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Abstract

This thesis consists of three parts. In the first part, we study the eleven dimensional
supergravity equations on B' x S4 considered as an edge manifold. We compute the
indicial roots of the linearized system using the Hodge decomposition, and using the
edge calculus and scattering theory we prove that the moduli space of solutions, near
the Freund-Rubin states, is parameterized by three pairs of data on the bounding
6-sphere.

In the second part, we consider the family of constant curvature fiber metrics for
a Lefschetz fibration with regular fibers of genus greater than one. A result of Obitsu
and Wolpert is refined by showing that on an appropriate resolution of the total space,
constructed by iterated blow-up, this family is log-smooth, i.e. polyhomogeneous with
integral powers but possible multiplicities, at the preimage of the singular fibers in
terms of parameters of size comparable to the length of the shrinking geodesic. This
is joint work with Richard Melrose.

In the third part, the resolution of a compact group action in the sense described
by Albin and Melrose is applied to the conjugation action by the unitary group on
self-adjoint matrices. It is shown that the eigenvalues are smooth on the resolved
space and that the trivial tautological bundle smoothly decomposes into the direct
sum of global one-dimensional eigenspaces.

Thesis Supervisor: Richard B. Melrose
Title: Simons Professor of Mathematics
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Chapter 1

Introduction

Microlocal analysis has a lot of applications in partial differential equations and anal-

ysis of problems with geometry and physics background. In this thesis, we apply

microlocal techniques and the theory of pseudo-differential operators to two problems

on noncompact and singular manifolds. The first one is the eleven dimensional su-

pergravity equations on edge manifolds for which I give a characterization of all the

solutions near the Freund-Rubin solution [47]. The second project, in collaboration

with Richard Melrose, we work on the complete expansion of the constant scalar

curvature fiber metric in the case of a Lefschetz fibration [31], which arises natu-

rally as the singular behavior across the divisors introduced in the Deligne-Mumford

compactification of the moduli space of Riemann surfaces.

To get information of operators in a singular geometry setting, people study the

Schwarz kernel and the behavior of the model operators on the double space. To

study the behavior of the kernel and construct parametrices on this double space,

blow up action is introduced [34, 32] and this approach has been utilized to solve

many geometric problems [35, 26, 27, 24, 44]. The third part of this thesis contains

an example of resolutions, which is an application of the resolution of a compact

group action on a compact manifold described by Albin and Melrose [1], to the case

of U(n) action on self-adjoint matrices [48].
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1.1 Eleven dimensional supergravity theory on edge

manifolds

Supergravity theories arise as the representations of super Lie algebras in various di-

mensions. They can be viewed as low energy approximations to string theory with

classical equations of motion. In particular, the case of dimension eleven has been

studied by physicists since the 1970s [43, 42, 6, 2]. It was shown that there is a

unique system in eleven dimensions and the theories in lower dimensions can be ob-

tained from it through dimension reduction [37]. Since it is related to the AdS/CFT

correspondence and brane dynamics, this subject has recently attracted more atten-

tion [3, 45].

We are interested in a particular case, namely, the bosonic sector of eleven dimen-

sional supergravity theory. The nonlinear system couples a metric g (gravity) and a

4-form F (extra field), and is derived from a Lagrangian constructed on the eleven

dimensional manifold X = B' x S4:

L(g,F)= RdV (- jFA*F+ A A F A F) (1.1)

where A satisfies dA = F. The first term is the classical Einstein-Hilbert action term,

while the second and the third terms are, respectively, of Yang-Mills and Chern-

Simons type for a field. The supergravity system, the variational equation for (1.1)

is
l= '( Fa F Y1 3 - . Fa F1773 4 ga )

d*F= -FAF (1.2)

dF=0.

As a special case, there is a family of solutions to the full system given by the

product of a scaled spherical metric on S4 and an Einstein metric h on B7 with Ricci

curvature satisfying Ric(h) = -c 2h. The product solutions are given by

9
g = h x gs4, F = cdV4, Vc E R. (1.3)C2

12



In particular for c = 6 these are known as Freund-Rubin solutions [11] with 1/4 of

the standard S' metric and an Einstein metric on H'. When we restrict the search of

solutions to a product metric, the following theorem by Graham-Lee [151 showed that

the existence of Poincare-Einstein solutions near the hyperbolic metric prescribed by

data at conformal infinity:

Theorem 1.1 ([6]). Let M - B+' be the unit ball and h the standard metric on S'.

For any smooth Riemannian metric on Sn which is sufficiently close to h in C,'

norm if n > 4, or C' norm if n = 3, for some 0 < a < 1, there exists a smooth

metric g on the interior of M, with a CO conformal compactification with conformal

infinity [ ] and

Ric(g) = -ng.

Combined with (1.3), the 4-form F being a multiple of the 4-sphere volume form

gives a family of solutions parametrized by conformal metrics on the bounding 6-

sphere. This product solution corresponds to the edge structure in the sense of

Mazzeo [25, 23]. An edge structure is defined on a manifold M where the boundary

has a fibration over a compact manifold as follows,

7r : F >a-M (1.4)

B

which, is our case, is the product fibration

7r : S4 a m

S6

The space of edge vector fields Ve (M) is a Lie algebra consisting of those smooth vector

fields on M which are tangent to the boundary and such that the induced vector fields

on the boundary are tangent to the fibres of 7r. Let (x, Y1, Y2, ...Y6) be coordinates

of the upper half space model for hyperbolic space H 7 , and zj be coordinates on the

13



sphere S'. Then locally Ve is spanned by

x(x,x Ly,9 0.

The edge forms are the dual to the edge vector fields Ve, with a basis:

, ,dz.x x

The edge tensors and co-tensors are the products of those basis forms, and the solu-

tions we look for are in the sections of the edge bundles.

In Mazzeo's paper [25] the Fredholm property of certain elliptic edge operators has

been discussed. It is related to the invertibility of the corresponding normal operator

N(L), which is the lift of the operator to the front face of the double stretched space

X,. If we write the edge operator in local coordinates as:

L = E aj,,,O(x, y, Z)(XOX)i(Xi9Y)"a8)", (1.5)
j IQI+I/31 m

then the normal operator is

N(L) = a(0, 9, z) (sa,)i(sa,) , (1.6)
j+ao+1'813m

where (s, u, , z, ) is a coordinate on the front face of X'. The invertibility of the

normal operator is in turn related to its action on functions polyhomogeneous at the

left boundary of Xe, of which the expansion is determined by the indicial operator,

which by definition is

I1[P1(s)v = x-P(xv)1r1(P), (1.7)

where p is a point in the base and s is a complex number. and in local coordinate

I(L) is written out (using a conjugation of Mellin transform Mi,) as

I[L](s) = Mis aj,o,3(Oy)(ss)iJf) MJ1 (1.8)
i+118 m

14



The inverse of the indicial operator I(L) (0)-i exists and is meromorphic on the com-

plement of a discrete set specb L, which is the indicial roots of L. Those indicia roots

provide information of the operator, and more precisely, the parametrix of an edge

operator is constructed on the stretched double product where the Schwartz kernel is

lifted with polyhomogeneous expansions.

Theorem 1.2 ([25]). If an elliptic edge operator L E Diff'(M) has constant indicial

roots over the boundary and its normal operator Lo and its adjoint L' has the unique

continuation property, then L is essentially injective (resp. surjective) for a weight

parameter 6 A = { Re 0 + 1/2 : 0 E specb L} and 6 > 0 (resp. 6 < 0), and in either

case has closed range.

With the edge vector fields one can define the edge Sobolev spaces

H(M) = {u E L2 (M) I Veu E L 2 (M), 0 < k < s}. (1.9)

For purpose of regularity we are also interested in hybrid spaces with additional

tangential regularity. The existence of solutions with infinite smooth b-regularity

gives the solution with polyhomogeneous expansions. Therefore we set the Sobolev

space with boundary and edge regularity as:

He''(M) = {u E He(M) | Vbu E He(M), 0 < i < k}

By the commuting relation [Vb, Ve] C Vb, Hsk(M) is well defined, that is, independent

to the order of applying edge and b-vector fields. These Sobolev spaces are defined

so that edge operators maps between suitable spaces, i.e., for any m-th order edge

operator P E Diff' M,

P:H,(M) -+ Hes-m'k(M), m < s. (1.10)

Following the idea of Graham-Lee [15] of constructing solutions that are close to

the hyperbolic metric, we are interested in those solutions to (1.2) that are quasi-

isometric to the Freund-Rubin solution in the edge class, that is, as sections of edge

15



bundles Sym2 (eTM)®e A 4 T*M. Kantor in his thesis [20] first considered this problem

and constructed a family of solutions to the linearized equations, which correspond

to change of the 4-form along one particular direction. Our result is a generalization

of the results of Graham-Lee and Kantor, in that we considered the variation of the

metric and the 4-form together.

The structure of the proof is as follows. In section 2.2 we fix the gauge of this

system, using the DeTurck gauge-breaking term #(t, g) introduced in [15] and show

that by adding this gauge term we get an operator Q, which is a map on the space

of symmetric 2-tensors and closed 4-forms:

Q: S2(T*M) D A 4(T*M) -+ S2 (T*M) G A%(T*M)

g Ric(g) - #(t, g) - F o F

F d * (d * F + 1 F A F).

The solution to the gauged equation uniquely determines a solution to the original

equations.

In section 2.3 we compute the indicial roots of the linearized gauged equations.

The system splits according to the degree of forms on the product manifold, and

further breaks down into blocks under the Hodge decomposition on the 4-sphere.

The indicial roots apppear in pairs, symmetric around the line Re z = 3, and are

parametrized by the eigenvalues of the 4-sphere (see Figure 2-1 for the indicial roots

distribution). Then according to different behaviors of the indicial roots we use

different strategies. For large eigenvalues, for which the indicial roots separate away

from the L2 line, a parametrix is constucted using the small edge calculus introduced

by Mazzeo [25], showing that the operator is an isomorpism. The Fredholm property

of the smaller eigenvalues that are still separated away from L2 line is individually

discussed in a similar manner using normal operator construction; then we use the fact

there are no finite-dimensional SO(7) invariant sections in L2 on hyperbolic space for

symmetric tensors and forms [7], to show that the operator is injective on any space

that is contained in L 2 . For the three pairs with real part of indicial roots equal

16



to 3, the projection of the operator becomes a 0-problem and we follow the method

in Mazzeo-Melrose [29] and Guillarmou [18] to construct two generalized inverses

R* = limo(dQ t ic)-. Then we use scattering matrix construction on hyperbolic

space given by Graham-Zworski [16] and Guillarmou-Naud [19] to show explicitly

that real-valued kernel of the linearized operator is prescribed by three pairs of data

on the boundary 6-sphere.

In section 2.4 we apply the implicit function theorem, using the fact that the

nonlinear terms are all quadratic, so the nonlinear solutions are also parametrized by

these three terms.

Now we state the main theorem. Let

V := {v1 E C*(S6. 3 T*S6) : *s6Vi = iVi}.

Let V2 , VW be the smooth functions on the 6-sphere tensored with a finite dimensional

1-form space on S4:

V2  {v 2 0 16 : v 2 E C (S 6; R), i6 E Ec( 4

V3  {v 3 0 40 : V3 E C (S 6 ; R),) 40 E El(S4)

where Ecl(S4 ) and Efe are closed 1-forms with eigenvalue 16 and 40 on the 4-sphere.

We also require three numbers that define the leading term in the expansion of

the solution, which come from indicial roots:

Oz = 3 t 6i, 0 = 3 t iV21116145/1655,03 = 3 i3 582842/20098. (1.12)

If we fix an element [h] in the conformal boundary data to the leading order,

the solution is parametrized by a small perturbation from the data on the bundle

C (S6; =Vi). The metric part of the solution to the leading order is given by the

conformal infinity [A, whereas the form part to the leading order is given by the

oscillatory data vx + Si(vi)x .

17



To state the theorem, we also give the following notations. Denote

uo (gH7 x 1gs4,6Vols4)

and [h] is close to .o as metric on S'. A small neighborhood in the bundle is given by

U C C (S6; ( 3 1V)

Theorem 1.3. For 6 E (0, 1), s > 2 and k > 0, in the space of solutions to Q(u) = 0

in x 3-6 H (M; W), a neighborhood of uo is smoothly parametrized by [h] and U. For

a smooth section v G U with a sufficiently small H k norm and a [h], there is a unique

g E x- H (M; Sym 2 (eT*M)) and a 4-form F E x 6 Hb (M; e A4 (T*M)) prescribed

by those data, such that (g - h, F - V) E x6H,', k (M; W) and Q(u) = 0.

1.2 Resolution of the canonical fiber metrics for a

Lefschetz fibration

In this project joint with Richard Melrose, we give a complete description of the

behavior of the constant scalar curvature fiber metric on a Lefschetz fibration with

fiber genus > 2. For a Riemann surface with g > 2, the classical uniformization

theorem guarantees the existence of a metric with constant scalar curvature -1. One

may ask the question about the existence and behavior of a constant scalar curvature

metric if the geometry becomes singular, namely, we take a nontrivial geodesic cycle

and let its length go to zero, which is illustrated in Figure 1-1.

This fits naturally with the setting of a Lefschetz fibration. The class of Lefschetz

fibrations we consider is for a compact connected almost-complex 4-manifold W and

a smooth map, with complex fibers F, to a Riemann surface Z

: F > W (1.13)

Z

18



666
Figure 1-1: Degenerating surfaces with a geodesic cycle shrinking to a point

which is pseudo-holomorphic, has surjective differential outside a finite subset of W

and near each of these singular points is reducible to the following normal crossing

model:

Pt = {(zw,t) E C 3;zw =t, |z| 1, |w 1, |t D (z,w,t)

D= {t E C; t| . (1.14)

Lefschetz fibrations play an important role in 4-manifold theory. Donaldson [8]

showed that a 4-dimensional simply-connected compact symplectic manifold admits a

Lefschetz fibration over a sphere up to a stabilization, and Gompf showed the converse

[14].

Obitsu and Wolpert [39] [46]

where near each singularity the

metric

studied a degenerating family of Riemann surfaces Rt

model is Pt and the metric is given by the plumbing

2 =(log z| 7rlogz|> 2 2ds= csc ds2
Pt log ItI log It| d '

ds2=( z )2 (1.15)
0 Iz~logjzI)

Fiberwise it has constant scalar curvature -1, and approaches the singular metric

ds2 on the cylinder as t tends to 0. By grafting with the regular parts, they constructed

the expansion of metrics on the global manifold.

19
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Figure 1-2: Lefschetz fibration : M -+ Z
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Theorem 1.4 ([39], [46]). Let ds' be the hyperbolic metric on the degenerated family

Rt with m vanishing cycles, zA the associated Laplacian, and dspi the plumbing metric

that comes from gluing ds'e with the regular part, then the metric has the following

expansion

ds2 = ds 1 - (7o 2 2(A - 2)~-'(A(zj) + A(wj)) + 0

(1.16)

where the function A is given by A(zj) = (szX-1Dj 2)S, sz = log jz .

Our result is a generalization of Theorem 1.4 by showing that, in the resolved

plumbing space, gcc is conformal to gpi, where the conformal factor has a complete

expansion in the variable log tI.

In order for the metric to be smooth, we introduce the resolved plumbing space

which involves three steps of construction. The first step in the resolution is the

blow up, in the real sense, of the singular fibers; this is well-defined in view of the

transversality of the self-instersection but results in a tied manifold since the boundary

faces are not globally embedded. The second step is to replace the C' structure by

its logarithmic weakening, i.e. replacing each (local) boundary defining function x by

ilogx = (log X-1) 1 .

This gives a new tied manifold mapping smoothly to the previous one by a homeo-

morphism. These two steps can be thought of in combination as the 'logarithmic blow

up' of the singular fibers. The final step is to blow up the corners, of codimension

two, in the preimages of the singular fibers. This results in a manifold with corners,

Mmr, with the two boundary hypersurfaces denoted B1, resolving the singular fiber,

and BIn arising at the final stage of the resolution. The parameter space Z is similarly

resolved to a manifold with corners by the logarithmic blow up of each of the singular

points.

21
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Figure 1-3: The metric resolution

It is shown below that the Lefschetz fibration lifts to a smooth map

Mmr ""> Zmr (1.17)

which is a b-fibration. In particular it follows from this that smooth vector fields on

Mmr which are tangent to all boundaries and to the fibers of 4 mr form the sections

of a smooth vector subbundle of bTMmr of rank two. The boundary hypersurface BI,

has a preferred class of boundary defining functions, an element of which is denoted

p11, arising from the logarithmic nature of the resolution, and this allows a Lie algebra

of vector fields to be defined by

V E C (Mmr; bTMmr), Vb*Coc(Zmr) = 0, Vp11 E p iC (Mmr). (1.18)

The possibly singular vector fields of the form p-jV, with V as in (3.4), also form all

the sections of a smooth vector bundle, denoted LTMmr. This vector bundle inherits

a complex structure and hence has a smooth Hermitian metric, which is unique up

to a positive smooth conformal factor on Mmr. The main result of this paper is:

Theorem 1.5. The fiber metrics of fixed constant curvature on a Lefschetz fibration,

in the sense discussed above, extend to a continuous Hermitian metric on LTMmr

which is related to a smooth Hermitian metric on this complex line bundle by a log-

22



smooth conformal factor.

The plumbing metric can be extended ('grafted' as in [39]) to give an Hermitian

metric on LTMmr which has curvature R equal to -1 near BI, and to second order

at B1. We prove the theorem above by constructing the conformal factor e2 for

this metric which satisfies the curvature equation, ensuring that the new metric has

curvature -1 :

(A +2)f + (R +1) = -e 2f +1+2f = O(f 2). (1.19)

This equation is first solved in the sense of formal power series (with logarithms)

at both boundaries, B1 and B 1 , which gives us an approximate solution fo with

-zfo = R+e2 o + g, g E s C (Mmr).

Then a solution f = fo + f to (3.9) amounts to solving

f = -(A + 2)-i (2f (e 2fo - 1) + e2 fo (e 21 -1 - 2f) - g) = K(f).

Here the non-linear operator K is at least quadratic in f and the boundedness of

(A + 2)-i on pJ Hf(Mmr) for all M allow the Inverse Function Theorem to be

applied to show that f E s C (Mmr) and hence that f itself is log-smooth.

In 3.1 the model space and metric are analysed and in 3.2 the global resolution

is described and the proof of the theorem above is outlined. The linearized model

involves the inverse of A +2 for the Laplacian on the fibers and the uniform behavior,

at the singular fibers, of this operator is explained in 3.3. The solution of the curva-

ture problem in formal power series is discussed in 3.4 and using this the regularity

of the fiber metric is shown in 3.5.

1.3 Resolution of eigenvalues

This project is an explicit construction for an example of the Albin-Melrose resolution

of compact group action on a compact manifold [1]. Such resolution of group actions
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is interesting because on the resolved space, the group-equivariant objects are well-

defined and smooth. Albin-Melrose gave a general scheme of how to resolve the group

actions according to the index of isotropy types, namely, an iterative scheme where

the smallest isotropy type is blown up and then the next level of stratum could be

uniform.

Theorem 1.6 ([1]). A compact manifold with corners, M, with a smooth boundary

intersection free action by a compact Lie group G, has a canonical full resolution,

Y(M), obtained by iterative blow-up of minimal isotropy types.

Here we consider the action of the unitary group U(n) on the space of n-dimensional

self-adjoint matrices S(n) and construct the resolved space S(n) with a fixed isotropy

type, that is, S(n)/U(n) is a smooth manifold. We introduce the following two defi-

nitions of resolutions:

Definition 1.1 (eigenresolution). By an eigenresolution of S, we mean a manifold

with corners S, with a surjective smooth map 3 : S -+ S such that the self-adjoint

matrices have a smooth (local) diagonalization when lifted to S, with eigenvalues lifted

to smooth functions on S.

Definition 1.2 (full eigenresolution). A full eigenresolution is an eigenresolution

with global eigenbundles. The eigenvalues are lifted to n smooth functions fi on 5,

and the trivial n-dimensional complex vector bundle on S is decomposed into n smooth

line bundles S x Cn = (@ Ei such that 3(x)vi = fi(x)vi,V vi - Ei(x),V x G S.

The matrices belong to different isotropy types, in this case, are indexed by the

clustering of eigenvalues. First the two dimensional matrix case is explicitly com-

puted, where the only singularities are the multiples of the identity matrix. Then

for higher dimensional matrices, a local product structure using the Grassmannian is

described, so we show that when there is a uniform spectral gap in the neighborhood,

there is a local product decomposition into two lower rank matrices and a neighbor-

hood in the Grassmannian. Then using this decomposition, we show that the blow

up action can be done iteratively, each time blowing up the smallest isotropy type,

which in our case is the matrices with the smallest number of different eigenvalues.
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Theorem 1.7 ([48]). The iterative blow up of the isotropy types in S (in an order

compatible with inclusion of the conjugation class of the isotropy group) yields an

eigenresolution. In particular, radial blow up gives a full eigenresolution.

We also discuss the difference between radial blow up and projective ones. We

show in the example of two dimensional matrices that only after radial blow up the

trivial C2 bundle splits into two global line bundles, while in the projective case there

is no global splitting, which gives an example of the discussions in [1] that projective

blow up does not induce a global resolution.
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Chapter 2

The eleven dimensional supergravity

equations on edge manifolds

2.1 Introduction

Supergravity is a theory of local supersymmetry, which arises in the representations

of super Lie algebras. Nahm [37] showed that the dimension of the system is at most

eleven in order for the system to be physical, and in this dimension if the system

exists then it would be unique. The existence of such systems was shown later by

Cremmer-Scherk [6] by constructing a specific system. Recently, Witten [45] showed

that under AdS/CFT correspondence the M-theory is related to the 11-dimensional

supergravity system, and as a result people start to work on this subject again [3].

Systems of lower dimensions can be obtained by dimensional reduction, which breaks

into many smaller subfields, and in general there are many such systems. The full

eleven dimensional case, with only two fields, is in many ways the simplest to consider.

A supergravity system is a low energy approximation to string theories, and can

be viewed as a generalization of Einstein's equation:R,3 = ngQ,. We are specifically

interested in the bosonic sections in the supergravity theory, which is a system of

equations on the 11-dimensional product manifold M = B1 x S' that solves for a

metric, g, and a 4-form, F. Derived as the variational equations from a Lagrangian,
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the supergravity equations are as follows:

R,, = (F , FC'1Y 2 3 1 F717 FY3 'Y gce,3

d*F= -IFAF (2.1)

dF = 0

The nonlinear supergravity operator has an edge structure in the sense of Mazzeo

[25], which is a natural generalization in the context of the product of a conformally

compact manifold and a compact manifold. We consider those solutions that are

sections of the edge bundles, which are rescalings of the usual form bundles. The

Fredholm property of certain elliptic edge operators is related to the invertibility of

the corresponding normal operator N(L), which is the lift of the operator to the front

face of the double stretched space X,2. The invertibility of the normal operator is in

2turn related to its action on functions polyhomogeneous at the left boundary of X,,

which is determined by the indicial operator. The inverse of the indicial operator

Io(L)- 1 exists and is meromorphic on the complement of a discrete set specb L, which

is the indicial roots of L. In this way the indicial operator as a model on the boundary

determines the leading order expansion of the solution.

One solution for this system is given by a product of the round sphere with a

Poincar-Einstein metric on B7 with a volume form on the 4-sphere, in particular the

Freund-Rubin solution [11] is contained in this class. Recall that a Poincar6-Einstein

manifold is one that satisfies the vacuum Einstein equation and has a conformal

boundary. In the paper by Graham and Lee [15], they constructed the solutions

which are C-',- close to the hyperbolic metric on the ball B' near the boundary,

and showed that every such perturbation is prescribed by the conformal data on the

boundary sphere. We will follow a similar idea here for the equation (2.1), replacing

the nonlinear Ricci curvature operator by the supergravity operator, considering its

linearization around one of the product solutions, and using a perturbation argument

to show that all the solutions nearby are determined by the metric and form data on

the boundary.

Kantor studied this problem in his thesis [20], where he computed the indicial
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roots of the system and produced one family of solutions by varying along a specific

direction of the form. Here we use a different decomposition that gives the same

indicial roots and show that all the solutions nearby are prescribed by boundary data

for the linearized operator, more specifically, the indicial kernels corresponding to

three pairs of special indicial roots.

2.1.1 Equations derived from the Lagrangian

The 11-dimension supergravity theory contains the following information on an 11-

dimensional manifold M: gravity metric g E Sym2 (M) and a 4-form F E A4 (M). In

this theory, the Lagrangian L is defined as

L(g, A) RdV/ -- ( FA*F+ -A A F A F) (2.2)
fm 2 ( i M 3

Here R is the scalar curvature of the metric g, A is a 3-form such that F is the field

strength F = dA. The first term is the calssical Einstein-Hilbert action term, where

the second and the third one are respectively Yang-Mills type and Maxwell type term

for a field. Note here we are only interested in the equations derived from the variation

of Lagrangian, therefore A needs not to be globally defined since we only need dA

because the variation only depends on dA:

6A( ji A F A F) = 3 j A A F A F (2.3)

which shows that the variation is F A F which does not depend on Ai.

The supergravity equations, derived from the Lagrangian above, are (2.1). To

deal with the fact the Ricci operator is not elliptic, we follow [15] and add a gauge

breaking term #(g, t) = Pg. 9,Id to the first equation. Then we apply d* to the 2nd

equation, and combine this with the third equation to obtain the gauged supergravity

system:

Q: S2 (T*M) E / 4(M) -+ S2(T*M) e A4(M)
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g Ric(g) - #(g,t) - F oF (2.4)

F d * (d * F + F A F J
which is the nonlinear system we will be studying.

2.1.2 Edge metric and edge Sobolev space

Edge differential and pseudodifferential operators were formally introduced by Mazzeo

[25]. The general setting is a compact manifold with boundary, M, where the bound-

ary has in addition a fibration

7r : c9M -+ B,

with typical fiber F. In the setting considered here, M = B x S4 is the product of

a seven dimensional closed ball identified as hyperbolic space and a four-dimensional

sphere. The fibration here identifies the four-sphere as fibre:

7r : &(H7 x S4) = S6 x S4 -+ S6.

The space of edge vector fields Ve(M) is a Lie algebra consisting of those smooth

vector fields on M which are tangent to the boundary and such that the induced

vector field on the boundary is tangent to the fibre of 7r. Another vector field Lie

algebra we will be using is Vb which is the space of all smooth vector field tangent to

the boundary. As a consequence,

Ve C V, [Ve, V] C V. (2.5)

Let (x, Yi, y2, ...Y6) be coordinates of the upper half space model for hyperbolic

space H[7, and z. be coordinates on the sphere 54. Then locally Vb is spanned by

xa2 , ay, Oz, while Ve is spanned by

xax, X(9, 9 .
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The edge forms are the dual to the edge vector fields Ve, with a basis:

dx dy
, , dz .

The 2-tensor bundle is formed by the tensor product of the basis forms. Edge dif-

ferential operators form the linear span of products of edge vector fields over smooth

functions. Denote the set of m-th order edge operator as Diff'(M). We will see that

the supergravity operator Q is a nonlinear edge differental operator.

The edge-Sobolev spaces are given by

He(M) = {u E L2 (M)|Vku E L2 (M), 0 k < s}.

However, for purpose of regularity we are also interested in hybrid spaces with

additional tangential regularity. The exsitence of solutions with infinite smooth b-

regularity gives the solution with polyhomogeneous expansions. Therefore we set the

Sobolev space with boundary and edge regularity as:

He '(M) = {u E He(M)lV u E H,(M), 0 < i < k}

By the commuting relation (2.5), H,'I (M) is well defined, that is, independent to the

order of applying edge and b-vector fields.

These Sobolev spaces are defined so that edge operators maps between suitable

spaces, i.e., for any m-th order edge operator P E Diff' M,

P : Hes'k(M) -+ He m,k (M), m M <S. (2.6)

for which the proof is contained in section 2.5.

2.1.3 Poincar6-Einstein metric on B7

Now let us go back to the Poincar6-Einstein metric. As mentioned above, the product

of a Poincar6-Einstein metric with a sphere metric provides a large family of solutions
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to this system, which is known as Freund-Rubin solutions. More specifically, for any

Poincar6-Einstein metric h with curvature -6c 2, the following metric and 4-form

gives a solution to equations Q(u) = 0:

u = (h x gs4, cdVs4) (2.7)

According to [15], there is a large class of Poincar6-Einstein metrics which can

be obtained by perturbing the hyperbolic metric on the boundary. More specifically,

there is the following result:

Theorem 2.1 ([6]). Let M = Bn+1 be the unit ball and h the standard metric on

Sn. For any smooth Riemannian metric . on Sn which is sufficiently close to h in

C2',norm if n > 4 or C' norm if n = 3, for some 0 < a < 1, there exists a smooth

metric g on the interior of M, with a C' conformal compactification satisfying

Ric(g) = -ng, g has conformal infinity [MJ.

We are mainly interested in the solutions that are perturbations of such a family

of solutions, in particular, we will focus on the solutions with c = 6 above with

hyperbolic metric on the ball and a scaled metric on the sphere, i.e. on X = H' x S':

gH x Igs,6dVS4), (2.8)

which is also known as the Freund-Rubin solution.

2.1.4 Main theorem

In our theorem, we will fix a Poincare-Einstein metric h on B' which is sufficiently

close to the hyperbolic metric. From the discussion above we know (h x !gs4, 6dV4)

satisfy the gauged supergravity equation (2.4). As in Graham-Lee's paper, the

Poincar6-Einstein metrics are paramtrized by the boundary data on S6, i.e. near

any fixed Poincar6-Einstein metric, there exists a unique solution to the Einstein
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equation for a small (smooth) perturbation of the boundary conformal data.

For supergravity equations, we have additional parametrization data. Let

V1 := {vi e C,(S; A3 T*S6 ) I *S6Vi = iV}.

Let V2, V3  be the smooth functions on the 6-sphere tensored with a finite dimensional

1-form space on S':

V2  {v 2 0 :16 V 2 E C (S6; R), 16 E E6(S4)}

V3  {v 3  40 : v3 E C (S 6;R), 40 e

where E1(S4 ) and E4 are closed 1-forms with eigenvalue 16 and 40 on the 4-sphere.

We also require three numbers that define the leading term in the expansion of

the solution, which come from indicial roots:

0 = 3 6i, 02 = 3 i 21116145/1655, 03 = 3 i3 582842/20098. (2.9)

If we fix an element [h] in the conformal boundary data to the leading order,

the solution is parametrized by a small perturbation from the data on the bundle

C (S6; EV). The metric part of the solution to the leading order is given by the

conformal infinity [h], whereas the form part to the leading order is given by the

oscilatory data vt xo + Si(vi)x 6-.

To state the theorem, we give the following notations. Denote

UO := (grH7 X 1 gs4,6Vos41
4

and [h] is close to yo as metric on S6. A small neighborhood in the bundle is given by

U C Co (O; E 3 V)

Theorem 2.2. For 6 E (0, 1), s > 2 and k > 0, in the space of solutions to Q(u) = 0
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in x 3 6 Hb(M; W), a neighborhood of uo is smoothly parametrized by [h] and U. For

a smooth section v G U with a sufficiently small Hk norm and a [h], there is a unique

g 6 x-H (M;Sym 2 (eT*M)) and a 4-form F C x-Ho(M; A4(T*M)) prescribed

by those data, such that (g - h, F - V0) x-'H,' (M; W) and Q(u) = 0.

Our approach is based on the implicit function theorem. We consider the operator

Q,(-) = Q( +v). A right inverse of the linearization, denoted (dQ,)- 1 , is constructed,

and we show that Q, o (dQ,)- 1 is an isomorphism on the Sobolev space H,bk(M; W)

corresponding to the range of dQ,.

To get the isomorphism result, we note that the model operator on the boundary

is SO(5)-invariant, and therefore utilize the Hodge decomposition of functions and

forms on S4 . We decompose the equations into blocks and compute the indicial roots

of each block. The indicial roots are defined by the indical operator on each fiber

Ir_ 1(p):

I,[Q](s)v = x-Q(Xv)1-(P).

Indicial roots are those s that the indicial operator has a nontrivial kernel. These

roots are related to the leading order of the solution expansions near the boundary.

Once the indicial roots are computed, we construct the operator (dQv)-. The

operator exihibits different properties for large and small spherical eigenvalues. For

large ones, the operator is already invertible by constructing a parametrix in the

small edge calculus. For small eigenvalues, two resolvents R = limo(dQ t iE)- 1

are constructed. We show that those elements corresponding to indicial roots with

real part equal to 3 are the boundary perturbations needed in the theorem.

In section 2.2 we show the derivation of the equations from the Lagrangian and

discuss the gauge breaking condition. In section 2.3 we study the linearized operator

and show it is Fredholm on suitable edge Sobolev spaces. In section 2.4 we construct

the solutions for the nonlinear equations using the implicit function theorem.
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2.2 Gauged operator construction

2.2.1 Equations derived from Lagrangian

The supergravity system is derived as the variational equations for the following

Lagrangian:

RdV - ( FA*FJ+ - AAFAF .
3

Now we compute its variation along two directions, namely, the metric and the form

direction. The first term is the Einstein-Hilbert action, for which the variation in g is

6g (J dVR) =1f Ra - R ga,6g3dV,).

Now we compute the variation of the second term F A *F in the metric direction,

which is

6 F A*F = 1 F... 74F ... g249 9 9 <og16dV - F A
Cmbnin) = s g te t

Combining the two variations and setting them equal to zero, we get

*Fg,6g(2.

(2.11)

1 1
Re) - -Rg/3 = IFa F ,1772773 1

- (F, F)goo.
4

Here (., .) is the inner product on forms:

(F, F) = F F7 ...f 4e

Taking the trace of the equation, we get

1
R = -(F, F).

6
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Finally, substituting R in the equation, we get

1 1
R = (Fyy F77 2Fyms4y7,7 p,

which gives the first equation in supergravity system2.1.

The variation with respect to the 3-form A is

SFA*F- 16AAFAF- 1 I
6 3J

AAFAF = - I JAA(d*F+ FAF),
2

which gives the second supergravity equation:

1
d * F + 2F A F = 0. (2.17)

Since F is the differential of A, so we have the third equation

dF = 0. (2.18)

Product solutions are obtained as follows: let X 7 be an Einstein manifold with

negative scalar curvature a < 0 and K4 be an Einstein manifold with positive scalar

curvature 3 > 0. Consider X x K with the product metric; then we have

0

3#gga
(2.19)

Let F = CVK. A straightforward computation shows

(F o F)ao =
c2

12 ( -2gAB

0

0

4g )

Therefore any set (c, , 3) satisfying

-c 2 /6 = 6a, c2/3 = 3/3
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6AS= (2.16)

(2.20)

(2.21)

.6agm
Ric =B
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corresponds to a solution to the supergravity equation.

2.2.2 Change to a square system

In order to write the equations as a square system, we change the second equation to

second order by applying d*. Combining with the closed condition dF = 0, d * d * F

is the same as ZXF. This leads to the following square system

Ricg - F o F = 0 (2.22)
1

zAF + d* (F AF)=0 (2.23)
2

Proposition 2.1. After changing to the square system, the kernel is the same as the

kernel of the original system.

Proof. The only change here is that we introduced d* = *M(ds4 + dE7)*M, in which

*M and dS4 are both isomorphisms. Therefore we only need to consider the possible

kernel introduced by dH7 in the solution space. On the hyperpolic space, there are no

L2 kernel for dH7 because of the representation, and the nonlinear terms after taking

off the kernel of the linearized operatoris of decay x 6 .

2.2.3 Gauge condition

Following [15] in the setting of Poincar6-Einstein metric, we add a gauge operator to

the curvature term where g is the background metric:

p(t,g) = 6*(tg)--1 tGtg.

Here
1

[Gtg]j = gij - 2 [g]i =

6* is the formal adjoint of 6g, which can be written as

[6* W]ij = 1
37 +
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and

[(tg)-'wli = tij(g-)Yk Wk.

By adding the gauge term we get an operator Q, which is a map from the space

of symmetric 2-tensors and closed 4-forms to the space of symmetric 2-tensors and

closed 4-forms:

Q: S2 4(T*M) e /\(M) - S2(T*M) E /\(M)

g Ric(g) - $(t, g) - F oF (2.24)
F d * (d * F + !F A F)

which will be the main object to study.

As discussed in [15], Ric(g) + ng - #(t, g) = 0 holds if and only if id : (M, g) -

(M, t) is harmonic and Ric(g) + ng = 0. We will show that the gauged equations here

yield the solution to the supergravity equations in a similar manner.

We first prove a gauge elimination lemma for the linearized operator. As can

be seen from (2.24), only the first part (the map on 2-tensors) involves the gauge

term, therefore we restrict the discussion to the first part of dQ. We use dQg(k, H)

to denote the linearization of the tensor part of Q along the metric direction at the

point (g, F), which acts on (k, H). First we give the following gauge-breaking lemma

for the linearized operator, which is adapted from Theorem 4.2 in [20].

Lemma 2.1. If (k, H) satisfies the linearized equation dQg(k, H) = 0, then there

exists a 1-form v and k = k + Lvog such that dS9 (k, H) = 0.

To prove the proposition, we first determine the equation to solve for such a

1-form v.

Lemma 2.2. If a 1-form v satisfies

1
((A"rouh - Ric)v)A = -(2V'kA - VATrg(k)) (2.25)

2
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then k = k + Long satisfies the gauge condition

do$(t, g)g(k) = 0.

Proof. Let TI(v, g) be the map

VJ(V, g) k = (g) I r( g) _ Fr())

This satisfies

Jg*gD'F(0, t)(v) = DtO(Lvotg),JggDgIF(0,t)(k) = Dto(k).

Therefore in order to get Dt4(k) = 0, we only need

-Dq J(0, t)(v) = Dg'(0, t)(k).

The left hand side can be reduced to

-g" 3VVv ,Vk - R V = ( Arouh - Ric)vk

and right hand side is

1 c~199 Uk(Vtk,3x + VokA - VAkaa).
2

Lowering the index on both side, we get

((Arouh9 - Ric)v)x = I(2Vaka\ - VA Trg(k)).

Next we discuss the solvability of the operator defined above in (2.25).
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Lemma 2.3. If |6| < 1, then at the point go = YH X 19S the operator

Arough - Ric : x'H2 (eT*M) -+ x'L2(eT*M)

is an isomorphism.

Proof. Using the splitting

eT*M , e T* H7 e 7r*eT*S4

and the product structure of the metric, we write the operator as

Z rough - Ric = ,Arough + Arough - diag(-6, 12).

It decomposes into two parts: trace and trace-free 2-tensors. Decomposing into eigen-

functions on the 4-sphere, consider the following two operators:

Ltr = AH + A - 24: CO (H7 ) -÷ Co((H7 ), (2.26)

Ltf = gh + A'+6 : eA* H7 e /* H7  (2.27)

Consider the smallest eigenvalue in each case: Atr = 16, Atf = 0. The indicial radius

for Ltr is 1 and for Ltf is 4. Then using theorem 6.1 in [25], for 161 < 1 the operator Ltr

as a map from x 6 H2 (H7) -+ xJL2(H7) has closed range and is essentially injective.

Moreover, since the kernel of this operator lies in the L 2 eigen space of H 7 which

vanishes, therefore the operator is actually injective. By self-adjointness, it is also

surjective on the same range for J. The same argument holds for Ltf, which is also

Fredholm and an isomorphism on x6 H2(e A* H7 ) -+ x6 L 2 (e A* H) for 161 < 4.

Combining the statements for Lt, and Ltf, we conclude that Trough - Ric is an

isomorphism between x 6H2 (eT*M) -- xL 2(eT*M) for 161 < 1.

The isomorphism holds true for metrics nearby, by a simple perturbation argu-
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ment.

Corollary 1. At any metric g which is close to go, for |J| < 1, Arogh - Ric is an

isomorphism as a map

Arough - Ric: x6H 2(eT*M) -> xjL2 (eT* M).

With the lemmas above, we can prove the proposition.

Proof of Proposition 2.1. From Lemma 1 we know rough - Ric : X6 H 2(eT*M) -+

x6L 2 (eT*M) is an isomorphism, therefore there exists a one-form v satisfying 2.2.

Then from Lemma 2.2, k = k + Log satisfies Dgq(k) = 0. Putting it back to the

linearized equation, we get dSg (k, H) = 0. D

Next we prove the nonlinear version of gauge elimination by using integral curves.

Proposition 2.2. If a metric and a closed 4-form (g, V) satisfies the gauged equations

Q(g, V) = 0, then there is an diffeomorphism g '- y such that 0(j, t) = 0 and ( , V)

is a solution to equation( 2.1) i.e. S(j, V) = 0.

Proof. Consider the integral curve on the manifold of metrics close to the product

metric, defined by the vector field at each point g with value kg = kg + Leog. Then

along this curve, it satisfies DgQ(k, H) = 0. Therefore Q(, V) = 0.

We also need to show that j has the same regularity as g. It suffices to show that

the vector field is smooth enough. Since v solved above in Lemma 2.2 is polyhomo-

geneous, then the Lie derivative Leog = Vav3 + Vva is one order less smooth than

v. However by integration we gain one order of regularity back. Therefore j has the

same regularity as g. E

2.3 Fredholm property of the linearized operator

We now consider the linearization of the gauged supergravity operator near the base

metric and 4-form (go, F) = (g7 x gs4, 6 Vols4). The first step is to compute the indi-

cial roots and indicial kernels of this linearizaed operator, which is done with respect
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of the harmonic decomposition of the 4-sphere. As the eigenvalues becomes larger,

the indicial roots become further apart. Specifically, all of them are separated by real

part 3, with only three pairs of exceptions, where the indicial roots corresponding to

the lowest three eigenvalues lie on the L2 line which has real part equal to 3.

Once we identify these indicial roots, we proceed differently according to whether

the indicial roots land on the L2 line or not. We show that for most of the indi-

cial roots, the decomposed linearized operator is Fredholm on suitable edge Sobolev

spaces. This is done by using small edge calculus and SO(5) invariance of the struc-

ture. For the three exceptional pairs we use scattering theory to construct two gen-

eralized inverses, which encode the boundary data that parametrize the kernel of the

linear operator.

We then describe the kernel of this linearized operator in terms of the two gener-

alized inverses, and a scattering matrix construction that gives the Poisson operator.

Nearby the Poincar6-Einstein metric product, a perturbation argument shows that

the space given by the difference of the two generalized inverses is transversal to the

range space of the linearized operator and therefore this space gives the kernel of

the linearized operator, which later will provide the kernel parametrization for the

nonlinear operator.

2.3.1 Linearization of the operator Q

The nonlinear supergravity operator contains two parts: the gauged curvature op-

erator Ric -0gt with its nonlinear part F o F, and the first order differential of the

4-form d * F with its nonlinear part F A F. Note that since the Hodge operator *

depends on the metric, the linearized operator couples the metric and the 4-form in

both of the equations.

Though we only consider the linearization about the base poduct metric H7 x

Igs4, the computation below applies to other Poincare-Einstein metrics satisfying the

relation 2.7 mentioned in the introduction. Since near the boundary the metric is the

same as H7 x S4, the discussion about edge operators in later sections would remain

the same.
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Proposition 2.3. The operator Q : W -+ W has the following linearization at the

point (go, F):

dQgo,F: IF (Sym 2 (eT*M) e 4(M)) -+ (Sym 2 (e T*M) e 4(M))

d * (d * H + 6Vols

Ak + LOT

AH + 6d *H k1,1 + 3d(trH7(k) - trs4(k)) A

where the lower order term matrix LOT is as follows:

kr- - 6 trs(k)tij + trH(k)tij + 2 *s HO,4 tlJ

6ki,1 - 3 *s H1,3

We break the computation into a curvature part and a form part as follows.

Lemma 2.4. For k e Sym 2(eT*M), the linearization of the gauge broken Ricci op-

erator at the base hyperbolic metric is

1
dgo (Ric -4g,t)(k) = I Youghk + R(k),2 go

-7k 11 + TrNs (k)g11

0

0

16kij - Trs4(k)gij

Proof. Following the result in [15], the linearization of the gauged operator at the

base metric t is

dt(Ric -5g,t)(k) = ZArouh k + k" 3Rflyj, + 1 (R,9k,8 + Rikg,). (2.30)

Specifically, if the metric is constant sectional curvature near the boundary of M

which is the case for the conformal compact metric here (with sectional curvature

-1), the curvature term is diagonalized and can be written as

Ra,3p = -(g6go - gogg5),
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H

LOT = (

VolHI) )
(2.28)

6ki,1 - 3 *s H, 3

4kij + 8 trs(k)ti, - *sHo,4 tij )

where

R(k) = (

(2.29)

)



so the linearization of this total operator is as above.

Lemma 2.5. The linearization of F o F along the 2-tensor direction and 4-form

direction are: for k C Sym 2 (eT*M)

dgo,6 vols(F o F)(k)

1 Trs(k)ti. - 1 k + 2(W, H)t T(W W)k13

and for H E ' A 4 (T*M)

T2*s Hio,4tAB

dgo,6 vois(F o F)(H) = (2.32)
3(*sH(1,3))Ab

3 *sH(1,3))Ab

-21Wili2i3i4 H ii2iai4 tab

Proof. The proof is by direct computation. Note that

Dt,w (F o F)(H) = ( HH

HS

HS

SS

where

1 Tjj~a41 1
HHAB = -- Wii2i3i4 H Z2%3%4 tAB = C2htAB - c 2 *s H(o,4)tAB;(2 472 72

((VolS)i~i 2 i3i4 (VS)ii2iai4 -s 1,Vols = 1, H1(0,4) = h Vols.)

1
HSAb = HAsil2iW = 3 (*sH(1,3))Ab,

121

SS = -H123 Wbi323 Wii2i3i4 HV124 tab -16 72
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-- 3WT -iWii/ jtil1ki12 t12j1

L2 + F .. i12 3t3 *1 1-i 1 lil

+U F111is3%is F1i ~tl1 12 tab - h(WW)kab)

(2.31)

(2.33)

(2.34)

(2.35)

El

-L(W, W) k12



Then for metric variation k E Sym2 (T*M)

HH

HS

HS

SS

HS = 1 Wil,4W i23i4 k1j,144

1 4 1iiitll iiii
H HAB = 12(2Fii9i94 Fjlis k1112tl'i1t AB -2 -1sWliisa k AB ,

SSab = 1 -
12

3Waii*a 34till kil tl211 + F4 Fj4 F 2i3till' kil 1t2ilt12 Fili~iti1 ~ k 12 tl22tab

IWiigg4 Wilisi4kab ,12

which using inner product Wi i4 Wii2ii4 = (W, W) will give the expressions above.

0

Next we compute the linearization of the 2nd equation:

Lemma 2.6. The linearization of the equation

1
d* F+ F A F= 0,2

along the form direction and tensor direction are respectively:

1
dgo,Fo(d * F + -F A F)(H) = d * H + H A

2
F,

1
dgo,Fo(d * F + -F A F)(k) = 6d *I k(,1) + 3d(trH(k) - trs(k)) VoIH2

(2.39)

(2.40)

Proof. The linearization along the form direction is straight-forward, as the terms are

linear and quadratic on F. Along the metric direction, the linearization comes from
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(2.36)

(2.37)

(2.38)

Dt,w ( F o F) ( k) =



the Hodge star:

D(* F ),1,2..- 8( k )

I= C1-4 1 (JV)01:*C 4 + jV~ e2 )Y1k4W
=.D( 4! 81.7 an.as )(k) = 4! 0) W. V) a- (*Y,),i*Wa1..a4
= 1 lc3Ika 1..O ;s4WA. + 1Va2aC4 pket*Wa..a4

= 6d * H k(1,1) + 3d(tr(k) - trs(k)) Vol(
(2.41)

which gives the expressions above. E

Proof of Propsition 2.3. Combining everything together, the linearized equations are

d * (6d *H k(1,1) + 3d(trH(k) - trs(k)) VolH +d * H + H A Vol bH) = 0 (242)
l rough k + ka/3 R 1,ya + 1 (RI k,86 + R3k,3 ) + LOT = 0

which after arrangement gives the linearization in (2.28). 0

2.3.2 Indicial roots computation

Having obtained the linearized operator dQ, we next compute its indicial roots on the

boundary of H', which together with its indicial kernels parametrize the boundary

values of this linear operator. Utilizing the Hodge decomposition on the 4-sphere, the

operator acts on a space of sections on H 7 tensored with finite dimensional subspaces

of 1(T*S4).

Definition 2.1 (Hodge decomposition projection). Let A be one of the eigenvalues

for the Hodge laplacian on Fr(®D7 Ai(T*S 4)) and define the eigenvalue projection

operator Irx on the the sections of the bundle W = SyM 2 ("T*M) E 4 A T*M to be the

projection that maps to the corresponding part on sphere.

Note here we have a collection of eigenvalues on both functions and forms.

Lemma 2.7. Sections of the bundle W decompose according to eigenvalues A.

Proof. We identify the symmetric edge 2-tensor bundle with (Sym2 (eT*H7)) E(eT*H 7

GT*S4 ) D Sym 2 (T*S 4 ), and decompose the 4-form bundle according to its degree on
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H' and S4, i.e. e A4 T*M = e( 3 =4 e A T*H8 0 A3 T*S4 . And for each element of the

form u 0 v with u e ](' A* T*H 7), V G F(A* T*S4) the projection operator 7r maps

it to u 0 7rAv, which by linearity extends to the whole bundle W. 1:1

It follows that the operator decomposes to an infinite collection of operators, each

acting on a subbundle.

Lemma 2.8. The operator dQ preserves the eigenspaces of 4, and we have the

following decomposition of the operator

dQ = E dQA = rx o dQ 0 7rx
A>O A

Proof. We only need to show that that Hodge laplacian zA commutes with the lin-

earized operator. Since the linear operator is composed from /hdge, ,Arough (which are

related by Bochner formula), Hodge * operator, differential, and scalar operator, all of

which commute with A, dQ therefore commutes with the eigenvalue projections. L

Now we define indicial roots and indicial kernels below for the edge operator.

Recall that OM is the total space of fibration over Y = (93.

Definition 2.2 (Indicial operator). Let L : F(E1 ) -+ r(E2) be an edge operator

between two vector bundles over M. For any boundary point p E Y, and s E C, the

indicial operator of L at point p is defined as

Ip[L](s) : F(Ei li p)) -+ r (E2 1r-1 (P)

(Ip[L](s))v = x-sL(x)J7,r (p)

where i) is an extension of v to a neighborhood of ir- (p). The indicial roots of

L at point p are those s E C such that Ip[L](s) has a nontrivial kernel, and the

corresponding kernels are called indicial kernels.

In the conformally compact case, the indicial operator is a bundle map from E1 |

to E2 , (which is simpler than a partial differential operator as in the general edge
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Figure 2-1: Indicial roots of the linearized supergravity operator on C

case). Moreover, since we have an SO(7) symmetry for the operator, the indicial

roots will be constants for any boundary point p E S 6.

Proposition 2.4. The indicial roots of operator dQ are symmetric around Re z = 0,

with three special pairs of roots

01 = 3 6i, 0: = 3 t i/21116145/1655, 03 = 3 t i3/582842/20098.

and all other roots lying in {II Re z - 3|1 > 1}.

Proof. With the harmonic decomposition on sphere 4, the linearized operator dQ

is block-diagonalized and we compute the indicial roots for the linear system dQ in

Section 2.6. We summarize the results below and Figure 2-1 is an illustration of the

indicial roots distribution. The indicial roots fall into the following three categories:

1. The roots corresponding to harmonic forms:

(a) The equation for trace-free 2-tensors on H7 arising from the first compo-

nent of (2.28) is

( As + AH - 2)kIJ = 0,

and the corresponding indicial equation is

(-s2 +6s)kij = 0.
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We have indicial roots

S' = 0, S- = 6.

This corresponds to the perturbation of the hyperbolic metric to a Poincare-

Einstein metric.

(b) The equation for trace-free 2-tensors on S4 is

osuhij -+ AHkij + 8kij = 0

where indicial equation is

(-s 2 + 6s + 8)kij = 0,

and the indicial roots are

S= 3 v'7.

(c) Equations for H(4 ,o):

dH * H(4 ,o) + W A H(4,o) = 0

dHH(4 ,o) = 0

where the indicial equation is

-(s - 3)(*6N) A dx/x - 6dx/x A N = 0,

with indicial roots

6 = 3 6i.

This corresponds to a perturbation of the 4-form on hyperbolic space.

2. The roots corresponding to functions / closed 1-forms / coclosed 3-forms /
closed 4-forms
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(a) The equations for 7u = TrH (k), 4T = Trs(k), k(1,i), H(1, 3), H(0,4) are

6dH *H 1) + ds(3TrH(k) - 3Trs(k)) A 7 V + ds

dHH, 4 + dsH(Cjj3 = 0

dHHc) = 0

A k, 1) + AHk1,) + 12k, 1) - 6 *s Hf,3) = 0

AsT +zAH-T + 72- - 8 *s H 4 =0

ASo +AHU ~12a + 4 *s Ho 4 - 48- = 0

The indicial equations are

A4- 4S2A3 + 24S * A 3 - 90A3 + 6S4A 2 - 72S3 \2

+ 342S2A 2 - 756S * A 2 + 1152A2 - 4S6A + 72S 5A

* H 4)+ dH* H(1,=0

- 414S4A

+ 648S 3A + 1152S 2A - 3024S * A + 10368A

+S 8 -24S 7+162S 6+108S 5-6192S 4+31536S 3-33696S 2-155520S = 0

(2.43)

When A = 16 there is a pair of roots with real part 3

s = 0' = 3 iV'21116145/1655 (2.44)

and when A = 40 there is a pair of roots with real part 3

30 = 3 t i3v/582842/20098

And here the five variables are related by

A = d * dSt, H, 3) = -dH *8 d8 , k ,1) = -dsH ,4a = 7T =

where

S6, A' 6 S4
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similarly we have another indicial kernel corresponding to 0: with (E

6S A'O S 4.

(b) The equations for H(3 ,1), H(4,o) are

ds* H' +dH*H 0 )+6 4VAHc0 ) =0

dHHl) + dsHc0 ) =0

where the indicial equations are

(s - 3) 2  6i(s - 3) - 16 = 0

with indicial roots

S= 3 V7 3i.

3. The roots corresponding to coclosed 1-forms / closed 2-forms / coclosed 2-forms

/ closed 3-forms

(a) The equations for k(jj), H(1, 3 ), H( 2 ,2 ) are

6dH *Hk ) + dH*HC,) =0

ds* Hc +dH * HC2) + 6ds*H k 1 ) = 0

dH H 3 + dsH, 2 ) =0

A,2 +AH ) (1,1+6k l) 2 S = 0

The indicial equation is

A 2 - (36+ (s - 1)(s - 5) +s 2 - 6s - 1)A - (s - 1)(s - 5) (-s2 +6s +1) =0.

With the smallest eigenvalue for coclosed 1-forms being A = 24, the indicial

roots are

S3 =3 3V 97+31.
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(b) The equations for H(2 , 2 ), H(3 ,1) are

ds* H 2) + dH *HC =0

dHHc 2 ) + dsHc,) =0

The indicial equations are

(AHod9e - (2 - s)(4 - s))H(3,) = 0,

and for A = 24 we have

S53= 3 t VIi.-

With respect to the volume form on IH17 x S4 , there is an inclusion of weighted

functions and forms. For Re(A) > 3,

xAC (M;e/ T*M) c L 2(e PT*M).

And this Re(A) = 3 line is the L 2 cutoff line.

The first thing to notice about the indicial roots results is that those indicial roots

appear in pairs symmetric to Re(s) = 3, which is the L2 line. Most of the indicial

roots are bounded away from Re(s) = 3, and as the sperical eigenvalues become

larger, they are bounded further. However, there are three pairs of roots that are on

the L 2 line, which correponds to the kernel space.

2.3.3 Fredholm property

Now we discuss the behavior of this operator on different eigenspaces, according to

whether the pair of indicial roots appear on the L2 line or off of it. We will use the

edge calculus to deal with the large eigenvalues and the 0-calculus to deal with the

individual small eigenvalues. Specifically, we will construct two right inverses of this

operator to deal with the fact that the kernel appears when the domain becomes
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larger than L2

We will show that for any weight 6 off a discrete set of indicial roots, the operator

dQ acting on x6 Hie(M; W) is Fredholm. Moreover, it is injective when J > 1 and

surjective when 6 < -1. In the range of J E (-1, 0), the kernel is finite dimensional,

characterized by the three subspaces corresponding to the three indicial roots.

First of all, we define the domain for the linearized operator:

Definition 2.3. Fix J E (0, 1), define the domain as

Dk (6 ) -- {u E 33- 6 H (M; W) : (dQ + ic)u E x 3+6 Hi, (M ;W)}.

Using the projection operator 7rA above, the domain can be decomposed in terms

of the spherical harmonic decomposition on S4, as

Dk (6 ) = EAEADk(A, 6 ),

where A is the set of eigenvalues on the 4-sphere. This set is divided into the following

three subsets:

" Eigenvalues on functions: 4k(k + 3);

* Eigenvalues on closed one-forms: 4(k + 1)(k + 4);

" Eigenvalues on coclosed one-forms: 4(k + 2)(k + 3).

We will separately discuss two parts. One part is the infinite dimensional subspace

formed by large eigenvalues

EDA>MDk (A, 6),

on which the operators dQ iE are isomorphisms, and approach two limits D uni-

formly as c goes to zero. This is shown by using ellipticity and a parametrix con-

struction. The other part is discussed for each small eigenvalue since there are only

finitely many. For most of the At's, the operator has the same behavior as the "large"

part. The rest correspond to indicial roots lying on the L2 line, and we use scattering

theory to construct resolvents R and discuss their null spaces.
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2.3.4 Large eigenvalues

Consider the bundle W = Sym 2 (M) 9 A4 (M) over M = B7 x S4 which carries a

unitary linear action of SO(5) covering the action on S4. There is an induced action

of SO(5) on &(B x 54; W), which extends to all the weighted hybrid Sobolev spaces

x'He(B7 x 4; W) since the group acts through diffeomorphisms. The linearized

operator dQ E Diff! (B 7 x S4; W) is an elliptic edge operator for the product edge

structure and we have shown that dQ commutes with the induced action of SO(5) on

dC(B7 x S4; W).

The Sobolev spaces of sections of W decompose according to the irreducible rep-

resentations of SO(5), all finite dimensional and forming a discrete set. In particular

these may be labelled by the eigenvalues, A, of the Casimir operator for SO(5) with

a finite dimensional span when A is bounded above. The SO(7, 1) action on H7 com-

mutes with the SO(5) action on W and acts transitively on H 7, so the multiplicity

of the SO(5) representation does not vary over H7. The individual representations of

SO(5) in the decomposition of W therefore form bundles over H 7 . Therefore we have

the following lemma:

Lemma 2.9. The group SO(5) acts on x3 Hek(M; W) transitively, and the bundle

decomposes to subbundles on H 7.

And we are going to show the following proposition for projection off finitely many

small eigenvalues.

Proposition 2.5. There is a sifficiently large M > 0, such that for A > M and any

c > 0 the two operators dQ A iE acting on Di(e) are both isomorphisms. And their

inverses approaches two operators uniformly as e -+ 0.

To prove this proposition, we will bundle all the large eigenvalues together.

Definition 2.4. For A E [0, oo), let 7r>, : W -+ W be defined as the the projection

off the span of the eigenspaces of the Casimir operator for SO(5) with eigenvalues

smaller than A, i.e. 7r , := Id - E, <\r\.
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Proposition 2.6. For any weight s E R and any orders k, 1, the bounded operator

defined as

dQ: xsH "mA(H x S; W) -+ xsHkI(H x S; W)

is such that wr>AdQ is an isomorphism onto the range of 7r;>. for some A E [0, oc)

(depending on s but not on k and 1). Moreover, the range of Id -- r>, on C' (H x

S4; W) is the space C (M; E®.<AWv) of sections of a smooth vector bundle over M

and dQ restricts to it as an elliptic element of Diffj*(M; EJA'<A WA).

To prove this proposition, we first construct an SO(5)-invariant parametrix in the

small edge calculus by finding a appropriate kernel on the edge streched product space

X, which is defined from X2 by blowing up the fiber diagonal.

Definition 2.5. The edge stretched product X, for an edge manifold X is defined

as the blow up [X2 ; S] where S is consists of all fibres of the product fibration 1r2

(9X)2 -+ Y2 which intersect the diagonal of (OX)2 .

Notice that from the definition of fiber diagonal, the blow up actually preserves

the product structure of H' x S4, i.e. the fibred diagonal contained in X 2 is just the

product of e x S4 x S4, and the manifold after the blow up is [(H 7) 2; O9a] X (S4)2.

Lemma 2.10. For M = H7 x S4, the edge stretched product is actually a product:

X2 = [(H 7) 2 , aAj X ( 4)2.

The elliptic element dQ is transversely elliptic to the fiber diagonal. Therefore we

have a parametrix construction in the small edge calculus as follows.

Lemma 2.11. Any SO(5)-invariant elliptic operator dQ E Diff'(M; W) has an

SO(5)-invariant parametrix E in Tej(M; W), such that

Id -dQ o t, Id -t o dQ E fe (M; W)

are also SO(5)-invariant.

Proof. Any elliptic edge differential operator has a parameterix in the small edge

calculus, following Mazzeo [25]. The construction gives the kernel of E as a classical
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conormal distribution with respect to the 'lifted diagonal' of the stretched edge pro-

duce M,. This latter manifold is constructed by blow-up of the fibre diagonal (for the

product fibtration M = H7 x S4) over the boundary of M. In fact, globally in terms

of the product this is just the diagonal of hyperbolic space over the boundary, i.e.

Me = (H[7)2 x ( 4)2

where the first space is the zero-stretched product for hyperbolic space. Thus in fact

the action of SO(5) on the kernel E, through the product action on M 2 , lifts smoothly

to M and preserves the lifted diagonal (which is the closure of the diagonal in the

interior). So we may average under the product action and define

k= I g -E.
= IESO(5)g*E

Since dQ is SO(5) invariant by assumption (which is verified for the supergravity

operator), k is also a parametrix,

dQ o E = Id+R,

and the average remainder f is also SO(5) invariant. D

As a consequence, now E and f both commute with the spherical eigenvalue

projection 7r>\. The remainder R can be characterized as:

Lemma 2.12. The Schwartz kernel of R is in C,((S4)2, -O ' (H 7) 0 Hom(W)) C

C*(M2, W). In consequence it is a smooth map from (S4)2 to bounded operators on

xsHo'(H; W) for any s, p, with a norm depending on some Ck norm for any bounded

range of s.

Proof. As an element in Te;-0 (M; W), the Schwartz kernel R is smooth on the double

edge space Me, with values in the bundle Hom(W) 0 K where K is the kernel density

bundle. From the properties of the small calculus, R vanishes to infinite order at the

left and right boundary faces. Because M2 has the product structure ( 4)2 x H 2, the
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Schwartz kernel is in C ((S4)2, C' (H', Hom(W) &K)) where C, (H 2, Hom(W) 0 K)

is the To ' (H; W)) operators acting on W.

Consider the map from q/- '(H; W) to bounded operators on xsHo((H; W): since

it is a continuous map from a Fr'chet space to a normed space, the norm is bounded

by some norm on To '(H, W), i.e. the operator norm of R on xSHo((H; W) is bounded

by a constant C(s)R IIck(H;w). For any bounded interval s E [-S, S], the bound of

lRHXSHok(H;W) is uniform.

We can use the following interpolation result to show that 7rXR rapidly decays as

A tends to infinity.

Lemma 2.13. xHepj! (M) = L 2 ( S 4 ; xsHg(H)) n Hp+k (S 4 ; s L8 2(H)).

Proof. We only prove the case s = 0. If a function f is in L 2 (S, Ho(H)), that is

VeP(f) E L2 (M), then applying an elliptic k-th order differential b-operator to f we

obtain an element in HP(S4 , L 2 (H)), therefore by elliptic regularity f E H j (M). El

Lemma 2.14. As A tends to infinity, the bounded operators 7r>,R decay in any

Sobolev norm xsH" (M; W), i.e.

lim ||7r>,x ||xHpi(HxS;W) = 0.

Proof. Using Plancherel it follows that the Schwartz kernel of 7r>AR rapidly con-

verges to 0 in C ((S4 )2 , x'L(H; W)) and L2 (( 4 ) 2 , xsHg(H; W)). Then we obtain

7r>xfI -÷ 0 as bounded operators on xsH, ' (M; W) by the above lemma. El

As a consequence, for any fixed s, k, 1, there is a AO such that 117r>AORHjXSHk(M;W)

}, and this AO only depends on some C' norm. In the case that lr>AxO is small, we

get that 7r;>odQ7r;>AoE is a perturbation of the identity, which is still an isomorphism,

that is,

Lemma 2.15. For any s, k, 1, there is a AO depending only on s, such that

7;>FOdQ7r;>oE = Ide Ow + 7>xoR
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where the right hand side is an isomorphism from x H j'b(M; W) to itself.

Proof. The norm of the operator on the right hand side acting on xsH ,' (M; W) is

bounded from 0. 1

From the above lemma, we get that r>AOdQ is an isomorphism mapping from

7r>oxH ' (M; W) to r;>,OX8Heb-" (M; W), proving the first part of proposition 2.6.

2.3.5 Individual eigenvalues with A $ 0, 16,40

Now we consider those eigenvalues smaller than A0 . Consider the projected operator

7rAdQ7r, which is viewed as a 0-problem on the tensor bundles on H7 (tensored with

fixed eigenforms on S4). Consider the operator dQ on the space 7rx Hj'b)(M; W):

computation shows that for a fixed A, except for A = 0, 16, 40, the indicial roots of dQ

are contained in the range (-o0, _] U [S, oo) for some 6, S, , so they are separated apart.

Moreover the indicial roots are separated further when A is bigger. With this infor-

mation, we will show that, For A > 40, dQA : 7rAH'(M; W) -+ lbr,\ 6 H, bk(M; W)

is Fredholm for any 6.

We consider two operator related to dQ A: the normal operator and reduced normal

operator.

Definition 2.6 (Mazzeo, [25]). For L G Diff *(X) the normal operator N(L)is defined

to be the restriction to the front face B1 of the lift of L to Xe. In terms of the local

coordinate, if

L= aj,,,o (X y Z) (ax8) (Xy) '0
j+a+1'I61m

then

N(L) = a(0, P, z)(s 8,)i (sO2)Df,
i+1Q1+101<M

where s, u, -, , z, .3 is the lifted coordinate system on X2.

Here N(L) acts on the product of Rk+i x F and is invariant under the linear

translations and dilations on the first factor. This may be further reduced to be the

reduced normal operator which is a family of differential b-operators.
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Definition 2.7. The reduced normal operator No(L) is defined by applying the Fourier

transform in the Rk direction to N(L) then doing a rescaling. Specifically,

No(L) = E ajc,(tat)i(it ) O , t E R+, i ES*Y.
j+aJ+JI3I m

Note that in our case, we are interested in the reduced operator of dQA which

is independent of the spherical variables z, and therefore is an ordinary differential

operator.

Lemma 2.16. For A > 40, there are 6 < 0 < 6, such that the reduced normal operator

N0 (dQA) is an isomorphism on x6L2 (R ) for any 6 < 6 < S.

Proof. NO(dQA) has a pair of indicial roots for each A, which tend to oo as A goes

to infinity. For A $ 0,16,40, the pair of indicial roots have different real parts and

thus can be separated. An ODE operator is not injective on x6L2(Rf)when 6 is less

than the bottom indicial root and not surjective when J is bigger than the top indicial

root. Since there is a gap between the pairs of indicial roots for A > 40, we can find

6 S such that NO(dQA) is an isomorphism on xL2(IR+) for 6 < 6 < . El

Lemma 2.17. For A > 40 and 6 < 6 < S, the normal operator N(dQA) is Fredholm

on x'Hb((H7 ;7rAW).

Proof. The reduced normal operator is obtained by Fourier transform and normal-

ization of the operator N(P), so we may do an inverse Fourier transform to get back

to N from No.

From Mazzeo [25], there exists a parametrix G and two projectors P, such that

the Schwartz kernels k(G) and k(P) all lift to distributions on X2 polyhomogeneous

conormal at all boundary faces. The exponents in the expansions are determined by

the indicial roots. I

Remark 1. On M we have the following inclusion:

x3+ C (M; W) C X'L2(M; W).
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The reason why the line of indicial roots with Re(s) = 3 is important is that there

is a symmetry with respect to this line which is related to the self-adjointness of the

operator.

Lemma 2.18. The kernel of the normal operator N(dQA) on x6 Hk(H 7 ;r xW) is zero

for d > 0.

Proof. This follows from the fact that there are no finite dimensional L2 eigenspaces

for functions and tensors on H.Indeed, consider the representation of SO(7, 1) on

tensor bundles on H'. There are no finite dimensional L2 invariant subspace of forms

on H7. For tensors, from Delay's result [7], there are no L 2 eigentensors. L

As a result we have the following:

Lemma 2.19. For any 6 > 0, the normal operator N(dQA) is injective on x6 Hk(M;

7rW) and surjective on x-' H0(M; 7rAW).

Proof. The kernel of this map on x6Hj(M; 7rxW) is contained in L2 eigenspace of

forms and tensors on H17 , which from the lemma above does not have any nontrivial

elements. Therefore it is injective. By duality, it's surjective on the bigger space

x-'H (M; rAW). 0

We now return to the original operator dQA and show that it is Fredholm.

Proposition 2.7. For any 6 > 0, the operator dQA : x3+5Hj \(M;1rW) - X3+6

H'S (M; 7rIW) is injective. Likewise, it is surjective on x 3 Hi' (eM;WW).

Proof. The normal operator is an isomorphism at each point of the boundary S6.

Thus for a general kernel element of dQA, we decompose it using SO(7, 1) action, so

it falls into the kernel space of the normal operator N(dQA) for which there is not

any. Therefore the kernel is also trivial for the operator dQA. So it is injective on the

smaller space, and by duality surjective on the bigger space. L
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2.3.6 Individual eigenvalues with A = 0, 16,40

For those eigenvalues corresponding to indicial roots with real part 3, we consider each

subspace rAx3-Hb (M; W) separately. Restricted to these subspaces, the linearized

operator is a 0-operator on hyperbolic space, of which the main part is the hyperbolic

laplacian A[. From Guillarmou [18], the resolvent of 4A-A, denoted as R(A), extends

to a meromorphic family with finite degree poles. Similarly, we want to show that dQ

has two generalized inverses R , which is the extension of the resolvent (dQ ic) 1

when e approaches the real axis. More specifically, we will prove the following result

that, for A = 0, 16, 40, dQA : x-6 HO(H7 ; 7xW) -+ x6 H 2( (H7 ; 7rXW) is bounded and

has two generalized inverses.

We will be using indicial roots analysis again here, but first we will need to show

that the indicial roots may be separated from the L 2 line by perturbing the operator.

Lemma 2.20. For A = 0,16,40, the two indicial roots of operator dQA if lie off

the Re(s) = 3 line.

Proof. Suppose s E C is an indicial root for an operator P on a point p at the

boundary, then we have P(x8 ) = O(xs+l) by definition. For c 4 0, the following

computation shows that s is no longer an indicial root: (P+ie)(xs) = icxs+O(xs+l)

O(xS+1). Instead, take the harmonic 4-form part which has inidicial roots 3 6i which

in the indicial root computation is P(x3+s) (8 2 +36)x 3+s+O (X 4 ), after perturbation

it becomes

(P + if)(X 3+8) = (s2 + ic + 36)x3+s + O(xS+1)

so the indicial equation becomes s 2 = -iE - 36 which moves the two roots 3 + s off

the line of Re(s) = 3. A similar argument applies to other two pairs of roots. El

Lemma 2.21. For c # 0, the inverse (dQA ic)- 1 : Xa H (M; irAW) -+ XHe (M;

1VAW) exists as a bounded operator.

Proof. Using the indicial roots separation and same argument as before for those

eigenvalues greater than 40, the operator dQA if is Fredholm on xH 2(M; 7rAW),

injective on the smaller space and surjective on the larger space.
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We need the following limiting absorption principle:

Proposition 2.8. For small weight 0 < 6 < 1, and number s, k, the operators (dQA k

iE)- 1 converges uniformly to bounded operators on weighted space,

lim 11(dQA ie)-- - R\= 0.
E-+0

where R" : x\H (M; WrW) -+ 7rx 6H 2,k(M;7rAW).

Proof. To prove this, we will consider the reduced normal operator of dQA - ic, which

is a differential operator (parametrized by y and e), is injective from x6H2 (R+) -+

x6 L2 (R+) for any fixed 6. This ODE operator may be extended holomorphically as e

passes through zero from above, and the solution of the ODE extends holomorphically

as well. After extending it past zero, the smaller indicial root moves into the larger

one. dQA tiE is injective on x3+ 6H j(M, W) -+ X3+ 6H j2,k (M, W) (as it excludes half

the roots), and the resolvent R+ := limE,O(dQA - ie) 1 is an right inverse. Similarly

for R.

2.3.7 Boundary data for the linear operator

Combining the analysis for A off the L2 line and on the L2 line, wc concludc thc

following for dQ:

Proposition 2.9. For 6 E (0, 1), there are two generalized inverses R : x 6 Hsjk (M; W)

- x-6 H 2,k (M ; W) for operator dQ, such that

P o R+ = Id, P o R_ = Id: xHs ' (M; W) -+ x'H '

As a consequence, we find the following right inverse which is real:

(dQ)~l1 -(R+ + R-).2

To get the main theorem, we will parametrize the domain by the boundary data

below to get a family of operators Q,. To show Q, is a local isomorphism, we use an
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implicit function theorem argument that, for small boundary data v, Q, o (dQo),

which acts on a fixed space independent of v, is a perturbation of the identity.

First we define three bundles on S' that parametrize the incoming and outgoing

boundary data for the linear operator.

Definition 2.8. Let V1" to be the space of sections of the bundle of 3-forms with *s

eigenvalue +i:

V:= {V e C (S; A 3 T*Sg) : *s6vi = iV}.

Similarly let V and V be the smooth functions on the 6-sphere tensored with eigen-

forms on 4-sphere:

V2  {v 2 0 16 v 2 E C (S6 ; R), 16 E El(4

V3  {v3 0 40: v 3 E C (S6; R), 4o E E40(S4)}.

Remark 2. Note the dimension of the closed 1-form with the first and second eigen-

values are determined by the degree 2 and 3 spherical harmonics with 4 variables,

which, repectively, are 5 and 14 dimensional vector spaces.

To save some space we will use the following abbreviation for the leading expansion

given by the three parameters.

Definition 2.9 (Leading expansion for the linear operator). When we say the leading

expansion is given by E vt=i, we will mean

H( 4 ,o) = v +1 x" + S1(v+ )+1 x+0 + O(x3 +E)

Tr[7 g = Tr1  h + 7 *, (v& 2x + S2(v2) 2 x0 2 + v +6 x3 + S 3(vf+)& 3 a) + O(x3 +c)

TrS4 g = TrS4 h + 4 *, (vj 2 x 2 + S2 (vf) 2 x 0 2 + v+ x + S3 (vi )x 9 3) + O(x 3 +E)

g(1,1) = h1 ,1 + (v2x 2 + S2 (v2) 2x 2 + v 6x 3 + S 3v+)&ax 0 3) + O(x e)

H(1,3) = -dH(v22x 2 + S2(vf 2 + V 3x + S3&+ 3 xda) + O(x3 E)

H(o,4) = 6Vols4 +ds *s (v+ 2 x + S2(v2) 2x0 2- + v+x + S3(v3+)6x 03 ) + O(x3+E)

(2.45)
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Theorem 2.3. For any Poincari-Einstein metric h that is close to the background

metric go, the solution to the linearized equations dQ(g, H) = 0 is parametrized by

the data of the three bundles @Vi.

To prove the theorem above, we will first work on hyperbolic space, and use

a perturbation argument to show that, for a nearby Poincar6-Einstein metric, the

parameter space is also transversal to the kernel. For the weight 3 - J where J > 0

and is small, the operator dQ is surjective but not injective, and there is a null space

which corresponds to the indicial roots with real part 3.

The scattering matrix relates the incoming and outgoing data of eigenfunctions

corresponding to a point in the continuous spectrum. Once we fix the incoming data

in the expansion, the outgoing data is determined by the scattering matrix. In the

hyperbolic metric case, the scattering matrix Si(s), i = 1, 2, 3 is defined for each pair

of special indicial roots.

The scattering matrix in the hyperbolic case is

Si (s) : C' (aH'; V+) -+C' (aH ;i- (2.46)

with property that if

3

dQ(u) = 0, u = E f x + gixi + O(x 3+E),
i=1

then

9gilM = Si(s)fi.

Proposition 2.10. For the base case with hyperbolic metric, the kernel of operator

dQ is parametrized by the sections of V . More specifically, for any small incoming

real data v+ = (v , v, vt), there is a unique solution to the linearized equations with

j_1 $j(vtxt + Si(vt)x9 7 ) as the leading expansion.

Proof. We use the result of Graham-Zworski [16] and Guillarmou-Naud [19] about
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the description of scattering matrix in hyperbolic space:

r( - s [As_ + (512+ 1g +8s
S(s) =2n-2s 22

where if we put in s = = 3 + 6i we get

F(-6i) P( 6As + L + 1 + 6i)
S(3 + 6i) = 2- 2ir-i 4

r (6i) ( V s6 +5 + 1 - 6i)*

Since the scattering matrix is a function of the laplacian on the boundary S6 we can

take the eigenvalue expansion on 6-sphere with real eigenform f,, we would consider

the following expression, which is real and forms the leading order of the actual

solution:

x 3+6ifX + x3 -eS(3 + 6i)f = x 3+6if + X3-6(2-12ii20 6i) f,

Here 0 is a real number determined by

e(2iO(A) - -6i) A + + + 6i)(2.47)( Ai-6ir(i (V/A + L4+ 1 - 6i)'

by using the relation of

F() = 1(z)

so that the right hand side of (2.47) is a complex number with norm 1 and 6 is a real

number determined by A.

Rearranging the expression, the solution in the eigenvalue A component is

irAu = x 3+6 ifA + x3 6 -2 12ie 2iOfA (2.48)

= 32-6eO ((2x)6 iei0 + (2x) -6 eiO) fA (2.49)

= x 321-6ieO Re ((2x)6 i eo(A)) fA (2.50)
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which is a product of a real 3-form with complex constant x321-6ieil. Therefore in

this case,

f = Ifle", t R,

and f is determined by a real 3-form.

A similar computation shows that 01, 0- are parametrized by real functions. E

With the computation above, we have shown that the leading expansion of the

solution has the form

u= vh A dx/xtx" + 2vx +O x +o (x 3+6 )

where

Vi E Vk, V~ = Sivt.

Definition 2.10. We define the Poisson operator P for a Poincar-Einstein metric

h: if we denote the operator that maps from the space of real solutions to the incoming

boundary data (v+, v+) v+) by f, then the inverse of this map is denoted by P, which

is the Poisson operator:

P f1 : -V D {v} -+ ' Re( tx3+is + Si(s)vtx3-is) C 36H (M; W).
i's

For the hyperbolic case, it maps to the actual solution with leading expansion

(vi). For nearby Poincare-Einstein metrics, it maps to a real element in the domain

which is not necesssarily an element in the null space, however it is very close to a

null element with the same leading expansion. We show below that it is transversal

to the range of right inverse R+ + R.

We also remark here that, the domain and range of this operator P are real, and

for nearby Poincare-Einstein metrics, the composition Q o P(u) also maps into real

space.

Proposition 2.11. For the base case, the real null space of dQ is the range of i(R+ -

R-).
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Proof. This is Stone's theorem. For any element u, dQ o (R+ - R_)u = 0, and any

element in the kernel of dQ is parametrized by u. We multiply i to make it real since

R+ - R_ is completely imaginary.

Lemma 2.22. For a Poincare-Einstein metric h that is closed to the background

metric go, the range space of the sum of two generalized inverses R is transversal to

the range of their difference: Range(R+ + R_) is transversal to Range(R+ - R_).

Proof. For the base case: the range of P is the kernel of dQ, which is also range of

R+ - R. However, the range of R+ + R- doesn't contain any element of the kernel,

since dQ o R+, dQ o R_ 0.

Since transversality is stable under small perturbations, the result follows. L

Then with the two lemmas above, we conclude:

Lemma 2.23. The range space of the Poisson operator P is transversal to Range(R++

R-).

2.4 Nonlinear equations: application of the implicit

function theorem

From the discussion of the linear operator dQ above, we now can apply the implicit

function theorem to get results for the nonlinear operator. The nonlinear terms

include two parts, one from the linearization of the curvature operator, the other

from the product type terms. We will use a perturbation argument to show that for

each Poincar6-Einstein metric, the nearby solutions are parametrized by the three

parameters on S' as in the linear case.

To deal with the fact that the domain changes with the base metric and the

parameters we put in, we will use an implicit function theorem, that is, constructing

a map from range space to itself, and show that this map is a perturbation of identity,

therefore an isomorphism.
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2.4.1 Domain defined with parametrization

First of all we define the domain for all the product type metrics of a nearby Poincar6-

Einstein metric h and each parameter set v = (vi, v 2 , v 3 ) E GL, Vi. From the discus-

sion of the generalized inverses of the linearized operator, we know that the image of

1 (R+ + R_) is transversal to the image of the Poisson operator which is close to the

kernel of the linearized operator for a nearby Poincare-Einstein metric. In the non-

linear case, we define the domain so that, for each parameter v, it is an affine section

translated by Pv, where P is the Poisson operator defined above. The domain has

the property that, in the linearized case with base hyperbolic metric, it is mapped by

dQ isomorphically back to the range space ?6 H0'f(M; W).

Definition 2.11. (Domain of nonlinear operator) For a Poincari-Einstein metric h

that is close to the base hyperbolic metric and a set of parameters v = (v1 , v 2,v 3 ) in

bundle V, the domain Dh,v of the nonlinear operator is defined as

Dh,: (R+ + R-)f + Pv f E x6He' (M; W)}.

Note that the domain depends on the choice of h and v, where the dependence of

h comes from the construction 1(R+ + R-) = (dQh)-1. One important property of

this domain is that Dh,, is mapped surjectively to the range space x H"'b(M; W) by

the linear operator dQh.

Lemma 2.24. The range space of the linear map dQh acting on Dh,, is xo ,

Proof. Since all the operations are linear,

dQh( (R+ + R-)f + Pv) = dQh(dQh)~ 1f + dQh(Pv) = f + O(x4 ).
2

Here we used the fact that R+ and R_ are both generalized inverses for dQh, and the

Poisson operator maps into a space with extra decay in x. Since f can be any element

in x6 H'b (M; W), it follows that dQh maps the domain Dh,, onto the range. E

Now with the domain we can define a nonlinear operator Qh,, which is parametrized
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by the background Poincare-Einstein metric h and the set of parameters v, which

can be viewed as a translation of the original operator Qh,o.

Definition 2.12. We define the parametrized nonlinear operator Qh,v on domain

Dh,,:

Qh,vu Qh,o(u + Pv)

As a translation of the original operator, the linearization of Qh,, at the point

(0, 0) is the same for the original nonlinear supergravity operator.

Lemma 2.25. At any boundary point on S6, the linearization of the parametrized

nonlinear operator Qh,v at point u = (k, H) = (0, 0) equals to dQ0,0 .

Proof. Since Qh,, is defined as a translation of Qgo,o by Pv, then near the boundary

S6,

dQhV(0, 0)u = d(Qh,o(u + Pv)) = dQhou + dQ o Pv = dQgo,ou + O(x)

Therefore on any boundary point, we have the same linearization as dQ0 ,0 . Fl

Next we show that the nonlinear terms are well controlled, i.e. mapped into the

smaller space x H,9'(M; W).

Lemma 2.26. For k sufficiently large, the product type nonlinear terms: F o F -

d(F o F), and F A F - d(F A F) are both contained in x 6 H f (M; e A4 (M)).

Proof. The nonlinear parts are F A F and F o F which are products of two elements

in the range space xj H (M, S2(eT*M)) G X'H,'(M, A\(eT*M)). With respect to

basis of the edge bundles, these may be considered locally as functions in x H(M).

Using the algebra property included in the appendix, we know that for r > -3, and

s, k, and any f, g E xrH,(M), the product fg is also in x'H" (M). Since in our

case 6 > 0, the result follows. Fl

The last nonlinear term is the remainder from the linearization of Ric, for which

we show below that it is also contained in the range space.
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Lemma 2.27. The nonlinear remainder of Ric, Ric -d(Ric) is contained in x3+6Hke,b

(M; Sym2 (T*M)).

Proof. We compute the linearization d(Ric), which acting on a 2-tensor h can be

written as

d(Ric)[h] = - gl(VVIhjk -mVkhjl -VVjhmk - VjVkhmi).

Comparing Ric and d(Ric), the difference is a 3rd order polynomial of g, g- 1 and first

order derivatives of these with smooth coefficients. Since the metric component g and

9-1 are smooth, hence in xoHs (M), it follows again by the algebra property that

their product is contained in xHs' (M; Sym 2 (M)). El

The composed operator Qh,, o (dQo, 0)-1 is this well-defined operator as a map on

the following space:

Qh,, o (dQo,o)- 1 : x5H2' (M; W) -+ x6H,'(M; W).

f [-+ Q, (R++ R_)f + Pv)

We now discuss the properties of this operator using the implicit function theorem.

Lemma 2.28 (Implicit function theorem). Consider the following smooth map f

V x M -+ M near a point (vo, M0 ) G V x M with f (vo, m0o) = c, if the linearization of

the map with respect to the second variable df2(vo, mo) : M -+ M is an isomorphism,

then there is neighborhood vo E U C V and a smooth map g : V -* M, such that

f(v,g(v)) = c, Vv E U.

Theorem 2.4. For any s > 2, k > 0 there exists 6 > 0, p > 0, such that, for a

Poincari-Einstein metric h that is sufficiently close to the base metric go, for each

small boundary value perturbation v = GQv, with ||v||Hbk(M.;Ev.) < p, there is a unique

solution u = (g, H ) E Duh C x-6 He,(M; W) satisfying the supergravity equations
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Q(u) = 0 with the following leading expansion

3

(g, H) = (h, 6 Vols4) + S voHxi (2.51)

To prove the theorem, we will apply the implicit function theorem to the following

operator:

Qh,v - o(dQo,o)-' x+6H '(;W -+ x+JH"' (M; W)

(V, f) -* Qh,v 0 (dQo,o) 1(f)

This map is from a neghborhood of the Banach space Hk(S6,V4 x x6H (M; W) to

the Banach space x +eHib(M; W). The following is a consequence of Lemma 2.25.

Lemma 2.29. The linearization of Qh,, 0 (dQO,O)-' at point (v, f) = (0, 0) C ®Vj x

x H,' (M; W) is an isomorphism.

Proof. From Lemma 2.25 we know that at the point (V, f) = (0, 0) E EIV7 x6Hi 0(M;

W) the linearization, which is the composition of linearization of the operators, is

d(Qh,v o dQo,o) 1 )(o,o) = id : xjH,, (M; W) -+ X Hib (M; W). 0

Lemma 2.30. For a given metric h, the map Qh,, 0 (dQO, 0)- 1 as an edge operator

varies smoothly with the parameter v C V.

Proof. From the construction of dQ- we know it is an edge operator. And from the

discussion for Qh,o, this nonlinear operator is also edge. Now we we only need to

show that when the nonlinear operator Q applies to elements of type f + Pv, it varies

smoothly with the parameter v. This follows from the algebra property and the fact

that a second order elliptic edge operator maps from H,(M) to Hj<(M) smoothly

as shown in the appendix.

We now obtain the following, as a direct result of the implicit function theorem.
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Proposition 2.12. There are P1, P2 > 0, such that on the two neighborhoods U1 :=

{v C (DV'IIViIHHk < pi} and U2 := {f E x3+H",Z(M; W)f|3+6Hg'(M;w) < P2},

there exists a continuous differentiable map g :U1 - U2 such that

Qhv - (dQo,o)- 1(g(v)) = 0.

Proof. Now we use the implicit function theorem, we can find neighborhoods of v = 0

and f = 0, in this case, U, and U2 such that the nonlinear map Qh,, o (dQ0 ,0 )-1 is a

bijective smooth map on U2 for any v G U1 . And this gives us the parametrized map

g from U1 to U2 . D

With the proposition above, we find a solution for each set of parameter {vi.

Proof of Theorem 2.4 . Using the definition of Qh,v a (dQo,o)- 1 (g(v)) = 0 with the

map g constructed above, we can rewrite it as

Qh(dQ-1 (g(v)) + Pv) = 0.

That is, for each parameter set v, u = dQ-1 (g(v)) + Pv is the unique solution in the

space Dvh C x-,Hs,k(M; W).

2.4.2 Regularity of the solution

Next we show that the solution obtained above is smooth if the boundary data is

smooth.

Proposition 2.13. If the boundary data v c C (S6, V ), then the solution u is in

H 0 (M; W).

Proof. This is done by elliptic regularity. We would like to prove that for any k,

HuflHbk+2(M;w) < C(lVI|Hk(S6;1/i) + IQ(u)IHO ,(M.;w)).
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Since the principal part of Q is the elliptic edge operator EJ.dQx and for each A, we

have such elliptic estimates

ItUAlHlk+2(M;w) <; C(VA\IIHk(S6;V) + IdQx(u) IH(M;W))

The nonlinear parts are lower order:

I|Q - E DQflHk+2(M;W) < C,

leading to an elliptic estimate for Q. 0

We can also obtain a classical expansion of the solution. The leading terms are

given by the combination of incoming and outgoing boundary data from V, and lower

order terms are solved by iteration.

Proposition 2.14. The solution has a classical polyhomogeneous expansion, with

leading term
3

U= vixix+ +5 vjx ( (logx)kfk)
i=1 j>4 k<j

where vj are eigenforms, and fk E C (M, W). For the lower order terms, the expo-

nent of the logarithmic terms grows linearly with the order.

Proof. We solve the problem iteratively. For the first order problem, from the lin-

earization and its inverse construction, we have u1 = Z vfx 3 Oixl,, with

Q(Ui) = x3+ el, el E C0(M, W).

Then we solve away the x6 ei term and lower indicial roots appear here, which gives

us

U2 X3 V x3 ixi,2 + x 10 x).

The log terms appear because an order in the expansion of xje coincides with one of
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the indicial roots. Then iteratively we obtain the terms

Ui = E vxi (X(log x)fk),
j>4 k<j

where each time the power of log increases by at most one. F

In terms of the explicit formulae, we may summarize the previous results as follows:

Theorem 2.5. The solution as we get from given boundary data v: is polyhomege-

neous and has the following expansion:

H(4,)= vi 1 x1 + S1(vi f1x0 + O(x3+E)

Tr1H g = Tr h + 7 *s (v 2x 2 + S2 (v2j) 2x 2 + v 6x3 + S3 (V3fl 3)6x9 ) + O(x+E

TrS4 g = TrS h + 4 *8 (v 2x 2 + S2 (vf) 2 x 2 + x + S3 (v )( 3 x0 3) + O(x+ )

g(1,1) = hi,1 + (V j 2x 2 + S2 (Vfl) 2 x 2 + Vo 3 x" + S3 (vf) 3 x 3) + O(x 3+)

H(,s =-dH v2 2 0 2 3 X 3 3 03 ) + o0X3+E)H(,)= -dH(V~j 26X~ + S2(Vfl 2 x02 +I V 3 x + S3 (V~ 3+ ) + ~ 3E

HO, = 6Vols +d, *, (vij 2x"? + S2 (vj) 2x
02 + v 3 x3 + S3 (va)t3 x9 3) + Ox3 +E)

Then finally using elliptic regularity, we can extend the result to boundary data

with Sobolev regularity.

Proposition 2.15. For any k > 0, given boundary data vi C H'(56), the solutions

we get is in Hs8jk(M;W).

Proof. This follows from the elliptic estimate

||UIIH" k(M;W) Hk(S6;V) + HIQ(U)H 2,k(M;W).

El
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2.5 Edge operators

2.5.1 Edge vector fields and edge differential operators

Proposition 2.16. H j'k(M) is a well-defined space.

Proof. It is easy to see by using the commutator relation [Ve, Vb] C Vb. E

Proposition 2.17. Any m-th order edge operator P maps He'k(M) to H.9m'k(M),

for m < s.

Proof. Locally, any m-th order edge operator P can be written in the following form

P = S aa.,(X y, Z)(x82) (xOY)"O
j+a+1161 m

If we can prove for m=1, P maps Hs(M) to H - 'k(M), then by induction, we

can prove for any m. Therefore we restrict to the case m = 1.

We just need to check that, for a function u E H'(M), Pu satisfies

Ve'PU E H k(M),O < i < s - 1.

The we prove the proposition by induction on k. For k=1 case, since a boundary

vector field V E Vb(M) satisfies the commutator relation VP = PV + [V, P] where

the Lie bracket [V, P] E Vb, then

VP(u) = PV(U) +Vb(u)

by definition of u E H , both V(u) and Vb(u) are in Hs(M), therefore PV(u) Ee,b

H.~1 (M).

If it holds for k - 1, then by the relation

VbPE- d = sVupn) + V(u) E

since Vb(u) c Hes"k and from induction assumption PVb(u) E Hes-l ,k-i1 therefore
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the first term V-'kFVo(U) E H (M), and the second term is in H, by definition.

Therefore Pu E Hs1,k-1 which completes the induction. El

2.5.2 Hybrid Sobolev space

Proposition 2.18. For k large enough and r > -3, x' kH'(M) is an algebra.

Proof. We first prove that, for the case r = -3, the boundary Sobolev space x-3Hk

is an algebra for large k. Working in the upper half plane model with coordinates

(x, y1, ... ym, z). For any element f E x- 3 Hk(M), by definition, its Sobolev norm is

Since the commutator [Vb, X3]f C {x 3f}, therefore the definition of the Sobolev norm

is the same as

If we do a coordinate transformation to change the problem back to Rn: let p = ln(x),

then xO, = Op. Therefore under the new coordinates, the boundary vector fields are

spanned by (0,, y, i%). Let F be the function after coordinate transformation

F(p, y, z) = f (e", y, z)

then from the discussion above we can see

|f |l-3Hk 3 dxdydz VbkF| 2 dpdydz < oo

which means F E Hk (R'). From [], the usual Sobolev space in RI is closed under

multiplication if and only if k > n. Therefore, take two elements f, g E X- 3 Hk(M),

then the corresponding functions in R' satisfy FG C Hk (R"). It follows that fg E

X- 3H(M) by taking the inverse coordinate transformation.

Then it is easy to see that XrHk(M) is an algebra for r > -3. From the result
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above,

(xrHX) (xHb) = x3+rX -3Hk) . x3+r (X-3Hb)

c x6+2r (x-3H) C x3+r(x- 3Hk) = XrHk(M).

Now that we proved Hk(M) is closed under multiplication, then we want to prove

H (M) is also an algebra. For any functions f, g E H" '(M), by Leibniz rule,

Ve/ (f g) = MV(f)V/-(g)
i=O

where by assumption, both V(f) and V/-i(g) are in H1k(M), therefore their product

is also in H1k(M) from the above result.Hence we proved Vj(fg) E H1k(M) for 0 <

j s.which shows fg E H (M).

2.6 Computation of the indicial roots

2.6.1 Hodge decomposition

The system contains the following equations, where the (i, j) notations means the

splitting of degrees of forms with respect to the product structure of B7 x S4.

. From the first order equation

(7, 1)
6dH *7 k(1,1) + 3ds(TrH7(k) - TrS4(k)) A 7V

+ds * H(0,4) + dH * H( 1 ,3) = 0

(6, 2) : ds * H(1, 3) + dH * H(2 ,2) + 6ds *7 k(i,i) = 0

(5,3): ds * H(2,2)+ dH * H(3,1) = 0

(4,4) : ds * H(3,1) + dH * H(4 ,o) + W A H(4,) = 0

(2.52)

(2.53)

(2.54)

(2.55)
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* From dH = 0

dHH(o,4) + dsH(1,3) = 0

dHH(1, 3) + dsH(2 ,2) = 0

dHH(2,2) + dsH(3 ,1) = 0

dHH(3 ,1) + dsH(4 ,0) = 0

o From the laplacian:

1 1
kAsj k+ 1AHkj + 6kj

2 2
- 3 *s H(1, 3 ) = 0

- 6Trs(k)tiJ + TrH(k)tIJ + 2H(o,4 )tIJ = 0

(2.61)

(2.62)

1
-(As + AH)kij + 4kij + 8Trs(k)tij - H(o,4)tij = 0 (2.63)
2

2.6.2 Indicial roots

Then we decompose further with respect to Hodge theory on sphere, and compute

the indicial roots for each part.

* Harmonic functions on S':

1. Trace-free 2-tensor on H', where the equation is

( As + AH - 2)kIJ = 0,

and the indicial equation is

(-s 2 +6s)k 1j = 0.

we have indicial roots

S+ = 0, ST = 6.
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This corresponds to the perturbation of hyperbolic metric to Poincar6-

Einstein metric.

2. Trace-free 2-tensor on S4 , where the equation is

ough kij+ ZAHkij + 8kij = 0

where indicial equation is

(-s 2 + 6s + 8)ij = 0,

indicial roots

S>= 3 V7.

3. We have

dH * H(4 ,o) + W A H(4 ,o) = 0 (2.64)

dHH(4 ,o) = 0 (2.65)

The second equation can be deduced from the first one. Since the indicial

operator for dH is

I[d](s)w = (-1)'(s - k)w A dx/x

Let

H(4,o) = T + dx/x A N

be the decomposition with respect to tangential and normal decomposition,

then the indicial equations are

-(s - 3)(* 6N) A dx/x - 6dx/x A N = 0

(s - 4)T A dx/x = 0
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where the first equation gives

(s - 3) *6 N - 6N = 0

i.e. N is an eigenform of *6 and the corresponding indicial roots are

3

= 3 - 6i, N C A(S6 ); *6N = iN;

3

s+ = 3 + 6i : N E A(56 ); *6 N = -iN.

And plugging into the second equation, we have the vanishing of tangential

form

T = 0.

Therefore the kernel in this case is

3

H(4 ,o) = dx/x A N, N E {A(S6), *6 N = iN}.

9 Then we consider Exact 1-form, which includes function/exact 1-form/ coexact

3-form/ exact 4-form on the eigenspace A = 4(k + 1) (k +4) starting from k = 0.

1. Denote r = {Trs(k) = 1t0kij, o- = 4TrH(k) = to be the normal-

ized trace, then we have the following equations:

6d H *H ,1) + ds(3TrH(k) - 3Trs(k)) A
+ds * Hl,4) + dH * H 0

dH Hi,4) + dsH~f, 3) = 0

dHHc(, 3 ) = 0

ASk (,1 ) + AHkc,l) + 12kjl,) - 6 *s Hf,3 ) = 0

Asr + /AHT + 72T - 8 *s Ho4 = 0

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)
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ASc + AHO- + 12o- + 4 *s Ho' - 48r = 0

First note that 2.68 can be derived from 2.67. Let H" 4 )= ds?, here q is a

(0,3)-form. Then H = -dHr by 2.68. Let f = *sds5 I. Let k = dsw,

w is (1,0)-form. Put it back to 2.66 we get

6dH *H dsw + ds *H (21- - 12T) + *Hds *S dEs - *sdH *H dHr = 0 (2-72)

Apply *H (*2 = 1), we get

6 *H dH *H dsw + ds(21r - 12T) + ds *S dsq - *S *H dH *H dH?7 = 0

Then let 77 = *Sds5 , be a function, and pull out ds

-6HW + (21c - 12F) - AS - AH = 0 (2.73)

and put the expression to 2.69,

Asdsw + AHdSW + 12dsw + 6 *s dH *S ds5 = 0

Apply 6 H and pull out ds

-AS 6 HW + ZAHEHW + +12SHw + 6AH = 0 (2.74)

Now 2.70 becomes

zAST +AHT +72r + AS =0 (2.75)

And 2.71 is

ASo-+ A HU + 12u - 4A5s - 48T = 0 (2.76)

Putting the above four equations together, and suppose the eigenvalue of
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As is A, we get

12 + A +AH

0

21

0

-48

72 + A + AH

-12

0

-4A 0

SA 0

-A - AH -6

6ZAH 12 +A + AH

The determinant, after putting in the indicial operator of AH, is

A 4 - 4S2A3 + 24S * A 3 - 90A 3 + 6S4A 2 - 72S3A 2

+ 342S2A2 - 756S * A 2 + 1152A 2 - 4S 6A + 72S5 A - 414S4A

+ 648S3A + 1152S 2 A - 3024S * A + 10368A (2.77)

+ S8 - 24S + 162S6 + 108S 5 - 6192S4

+ 31536S3 - 33696S 2 - 155520S = 0

Putting the lowest two eigenvalues for closed 1-form, we get the following

two pairs of roots: for A = 16 the indicial roots are 02 = 3 i 21116145/1655.

with kernel
c1

16 E A (s)
A=16

which is the closed 1-form on 4-sphere with eigenvalue 16. and the other

pair is for A = 40 then

03 = 3 t i3v582842/20098,

with kernel
c1

40 E A (S).
A=40

2. We have

ds * Hi 1 + dH * Hcco) + 64V A Hcco) = 0,

dHHcl,1) + dsHco) = 0.

(2.78)

(2.79)
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Let

H c' = ds

where r is (3,0), put into second equation to get

H4,0 =-dHq

Put everything back to first equation, we get

ds* dsr1 - dH * dHr - 64 V A dHr = 0-

Apply *s, and note *2 = (I)k(4-k) = 1, 6S = ( 1 )4(k+1)+1 *s ds*s

- *s ds*s, As = d6 + 6d,

*H(-S)di - dH *H dH?7 + dH?= 0

Then apply *H, note (*H) 2 = 1, get

-ZAS-*HdH *H dH71 +6 *H dHq 0-

Let /-Asq= 1\

-A?7- /AHT+6*HdH?7=0

The indicial equation: using I[d](s)w = (-1)'(s - k)w A d,

-Ar7 + (s - )2,q + 6(s - 3) *6 r7 = 0

that is

(s -3) 2  6i(s - 3) - 16 = 0

with roots

s= 3 v 3i.

. Then we consider the co-exact 1-form, which contains coexact 1-form/ exact
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2-form/ coexact 2-form/ exact 3-form for A = 4(k + 2)(k + 3) starting from

k=0.

1. We have

6dH *H k(, 1 ) + dH * Hf, 3) = 0

ds * Hcl,3) + dH * H, 2) + 6ds *H ,1) = 0

dHHcl,3) + dsHc, 2) = 0

1 1 + (1 ( 1 1) 2 (1 3)
2ASkfli) + g AHk ) + 0 (1) *2 Hj3)=

(2.80)

(2-81)

(2.82)

(2.83)

First note that (2.80) can be derived from (2.81) Let Het ,3) =d,77, where rq

is (1,2)-form. Then Hc = -dHT from (2.82). Put it to (2.81), ds * dsr -

dH * dH r+ 6ds *Hkc = 0. Apply *S, *H, get -/ASq - AHq + +6*s dskc

0. Apply *sds again, get -As(*sds7) - AH(*sdSr) - 6Ask, = 0.

Combining with (2.83), and let A be the eigenvalue for As on coclosed

1-form, we get

( -A - AH -6A

'AH +12-1 A + ( *sds7r

k c)
= 0

The indicial equation is

A2 - (36+ (s - 1)(s - 5) +s 2 - 6s - 1)A - (s - 1)(s - 5)(-s2 + 6s+1) = 0.

With smallest eigenvalue for coclosed 1-form to be A = 24, indicial roots

are

S3 = 3 3V + 31

2.

ds * Hc',2)+ dH* Hcl) = 0

dHHcl,2 ) + dsH-l) = 0

(2.84)

(2.85)
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Apply dH and ds to the equations, we have

dHds * Hd,2) = 0, dsd H H, 2) = 0 (2.86)

let H, 2 ) = dsr where y is a coclosed (2,1)-form, Putting it back, and

using ds is an isomorphism, dHr = -H ). Then from first equation,

ds * dsr - dH * dHr = 0, which is - *H *S ASr, - *S *H AH?7 = 0 then it

requires zAHr? = -Ar7. Putting A = 4(k + 2)(k + 3), the result is

s = 3 vI7.
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Chapter 3

Resolution of the canonical fiber

metrics for a Lefschetz fibration

In the setting of complex surfaces, a Lefschetz fibration is a holomorphic map to a

curve, generalizing an elliptic fibration in that it has only a finite number of singular

points near which it is holomorphically reducible to normal crossing. Donaldson [8]

showed that a four-dimensional simply-connected compact symplectic manifold, pos-

sibly after stabilization by a finite number of blow-ups, admits a Lefschetz fibration, in

an appropriately generalized sense, over the sphere; Gompf [13] showed the converse.

The reader is referred to the book of Gompf and Stipsicz [14] for a description of the

important role played by Lefschetz fibrations in the general theory of 4-manifolds.

To cover these cases we consider a compact connected almost-complex 4-manifold

M and a smooth map, with complex fibers, to a Riemann surface Z

M - > Z. (3.1)

We then require that this map be pseudo-holomorphic, have surjective differential

outside a finite set F C M, on which 4 is injective, so ' : F +-- S C M, and near

each of these singular points be reducible to the normal crossing, or plumbing variety,

model (3.2) below.

A curve of genus g with b punctures is stable if its automorphism group is finite,
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which is the case when 39-3+b > 0. In this paper we discuss Lefschetz fibrations with

regular fibers having genus g > 1 and hence stable. All fibers carry a unique metric

of curvature -1, for the singular fibers with cusp points replacing the nodes. In view

of uniqueness and stability, these metrics necessarily vary smoothly near a regular

fiber. We discuss here the precise uniform behavior of this family of metrics near

the singular fibers, showing that in terms of appropriate (logarithmic) resolutions, of

both the total and parameter spaces, to manifolds with corners the resulting fiber

metric is polyhomogeneous and more particularly log-smooth, i.e. essentially smooth

except for the appearance of logarithmic terms in the expansions at boundary surfaces.

This refines a result of Obitsu and Wolpert [39] who gave the first two terms in

the expansion. In a forthcoming paper the universal case of the Deligne-Mumford

compactification of the moduli space of Riemann surfaces, also treated by Obitsu and

Wolpert, will be discussed.

The local model for degeneration for the complex structure on a Riemann surface

to a surface with a node is the 'plumbing variety' with its projection to the parameter

space. We add boundaries, away from the singularity at the origin, to make this into

a manifold with corners:

P (z, w) E C2 ; 3 t E C, zw = t, jzj < - 2 < iti 11
4 4 2 (3.2)

P - Di= t E C; Itl < .

Thus near each point of F we require that / can be reduced to < in (almost) holo-

morphic coordinates in M and Z.

A (real) manifold with corners M has a principal ideal TF C C (M) corresponding

to each boundary hypersurface (by assumption embedded and connected) generated

by a boundary defining function PF ;> 0 with F = {PF = 0} and dpF $ 0 on

F. A smooth map between manifolds with corners f : M -+ Y is an interior b-

map if each of these ideals on Y pulls back to non-trivial finite products of the

corresponding ideals on M, it is b-normal if there is no common factor in these

product decompositions - this is always the case here since the range space is a
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manifold with boundary. Such a map is a b-fibration if in addition every smooth

vector field tangent to all boundaries on Y is locally (and hence globally) f-related to

such a vector field on M; it is then surjective. There is a slightly weaker notion than

a manifold with corners, a tied manifold, which has the same local structure but in

which the boundary hypersurfaces need not be embedded, meaning that transversal

self-intersection is allowed. This arises below, although not in any essential way.

There is still a principal ideal associated to each boundary hypersurface and the

notions above carry over.

The assumptions above mean that each singular fiber of 0 has one singular point

at which it has a normal crossing in the (almost) complex sense as a subvariety of M.

The first step in the resolution is the blow up, in the real sense, of the singular fibers;

this is well-defined in view of the transversality of the self-instersection but results

in a tied manifold since the boundary faces are not globally embedded. The second

step is to replace the C" structure by its logarithmic weakening, i.e. replacing each

(local) boundary defining function x by

ilogx = (logX-1)".

This gives a new tied manifold mapping smoothly to the previous one by a homeo-

morphism. These two steps can be thought of in combination as the 'logarithmic blow

up' of the singular fibers. The final step is to blow up the corners, of codimension

two, in the preimages of the singular fibers. This results in a manifold with corners,

Mmr, with the two boundary hypersurfaces denoted B1 , resolving the singular fiber,

and B1, arising at the final stage of the resolution. The parameter space Z is similarly

resolved to a manifold with corners by the logarithmic blow up of each of the singular

points.

It is shown below that the Lefschetz fibration lifts to a smooth map

Mmr l Zmr (3.3)

which is a b-fibration. In particular it follows from this that smooth vector fields on

89



Mmr which are tangent to all boundaries and to the fibers of 4@mr form the sections

of a smooth vector subbundle of 'TMmr of rank two. The boundary hypersurface BI,

has a preferred class of boundary defining functions, an element of which is denoted

p11, arising from the logarithmic nature of the resolution, and this allows a Lie algebra

of vector fields to be defined by

V E C (Mmr; bTMmr), V*C (Zmr) = 0, Vp11 E phIC (Mmr). (3.4)

The possibly singular vector fields of the form pj 1 V, with V as in (3.4), also form all

the sections of a smooth vector bundle, denoted LTMmr. This vector bundle inherits

a complex structure and hence has a smooth Hermitian metric, which is unique up

to a positive smooth conformal factor on Mmr. The main result of this paper is:

Theorem 3.1. The fiber metrics of fixed constant curvature on a Lefschetz fibration,

in the sense discussed above, extend to a continuous Hermitian metric on LTMmr

which is related to a smooth Hermitian metric on this complex line bundle by a log-

smooth conformal factor.

The notion of log-smoothness here, for a function, is the same as polyhomogeneous

conormality with non-negative integral powers and linear multiplicity of slope one.

Conormality in this context for f : Mmr --+ R can be interpreted as the 'symbol

estimates' that

f E A(Mmr) - Diff*(Mmr)f c L (Mmr) (3.5)

which in fact implies that the space of these functions is stable under the action,

Difft (Mmr)A(Mmr) C A(Mmr). Polyhomogeneity means the existence of appropriate

expansions at the boundary. On a manifold with boundary, M, log-smoothness of a

conormal function f E A(M) means the existence of an expansion at the boundary,

generalizing the Taylor series of a smooth function, so for any product decomposition

near the boundary with boundary defining function x, there exist coefficients aj,k E
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Co (OM), j 0, j > k > 0 such that for any finite N,

f - S aj,kXj(log x)k E x'A([O, 1) x OM), V N. (3.6)
j N,Okgj

We denote the linear space of such functions C' (M), it is independent of choices.

In the case of a manifold with corners the definition may be extended by iteration

of boundary codimension. Thus f E Cl(Mmr) if for any product decompositions of

Mmr near the two boundaries there are corresponding coefficients aj,k,b E Co (Bb),

b = I, II, such that

S- j aj,k,b (log Xb)k E XNA(0, 1) x Bb), b = III, V N. (3.7)
j N,O~k~j

There are necessarily compatibility conditions between the two expansions at the

corners, B1 n B 1, and together they determine f up to a smooth function on Mmr

vanishing to infinite order on both boundaries. In this sense the conformal factor in

the main result above is 'essentially smooth'.

In the model setting, (3.2), there is an explicit family of fiber metrics, the 'plumb-

ing metric', of curvature -1,

r 
7Flog zj Tlog 1z'\2  2gp = (csc d

log ItI log It 1 (3.8)
go ( |dz| .2

g0 = (zI log Iz2

This metric can be extended ('grafted' as in [391) to give an Hermitian metric on

LTMmr which has curvature R equal to -1 near BI, and to second order at B1 . We

prove the Theorem above by constructing the conformal factor e 2f for this metric

which satisfies the curvature equation, ensuring that the new metric has curvature

-1:

(A+ 2)f + (R + 1) = -e 2f + 1 + 2f = O(f 2 ). (3.9)

This equation is first solved in the sense of formal power series (with logarithms)
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at both boundaries, B1 and Bj1 , which gives us an approximate solution fo with

-,fo= R + + g, g E SC,(Mmr).

Then a solution f = fo + j to (3.9) amounts to solving

f= -(A + 2)-i (2f(e2fo - 1) + e2f (e2f - 1 - 2f) - g) = K(f).

Here the non-linear operator K is at least quadratic in f and the boundedness of

(A + 2)-i on p 1 H (Mmr) for all M allow the Inverse Function Theorem to be

applied to show that f E St'C'(Mmr) and hence that f itself is log-smooth.

In 3.1 the model space and metric are analysed and in 3.2 the global resolution

is described and the proof of the Theorem above is outlined. The linearized model

involves the inverse of A +2 for the Laplacian on the fibers and the uniform behavior,

at the singular fibers, of this operator is explained in 3.3. The solution of the curva-

ture problem in formal power series is discussed in 3.4 and using this the regularity

of the fiber metric is shown in 3.5.

3.1 The plumbing model

We start with a description of the real resolution of the plumbing variety, given

in (3.2), and the properties of the fiber metric, (3.8), on the resolved space. As

noted above there are three steps in this resoluton, first the fiber complex structure

is resolved, in a real sense, then two further steps are required to resolve the fiber

metric.

The plumbing variety itself is smooth with z and w global complex coordinates

- it is the model singular fibration # which is to be 'resolved' in the real sense. The

fibers above each t # 0 are annuli

{iti 5 |Z I5 {} {|t| < Iw| < } (3.10)
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whereas the singular fiber above t = 0 is the union of the two discs at z = 0 and

w = 0 identified at their origins

0) = ( IzI 5 U {iwII I/( = 0} ~ {w = 0}). (3.11)

Note that the differential of q vanishes at the singular point z = w = 0 so any smooth

vector field on the range which lifts under it, i.e. is #-related to a smooth vector field

on P, vanishes at t = 0. Conversely, tOt is #-related to both z&9 and wO" whereas the

vector field

V = z(9 - Wo" (3.12)

annihilates q*t and so is everywhere tangent to the fibers of q.

The first step in the resolution of # : P -- + Di consists in passing to the commu-

tative square

P A [D ,0] (3.13)

P D.

Here [ID, 0] is the space obtained by real blow up of the origin in the disk, which can

be realized globally as

[D , 0] ~0 x S E (r, 0) a t = red E Dg (3.14)

if S = R/27rZ. As a real blow-up [Da,0] is a well-defined manifold with boundary

and any diffeomorphism of Di fixing the origin lifts to a global diffeomorphism. The

complex structure on D lifts to a complex structure on bT[ID 1 , 0] generated by t&t =

rOr + i00 in terms of (3.14).

Proposition 3.1. The space

Pj = [P; {z = 0} U {w = 0}], (3.15)

obtained by the real blow-up of the two normally-intersecting divisors forming the
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singular fiber of 0, gives a commutative diagram (3.13) in which /- is a b-fibration

with

= I,L2EI,R (3-16)

where II,L and IR correspond to the two boundary components introduced by the

blow-up, forming the proper tranforms of z = 0 and w = 0 respectively.

Proof. The two divisors forming the singular fiber 0-1(0) are each contained in a

product product neighborhood ID x D3 C P and D3 x D I C P. The transversality of
2 4 4 2

their intersection is clear and it follows that the blow-up is well-defined independently

of order with the new front faces being

BI,L = S X [ID, {0}] c Pj, BI,R = [ID3, {0}] x S C P. (3.17)

Here each of the blown up disks corresponds to the introduction of polar coordinates,

so rz = jzj is a defining function (globally) for BI,L and r, = jwj for BI,R. Since

rt = Itl is a defining function for the blown-up disk in the range and

rt = rzrw (3.18)

the b-fibration condition follows from the behaviour of the corresponding angular

variables

e*Ot = eidO eZOW. (3.19)

As a compact manifold with corners, Pj is globally the product of an embedded

manifold in R2 and a 2-torus

P = (rz, rw) 0 < rz, rw : , rzrw - x Sz x Sw. (3.20)
4 21

This first step in the resolution resolves the complex structure in a real sense. In

particular the vector fields tangent to the fibers of #g and to the boundaries form all
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the sections of a subbundle of bTP which has a complex structure, spanned by the

lift of the single vector field (3.12).

Although the complex structure is effectively resolved, the plumbing metric in

(3.8) is not. That gp has curvature -1 on the fibers, away from the singular point,

can be seen by changing variables to s = log r, r = r. and 6 = 6 in terms of which

=( 7r/ log t| \2

sin(7rs/log Iti)

It then follows from the standard formula for the Gauss curvature that

2 fg O
+o ) =-1.

In view of the coefficients in gp it is natural to introduce the inverted logarithms

of the new boundary defining functions, so replacing the radial by the logarithmic

blow-up. Thus
1

sz = ilogr, = 1 , SW = ilog rw
log ;

(3.21)

become new boundary defining functions in place of r, and rw. The space with this

new Co structure can be written

[P; {z = 0}iog U {W = 0}iog]. (3.22)

However, even after this second step, the fiber metric does not have smooth coef-

ficients:
2s2 ds 2

p St (1)

Indeed st = 'z'w is not a smooth function on the space (3.22).

The final part of the metric resolution is to blow up, radially, the corner formed

by the intersection of the two logarithmic boundary faces

Pmr = [[P; {z = 0}iog U {W = 0}iog]; {sz = SW =0}]. (3.23)
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In terms of the presentation (3.20) this preserves the torus factor and replaces the

2-manifold with corners by a new one with more smooth functions and an extra

boundary hypersurface.

Proposition 3.2. The model Lefschetz fibration # lifts to a b-fibration #,r giving a

commutative diagram

Pmr " [D1 ; {0}iog] (3.24)

P >D 1 .
2

Proof. The radial variables on the spaces Pj and [D I, {0}] are related by

It| = 1zj1w === st = St = ilog tl (3.25)
sz + sI

so # does not lift to be smooth. However, consider the further introduction of the

radial variable R = (s+ sW) and the smooth defining functions Rz = sz/R, R, =

sW/R for the lifts of the two boundary hypersurfaces. Then

st = RzRRw (3.26)
Rz + Rw

which is smooth since Rz and Rw have disjoint zero sets. It follows that # lifts to

a b-fibration as in (3.24) under which the boundary ideal lifts to the product of the

three ideals

#*nrIst = RZR R. (3.27)

The generator V, in (3.12), of the fiber tangent space of # lifts to Pj as

V = rzrz - rwarw - iOo, +io.

in terms of the coordinates in (3.19) and (3.18). Under the introduction of the loga-
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rithmic variables in (3.21) it further lifts to

V = 2s.,, S as" _ iao, + ia.

In a neighborhood of the the lift of the face s, = 0 to Pmr the variables sw (defining

the new front face) and pz = s/s2 E [0, oo) (defining the lift of s, = 0) are valid and

V = -sw(& - z - P -pz) -ia0z + i(0o.. (3.28)

Reviewing the three steps in the construction of Pmr, notice that the two holo-

morphic defining functions z and w are well-defined up to constant multiples and

addition of (holomorphic) terms O(Jz1 2 ) and O(jwl2 ) respectively. Under these two

changes, the logarithmic variables sz change to sz + s2G with G E C'(Pmr) smooth.

The same is true of sw so it follows that the radial variable

R = (s| + s2)1/2 E C (Pmr), (3.29)

which defines the front face, is also uniquely defined up to an additive term vanishing

quadratically there. This determines a 'cusp' structure at B1, and from (3.28) we

conclude that

Lemma 3.1. The vector field R-V on Pmr spans a smooth complex line bundle,
LTPmr over Pmr with underlying real plane bundle having smooth sections precisely of

the form R-'W where W is a smooth vector field tangent to the boundaries, to the

fibers of <mr and satisfying WR = O( R 2 ) at R = 0.

It is natural to consider this bundle, precisely because

Lemma 3.2. The plumbing metric defines an Hermitian metric on LTPmr.

Proof. On Pmr, in a neighborhood of the lift of {sz = 0} as discussed above,

szw s_ Pzsw log |z|_ 1st= ilogp ' log l+PzSt iogit =sz + Sw - + Pz, log |t| I + pz
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so the fiber metric lifts to

7r2 2 2 82 dp 2
s7n2 = + d ) 2 n ( pz + d2. (3.30)in22( ) 2 sin 2 (2(f + Pz)

This is Hermitian and the length of V relative to it is a smooth positive multiple of

R2

3.2 Global resolution and outline

It is now straightforward to extend the resolution of the plumbing variety to a global

resolution of any Lefschetz fibration as outlined in the Introduction. By hypothesis,

the singular fibers of a Lefschetz fibration 4', as in (3.1), are isolated and each contains

precisely one singular point. Near the singular point the map 4 is reduced to q by

local complex diffeomorphisms. Thus each singular fiber is a connected compact

real manifold of dimension two with a trasversal self-intersection. The real blow-up

of such a submanifold is well-defined, since it is locally well-defined away from the

self-intersection and well-defined near the intersection in view of the transversality.

Thus

M = [M,q4-'(S)] [ZS] (3.31)

reduces to 4a near the preimage of the finite singular set F C M. Similarly, the

logarithmic step can be extended globally since away from the singular set it corre-

sponds to replacing jzj, by ilog |z|. Here z is a local complex defining function with

holomorphic differential along the singular fiber. Finally, the third step is within the

preimage of the set of the singular points and so is precisely the same as for the

plumbing variety.

Thus the resolved space Mmr with its global b-fibration (3.3) is well-defined as is

the Hermitian bundle LTMmr which reduces to LTPmr near the singular points and is

otherwise the bundle of fiber tangents to Mmr with its inherited complex structure.

To arrive at the description of the constant curvature fiber metric, as an Hermitian

metric on LTMmr we start with the "grafting" construction of Obitsu and Wolpert
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which we interpret as giving a good initial choice of Hermitian metric. Namely choose

any smooth Hermitian metric ho on LTMmr; from Lemma 3.2

9P1 = efP'h0 near B 1 , fpi smooth. (3.32)

Away from the singular set, near the singular fiber, 0 is a fibration in the real

sense. Thus, it has a product decomposition, with the fibration 4 the projection,

and this can be chosen to be consistent with the product structure on P away from

the singular point. Then the complex structure on the fibers is given by a smoothly

varying tensor J. The constant curvature metric go on the resolved singular fiber may

therefore be extended trivially to a metric on the fibers nearby, away from the singular

points. This has non-Hermitian part vanishing at the singular fiber, so removing this

gives a smooth family of Hermitian metrics reducing to go and so with curvature equal

to -1 at the singular fiber. After blow-up this remains true since the regular part of

the singular fiber is replaced by a trivial circle bundle over it. On the introduction

of the logarithmic variables in the base and total space, the curvature of this smooth

family, gl, is constant to infinite order at the singular fiber since it is equal to the

limiting metric go to infinite order. Comparing g, to the chosen Hermitian metric

gives a conformal factor g, = ef'h, fi E C (N) where N is a neighborhood of B1

excluding a neighborhood of B11. Moreover, gpi is also equal to the trivial extension

of go to second order in a compatible trivialization so the two conformal factors

fi = fri to second order (3.33)

in their common domain of definition.

The grafting construction of Obitsu and Wolpert interpreted in this setting is then

to choose a cutoff X E C (Mmr) equal to 1 in a neighborhood of BI, and supported

near it and to set

h = eXfPl(-X)flho. (3.34)

It follows from the discussion above that h is a smooth Hermitian metric on LTmr
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near the preimage of the singular fibers and that its curvature

-1 near B11
R(h) = 1(3.35)

-1 + O(s) near B1 .

We therefore use this in place of the initial choice of Hermitian metric.

Let g be the unique Hermitian constant curvature metric on the regular fibers of

4', so g = e 2fh. The curvatures are related by

R(g)e2f = Ahf + R(h),

which reduces to the curvature equation

Af + R(h) = -e 2 f, A = Ah. (3.36)

The linearization of this equation is

(A + 2)f = -(R(h) + 1). (3.37)

The uniform invertibility of A + 2 with respect to the metric L 2 norm, shown below,

implies that (3.36) has a unique small solution for small values of the parameter. The

proof of the Theorem in the Introduction therefore reduces to the statement that

(3.36) has a log-smooth solution vanishing at the boundary.

3.3 Bounds on (A + 2)- 1

In the linearization of the curvature equation (3.37), the operator A + 2, for the

fixed initial choice of smooth fiber hermitian metric, appears. For the Laplacian

on a compact manifold, A + 2 is an isomorphism of any Sobolev space Hk+1 to

Hk-1, in particular this is the case for the map from the Dirichlet space to its dual,

corresponding to the case k = 0. For a smooth family of metrics on a fibration the
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family of Dirichlet spaces forms the fiber H1 space and its dual the fiber H 1 space

and 6 +2 is again an isomorphism between them. These spaces are modules over the

C" functions of the total space and this, plus a simple commutation argument, shows

that in this case of a fibration A + 2 is an isomorphism for any k > 1 between the

space of functions with up to k derivatives, in all directions, in the Dirichlet domain

to the space with up to k derivatives in the dual to the Dirichlet space. In particular

it follows from this that A + 2 is an isomorphism on functions supported away from

the boundary:

A + 2 : Cc(Mreg) +* Cc(Mreg), Meg = Mmr \ DMmr. (3.38)

We extend this result up to the boundary of the resolved space for the Lefschetz

fibration in terms of tangential regularity.

Proposition 3.3. For the Laplacian of the grafted metric

1 k 1

(A + 2 )-i: p7) Hb(Mmr) -+ p) Hk(Mmr) V k E N. (3.39)

The main complication in the proof arises from the fact that the Dirichlet space is

not a C' module.

First consider the following analog of Fubini's theorem.

Lemma 3.3. For the fiber metrics corresponding to an Hermitian metric on LTMmr,

the metric density is of the form

Idgl = PIIVb,fib (3.40)

and the space of weighted L2 functions with values in the L2 spaces of the fibers can

be realized as

L2 (Mmr; |dglqMrvtb(Zmr)) = L'(Zmr; L 2 Q(dg|)) = p- L (Mmr). (3.41)

Proof. Away from B1, C Mmr the resolved map Vmr is a fibration, L TMmr is the fiber
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tangent bundle and the boundary is in the base. Thus (3.40) and (3.41) reduce to

the local product decomposition for a fibration and Fubini's Theorem.

It therefore suffices to localize near BI, and to consider the plumbing metric since

all hermitian metrics on LTMmr are quasi-conformal. The symmetry in z and w

means that it suffices to consider the region in which pz = sz/sm and s, are defining

functions for the two boundary hypersurfaces B1 and BI, respectively. The plumbing

metric may then be written

7r 2 S2 s2 7r,2 dp2
= ) + dO = sn t (d + dO2)sin2 4t) sinS4 W2( ) s2(1 + pz),

Thus the fiber area form,

7r 2 2  dpZ tdp p
|dgI = s d_ s- -p dz = (pz)_s_ dpdz,

sin 2 ( 7r) st(1 + pz) 2 dOz pZ PZ PZ

is a positive multiple of se dp dOz from which (3.40) follows.
PZ

The identication (3.41) holds after localization away from BI, and locally near it

|f||2(z);Lg)) i I I K2|dg| d9t = j f|2

Since (A + 2)-1 is a well-defined bounded operator on the metric L2 space which

depends continuously on the parameter in Z \ S with norm bounded by 1/2, it follows

from (3.41) that

(A + 2)-i is bounded on pVL (Mmr). (3.42)

We consider the 'total' Dirichlet space based on this L2 space - we are free to

choose the weighting in the parameter space. Thus, let D be the the completion of

the smooth functions on Mmr supported in the interior with respect to

J(2dfibu + 2u) Idg10*Vb(Zmr). (3.43)
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Note that D depends only on the quasi-isometry class of the fiber Hermitian metric

but does depend on the induced fibration of the boundary B11 .

The dual space, D', to D as an abstract Hilbert space, may be embedded in the

extendible distributions on Mmr using the volume form *nrVbldgl. As is clear from

the discussion below, the image is independent of the choice of, vb, of a logarithmic

area form on Zmr but the embedding itself depends on this choice. Thus, f E D' is

identified as a map v : dCe(Mmr) -+ C by

vI dg|#*Vb(Zmr) = i5(0). (3.44)

We consider the space of vector fields W C PHj1 Vb(Mmr) which are tangent to the

fibers of 0mr and to the fibers of BI, and which commute with 90. and Oo. near B11.

Proposition 3.4. For the grafted metric

S+ 2: D -+ D' C C- (Mmr)

is an isomorphism, where the elements of D' are precisely those extendible distribu-

tions which may be written as finite sums

VZ Wuj, Wj E V, uj E p2L(ZI ) (3.45)

and has the injectivity property that

u E C (Mm), (A + 2)u E D' ==* u E D. (3.46)

This result remains true for any Hermitian metric on LTMmr but is only needed here

for the grafted metric which is equal to the plumbing metric near B11.

Proof. Although defined above by completion of the space of smooth functions sup-

ported away from the boundary of Mmr with respect to the norm (3.43) the space D
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can be identified in the usual way with the subspace of C- (Mmr) consisting of those

U 2 piL(Mmr) S.tV. 2 Epp2 L s W -u C p! L'(Mmr) (3.47)

with the derivatives taken in the sense of extendible distributions. Indeed, choosing

a cutoff p E C'(R) which is equal to 1 near 0 the sequence of multiplication opera-

tors 1 - p(npj) tends strongly to the identity on p L 2(Mmr). By assumption this

commutes with the elements of W and it follows that elements with support in the

interior of Mmr, where Omr is a fibration, are dense in D; for these approximation by

smooth elements is standard.

That A+2 : D -+ D' C C-'(Mmr) is the explicit form of the Riesz representation

theorem in this setting. Then the identification, (3.45), of elements of D' follows from

the form of A. Away from B 1 , D is a C' module (since the elements of ) are smooth

there) and then (3.45) is the identification of the fiber H-1 space. Near BI, we may

use the explicit form of the Laplacian for the plumbing metric.

Indeed, the local version of the Dirichlet form is

D($, 0) J (VReqVRe@ + VmqVim) ds8d" (3.48)

where V is given by (3.28) and it follows that the Laplacian acting on functions on

the fibers can be written

sin 2 ( 2
2 2 (V + (&0 - Oo2)2) (3.49)

7T st

in the coordinates s,, pz, Ow and Oz.

The vector fields VR and p-'(&o, - ao3) generate W near BI, over the functions

which are constant in Ow and Oz. If we write Difft (Mmr) for the differential operators

which can be written as sums of products of elements of at most k elements of W

with smooth coefficients which are independent of the angular variables near BI, then

A E Diff2(Mmr). (3.50)
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Moreover

Diff' (Mmr) : D - p2 L (2 r nII (Mmr) and3.51)

Diffk(Mmr): pII L (Mmr) - D'

where the second statement follows by duality from the first. Together (3.50) and

(3.51) imply (3.45). 0

Consider the space U C Vb(Mmr), defined analogously to W, as consisting of the

vector fields which commute with 00, and 9, near B11 . Then let Diffk(Mmr) be the

part of the enveloping algebra of U up to order k, this just consists of the elements of

Diffk(Mmr) which commute with @o, and Oo. near B 1. We may define 'higher order'

versions of the spaces D and D':

Dk = {u E D;Diffk(Mmr) -u C D},

D' = {u E D'; Diffk(Mmr) u C D'}, k E N. (3.52)

Since U spans Vb(Mmr) over C (Mmr) it follows that

Dk C p IH (Mmr) C D' V k. (3.53)

Proposition 3.5. For any k, C (Mmr) is dense in Dk and D' and

A-+ 2 : Dk--+ D' (3.54)

is an isomorphism.

Proof. The density statement follows from the same argument as for D and D'.

Consider the commutator relation which follows directly from the definitions

[U, W] C I ==* [Diffk(Mmr), ZA C Diff (Mmr) - Diff-1(Mmr), k E N. (3.55)

To prove (3.54) we need to show that if u E D, Q E Diffk(Mmr) and f = (ZA+2)u c

D' then Qu E D. Assuming the result for Q E Diffk-I (Mmr) it follows from (3.55)
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that

ZXQn = QAu + Lu with Lp E Diff2(Mmr), Qp E Diffk- 1(Mmr)

=->AQu c D'==> Qu c D (3.56)

by distributional uniqueness. 7

Proof of Proposition 3.3. The boundedness (3.39) follows directly from (3.54) and

(3.53). 2

3.4 Formal solution of (A + 2)u = f

In the previous section the uniform invertibility of A + 2 for the grafted metric was

established. In particular the case k = oc in (3.39) shows the invertibility on conormal

functions. In this section we solve the same equation, (A + 2)u = f in formal power

series with logarithmic terms.

Let CF (Mmr) C C (Mmr) denote the subspace annihilated to infinte order at B1,

by the angular operators Do. and Do..

Lemma 3.4. The restriction, A1 , of the Laplacian to B, satisfies

(z j + 2) -' ( PI10o PII)k )

= P1' S (log P1)uP, Up E CF (Mmr) V A E CF (Mmr) . (3.57)
06p6k+1

Proof. The fiber metric on B1 is a trivial family with respect to the product decom-

position B1 = A x S where A has the complete metric on the Riemann surface with

cusps arising from the 'removal' of the nodal points. The Laplacian is therefore es-

sentially self-adjoint and non-negative, so A + 2 is invertible. Either from the form

of a parameterix or by Fourier expansion near the cusps it follows that rapid decay

in the non-zero Fourier modes (in both angular variables) is preserved by (A1 + 2)-1.

Near the boundary the zero Fourier mode satisfies a reduced, ordinary differential,
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equation with regular singular points and having indicial roots 1 and -2 in terms of

a defining function for the (resolved) cusps. Then (3.57) follows directly.

Lemma 3.5. If u E CF(Mr) then Au E Cy(Mmr) restricts to B11 to d11v, v = U

where 3AH is an ordinary differential operator of order 2 elliptic in the interior with

regular singular endpoints, with indicial roots -1, 2 such that

Nul(Aii + 2) C p-i1C'(BI1) (3.58)

has no smooth elements and for hj E C'(B11 )

(A11+ 2)-1 (log pI)ih. = 3 (log p);vq,+ p2
Oq! j (3.59)

with vj, w E Co (B11).

Proof. The form of the Laplacian in (3.49) shows that the reduced operator A, exists

and after the change coordinates on BI, to

1
p = 1 (3.60)

1+ PII

becomes

A + 2 = 2 - 7rp)2 2 - pop]. (3.61)
irp

The indicial roots of this operator are 2 and -1 and its homoeneity shows that the

null space has no logarithmic terms. The absence of smooth elements in the null

space follows by integration by parts and positivity.

The problem that we need to solve at B1 1 is

( A + 2)(p 1w) = pug + 0(2 ( _ (_ + 2)(w|B) = g (3.62)

Since the parameter, st, is the product of defining functions for B, and BI, and

commutes through the problem this can be solved by dividing by it. Thus a(') is

obtained from Z1 by conjugating by a boundary defining function on B, so the
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preceding Lemma can be applied after noting the shift of the indicial roots.

Lemma 3.6. For the conjugated operator on B11,

Nul(A' + 2) C C (B11 )

with the Dirichlet problem uniquely solvable and

( A 11 + 2)- 1 (log p)i h = Z (log p1)vqj +I p(0log pI)j+ 1wj
Osq! j

with VJ , Wj C CF(B1I).

To express the form of the expansion which occur below, consider the space of

polynomials in log p, and log pu with coefficients in CF(Mmr)

Z (log p1 )'(log p)pul,p, UI,p E CF (Mmr)}.
Ol+pgk

We also consider the filtration of these spaces by the maximal order in each of the

variables:

E CO (Mmr)},

G CF(Mmr) ,

j ! k

m < k.

(3.66)

Since the coefficients are in CT(Mmr), A acts as a smooth b-differential operator on

all of these spaces. If u E P', then u = up + u' with u' E pk'Pl and u=v(log p)P

where v C Ph' 0. Then Au = (Ajv)(logp1)P + f', f' c P'~ + p1 ,f'Pl where the

first error term corresponds to at least one derivation of (log p1)P. Similar statements

apply to B11 and A,,.

As a basis for iteration, to capture the somewhat complicated behavior of the

logarthimic terms, we first consider a partial result.
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(3.64)

.pk = U = (3.65)

p' I= u=

pk~m= =

E (log pO) (log pII)Pul,p, U1,P
O I+psk, 1<j

O 1+pgk, p~m



Proposition 3.6. For each k

f E p 11 pk + p1p11pk+1 => ] U C ppk+ 1 + ppi pk+2,k+l (3.67)

such that

( A + 2)u - f E St (p11pk+1 + p1p1 1pk+2) (3.68)

Proof. We first solve on B1, then on B 1 . The second term in f in (3.67) vanishes on

B1 so the restriction f, E p .pk BI. Proceeding iteratively, suppose

f C pj ' + plprpk+1

with j k and consider the term of order j in log pl; this is a polynomial in log pi,

of degree at most k - j with coefficients in p1 CO(B1 ). Applying Lemma 3.4 to the

restriction to B1 gives a polynomial in log pr of degree at most k - j + 1 with coef-

ficients in p,1CO(B 1). Extending these coefficients off B, and restoring the coefficient

of (log ps)i gives vj E P p +1,j such that

(,A + 2)vj - f = -f', fi E p I + pIpr pk+l.

Here the first part of the error arises from differentiation of the factor (log p,)i in vj

at least once. If we start with j = k and proceed iteratively over decreasing j this

allows us to find v E ppk+1 such that

(A + 2)v - f = -g E pCpI pk+1. (3.69)

Now we proceed similarly by solving on BI, using Lemma 3.6. So, suppose h E

pippk+',P for p < k + 1. Then the coefficient hp of (log pjj)P is a polynomial of degee

at most k + 1 - p in log p, with coefficients in pipIICF(Mmr). Conjugating away the

factor of pl' and applying Lemma 3.6 to the restriction to BI, and then extending the

coefficients off B1, allows us to find wp E I ' + P where the second

term arises from the possible increase in multiplicity of the logarithmic coefficient of
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p2 in the solution, satisfying

(A + 2)wp - g = -g' + e, g' E pIpII 1P--, e E pipl1p 1A1+lP +2p (3.70)

where the first part of the error arises from differentiation of (log pu1 )P at least once.

Starting with p = k + 1 and iterating over decreasing p allows us to find w E

Pppupk+1 + p p11pk+2,k+1 such that

(A+)w- e k~ + + 4 4 1 k 2. (3.71)
(zA + 2)w - g E pIIk+ I I 2 k+

Combining (3.69) and (3.71) gives (3.68) since p'p'u is a smooth multiple of st. F

Proposition 3.6 allows iteration since st commutes through A + 2.

Proposition 3.7. If f G p11pk + ppHpk+l then u = (,A + 2)-'f G st 'H (Mmr) for

any c > 0, has a complete asymptotic expansion of the form

u ~ s uj, uj ( ppk+j + pIppk+j+,k+j. (3.72)

j>O

Proof. For any e > 0, g = sif E pu2 H( Mmr) so u = s-'((A + 2)--g exists by (3.39).

Comparing u to the expansion cut off at a finite point gives (3.72). F

This result can itself be iterated, asymototically summed and then the rapidly

decaying remainder term again removed to show the polyhomogeneity of the solution

for an asymptotically covergent sum over terms on the right in (3.72).

For the solution of the curvature equation the leading term is smooth because of

the special structure of the forcing term.

Lemma 3.7. If f E C'(M.r) has support disjoint from B11 then u = (zA + 2)-'f is

log-smooth and has an asymptotic expansion of the form

U - P11)0 +E st Vk, Vk E + (3.73)
k>1
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Note that log-smoothness follows from the fact that st = apipl1 , a E C'(Mmr) so each

term in the expansion can be written as a polynomial in p1, pi log p1, pi, and p11 log p11

of degree at least 2k.

3.5 Polyhomogeneity for the curvature equation

Under a conformal change from the grafted metric h with curvature R to e2fh the

condition for the curvature of the new metric to be -1 given by (3.9). To construct

the canonical metrics on the fibers we proceed, as in the linear case discussed above,

to solve (3.9) in the sense of formal power series at the two boundaries above st = 0

and then, using the Implicit Function Theorem deduce that the actual solution has

this asymptotic expansion.

Lemma 3.8. For the grafted metric there is a formal power series

Zstfk, f2 E CF(Mmr), fk p11pk-2 + k > 3, (3.74)
k>2

solving (3.9).

The pk are defined in (3.65); in the last term there is no factor of (log p1 )k-1.

Proof. Since R +1 E C2Coo(Mmr) is supported away from Bj1 , Lemma 3.7 shows that

91 = -(zA + 2)- 1 (R + 1) is of the form (3.74). We look for the formal power series

solution of the non-linear problem as

f - gk (3.75)
k>1

Inserting this sum into the equation gives

-(A + 2)(E gi) = E (1 + E gk) + I + R. (3.76)
i>1 j>2 k>2
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For each i > 2 we fix gi by

- (zA + 2)gi = Z 23(g1 +
j>1

z gkaY- (g1+ A
i-1>k>2 i-2>k>2

= gi_1Pi(gi, g2, ...gi-1) (3.77)

where P is a formal power series in g1, ... g-i without constant term.

Proceeding by induction we claim that

gi , ij E pjj'PY 2 i + pIp 11Pj-
2i+1,j-2i. (3.78)

j 2i

We have already seen that this holds for i = 1 and using the obvious multiplicitivity

properties

pk . pC pj+k pk j-1 C pj+k,j+k-1

tii II

it follows from the inductive assumption, that (3.78) holds for all smaller indices, that

(p1pj-2i+2 + -2i+3j-2i+2 p k-2 k+ ,k-2)

~ sF F E 11 k-2i + pII-2i+1,k-2
k>2i

Applying Proposition 3.7 we recover the inductive hypothesis at the next step. Then

(3.74) follows from (3.75) and (3.78). E

Summing the formal power series solution gives a polyhomogeneous function with

-Afo = R + ,2fa + g,g E O(s ). (3.80)

Now we look for the solution as a perturbation f = fo + I, so f satisfies

-Af = -g + e2fo(e21 - 1). (3.81)
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which can be rewritten as

f= -(A + 2 )-i (2f (e 2fo - 1) + e2 fo (e 2f -1 - 2f) - g)

So consider the nonlinear operator

K : f 4 (A + 2)-i (2f (e 2 o - 1) + e 2fo (e 2f - 1 - 2f) - g) (3.82)

which acts on sN Hb(Mmr) for all N > 1 and M > 2. Note that for M > 2, the b-

space Hm(Mmr) is closed under multiplication, therefore this weighted Sobolev space

is also an algebra. Since the nonlinear terms are at least quadratic, K is well-defined

on this domain. The solution to (3.81) satisfies f= K(f).

Proposition 3.8. For any M > 1 and N > 1 there is a unique solution I E

st HM(Mmr) to the equation (3.81).

Proof. We construct the solution f by iteration. Let 1 = s i > 2 Stifi, put it into

equation (3.81), divide by the common factor sfN on both sides and then we get

sfj = K( s fi) = (A + 2)i ((e2fo - 1) sf + sN( sf) 2 + N

i>2
(3.83)

The right hand side belongs to (A+2)-1(O(s2)) because of the quadratic structure and

the fact that e 2fo -1 E O(s). Therefore the right hand side is the form (A+2)(sth)

where sth E p1 12 Hb(Mmr) so this quantity is well-defined using Proposition 3.3.

Now we proceed by induction. Assume that the first k terms in the expansion

have been solved, then the equation for the next term fk is given by

fk = (zA + 2) -1(ef - 1)fk-2 rt o .fi)

where the polynomial Q on the right hand side is a quadratic polynomial of order

k - N. By using the invertibility property in Proposition 3.3, we can now solve fk.

Therefore the induction gives us the total expansion for i. E
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Proof of Theorem 3.1. From Proposition 3.8 we obtain the solution, f = fo + f,

to the curvature equation R(e 2fh) = -1. Since fo is the formal power series and

f E s C (Mmr), we get the solution with required regularity. El
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Chapter 4

Group resolution

4.1 Introduction

For a general compact Lie group G acting on a smooth compact manifold with corners

M, Albin and Melrose [1] showed that there is a canonical full resolution such that

the group action lifts to the blow-up space Y(M) to have a unique isotropy type.

This generalized the result of Borel [4] that if all the isotropy groups of a compact

group action are conjugate then the orbit space G\M is smooth.

In this paper, we give an

group action on the space of

explicit construction of such a resolution of the unitary

self-adjoint matrices

S = S(n) = {X E M,(C)IX* = X}

with the unitary group U(n) acting by conjugation: for u E U(n), X E S,

Uz- X := uXu 1 .

The orbit of an element X E S, denoted by U(n) - X, consists of the matrices with

the same eigenvalues including multiplicities. For a matrix X E S with m distinct

eigenvalues {A},", each with multiplicity ik, k = 1, 2, .. , m, the isotropy group of X
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is isomorphic to a direct sum of smaller unitary groups:

U(n)X = {u c U(n) I u -X = X} - (D'k=U(ik).

Thus the matrices with the same multiplicities {ik}, have conjugate isotropy groups.

The isotropy types are therefore parametrized by the partition of n into integers.

Note here that the partition contains information about ordering of the eigenvalues,

for example, the two partitions of 3, {ii = 1, i2 = 2} and {ii = 2, i2 = 1}, are not the

same type.

For n > 1, the eigenvalues are not smooth functions on S, but are singular where

the multiplicities change. We will show that, by doing an iterative blow up, the

singularities are resolved and the eigenvalues become smooth functions on the resolved

space.

Recall the lemma of group action resolution in [1]:

Lemma 4.1 ([11). A compact manifold (with corners), M, with a smooth, boundary

intersection free, action by a compact Lie group, G, has a canonical full resolution,

Y(M), obtained by iterative blow-up of minimal isotropy types.

Consider the trivial bundle over S,

M := S x C',

the fiber of which can be decomposed into n eigenspaces of the self-adjoint matrix at

the base point. This decomposition is not unique at matrices with multiple eigenvalues

and in general the eigenspaces are not smooth.

There are two basic kinds of real blow up, namely radial and projective, which

give different results; radial blow up of a hypersurface produces a new boundary while

projective blow up does not. As pointed out in [1], projective blow up usually requires

an extra step of reflection in the iterative scheme in order to obtain smoothness. We

will show that, after radial blow up, the trivial bundle M decomposes into the direct

sum of n 1-dimensional eigenspaces. In contrast, after the projective blow up, though
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the eigenvalues are still smooth on the resolved space and locally this is a smooth

decomposition into simple eigenspaces, but the trivial bundle doesn't split into global

line bundles.

Next we recall the resolution in the sense of Albin and Melrose.

Definition 4.1 (eigenresolution). By an eigenresolution of S, we mean a manifold

with corners 8, with a surjective smooth map / : S -+ S such that the self-adjoint

matrices have a smooth (local) diagonalization when lifted to S, with eigenvalues lifted

to smooth functions on S.

Note in the definition we only require the the diagonalization exists locally. To

encompass the information of global decomposition of eigenvectors, we introduce the

full resolution below.

Definition 4.2 (full eigenresolution). A full eigenresolution is an eigenresolution

with global eigenbundles. The eigenvalues are lifted to n smooth functions fi on

and M, which is the trivial n-dimensional complex vector bundle on S, is decomposed

into n smooth line bundles:
n

$x C"= E
i=1

such that

/(x)vi = fi(x)vi,V vi E Ei(x),V x E S.

We use the blow-up constructions introduced by Melrose in the book [34, Chap-

ter 5] and show that we can obtain resolutions in this way and, in particular, full

resolution if we use radial blow-up.

Theorem 4.1. The iterative blow up of the isotropy types in S, in an order compatible

with inclusion of the conjugation class of the isotropy group, yields an eigenresolution.

In particular, radial blow up gives a full eigenresolution.

4.2 Proof of the theorem

The proof proceeds through induction on dimension. We begin the proof by discussing

the first example which is the 2 x 2 matrices.
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Lemma 4.2 (2 x 2 case). For the 2 x 2 matrices S(2), the eigenvalues and eigenvec-

tors are smooth except at the scalar matrices. After radial blow up, the singularities

are resolved and the trivial 2-dim bundle splits into the direct sum of two line bundles.

The projective blow up also gives smooth eigenvalues, but does not give two global line

bundles..

Proof. In this case S = S(2) = { z2 ai R, zi 2 E C ~ R'. Thus S is
z 12 a22

isomorphic to the product of R and the trace-free subspace

so= a1 Z12 al + a 22 = 0 (4.1)
f 1 2 a 2 2

i.e. there is a bijective linear map:

q5: S-+SoxR

A ( a 12 l (A 0 := A - (all + a22)I, all + a22) (4.2)

Z 12 a 22 )

The eigenvalues Ai and eigenvectors vi of A are related to those Ao by Ai(A) =

2(A0 ) + tr(A), vI = Vi (AO), i = 1,2. Therefore, we can restrict the discussion of

resolution to the subspace So, since the smoothness of eigenvalues and eigenvectors

on S follows.

Let z12 = c + di. The space So can be identified with R' = {(a,,, c, d)}. The

eigenvalues of this matrix are:

A+ = a 1 + c2 + d2 . (4.3)

Hence the only singularity of the eigenvalues on So is at the point all = c = d = 0

which is the zero matrix.

Based on the resolution formula in [34], the radial blow up can be realized as

So = [So, {0}] = S+N{0} Li (So \ {0}) ~2 x [0, oo)+ (4.4)
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where the front face S+N{0} ~ S2. Here the radial variable r is Vai1 + c2 + d2 . The

blow-down map is

0 : [So, {o}] -+ So, (r, 6) - rO, r c R+, 0 E 2. (4.5)

The radial variable r lifts to be a smooth on the blown up space, therefore the two

eigenvalues A = r become smooth functions.

Now we consider the eigenvectors of the corresponding eigenvalues A+

(4.6)

Similar to the discussion of the eigenvalues, the only singularity is at r = 0, which

becomes a smooth function on [So, {0}], it follows that v+ and v- span two smooth

line bundles on [So, {0}].

If we do the projective blow up instead, which identifies the antipodal points in

the front face of S2 to get RP2 , namely

So = {(x,l)lx c l} C R3 x RIp 2

for which we will cover it with three coordinate patches

(Xi, Yi, zi) = (c, d, -) E R3
C c

and the other two (X 2, Y2, z 2 ), (X 3 , Y3, z 3 )=(d, 1, ?1.I), (a 1 , c, ) are similar. The two

eigenvalues we get from here are

v = a 1 + c2 + d2 = xi I (1+ yJ+ Z2).

which is smooth at {X > 0}. Similar discussions hold for the other two coordinate

patches.

However, the trivial bundle does not decompose into two line bundles as in the
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radial case. The nontriviality of eigenbundles can be seen by taking a loop in RIP2

l =13 1 ({r = 1}) C 5

which is a curve that winds twice around origin. This curve intersects the line c =

d = 0 twice, which hits at two different places thus both a = 1 are on the

curve, and (4.6) shows that starting from v- = (0, -2) = (0, -2a+), this turns into

V+ = (0, -2) = (0, 2a-), which means they are not separated by projective blow up.

Now that we have done the radial resolution for the trace free slice So, the reso-

lution of S follows. Consider S as a 3-dim vector bundle on R with trace being the

projection map, then at each base point A, the fiber is So + Al. The resolution is

[So + AI; AI] ' [So; 0]. Since the trace direction is transversal to the blow up, and

therefore

[S; RI] = [So; {0}] x R. (4.8)

And because the trace don't change the eigenvectors, the smoothness follows. 0

To proceed to higher dimensions, we first discuss the partition of eigenvalues into

clusters. The basic case is when the eigenvalues are divided into two clusters, then

the U(n) action of the matrices can be decomposed to two commuting actions.

Definition 4.3 (spectral gap). A connected neighborhood U C S has a spectral gap

at c E R, if c is not an eigenvalue of X, for any X E U.

Note here that since U is connected, the number of eigenvalues less than c stays

the same for all X E U, denoted by k.

Lemma 4.3 (local eigenspace decomposition). If a neighborhood U C S(n) has a

spectral gap at c, then the matrices in U can be decomposed into two self-adjoint

commuting matrices smoothly:

X = Lx + Rx, LxRx = RxLx.

with rank( Lx) = k, rank(Rx) = n - k.
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Proof. Let -y be a simple closed curve on C such that it intersects with R only at -R

and c, where R is a sufficiently large number. In this way, for any matrix X E U, the

k smallest eigenvalues are all contained inside y. We consider the operator

Px : C' -+ C"

Px.- := (X - sI)-lds
2iri (4.9)

Since the resolvent is nonsingular on 'y, Px is a well-defined operator and varies

smoothly with X. And the integral is independent of choice of y up to homotopy.

First we show that Px is a projection operator, i.e.

P =Px

Let -y, and -ye be two curves satisfying the above condition with -ys completely inside

-yt, then

p 2 .= 1- f#X - I dt(f (X - sI)-'ds)

=- f, dt[f -L(X - sI)-lds - f, -i(X - tI)-lds]

= I - II
where using the fact that s is completely inside ayt

I ds 1 dt=
X -8 sI s - t

1
-- (-27ri)

472 is

1 Ids = Px
X - sI

and any t on rnt is outside of the loop -y,

19 ds = 0

(X - tI)~dt j
J'Y

we have
111 = -

47 2
ds = 0

s-t

Therefore Px2 = Px
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Then we show that Px is self-adjoint. This is because

P = I j((X - 21* (X - sI)ds = Px.
27ri , 27ri _~

Px maps R" to the invariant subspace spanned by the eigenvectors corresponding

to eigenvalues that are less than c. We denote this invariant subspace by L and its

orthogonal complement by R. Write X as the diagonalization X = VAV 1 where A is

the eigenvalue matrix and V consists its eigenvectors as columns. Then L is spanned

by the first k columns of V. Take one of the eigenvectors vj E L, j = 1, 2, ... , k,

Pxv, - . (X - sI)1 vjds
27i '

. f V(A - sI)-1 V-lov
27ri

- VJ _ds = v-.
27ri iAj - s

Similarly for vj E R that corresponds to an eigenvalue greater than c (therefore Aj is

outside the loop),

PXV = Vj I ds = 0,27ri Aj - s

therefore

(I - Px)vj = vy,Vv, E R.

Then using the projection Px we define two operators Lx and Rx as

Lx:= PxXPx (4.10)

and

Rx := (I - Px)X(I - Px). (4.11)

Since Px is smooth, the two operators are also smooth. Moreover, using the fact that

Px is a projection onto the invariant subspace L, we have

(I - Px)XPx = PxX(I - Px) = 0,
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therefore

X = Lx + Rx.

For an eigenvector v E L,

Lxv = Xv, Rxv = 0, (4.12)

i.e. Lx equals to X when restricted to L, similarly RxIR = X. Since P* = Px, Lx

and Rx are also self-adjoint. In this way we get two commuting lower rank matrices

Lx and Rx.

It is natural to to have a finer decomposition when there is more than one spectral

gap in the neighborhood, and we have the following corollary.

Corollary 2. If the eigenvalues of matrices in a neighborhood U can be grouped

into k clusters, Then the matrices can be decomposed into k lower rank self-adjoint

commuting matrices smoothly.

Proof. Do the decomposition inductively. If k=2, then it is the case in Lemma 4.3.

Suppose the decomposition for k = 1 - 1 is defined. Then for k = 1, since the

eigenvalues can also be divided into 2 clusters (by combining the smallest 1-1 groups

of eigenvalues together), then X = Lx + Rx, with Lx and Rx corresponding to the

two intervals. Then Lx satisfies the separation condition for 1 - 1 clusters, so by

induction, Lx = L, + ... + Ll 1 . Therefore, X = L, + L2 + ... + Li- 1 + Rx is the

desired division. O

Using the above Lemma 4.3 of decomposition of matrices in a neighborhood, we

can now show that locally the trivial bundle S x C' decomposes into two subspaces if

there is a spectral gap. And moreover, locally there is a product structure of two lower

order matrices. In order to see this, we need to introduce the Grassmannian. Let

Grc(n, k) denote the Grassmannian, i.e. the set of k-dim subspace in C'. Consider

the tautological vector bundle over Grassmannian:

7r : Tk -+ Grc(n, k), 7rK (p) = V(p).
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where each fibre is a k-dimensional subspace in C', with self-adjoint operators acting

on it. Similarly, we define T,_k to be the orthogonal complement of Tk:

7r: Tsk -+ Grc(n, k), 7r-I(p) = V(p)I.

Definition 4.4 (operator bundle). Let Pk (resp. Pn-k) be the bundles over Grc(n, k)

of the fibre-wise self-adjoint operators on the tautological bundle Tk (resp. Tnk).

Let 7r : Pk E Pn-k -+ Grc(n, k) be the whitney sum of the two bundles. Each of its

fiber is isomorphic to S(k) E S(n - k) when we pick a basis. There is a U(n) action

on this bundle:

g - (p,(ppn)) = (g - p,(g9o pk o g, g pnkg 1 )) (4.13)

p E Grc(n, k), pk E Pk(p), p.-k G P.-k(p).

Suppose an open neighborhood U E S satisfies the spectral gap condition. Let

U(n) - U be the group invariant neighborhood generated by U, that is,

U(n) -U := UgeU(n)g U. (4.14)

Then U(n)- U is open and connected, and also satisfies the spectral gap condition as U

does, since U(n) action preserves the eigenvalues. From the proof of the Lemma 4.3,

it is shown that in the neighborhood, the trivial Cn bundle over U naturally splits

into two subbundles Ek E En-k. And this gives a local product structure. We will

prove that, for a U(n)-invariant neighborhood, there is actually a group equivariant

isomorphism with the operator bundles defined above.

Lemma 4.4 (bundle map). If a point X0 C S satisfies the spectral gap condition,

then there is a neighborhood X0 C V C S such that it is isomorphic to a neighborhood

in the product of lower rank matrices and Grassmannian, i.e.

q$: V V(k) x V(n - k) x VGr c S(k) x S(n - k) x Grc(n, k) C Pn E Pn-k.
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Moreover, if we take the neighborhood U(n) - V, it is isomorphic to a neighborhood

W C Pk E Pn-k such that 7r (W) = Grc (n, k) and the isomorphism 4 is U (n)-invariant.

Proof. From the proof of Lemma 4.3, there is a neighborhood U of X0 , such that each

element X E U are decomposed into Lx + Rx. Moreover, it induces a decomposition

of the trivial bundle U x C' into two subbundles:

U x C" = E D En-k (4.15)

where Ek(X) and En-k(X) are determined by the projection operator Px defined in

equation (4.9):

Ek(X) = Im(Px), En-k(X) = Im(Px)' (4.16)

Let (,...(k) be the basis for Ek(Xo). Ek over U is an open neighborhood in

Grc(n, k). We can find a neighborhood V of X0 (possibly smaller than U) such that,

for every point in V, the k-dimensional space Ek projects onto Ek(Xo). And an

orthonormal basis of Ek (X) is uniquely determined by requiring the projection of the

first j vectors to Ek(Xo) spans (,...() for every j smaller than k. In this way, we

picked a basis for each fiber of Ek and Ek is trivialized to be a k-dimensional vector

bundle on V. Since the action of X on C' has been decomposed to Lx and Rx, then

with the choice of basis, the action of Lx on Ek(X) gives a k x k self-adjoint matrix,

and by continuity, these matrices form a neighborhood Vk in S(k). And the same

argument works for Rx.

Therefore, we have the following map 0:

S: V -+PkEPk (4.17)

X - ( Ek ( X), ( Lx|IEk (X) 5, Rx|IE.-k(X)))

This map is an isomorphism between V and #(V). It's injective, since the action of

the two invariant subspace uniquely determines the action on Cn, therefore gives the

unique operator X. The continuity of 0 and 0-1 comes from the continuity of the

projection operator defined in Lemma 4.1 therefore the continuity of Ek, Lx and Rx
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are continuous.

Now take U(n) - V, since Ek takes every possible k-subspace of C" under the

action of U(n), we know that the first entry of #(U(n) - V) maps onto Grc(n, k).

Moreover, since the decomposition respects the action of U(n), it is easily seen that,

for g E U(n), X E G V,

q(g - X) = (g Ek(X), (g o Lx o g-1, g o Rx o g- 1)) = g (#(X)) (4.18)

which means the isomorphism is group invariant.

To do the induction, we will need to define an index on the inclusion isotropy

types, so the blow up procedure could be done in the partial order given by the

index. Recall that two matrices have the same isotropy type if they have the same

"clustering" of eigenvalues. Now we define the isotropy index of a matrix X as follows.

Definition 4.5 (Isotropy index). Suppose the eigenvalues of a matrix X are

A -= A 1 < Ai 1 = .. =A i2 <Ai2+1 = < Ai1= -- = An

then the isotropy index of X is defined as the set

I(X) = {io = 0, i, i 2 ,.---, ik- k = n}.

There is a partial order of this index on S, given by the inclusion of isotropy types.

That is, if for matrix X and Y we have I(X) C I(Y) then we say that the order is

X < Y. Note there is an inverse inclusion to isotropy group. The smallest isotropy

index is I(AI) = {0, n} while the isotropy group is U(n) which is the largest. And

the largest index is {0, 1, 2, ... , n - 1, n} which correspond to n distinct eigenvalues,

where the isotropy group contains only identity.

The last lemma we need before the induction is the comparability of conjugacy

class inclusion and the decomposition to two submatrices, which shows the order of

resolution in Lemma 4.1 is comparable with the decomposition.
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Lemma 4.5 (Compatibility with conjugacy class). The partial order of conjugacy

class inclusion is comparable with the decomposition in Lemma 4.3.

Proof. Suppose a neighborhood V C S(n) has a decomposition in Lemma 4.3. We

need to show that, if S(n)" is the stratum of minimal isotropy type in V, then the

decomposition of this stratum corresponds to the minimal isotropy type in U(k) and

U(n - k).

Since V satisfies the spectral gap condition, all the isotropy types in V would

be subgroups of U(k) e U(n - k). Suppose the minimal stratum corresponds to

the index I = {O, iI, ... , in} which must contain k as one element because of the

spectral gap condition. Then the isotropy type of two subgroups are {0, i1 , ... k} and

{i3 - k = 0, j , ... , n - k}. They would still be the minimal in each subgroup,

otherwise when the two smallest elements combined it'll give a smaller index than I

which is a contradiction. 0

Now we can finally prove Theorem 4.1 using the above lemmas.

Proof of Theorem 4.1. We prove the theorem by induction of the matrix size. The

2 x 2 case is shown in Lemma 4.2. Suppose the claim holds for all the cases up to

n - 1. Now we claim that, by an iterative blow up, we can get S(n) for dimension=n,

with eigenvalues and eigenbundles lifted to satisfy the full eigenresolution properties.

As in the 2 x 2 example, we shall first consider the trace free slice So(n) since other

slices have the same behavior in terms of smoothness of eigenvalues and eigenbundles.

Take the smallest index I = {0, n} with the largest possible isotropy group U(n), and

the stratum in So(n) with such an isotropy group is the zero matrix. After blowing

up, we get [So; 0] as the first step.

The next smallest index is {0, k, n} where 1 < k < n. And the strata correspond-

ing to different k become disjoint in [So; 0] because if the eigenvalues of a matrix

X E So satisfy k1A 1 + k2A 2 = 0, k'\ + kA 2 = 0, then A, = A2 = 0, which has been

blown up in the previous step. Therefore we can blow up those strata separately. For

any point X E So(n) with I(X) = {0, k, n}, we can generate a neighborhood U(n) -V
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as in Lemma 4.4, which is isomorphic to a neighborhood in the bundle Pk G Pn-k. Lo-

cally there is a product structure V V x V-k X VGr c S(k) x S(n - k) x Grc(n, k).

For every base point p E VCr, since the fibre is isomorphic to a neighborhood in

S(k) x S(n - k), the resolution can be done separately to Vk and Vn-k. And accord-

ing to Lemma 4.5 the index order is preserved when decomposed into two subspaces,

so the blow up construction indexed by isotropy type inclusion can be done on V

and Vk. By induction, after the full resolution of the two subspaces, Ek and En-k

both split into line bundles, and eigenvalues also extend to the frontface smoothly.

And since this local product structure is U(n)-invariant on U(n) -V, the splitting of

eigenbundles are actually global.

Therefore, after the resolution, we have iteratively blown up the stratum according

to isotropy indices to get

S = [S; {0}; S1 1; S1 2; ... SIn, (4.19)

above which there are n line bundles as eigenbundles and the corresponding eigenval-

ues are also smooth.
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