the radiation of the uranium atoms in the

sample. To satisfy their concern, we had to create a containment barrier out of

Kapton tape. We were unaware of the need for containment until too close to the

first experiment start time to design a clever containment. For this reason Kapton

was close enough to the center of rotation of the spectrometer to satisfy the geometric

scattering conditions. In the second experiment, a better sample holder was designed

in which the Kapton was as far away from the center of the spectrometer as possible

and still fit within the beryllium dome. A schematic of the sample holders is in

Fig. 3-11

3.2.3 Experimental Resolution

For each experiment, the energy resolution was determined by scanning energy through

a sample of plexiglass. This provides a different line shape than an energy scan

through a Bragg peak. This difference is the result of slight variations in temperature

across the analyzer. The changes in temperature result increase in the distribution of

final energies accepted by the analyzer. A Bragg peak is nearly a delta-function in Q

and therefor results in a beam of x-rays incident on only a small part of the analyzer.

The elastic scattering from the plexiglass varies only slightly with Q, and produces

x-rays that illuminate the entire analyzer crystal. This produces a slightly broader

peak in an energy scan relative to the Bragg peak. This is shown in Fig. 3-12

When measuring inelastic data, the size of the analyzer corresponds to a breadth

of Q measured simultaneously. The energy scan through plexiglass is thus the cor-

rect measure of energy resolution for inelastic data. This does create a non-trivial
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Copper Post

Sample

Kapton film

Figure 3-11: Schematic of containment used to satisfy concerns about radiation.

We used Kapton tape on our sample holders to meet their requirements. The first

experiment used containment as designed on the right. The Kapton tape was close

enough to the center of the spectrometer that scattering from the Kapton satisfied

geometric requirements to reach the analyzers. The second experiment used the design

on the left. Ray tracing showed that the scattering could not satisfy the geometric

constraints.
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Figure 3-12: Comparison of energy scans through the (220) Bragg peak of URu 2 Si2

and plexiglass. Both scans are fit to a Modified Pseudo-Voigt as described in the

text. The Bragg peak is significantly narrow (FWHM ~1.25 meV) than the plexi-

glass (FWHM -1.44 meV.) The plexiglass is a better measure of the intrinsic energy

resolution of the spectrometer as it includes scattering from the entire analyzer. Data

are scaled such that the integrated intensity is equal to unity.
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Figure 3-13: Energy scan on plexiglass. Plexiglass provides a better measure of

the energy resolution than a scan through the Bragg peak. The lines are fits to a

Pseudo-Voigt and a Modified Pseudo-Voigt, as explained in the text. The Modified

Pseudo-Voigt provides a better fit of the tails of the resolution function. The inset

shows the full intensity. Intensity is scaled such that the integrated intensity of the

Modified Pseudo-Voigt line shape is equal to unity.

dependence between the Q and energy components of the resolution function. This

effect is, however, negligibly small.

When fitting to the energy scan data, we first considered a Pseudo-Voigt, which is

a linear combination of a Lorentzian and a Gaussian. This is the line shape commonly

used for resolution functions. It is defined as

g Pseudo-Voigt (W) = +w 42)1 (3.4)

The first term is a Lorentzian and the second is a Gaussian. w is the FWHM and

'q E [0, 1] is the mixing of the two line shapes. This function is normalized such that

the integral from oo is equal to unity.

The Pseudo-Voigt line shape does not well fit the tails of the resolution. For this

reason, we introduce a modified Pseudo-Voigt in which the Lorentzian component is

50

0

II

- 10



raised to the power 2/3

g2 5 - p ) 2/33W

30/3 ]F () W2+ 4 (2N/2 ) -1) X2

1 -7 r n 212 (3.5)

w ir

The first term is the modified Lorentzian. I is the gamma function and is needed

to ensure that w is still the FWHM and the line shape remains normalized to unity.

As shown in Fig. 3-13, this Modified Pseudo-Voigt is a better phenomenological fit

to the tail of the resolution as measured on plexiglass.

Because of slight changes in the instrument, the resolution can change slightly over

time. In particular, replacing the analyzers has a significant affect on the resolution.

For each experimental week, the resolution was measured on plexiglass and fit with the

Modified Pseudo-Voigt. We used these fits as the energy component of the resolution

function for all data taken during that experimental run.

The Q resolution is a result of the divergence of the incident beam combined with

the non-zero acceptance angle. The former comes from the convolution of the diver-

gences from the x-rays out of the undulatory and the monochromators. The latter

comes primarily from the acceptance angle, determined by the size of the analyzer

and the geometric scattering conditions.

We measure the Q resolution by scanning along the longitudinal and two trans-

verse directions through each Bragg peak at which we measured phonons. This is

done by scanning in Q, though such scans are very similar to motor scans. The re-

sult of these scans at the (008) Bragg peak are shown in Fig 3-14. Because of how

the crystal was aligned, the scan along (OKO) is functionally changing the scattering

plane. Thus, the x-rays continue to be Bragg scattered, but in a different direction.

Scanning along (HOO) is very close to a theta scan and is thus much sharper.

We fit each resolution scan to a pseudo-Voigt. This gives us a model of the

momentum components of the resolution function. The resulting FWHM are shown

in Table 3.2.3. As discussed later, for phonons measured along a high-symmetry cut,
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Figure 3-14: Q resolution scans measured at the (008) zone center. (A) Scan along
(OL). (B) Scans through (HOG) and (0KG). Because of how the crystal was aligned,
the scan along (0KO) is functionally changing the scattering plane. Thus, the x-rays
continue to be Bragg scattered, but in a different direction. Scanning along (HOG)
is very close to a theta scan and is thus much sharper. All lines are from fits to a
pseudo-Voigt
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Bragg Peak Scan Direction FWHM A-'
(008) (OOL) 0.011
(008) (HOG) 0.0026
(008) (0KO) 0.0079
(400) (HGO) 0.0083
(400) (0KO) 0.013
(400) (GOL) 0.0033
(220) (HHO) 0.013
(220) (HH0) 0.017
(220) (GOL) 0.0025

Table 3.3: FWHM of the Q resolution along orthogonal directions at the different
zone centers.

the component of the Q resolution along the cut direction most strongly affects the

measured phonon widths.

3.2.4 Kapton Scattering

Kapton is commonly used in x-ray experimentation. It is a polyimide that is stable

across a wide range of temperatures (4 - 673K). It has high mechanical and thermal

stability and low outgassing rate, which is necessary for high-vacuum environments.

The x-ray cross-section is small and it is relatively insensitive to radiation damage

from extended exposure. For these reasons we did not anticipate significant temper-

ature variation in the the scattering from the Kapton film.

This assumption, however, proved incorrect. The initial data showed a very un-

usual temperature dependence in the elastic (hw = 0). Additionally, there was signifi-

cant low-energy quasi-elastic scattering. Because of the temperature dependence and

high intensity of the quasi-elastic scattering, we initially interpreted this as coming

from the URu 2 Si2.

In the second experiment, we independently measured just Kapton. Data were

taken at the same temperature and JQJ as the majority of the data on URu 2 Si 2 .

As can be seen in the data are shown in Fig. 3-15, there is considerable temperature

variation in the inelastic scattering spectra as a function of both |Q| and temperature.
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Figure 3-15: Inelastic scattering data from Kapton. (A) Data collected at IQI = 4.3

A-'. (B) Data at Q1 = 4.3 A-.These are the same IQI as the URu 2 Si 2 (220) and
(400) Bragg peaks respectively. Solid lines are fits as to Equation 3.6. The dashed

line is just the elastic component of the fit.
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The data are fit to the to the function

I(Q, w) = Aeiastic g(w) + AODO (1 - -a/kT) 2j+ 2 ) (3.6)

This function has three free parameters. The first term captures the elastic scattering

with only integrated intensity amplitude Aeiastic as a free parameter. g(w) is the

energy component of the resolution function measured from plexiglass. The second

term is the spectral form resulting from an over damped harmonic oscillator response

function. It obeys detailed balance. It has free parameters for the integrated intensity

amplitude, Aeiastic, and -y, a measure of the damping.

Fig. 3.6 shows the fit from Eq. 3.6 as a solid line. The dashed line is from a fit

to just the resolution function in energy. The gap between the dashed line and the

data show the need for the additional term to capture the inelastic scattering from

the Kapton tape. The model from Eq. 3.6 well captures this scattering and is used in

the analysis of the inelastic scattering data of URu 2 Si2 whenever Kapton scattering

is present.

As a final comment about Kapton scattering, we note that there is no data in

the literature on extreme temperature of the elastic scattering nor of the strong low-

energy inelastic scattering. As high-resolution inelastic x-ray scattering becomes a

more common tool, it is important that this source of scattering is either minimized

or taken into account to prevent misinterpretation of the signal.

3.2.5 Brillouin Zone Symmetry

Since the scattering cross-section for phonons is proportional to ((-Q) 2 , where is the

phonon eigenvector and Q is the total momentum transfer, longitudinal and trans-

verse polarized phonons can be separated along high-symmetry cuts. As discussed in

Section 3.1, URu 2Si2 has body-centered tetragonal symmetry at high temperature.

We use this lattice for the scattering experiments. The resulting Brillouin zone is

shown in Fig. 3-16

Because of the centering condition, the cell is non-primative. Only points in
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Figure 3-16: (A) The Brillouin zone of URu 2Si2 assuming a body-centered tetragonal
cell. High symmetry points are labeled. (B) A projection of reciprocal space on the

(HKO) plane. Structural Bragg peaks are shown in black. (100) is not a zone centered,
but rather the Z point on the zone edge from the (101) zone center
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reciprocal lattice points satisfying H + K + L = even are zone centers. This results in

(100) being equivalent to (001) as they are the Z symmetry points from the (000) and

(101) zone centers respectively. This is shown in Fig. 3-16(B), which is a projection

of reciprocal space onto the (HKO) plane.

Along (cOO), the zone boundary is the E point at ~(0.6 0 0). This boundary is

a edge of two faces, which are defined defined by the equidistances between the zone

centers at (000) and either (101) or (10i). For this reason, E depends on the ratio of

the crystallographic a and c axes. Along (eEO), the zone boundary is the X symmetry

point, which is the midpoint between (000) and (110). Finally, along (GOE), the zone

boundary is the Z point, the equidistance between (000) and (002)

Inelastic neutron scattering measures two minima of magnetic excitations. These

are commonly referred to as the commensurate and incommensurate excitations. The

commensurate excitation is at (100), which is a Z symmetry point. The incommen-

surate minimum is at (0.6 0 0), which is the E point.

The antiferromagnetic phase, which occurs under pressure, reduces the symmetry

to simple tetragonal. In this case, all reciprocal lattice points become good zone

centers, and the Brillouin zone size is reduced by a factor of 2.

3.2.6 Inelastic scattering fitting procedure

Intensity from a scattering experiment comes from four distinct sources.

1. Elastic scattering. For some scans this includes elastic Kapton scattering. This

is hw = 0 scattering and is resolution limited.

2. Inelastic scattering from Kapton. This was only present during the first exper-

imental run.

3. Phonon scattering. As scans are taken along high-symmetry directions, the

three acoustic modes are measured independently. The phonon scattering mea-

sured is from the convolution of the resolution with the intrinsic scattering.

4. Background scattering. Unlike neutron scattering, this is extremely small. This
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is because there is almost no scattering from the sample holder and different iso-

topes have the same scattering cross-section. The primary source of background

scattering is detector dark counts, which is typically small (- 0.01 cts/sec) and

therefore negligible. Occasionally, there would be an flat increase in the dark

counts from detector charging.

Each scan is then fit to the form

I(Qw) =Aeiastic g(w) + AKaptan -y ettw/kBT 2  )

+ C + iphnon (3.7)

The first term represents the elastic scattering from both the sample and Kapton.

Aelastic is a free parameter and g(w) is the resolution function measured on plexiglass

as discussed above. The second term is only present in scans for which the scattering

geometry permits the measurement of Kapton scattering. It represents the inelastic

Kapton scattering as justified in Section 3.2.4. AKaptan and -Y are free parameters. The

third term is a constant representing the background. It is typically negligibly small,

though in rare cases, the background was elevated due to charging of the detectors.

The final term is the scattering from the phonons. The simplest way to model

this scattering is as the response function for a damped harmonic oscillator, which is

a Lorentzian

Iphonon = IDHO (W, WO, w) = Aphonan 1 - A/kBT ( 2 - 2W2) (3.8)

with free parametersAponan, the amplitude, hw0 , the energy of the mode at the

measured Q, and w, the width. This form does not take into account the affect of

the instrumental resolution, but captures the essential physics of the phonon. It also

does not require previous knowledge of the dispersion as a resolution convolved fit

does.
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Figure 3-17: Fits showing all of the different terms in the fit function at (A) 8K and

(B) 300K for the phonon measured at (3.4 0 0) . This position corresponds to a

longitudinal phonon with q=0.6. The blue curve shows the full fit. The red curve

is the elastic line. The purple is the over damped oscillator modeling the Kapton

scattering. The green curve is the phonon, modeled as a damped harmonic oscillator

(Lorentzian) lineshape. There is typically an energy offset that is an effect of the high

resolution monochromator.
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Figure 3-17 shows the effects of the different components of the fit for the phonon

measured at (3.4 0 0). (A) shows the measurement at 8K while (B) shows the measure-

ment at 300K. Due to the scattering cross-section of phonons, the measured phonon

is a longitudinally polarized phonon with q = 0.6, which corresponds to the zone

boundary. This is the location of the incommensurate magnetic excitation seen in

neutron scattering.

For each figure, the blue line shows the full fit. The red line just the contribution

from the elastic scattering. The pink is the Kapton scattering. And the green is the

phonon. Notice that the peak location for the elastic scattering is not centered at

w = 0. This is because the high-resolution monochromator cannot accurately move

to a specific energy. It is, however, accurate in scanning through energies. Thus, for

each scan, we move from negative energy transfer through positive energy transfer.

When fitting, we add an offset parameter. For all subsequent data, we shift the data

based on the fit offset so that the elastic peak is at w = 0.

To extract the more physically relevant phonon lifetime, we can account for the

resolution of instrument by fitting to the more complex form:

Iphonan(Q, W) = J dr g(T) b(A) AphannIDHO(W, wo(Q - A), IF) (3.9)

The phonon term now includes a convolution. g(T) is the measured energy mo-

mentum and b(A) are the component of the momentum resolution along the cut

direction.IDHO is the functional form for a damped harmonic oscillator given in

Eq. 3.8. In order to perform the convolution, fits to just the damp harmonic os-

cillator response function is used to determine the dispersion.

In principle, the momentum resolution consists of a three dimensional integral.

As the modes disperse slowly relative to the FWHM of the q resolution, it is a good

approximation to take a series expansion of the mode:

w(Q + c) ~ w(Q) + D w(Q) - c + ET {D 2 (Q)}e (3.10)
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where D w(Q) is the gradient and D2 W(Q) is the Hessian matrix evaluated at Q.

Because all of our data are taken along high symmetry directions, many of these terms

are zero. Specifically, in all cuts, the first derivative of the dispersion in all directions

orthogonal to the cut are zero. For example, in a cut along (qO0), symmetry dictates

that (qe 0) is equal to (q 0), and (q0 e) is equal to (q0c). Therefore the gradient

is along (H00) and all other terms in the resolution function only contribute to at

second order in e. Thus we are well justified to only include the energy and cut

direction resolution in our convolution. In fact, the dominant fact is by far the

energy convolution. The cut direction momentum resolution convolution is less than

20% the size of the energy resolution convolution.

3.2.7 Inelastic Scattering Results

Figure 3-18 show scans taken at (2+E, 2+c, 0) and (4 -c, 0, 0). This corresponds to

measuring the longitudinal dispersion along (c c 0) and (c 0 0). See Figure 3-16 for

reference. Data taken at 300K and 8K are shown. The data taken along (4 -C, 0, 0)

include scans both with and without the presence of Kapton scattering. All of the

data along (2+c, 2+c, 0) have Kapton scattering.

In comparing the 300K and 8K data, there are no measured change in the phonon

energies. The phonon intensities diminish, but the fit parameters confirm that this

intensity is driven purely by the Bose scaling. At low temperature, the negative energy

transfer, which corresponds to measuring phonon annihilation does not measure any

phonon excitation, as expected. For this reason the scans were over a smaller energy

transfer. At 300K, the difference in intensity at both the negative and positive energy

transfer are well fit by the functional form, which obeys detailed balance.

One unexpected feature of the data is the increase in width near the zone cen-

ter. This effect was seen in the longitudinal modes along all of the high symmetry

directions. This effect was temperature independent.

Figure 3-19 shows the result of the fit parameters. It includes fits both with

and without accounting for the effect of energy resolution via a convolution. When

fitting without an energy convolution, the phonon was modeled simply by the damped
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Figure 3-18: Scans of acoustic phonons measured at (4 -c, 0, 0), in (A) and (B), and

(2+E, 2+c, 0), in (C), and (D). These modes correspond to longitudinal modes along

IF to E and r to X respectively. Data are shown at 300K and 8K. Fits are as described

in Eq. 3.7 with the phonon modeled as in Eq. 3.8
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harmonic oscillator (Lorentzian) line shape. This clearly shows a tendency for the

longitudinal modes to increase the measured width and intrinsic line width, F, near

the zone center. The increased line width comes from a reduced lifetime of the

phonon. The origin of the tendency towards increased damping at low Q is not well

understood, but is interpreted as a coupling to other degrees of freedom. Less data

was taken on the transverse modes. Though we do not see any increased width, it is

possible the effect exists but is smaller.

Instead of plotting the widths as a function of r.l.u, Fig. 3-20 shows the intrinsic

phonon lifetime as a function of mode energy in (A) and q, the norm of the phonon

wave vector, in (B). This plot includes all longitudinal acoustic branches with the

addition of two transverse modes to show the apparent width dependence. Interest-

ingly, the phonon lifetimes from all branches lie on the same line for both the energy

and wave vector, which is in part because the speeds of sound are comparable in all

directions.

The commensurate magnetic excitation is a longitudinal mode at Qo=(001). How-

ever, as mentioned previously, there is evidence from Fermi surface measurements that

the HO phase is actually simple tetragonal, which makes Qo a zone center. In such a

case, these magnetic excitations exist at all zone centers, even if the scattering cross-

section is small. The phonons near the zone center thus might be able to couple to

this degree of freedom. The increased breadth of low Q is seen at all temperatures.

We note that magnetic scattering at Qo is seen above the HO temperature, albeit

at lower energy and heavily damped.[9, 11 Thus it is possible the coupling exists

at high temperature as well. Alternatively, energy scale for both the phonons that

experience broadening and the intrinsic width is close to 2meV. This is the same en-

ergy as the commensurate magnetic excitation and of the electronic excitation seen

in Raman scattering.[55] Finally, it is possible that the broadening is coming from

disorder, though it is unclear why this would preferentially couple to low Q modes.

The dispersions are shown in Fig. 3-21. The solid lines are guides to the eye from

fits to odd order sine functions. Dashed lines are the speed of sounds calculated from

the published elasticity data. For the cuts along F to X and F to E, the lines are
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Figure 3-19: The phonon widths of acoustic modes extracted from fits. (A) are from

modes along (cOO), (B) from (cc0) and (C) for (00c). The main figures are from fits

without energy convolution (Eq. 3.8) The inset shows the width from the convolved

fit.
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Figure 3-20: The phonon widths from fits to a damped-harmonic oscillator lineshape
without convolution (Eq. 3.8) longitudinal acoustic branches from all high-symmetry
cuts. (A) shows the width as a function of mode energy. (B) shows the widths as
a function of Iql. Dashed lines show the zone edge for each cut. The solid circles
are from 8K phonons. The empty squares are from 300K phonons. Two transverse

modes are highlight to emphasize the increased width of the longitudinal modes.
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generated from the work by Yanagisawa et. al. Along F to Z, the data come from

Wolfe et al. The shaded blue region denotes the maximal extent of our data for

longitudinal modes. We can conclude there are no other longitudinal optical modes

in the white region. We see no evidence for change in the dispersion as a function of

temperature.

3.2.8 Thermal Conductivity

In the analysis of thermal conductivity by both Sharma et al. and Behnia et al. a

large increase in thermal conductivity is seen upon cooling into the HO phase.14, 92]

The increase is seen with thermal current both in-plane and along the c axis. By

analyzing the thermal hall conductivity, the conclude that the electronic contribution

is extremely small and therefore the lattice contribution must be large and change

significantly upon entering the HO phase. It is therefore quite surprising the inelas-

tic x-ray data show no evidence for change in either the phonon dispersion or the

linewidths as a function of temperature.

Under the realxation time approximation, the thermal conductivity from an exci-

tation of wave vector q and branch j can be expressed as

=~ q qjVlj~
q,j = Cgq,jV = CjVj q ,jq (3.11)

where CGq, is the heat capacity, Vqj = is the group velocity, Aq,j is the mean free

path, and Tq,j is the relaxation time. r, is a rank-2 tensor and here we are calculating

the longitudinal component that is parallel to the excitation propagation. Excitations

not parallel to the thermal transport direction are reduced by cos 02. For an isotropic

excitation, averaging over a sphere leads to a facto of !. The relaxation time is related

to the width of the phonons, F as r = j. [64] This method has successfully been used

to calculate thermal conductivity from scattering data [79].

From inspection of Equations 3.11, at temperatures near the HO only acoustic

phonons near the zone center have both sufficiently high heat capacity and group
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velocity to contribute significantly to the thermal transport. The acoustic modes

away from the zone center have a very small group velocity and so contribute little;

the optic modes are too high of energy to be thermally populated and so therefore

should also contribute negligibly.

The measured intrinsic line width of the longitudinal branches allow for the di-

rect approximation of their contribution to the thermal transport. To make this

calculation, we make the following two assumptions:

1. The dispersion is isotropic. Measured dispersions and widths suggest that

the longitudinal modes remain broad at low q in all directions and the high-

symmetry longitudinal branches are smoothly deformed into each other. Addi-

tionally, the speed of sound is highest along the (100) direction, so any errors

induced from this approximation would cause the calculation to overestimate

the thermal conductivity of the branch.

2. The Brillouin zone can be approximated by a Debye sphere. At low temperature,

only low energy modes are thermally populated. These modes are the acoustic

modes, which only have high group velocity near the zone center. Thus this

approximation is well justified.

Using these assumption we can calculated the contribution from the jth branch

as

/kD 4w ~o q

r1 = dq --kB( h wj (q)) 2 -- (q) (q) A (3.12)
o (27) 2 3 (Oh wj(q) _ 1 ) 2oq

For the region of of the dispersion near the zone center which the intrinsic line

width can be extracted, we use this to calculate the mean free path. For the remainder

of the branch, we use the upper bound of 1mm, which represents boundary scattering

from sample sizes typical for thermal transport measurements. For thermal transport

along a at 8K, the longitudinal branch only contributes ~ 0.2-W, a negligible amount

of the total conductivity. Furthermore, the vast majority of the thermal energy
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is transported by the modes for which we could not determine the lifetime. This

number should therefore be viewed as an extreme upper limit on the longitudinal

contribution.

For the transverse modes, we cannot extract an intrinsic line width from any of the

modes as they are resolution limited. Therefore, it is impossible to rule out a massive

increase in the thermal transport from these modes upon entering the Hidden Order.

However, the mean free path lower bound for resolution transverse phonons near

the zone center is only ~30 A. We can calculate an effective mean free path for the

entire transverse branches necessary to match the reported thermal conductivity. This

effective A must increase from ~ 1 pm above the HO to ~ 50 pm immediately below

it. This change must occur to the mean free path throughout the entire Brillouin

zone to account for the increase of thermal conductivity in all measured directions

and thus seems an unlikely source for the increase in thermal conductivity.

A more likely explanation is that the known magnetic excitation are the source

of the thermal transport increase in the HO phase. Thermal transport from mag-

netic excitations has been observed in a variety of materials including multiferroics,

spin ice, monolayer cuprates, and low-dimensional spin systems.[66, 6, 114, 99, 45].

Inelastic neutron scattering measurements on spin-wave dispersions on CrSb2 have

been used to explain the anisotropy in the thermal conductivity.[96]. In URu 2 Si 2,

neutron scattering data reveal below To, there are well-defined magnetic excitations

throughout the Brillouin zone. Minima in the excitations occur at Qo = (1 0 0) and

Q, = (1.4 0 0) with gaps of 1.7 and 4.2 meV respectively. These modes are dispersive

and sharp in all measured directions and are low enough in energy to be thermally

active thus should contribute to thermal transport.

Above To,the excitation at Qo is thought to go gapless but heavily overdamped.

The excitation at Q, lowers to 2.1 meV, but also becomes heavily damped [13, 105,

106, 49, 107, 121. Thus the magnetic excitations above To are incapable of carrying

appreciable thermal current.

At first it may be tempting to dismiss this transport mechanism under the as-

sumption that the modes are frozen out. It is common view the temperature of the
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Figure 3-22: Heat capacity for Bosonic excitations as a function of mode energy and

temperature. In the high temperature limit, a single mode contribute kB = 0.0861
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energy of a bosonic excitation as being the rough estimate of when that excitation

becomes relevant. Much below this temperature, the modes do not contribute, and

much above the temperature, the modes are fully active and contribute kB to the

heat capacity. In fact, the temperature of an excitation is much closer to the when

the mode becomes saturated than when it starts contributing appreciably.

This is demonstrated in Fig. 3-22 in which the single mode heat capacity is shown

as a function of temperature and mode energy. The dashed black line equivalence

between temperature in Kelvin and energy in meV. The magnetic excitations have

minima at 1.7 and 4.2 have significant thermal population at 17.5 K and thus are

capable of contributing to the thermal conductivity.
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3.3 Conclusions

Previous experimental and theoretical inquiries into URu 2 Si2 have suggested the the

HO phase strongly couples to the lattice. Fermi surface measurements and calcu-

lations suggest a zone folding along Qo = (001), which reduces the symmetry of

the crystal. Torque magnetometry and x-ray diffraction on small samples with high

RRR demonstrate a breaking of C4 symmetry and and orthorhombic distortion. Fi-

nally, thermal conductivity studies suggest that the lattice contribution to thermal

conductivity increases upon entering the HO phase.

Given the preponderance of evidence pointing to significant changes to the lattice

in the HO state, our x-ray scattering measurements show surprisingly little tempera-

ture dependence. We see no evidence of an orthorhombic distortion up to 6 - 6* 10- 5 ,

where 6 = bo.ho-aortho Because the sample RRR used for the diffraction is low, it is
borth0 +aortho

consistent with the literature's claim on the dependence of the distortion on RRR. At

this point, there is no understanding on the mechanism through which the distortion

can depend on the sample's RRR. This is particularly perplexing as the heat capacity

jump upon entering the HO does not depend upon RRR.

The inelastic scattering measurements of the acoustic phonons show no evidence

of change upon entering the HO phase. The longitudinal acoustic modes along all

high-symmetry directions show an anomalous broadening as q -+ 0. The cause of

this broadening is not currently understood, but is interpreted as phonons coupling

to other degrees of freedom at all temperatures. Due to the similarities of energy

scales, it is possible that the coupling is to the 1.9 meV magnetic excitation seen at

Qo = (100), the 1.6 meV excitation seen in electronic Raman scattering, or disorder.

The low-q acoustic phonons are precisely the modes that are most important for

lattice thermal conductivity at low temperature because they are both thermally

active and strongly dispersive. The measured phonon widths allow us to model the

contribution of the longitudinal modes to thermal conductivity and conclude that they

cannot be responsible for the increase the K upon entering the HO phase, regardless

of the exact form of the coupling. Additionally, the lack of change of the dispersion
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and lineshape of all measured modes strongly suggest the affect of the HO on r does

not come from the lattice. The most plausible explahation is the magnetic excitations

drive the change in thermal conductivity.
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Chapter 4

Overview of Dichroism

Measurements of dichroism and other optical activity measurements are powerful

techniques that, among other information, can shed light on symmetry breaking.

Modern synchrotrons make these experiments increasingly common in hard condensed

matter. In this chapter, we briefly summarize symmetry and polarization considera-

tions of light and the quantum mechanical descriptions of absorption.

4.1 Parity and Time Reversal Symmetry

Parity (chiral) symmetry and time reversal symmetry are two fundamental discrete

symmetries. A good review of quantum mechanical results of these symmetries is

presented by Sakuri. Here, we'll discuss how the symmetries affect basic physical

quantities.

A parity transformation is defined by the replacement

Y 9 -Y (4.1)

If we introduce a parity operator P, we say that a quantity A that satisfies PA = A as

even, or gerade (g) parity. A quantity B that satisfies PB = -B has odd, or ungerade

(u) parity. P has eigenvalues 1. The parity of basic physical quantities are given
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in Table 4.1. In reference to the symmetry of crystal lattices, parity symmetry is

Odd Even
position time
velocity angular momentum

force torque
electric field magnetic field

helix (handedness)

Table 4.1: Parity Symmetry: Physical quantities organized by their parity symmetry

referred to as inversion symmetry. Vector quantities that are parity even, such as

angular momentum, are sometime referred to as pseudo-vectors. Scalar quantities

that are parity odd called pseudo-scalars.

The time reversal operator, T is defined by the operation

t -+ -t (4.2)

We similarly refer to quantities as time-even that satisfy TA = A and time-odd that

satisfy TB = -B. The eigenvalues for the T are 1. Physical quantities that depend

linearly on time or are first derivatives of time must be time-odd while quantities

that do not originate from time are time-even. The time-reversal symmetry of basic

physical quantities are given in Table 4.2.

Odd Even
time position

velocity force
angular momentum torque

magnetic field electric field
helix (handedness)

Table 4.2: Time Reversal Symmetry: Physical quantities organized by their T sym-
metry
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4.2 Polarization of Light

Maxwell's equations in free space lead to transverse E&M waves. A wave traveling in

the z-direction with wavenumber k and frequency w can be described by its electric

and magnetic field components

E(z, t) = epEoe (kz-wt) (4.3)

1
B(z,t) = -(2 x ep)Eoei(kz-wt) (44)

C

Where EP is the unit polarization vector, which in general is complex. From here on,

light will be denoted and discussed only with reference the electric field component.

The magnetic field can always be calculated from the electric field whenever necessary.

The transverse nature of light is ensured by the constraint, e- 2 = 0. Thus the

full polarization of coherent light requires three quantities. These are typically given

by two orthogonal basis functions plus a phase. Linear basis functions can be written

conveniently as light polarized along the x and y axes:

Ex(z, t) = , Eoei(kz-wt)+i+x (4.5)

Ey(z, t) = EOei(kz-wt)+iqV (4.6)

Circularly polarized light can be constructed by adding orthogonally polarized

linear light with a Z relative phase shift. Mathematically, we do this by define two2

complex and orthogonal unit vectors

1-= i (4.7)

The two different polarizations are referred to as left and right. There are two

different conventions for determining which is which. We use the convention in which

the handedness is determined with the thumb pointing along the propagation direction

and fingers curled along the rotation of the E-vector in time. Note that the E-vector

rotates in the opposite since if looking at a fixed time but moving in space along
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the propagation direction. Using this convention, the circular basis functions can be

written

ER(z, t) = eREoei(kz-wt)+iOR

EC (z, t) = ELEoei(kz-wt)+i*L

1
with eR- = (; + i )

EL =(i - 72)

A coherent wave can be any linear superposition of a given basis with complex

weights. In general, this leads to a wave that is neither purely circular or purely

linear, but rather an elliptically polarized wave.

Eei(Z, t) = 1 (IEo ei(kz-wt) + Eoyei(kz-wt))

or

Eeii (z, t) = $ (EREoRei(kz-t) + CLEoLei(kz-wt))

For many experimental purposes, full polarization analysis is unnecessary.

often sufficient to use the degree of polarization, P, which we define as

Plinear - -
Ix + IV

Peircular =
Ii? IL

E2E2 2 Eo~yE X -Ey 2JEOREOYI
Plinear E + E Eox 2 +Ey

E 1-)oy EOy

P - -|Egg- E e _ 2|EoEoy|
PcErcular I E EoxEyE02, +E02, EOX2 + E0y

(4.9)

It is

(4.10)

(4.11)

(4.12)

(4.13)

For coherent light, the degree of linear polarization is related to the degree of circular
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polarization

inear = - icrcular (.4

For natural light, which consists of an incoherent superposition of polarization states,

the polarization varies rapidly and Eq. 4.12 no longer holds.

A convenient formalism for light is the Poincare sphere and closely related Stokes

vector. We start by defining a polarization vector P = (S1, S2 , S3). These parameters

are defined as shown in table

1 -1
0 Linearly Polarized (Horizontal) 0 Linearly Polarized (Vertical)

0 0
0 0
1 Linearly Polarized (450) -1 Linearly Polarized (-45')
0 0
0 0
0 Right Handed Circular 0 Left Handed Circular
1 -1

Table 4.3: Polarization Parameterization

The Poincare sphere is a representation of this vector, as shown in Figure 4-

1. The poles represent circular polarization. The equatorial plane represents linear

polarizations.

The full Stokes vector is the polarization vector with an additional So term equal

to the intensity of the light: S = (SO, Si, S2, S3). For a coherent light source So =

I VS2 + S2 + 2S.11 S ~S3~

Optically active materials can change the polarization of transmitted or reflected

light. A material for which right and left handed circularly polarized light have differ-

ent phase velocities, will produce a precession angle , across the equatorial plane. A

difference in phase velocity of orthogonal linear polarizations create a polar precession

angle x. This effect also occurs in materials the preferential absorb left handed or

right handed circularly polarized light. A quarter wave plate is an optical device for

which the polarization vector is rotated 90 degrees, making linearly polarized light
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S3

2X

Figure 4-1: In the Poincare sphere, the polarization vector P of length I is decomposed

into the three Stokes parameters S1, S2, and S3 plotted as the cartesian coordinates

circular. A half wave plate flips horizontally polarized light to vertical and vice versa.

The angular momentum of an EM wave propagating along z can be calculated as

(4.15)(Li) f E*(z,t)LzE(xt)dQ
f E*(zt)E(x,t)dQ

To evaluate this quantity, we rewrite the circular basis function in terms of the

spherical harmonics

E7(z, t) = Y,1Eoei(kz-wt) (4.16)

Ec(z, t) = Y Eoei(kz-t)

where Yi,+1 = -F 12
47rS /m r

Spherical harmonics have the properties

I Ymiml* = J6 ',i6 m',rm

(4.17)

(4.18)

(4.19)J 1,*,,,LzY*dQ = hm6i,1 3'1, ,r

we can see that (Lz) = hm for right and left handed circularly polarized light

respectively. Furthermore, as linear polarized light can be written as the superposition
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of left and right circularly polarized light, (Lz) = 0 for linearly polarized light. The

angular momentum of circularly polarized light is important in analyzing circular

dichroism, as shall be seen shortly.

The relationship between handedness of circularly polarized light and angular

momentum tempts a false equivalence. Importantly, handedness, or chirality has

different symmetry from angular momentum. Chirality is parity-odd and time-even.

It does not, however, change with any proper rotation. On the other hand (no pun

intended), angular momentum is parity-even and time-odd.

Experimentally, these difference lead to distinct physical phenomena. For exam-

ple, the angular momentum coupling of X-rays to a magnetic sample is dependent

upon the relative orientation of the angular momentum and magnetic moment. This

effect is X-ray Magnetic Circular Dichroism (XMCD) This effect can be thought of

as a result of the changing orientation of the E field in time while approximating

the spatial variation as negligible (i.e. a dipole approximation.) It is parity-even and

time-odd phenomena.

Alternatively, the chirality of circular light can also couple to materials that do

not have inversion symmetry such as chiral molecules. The difference in interaction

between left handed and right handed circularly polarized light is called X-ray natural

circular dichroism (XNCD). Note that this can be observed even in collections of

randomly oriented molecules as long as they all have the same handedness. In this

case the effect is a result of the spatial rotation in the E field. It is parity-odd and

time-even phenomena.

4.3 Quantum Mechanical Description of Absorption

There are various good references outlining the quantum mechanical description of

light interacting with matter. Sakuri is the classic quantum mechanics text.[88 Shi-

rani provides an excellent review with emphasis on inelastic neutron scattering.[931

Grosso provides a great overview of in particularly nice notation.[37 St6hr and Sieg-

mann's book on magnetism have an excellent summary for absorption.1951 Here we

79



follow the notation of St6hr and Siegmann.

4.3.1 Fermi's Golden Rule

The starting point for a quantum mechanical description of light interacting with

matter, both from absorption and scattering, is time-dependent perturbation theory.

The time-dependent EM field from light induces transitions from initial state i) to

final state If). These states contain both the state of the sample and the state of

the photon. The original formalism was derived by Kramers and Heisenberg and by

Dirac

Up to first order perturbation theory, the transition probability per unit time from

a state i to a state f is

271yIWn )2(iE)(fTif = 2~ 6(ci -- cf)p(cf) (4.20)

where Hint is the interaction Hamiltonion, c is the energy of sample state and photon

combined, and p(c) is the density of states per unit energy. The delta function insures

energy conservation. The units of Tj are time- 1 . This result is commonly referred

to as Fermi's Golden Rule.

The total cross-section and differential cross-section are obtained by normalization

by incident photon flux (o

- T= f (4.21)

d = _ 'Ti (4.22)
dQ JDdQ

4.3.2 Absorption under dipolar approximation

For absorption, the interaction Hamiltonian is

int = -p - A (4.23)
me
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where p is the momentum operator and A is the vector potential from the EM wave.

When inserting this interaction Hamiltonian into Eq. 4.20, in an absorption process,

the quantized vector potential annihilation operator acts on the photon part of the

initial state and collapses with the phonon component of the final state. For a more

thorough mathematical description, see for example Riseborough. 186] The remaining

matrix elements have only the sample states and have the general form

M = (b~p E e ik.ra) (4.24)

where the states 1b) and ja) are the final and initial state respectively of the sample.

To evaluate these matrix elements for x-ray absorption, we expand the exponential

in the limit k -r < 1

M= (b p - e (1 + ik - r + )a) (4.25)

The lowest order term is the electric dipole term. This is equivalent to the approx-

imation that the electric field does not change over the length of the interaction r.

The next higher order term, ik . r contains the electric quadruple and magnetic dipole

interaction. This will play an important role in XNCD as will be discussed shortly.

Successively higher orders in the expansion lead to increasing rank multipole terms.

To evaluate the dipolar term, we note that [X, Wo] = i -p where WO is the per-

turbed Hamiltonian, for which 1b) and 1a) are eigenstates. We then have the total

cross-section for absorption

0 abs = 47 2  e hw|(be - r~a) 2 6 (hw - (Eb - Ea)) p(Eb) (4.26)
47EOhc

Where Ea, b refer to the energy of the unperturbed sample state and hw is the photon

energy for the transition.

By integrating over final states the X-ray absorption intensity under the dipole
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approximation is

'res = A |(blE r~a) 2 (4.27)

with A = 47r2  hw
47ohc

This is the integrated intensity over the entire absorption edge. It has dimension of

length2 x energy.

4.3.3 Dipole Operator and Selection Rules

Now the problem is just to calculate the matrix elements (blE - ria). To do so, recall

from Section 4.2 that the polarization of light can be written in terms of spherical

harmonics with 1 = 1. For ease of notation we introduce Racah's spherical tensor

operators:

2+1 '(, 4) C'__ = (-1)m (Ci)* (4.28)

We also introduce the dipole operator P = E - r. We commonly denote a specific

polarization and direction of propagation as Pg, where a = x, y, z is the propagation

direction relative to the sample, and q denotes the angular momentum of the polar-

ization: 1, 0, or -1. Dipole operator defined by a direction and polarization can be

written

pq
= E eq, C 1  (4.29)

r 'a" p
p=0, l

The coefficients e,, are in general complex and subject to the constraint e, 2

Note that this leaves five parameters: three parameters are needed to determine the

polarization and two parameters are needed to determine the direction of propagation.

This formalism makes it clear that evaluating the matrix element (bIE - rIa) = (bIPg Ia)

only consists of terms of the form (blr Yi,mla).

In the single electron approximation, the initial 1a) is a core electron wavefuntion.
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The final state is a linear combination of core wavefunctions. We describe these as

atomic orbitals, the solutions to a central potential:

Rn,i(r)Yi,mn (0, 0)XS,,Mr = IRn,(r); 1, mi, s, M) (4.30)

Evaluating the radial part of the matrix element gives

7. = (R',lrlR.,R) = j R(r) Ra,1 (r) r3dr (4.31)

This radial integral rapidly vanishes for any states except those localized on the

atomic center. The localization is why the final states can also be treated linear

combination of the atomic states of the resonant atom and thus X-ray absorption

spectroscopy is element specific and sensitive only the the local properties of the

target atom.. Optical spectroscopy, in contrast, does not have localization and the

probed states can be extended or itinerant.

The angular part of the transition matrix has elements of the form

Y = (l', s', m m,C i"l, s, mi, m) (4.32)

Evaluating these expressions give the following selection rules:

Al = t1" (4.33)

Am, = q = 0, t1 (4.34)

As = 0 (4.35)

Am, = 0 (4.36)

where the angular momentum of the x-ray photon is qh. In the dipole approximation,

only matrix elements with 1" = 1 exist, so Al = t1.

Commonly, the eigenstates of the unperturbed Hamiltonian are not of the form

l1, s, mi, mi), but rather are in the spin-orbit coupling dominated regime. In this

case, the eigenfunctions are of the form 11, s, j, mj). The selection rules are applied
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after writing the state out as linear combinations of the 1, s, Tin, n8 ) states via the

Clebsch-Gordon coefficients.

4.3.4 Summary of Quantum Mechanical Analysis of Absorp-

tion

The analysis of absorption begins with perturbation theory and Fermi's Golden Rule.

This analysis leads to several key points useful to summarize and keep in mind going

forward.

" The resonant x-ray edge occurs when the x-ray energies are tuned such that

absorption signal is dominated by atomic like transitions.

" The dipole approximation is sufficient to describe most of absorption phenom-

ena. This approximation is the expansion of eik.r. XNCD requires higher order

terms in the expansion

" As the initial state is a core orbital, the radial terms in the matrix element

rapidly die at distances 0.5 A- 1 . For this reason, resonant absorption spec-

troscopy is highly localized and element specific. The localization means the

final states must be combinations of atomic orbitals and not itinerant.

" The angular components of the matrix elements depend on the polarization

and direction of the incident x-rays. This give rise to selection rules. Notably,

the magnetic quantum number mi changes by the angular momentum of the

incident x-rays

" Commonly, the core states are spin-orbit split. These states are written in terms

of combinations of the 11, s, min, in.) states via the Clebsch-Gordon coefficients.

The spin-orbit coupling is critical for the existence of XMCD.
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4.4 X-ray Natural Circular Dichroism

Magnetic circular dichroism was first measured in the x-ray region by Shiitz in

1987.[911 This work, an most subsequent XMCD work, is accomplished through the

reversal of the magnetic field. Only with the construction of the helical undula-

tory at the European Synchrotron Radiation Facility (ESRF) in the mid-90's, did it

become possible to measure circular dichroism through changing of helicity of the po-

larized x-rays.[34] Shortly thereafter, the first XNCD measurements were reported on

Na3 Nd(dimly) 3]-2NaBF 4 -6H2O.[1] The effect was soon seen in a series of other mate-

rials and theoretical calculations on intensities soon followed.j36, 33, 35, 72, 14, 82, 65].

Here we outline some of the key theoretical results of XNCD.

As mentioned above, the interaction Hamiltonian can be expanded into higher

multipoles. The transition operator can be then written as a series of multipole

contributions:

T = E1+ E2+ E3+ +-- M1+ M2+ M3+- (4.37)

The only terms that can contribute to the dichroism of circularly polarized light are

the combinations that are of opposite parity. The lowest order combinations are the

El - M1 and El -E2.

To see this explicitly, take the second order expansion terms of of the interaction

Hamiltonian in the absorption cross-section:

abs 2 e 12 6 (h

- -42 _ hw(bje -p + i(E -p)(k - r) a) 2 6(hw - (Eb - Ea)) P(Eb) (4.38)
47rEohc

the second term in the matrix element can be expanded

(E p)(k - r) =1/2[(E- p)(k - r) + (E -r)(k- p)]+ (4.39)

1/2[(E- p)(k - r) - (E - r)(k- p)] (4.40)

The first, symmetric, term on the right-hand side is the electric quadrupole. The
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second, anti-symmetric, term is the magnetic monopole. It is clear that both terms

are odd under inversion can contribute to the XNCD at the same order in k - r.

A key distinguishing feature of the two terms is that the El -M1 term is a pseudo

scalar quantity and thus the effect persists for randomly oriented samples while the

El -E2 term will average to zero. The two terms can then be distinguished polar

dependency of the dichroic signal. Selection rules for the magnetic dipole transitions

forbid excitations from the s orbitals. Therefore at the K edge, El - MI absorption

must require s-p orbital mixing and so the intensities are orders of magnitude smaller

than expected for El -E2.[82] For both terms contributing to XNCD, the dichroism

will have the same sign when the sample is rotated 180 degrees. The same type of

rotation would invert the sign of XMCD.

When evaluating the matrix elements of the El -E2, it is useful to again express

the the expansion of the interaction Hamiltonian in terms of the Racah spherical

tensors. This leads to matrix elements of the form

(fYrCijg)(g r2 Cif) (4.41)

Similarly as with the dipole approximation, the angular components can be calculated

an lead to selection rules, including that Al is equal the orbital value of the Racah

tensor. Since the initial states are well approximated by core orbitals, the intermediate

state must a hybridization of orbitals of different azimuthal quantum number. For

K-edge dichroism, XNCD will probe El -E2 interference of an intermediate state of

hybridized p and d orbitals.
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Chapter 5

Dichroism measurements of

symmetry in the pseudo gap state of

BSCCO

5.1 Introduction

The parent compound for high-T, are Mott insulators. Doping these materials lead

to the phase diagram shown in Fig. 5-1. A large area of research is in understanding

the pseudogap regime that occurs in the underdoped region. This phase is visible

through spin susceptibility detected by the Knight shift and c-axis conductivity. One

key question is whether this is a true separate phase or a crossover region. If it is

a distinct phase, how do we understand the order. Lee, Nagaosa and Wen wrote a

good overview of this rich field.[581

Recently, a series of experimental observations suggest the pseudogap is a distinct

phase, which we will briefly summarize. Polarized neutron diffraction has shown

novel magnetic order in the pseudogap that preserves translational symmetry in bi-

layer YBCO[30, monolayer HBCO [59], and bilayer BSCCO [241. X-ray scattering,

combined with STM and ARPES suggest that the pseudogap is characterized by a

charge density wave, the wave vector of which depends on doping in BSCCO[108, 20],
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Figure 5-1: Phase diagram for high Tc superconductors

and YBCO. [57] The polar Kerr effect has been measured in BSCCO[41], though

considerable confusion and debate exists about the interpretation of this and whether

or not it necessitates the breaking of time-reversal symmetry.[47, 32, 46, 51] Inelastic

x-ray scattering has seen a violation of detailed balance in phonons, which necessitate

the breaking of both inversion and time reversal symmetry breaking.[8] Birefringence

and dichroism have been measured in YBCO in the THz regime, which necessitate

the loss of both C4 rotation and mirror symmetries in the electronic structure.[61]

Finally, circular dichroism as the copper K-edge has been reported in Bi2 CaCu 208+2

(Bi-2212).[54 This has been interpreted as x-ray natural circular dichroism (XNCD),

which breaks inversion symmetry but not time-reversal. This work remains contro-

versial. Di Matteo and Norman point out that glide plane symmetries must also be

broken for there to be a non-zero signal. Additionally, the possibility of linear con-

tamination in the x-rays was not ruled out by measuring the azimuthal dependence

of the dichroism. [26] If the dichroic signal is real, polar dependency can be used to

match various theoretical models of ordering. [741 In this work, we further investigate

dichrosim at the copper K-edge of Bi-2212.

The crystal structure of Bi-2212 is shown in Fig. 5-2. Most of the literature

treats the crystal as tetragonal, such that the copper-copper nearest neighbors are

along atet and btet. We will however use the crystallographically correct orthorhombic
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notation, for which the in-plane orthorhombic axes are 45 degrees rotated from the

tetragonal axes and the unit cell is doubled. The Cu-Cu direction is then the a + b

direction. The crystal has a superlattice modulation which it thought to be driven by

the mismatch of the bond lengths between the Bi-O layer and the Cu-0 layer. This

creates a buckling that modulates with wave vector q., = 0.22b* c*.

5.2 Experimental Details

We present measurements at the copper K-edge of Bi-2212. Due to selection rules

as discussed above, the linear dichroism at the K-edge comes from core Is primarily

probing the unoccupied p orbitals. The lowest order contributing terms of circular

dichroism are El - E2 interference terms, which arise from intermediate states of
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Figure 5-3: Schematic of the upstream optics. The beam travels through the white-

beam slits, followed by a double-bounce Si(111) monochromator. The phase retarders

are diamond. The first mirror is a toroidal focusing mirror, the second is a flat mirror.

After the entrance slits, the beam enters the experimental hutch.

hybridized p and d orbitals.

The measurements were taken at Sector 4 ID-D at the Advanced Photon Source

at Argonne National Laboratory. A schematic of the beamline is shown in Fig. 5-3.

The undulators creates primarily horizontally polarized light. The further vertically

shifted from the center of the beam, the more the polarization differs from purely

horizontal. Upon entering the beamline, the x-rays go through a first set of slits,

which reduces the size of the beam and reduces the variance in polarization. The

monochromator is double-bounce, which allows for non-dispersive energy selection.

The monochromator crystals are Si(111). The second crystal is detuned by 3 arc-

seconds, which reduces the A/3 contamination as the Si(333) reflection, which also

satisfies the Bragg condition, has a sharper Darwin width. This is also true for all

higher order reflections. The detuning reduces the measured beam intensity by about

30%. After the monochromator, the x-rays hit diamond phase retarders, which are

used to control polarization. The details of these is discussed later.

After passing through the phase retarders, the beam hits two mirrors. The first

is an adjustable palladium coated toroidal focusing mirror. The second is a flat

silicon mirror. The beam has a 3.1 mradian incident angle, which corresponds to

Ecritica = 9.876 keV. Below this energy, the reflectivity is very near 1. Above, and it

starts dropping rapidly. This mirror provides additional harmonic suppression. The

beam then goes through a set of entrance slits, which clean up the bream.

After the entrance slit, the x-rays enter the experimental hutch. A schematic of
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Figure 5-4: Schematic of the elements inside the experimental hutch.

the beam path is shown in Fig. 5-4. The beam first passes through through a split ion

chamber, which is hooked up to a feedback loop that adjusts the mirrors to maintain

the vertical beam position. Then there are a series of foils that are used to control

the number of x-rays hitting the detectors. If the flux is too high, the detectors

can experience saturation and non-linearities. Using the foils increases the relative

amount of higher harmonics as lower energy x-rays are more strongly absorbed. Then

the beam goes through the incident slits, the final slits, which are used to control the

beam shape. Next is an ion-chamber, which is used as the monitor.

Finally, the beam hits the sample, which is mounted in a cryostat on an Huber 8-

circle goniometer. The photodiode detector measures the x-rays that are transmitted

through the sample. In addition, there is a fluorescence detector, which is energy

resolved.

All K-edge dichroism measurements were taken on an underdoped sample of

Bi2212 with T, = 82K and T* ~ 200K. The sample, shown in Fig. 5-5 is 19 pm

thick. Diffraction revealed the sample is monodomain in terms of the superlattice

modulation.

5.3 Changing polarization

The x-rays coming out of the synchrotron are always horizontally linearly polarized

(E in the horizontal plane.) To control the polarization, we use a phase retarder. In

the x-ray regime, this is accomplished via effects derivable from dynamical diffraction

theory, as originally proposed by Belyakov and Demetrienko[27]. Just off of Bragg

scattering, dynamical diffraction theory shows that there is a difference in the index
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Figure 5-5: Photo of Bi2212 sample. T, = 82K and T* ~ 200K.

of refraction for 7r versus a- polarized light. This difference changes quickly around

the Bragg peak and stabilizes into a broad plateau. For a given angular offset from

the Bragg condition, the phase difference between 7r and o light is determined by the

thickness of the crystal.[44, 43, 421

If the Bragg reflection occurs at 45 degrees to the polarization vector, the difference

in the indices of refraction induces a polar type of rotation about the Poincare sphere.

When the thickness of the crystal is such that the plateau corresponds to a phase

difference between the two axes of wr/4, the phase retarder is referred to as a 1/4 wave

plate.

Figure 5-6 shows how a phase retarder can induces circular polarization from linear

incident light. Figure 5-6 (B) shows schematically the different indices of refraction

causing a fast and slow axis. The incident x-ray are directed into the page and the

red line denotes the incident polarization.The offset determines which axis is fast, and

which is slow.

Figure 5-6 (A) shows theoretical calculations made by Daniel Haskel for a 180Pm

silicon crystal, which is a quarter wave plate for energies near the Cu K edge. The

phase difference caused by a small offset from the (111) Bragg reflection for 8.995 keV,
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Figure 5-6: (A) Calculations made by Daniel Haskel of the theoretical degree of

circular polarization as a function of offset in microns from the (111) Bragg peak of

180pm silicon. The sign P, reflects the helicity of the circularly polarized light. (B)

Schematic showing the relationship between the indices of refraction. The red line

represents the linear polarization of the incident x-rays, which are directed into the

page.
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which is the Cu K edge in BSCCO, is calculated and transformed into the degree of

circular polarization, P, (see Eq. 4.12.) In principle, the offset should be rotational.

However, due to the small nature of the angular offset, this is accomplished by making

sub-micron adjustments in location using piezos. Theoretically, an offset of 0.057

degrees would yield perfect circular polarization. Because of divergence of the beam,

however, the true polarization varies from the theoretical calculation. [7] Additionally,

because of the rapidity with which the polarization changes below this value and the

difficulty of achieving such consistent fine control of the piezos, we go above this value

to 0.080 degrees to achieve a high degree of polarization with stability about small

misalignments and divergences. Driving an oscillation between 0.080 degrees with a

square wave would produce x-rays alternating between left and right handed helicity

with P, of approximately 0.91.

It would be possible to obtain vertical polarization with a single phase retarder

that is twice as thick. Instead, we do so with two 1/4 wave plates like described above.

This is done because it allows for both rapid switching between vertical and horizontal

polarization and provides for more similar intensities between the two polarizations.

In terms of a Poincare sphere, vertical polarization can be obtained by making

two identical polar rotations of 90 degrees. Each rotation, by itself, would turn

a horizontally polarized beam to circularly polarized. Combined, they switch the

polarization all the way to vertical. When the same two phase retarders rotate in

opposite directions, the beam remains horizontally polarized (e.g. the first phase

plate turns horizontal polarized to circular, and the second rotates it back.) Thus

rapid switching can be achieved through the same procedure of driving one phase

plate while the other is stationary.

For our measurements of linear dichroism, we used a phase plate that had not been

well characterized before. In order to do quick checks of the polarization, we used

two diode detectors placed after the phase plates. The one diode is horizontally to

the side of the beam; the other is directly below. A small piece of aluminum is placed

into the beam. The x-rays induce Thompson scattering. Horizontally polarized light

will preferentially induces vertical scattering and thus the vertical diode will see more
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Figure 5-7: Measurement of the Thompson scattering from aluminum as the phase

plates theta angles are scanned. The horizontal (vertical) diode measures maximal

intensity when x-rays are vertically (horizontally) polarized. In (A) and (B), each of

the two phase plates are individually scanned. The width between the two vertical

polarization peaks (horizontal polarization minima), as shown in the black bar, is

approximately the same as the angular offset from the Bragg condition to obtain

circular polarization. In (C), the first phase plate produces circularly polarized x-

rays and the second phase plate is scanned. The black bar shows the amplitude of

oscillation necessary to obtain vertical and horizontal polarization.
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intensity. Similarly, vertically polarized light will preferentially induce horizontal

scattering and thus the horizontal diode will see more.

The result of these calibration scans are shown in Fig. 5-7. When the horizontal

(vertical) diode has maximal intensity, the light is predominantly vertically (horizon-

tally) polarized. Fig. 5-7(A) and (B), are theta scans of individual phase plates. The

center (minima) of each scan is when the phase plate satisfies Bragg scattering. The

width between the two vertical polarization peaks (horizontal polarization minima)

is approximately the same as the angular offset from the Bragg condition to obtain

circular polarization. In Fig. 5-7(C) the first phase plate is set to produce circu-

lar polarization while the theta angle of the second phase plate was scanned. Piezo

crystals were set to oscillate at the width between maximally vertical and maximally

horizontal for linear dichroism scans.

5.4 Normalization and Signal Intensity

Absoprtion process leads to attenuation of the x-rays as defined by

I = 10 e-Y (5.1)

where I is the final intensity, 1 is the initial intensity, 1y is the absorption coefficient,

ant t is the thickness. Experimentally, we measure the initial intensity through a

monitor, which is a thin solid-state detector and the final intensity, a thick solid state

detector. To determine the absorption coefficient, we have

Io(monitorN
pt = log (-I = log + cons. (5.2)

I detector

where the constant contains all the non-physically relevant quantities such as differ-

ences in gains and detector efficiencies. The left hand side of the equation includes

the thickness of the sample. Though this can be measured, a more standard way to

display the data is to scale and normalize the data.

To normalize the data, we follow the standard procedure for dichroism measure-
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ments, which is shown in Fig. 5-8. The exact energy of the absorption edge is defined

as the maximum of the first derivative. For elemental copper, this is 8.979 keV. For

BSCCO, we measured the edge to by 8.995. This sort of edge shift is typical for

copper in oxide materials.

The pre-edge and post-edge regions are fit to a line. The pre-edge absorption

is the absorption from all other process in this energy region other than the copper

K-edge. The post-edge region consists of absorption processes that include K-edge

excitations, but the excited electron is no longer probing unoccupied atomic orbitals

of the copper atoms. This is shown in Fig. 5-8(B) The difference between these two

fits at the edge is scaled so that the edge jump to 1. This scaling is equivalent to

what the measured data would be if the sample thickness was I/P at the edge. All

presented absorption data has the pre-edge fit subtracted off and scaled. The final

result of this normalization procedure is shown in Fig. 5-8(C).

In principle, absorption data for a known thickness can be used to determine the

absorption cross-section as a- =[ pt. However, in practice, determining the absolute

intensity is quite challenging. The biggest difficulty is accurately fitting and extrap-

olating the pre and post edge regions. By performing this over a series of absorption

scans, we see variance over the scale factor for the edge jump on the order of 10%.

Thus all numerical values in our absorption are only correct within that systematic

error on the normalization. All of our data are normalized identically and so can be

directly compared.

The most physically relevant expression of the dichroism is

Ap() = W)(5.3)
fadge p+(w) + p- (w)dw(

where the integral in the denominator is over the entire edge. This form necessary to

apply sum rules to the dichroic signal. Conventionally, it is shown as

Af(W) = P+(M) P- (W) (5.4)
+(Wedge) + P-(Wedge )
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Figure 5-8: Demonstration of the normalization procedure. (A) shows the numerically

calculated derivative from the absorption data. The edge is defined as the maximum

of the first derivative, as shown in solid red line. (B) shows the raw absorption data

with linear fits to the pre-edge and post-edge regions. The difference between these

extrapolated fits at the edge defines the edge jump. The data are scaled so this jump

is equal to unity. The final absorption, shown in figure (C) is the raw data, minus

the extrapolation of the pre-edge and scaled.
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where the denominator denotes the edge jump. Since we have normalized this to be

1, the denominator is exactly unity. We follow convention and show our dichroism as

A/ItDichroism = (1+ - t (5.5)

5.5 K Edge Circular Dichroism Results

For circular dichroism measurements, the single phase plate was driven with a 13.1

MHz square wave. The log of x-ray detector and monitor was fed into a lock-in

amplifier. Fig. 5-9 shows a representative scan for incident x-rays parallel to the c

axes. The red data shows the average signal, which corresponds to the absorption.

The blue show the signal that oscillated at 13.1 MHz and is the dichroic signal.

Both the dichroism and absorption have been normalized. The error bars are from

estimates of statistical fluctuations from counting statistics only and, for the dichroic

signal are roughly the size of the markers. For the absorption, the statistical fluctuate

are negligibly small as count rates were thousands of counts per second.

Before the copper edge there is no dichroic signal. Slightly below 8.99 keV is a small

positive bump, followed by a small dip. Right near at the edge is a large positive peak

and a negative valley. In the post-edge region, the features were not as reproducible

and are obscured by changing backgrounds, which are not fully characterized. The

one anamolously high point at 9.017 is likely from Bragg scattering of an optical

element or detector.

Fig. 5-10 shows a schematic of the alignment of the crystal relative to the labo-

ratory frame. In order to eliminate the possibility that the signal we measured was

truly circular dichorism, it was necessary to measure the dependence of the signal on

rotation about the c axis. To be precise with our orientation, we aligned the crystal

with diffraction. We introduce the $ to denote the azimuthal angle for rotations that

preserve the x-rays incident along the c axis. We defined VL = 0 when the crystal a

axis is horizontal in the lab frame and the b axis is vertical. V' then denotes the angle

between the crystal a axis and the laboratory x axis such that V) = 90 corresponds
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Figure 5-9: Plot of a typical dichroism scan taken with a lock-in amplifier. The

phase retarders are driven with 13.1 Hz square wave. The absorption, shown in red

on the right scale, is the time averaged over each energy step. The dichroism is

measured from the lock-in amplifier and is shown in blue on the left scale. The most

conspicuous feature of the dichroism is small down turn at 8.993, a sharp positive

peak at 8.995 keV, and a negative peak just below 9.00 keV. Statistical errors from

counting statistics are small relative to the point size.

100



to a 90 degree rotation about the c axis, placing a vertical and b horizontal.

Additionally, we can measure the polar dependence of the signal. Such a rotation

is accomplished by a 0 motor rotation, which rotates about the horizontal axis. For

polar scans, the incident x-rays are no longer along the c axis.

In Fig. 5-11, the dichroic signal at 4' = 45 and 0 = 90 are compared. As Bi-2212

is orthorhombic, any structural linear dichroism is expected to be maximal 4' = 90,

which directly compares the absorption along the orthorhombic directions. As light

polarized along the (110) or (110) directions can be equally decomposed to light along

the a and b axes, the linear dichroism at 0 = 45 is expected to be minimal. As shown

in the figure, the is almost no dichroic signal at 4' = 45, which is suggests the signal

seen at V' = 90 is linear in origin.

In order to confirm the linear origin of the signal, we mapped out the full azimuthal

rotational dependency. To asses the intensity of the signal, we created an integrated

intensity measure, defined as

/8.9975 9.003

Iintegrated = - 8.992 Apt(hw) dw + 18.9975 Apt(hw) dw (5.6)

This is accomplished in arbitrary units by summing the data points in the integration

regions. Because the regions are the same size, the measure is invariant to a constant

background. Fig 5-12(A) shows the regions of integration. Fig 5-12(B) shows the

intensity measure of dichroism as a function of azimuthal angle. Errors are from

counting statistics only. The curve is a fit to cos(24), which is the expected depen-

dency for linear dichroism. The success of this fit is indicative of linear dichroism.

For 4' = 45 at 30K, there is a small bump at 8.995keV, which is possibly from

XNCD. The azimuthal dependence of a mixture of XNCD and linear dichroism should

follow a sinusoidal plus constant dependency. A fit to such a model to the integration

data does not lead to a constant value that is statistically significant from zero, which

demonstrates that there is no XNCD signal on top of the linear dichroism.

Additionally, to test whether this signal is from truly circular dichroism, we in-

vestigate the signal as a function of temperature, shown in Fig. 5-13. At both 60K,
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Figure 5-10: The majority of measurements were taken with the x-rays injected par-

allel to the crystallographic c-axis. (A) shows this schematically. The laboratory axes

are such that the x-rays propagate along the laboratory y-axis. When the crystal is

aligned with 0=0, the crystallographic b-axis is along the laboratory z. The V' ro-

tation axis is along negative y, such that when 0=90, the a-axis is along laboratory

z. (B) shows what is meant by a polar rotation, for which the x-rays are no longer

parallel to the c-axis.
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Figure 5-11: Comparison plot of 0 = 45 and 0=90 dichroism. The rotational depen-
dence of the peaks in the dichroic signal precludes a difference between absorption of

left and right-handed circularly polarized light as being the source.

which is still below Tc, and 100K, which is still below T*, it is possible the same

bump exists, but it the affect is clearly small relative to the statistical and systematic

noise. From this data as well as the azimuthal data, there is no evidence for XNCD.

It is possible it exists, but could only be measured with improved signal-to-noise.

5.6 K Edge Linear Dichroism

In addition to the data with circularly polarized light, we studied the linear dichroism.

Unlike for the circular measurements, we did not do a full diffraction alignment.

We only aligned the c axis by finding (OOL) diffraction peaks. This allows us to

guarantee the x-rays are incident parallel to c, but the in-plane alignment is done

by eye, estimated to e accurate to t 3 degrees. For all measurements, we present

normalized dichroism measurement of vertically polarized light minus horizontally

polarized light. The orientation is the same as defined in Fig. 5-10. Thus, at V) = 0,

the linear dichroism is measuring the difference in absorption between (100) and (010);

at 0 = 45 it is the difference between (110) and (110).

Fig 5-14 shows the dichroism at 30K for linear x-rays incident along the c axis,
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Figure 5-12: To systematically investigate the azimuthal dependence, we created a

integrated measure of the two key peak features. In (A), the dichroism is shown when
the azimuthal angle O is equal to 90 degrees. The two peaks are highlighted in orange
and green. The integrated measure come from the sum of the data points in each
region, with the orange data counting negatively. The azimuthal dependence of the
integration are shown in (B). The green line is a fit to cos 20.
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Figure 5-13: Temperature dependence of O = 45 circular dichroism. Different tem-

peratures are vertically offset for clarity. In the 30K scan, there is a slight bump at

8.995keV. It is possible this is from truly circular dichroism. However, it does not

appear at any other temperatures, even those below T, and T*. If there is any circular

dichroism, it is small relative to our statistical and systematic noise.
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Linear dichroism measurements at 30K for several different angles (de-
flipping of sign of the sign of the two peaks at 8.99 and 8.995 keV at
expected for linear dichroism.

105

0.006IF

S:3

C.)

I ~ W

I-

0.004

0.002

0

-0.01

-0.02

030K A 200K060K

-A AAik A



for several different azimuthal angles. The location and shape of the main peaks, at

8.995keV and 8.999keV is the same as seen with circularly polarized light. This clearly

shows that the signal is driven by linear bleed-through. The azimuthal dependence

appears to follow the expected behavior for linear dichroism: it decreases near zero

at 4' = 45 and the data for 4' > 45 is opposite in sign from data for 0 < 45.

More quantitatively, the azimuthal dependence can be studied by using the inte-

grated intensity measure defined in Eq. 5.6. This is shown in Fig. 5-15. The error

in the integrated intensity comes from the estimate of x-ray count fluctuations only.

The integrated intensity is fit to cosine function with an amplitude and offset. The

data match the fit line remarkably well. The error on the offset is really driven by

the lack of precision in alignment, which we estimate to be ~3 degrees. Within this

error, the offset is zero.

This is a significant distinction from what is seen in THz spectroscopy on YBCO,

which sees birefringence and dichroism that is about 10 degrees offset from the sym-

metry axes and necessitates a breaking of C4 and mirror symmetries. The polarization

rotation angle is maximal when the electric field is about 35 degrees rotated from the

Cu-O bond direction. Multiple coexisting effects along different high-symmetry direc-

tions are likely the cause of the maximal signal being off a symmetry direction. The

real part of the rotation angle with electric field angle # is related to the dichroism

between 0 45. Therefore the maximum dichroism is seen 10 degrees rotated from

the Cu-O bond. [61] We see dichroism maximally exactly along the orthorhombic a

and b axes, which is 45 degrees rotated from the Cu-O bonds. Beyond the specifies

of the material, there are key physical differences to the experimental measurements.

First, K-edge dichroism a local probe and copper specific. Second, it sensitive only

of the unoccupied states and predominantly only the p states as the excited election

comes from the copper Is core states. THz spectroscopy is sensitive to affects in both

the itinerant valence and conduction bands of all orbitals from all the elements in the

system.

To determine if the linear dichroism is related to the pseudogap, we investigate

the temperature dependence of the signal. Fig. 5-16 shows the dichroism at various
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Figure 5-15: In (A), the dichroism is shown when the azimuthal angle @b is equal to

0 degrees.The integration regions highlighted in green and orange are the same as in

Fig. 5-12. The azimuthal dependence of the integration are shown in (B). The green

line is a fit to cos 2(0 - 0o). The fit value of V/o is 0.07 0.67. As the crystal was not

fully diffraction-aligned, the true error bar is from the ability to align the crystal by

eye, and is likely ~3 degrees
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temperature dependence.
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temperatures at (A) V) = 20 and (B) V' = 0. As seen in the raw data, there does not

appear to be any significant change as a function of temperature at these orientations.

A more thorough temperature investigation was performed at 4' = 0, which is

where the maximal signal is seen. The data are shown in Fig. 5-17. For each scan,

the pre-edge region is fit to a constant background and subtracted off. The primary

dip and peak features, highlighted in orange and green, are seen at all temperatures.

Using the same integrated intensity measure as before, we can try to investigate the

signal more quantitatively. This is shown in the blue data in Fig. 5-18(B). This simple

measure shows a scattershot of temperature dependence. In fact, the dominant affect

is actually the correlation with when the data were taken: earlier data had a higher

integrated intensity than later data. This suggests that there was a systematic change

to the background as a function of time. The changing background is apparent in the

data in Fig. 5-17. The next level correction is to add a linear term to the background.

This is accomplished by creating a line connecting the data point right before the

orange integration regions starts to the data point right after the green integration

region ends. This is shown in red in (A). The integrated intensity after accounting

for this changing linear term is shown in yellow in (B).

After accounting for a changing linear background, it appears that there might

be a slight decrease in integrated intensity as a function of temperature. At this

point, however, the data are insufficient to make any firm conclusions. Follow-up

measurements are needed. In particular, it would be very useful to compare the

intensity at each temperature at 0 = 0 and 0 = 90 as the true signal should be

inverted while the background intensity would change only from small changes in the

region of the sample irradiated by x-rays.

The intensity of the in-plane linear dichroism is surprisingly high. Though the

crystal is orthorhombic, and so linear dichroism is expected, the local environment

around the copper atoms is typically thought of and treated as tetragonal at the

copper sites. Our measurements show significant deviation from tetragonal symmetry.

Because our signal is maximal precisely at 4' = 0, we see no evidence for breaking of

mirror symmetries.
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5.7 Polar tilt data

In addition to measuring the dichroism with x-rays incident along the c axis, we can

introduce a polar tilt. This is done at ip = 45 degrees so there is no signal from

the in-plane dichroism discussed above. These measurements were taken with both

circularly and linearly polarized x-rays.

Linear dichroism between the c axis and the in-plane direction should scale as

IDichroism(0) =0 Sin2 (0) (5.7)

where 9 is the polar tilt and Io is the full dichroism measured for x-rays incident on

(110) and linear polarizations along (001) and (110).

Some theoretical models predict non-trivial XNCD, but due to symmetries of the

crystal other than inversion, the signal is precisely zero for x-rays incident along the

c axis.[26] For circularly polarized x-rays, the scaling seems close to accurate. This

suggests that the signal seen is the result of linear bleed through and not intrinsic

circular dichroism. This conclusion is bolstered from the similarities in the raw data

dichroism location for circularly and linearly polarized x-rays. The scaling for the

linear x-rays matches very well. It should be noted that the polar tilt changes the

effective thickness of the sample. Thus, the normalization must be done independently

for each polar tilt. This is likely the dominant affect that reduces the precision of the

scaling.

Finally, it is useful to compare the polar tilt data to the previous experimental

data from Kubota et al.1541 This data scaled is plotted on top of the data in Fig. 5-

19(B). The location and width of the peak seen are fairly similar. The additional

structure we measure for linearly polarized x-rays is likely due to our increased signal

to noise as well as slight differences in normalized intensities in the pre-edge region

from measuring in transmission as opposed fluorescence, which was used by Kubota.

In order for the Kubota data to be approximately the same intensity as our scaled

data with circularly polarized x-rays, we had to scale it by a factor of 525. This scale

factor the same as 1/ sin2 (2.5). Thus, we would have measured very similar signal
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Figure 5-19: Dichroism from a polar rotation. Data is taken with 4 = 45, so there

is no in-plane dichotic signal. (A) and (B) are data from circularly polarized x-rays.

(C) and (D) are with linearly polarized x-rays. In figures (A) and (C), the dichroism

is shown with a constant pre-edge background subtracted. In figures (B) and (D),

the data are scaled by dividing by sin2 (o), where 0 is the polar rotation angle. This

is the geometric scaling expected for dichroism between the c axis and the in-plane

(110). On the same plots is the peak from the work by Kubota et al.[54] The Kubota

data is scaled to match intensities. The multiplicative factor to match the intensity

of circularly polarized data is consistent with the intensity we would measure with a

~2.5 degree polar misalignment.
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as reported by Kubota if we had a 2.5 degree misalignment. This fact, combined

with the lack of any detectable XNCD signal suggests that misalignment is likely the

source of reported XNCD.

5.8 Intensity and Polarization Control

It is clear from above that the measured dichroism when using circularly polarized x-

rays comes from imperfect polarization and significant linear bleed-through. In Fig. 5-

20 we plot the dichroic signal from both circular and linearly polarized x-rays.For

linearly polarized x-rays, the data are taken at x = 90. For comparison with circularly

polarized x-rays, we chose to use X = 0 data instead of x = 90 because the counting

time was long here. The circularly polarized dichroism was inverted, to account for

the different orientation, and scaled by a factor of 4. The scale factor is a measure

of the linear bleed-through compared to the degree of linear polarization switching.

This factor is remarkably low and suggests that polarization control using phase

plates leads to significant systematic errors and spurious conclusions from incomplete

polarization.

5.9 Conclusions

From our investigation of copper K-edge dichroism in the pseudogap of Bi-2212, we

discovered no evidence of the XNCD signal. Using circularly polarized x-rays to

measure the dichroism under a polar tilt, such that the x-rays were incident off the

c axis, we obtained a signal that had the same peak locations and shape as the

reported XNCD signal reported by Kubota et al. [54] We showed that this signal is in

fact the result of linear x-ray bleed through. As a result, we were able to determine

that an angular misalignment of only -2.5 degrees would have given us a signal of

comparable magnitude to the previously observed data, which was thought to be

XNCD. We therefore conclude that a misalignment is the most likely source of their

signal. We do not, however, see any temperature dependence to this dichroism. This is
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by a factor of 4. This scan is also inverted for ease of comparison of the intensities.

The scale factor of 4 demonstrates that even with significant effort and care to maxi-

mize the degree of polarization in circular dichroism measurements, significant linear

dichroism is measured.
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in disagreement with the work by Kubota et al. We hypothesize that their alignment

coincidentally changed as they swept in temperature that gave a specious result.

We also measure a strong in-plane linear dichroism. This necessitates significant

deviation from local tetragonal symmetry at the copper atoms. Because the signal is

maximal when the E field is exactly along the orthorhombic a and b axes, there is no

evidence for breaking of mirror symmetries, as is necessitate by the THz dichroism

measured in YBCO.[61] Additionally, the THz measurements sees maximal dichroism

near the Cu-O bond, while the K-edge linear dichroism is maximal 45 degrees rotated

from these bonds.

Finally, we compared the intensities of linear dichroism measured with x-rays with

a high degree of linear polarization and with a high degree of circular polarization.

The resulting signals were only different by a factor of 4. This suggests that current

technology makes the removal of linear affects when measuring circular dichroism

challenging. Therefore, it is vital that any investigation of XNCD ensure that the

existence of any signal is seen at all azimuthal angles. If XNCD and linear dichroism

are simultaneously present, the azimuthal dependence should be sinusoidal with a

constant offset. A more promising alternative way to eliminate the possibility of linear

affects would be to look for XNCD in the pseudogap of truly tetragonal crystals.
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