
The Role of Cooperation and Dispersal

in the Evolution of Antibiotic Resistance
by

Tatiana Artemova,

ARCHNES

JUN 302015

LIBRARIES

B.S., Moscow Institute of Physics and Technology (2009)

Submitted to the Department of Physics

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

2015 Massachusetts Institute of Technology. All rights reserved

Signature redacted
Signature of Author ...............................................-................

Department of Physics

Signature redacted
May 18, 2015

C ertified by ................................................ . ..-...----- .
.... -Jeff Gore

Professor of Physics

Thesis Supervisor

Accepted by..............................................
Signature redacted.

Nergis Mavalvala

Associate Department Head for Education



The Role of Cooperation and Dispersal
in the Evolution of Antibiotic Resistance

by

Tatiana Artemova,

Submitted to the Department of Physics
on May 21, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Physics

Abstract

Understanding mechanisms of evolution under in real biological systems is a fundamental problem.
Natural selection is one of the mechanisms that drive evolution. Due to the natural selection, phenotypes
with higher fitness than the rest of the population increase in frequency and eventually dominate the
populations. In real biological systems due to interactions between individuals within a population, it is
not always obvious how natural selection manifests itself. Here we consider two types of interactions -
cooperative antibiotic break down and spatially expanding populations. In each of the cases predicting
which phenotype is the most fit and the patterns corresponding to selection of this phenotype could be not
straightforward.

(1) Bacterial antibiotic resistance is typically quantified by the minimum inhibitory concentration
(MIC), which is defined as the minimal concentration of antibiotic that inhibits bacterial growth
starting from a standard cell density. However, when antibiotic resistance is mediated by
degradation, the collective inactivation of antibiotic by the bacterial population causes the
measured MIC to depend strongly on the initial cell density. Given this dependence, the
relationship between MIC and bacterial fitness in such cases is not well-defined. Here we
demonstrate that the resistance of a single, isolated cell-which we call the single cell MIC
(scMIC)-provides a superior metric for quantifying antibiotic resistance. Unlike the MIC, we
find that the scMIC predicts the direction of selection and also specifies the antibiotic
concentration at which selection begins to favor new mutants. Understanding the cooperative
nature of bacterial growth in antibiotics is therefore essential in predicting the evolution of
antibiotic resistance.

(2) During the expansions of natural populations, new phenotype can emerge. If it is fitter than the
rest of the population, it will take over. However, the exact spatial patterns of this process are
unknown. Here we show that for a wide class of models the fraction of the fit mutant should
increase exponentially. We also observe this pattern experimentally by observing bacterial
populations expanding in soft agar, as well as connection between the steepness of the exponent
to the fitness difference.

Thesis Supervisor: Jeff Gore

Title: Professor of Physics
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Chapter 1. Introduction

In the second half of the nineteenth century Charles Darwin published "On the origin of species". Since

then there have been many studies exploring how natural populations evolve over time. In contemporary

interpretations of evolutionary theory, this is quantified by how the allele (i.e. specific version of a gene)

composition of population depends on time, and the functional form of this dependence is shaped by

several fundamental processes. Some of these processes have deterministic outcomes and others are

stochastic in nature. The approach to biological systems that seeks to understand these processes and their

outcomes and confirm their relevance in natural populations is similar physicists' approach of finding

laws governing matter and the universe.

One important mechanism of evolution introduced by Darwin is natural selection. It will play an

important role in both research projects described in this thesis. Since this thesis includes physicists as a

target audience, I will briefly introduce natural selection below. Natural selection is a process that

eventually assigns higher probabilities of survival to the individuals with higher fitness. Every individual

has a fitness that is a measure of reproductive ability - the more an individual is likely to pass its genes to

descendants, the higher the fitness. Fitness is a function of the environment the individual is put in - it is

possible (and often happens) that in one environment individual A is more fit than individual B, and in

another environment individual B is more fit than individual A. The word 'environment' is used in a

general sense: it could be temperature, humidity, as well as presence or absence of certain food sources,

individuals of the same or different species or even a previous history of the lineage in question.

The problem of the outcome of natural selection is reduced then to the problem of defining fitness of each

individual in a given environment, and then predicting the outcome of the natural selection is trivial: the

fittest wins (at least when stochastic effects can be neglected). This is why there has recently been a

significant body of research studying fitness landscapes that map genotypes or phenotypes to

fitness(Weinreich et al, 2006)(Tan et al, 2011). These studies often do high-throughput data processing to

answer the questions of what are the possibilities of a given organism to increase its fitness through the
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process of mutation, which is another important process in evolution theory that creates the variation

which is necessary for selection to be effective. While fitness can be measured though competition with

some reference strain, in practice it involves tagging all the strains which complicates the process.

Usually some characteristic of the growth process without direct competition is used as a proxy for

fitness, but different characteristic should be used in different environments.

To study evolution in the lab, microbial populations are commonly used for several reasons. First of all,

usually, the smaller and simpler organism is, the smaller is its generation time. Reproductive advantage

(or disadvantage) can only manifest itself on time scales much larger than the generation time. Therefore,

to make experiments in the lab feasible for incremental hypothesis testing, it is important to work with the

organisms that reproduce fast.

Second, microorganisms tend to have small genomes as compared to large animals. For example, the

genome size of the bacterium E. Coli is 4.6 million base pairs, the genome size of the budding yeast S.

cerevisiae is 12.2 million base pairs, and for comparison, the human genome is 3.2 billion base pairs. The

microorganisms mentioned above have not only been sequenced, their genes have been identified and, for

many of them, their function is understood.

Third, the organisms themselves and the experimental procedures on them are relatively simple. The

organization of the interaction with the nutrients in the media is quite simple as compared to the

mammals, for example. Microbes do not have a nervous system, for example, which makes their

responses to the environment simpler and therefore easily interpretable.

Fourth, which is really combining the second and third point: microbial organisms are relatively amenable

to genetic manipulation. The bacterium K coli, for example, is able to carry plasmids (extra pieces of

cicular DNA), which can be put inside a given lineage within hours. It is also possible, using

microbiological techniques, to insert a gene in a plasmid. Therefore, bacteria can be relatively easily made
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to carry a certain gene. This is all very important for evolutionary studies because identifying the

influence of a given mutation can often require some artificial engineering of a mutant.

One very prominent example of experimental evolution of microbes is an ongoing long-term evolution

experiment by R. Lenski started in 1988. With over than 60000 generations of . coli the researchers are

still observing an increase in fitness, suggesting that the fitness can be increased essentially without

bound(Wiser et al, 2013). This is an interesting and not obvious result. There are also many other

conclusions that have been made from the data, some of which are hoped to be universal statements about

evolution and not specific to E. coli in the environment they use(Barrick & Lenski, 2013). Therefore,

evolution of microbes in the laboratory is useful for discovering general principles of evolution that can

afterwards be tested on other organisms or in other conditions to verify the generality.

In the research projects presented in this document we also use E coli as a model organism. E coli is a

single-celled prokaryotic organism, rod shaped, a few micrometers in length and 1 micrometer in

diameter. Most E. coli strains do not cause disease in humans, but some of the strains can cause diseases

such as urinary tract infections, gastroenteritis, to which antibiotics are usually used as a treatment. In this

document, we often grow bacteria E. coli in an antibiotic environment. Therefore, fitness most of all

depends on antibiotic concentration and the ability of bacteria to tolerate a given antibiotic concentrations.

We use the described experimental system to study evolution. It is essential that in order for natural

selection to act, there should be some variation in genes, i.e. diversity. Therefore, the population should

have some number of individuals that is greater than one. Realistically, for bacteria it is usually

population sizes of millions and tens of millions within a centimeter distance from each other. Inevitably,

at such densities, bacteria interact with each other. The interaction usually happens through release of a

chemical that other bacteria can sense and sometimes even genetic material (plasmids) can be released,

and other bacteria can accept it and incorporate it into their genomes. The released chemicals can make
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life of other individuals better, worse or not influence their fitness. When the life of the consumer of the

chemical becomes better, the interaction is called cooperation.

Cooperation in nature can be challenging to understand. After all, production of the chemicals is costly

since it requires resources that otherwise could be used to increase reproduction rate and therefore

decreases fitness of the producing individual somewhat. On the other hand, the acceptor of the chemical

benefits from it in some way, which means that its fitness is increased. Therefore, through natural

selection, the producer of the public goods should become extinct because it has lower fitness as

compared to identical individual who do not produce this public good.

There are many examples of cooperation in nature. The social organization of ants colonies, bee swarms

and wasp nests lets very few individual reproduce, while other individuals produce and provide resources

that makes the reproduction of the selected individual possible. While at first glance it may seem that

nonproducing individuals should become extinct through the process of natural selection, the selection

acting on the genes makes the genes of even non-reproducing individuals pass to the next generation, a

selection type called kin selection. Also any multicellular organism (human for example) can be

considered as a cooperative system of its cells.

Cooperation has been studied extensively both theoretically and experimentally in the lab(Axelrod &

Hamilton, 198 1)(Nowak, 2006)(Gore et al, 2009). Various theories and experimental designs seek to

understand under which conditions can cooperation emerge and when and why the so called free riders-

who do not cooperate-dominate the system and destroy cooperation. A game theoretical approach is a

very common way to conceptualize benefits and costs for a unit that selection acts on. Microbes and

viruses are usual organisms to test the analysis generated by these models and to gain new insights into

many ways in which cooperation manifests itself in the real world.
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While it is interesting to understand how cooperation emerges, it is a fact of life: it exists. It makes

studying cooperative systems complicated because the population is not anymore a set of identical

individuals. The behavior of the population as a system cannot be completely understood by mere

observation of the behavior of one individual. Returning to multicellular organisms as an example of a

cooperative system, a human is more complex than her blood cell. In some situations observing one

individual is a misleading way to quantify fitness, but there are also situations (one presented in chapter 2)

when observing dense population may be misleading and fitness can only be quantified for an individual

in isolation.

Many real populations do not live in a well-mixed environment. While locally, at some small territories,

their evolution may be well described by a well-mixed model, single individuals always migrate and

colonize new territories. As a result, more distant individuals do not share resources as much and

therefore compete less. Since natural selection acts locally, spatial organization might influence selection

patterns in some way. On the other hand, some properties may stay universal and independent of the

peculiarities of the environmental landscape. This is what I will present in the third chapter of this

document.
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Chapter 2. Isolated Cell Behavior Drives the Evolution of Antibiotic

Resistance

Introduction

Predicting the evolution of antibiotic resistance in bacterial populations is a key challenge (Madigan et al,

2009), as the spread of antibiotic resistance has been of increasing concern worldwide(Normark &

Normark, 2002). Antibiotics are used in both the clinic and for agriculture, and in addition are produced

naturally by many organisms, meaning that antibiotics are present in diverse ecological environments at a

wide variety of concentrations(Martinez, 2008). To predict - and possibly prevent - the spread of

antibiotic resistance, we must understand the environmental conditions that select for an increase of

resistance and what determines the evolutionary fitness of resistant strains.

Antibiotic resistance in microbes is typically quantified by the minimum inhibitory concentration

(MIC)(Andrews, 2001) (Wiegand et al, 2008)(CLSI document M07-A9, 2012), which is defined as the

lowest concentration of antibiotic that will inhibit bacterial growth over a 20 hour period in cultures

starting from a standard initial cell density (Clinical & Institute, 2009). The MIC is sometimes used as a

proxy for bacterial fitness in the presence of antibiotics (Weinreich et al, 2006) (Tan et al, 2011) (Lee et

al, 2010), and in addition is thought to indicate the minimal antibiotic concentration at which there is

selection for increased resistance(Yeh et al, 2009) (Hermsen et al, 2012). Thus, the MIC plays an

important role in our understanding of the evolution of antibiotic resistance in bacteria.

However, while the MIC is sometimes considered a single value proxy for fitness, its relationship to

evolutionary fitness is often complicated. For P-lactam antibiotics, the oldest and most widely-used class

of antibiotics(Bonomo & Tolmasky, 2007), the MIC is frequently subject to the "inoculum effect": its

measured value is strongly dependent upon the starting cell density of the culture(Brook, 1989)(Fig. 1).

This occurs because resistance to beta-lactams is often achieved viahydrolytic inactivation of the
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antibiotic by resistant cells, which can benefit the entire bacterial population by causing overall depletion

of antibiotic (Clark et al, 2009) (Dugatkin et al, 2005). p-lactams are bactericidal and therefore any

bacteria that survive the treatment often go through the death phase. The dynamics of these populations

can be complex (Yurtsev et al, 2013)(Yurtsev et al, 2013), and since the MIC is sensitive to the initial cell

density, the relevance of a high-density MIC measurement to the evolutionary fitness of individual

bacteria is unclear(Goldstein et al, 1991).

In this chapter, we demonstrate that the MIC is in many ways a flawed metric for quantifying the fitness

of antibiotic-resistant bacteria, due to its dependence upon the cooperative growth dynamics between

cells. We find that measuring the direct benefit conferred by resistance for a single, isolated cell is a more

robust, meaningful, and useful way to quantify the fitness of a resistant bacterial strain. This single-cell

resistance is simply the MIC measured in the limit of low initial cell density, which we call the single-cell

MIC (scMIC). This quantity predicts both the direction of selection and the approximate antibiotic

concentration at which there is selection for increased resistance. Importantly, these two key predictive

properties of the scMIC are independent of the density of the bacterial culture in which selection occurs,

and thus the scMIC can provide valuable guidance for researchers and clinicians studying the evolution

of antibiotic resistance.

Results

Measurement of single-cell MIC

In this study, we use the p-lactam antibiotic cefotaxime and p-lactam resistant F. coli strains(Weinreich et

al, 2006) to quantify the evolutionary predictive power of the MIC. Each resistant strain expresses a

plasmid-encoded TEM P-lactamase enzyme, which can hydrolytically inactivate a wide range of

targets(Bush et al, 1995) (Jacoby, 2006), including the third-generation cephalosporin

cefotaxime(Stemmer, 1994) (Hall, 2002).
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Throughout the remainder of this chapter, we use the abbreviation "MIC" to describe the lowest

concentration of antibiotic that inhibits growth of a culture over 20 hours; this MIC is a function of the

initial cell density. We will denote the specific MIC value for the standard initial cell density (standard

density is 5X105 cells/ml) as the MIC*.

Consistent with previous measurements(Brown et al, 1981), we observed the inoculum effect in p-lactam

resistant E. coli TEM strains: the MIC often depends strongly on the initial cell density. In particular, the

MIC increases dramatically at high cell densities but plateaus at low initial cell densities. For example, the

MIC for . coli expressing f-lactamase TEM-20 varied by three orders of magnitude depending upon the

initial cell density. As the cell density decreased, the measured MIC asymptotically approached a limit,

which corresponds to the level of resistance of a single, isolated cell: the scMIC (Fig. Ib). Interestingly,

this is also the lowest antibiotic concentration that results in cell death at a wide range of cell densities

(Fig. Si). Based on these results, we standardized our measurements of the scMIC by using an initial cell

density of 500 cells/ml, a thousand times smaller than the standard MIC* initial cell density.

As a metric of the level of antibiotic resistance, the scMIC has several attractive qualities. First, the

scMIC can be measured in the same experimental setup as the MIC*, with the only change being a

decrease in the initial cell density. Moreover, because the MIC curve plateaus at low cell density, where

the scMIC is measured, scMIC measurements are also more robust against experimental errors in the

initial cell density. This asymptotic limit also makes it possible to measure scMIC without diluting to the

limit of single cells, thus avoiding stochastic effects associated with very small starting cell numbers.

scMIC is the MIC of a single cell.

To demonstrate that the scMIC truly measures the MIC of a single cell (not only in the limit of diluting to

single-cell density), we monitored the behavior of a single cell on the agar with various antibiotic

concentrations (Fig. 2a). Initially, single cells were scattered at low density on the agar surface. After 2
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hours, the cells growing at low antibiotic concentrations formed micro colonies, while those at higher

antibiotic concentrations grew as filaments if antibiotic concentration is higher than scMIC. Filament

formation has previously been observed in bacteria exposed to antibiotics(Yao et al, 2012)(Chung et al,

2009); filamentation leads to cell death and the failure to form colonies.

We compared the antibiotic concentration required to prevent colony formation with the scMIC measured

in liquid culture. These queantities should be equivalent: each colony observed on an agar plate develops

from a single cell that was able to reproduce in a given antibiotic environment. Encouragingly, we find

that the single-cell resistance measured on agair is within a factor of two of the scMIC obtained by the

liquid dilution method (Fig. 2b), with both quantities being at least an order of magnitude smaller than the

MIC*. The fact that very different experimental approaches yield similar quantities gives us confidence

that both methods are indeed quantifying the resistance of a single, isolated cell.

While the main method that we use to quantify the scMIC does not involve conventional single cell

experimental techniques, we believe that the name "single cell MIC" is accurate for the following

reasons. First, experimentally we observe the disappearance of the inoculum effect as the MIC curve

plateaus at low cell densities, where dilution prevents significant depletion of the total antibiotic

concentration. Second, this liquid dilution method agrees with a true single cell measurement - plating at

low density on agar. In this agar plating method every observed colony is a result of growth starting from

a single cell, so the presence of a colony is conditioned on the survival of a single cell in a given antibiotic

environment. Finally, we used microscopy to directly observe growth of single cells in a variety of

antibiotic concentrations and observed qualitatively different behavior below and above the scMIC value.

Selection starts at the scMIC even if cell density is high

Given that the scMIC of a strain is often significantly lower than its MIC*, an important question is what

antibiotic concentrations will lead to selection of one strain over another when two strains are in
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competition, i.e. which conditions promote the evolution of increased resistance. Antibiotic

concentrations below the scMIC of both competing strains are not expected to be strongly selective. A

mutant with a higher scMIC value than the background population gains a relative advantage when the

antibiotic concentration is at least the scMIC of the background population. At that concentration, the

background population will die but the mutant will not. As a result, below the scMIC of the reference

strain, the fractional composition of the bacterial population will not change overnight, while if the

antibiotic concentration is the environment is above the scMIC of the reference strain, the mutant will

rapidly increase in fraction (Fig. 3a,b). Importantly, this prediction should hold true even if the population

density is high and the overall MIC of the entire population is therefore higher than the scMIC of either of

the two strains.

We tested this prediction experimentally by directly competing what we call the reference strain (TEM-

20, scMIC 0.65 g/ml) with its high-scMIC mutant (8gg/ml, mutation E104K). In this experiment, the two

strains were labeled with plasmids expressing either yellow or cyan fluorescent proteins, thus allowing us

to measure fractions by flow cytometry; labels were swapped in replicates of these experiments (Fig. S2).

We found that indeed, selection favoring the E104K mutant begins in the vicinity of the scMIC of the

reference strain (Fig. 3b). Note that the cell density is high enough so that the MIC measured at this

density is higher than the scMIC of both strains. To demonstrate the generality of our claim that selection

starts in the vicinity of the scMIC of the background population, we confirmed that this was also the case

for competition between the reference strain and another mutant (A42G mutation , scMIC 1.6pg/ml) (Fig.

S3). Selection for a higher-fitness mutant therefore begins when the antibiotic concentration reaches the

scMIC of the background population, which is often an order of magnitude lower than the MIC* of the

population.

Following the logic in the previous section, the scMIC of a population naturally evolving in the presence

of antibiotics should increase over time, as long as the antibiotic concentration is high enough to exert a
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selective pressure. The scMIC is also expected to predict the antibiotic concentration where de novo

mutants with higher scMIC can arise. We performed laboratory evolution experiments at multiple

antibiotic concentrations both above and below the scMIC of the starting strain (Fig. 4). In these

experiments, we evolved six replicates of our reference-strain E. coli at four different cefotaxime

concentrations for ~100 generations (daily dilutions by 225X for 13 days, Fig. 4a). As expected from our

competition experiments, the cultures that were evolved at antibiotic concentrations lower than the scMIC

of the starting populations displayed no increase in the scMIC. In contrast, cultures that were evolved at

antibiotic concentrations higher than or equal to the ancestral scMIC displayed a significant increase in

resistance measured by the scMIC(Fig. 4b). Note that the effective cell densities at which the populations

were evolved are much higher than the density of the scMIC. To confirm the generality of these results,

we performed laboratory evolution on two other strains carrying different versions of P-lactamase, and

once again found that only the populations evolved at antibiotic concentrations close to or larger than the

ancestral scMIC evolved an increase in scMIC (Fig. S4).

In vivo relevance of scMIC

A reasonable concern is that the competition outcome and dynamics between bacterial strains could be

qualitatively different during growth inside a host. To explore this, we used the nematode worm

Caenorhabditis elegans, a widely used model host that can be infected and killed by a variety of human

pathogens (Paulander et al, 2007)(Moy et al, 2006)(Ewbank & Zugasti, 2011). C. elegans has been

proposed as a model system for tests of antimicrobial efficacy, with improved pharmacokinetics as

compared with traditional in vitro analysis(Moy et al, 2006), and may therefore be useful for assessing the

generality of antibiotic treatment-driven dynamics.

Briefly, synchronized adult C. elegans were fed on a mixture of 90% reference strain and 10% mutant

strain to establish a mixed gut community, and were then incubated in worm media containing varying

cefotaxime concentrations (Fig. 5a). After 20 hours of antibiotic treatment, we mechanically disrupted the
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worms to release gut-associated bacteria and measured the strain composition of E. coli by plating. These

experiments were performed at low temperatures (23'C) to prevent heat shock and death of the worms.

Consistent with our in vitro competition experiments described above, we found that selection for the

more resistant mutant (TEM-52) starts at the scMIC value of the less resistant background allele (Fig. 5b,

note that the scMIC of the reference strain, TEM-20, is different in these conditions (Bjbrkman et al,

2000)). Our key observation, that selection for increased resistance occurs at the vicinity of the scMIC

rather than the MIC*, is therefore valid in both direct liquid culture experiments and in the very different

environment of a simple animal host.

Model

We developed a simple model to better understand the inoculum effect and the evolutionary meaning of

the scMIC and MIC*. In this model, antibiotic diffuses into the periplasmic space of a bacterial cell to

inhibit cell wall synthesis. Resistant bacteria secrete the enzyme into the periplasmic space, where it

inactivates the antibiotic(Walsh, 2000) (Fig. 6a). At steady state, the flux of antibiotic into the periplasmic

space equals the rate of enzymatic inactivation. The resulting active antibiotic concentration in the

periplasmic space is therefore lower than the concentration outside of the cell(Zimmermann & Rosselet,

1977) (Fig. 6b). We assume that the division rate of the cell is a function only of the periplasmic

antibiotic concentration, which depends upon both the extracellular antibiotic concentration and the

enzyme kinetics. We experimentally found that for our TEM strains in cefotaxime, this growth rate

function can be approximated as a step function: cells divide at a normal rate until the antibiotic

concentration in the periplasmic space is above some value ac,, at which point cells die at a rate ~ 2hr-1

(Fig. 6c,6d, S1,S5).

In this model, the scMIC of a strain is the external concentration of antibiotic that gives rise to a

periplasmic concentration of acr,.. A nonresistant strain that cannot inactivate antibiotics has a periplasmic
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concentration of antibiotic approximately equal to the external concentration, suggesting that ari is

simply the scMIC of a sensitive strain. Therefore,

scMIC = aci I+ "Ma

"I C(KM + acr,)]

where C is the permeability of the membrane, and V,ax and KM are the Michaelis-Menten parameters of

the enzyme (the maximum reaction rate of the enzyme and the substrate concentration at which the

reaction rate is half of Vm respectively). Thus, within this model, a mutant strain with a more efficient

enzyme (higher V,, and/or lower KM) will have a higher scMIC. This equation has been proposed to

quantify MIC*(Nikaido & Normark, 1987), but it is correct only when the inoculum effect is weak and

scMIC is approximately equal to MIC*.

This simple model correctly predicts the relationship of the MIC to the initial cell density for reference

strain and the mutant (Fig. 6e). For both strains, there are two free parameters that describe the efficiency

of the particular version of the enzyme in hydrolyzing cefotaxime: the Michaelis-Menten parameters V,,

and Km. Our model also provides insight into the upper bound for the cell density that should be used in

the definition of scMIC. For the strains that we use, the density should be less than 104 cells per ml (see

Chapter 3 for the reasoning), which our proposed definition of scMIC indeed satisfies.

Our model agrees with the experimental finding that independent of initial cell density, selection favoring

the competitor with the higher scMIC will begin when the antibiotic concentration approaches the scMIC

of the less resistant strain (Fig. 6f). In our experiments, selection starts at even somewhat lower antibiotic

concentrations than predicted by our model (Fig. 3b), likely because this minimalist model assumes that

the antibiotic has no effect until the cell begins to die (see Fig. 6d); a gradual decrease in the growth rate

with antibiotic concentration would result in selection at concentrations below the scMIC. In either case,
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selection may occur at antibiotic concentrations that are orders of magnitude lower than the MIC*.

Our model also predicts that the strength of selection for increased scMIC will depend non-monotonically

on the antibiotic concentration, leading to the counter-intuitive effect whereby adding additional antibiotic

decreases the ability of a mutant with higher scMIC to spread against the background population (Fig. 6f).

This surprising prediction was also validated in both our in vitro and in vivo experiments (Fig. 3; Fig. 4).

The strength of selection decreases above the scMIC of the winning strain because the released enzyme

from the dying bacteria(Sykes & Matthew, 1976) hydrolyses antibiotic faster than the rate of antibiotic

hydrolysis within a cell. This effect can be understood within a framework of altruistic death, either

deterministic(Tanouchi et al, 2012) or stochastic(Ackermann et al, 2008), in which the death is favorable

for the population if the benefit from the released public goods is strong enough.

Finally, the model also successfully predicts that lower initial cell densities will experience stronger

selection (Fig. 6fS6). This is because lower initial cell densities will take longer to inactivate the

antibiotic, thus extending the window for selection during which the less-resistant strain experiences cell

death. On the contrary, the antibiotic concentration at which selection starts does not depend strongly on

the cell density. This makes sense since the periplasmic antibiotic concentration at the beginning of the

experiment is independent of the cell density. The cell density does, however, alter the temporal dynamics

of the antibiotic concentration over the course of the day, thus modifying the strength of selection

favoring the strain with higher scMIC. Although this simple model works well at low to moderate

antibiotic concentrations, it does not explain the behavior of the inoculum effect and selection curves at

high antibiotic concentrations. To account for both discrepancies, we can allow for degradation of the p-

lactamase enzyme in the model (Fig. S7).
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MIC*-scMIC relationship

In this system, cooperative resistance and the inoculum effect occur due to enzymatic inactivation of

antibiotics. The population's collective capacity to inactivate the antibiotic is expected to increase with

both cell density and the efficiency of the resistant enzyme. We therefore hypothesized that strains

carrying a highly efficient enzyme (and therefore showing high scMIC) would also have a large

difference between the scMIC and the high-density MIC*.

To characterize this relationship, we measured the MIC* and scMIC in cefotaxime for 16 . coli strains

with different versions of the TEM P-lactamase enzyme (Fig. 7a) (Weinreich et al, 2006). We found that

the inoculum effect is strong for all the highly resistant strains, with the MIC* often being two orders of

magnitude higher than the scMIC. However, at low levels of resistance, the MIC* and scMIC values are

nearly the same. Our model is able to explain this relationship between the MIC* and the scMIC by

assuming that all of the strains are equivalent except for variation in the Vmax of the P-lactamase enzyme

(though in vitro measurements indicate that both Vmax and KM are sensitive to mutations in the

enzyme(Philippon et al, 1989) (Wang et al, 2002)).

Although in general the MIC* increases together with the scMIC, we found some exceptions (Fig. 7a).

For example, the A42G mutant of TEM-20 has an MIC* that is almost four times larger than that of

TEM- 15 (64 ptg/ml vs 18 jig/ml; pair drawn in black in Fig. 7a). Nevertheless, our measured scMIC for

TEM-15 is if anything somewhat higher (1.59 pg/ml with 68% confidence interval (1.41; 1.78) vs 1.78

Rg/ml with 68% confidence interval (1.59; 2)). The MIC* and scMIC can have different orderings

because the MIC* reflects the cooperative hydrolysis of the antibiotic at high cell density (and often

scales with Vmax of the enzyme) whereas scMIC reflects the "selfish" hydrolysis in the periplasmic space

(and scales as the ratio of Vmax/KM for large enough Km). We expect this distinction to be relevant for any

resistance mechanism governed by enzymatic inactivation of a drug. Enzymatic inactivation has been an

observed mechanism of resistance against several classes of antibiotics, including P-lactams,
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aminoglycosides(Shaw et al, 1993) and macrolides(Leclercq, 2002), suggesting that these ideas may have

broad relevance in the study of antibiotic resistance.

Given that both the MIC* and the scMIC are intended to measure the level of resistance, this prompts the

question: which strain is favored in the presence of the antibiotic? More generally, does selection favor an

increase in MIC*, as is generally assumed, or does selection instead favor an increase in scMIC as we

argue here? We competed the two strains and found that the antibiotic selects for TEM- 15 (Fig. 7b),

suggesting that selection does indeed maximize the scMIC rather than the MIC*. To confirm that this

conclusion is not specific to this particular pair of strains, we repeated the competition experiments with

another pair exhibiting a reversal between scMIC and MIC* and obtained similar results (Fig. S8).

Finally, we analyzed the evolved lines in Fig. I c and found several cases in which laboratory evolution

led to an increase in scMIC but no discernible increase in the MIC* (Fig. S9); a decrease in MIC* has

also been observed in laboratory fungal evolution(Cowen et al, 2001)). Taken together, these results

argue strongly that selection acts on the scMIC rather than the MIC*, since the scMIC is the quantity that

directly measures the fitness of an individual cell.

Discussion

Understanding the role of collective resistance in bacterial antibiotic response is essential in predicting the

evolution of antibiotic resistance. When mutants arise in an antibiotic-resistant population, the MIC* is

often thought to indicate both the direction of selection and the antibiotic concentration that will lead to

strong selection for increased resistance. We have found here that the MIC* can fail in both of these tasks,

and found instead that the scMIC-the resistance of a single, isolated cell-accurately predicts the

evolutionary behavior of bacterial populations exposed to an antibiotic.
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While the scMIC is a better way of predicting evolution than the MIC*, the MIC* still contains important

information that could be used for purposes other than predicting evolution. For instance, the MIC*

captures the population-level resistance due to effects such as the collective inactivation of a drug. This

population-level resistance is useful for determining proper antibiotic dosage and regimen because the

entire population of many cells needs to be killed, and therefore the cooperative part of resistance cannot

be ignored. It is important to stress that predicting evolution and estimating the antibiotic concentration

required to kill a population of a given size are very different questions; while the former requires

understanding the costs and benefits to a single cell, the latter requires quantification of the population-

level resistance.

Although our experiments have focused on the P-lactam cefotaxime, we expect that similar phenomena

may be observed for other drugs that show an inoculum effect. The inoculum effect can often be caused

by enzymatic degradation of antibiotics, and plasmid-borne antibiotic-degrading enzymes are widespread

among bacteria in natural environments (Bennett, 2008). Even when enzymatic inactivation does not

occur, the inoculum effect can be generated by antibiotic titration, as has been observed for ribosome-

inhibiting antibiotics(Tan et al, 2012). The distinction between the scMIC and the MIC* may therefore be

relevant across many classes of antibiotics.

Other work has suggested that the MIC* may not perform well as a measure of evolutionary fitness, even

where resistance is not density-dependent. For example, a recent study demonstrated that sub-MIC*

levels of tetracycline, aminoglycosides, and fluoroquinolone antibiotics can select for cells carrying an

antibiotic resistance plasmid(Gullberg et al, 2011). The resistance mechanism in this previous study was

not cooperative, and inoculum effects were not observed; selection occurred when growth inhibition of

sensitive strains at sub-MIC* antibiotic concentrations was greater than the growth disadvantage

associated with resistance gene expression, a point designated by authors as the minimal selective

concentration (MSC). Though different mechanisms were implicated in this previous work and in the
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present study, in both cases selection occurred when single-cell growth of the less-resistant strain was

suppressed at sub-MIC* drug concentrations. We conclude that even in absence of cooperative resistance,

the MIC* is unlikely to be a reliable measure of evolutionary fitness at low drug concentrations.

In this chapter and in the discussion above, we have assumed that the growth rate falls as a step-function

with increasing antibiotic concentrations, which is a reasonable approximation for most beta-lactams and

for a variety of other antibiotics(Wiuff et al, 2005) (Johnson & Levin, 2013). However, for some

antibiotics (such as tetracycline), the growth rate falls gradually with increasing antibiotic concentrations.

In particular, very low concentrations of antibiotic have a modest but potentially significant effect on

bacterial growth. In this situation, it is possible to get selection for antibiotic resistance at sub-MIC

concentrations of antibiotic, even in the absence of collective inactivation of the antibiotic (in which case

the scMIC is equal to the traditional MIC)..Collective antibiotic degradation is therefore not the only

mechanism for sub-MIC selection for antibiotic resistance.

It is important to recognize that antibiotic degradation need not produce a strong inoculum effect. When

enzymatic degradation is slow, modeling and experimental results indicate that the scMIC and MIC* will

be small and their values will be similar (Fig. 7a). In this case, we still expect selection to be non-

monotonic with antibiotic concentration as observed here, where strongest selection for a high-resistant

occurs at drug concentrations that inhibit the background strain but allow the mutant to grow (Fig. 3c, S6,

S8). In fact, non-monotonic strength of selection has been observed as a function of cefotaxime

concentration in E. coli expressing weak alleles of TEM p-lactamase (Negri et al, 2000) with no

distinction between scMIC and MIC*.

Unlike the MIC*, the scMIC can in principle be measured in a shorter time frame than 20 hours. The time

it takes to determine the resistance level of bacteria is crucial for patient survival(Soong & Soni, 2012)

and several methods have been suggested to quantify the level of resistance within a few hours using
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microfluidics (Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic

agarose channel system - Lab on a Chip (RSC Publishing))(Mohan et al, 2013). Since these methods can

determine the antibiotic concentration when the growth of a single cell is significantly inhibited, they can

be used for scMIC determination. They cannot however be used for MIC* determination since the

experiments do not probe whether a larger population of cells would have survived the antibiotic

treatment after a longer period of exposure. As we demonstrated here (Fig. 2b), it is possible to measure

scMIC without using microfluidic devices by simply plating cells on agar with various antibiotic

concentrations. Although in the experiments described here we waited for the cells to grow into visible

colonies, in principle microscopy imaging could be done a few hours after plating as a rapid diagnostic to

determine whether a bacterial strain can grow in high antibiotic concentrations (ie resistant)(Chadwick,

1966).

The resistance of the entire population - the MIC* - incorporates the cooperative nature of bacterial

growth, and generally differs from the resistance of a single cell, quantified by the scMIC. Put most

simply, selection acts on individuals and favors genotypes that perform better as individuals, and as such

the single cell minimum inhibitory concentration is the proper metric for predicting which mutations will

be favored by selection.

Materials and Methods

Strains

TEM strains were obtained from Daniel Weinreich(Weinreich et al, 2006). All strains were E. coli DH5a

transformed with pBR322 plasmids carrying different alleles of TEM-1. These alleles represented all
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possible combinations of presence or absence of A42G, El 04K, M I82T and G23 8S mutations in the p-

lactamase gene.

MIC/scMIC

For MIC/scMIC measurements, the strains were cultured at 37C in 5mL LB with 50 pg/ml piperacillin

(for plasmid selection) for 18-20 hours with 300 rpm shaking in 50 ml falcon tubes. Cultures were then

diluted to the initial optical densities and grown in serial dilutions of cefotaxime in 96-well plates at 37C

for 20 hours with 500 rpm shaking. MIC was determined by the lowest concentration that prevented

bacterial growth (OD<0.3). All measurements were done in triplets.

Competition experiments.

For competition experiments, we transformed TEM strains with plasmids constitutively expressing either

CFP or YFP (plasmids pZS2501+11-Cerluean and pZS2501+11-YFP). Two cultures of different colors

were grown from single colonies for 18-20 hours in 50 pg/ml of piperacillin and 50 Rg/ml of kanamycin

for plasmid selection. These cultures were then mixed and grown for another 20-22 hours in 50 jg/ml of

piperacillin and 50 jg/ml of kanamycin to synchronize the growth phases of the two strains. The purpose

of synchronization was to eliminate any experimental variability and experimental effects due to the

difference in the growth phases of the two cultures in the beginning of the experiment (in particular,

synchronization of the lag time is important for reproducibility).The synchronized mixed culture was

diluted to multiple initial cell densities and exposed to various cefotaxime concentrations on 96-well

plates. After 25 hours of the experiment, the cultures were diluted in PBS 1:900 and measured at the flow

cytometer. For the competition of TEM- 15 and A42G mutant of TEM-20, the second day of growth of the

two strains together before the addition of cefotaxime was done with no piperacillin present. The reason

for that is that piperacillin scMIC of TEM-15 is smaller than 50 jg/ml and the prepared initial fraction

shifted significantly over the course of 20-22 hours growth. We confirmed that it did not happen to our

other strains that we used for other competition experiments.
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Competition experiments in a C. elegans model

Synchronized cultures of adult C. elegans were produced according to standard protocols (Stiernagle,

2006). Unless otherwise specified, all experiments were performed at 23'C; liquid culture experiments

were performed with shaking at 300 RPM. Asynchronous cultures of the temperature-sensitive sterile

mutant C. elegans AU37 were grown at permissive temperatures (16C) on NGM agar plates with K coli

OP50 as a food source; recently starved plates were washed to retrieve adults for bleach/NaOH

synchronization. Eggs were incubated 24 hours at 23'C in M9 worm buffer with shaking at 300 RPM, and

LI larvae were transferred to NGM + OP50 plates at 23'C to produce sterile adults. Young adult worms

were washed from agar plates and incubated 24 hours in liquid S medium with heat-killed OP50 as a food

source and 100 pg/mL kanamycin to remove any adhered or internalized OP50, producing microbe-free

2-day adults for colonization.

Bacteria were grown as described for in vitro competition experiments, resuspended to uniform densities

(-109 cells/mL) in liquid S medium, and mixed to obtain feeder cultures containing 90% TEM-20 and

10% TEM-52. Synchronized adult worms were colonized by feeding for 36 hours in 1 mL bacterial

cultures in 24-well plates, which were covered with BreatheEasy transparent membranes (Diversified

Biotech) to allow gas exchange and loosely covered with foil to protect cultures from light. After

colonization, worms were washed to remove external bacteria, then transferred to fresh 24-well plates in 1

mL liquid cultures of S medium containing heat-killed OP50 as a food source and different concentrations

of cefotaxime (0-0.8 gg/mL) for competition. After 20 hours incubation with cefotaxime, worms were

washed and mechanically disrupted by grinding in 25 sL M9 worm buffer + 0.1% Triton X- 100 using a

Kimble Kontes motorized pestle. The resulting bacterial suspension was diluted in M9 worm buffer and

plated on LB agar. Colony forming units per worm were determined for each bacterial strain by counting

YFP and CFP colonies after 48 hours.
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Evolution

For evolution experiments, we started with TEM-19, TEM-20 and the A42G mutant of TEM-17. All

strains were exposed to 4 antibiotic concentrations, and for each antibiotic condition 6 independent

populations were evolved. Every day, we diluted 1:225 the evolving cultures to new media with fresh

antibiotic. After 13 days, scMICs of all cultures were measured and the p-lactamase genes were

sequenced.
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Figure 1: MIC levels off in the limit of small densities, asymptotically approaching scMIC.

(a) Design of the inoculum effect experiment. Initial cell density determines whether in 20 hours the

population survives at a given antibiotic concentration. On the left, the cell density is not enough to

produce necessary amount of enzyme that breaks antibiotic. Therefore, in 20 hours all cells are dead. On

the right, the cell density is high enough to produce enough enzymes, and therefore in 20 hours the

population survives the treatment and no antibiotic is left in the media.
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(b) We define the scMIC as the measured minimum inhibitory concentration (MIC) at low starting cell

densities. The measured MIC of TEM-20 varies by three orders of magnitude depending upon the starting

cell density and asymptotically approaches a limit at low cell densities. The gray bars correspond to the

initial cell densities for MIC* and scMIC. The error bars are the maximum of a discretization error and

the standard error of the mean of three measurements.
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Figure 2: scMIC is the MIC of a single cell.

(a) The diagram of the time evolution of cell density on the surface of the agar media at two antibiotic

concentrations: below (the top row of images) and above (the bottom row of images) the scMIC of the

imaged strain. We initially pipette diluted saturated culture on the surface of the agar (0.4%) and take an

image on which we can see distinct single cells scattered on the surface. While at antibiotic concentration
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below the scMIC an exponential growth of cells is happening during first 5 hours, at the antibiotic

concentration above the scMIC cells undergo filamentation process and do not form colonies in 1 day.

(b) The scMIC can also be estimated by plating cells on agar. Saturated cultures of TEM-20 were evenly

spread on agar plates with various cefotaxime concentrations. The colony forming units (CFU) were

evaluated for 2 independent cultures and normalized by the CFU obtained without antibiotics. The error

bars are the maximum of the two Poissonian errors for 0 antibiotic concentration and the standard error of

the mean for all non-0 antibiotic points.
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Figure 3: Selection starts at the scMIC even if the cell density is high.

(a) Design of the competition experiment. The mixture or reference and mutant strain of a certain (high

enough) density grow overnight in environment with different antibiotic concentrations. When the initial

antibiotic concentration is below the scMIC of the reference strain, the mutant strain does not have

selective advantage and its fraction remains unchanged after overnight incubation. When the initial

antibiotic concentration is above scMIC of the reference strain, the mutant strain has higher fitness and its

fraction in the population increases after overnight incubation.
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(b) In competition of the reference and mutant strain, selection for the more resistant mutant begins at

antibiotic concentrations near the scMIC, not the MIC*, of the reference strain. For most of the data

points, the mean values for 9 or 10 different cultures are presented. The pairs of two types of strain

coloring are presented: in some of the samples, reference strain had YFP label and mutant strain had CFP

label, and in some other samples reference strain had CFP label and mutant strain had YFP label. No

difference in final fraction of the mutant between these two types of labeling was observed. For the

highest cefotaxime concentration, the average of 3 data points is shown. The error bars are the standard

error of the mean. The gray bars correspond to the MIC* and scMIC values of the reference strain.
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Figure 4: Higher levels of resistance evolve at antibiotic concentrations above scMIC.

(a) Design of the laboratory evolution experiment. Identical clonal populations of cells are evolved over

13 days with daily dilution scheme in environments with various antibiotic concentrations. The increase

of the scMIC of the population at the end of the experiment is observed in the environments where

antibiotic concentrations are above scMIC of the initial population.
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(b) Laboratory evolution experiments of TEM-20 confirm that increase of resistance evolves in antibiotic

concentrations equal to and larger than the scMIC. Plotted is the scMIC measured after 13 days versus the

concentration of cefotaxime the strains were evolved at. The error bars are the standard errors of the mean

of six independent evolved populations. The gray bars correspond to the initial scMIC values.

33



A
C. elegans

mutant E. Coli
reference E. Coli 4antibiotic

20 hours

I

0.8-

0.6-

0.4

0.2v

0
0 0.2 0.4 0.6 0.8 1

[cefotaxime], pg/mL

Figure 5: In complex environments, scMIC is predicting selection.
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(a) Schematic representation of the in vivo experiment. C. elegans were colonized with a mixture of

TEM-20 (90%) and TEM-52 (10%) and were grown treated with antibiotic for 20 hours before the final

fraction of TEM-52 was measured.

(b) Selection for increased resistance begins at antibiotic concentrations near the scMIC, as in the in vitro

measurements. The error bars are the standard error of the mean of 3 measurements. The discrepancy

between the in vivo scMIC and the in vitro measurements is likely due to differences in respective

environmental conditions, such as nutrient availability and temperature.
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Figure 6: A simple model captures predictive power of the scMIC.

(a) Cefotaxime diffuses into the periplasmic space of the cell, where the enzyme P-lactamase hydrolyzes

cefotaxime. am11 and a0 ut correspond to the cefotaxime concentrations in the periplasmic space and outside

of the cell, respectively.

(b) At steady state, the diffusion rate of cefotaxime into the cell equals the Michaelis-Menten hydrolysis

rate of cefotaxime within the cell. The corresponding cefotaxime concentration inside the periplasmic

space is therefore smaller than the concentration outside the cell. C is a permeability parameter; Vmax and

K, characterize the hydrolytic activity of the enzyme.

(c) Bacterial growth curves with the same initial antibiotic concentrations but different starting densities.

The cells die until the external concentration of cefotaxime reaches the scMIC of the strain.
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(d) The growth/death rate is a step function of the external cefotaxime concentration, as this determines

the periplasmic concentration. Strains with different versions of TEM enzyme will have different scMIC

values, which is the external antibiotic concentration at which the growth rate becomes negative (death).

(e) The fits of the inoculum effect curves of the reference and mutant strains (dark regions correspond to

the fitting interval). The error bars are the maximum of a discretization error and the standard error of the

mean of three measurements.

(f) The model prediction for competition experiments, with a 1% initial fraction of the mutant. At the

scMIC of the reference strain, the final fraction of the mutant strain starts to increase, indicating that

selection for the more resistant mutant starts near the scMIC. Different colors correspond to different

initial cell densities (labeled in CFU/ml). The error bars are the standard error of the mean (n = 9 - 10 for

most data points). The gray bar corresponds to the scMIC of reference strain. For the model, parameter

values are provided Chapter 3.
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selection.

(a) MIC* and scMIC typically increase together. Our model accurately predicts the general relationship

between MIC* and scMIC. Plotted is the MIC* and scMIC values for 16 different TEM mutants. Varying

only Vmnax in our model (teal) explains the experimental trend (KA--10 gg/ml). MIC*=scMIC line (dashed

blue) shows that MIC* and scMIC are similar for strains with low resistance, whereas MIC* is more than

two orders of magnitude larger than scMIC for strains with high resistance. TEM- 15 and the A42G

mutant of TEM-20 are black. Error bars are the maximum of the standard error of the mean of three

measurements and a discretization error associated with the microdilution method (Chapter 3).

(b) Selection favors an increase of scMIC not MIC*. The competition experiment of TEM-15 and the

A42G mutant of TEM-20 (initial fraction plotted as horizontal line, initial cell density 5x10^5 cells/ml).

TEM-15 has a somewhat higher scMIC (1.78 ptg/ml vs 1.59 Vig/ml), while the A42G mutant of TEM-20

has a much higher MIC* (64ptg/ml vs 18 tg/ml). For cefotaxime concentrations above the scMIC of the

A42G mutant of TEM-20, the TEM- 15 strain is selected for, indicating that selection maximizes the

scMIC rather than the MIC*. Error bars are the standard errors of the mean of 4 independent populations.
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Chapter 3. Supplemental Information for Isolated cell behavior drives the

evolution of antibiotic resistance

1 Model

1.1 Model description

To model the growth of a single strain, we used the following system of equations.

dacu (t) = -Cn(t)(aout(t)
dt

dn(t) _

dt I
dy(t)

dt

yn(t) (

-y'

= d

n(t)

nmax/

yt Vmaxaout(t)
aout(t) + KM

ain < SCMICDh5a

ain _> SCMICDhSa

0, ain < SCMICDh5a
n(t)

dt

C(aout(t) - ain()) =

an > SCMICDh5a

Vmaxain(t)
ain(t) + Km

aout(t) - antibiotic concentration in the well (outside the cell);

ain(t) - antibiotic concentration inside the cell;

n(t) - cell density (OD);

y(t) - cell density of dead (lysed) cells (OD);

C - diffusion parameter;
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Vmax, KM - Michaelis-Menten parameters for beta-lactamase;

y- growth rate;

Yd - death rate;

SCMICDh5a - scMIC of Dh5a;

nmax - saturation OD.

The first equation describes two mechanisms by which the antibiotic concentration a0 ut (t) in the well

decreases: antibiotic can diffuse inside a cell or can be degraded by the beta-lactamase in the media

released by the dead lysed cells. The second equation describes the dynamics of cell density n(t) as a

function of the antibiotic concentration inside the cell (in the periplasmic space): the cells grow

logistically when the concentration in the periplasm is lower some value and die and lyse exponentially

when the antibiotic concentration exceeds this value. The third equation describes the time evolution of

the density of the dead and lysed cells y(t): whenever antibiotic concentration exceeds the scMIC of

DH5a, any change in a cell density n(t) is due to the cell death, therefore the density of lysed cells y(t)

increases by the same amount as by which the cell density n(t) decreases; there is no change in the

density of lysed cells y(t) when periplasmic concentration of antibiotic ai(t)is low enough for cells to

divide. The last equation describes the balance between the influx of antibiotic from the environment to

periplasm of the cell and enzymatic inactivation of antibiotic in the periplasm(Zimmermann & Rosselet,

1977).

The OD units for cell density correspond to OD600 - absorbance or optical density at 600 nm wave length

light of 1 cm-wide sample of the cell culture. The OD of 1 corresponds to 4 - 108 CFU per ml.

For competition experiments, we use the following system of equations:
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daout(t) = -Cn(')(t)(aout(t) - a ')(t)) - y(1 )(t) V a a0ut(t) - Cn 2)(t)(ao0 t(t) - a ()(t))
dt aout(t) + K

- y(2 (t) m)
aou t(t) + KM

n 1 ) (t) + n2) (t)
yn(1)(t) 1- ,a

nmax

-ydnl) (t),

(1)
in< SCMICDh5a

n(')(t) + n ()

nmax

-Ydn2) (t),

ain - SCMICDh5a

a(2)a) < SCMICDhEa

a (2Ian >- SCMICDh5,a

0, < SCMICDh5a

a() > SCMICDh5a

0, a s(2)
0, <1 <SCMICDh5a,

(2)
a > SCMICDh5a

Vraai (t)(1) (1)

a(t) + KM

Vmaxa (t)

a ()(t) + KM

The system of equations (2) is essentially (1) for two different cell types with densities no() (t) and

( 2 ) (t), periplasmic antibiotic concentrations a( (t) and a ((t), densities of lysed cells y(1 )(t) and
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dt

(2)(t)yn

I dn(') (t)

dt

dy()(t)
dt

dy (t) 
dt dn2 (t)

dt

(2)

C(aout(t) - a ')(1)

C(aout(t) - a ())



y(2M(t). These two cell types share external environment which can be seen in the system of equations in

two ways: aout(t) is the same for both cell types and logistic growth part ensures that the carrying

capacity of nutrients is shared by two types evenly (ygn(')(t) 1 - nM(0>n(t) and ygn(2)(t) 1 -

nM(t+n(2)(t)) terms).
nmax

1.2 Solutions in various limits

In order to get some intuition about model prediction for the inoculum effect curve of a single strain, we

will consider the limits of small and large initial antibiotic concentration relative to the Km of the enzyme.

In section 1.2.1, we will derive the expression for the duration of the death phase of the bacterial growth

for which aout(t = 0) = MIC. In sections 2.2.2 and 2.2.3, we will derive the expression for the inoculum

effect curve in the limits of low and high initial antibiotic concentrations aout (t = 0) respectively.

1.2.1 Death and growth time

In our model, the cells either grow exponentially or die exponentially. Assuming that initial cell density is

no and final cell density at t20 = 20 hours is nf (which is fixed in the MIC experiment), we can write

the following system of linear equations on the time intervals when the culture dies tdeat and the time

interval when the culture grows tgrowth:

tdeath + tgrowth = t20

Ytgrowth - Ydtdeath = ln(nff/no)

with the solution for tdeatf

Yt20 - 1n n

tdeath = -(
yd + y'
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1.2.2 aout(t = 0) « KM

Then aout « KM and ain Km for all t, and

Va
aout = a. ( + 1)iCKM

Next, while aout > scMIC (the same as ain >scMICDhf5a),

n(t) = noe -Ydt,

y(t) = no(1 - e-Ydt).

Therefore,

Vmax
d ut-d)Vmax - -eYdt( Km )a t

d aou no(l - e _"'Oma aut - noe-t1 +K _ )aout
dt KmC K Kmax

CKm

with the solution

aout = aoexp(-

Plugging in a0 = MIC, aout(t = tdeath) = scMIC,

MIC

scMIC

fOVmax((CKM + Vmax)(Yt 20 - In(jLi))(yd + Y) +

(3)

exp(-yd(yt 2 0 - ln(0))/(Yd + Y))Vmaxno

Yd

KM(CKM + Vmax)

44

noVmax (CKM t + Vmax + Vmaxt)
Yd +Vat

KM(CKM + Vmax)

)
Yd



For the parameter values that we have, we can ignore the exponent at the right-hand side and logarithmic

dependence on no:

MIC oc scMICexp(omax Yt2 0  (4)
KM Yd + Y

Thus, at low initial antibiotic (MIC «KM), MIC increases exponentially with the increase of no.

1.2.3 aout(t = 0) >> KM

Typically, scMIC < KM, so the initial antibiotic concentration is much higher than scMIC and the cells

initially die. In order for initial antibiotic concentration to be an MIC, the death phase should be

significantly long (otherwise, the regrowth will happen faster than in 20 hours). This fact together with an

observation that agn 5 a0 ,t allows us to disregard the antibiotic hydrolysis inside the cell and only

consider hydrolysis outside:

dt = -no(1 - exp(-yat))Vnax-
dt

Note that we assume aut >> KM for all t, which is not the case when antibiotic is almost completely

hydrolyzed.

-nVm t + exp(-ydt)
a 0 - G ~~Omaxk '

Yd

Whenever aut becomes comparable to KM, a0 ut starts to be broken exponentially in time. However, in

the limit of high enough aout, this time of exponential hydrolysis will be much smaller than the time of

linear hydrolysis (3).

Plugging in (3) ao = MIC, a0ut(t = tdeath) = scMIC,
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scMIC = MIC - nloVmax(Yt 2 0 - 1(fl()/Yd + J').no

Ignoring the logarithmic term,

yt20
MIC oc scMIC + noVmax -

Yd + Y

Thus, at high initial antibiotic concentrations (ao0 t >> Km), MIC increases linearly with the initial cell

density no.

1.3 Generality of scMIC: growth rate as a function of internal antibiotic concentration

In the derivations above, we assume that the growth rate is a step function of antibiotic concentration:

y(aout) = y for aout < MIC and y(aout) = -yd for aout < MIC. However, y(aout) can be any weakly

decreasing function. The concept of scMIC is general and useful for various functions y(aout). The

following statements hold as long as resistance mechanism is cooperative:

1. The general scaling of MIC* as a function of initial cell density are independent of the exact functional

form of (a0 ut):

(a) MIC* scales exponentially with the initial cell density when smaller than Km;

(b) MIC*scales linearly with the initial cell density when larger than Km .

2. scMIC is well-defined because the inoculum effect curve asymptotically approaches a limit at small

initial cell densities.

1.4 Small cell densities

The term "small (initial) cell densities" that we are using corresponds to the dilute conditions, when the

cooperative part of the resistance is very weak. From equation (4), the dilution condition is as follows:
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loVmax yt2 0

KM Yd + Y

which under conservative assumptions (see 1.5) of Km = 1Opg/mI, Vmax = 104ig/mI per hour per OD

results in the following condition:

104 cells
no 2 - Ml

1.5 Parameter values

Parameter Value Justification

C 23.4 per hour per OD Inoculum curve fit

Y 1.4 per hour Experimentally measured

Yd 2 per hour Experimentally measured

MKCDh5 a 0.03 ptg/ml Experimentally measured

nmax I OD Experimentally measured

Strain dependent:

Parameter Value Justification

TEM-20 Vmax 8400 ptg/ml per hour per OD Inoculum curve fit

TEM-52 Vmax 78000 [tg/ml per hour per OD Inoculum curve fit

TEM-20 Km 17.28 ptg/ml Inoculum curve fit

TEM-52 Km 16.56 ptg/ml Inoculum curve fit
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While C may seem to be another parameter to the inoculum curves fit, it has a constraint that it should be

the same for several inoculum effect curves. Thus, every inoculum effect curve except for one has two

free parameters in their model fits.

2 The model with the enzyme degradation

While the simple model presented in section of this chapter explains qualitatively the behavior of the

system at low antibiotic concentrations, it fails to explain some properties of the system at high antibiotic

concentrations. There are two major discrepancies:

1. Inoculum effect curve, high cell densities and high MIC*. The data points are not only always lower

than the model prediction, but also suggest different scaling of MIC* as a function of initial cell density

than the model.

2. Competition data, high antibiotic concentrations. The data suggests that there is a second peak of

selection for the more resistant strain at high antibiotic concentration, while the simple model suggests

that above the scMIC of the more resistance strain, selection level relaxes to some level with no dips or

peaks.

The discrepancies above happen in different experiments under similar conditions - at high initial

antibiotic concentrations. This is why it might be the case that they happen for the same reason. We have

considered several ways in which our model can be modified, out of which introducing beta-lactamase

degradation turned out to be the most promising one.

The enzyme degradation may happen on its own and because of the reversible substrate-induced

inactivation (Bonomo & Tolmasky, 2007). In the model below, we make two assumptions:

1. Different enzymes have different degradation rate in the absence of antibiotic.

2. The degradation rate of an enzyme is a linear function of antibiotic concentration - the higher antibiotic

concentration, the higher the degradation rate.
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Generally, as long as inhibition changes Vmax as a function of antibiotic concentration, the scaling of the

inoculum effect curve at high antibiotic concentrations should become sublinear. That means that if the

inhibition is accounted for it takes longer to inactivate the antibiotic to the level of scMIC than without

inhibition and the effect of inhibition is larger at high antibiotic concentrations, which makes the selection

increase the second time at high antibiotic concentrations.

Given two observations above, we constructed a model, which incorporates the degradation rate of beta-

lactamase, linearly proportional to the cefotaxime concentration.

da0ou (t) Vnxoet
= -Cn(t)(aout(t) - ain(t)) - y(t) maxaout(t)

dt aout(t) + KM

dn(t) _ yn(t) 1 - , ain < SCMICDhsa

dt nmax)
Ydfn(t), ain > SCMICDhsa

dytt) -ay(t)aout(t), ain < scMICohsa
___= dn(t)

dt d - ay(t)aOut(t), ain SCMICDhsa

C(aout(t) - ain(t)) =Vmaxain
ain(t) + KM

where a - the enzyme degradation rate per unit of antibiotic concentration. Figure 8 shows the fits of the

inoculum effect curves and the model prediction for competition experiments for aTEM-20 =

0.003(hour! )1 and aTEM-52 = 0.001(hour ) V. The other parameters stay the same as in the

main text fits.

3 Summary of all strains used in the study

All the strains used in the study are identical except for the beta-lactamase gene and abscent/present

flourescent protein producing plasmids. These plasmids may or may not be present in the strains depeding
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on whether the experiment requires flourescent labeling. The table below summarizes various strain types

based on their beta-lactamase gene and relate the version of the gene to TEM-1.

4 Sequencing summary

Below is the summary of the mutations observed in the end of the evolution experiment (Fig Ic and S4).

Starting strain Evolving antibiotic Final scMIC, Mutation observed Comments

concentration, pg/mL

pg/mL

TEM-19 0.06 0.25 Promoter Could not find any

AACCCTGAT- information

>AAACCTGAT,

L12F

TEM-19 0.25 0.5 observed

50

Name(s) used in text Mutations from TEM-1 scMIC in cefotaxime

reference strain, TEM-20 M182T,G238S 0.65

mutant strain, TEM-52 E104K,M182T,G238S 8

A42G mutant of TEM-20 A42G,M182T,G238S 1.78

TEM-15 E104KG238S 1.59

TEM-19 G238S 0.22

A42G mutant of TEM-17 A42G,E104K 0.11



I I I

synonymous

mutation at

position 20 GCC-

>GCT

A184V A known mutation

which is present in

TEM-1 16, TEM-

157, TEM-162,

TEM-181, TEM-

187 and TEM-1 19

(Jacoby, 2006).

TEM-20 0.7 0.7 Promoter

AACCCTGAT-

>AAACCTGAT

TEM-20 0.17 0.7 AACCCTGAT-

>AAACCTGAT

50-50

A42G mutant of 0.25 5.7 G238A; LI2F G238A has been

TEM-17 constructed before,

demonstrated

increase in kcat

and decrease in

Km

[cantu 1 998role].

Some mutations at
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12th position have

been observed, but

not to F

(Demanbche et al,

2008).

A42G mutant of 0.25 0.5 G238S This is a well-

TEM-17 established

mutation known to

increase resistance

to cefotaxime.

(Weinreich et al,

2006)

A42G mutant of 0.45 4 G238S This is a well-

TEM-17 established

mutation known to

increase resistance

to cefotaxime.

(Weinreich et al,

2006)
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5 Figures for chapter 3

101-

0 1

Figure S1. Growth rate can be modeled as a step function of external antibiotic concentration. The

transition between exponential growth with the highest growth rate and exponential death with the highest

death rate is relatively sharp. Different colors correspond to different antibiotic concentration. A42G

mutant of TEM-20 is used, the measured scMIC of this strain is 1.6 pg/mL, the measured MIC is 64

pg/mL. For this figure, the bacterial were cultured in 50 mL flasks and at the measurement time point

some dilution of bacteria were plated. The error bars correspond to the square root of the CFU.
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Figure S2. Flow cytometry fraction measurements (a) YFP (x-axis) and CFP (y-axis) signals on one plot
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and histograms of the YFP and CFP counts. (b) TEM-20 and TEM-52 strains of different colors

competing. The fraction of CFP variant of the strain stays flat as a function of antibiotic concentration.

This figure proves that selection patterns observed in the main text are not due to the influences of

cefotaxime presence on kanamycin plasmids.
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Figure S3. In competition of TEM-20 and A42G mutant of TEM-20, selection for the mutant begins at the

scMIC, not MIC*, of TEM-20. For most of the data points, the mean values for 8 different cultures with

different coloring of the strains are presented. The error bars are the standard error of the mean. The gray

bars correspond to the scMIC value of TEM-20. The scMIC and MIC* of TEM-20 are 0.8 pg/mL and

14.3 pg/mL correspondingly, the MKC and MIC* of A42G mutant of TEM-20 are 1.59 ptg/mL and 64

pg/mL correspondingly.
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Figure S4. Laboratory evolution experiments of (a) TEM-19 and (b) A42G mutant of TEM-17 confirm
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that increase of resistance evolves in antibiotic concentrations equal to and larger than the scMIC. Plotted

is the scMIC measured after 13 days (~100 generations) versus the concentration of cefotaxime the strains

were evolved at. The error bars are the standard errors of the mean of six independent evolved

populations. The gray bars correspond to the initial scMIC values.
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Figure S5. Growth curves of TEM-20 in different antibiotic concentrations. With the increase of antibiotic

concentration, the slope of the growth curves does not change, while the time to reach some optical

density increases. This is a result of the cooperative growth: the cells first cooperatively hydrolyze

cefotaxime and then grow with maximal division rate.

59

- - ftwPM
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0 0.1 1 10
[cefotaxime], pg/mL

Figure S6. The experimental data for competition experiments, with a 1% initial fraction of the mutant

strain. At the scMIC of the reference strain, the final fraction of the mutant starts to increase, indicating

that selection for the more resistant mutant starts near the scMIC. Different colors correspond to different

initial cell densities (labeled in CFU/ml). The error bars are the standard error of the mean (n = 9 - 10 for

most data points). The gray bar corresponds to the scMIC of the reference strain. For the model,

parameter values are provided in section 1.5 of this chapter.
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Figure S7. The model with the enzyme-cefotaxime irreversible binding explains the inoculum effect and
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also the selection patterns at high antibiotic concentrations. (a) The fits of the inoculum effect curves of

TEM-20 and TEM-52. The error bars are the maximum of a discretization error and the standard error of

the mean of three measurements. (b) The model prediction for competition experiments, with a 1% initial

fraction of TEM-52. At high antibiotic concentrations, the second selection peak appears. The parameter

values used can be found in sections 1.5 and 2. Different colors correspond to different initial cell

densities (labeled in CFU/ml). The gray bar corresponds to the scMIC of TEM-20.
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Figure S8. Selection favors an increase of scMIC not MIC*. The competition experiment of TEM-15 and

the A42G mutant of TEM-19 (initial fraction plotted as horizontal line, initial cell density 5x1 0A5

cells/ml). TEM- 15 has a higher scMIC (1.78 pg/mL vs 1.26 pg/mL), while both strains have similar

MIC* values (18 pg/mL vs 20 pg/mL, which are statistically indistinguishable, because the antibiotic

dilution factor is V'2). For cefotaxime concentrations above the scMIC of the A42G mutant of TEM-19,

the TEM- 15 strain is selected for, indicating that selection maximizes the scMIC rather than the MIC*.

Error bars are the standard errors of the mean of 4 independent populations.
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Figure S9. Sometimes an increase in scMIC is accompanied by the decrease in MIC*. The scMIC vs

MIC* values of the evolved cultures as a fraction of the initial scMIC or MIC* values are presented. Only

data for the cultures evolved at concentrations equal to or greater than the scMIC of the initial strain is

shown. Different colors correspond to different strains evolved. The data presented is the same as in Fig.

Ic and S4.

64



Chapter 4. Selection in expanding populations follows universal behavior.

Natural populations acquire new territories through a process of expansion. One prominent example of

this process is the migration of humans out of Africa(Templeton, 2002). Another well-known example is

the colonization of Australia by cane-toads(Phillips et al, 2006). When studied in the lab, invasion is

usually modeled by bacterial colony expansion on the surface of agar in a petri dish. During this invasion

of new territory there will also typically be many opportunities for evolutionary change as the population

expands. For the case of the human expansion, one of the contemporary observable outcomes of the

expansion is a gradient of skin and hair color from Africa to Northern Europe. It is believed that the

change was occurring as a response to the amount of the ultra-violet radiation making certain amount of

pigments most advantageous for certain areas. In other words, the gradient in the trait corresponds to the

gradient in the environment. For the case of cane toads, there has been observed a gradient in the length

of the legs the further they are from the coast. While certainly there is a gradient in the environment from

the coast to the interior of the continent, there is also evidence that the length of the legs is correlated with

the invasion speed. Therefore, the gradient is likely the result of the selective pressure to increase speed

during the expansion.

Understanding the evolutionary dynamics of expanding population is a fundamental problem because it is

one of the major forces that shape contemporary diversity of natural populations. While there are many

different models that describe expanding populations, one of the simplest and most widely used is Fisher-

Kolmogorov equation (Fisher, 1937)(Kolmogorov et al, 193 7)(Fig. la). In this model, it is assumed that

local population density grows logistically and that over sufficiently long length and time scales the

motility of individuals can be described by diffusion. This reaction-diffusion model then connects the

parameters characterizing the behavior of individuals such as growth rate and migration rate with the

population-scale parameters such as the velocity of expansion and the shape of the expansion front. In

65



particular, the growth rate and diffusion coefficient at small population densities completely determine the

expansion.

The Fisher equation is easily generalized to the case of competing genotypes by assuming that both

subpopulations share resources and collectively can only grow to a certain density (Fig. 1 d). In this

situation the more fit genotype will spread locally but will also spread through the population spatially.

Interestingly, this local spread occurs even if the more fit population has a lower growth rate; this perhaps

counter-intuitive prediction is because fitness in an expanding population corresponds to the velocity of

the population wave (when the genotype is alone), which in the Fisher model is proportional to the

product of the genotype's division rate and diffusion coefficient at low density. Selection in spatially

expanding populations therefore has a richness that is not present in well-mixed populations.

To develop a theoretical expectation of how the selective process should behave in a population

expanding as a Fisher wave, we started by performing simulations and analytic calculations of how the

ratio of two genotypes behaves during a range expansion. We found that this ratio depends exponentially

on the spatial coordinate along which the expansion is happening. The characteristic length of this

exponent depends on the division and motility rates of the two genotypes - the more advantage one has

over the other, the faster their ratio changes. While the details are introduced in the chapter 5, the intuition

behind this observation is as follows. The interaction of the two waves is realized through the carrying

capacity (the sum of the two densities at any point cannot be greater than the carrying capacity).

Therefore, at the tip of the expanding wave where the densities are very small, the interaction does not

matter. Then, in the frame of reference moving with the velocity of the expansion (either of the two

expansions, as the two expansion velocities are assumed to be nearly equal because delta g is small), the

faster growing wave can be interpreted as another Fisher wave with the same diffusion constant and

deltag growth rate. It has been shown previously that the expansion of the Fisher wave is determined by

the behavior of the front and does not matter on the details in the bulk of the wave(Hadeler & Rothe,

1975). Therefore, the exponent of the tip of the fraction Fisher wave will result in the exponential
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dependence on the coordinate in the reference, non-comoving, frame. This exponential dependence of

genotype fractions on position is predicted to be independent of whether the selective sweep occurred as

the result of an increase in growth rate, increase in motility, or both. The Fisher model therefore predicts a

remarkably simple pattern of genotype abundance both during and after the population expansion. Just as

a more fit genotype spreads exponentially with time in a well-mixed population, a more fit genotype is

expected to spread exponentially with space in a spatially expanding population (Fig 1 b,c).

The Fisher model, however, is only a special case of a wide class of models that describe expanding

populations. The growth rate and diffusion coefficient can be any function of the cell density, potentially

corresponding to a cooperatively growing population and/or density dependent diffusion. We find that

under quite general assumptions, the exponential dependence of the ratio on spatial coordinate holds true.

While the details can be found in Chapter 5, the general conclusion is that the quantity of the exponential

length scale can depend on the model while qualitatively all models predict the fraction to be an

exponential function of coordinate. Thus, the theoretical prediction is that under a wide range of

assumptions, independent of the specific diffusion and growth processes shaping the expansion profile,

selection in expanding populations is expected to display universal properties: the ratio of genotype

frequencies is predicted to have an exponential dependence on position.

Experimentally, to the best of our knowledge, the existent studies either analyzed the existing natural

population data (Phillips et al, 2006) or studied the microbes spreading on the surface of the

agar(Hallatschek & Nelson, 2010). The first type of study is an important attempt to understand the

genotypic and phenotypic diversity that we observe in natural populations. However, often not only the

process of expansion influences this diversity but also the adaptation of the populations to new

environmental conditions after they have expanded, which makes the analysis complicated. On the other

hand, microbes spreading on the surface of agar generate reproducible results and can be controlled in

many ways but have very small effective population sizes at the front, precluding study of the selective

process occurring during the population expansion.
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To explore our theoretical predictions of universal behavior during selection in expanding populations, we

use populations of the motile bacterium E.coli expanding in soft agar. E. coli moves through a process of

semi-straight runs interspersed by occasional tumbles that randomize the direction that the cell is

swimming. In the absence of attractants and repellants this motility results in behavior that is usually

modeled as a random walk, and in the limit of many runs and tumbles, diffusion. When attractants or

repellants are present, the runs in unfavorable directions become shorter, resulting in a biased random

walk (or diffusion with drift).

We find that our E. coli populations indeed expand though the soft agar as a population wave that

depends upon both motility and cell division. We used bacteria with a single plasmid conferring

resistance to an antibiotic and producing a fluorescent protein. We used two types of plasmid: kanamycin

resistant plasmid that also produces red fluorescent protein and ampicillin resistant plasmid that produces

yellow fluorescent protein. We find that bacterial populations carrying these two plasmids expand with

different velocities (Fig. 2b ). Importantly, after an initial transient each population has a constant

velocity, suggesting that the two strains have a well-defined fitness in the context of an expanding

population. The shape of the population front was not consistent with the Fisher prediction (Fig. 2a), but

as discussed previously we expect that the universal signatures of selection in expanding populations may

nonetheless be observable.

To study the spatial behavior of selection in expanding populations we inoculated soft agar with a mixture

of our two E. coli strains. After the population has expanded the 8cm of the lane and saturated the

environment we sample from the agar every 0.5 cm using a multichannel pipette and analyze the

population composition using flow cytometry. As predicted by our theoretical calculations, we found that

the fraction of the mutant is indeed an exponential function of the spatial coordinate (Fig. 3d).

Next, we decided to characterize the fitness function of the expanding population. Fitness is the quantity

that is maximized during evolution: if a mutant with higher fitness arises in the population, its fraction
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increases over time until it either takes over the entire population or an even more fit mutant arises and

starts to take over. We decided to use the analogy between liquid and soft agar environments again. In a

well-mixed liquid environment, when two strains have equal fitness (i. e. growth rate), the fraction of

either of them in the mixture stays constant over time. Therefore, by analogy, when the fraction of both

strains in a mixture stays constant as a function of spatial coordinate in expanding populations in soft agar

environment, the fitness of the two strains must be equal. Changing the kanamycin concentration when

one of the two competing strains is kanamycin resistant and the other is not, will change the relative

fitness of the two strains and therefore we can find the concentration when the two strains have equal

fitness.

As discussed in the introduction, we expect that velocity should be the appropriate fitness metric in a

spatially expanding population. The theoretical reason for this hypothesis is that the amount of individuals

in a population under expansion scenario grows with the rate, proportional to the velocity of expansion.

This is again analogous to the liquid culture exponential growth, when the rate of division of every

individual cell is proportional to the growth rate, which is the fitness metric in liquid environment. To test

this hypothesis, we measure velocities of the expansion of the two strains when exposed to kanamycin

concentrations identical to those used in the competition experiment described above. Indeed, our

preliminary results show that the kanamycin concentration at which velocities are equal falls in the range

where competition does not necessarily favor one of the strains (Fig. 4). Velocity usually depends on both

growth and motility, which makes it possible that the allele that has a slower growth rate nevertheless

wins in the competition with the faster grower during the process of invasion of new territories.

During a real expansion, different alleles can confer different likelihood of starting to explore new

territories, which is ignored by the discussion above. For example, it might be the case that the allele with

the greater velocity requires more time before starting to expand. In bacterial population, it would

correspond to a longer lag time. In the animal world, it may correspond to some physical barrier that
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carriers of certain alleles overcome faster than other population representatives. In general, it is not

uncommon to have tradeoffs such as growth rate and yield tradeoff in bacterial populations.

Experimentally we can manipulate the lag phase of an allele by delaying its introduction on the plate. We

can also, as we described above, control the fitness difference between two strains by adjusting the

kanamycin concentration. An interesting question can then be asked - is there any time delay that will

prevent an otherwise more fit strain from spreading in the population? In the liquid well-mixed

environment, the answer is no since during the lag time only the initial fraction of the strains will change.

Under the scenario of a range expansion, however, it is hypothetically possible that a slower strain with a

shorter lag time may be able to block the fitter allele from the new territory. Indeed, we find that the more

fit strain can only take over if it is introduced into the environment within a critical "window" of time

(Fig. 5). Therefore, lag time plays drastically different roles in spatially expanding populations and in

well-mixed liquid environments. In expanding populations, it becomes vital for an allele to minimize its

lag time.

It is not always possible to study natural populations while they expand. After the invasion of new

territories, however, it may be possible to analyze spatial distribution of alleles to illuminate the selective

process that took place during the range expansion. For instance, very often along the trajectories of

expansion there are gradients of traits. Although it is usually thought to be the result of the gradients in

the environmental conditions that facilitate gradients in adaptation, another origin of this pattern is

selection during the process of expansion. In these cases, if available data is processed correctly,

information about the expansion can be extracted. Here, we concentrate on the question of what kind of

signals should one look for while working with the data available after populations have invaded new

territories.

We argue that the emergence and spread of a new advantageous allele leaves a distinct pattern in the

population long after it has invaded the new territory. This pattern is an exponential dependence of the
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ratio of the two alleles on the spatial coordinate. We also show that qualitatively this pattern is universal

across a wide range of assumptions about the mechanics of the population expansion. Quantitatively, it

provides information about the expansion and theoretically can distinguish between different types of

migration.
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Figure 1. Fisher equation predicts that the ratio of two types is an exponential function of spatial

coordinate (position). (a) The Fisher model predicts a population density profile of shown shape that

expands with a constant velocity v. The profile is shown for three time points t 1 <t2<t3. (b) If two types

compete in well-mixed environment, the fitter one takes over exponentially in time, and (c) if compete

while expanding, exponentially in space. (d) At three time points, we show population composition. The
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upper line correspond to total density of the two competitors, the lower line corresponds to the less fit

phenotype population density.

73



A 1000

800

600

400

200

0 0

B
E 8

07

-c26

4-

a) 503

02
a.1

M3K2R

I ~IIII
2 4 6 8 10 12 14 16

1 2 3 4 5 6 7 8
Time, hours

Figure 2. Expansion profile and velocity of bacteria in soft agar do not agree with Fisher model. (a) The
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profile of expanding population wave as a function of sampling position. The distance between sampling

positions is 0.5cm. The profile is non-monotonic and sharp for a given velocity. (b) The location of the

front is a linear function of time after some initial lag phase, which means that the populations expand

with a constant velocity. The velocity is the slope of the line.
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Figure 3. Similar to liquid culture, we observe a spatial exponent in real bacterial populations in soft agar.

(a) schematic representation of liquid culture dilution experiment. Initially two strains are present - green

and blue, bit with each dilution the more fit strain (green) becomes more abundant (b) schematic

representation of spatial expansion experiment. Note that while in (a) arrows correspond to dilution steps,

in (b) arrows correspond to a time difference. (c) A cartoon of competition experiment fake "data" in

liquid. We expect the ratio of more fit strain to grow exponentially in time. (d) Data for spatial expansion
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of bacteria in soft agar. After some transient period, the fraction of more fit strain depends on the

coordinate exponentially. (e) and (f) correspond to the population composition as a function of time (e)

and position (f) as predicted by simple models - logistic growth (e) and Fisher model (f). The lower curve

corresponds to less fit strain.
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Figure 4. Kanamycin concentration controls the fitness difference of the two strains. (a) ratio of
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kanamycin resistant to kanamycin sensitive strain had different spatial exponents for different kanamycin

concentrations: 0,0.1,0.2,0.3 .. 0.7 following color gradient. Dashed parts of lines correspond to transient

region, where the fraction equilibrates after inoculation to the plate in new environment. (b) Preliminary

data do not contradict to the statement that velocity is a fitness of expanding population.
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Figure 5: In spatially expanding population minimizing lag time is vitally important. The fraction of the

more fit (YFP) strain is shown as a function of lag time - the time for which RFP cells were inoculated on

the agar plate before YFP was added. With the increase if kanamycin concentration (legend), i.e the

decrease of fitness difference, the critical lag time, after which YFP never catches up RFP, decreases.
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Chapter 5 Supplemental to chapter 4

Competition of two strains in a well-mixed environment with daily dilution.

To model two growing in the well mixed environment during one day, we used the following system of

equations:

dc1

dt

dc2
dt

y1c1(1 - C1 - c2 )

y2c2 (I - C1 - c2 )

Where c1 and c2 correspond to the densities of the two phenotypes. Each of them grows logistically with

its own growth rate at small cell densities. The length of the day is T and is much larger than the division

time.

We will make a substitution c = c1 + c2, f = c . Assuming f «1, and keeping leading terms in f:
C1+C2

df

dt

dc
- = Y2c(1 - c)dt

= f (Y1 - Y2)(1 - C)

Solution to the first equation is c(t) =
1+eY2t, therefore the equation for frequency the following:

df eY2t
= f(Y1 - Y2) 1 + eY2t

If the time of each dilution step is T, f
eY2T+1 Y1 Y2

-fo( 2 ) Y2 . Since T >> -, we can write that
Y2

f = foe(yi-y2)T, where n is the amount of dilution steps.
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Length scale in spatial competition.

We consider the following coupled system of Fisher equations:

a c a
- = - (D1 (c) - c1 ) + y1(c)clat ax ax

--2 = - (D2 (C) - C2) + Y2(C)C2at ax ax

Where c = c1 + c2 and c1 and c 2 are population densities of two competing phenotypes. Growth rates

and diffusion constants depend on the total density, because usually they depend on resources abundance.

Therefore it is reasonable to assume that the resources abundance is a function of sum of the two

densities. We will change the variables of the equations to c and f =C and assume thatf « 1.
C1+C 2

Therefore we can neglect higher terms in f in the equation, i. e. linear terms in the equation for total

density and quadratic terms in the equation for frequency:

ac a a-- = - (D 2 (c)- c) + Y2(C)Cat ax ax
af fa a ia a ia a

- -- ((D1(c) - D2 (c)) c) + f(y1(c) - Y2(C)) + 1 a (D1 (c)c f) + ax (D1 (c)f c)
at C ax 1  ax C ax ax C ax ax

First equation does not depend on f and has a travelling wave solution with a velocity v.

Switch to the co-moving frame:

D does not depend on c:

af a2  2 a a j a2

-t = D, -2f + - DL--fa--C +:- (Dj - D2) -2 C + f (Y1 (C) - Y2(0))

y = x - v2 t

Linear operator, has the largest eigenvalue that will dominate.

T = t
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a a
Ox ay

a a a
at aT ay

-D 2 (c)-c + v2 -c + Y 2 (c)c = 0
ay ay ay

Of a fa a 1 0 (
- = v2 -f +- ((D1 (y) - D2 (Y)) - c) + f(y 1 (c) -y2(C)) +- (Dl(y)c-f)O a Oy cOy ay cay ay

+ -- (Dj (y)f)- c

Where D(y) = D(c(y)), c(y) is a solution of equation X. The right-hand side of the equation above is a

linear operator on f. The long term dynamics of the equation is determined by the largest eigenvalue.

f = e -A corresponds to the local decrease of the less fit type. But the wave is moving as a Fisher wave.

Therefore, A is the corresponding spatial exponent. Let's consider an example - two competing Fisher
V

waves with different growth rates. In this example we will use perturbation theory to find the spatial

exponent. As a first step, we will make the operator hermitian by getting rid of the first derivative in y. To

do this, we will make a substitution f(y) = P(y)eP() and choose p(y) such that the coefficient of first

derivative of qb is 0.

af a2 + 2 a a
-- =f V+ 2 +-D 1 -c -f+ (Y1 -Y2)(1 -c)f
Ot ay2 c ay ay

f(y) = cb(y)eP(y)

f = (P'e + <p'Pe(Y)

f" = P"e + 2 <pe P'(Y) + <p" peO(y) + p' 2 4ev(y)
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= D 10" + V2+ - Dc' + 2qp' b' + h(y)# + (Yi - Y2)(1 - c)f

Where h(y) - some function of y.

V(y)= V y - lnc(y)
2D,

If Y1 = Y2, f = fo, A = 0. Then 40o(y) = foc(y)e2D1Y

For not equal growth rates, perturbation theory gives

V2

A =0+f(y1-y2 )(1-c)c2eD Ydy
A= -0+ =Y1 -Y2),

f c
2 eDl dy

Since we know the scaling of c as y goes to infinity, the second term in (1-c) can be neglected.

Lag time reasoning.

In Fisher model, if one of the strains has spread far enough, the second strain is only left with the

diffusion process since the growth rate saturates. In diffusion process, the mean square distance grows

linear in time, which means that the effective front of the spread of the second wave will spread as a

square root of time. Since the square root has a negative second derivative, there exists a critical lag time

when the two curves just touch each other and if the lag time is longer, the second wave will not be able

to diffuse though the bulk of the first strain.
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Chapter 6

Discussion

In both parts of my thesis, we quantify fitness of populations with complex interactions, i.e. populations

in which reproductive ability per unit time is not the metric that is maximized during the selection

process. In both examples, there are at least two dimensions that can control fitness and could be varied

somewhat independently from each other (Vmax and Km for the first example and D and y for the second

example). Diffusion and growth are often negatively correlated. Nevertheless, there are examples when

the changes in the values of these parameters violate the general trend and therefore it is at least possible

to control them separately. Vmax and Km depend collectively of 4 other parameters and can be treated as

relatively independent.

Cooperation makes both cases even more complicated - the metric that characterizes performance of the

population is not simply the sum of the same metric for an individual. Therefore, the metric of

performance of populations will have a different functional dependence on the multiple parameters that

determine fitness of the individual. For example, for cooperatively growing bacterial populations in the

well-mixed antibiotic environment and the typical parameter values discussed in chapter 2 and 3, Vmax

determines population performance, while Vmax/KM determines the fate of an individual. Therefore, it is

possible that the population performance becomes worse in the evolutionary process. It will happen if

Vmax/KM of a new mutant increased while Vmax decreases.

While cooperation has been discussed in detail only in the well-mixed project, it has interesting

consequences for the expanding populations too. Specifically, it is possible that a lower velocity type is

selected in expanding populations if the growth is cooperative. Intuitively it can be understood because a

slightly slower diffusing type will have a higher tendency to stay around intermediate cell densities and

therefore can benefit from the high growth rates which in strongly cooperative cases only happens at

intermediate cell densities.
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In real life, there could be differences between the desired outcomes (i.e. curing bacterial infection or

slowing down expanding population of cane toads) and what evolution maximizes. The worst situation is

when they are correlated with coefficient -1. Ideally, they are coinciding or at least orthogonal. In the

situations discussed above, cooperation makes it possible for the populations to evolve phenotypes that

are beneficial to an individual but make the entire population more vulnerable. While in the extreme

example it may force the population to look for non-cooperative mechanisms of growing, often

developing those will already decrease the fitness of the population which may solve the problem at hand.

Usually the desired outcomes are at the level of populations - we don't want cane toads to cover new

territories, we don't want bacterial infections to get into the blood stream and spread - while evolutionary

fitness is maximized on the individual level. Since in many of the real systems we have been discussing

there is a negative correlation between individual fitness and probability of desired outcome, our goal

must be to use the available knobs to engineer conditions that make this negative correlation as weak as

possible or even try to make it positive. As an example of the knob we can consider the strength of

cooperation. In general, the viscosity of the media and nutrient concentration can alter the diffusion

coefficient and growth rate that are available for the population. The carrying capacity influences the

effective population size. Higher effective population sizes let smaller selection coefficients experience

selection and not just drift, which should increase their survival chances.

The strength of cooperation could be characterized by measuring how much the performance of the group

is different from the performance of the same number of individuals in isolation. Usually, the greater the

difference the stronger the cooperation. The result of cooperation usually has the consequence that a

group is collectively stronger (together growing faster) than a set of isolated individuals. In cases when

the group threatens humans, it has usually negative effects for our health or ecology. On the other hand,

there is usually a way to tune the individual performance and the group performance somewhat
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separately, which gives a hope to decrease the performance of the group during individual evolution,

when every individual maximizes only its own benefit.

One widely discussed example of these dynamics is the spread of cheaters which may individually

perform better since they do not pay the cost of cooperation. The higher the cost of cooperation the more

incentive there is to cheat. Usually, high costs come with high benefits, otherwise cooperation would not

evolve in the first place. Therefore, it is a reasonable assumption that the higher are the cooperative

effects in the population, the more room there is to degrade the total fitness of the population by tempting

every single individual to cheat. Therefore, it seems reasonable that in some cases increases of the

cooperative effects can even further decouple the performance of individuals from performance of the

group. And consequently this can result in more ways in which an individual can increase its own fitness,

while the fitness of the group is either not affected or decreased.

An extreme example of the ideal result of maximizing the objective function described above would be

antibiotic pumps in the first example. Very effective antibiotic pumps minimize antibiotic concentration

inside (i.e. maximize fitness of individual), while do not alter the antibiotic concentration in the media

(minimize cooperative effect). For the second example, maximization of objective function will result in

diffusion coefficient equal to zero in the presence of extreme cooperative growth. While this phenotype

will not be fitter on the individual level than any of the diffusing type, selection for small decrease of

diffusion does happen at each step. As a result, it is possible by introducing the right mutants at the right

time to make diffusion coefficient infinitesimally small.

While it is not always obvious how to restrict access to the mutations that increase both individual

benefits and group benefits, one possible experiment is to take pre-existing types and show that under

certain conditions they could be selected and at the same time decrease the performance of the population

or start many replicates of the evolving populations and post-factum select the strains satisfying this

condition. After that, we could compete two genotypes to demonstrate that the competition will select the
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decrease of the group performance. With the increase of the genetic engineering methods, introduction of

an individual with any pre-defined alleles should not be a problem in the foreseeable future.
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