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Abstract

In this thesis we study wave and Klein-Gordon equations on Kerr exterior
spacetimes. For the wave equation, we give a quantitative refinement and
simple proofs of mode stability type statements on Kerr backgrounds in the
full sub-extremal range (Jal < M). As an application, we are able to quan-
titatively control the energy flux along the horizon for solutions to the wave
equation in any bounded-frequency regime. This estimate plays a crucial role
in the author's recent proof, joint with Mihalis Dafermos and Igor Rodnianski,
of boundedness and decay for the solutions to the wave equation on the full
range of sub-extremal Kerr spacetimes. For the Klein-Gordon equation, we
show that given any Kerr exterior spacetime with non-zero angular momen-
tum, we may find an open family of non-zero Klein-Gordon masses for which
there exist smooth, finite energy, and exponentially growing solutions to the
corresponding Klein-Gordon equation. If desired, for any non-zero integer m,
an exponentially growing solution can be found with mass arbitrarily close to

laml/2Mr.
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Title: Professor of Mathematics
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Chapter 1

Introduction

In the previous decade there has been a tremendous amount of work on the

problem of boundedness and decay for solutions to the wave equation

Egq = 0 (1.1)

on Kerr black hole exterior spacetimes (M, ga,M). Here M denotes the mass

of the spacetime, and a denotes the specific angular momentum. We will be

interested in sub-extremal Kerr spacetimes which satisfy Jal< M. The study of

the wave equation (1.1) is of direct mathematical and physical interest, how-

ever, an important motivation is the perceived connection between possessing

sufficiently robust proofs of decay for solutions to (1.1) and the problem of

black hole stability (cf. the role of the work [15] in the proof of the stability of

Minkowski space [14]).

In a joint work [21], along with Mihalis Dafermos and Igor Rodnianski,

we established boundedness and decay for the wave equations on the full sub-

extremal range of Kerr spacetimes. Let us quote the following informal state-

ment of the main result of [21].

11



Theorem 1. 1. General solutions / of (1.1) on the exterior of a Kerr black

hole background (M, ga,M) in the full subextremal range |a|< M, arising from

bounded initial energy on a suitable Cauchy surface E0, have bounded energy

flux through a global foliation E, of the exterior, bounded energy flux through

the event horizon W+ and null infinity I+, and satisfy a suitable version of

"local integrated energy decay".

2. Similar statements hold for higher order energies involving time-translation

invariant derivatives. This implies immediately uniform pointwise bounds on

b and all translation-invariant derivatives to arbitrary order, up to and in-

cluding W+, in terms of a sufficiently high order initial energy.

Combining Theorem 1 with the "rP-estimates" of [16] immediately implies

pointwise decay statements for solutions to (1.1) arising from localized initial

data. These decays rates are sufficiently strong so as to, in principle, be ap-

plicable to small data global existence problems for nonlinear wave equations,

see e.g. [34], [45], and [46].

A full discussion of the context for and history behind Theorem 1 would

lead us too far afield; we direct the interested reader to the discussion in [21]

and to the lecture notes [20]. Here we will content ourselves by recalling that

the work [21] was preceded by various results concerning the "very slowly ro-

tating case" where |a| « M. In this case many important difficulties can be

treated pertubatively around the case a = 0. Under the al « M assump-

tion, boundedness for solutions to (1.1) was first shown in the work [17] and,

subsequently, decay was shown in the independent works [20] and [19], [2],

and [41].

There are many ingredients which go into the proof of Theorem 1. In this

thesis we will focus on what is perhaps the most exotic of these, at least for

12
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the reader who is most familiar with the wave equation on product spacetimes

(R x AV, -dt 2 + h), with (K, h) Riemannian. This is the problem of mode

stability. Mode solutions to the wave equation will be reviewed in Section 1.3;

for now, we simply recall that a solution 4' to the wave equation Dg 4 ' = 0 is

called a mode solution if

0(t, r, 0, #) = e-teimS()R(r) with w E C and m E Z,

where (t, r, 0, #) are Boyer-Lindquist coordinates (defined in Section 1.1) and

S and R must satisfy appropriate ordinary differential equations and bound-

ary conditions (given in Section 1.3) so that, among other things, 0 has finite

energy along suitable spacelike hypersurfaces. 1 Ruling out the exponentially

growing mode solutions corresponding to Im(w) > 0 is the content of "mode

stability." This was established by Whiting in the ground-breaking [44] (of

course, mode stability is a trivial corollary of Theorem 1). In the first main

result of this thesis we will extend Whiting's techniques and establish a quanti-

tative understanding of the lack of mode solutions with real w. 2 As a byproduct

of our methods, we will also be able to simplify the proof of Whiting's orig-

inal mode stability result. 3 Next, we will show that this "quantitative mode

stability on the real axis" can be used to control the "microlocal energy flux"

along the event horizon in any "bounded frequency regime." It is this final

estimate which is crucially appealed to in [21] during the proof of Theorem 1.

'When Im (w) > 0 one should take asymptotically flat hypersurfaces connecting the
future event horizon and spacelike infinity. When Im (w) ; 0 one should instead consider
hyperboloidal hypersurfaces connecting the future event horizon and future null infinity. See
the discussion in Section 2.2.3.

2See also [27] and [28] which concern solutions to the Cauchy problem of the form
eim"oo(t, r, 0) and discuss mode solutions with real w.

3We should note that Whiting's result [44] held for a wide class of equations; our simpli-
fication only holds for the case of the wave equation.
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We note that a version of these results has appeared already in the work [40].

The second main result of this thesis will complement this stability result

for the wave equation with an instability result for the Klein-Gordon equation,

E g@ -P20 = 0. (1.2)

The key theorem is the following.

Theorem 2. Fix a Kerr spacetime (M, ga,M) with M > 0 and 0 < |a| < M.

Then there exists an open family of masses p with eA > 0 and a non-zero,

smooth, and finite energy mode solution ? to the corresponding Klein-Gordon

equation

(Lg - A2)= 0

such that for every (t, r, 0, 0) ER x (M + v/M2 - a2 , oo) x S 2

eWt jBac'(0, r, 0, 0) O <o (t, r, 0, #)1 for all multi-indices a. (1.3)

These statements should be understood with respect to Boyer-Lindquist coor-

dinates. For every non-zero integer m, p can be chosen arbitrarily close to

laI. In particular, yI can be made arbitrarily small as a -+ 0.

Remark 1.0.1. For convenience, we have stated our theorem in Boyer-Lindquist

coordinates; however, these coordinates break down on the future event hori-

zon H+ (see Section 1.1). Nevertheless, it will be easy to see that along W+ the

solutions constructed are also exponentially growing with respect to the regular

t* coordinate; see the discussion again in Section 1.1.

This theorem suggests that these Kerr spacetimes are non-linearly unstable

14



as a solution to the Einstein-Klein-Gordon system. 4Also, Theorem 2 serves to

the emphasize the subtle effects superradiance (see Section 1.2 below) can have

on the linear stability problem and helps to "explain" why even establishing

the boundedness part of Theorem 1 is so difficult. In particular, since the

Klein-Gordon equation decays faster than the wave equation on Minkowski

space, one may have expected that the Klein-Gordan equation would be easier

to control. However, as Jal -+ 0 (where superradiance is weaker and one expects

the problem to get easier) we have produced exponentially growing and finite

energy solutions with arbitrarily small mass. Thus, any argument used for the

wave equation must break down for Klein-Gordon equations with arbitrarily

small mass. On a more conceptual level, we see that as one passes into the

relativistic world, new obstructions to boundedness, not just decay, arise in the

superradiant bounded-frequency regime. We note that a version of this result

on the Klein-Gordon equation has appeared already in the work [39].

Finally, we observe that the sub-extremal Kerr spacetime is far from the

only background on which to study the wave or Klein-Gordon equations; in

fact, it is quite interesting to explore how changing the black hole geometry

alters the subtle interplay between trapping, superradiance, and the redshift,

and leads to various instabilities. In the sequence of works [30], [31], and [32],

Holzegel and Holzegel-Smulevici established a logarithmic upper and lower

bound on the decay rate for the wave and Klein-Gordon equations on non-

superradiant Schwarzschild/Kerr-AdS spacetimes. 5 The slow decay rate is

4The Einstein-Klein-Gordon system for a spacetime (M, g) and massive scalar field 0 is

1
Rica13(g) - 1R(g)gao = 87rT,, (g,'),2

(Eg - A2)o= 0.

Here R(g) is the scalar curvature, and Tp is the energy-momentum tensor (1.5).
5Here non-superradiant means that there exists a global timelike Killing vector field. In
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directly traceable to a stable trapping phenomenon. In a series of papers

[3], [4], [5], [6], and [7] Aretakis has studied the wave equation on various

extreme black holes, 6 where there is a loss of the redshift due to the vanishing

surface gravity of the horizon. One of the most striking results obtained is

that even within the context of axisymmetric solutions to the wave equation

on extremal Kerr, for which there is no superradiance, second derivatives of

the solution blow up along the horizon. 7 Taken together with Theorem 1,

these various "instabilities" serve to emphasize the miraculous properties of

the wave equation on sub-extremal Kerr.

1.1 The Spacetime

Before proceeding further with the introduction, we give a precise definition

of the Kerr exterior and introduce the relevant notation. Our treatment here

will be brief; for a true introduction to the Kerr spacetime we recommend [42]

and [36].

Fix a pair of parameters (a, M) with lal< M, and define

r =M + M2 -a 2 .

Define the underlying manifold M to be covered by a global 8 "Boyer-Lindquist"

coordinate chart

(t, r,0,#) E R x (r+, oo) x 2 .

particular, it is possible to immediately rule out solutions of the type constructed in this
paper.

6The extreme Kerr spacetime occurs when Ial = M.
71nterestingly, it was also shown that the solutions itself decays in time.
8 "Global" is be understood with respect to the usual degeneracy of polar coordinates.
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The Kerr metric then takes the form

( 2Mr\ 4Mar sin2  +
ga,M _ _ p d 2  2 dtd +

ps p

-dr2
A

(1.4)

+p2 d0 2 + sin2 - d02 ,
p2

rj L M + VM2- a2,

A r2 - 2Mr + a2 = (r - r+)(r - r-),

p2 r a2 cos2 ,

I (r2 + a2 )2 - a2 sin 2 OA.

It is convenient to define an r*(r) (r+, oo) - (-oo, oo) coordinate up to a

constant by
dr* r2 +a2

dr A

We will often drop the parameters and refer to ga,M as g.

It turns out that the manifold M can be extended to a manifold .M such

that OM is a null hypersurface called the "horizon." Since Boyer-Lindquist

coordinates would break down at the horizon, one needs a new coordinate

system. The standard choice is "Kerr-star" coordinates (t*, r, *,9):

dt r 2 +a 2

dr A

dr A'

#*(#,r) #+ O(r).

17



In these coordinates the metric becomes

( 2Mr\ 4Mar sin 2 o( - 2- p2) (dt* ) 2  2 dt*d@* + 2dt*dr+

p 2cd 2 + sin2 0 (do* )2 - 2a sin2 Odrd@*.
P2

Note that we can now extend the metric to the manifold

f a {(t*,r,9, #*) ER x (0, oo) x S2.

The (future) event horizon W+ is defined to be the null hypersurface {r =

r+}. Lastly, we note that in their common domain, Ot in Boyer-Lindquist

coordinates is equal to t* in Kerr-star coordinates. A similar statement applies

to 00 and ao*.

1.2 Energy Currents, the Ergoregion, and Su-

perradiance

In this section we will briefly review the energy-momentum tensor formalism

(see [1] for a proper introduction) and discuss the presence of the ergoregion

and superradiance.

Let (M, g) denote an arbitrary Lorentzian manifold and V denote covariant

differentiation. For any smooth function h M -* C we define the energy-

momentum tensor

T,) Re (v2v@) - ga, (1V' Q 2 + IL2 I 2). (1.5)

18



For any vector field X we define a corresponding 1-form, called a "current,"

by

J = TaX 3 . (1.6)

The key identity is

vaJx = Re ((VoaV - p2,) (XO)) + ITci3 i7ra. (1.7)

Here 7r denotes the deformation tensor of X:

rF -. Xo + v13Xa.

This vanishes if and only if X is Killing. In particular, if b solves the Klein-

Gordon equation and X is Killing, we find that Jx is divergence free. In this

case, for any two homologous hypersurfaces Q, and Q2, the divergence theorem

gives a conservation law:

Jnci = Jn.(1.8)

Here nn, denotes the (future oriented) normal to the hypersurface R, and the

integrals are with respect to the natural volume forms (the ones that make the

divergence theorem true). For the identity (1.8) to be useful, we need some

positivity of Jxng,. This leads to the following very useful lemma.

Lemma 1.2.1. Let (L, L, E1 , E2) be a null frame, i.e.

g (L, L) = g (L, L) = g (L, El) = g (L, E2 ) = g (L, E) = g (L, E2 ) = g (El, E2 ) = 0,

g (L, L) = -2,

19



g (E1, E1) = g (E2, E2 ) = 1.

Then, for all constants c1 , c2 , c3, and c4  0, we have

JL2L (c 3 L + C4L)a = cic 3 LO'2 + c2c4  + (c 2c 3 + cic4 ) [|E1 @b 2 +E

Proof. This is a simple computation using the algebraic properties of the

energy-momentum tensor (see [1]). D

Remark 1.2.1. Observe that an easy Linear Algebra exercise implies that

for any two timelike vectors X and Y satisfying g (X, Y) < 0, one may find

positive constants c1 , c2, c3, and c4 and two null vectors L and L satisfying

g (L, L) = -2 such that

X = c1L + c2 L,

Y = c3L + c4 L.

This leads to

Definition 1.2.1. Let X be a future oriented timelike (non-spacelike) vector

field and E be a hypersurface with future oriented timelike (non-spacelike) nor-

mal nE. We define the non-degenerate (degenerate) energy of 4 with respect

to X along E by

Jfne (1.9)

where the integral is with respect to the induced volume form. We will often

use the schematic notation

to denote (1.9).

We thus have the following version of the celebrated Noether's Theorem:

20



Theorem 1.2.1. (Noether's Theorem) Every Killing vector field X on a space-

time (M, g) implies the existence of a conservation law for the Klein-Gordon

equation. The conservation law is coercive if and only if it is evaluated on a hy-

persurface with a non-spacelike future directed normal and X is non-spacelike

and future directed. The conservation law is positive-definite in the derivatives

of b if and only if it is evaluated on a hypersurface with a timelike future

directed normal and X is timelike and future directed.

The calculations in the following two lemmas will be convenient later.

Lemma 1.2.2. Let X and Y be two linearly independent future oriented time-

like vectors normalized to have g(X,X) = g(YY) = -1. Set y a -g(X,Y).

Note that - > 1 by the reverse Cauchy-Schwarz inequality. Define

1
W I (X +Y),

V 2 (7+ 1 )

1
Z + (X -Y),

L W + Z,

L W - Z.

Let E1 and E2 be an orthonormal basis in the 2-dimensional subspace orthog-

onal to the span of X and Y. Then,
a 1 ( 1L2 + IL,012)

J Y" = -(L | + (|E, |2 + E2 0|2).

Proof. Observe that

g (L, L) = g (L,_L) =0,

g (L, L) = -2,

21



X =(1 /4) ((/2 (7 + 1) + \f2 ( -1)) L + (V/2 (T + 1) - 2 7-1)L

Y =(1/4) (( x/2 _(+ 1) - /2 ( - 1)) L + (-\/2 (7 + ) + -./-2 -(y- 1)) __

The result then follows from Lemma 1.2.1.

It is also possible to find a convenient expression for J, Xo.

Lemma 1.2.3. Let X be a timelike vector normalized to have g (X, X) = -1.

Let R be any spacelike vector orthogonal to X, normalized to have size 1.

Define

L X + R,

L X - R.

Let E1 and E2 be an orthonormal basis for the subspace orthogonal to the span

of X and R. Then

Ja =L2 + +| +|E2

Proof. The result then follows from Lemma 1.2.1 with the null frame (L, L, F E2 )

By examining the formula (1.4) for the metric, one easily sees that on the

Kerr spacetime the only Killing vector field which is timelike for large r is the

time translation vector field at. (recall that at = at.). Unfortunately, when

a # 0, then (t. is spacelike on the non-empty set

S ={A - a 2 sin2 0<0}. (1.10)

The set S is referred to as the ergoregion. In particular, at. is spacelike at

every point on the horizon where &o* does not vanish. In fact, noting that the

22



null generator of the horizon 'W+ may be taken to be

L +t8 +aw+o

where w, a is the "angular velocity" of the black hole, a straightforward2Mr+

computation shows that the energy density along the horizon for a solution b

to the Klein-Gordon equation is

J TLa = Re (TTi) = Re To TO + a <+ U) . (1.11)
\ 2Mr+

When the black hole possesses non-zero angular momentum (a # 0) it is clearly

possible for this quantity to be negative, and thus, in principle, energy can

radiate out of the black hole.

If energy is extracted through the existence of a negative JT flux along the

horizon, then we say that the solution 0 exhibits superradiant amplification.

Theorem 2 shows that for certain Klein-Gordon masses and Kerr spacetimes

(M, ga,M), superradiant amplification occurs and leads to an exponential in-

stability. Conversely, Theorem 1 shows that for the wave equation (1.1), the

total amount of superradiant amplification is uniformly bounded. Next, we

note that one corollary of the scattering theory developed in our very recent

work [22], is an explicit construction of solutions L to (1.1) which experience

superradiant amplification. Thus, even though the level of superradiant am-

plification is uniformly bounded for solutions to (1.1), it does in fact occur.
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1.3 Separating the Wave and Klein-Gordon

Equations: Mode Solutions

When a = 0, in addition to possessing the Killing vector field ot*, the met-

ric (1.4) is spherically symmetric. Thus, it is immediately clear that the Klein-

Gordon equation (Dg 0m - Au2) 0 = 0 is separable. When a # 0 the only Killing

vector fields are at. and i8o.. Nevertheless, as first discovered by Carter [12],

the Klein-Gordon equation (zog - [p2),4 = 0 remains separable (in an appropri-

ate coordinate system). Indeed, letting (w, m) E C \ {0} x Z, we have

P2eiWte~M (LEg (e 2 iteimoo'o(r, 0)=

r (A(r) 00 + ((r2 + a2 ) 2w 2 - 4Mamrw + a2m 2 -a 2W 2 _ (1.12)

1 m
S( sin 0o ) Oo - 2 - a2 (w 2 _ 1,2) cos 2 /

sin0 sin2

In fact, the separability of the Klein-Gordon equation follows from the presence

on Kerr of a Killing tensor [43].

It is convenient to introduce the following definition.

!=a2 (W (1.13)

We call
ld( dS mn 2

-dn(sin-) - ( 2 K cos2 S+AS=0 (1.14)sin 0 dO dO sin 2o

the "angular ODE." One can show that when w E R, then (1.14) along with

the boundary condition

eimS(9) extends smoothly to S2 (1.15)
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defines a Sturm-Liouville problem with a corresponding collection of eigen-

functions {SmI},ImI and real eigenvalues {ArmI}'jnm} . These {Smi} are an

orthonormal basis of L2 (sinOdO) and are called "oblate spheroidal harmon-

ics." When r, = 0 these are simply spherical harmonics, and we label them in

the standard way so that Aom, = l(l + 1). The following lemma shows that A

depends smoothly on t E R and that for any fixed K0 E R, AsmI can be extended

to a holomorphic function of , E C as long as r, is sufficiently close to r.

Lemma 1.3.1. Suppose that for some fixed ro E R we have an eigenvalue A0 .

Then, for r, E C sufficiently close to ro, we can uniquely find a holomorphic

curve A(K) of eigenvalues for the angular ODE with parameter K such that

A0 = A(Ko).

Proof. Let's change variables to x a cos 0. Then the angular ODE becomes

+ (I-x2)_(lm) _ K2) S+AS=0 with E (-1,1).dx ( dx 1- X2

A standard asymptotic analysis (see [35]) at x = 1 shows that any solution to

the angular ODE must be asymptotic to a linear combination of (1 : X)Im/ 2

and (1 F x)'-"/2 as x -+ 1. If S is an eigenfunction we clearly must have

S ~ (1 F X)1mI/2 as x - 1.

For any K and A we can uniquely define a solution S(6, K, A) by requiring that

S(9, K, A)(1 + X)-mI/ 2 is smooth around x = -1, (1.16)

(S(-, r, A)(1 + .)-ImI/2) (x = -1) = 1.
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We then have holomorphic functions F(ri, A) and G(,, A) such that

S(9, ,, A) ~ F(K, A)(1 - x)-Im/ 2 + G(c, A)(1 - X)Im/ 2 as x -+ 1.

Since AO is an eigenvalue, we have F(Ko, AO) = 0. We will be able to uniquely

define our curve A(r') for r, near no via an application of the implicit function

theorem if we can verify that

(KO ,Ao) * 0.

For the sake of contradiction, assume that

(KO Ao) = 0.

Set
as

By differentiating (1.16) and using that F and

easily check that SA still satisfies the boundary

It will also satisfy

1 vanish at (to, AO), one may

conditions of an eigenfunction.

-(1-x2) )_ ( 2 _ x2)S\ + AoSA=-s.dx dx 1x

Multiplying both sides of this equation by S, integrating over (0, 7r), and then

integrating by parts will imply that

0f S2 sin OdO = 0.

This is clearly a contradiction. D
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In particular, it follows from Lemma 1.3.1 that for n # 0, we can uniquely

determine the labeling of S,,i and Aimi by enforcing continuity in K.

Now we are ready for the main definition of the section.

Definition 1.3.1. Let (M, g) be a sub-extremal Kerr spacetime with param-

eters (a, M). A smooth solution 4 to the Klein-Gordon equation

(g[ - A2) / = 0 (1.17)

is called a "mode solution" if there exist "parameters" (w, m, 1) E C \ {0} x Z x

Z>m such that

4' (t, r, 0, )) = e-iwteimo Smmi(0)R(r, w, m, 1), (1.18)

where we recall that , = a2 (W 2 - A2 ), and we require

1. If p # 0, then w2 < / 2 .

2. SminL satisfies the boundary condition (1.15) and is an eigenfunction with

eigenvalue Ain for the angular ODE (1.14).

3. R is a solution to

Or (A4r) R+ ((r2 + a2 ) 2 2 - 4Mamrw + a2m 2

-r 2 y2 - A1 - a2w2 R = 0

(1.19)

~4.
i(am-2Mr+w)

R ~ (r - r) r+-r- at r = r. 9

-i(am-2Mr+w)9This notation means that R(r)(r - r+) V+-r- is smooth at r = r,.
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5. If p = 0, then

R ~ at r = oo.10
r

(1.21)

If IL # 0 (and hence w 2 < p2) then

(1.22)
- 1p2_w2r*

R -~ M(2 ;
2
-) at r = 00.11

r VI2_e2

We will often suppress some of the arguments of Smi and R and refer to

them as S&ml(9) and R(r).

During the proof of our instability results, we will often write R's equation

as

A d A dR) - WOR = 0,
r (dr

(1.23)

W, =- (r2 + a2) 2W 2 + 4Mamrw - a2m 2 + A (Anm + a2W 2 + p2r2 ).

During the proof of our stability results for the wave equation, instead of

considering R(r), it will often be more convenient to work with the function

u(r*) (r2 +a2 1 2R(r).

Then, letting primes denote r*-derivatives, equation (1.19) with [t2 = 0 is

equivalent to

U"+ (w2 - V) u = 0, (1.24)

'0This notation means that there exists constants {C}2* such that for every N-> 1,
R(r*) = E.(Z o -3 + o ((r)---) for large r.

1 1This notation means that there exists constants {C}2

R(r*) = (JO 2-2 + O ((r) for large r.
/r -

such that for every N > 1,
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. 4Mramw - a2m 2 + A(Ami + a2W 2 )

(r2 + a2)4 (a2A + 2Mr(r2 - a))

Let's check that the boundary conditions at r = r+ exactly guarantee that

out mode solutions extend smoothly to the horizon.

Lemma 1.3.2. Suppose that 4 is a mode solution. Then O extends smoothly

to the event horizon W-+.

Proof. Since Boyer-Lindquist coordinates break down at r = r+, in order to

investigate the smoothness of 0 there, we will change to Kerr-star coordinates

(t*,r,0,#0*). In these coordinates we get

(t* , r, 9, 0*) = e-0(t*-(r))eim(* -(r))Smi (0)R(r).

Hence, 4 extends smoothly to r = r+ if and only if

R(r) = e-i('(r)-m(r))h(r)

where h extends smoothly to r,. However, this is precisely what the boundary

condition (1.20) guarantees. El

As we will see in Section 2.2.3, for the wave equation, when Im (w) > 0,

the boundary conditions given for R and Smi ((1.20), (1.21), and (1.15)) are

uniquely determined by requiring that 4, given by (1.18), extends smoothly

to the horizon and has finite energy along asymptotically flat hypersurfaces.

The boundary conditions when Im (w) = 0 follow from the requirement that

the mode solution has finite energy along hyperboloidal hypersurfaces (see
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Section 2.2.3). Furthermore, in Section 2.5.4 we will see these boundary con-

ditions directly arise during the proof of integrated local energy decay for the

wave equation. In the case when w 2 < / 2 , the boundary conditions guaran-

tee that our mode solution is exponentially decaying along asymptotically flat

hypersurfaces and extends smoothly to the horizon (see Lemma 1.3.2 above

and Appendix 3.2.2). Though they will only concern us tangentially here, it

is worth mentioning that there is a large literature devoted to locating mode

solutions with Im (w) < 0 (see the review [33]). These are called quasi-normal

modes and are expected to provide refined information about the decay of

scalar fields. We direct the interested reader to the thesis [25].

1.4 Mode Stability Type Statements for the

Wave Equation

In this subsection we only consider the case when p 2 = 0. Ruling out the

exponentially growing mode solutions corresponding to Tm (t.,)) > 0 is the con-

tent of "mode stability (in the upper half plane)." This was established by

Whiting for the wave equation in 1989 [44]. However, this turns out not to be

the full story. Indeed, the existence of mode solutions with w E R \ {0} is a

serious obstruction both to boundedness and "integrated local energy decay"

for the wave equation. We will call the ruling out of these mode solutions

"mode stability on the real axis." In Section 2.5 we will show how one can

upgrade mode stability on the real axis to a bound for the "microlocal energy"

along the horizon for the wave equation in any "bounded-frequency regime."

In order for the constant in this estimate to be explicit, however, we will be

interested in a quantitative version of mode stability of the real axis.
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We turn now to an explanation of "quantitative mode stability." A stan-

dard asymptotic analysis of (1.24) (see [35]) allows one to make the following

definitions:

Definition 1.4.1. Let the parameters |al < M be fixed and set a = 0. Then

define uhor(r*, w, m, 1) to be the unique function satisfying

1. U'o,+ (w2 - V)uhor = 0.

i(am-2Mr+w)

2. uhor (r - r+) r+-r- near r* = -oo.

3 ( r-i(arn-2Mr+w) 2

3. (r(r*) - r+) r+-r- Uhor( = 1.

Definition 1.4.2. Let the parameters |a| < M be fixed and set y = 0. Then

define uOt(r*,w,m,l) to be the unique function satisfying

1. u' +(w 2 - V)uOut =0.

2. UoUt ~ ewr* near r* = oo.

3. j(e-iwr*UOst)(OO)j 2

Remark 1.4.1. The "~" has the following explicit meaning:

-i(am-2Mr+w)1. (r(r*,) -r+)r+-r- Uhor is a smooth function of r.

2. There exists constants {C}'ZO such that for every N> 1,

u(r*) =e w+ O ((r)-N1
i=0

for large r.
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When there is no risk of confusion, we shall drop some or all of Uhor's and

u0 ut's arguments. Next, recall that the Wronskian

u'ut(r*)uhor (r - Uor(r)uout (r

is independent of r*. Hence, we can define

W(w, m, 1) u'ut(r*)uhor(r*) - uhor(r*uout(r*)- (1.25)

This will vanish if and only if Uout and shor are linearly dependent, i.e. there

exists a non-trivial solution (with the correct boundary conditions) to (1.24)

.<- W = 0 <- >W-11= oo. "Quantitative mode stability" consists of producing

an upper bound for |W-11 with an explicit dependence on a, M, w, m, and 1.

1.5 Precise Statement of Stability Results

In this section we will give the precise version of our stability results. Fix a

Kerr spacetime (.M, g) with parameters (a, M) satisfying jal < M, and recall

the definition of mode solutions (Definition 1.3.1) and the Wronskian (1.25)

given in the previous section.

Our main result about mode solutions is

Theorem 1.5.1. (Quantitative Mode Stability on the Real Axis) Let

,9 c {(w,ml) E R X Z X ZI}
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be a set of frequency parameters with

C -= sup (wl + I-1 + M + < .
(w,m,l)Ed&

Then

sup IW- 1 : G(C , a, M)
(w,m,l)Ed

where the function G can, in principle, be given explicitly.

Along the way we will give simple1 2 proofs of

Theorem 1.5.2. (Mode Stability)(Whiting [44]) There exist no non-trivial

mode solutions for the wave equation corresponding to Im (w) > 0.

Theorem 1.5.3. (Mode Stability on the Real Axis) There exist no non-trivial

mode solutions for the wave equation corresponding to W E R \ {0}.

Before discussing our main application, we need a definition.

Definition 1.5.1. We will say that a C (.M) function b (t, r, 0, q) is admis-

sible if for every compact K E (r+, oo) x S2 and multi-index a with |al > 0, we

have

f f sin 0 dt dr dO do < oo,

where all of these derivatives are Boyer-Lindquist derivatives.

Next, we note that the arguments of Section 5.3 of [21] imply the following

lemma.

12Using Whiting's integral transformations [44] but avoiding differential transformations
or a physical space argument with a new metric.
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Lemma 1.5.1. Let b be an admissible function on Kerr that is also a solution

to the wave equation Ego = 0. For every (w, m, 1) E R x Z x Z,1mI, set

R (r, w, m,l) a I f eiwte-im0S,mj (0, r) sin 0 dw dO do.

Then R satisfies the boundary conditions so that e-iteimkS&miR is a mode

solution in the sense of Definition 1.3.1.

Next, let Eo denote the hypersurface {t* = 0}, and E1 denote {t* = 1}.

Define a cutoff X which is 0 in the past of Eo and identically 1 in the future

of Ei.

Our application of Theorem 1.5.1 will be

Theorem 1.5.4. (Boundedness of the Microlocal Energy Flux to the Horizon

in the Bounded-Frequency Regime) Let 4 be an admissible function on Kerr

that is also a solution to the wave equation og4 = 0 with compactly supported

initat data. oet

V4 = X V)

Let 2 cR and Wc {(m,l) EZ x :1> |m|} be such that

C2 e sup (Iwi + wV-1 ) < 00

Ce sup (Im|+1) < + )oo,
m,le'

and set

R (r,w,m,l) e eiWte-imq5S Kml (0, ,) 4 sin 0 dw dO do.
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Then,

sup (R (r+)12  B (ro,ri, Cq, CW, a, M) J o2 . (1.26)

where |)1|2 denotes a term proportional to a non-degenerate energy flux of a

globally timelike vector field (see Section 1.5). The function B (ro, r1, Cq, Cr, a, M)

can, in principle, be given explicitly.

Remark 1.5.1. This estimate is crucially used in [21] during the proof of

Theorem 1. For this application, it is very important that the right hand side

is at the level of energy and does not posses additional weights in r.

1.6 Precise Statement of Instability Results

In this section we will give the precise statements of our instability results.

As we have already mentioned in the introduction, we will rigorously con-

struct finite energy solutions to the Klein-Gordon equation

(Og -A 2) =0

on sub-extremal Kerr which grow exponentially. These growing solutions will

be mode solutions:

(t r , )e- e- emSamj(0)R~r (1.27)

where w EC, m E, 1E ZImI, Im (w) > 0, and , a2 (W2 -_1 2 ). The modes we

construct will be such that the boundary conditions for the functions Smj and

R (see Sections 1.3 and 2.2.3) imply that 0 extends smoothly to the horizon
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(where Boyer-Lindquist coordinates break down) and decays exponentially in

r along asymptotically flat Cauchy hypersurfaces. Such solutions are called

"unstable modes." We say that these modes "lie in the upper half-plane." We

will also consider mode solutions with w E R which will be called "real modes."

We say that these modes "lie on the real axis." It will be convenient to refer

to the tuple (w, m, 1, p) as the "parameters" of the mode. Lastly, we observe

that (1.11) implies that a mode solution exhibits superradiance if and only if

amRe (w) - 2Mr, wI2 > 0. (1.28)

We can now state our main result:

Theorem 1.6.1. Fix a sub-extremal Kerr spacetime with mass M and angular

momentum aM. Let m E Z and WR(0) E R satisfy am - 2MrwR(0) = 0 and

am # 0. Then, for each I E ZIml and sufficiently small 6 > 0, there exists

(0 )> IwR(0)I, real analytic WR(E), and real analytic p(e) such that for every

-6 < e < 6, there exists a mode solution with parameters (WR () +ie, m, 1, (e).

As I -+ oo, p(O) will converge to W(0). Lastly, these unstable modcs must all

be superradiant3

aml - 2Mr+ w2(e) + E2 > 0 (1.29)

and lose mass as they become unstable

-p(0) < 0.DL

Here is a picture of the values {w(e)} e C traced out by the various 1-

parameter families of modes associated to a fixed 1:

13One may easily check that (1.29) is stronger than (1.28) via the inequality >+Y
2I

V 2+ y2.
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-3a -a -a a a 3a
MT Mr+ 2Mr+ 2Mr+ Mr+ 2Mr+

The reader should keep in mind that we have not produced any estimates for

the lengths of these curves.

For each choice of m E Z \ {0}, there is a countable family of intervals of

masses M associated to growing solutions (indexed by 1). These intervals will

have an accumulation point at "M . The following picture may be useful for

visualization:

2Mr+

Lest the reader be misled, we emphasize that we do not have any estimates

for how large these intervals are, and (despite the picture) we have not proven

that we can find e > 0 such that the interval (a ,M M+ snr made

up of unstable masses. However, in light of the arguments in Section 3.4.5 we

would certainly conjecture that this last statement is true.

The construction of the exponentially growing modes is achieved by per-

turbing modes corresponding to real w. Thus, before proving Theorem 1.6.1,

we will undertake an analysis of modes corresponding to real W. For these

modes we have two main results. The first is an existence result (already

contained in Theorem 1.6.1). The second shows that the assumptions on the

frequency parameters from Theorem 1.6.1 are necessary.

Theorem 1.6.2. Suppose there exists a mode solution with parameters (w, m, 1, [)

such that w E R and p2 > W2 . Then the following statements are true.

1. We have am - 2Mr~w = 0.
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2. We have am # 0.

3. There exists a function C(w, m, 1) such that w 2 < _12 <W 2 + C(w, m, 1) and

lim C(w, m, l) = 0.
I-+oo

We will close the section with two remarks. First, we note that we can

rephrase the condition am - 2Mr~w = 0 more geometrically. Let L = T + w,<D

be the null generator of the horizon. Then

am - 2Mr+w = 0 <> LO= 0 #> No energy flux along the horizon

Thus, our real mode solutions are simply solutions to the Klein-Gordon equa-

tion with exactly vanishing energy flux along the horizon.

Second, by modifying the arguments behind the proof of Theorem 1.5.1

one can establish an appropriately modified version of Theorem 1.6.2 in the

case w2 > / 2, however we will not pursue this here.

1.7 Previous Work on Mode Solutions

By far the most important previous work on mode solutions is Whiting's mode

stabilty result from 1989.

Theorem 1.7.1. (Mode Stability)(Whiting [44j) There exist no non-trivial

mode solutions for the wave equation corresponding to Im (w) > 0.

Mode stability on the real axis was first explored numerically in [38]. In

addition, [38] presented a heuristic argument (rigorously established in [29])
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indicating that mode stability on the real axis would imply mode stability in

the upper half plane.

Turning now to the Klein-Gordon equation, to the best of the author's

knowledge, there are no previous rigorous constructions of growing solutions.

However, in [8] Beyer showed that no unstable modes can exist if

laml 2M
2Mr 1+

However, if we leave the realm of rigorous mathematics, then there exists

a rich heuristic physics literature discussing unstable Klein-Gordon modes:

Soon after the discovery of superradiant wave scattering [47], the authors

of [37] speculated about placing a mirror around a black hole which would

reflect superradiant frequencies. They argued that this would create a posi-

tive feedback loop and result in a "black-hole bomb." Naturally, one is led

to wonder if this superradiant instability can arise in a more physically nat-

ural fashion. A key breakthrough came in 1976 when Damour, Deruelle, and

Ruffini observed that a good candidate is the Klein-Gordon equation with

non-zero mass [23]. A few years later, Zouros and Eardley [48] and Detweiler

[24] developed more involved heuristics, all leading to the same conclusion.

In particular, in [48] a connection was drawn between unstable modes for the

Klein-Gordon equation and the existence of bound Keplerian orbits outside

the ergoregion. Furthermore, they gave some approximations for the instabil-

ity rates. Various extensions/refinements, numerical and otherwise, of these

results continue to appear in the physics literature, see the very recent survey

article [9] and the references therein.

We remark that many of the studies of unstable modes in the physics

literature rely on the WKB approximation ([24] is an exception). Even if these
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WKB arguments were made rigorous, they would only become accurate as I -+

oo. Since our techniques are variational, no large parameter is necessary, and

we produce a much more complete picture. We also remark that it is expected

that "small" Kerr-AdS black holes will exhibit superradiant instabilities [10,

11].
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Chapter 2

Mode Stability for the Wave

Equation

The main goal of this chapter is to prove Theorems 1.5.2, 1.5.3, 1.5.1, and 1.5.4.

The chapter opens with Section 2.1 where we prove a useful ODE "unique

continuation from infinity" result. Next, we review the basic aspects of mode

solutions in Section 2.2. Then, in Section 2.3, the technical heart of the chap-

ter, we introduce our refinement of Whiting's transformation and explore its

important properties. We switch gears in Section 2.4 where we establish a

useful estimate for solutions to the inhomogeneous radial ODE. Finally, in

Section 2.5 we put everything together and prove Theorems 1.5.2, 1.5.3, 1.5.1,

and 1.5.4.

2.1 A Unique Continuation Lemma

The following "unique continuation lemma" will be useful in what follows.

Lemma 2.1.1. Suppose that we have a solution u(r*) : (-oo, oo) -* C to an
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ODE

u" + (v 2 - P) u = 0

such that

1. V ER \ {0},

2. u E L" and (1u'|2 + u12 ) (oc) = 0,

3. P is real, P E L*, P = O (r-1) as r -+ oo, and P' =0(r-2) as r -oo.

Then u is identically 0.

Proof. Define

y(r*) eexp -B ((r)dr)

where B is a large positive constant to be chosen later and C is a fixed positive

function which is identically 1 near r = -oo and is equal to r-2 near r = oo. In

particular, we have y'l(-o,,) > 0, y(-oo)= 0, and y(oo) = 1.

Next, set

W kr) a y U' 2 + y (V2 - ) uja

Observe that the hypothesis of the lemma imply that QY ( oo) = 0. A simple

computation gives

(QY)' = y' u' 2 + y'zV U1 2 
- (y U1 2 .

Thus, the fundamental theorem of calculus implies

f (y' u'f 2 + y'v 2 fU1 2 _ (y U1 2) dr* = 0. (2.1)

Let R E (1, oo) be a large constant to be chosen later. Then set X(r*) to be a
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function identically 1 on (-oo, R] and 0 on [R + 1, oo). We then define

P1  xP,

P2 (l- X)P

Of course we have P = P + P2.

We have the following estimate:

(yP1)' IU1 2 dr* = 2 f yP1 Re (u'U) dr*

E y' u'f 2 dr* + -1
-OO

f 00 / 2p2y'V2 ( I U1 2 dr*
- k ( , ) /

(2.2)

(2.3)

E J0 y' u'|2 dr* + C- 1 v 2 B-2 R2  2 IU2 dr*.

(2.4)

Here C is a constant which only depends on ( and P.

Next we estimate

f (yP2 )' U1 2 dr* = (y'P 2 + yP2) I2

Cf0 (R-1v- 2 + B-1 v-2) y'2 jU1 2 dr*.

Taking c small, R large, and then B sufficiently large and combining (2.1),

(2.4), and (2.6) implies that

1
1-00 (y' u',2 + yIv2 U 2 ) dr* = 0.
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2.2 Basic Properties of Mode Solutions to the

Wave Equation

In this section we will review various basic properties of mode solutions for the

wave equation. In particular, we first discuss how the boundary conditions for

a mode imply finite energy along suitable hypersurfaces, and then review the

situations where mode solutions can be ruled out with easy arguments based

on energy conservation.

2.2.1 The Hypersurfaces

For purposes of exposition we will restrict attention to spacelike hypersurfaces

Ef which, for sufficiently large R, satisfy

Ef nf {r R} = {(t,r*,O,) :r R and t-f(r*) = 0}.

In addition to the requirement that E1 be spacelike, we also ask that Ef

intersects the future event horizon and

f 0 as r* - oo.

This last requirement implies that Ef connects the event horizon 'W+ to either

spacelike infinity or future null infinity.

Definition 2.2.1. We will say that Ef is asymptotically flat if f ~1 as r*

00.1

More generally, one could consider any hypersurface which terminates at spacelike in-
finity, but this extra generality is not particularly useful for the study of mode solutions.
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These hypersurfaces converge to spacelike infinity as r* -+ oo. The pro-

totypical example of an asymptotically flat hypersurface is one where f is

identically constant for large r. The relevant Penrose diagram is

f

Definition 2.2.2. We will say that Ef is hyperboloidal if (f')2  1 = +

0 (r-3) as r* - oo for some sufficiently large positive constant C (C > M will

work). 2

These hypersurfaces converge to future null infinity as r* - oo. The key

examples to keep in mind are hyperbolas in Minkowski space (where f =

v'C+ r 2 ). The relevant Penrose diagram is

21n more general contexts one usually says a spacelike hypersurface is hyperboloidal if
the induced metric asymptotically approaches a constant negative curvature metric. One
could work with this more general definition here; but, since there is not much advantage
for the study of mode solutions, we shall spare ourselves the extra work.
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2.2.2 Some Useful Calculations

We start by noting that

tt - a2 sin 2 OA - (r2 + a2 ) 2

=A- a2sin2 o

g sin2 9A '

gt 4Mar
9 -- 2,A

Then we have

Lemma 2.2.1. Let p = 0, Ef be an asymptotically flat hypersurface, N be

a future oriented timelike vector field which equals at for large r, and h be a

smooth function. Then, for sufficiently large R, the energy of 0 with respect

to N along Ef n {r > R} is proportional to

f>R 12 (jatO/2 + 2 + r-2 ((ao8)2 + sin- 2 9 (&o)2)) (f(r*) r, , )

r2 sin 0dr dO do.

Proof. First, observe that

-V t = -gttat - gto o - (r 2 + a2 ) 2 - a2 sin2 9 4M ar

g(vt, Vt) = -(r 2 + a2 ) 2 + a2 sin2 9A

9 (Vt VO -p 2A

In particular, Vt is timelike. Next, we calculate

g (V (t - f (r*)) , V (t - f (r*)))=
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2 (r 2 +a2 ) 2  a2sin20
((f')2 -1) + 2 -+-1asr->oo.

We conclude that the normal to Ef satisfies

nff = (1+ 0 (r-)) (-Vt) + 0 (r-)a,. as r-- oo.

Now, Lemma 1.2.2 implies

J a $ ~ ,02 + ar*,-/42 +r- 2 ((0,0) 2 + sin -20 (04)2 ) as r -o co.

The volume form on Kerr satisfies

Ap2 .
dVol = sinO dtAdr* AdO Ado.

r2+a2

Thus, the induced volume on Ef is given by

(1+O(r-1))r2 sin 0dr* AdO Ado+(1+O(r-))r sin 0dtA dO Ado+

(1+O(r-1))r sin0 dtAdr* AdO as r -* oo.

The lemma follows by writing out the integral (1.9) in the parametrization

(r* 0, 0) - (f (r*) , r*, 0, #). E

The analogous lemma in the hyperboloidal case is more subtle since we need

to understand precisely how the energy degenerates due to the hypersurface

becoming "approximately null."

Lemma 2.2.2. Let p = 0, Ef be a hyperboloidal hypersurface, N be a future

oriented timelike vector field which equals Ot for large r, and 0 be a smooth

function. Then, for sufficiently large R, the energy of b with respect to N
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along Lf n {r > R} is proportional to

fR 2f-2 a ~r*) V)2 + (0t + 0r*) 12+

r- 2 ((ao4)2 + sin-2 0 (0 ) 2 ) )r2 sin0 dr dG d5

where the integrand is evaluated at (f(rW),r* ,,0,$).

Proof. Let's set

A~f~ -g

- (1 - 2 (r2 + a2 ) 2

pf M )-P2
a2 sin2

p 2

= 0 (r-') as r - oo.

The normal nf, thus satisfies

nrf = A- -Vt + f(r + a2 ) 2

' 2A.

The key difference with the asymptotically flat case is that A = r + 0(1) as

r -- oo.

Let's apply Lemma 1.2.2 to the vectors X (-gtt)-1 2 Ot and Y a n,. We

have

-g (X, Y) = (-g -A, = r + O(1) as r -+ oo.
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Next, we compute

2 + (X +Y)

=0 (r-1/2) at + (ri1/2 +0 (r-1/2) (-Vt + Or.) as r -- oo,

Z= 1 1=(X- Y
2(7 1)

=0 (r-1/2)8 -t (ri1/2 +0 (r-1/2) (-Vt + Or.) as r -- oo,

L=W+Z

= 0 (r-1 /2) (at + (-Vt + Or.)) as r -+ oo,

L=W-Z

= 0 (r-3/ 2)at + 2(r1 /2+O (r-1/2)) (-Vt +r,) as r - oo.

Finally, as r -* oo, the induced volume form satisfies

A' (r2 + 2)O2 + 0 (r-3) 2) sin0 dr* As d Ad

=f 0 (12) )t+2 (r2)) (-a+2* a +0

Ap2
+O(1) rasin0 dtAdr* AdO

r2+ a2

(A-'f(r 2 +a 2) 2 ( 2 sinOdtAdAdo.
- f A , 2' ) (\r2 + a2 ) sn tsd #

The lemma now follows by carefully writing out the integral (1.9) in the

parametrization (r*, , ) - (f(r*),r*,9,4), using (f')2 - 1 = - + (r-3)

and appealing to Lemma 1.2.2. E
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2.2.3 Finite Energy Hypersurfaces for Mode Solutions

Lemma 2.2.3. Let [ = 0, Ei be an asymptotically flat hypersurface, N be a

future oriented timelike vector field which equals Ot for large r, and

4(tr,9,5) = e-iWteimOSnmI()R(r)

be a mode solution. If Im (w) > 0 then Vb has finite energy with respect to N

along )f. If Im(w) 0, then b has infinite energy with respect to N along Ef.

Proof. In Kerr-star coordinates, it is easy to see that the volume form remains

bounded in a compact region of r (including the event horizon). Thus, in order

for V) to have finite energy along Ef n {r R} it is sufficient for b to be smooth

(and hence bounded). Furthermore, b is manifestly smooth if r > r,. Since

Boyer-Lindquist coordinates break down at r = r, in order to investigate the

smoothness of i there, we will change to Kerr-star coordinates (t*, r, 0,*).

In these coordinates we get

7P(t*, r, 9, 0*) = eiw(t*-(r))eim(*- (r))Simn(9)R(r).

Hence, b extends smoothly to r = r, if and only if

R(r) = ei(wt(r)-n(r))h(r)

where h extends smoothly to r. However, this is precisely what the boundary

condition (1.20) guarantees.

For R sufficiently large, Lemma 2.2.1 imply that the energy along Ef n {r
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R} is proportional to

R 2 
2 + ja' b2 + r-2 ((ao,)2 + sin- 2 9 (oo) 2 )) (f(r*), r, 9, 4) X

r2 sin0 dr dO do.

Now, if Im (w) > 0, then the boundary condition (1.21) implies that all of

these terms are decaying exponentially as r -+ oo, and hence, the integral is

finite. If Im (w) = 0, then the first two terms in the integral as proportional to

r-2, and hence the integral is infinite. If Im (w) < 0, then all of the terms are

exponentially growing in r, and hence the integral is infinite. E

Lemma 2.2.4. Let p = 0, Ef be a hyperboloidal hypersurface, N be a future

oriented timelike vector field which equals Ot for large r, and

0 (t, r, 0, ) = e-iwteimSm(0)R(r)

be a mode solution with Im (w) 0. Then 4 has finite energy with respect to

N along f.

Proof. The analysis of 4 for any compact region of r is exactly the same as

in the proof of Lemma 2.2.3. In Lemma 2.2.2 we saw that the energy along

Ef n {r > R} is proportional to

fR f -2 (at - Or*) 12 +I(at + ar*)012 +

r-2 ((e4')2 + sin- 2 9 (a,40)2) )r2 sin 9 dr d9 do

where the integrand is evaluated at (f(r*), r*, 9, 0#)*
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When Im (w) = 0, then the boundary condition (1.21) exactly implies that

(i + &r-) = 0 (r- 2 ). Combining this with the fact that 4 and it's derivatives

are all 0 (r-1) shows that the integral is finite.

Now consider the case when Im (w) < 0. Using the boundary condi-

tion (1.21), we get

(f (r*) ,r*, , )= exp (-iwf (r*)) eimo SKm (0) R(r)

0 (r- exp (-iwr*) exp (iw (r* - 2M log r))) as r -+oo

0 (r-1 ) as r -+ oo.

Similarly,

Ot (f(r*), r*, 0, )=0 (r-) as r -oo,

-O (f (r*), r*, 0,)= 0 (,r-') as r -oo,

aOO (f(r*),r*,,#)=0(r-1) asr- -0oo,

04 (f(r*), r*, 0, #) = 0 (r- 1) as r -+ oo,

(i + ,*) (f (r*), r*,0, 0) = 0 (r-2) as r -* oo.

Thus, the integral is finite.

2.2.4 Modes on Schwarzschild

It is instructive to observe that the counterpart to mode stability in the Rie-

mannian setting3 is the "automatic" fact that the Laplace-Beltrami operator

has no spectrum in the upper half plane. A better way to see the trivial-
3This is the case of a product metric (R x N, -dt 2 

+ 9N) with (N, gN) complete and
Riemannian.
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ity of Riemannian mode stability is to note that the existence of a uniformly

timelike vector field Ot immediately implies the uniform boundedness of a non-

degenerate energy (see Section 1.2).

Recall that the Schwarzschild spacetime is the Kerr spacetime with vanish-

ing angular momentum (a = 0). This is not a product metric; nevertheless, T

is a timelike Killing vector field for all r > r., the associated conserved energy

is coercive, and mode stability is immediately established in a similar fashion

to the previous paragraph. 4

Mode stability on the real axis for Schwarzschild is more subtle since, as we

have seen in the previous section, real mode solutions for the wave equation

have infinite energy along asymptotically flat hypersurfaces. However, this

does not preclude physical space methods; one simply observes

1. Lemma 2.2.4 implies that real mode solutions for the wave equation have

finite energy along any hyperboloidal hypersurface t.

2. A straightforward computation shows that the energy flux for such real

modes along the portion of null infinity in the future of t must be infinite.

3. The energy identity associated to T (see Section 1.2) implies that the

energy flux along the portion of null infinity in the future of t must be

less than or equal to the energy flux along t.

This is a clear contradiction to the existence of real modes.

For later purposes it will be convenient to revisit these arguments from a

"microlocal" point of view. In phase space, the analogue of the energy flux is

4 0f course, T becomes null on the horizon, and thus the conserved energy degenerates
as r -* r,. However, a moment's thought shows that this does not affect the argument.
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the microlocal energy current:

QT(r*) Im(u'aT ).

Let us show how the microlocal energy can be used to give a short proof of

mode stability. Suppose we have a mode solution to the wave equation with

corresponding u(r*) and w = WR + iWI for some w, > 0. First, we observe that

the boundary conditions (1.20) and (1.21) imply that QT(+oo) = 0. Next, we

compute

-(QT)' = WI IU,1i + IM ((W _V) Z ) IU1 2

= ( , + (W1 + (r - 2M) (rl(l + 1) + 2M)) U12).

Since the coefficients of 1u' 2 and IU1 2 are positive, the fundamental theorem

of calculus implies that u is identically 0. Algebraically, we are exploiting the

fact that the potential V does not depend on w and is positive.

Now consider a real mode solution to the wave equation with corresponding

u(r*) and W E R \ {0}. This time we have "conservation of energy,"

(QT)'= 0.

Integrating gives

QT(oo) - QT(-oo) = 0 =>

w 2 u(oo)1 2 + 2Mr+w2 U(_)1 2 = 0.

We have used the boundary conditions (1.20) and (1.21) to evaluate the mi-

crolocal energy current at +oo. Applying the unique continuation lemma from
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Section 2.1 immediately implies that u vanishes identically.

2.2.5 Modes on Kerr

On the Kerr spacetime all of these arguments break down.

We have already observed that when a # 0 there is a region S, the er-

goregion, where the Killing vector field T is spacelike. Hence, the associated

conserved quantity is no longer coercive and is useless by itself.

At the level of the ODE, we may again define a microlocal energy current:

QT IM (U'WU).

However,

WI |W12
a2 m 2

(r2 + a2 ) 2
+ ( A (a 2A + 2Mr(r2 _

+ a2 )4 a2))) +

(r2 + a2 ) 2 Im ((Anmi + a2 w2 ) ()

is no longer always positive. In fact, for w, > 0

_ a2m 2

4M2r2

laml - 2Mr, wj > 0.

This troublesome frequency regime also arises if w E R \ {0}. For such w we

still have "conservation of energy,"

(QT)'= 0.
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Integrating and evaluating with the boundary conditions (1.20) and (1.21)

gives

Proposition 2.2.1. (The Microlocal Energy Estimate)

w2 u(oo)1 2 - w (am - 2Mrsw) u(-oo) 2 = 0.

If w (am - 2Mrsw) < 0, then this gives a successful estimate of the bound-

ary terms Iu(-oo)1 2 and Iu(oo)1 2 . However, if

w (am - 2Mrw) > 0, (2.7)

then Proposition 2.2.1 fails to give an estimate for Iu(-oo) 2 and Ju(oo) 2 . In

the case of (2.7) we say that our frequency parameters are superradiant. The

existence of superradiant frequencies is the phase space manifestation of the

fact that the physical space energy flux associated to T may be negative along

the horizon, i.e. energy can be extracted from a spinning black hole.

Despite these difficulties, in [44] Whiting was able to give a relatively short

proof of mode stability for a wide class of equations on sub-extremal Kerr,

including the wave equation ELg4 = 0, i.e. Theorem 1.5.2. By closely examining

the structure of u's and Sami's equations, Whiting found (appropriately non-

degenerate) integral and differential transformations taking u to ii and Sm

to SWm such that

(t,r, 0,<) (r2 + a-e- e m5 (O)f(r*(r))

satisfied a wave equation Ei4 = 0 associated to a new metric j for which there

was no ergoregion. After this miracle, the proof concluded with a physical
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space energy argument as in our discussion of Schwarzschild in Section 2.2.4.

2.3 The Whiting Transformation

In this section, which is the technical heart of the proof of our stability results,

we will introduce our extension of Whiting's transformation and establish its

important properties. We emphasize that throughout this section we will

always take M = 0.

It turns out to be useful to work with the inhomogeneous version of R's

and u's equations:

Ad dR 2R 28A+ A--r - VR = A(r2 + a2)F(r) AP, (2.8)

V -(r 2 + 2)2W2 + 4Mamrw - a2m 2 + A (A,mi + a2W2 )

Here F will be assumed to be a Co function compactly supported in (r+, oo).

Recalling that u(r*) = (r2 + a2 ) 1/2R(r), we have

U" + (W2 - V) U = H, (2.9)

. 4Mramw - a2 m 2 + A(Am + a2W 2 )

+ 2 + 2)4 (a2A + 2Mr(r2 - a2 ))
(r2+a2)

A
H(r*) (r2 +a2)1/2F(r). (2.10)
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Our starting point is Whiting's integral transformation:

fi(x*) 1 (x2 + a - ) e x (2.11)

J7 e r+2_r- (x-r-)(r-r-) (r r - r+) e-iwrR(r)dr.

Here r7 and are given by

-i(am - 2Mr-w) (2.12)
r+ - r-

i(am - 2Mrw) (2.13)
r+ - r-

In [44] Whiting used the above transformation only on modes satisfying the

homogeneous equation with Im(w) > 0, and the integral was thus absolutely

convergent. Since we shall also allow W E R \ {0}, at first, ii only makes sense

as an L 2 function. Nevertheless, we will establish

Proposition 2.3.1. Let p = 0, Im(w) > 0, w * 0, R solve the inhomogeneous

radial ODE (2.8), and R satisfy the boundary conditions from Definition 1.3.1.

Define ii via Whiting's integral transformation (2.11). Then fi(x) is Co on

(r+, oo) and, letting primes denote x*-derivatives, satisfies

ft" +ii = H,

where

(x - r+) (x - r_)H(x*) 2 ;ra2 )( rN(x), (2.14)
(x 2 + a2)2
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0(x) (x 2 + a2) 1/2 (x - r+)-2iMw e-iwx

er+-r- - r-)7(r - rse-wrF(r)dr,

*(x - r)N1(x)
<D(x*) a! -x r-(l )_42 (X) 75

(x 2 + a2)2

W2(X 2(X ( 4w(am - 2Mr+Lj)-r)
11 (x) a w2(x - r+) 2 (x - r_) - (4Mw2 + ra-2r ) ) (x - r)(x-r)

+4M2W 2 (x - r_) + (2amw - AKml - a2W 2 ) (x - r+),

(D2 (x) - r+)(x - r) (a 2 (x - r+)(x - r_) + 2Mx(x 2 - a2 )).
(x 2 + a2 ) 4

Of course, it is important to understand the boundary conditions for ii.

When Im (w) > 0, the following quite crude analysis of ft is sufficient.

Proposition 2.3.2. If Im(w) > 0, then

1. f = 0 ((x - r+) 2MIm(w) ) s x - r+ -

2. i'= 0 ((x r+)2Mm(w)) asx--r.

3. i = 0 (e-Im(w)xx1+ 2MIm(w) ax oo

4. '= 0 (e-Im(w)xx1+ 2MIm(w)) as x -. co.

When W E R \ {0} we need to be a little more precise.

Proposition 2.3.3. If W E R \ {0}, then

1. it is uniformly bounded.

2. Ii(oo)1 2 = (r+-r )r(2 +1I 2  28MW2r+

3. ' is uniformly bounded.

5 For mode stability on the real axis, it is only important that <D is real.
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4. fl'- iwft = O(x-1) at x* = oo.

5. ' + iw(r-r-) = O(x - r+) at x*= -oo.

Here

I,(z) e-ttz-ldt

is the Gamma function. Recall the well known fact that the (extended)

Gamma function is meromorphic, never vanishes, and only has poles at 0,

-1, -2, .

We now turn to the proof of Propositions 2.3.1, 2.3.2, and 2.3.3. For clarity

of exposition we will restrict ourselves to W E R \ {0}; indeed, for Im (w) > 0

the proofs are much easier and follow from the same sort of reasoning as the

real w case. Furthermore, due to the symmetries of the radial ODE, we may

restrict ourselves to w > 0.

It will be convenient to adopt the notation

A e2iw
r+ - r_

It will also be useful to consider the following functions

g(r) (r - r+)-I(r - r-)- ei'R(r),

g~z a A(z-r-)(r-r-) _2 2 _ 2t-2iwrg~r
j(z) e zr()(r - r-) 2"(r - r+)2 e ir(r)dr

= eA(z-r-)(r-r-) - r)(r - r+) e-irR(r)dr. (2.15)

Here z = x+iy with y > 0. Recall that r1 and are defined by (2.12) and (2.13)

respectively.

We close this introductory section with a brief outline of the arguments. If
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y > 0 then the integrals and their derivatives are all absolutely convergent; we

immediately conclude that j is holomorphic for z in the upper half plane. How-

ever, when y = 0, then j(x) is, a priori, only an L 2 function. In Section 2.3.1 we

will show that nevertheless j(x) is in fact a C' function on [r+, oo). Then, in

Section 2.3.2 we will verify j's equation and show that j is smooth on (r+, oo).

Finally, in Section 2.3.3 we will carry out an asymptotic analysis of j (x) as

x -+ oo; in particular, we will identify limx+| xj(x)1. Finally, in Section 2.3.4

we will put everything together and conclude the proofs Propositions 2.3.1,

2.3.2, and 2.3.3.

2.3.1 Defining j on the Real Axis

For any y > 0 and E > 0, we shall rewrite 4 in the following way:

Lemma 2.3.1.

4(z) = eA(z-r-)(r-r-)(r - r)"(r - Or+)e-irR(r)dr

- (A(z - r_))- 1 eA(zr-)(r+-r-+E) (r, - r_ + i)

x C C-eLO(r++E)e R(r+ + E))

(A(z - r-))-2 eA(zr)(rr+E)

x - ((d r )7(- - r+)e-i"R(-)) (r+ + E)
dr
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+ (A(z - r_))~2  E A(zr)(rr)

d2 ((r - r_)7(r - r+) e-iwrR(r)) dr.

Proof. This follows by integrating by parts twice the expression (2.15) in a

straightforward manner. El

Lemma 2.3.2. The function j(x) is continuous on [r+, oo) and 0 (x-1) as

x -* 00.

Proof. Recall that the boundary conditions for R, (1.20) and (1.21), imply

1. (r - r,)-CR(r) is smooth at r.

2. (e-iwrR(r)) = 0 (r-k-1) as r -+ oo.

In particular, the integral in the last line of the formula from (2.3.1) is abso-

lutely convergent even when y = 0. Thus, even when y = 0, we may conclude

that the right hand side of the formula is continuous in x.

In order to see the decay in x, set e = x 1 . By direct inspection one finds

that each term is O(x-1). Since the right hand side of the formula converges

in L 2 as y 4 0, by uniqueness of L 2 limits we conclude that j(x) is equal to

the formula. The lemma then follows. 0

Now we turn to 2. We have

Lemma 2.3.3. For any y > 0 and e > 0 we have

- - A(r. - r_) rax

-(z - r_)- r e A(z-r-)(r-r-) d (( _)'( r+1+e-iwr R(r)) dr+
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(A-1(z - r_)-2eA(z-r_)(r,-r_.c>

drx ((r - r_)( - r+)E+leiwrR(r)) (r+ + )

-(A-2(z - r )-3eA(z-r-)(r+-r_+E)

d2 ) +lei~r

xr ((r - r_)'7(r - r+) e-oR(r) ) (r, + E))

eA(z-r )(r-r )

d3
dx ((r - r_ )'(r - r.)(+l -iw'R(r)) dr.

Proof. This follows from a straightforward series of integration by parts on the

expression

-- A(r+ - r_)
ax

A eA(z-r-)(r-r-)(r - r_) - r+)+lei'R(r)dr.

DI

Next, we have

Lemma 2.3.4. L(x) exists and is continuous on [r+, oo). Furthermore

- A (r+ -r_) = 0 (x-2 ) as x -+ oo.
OX

Proof. This follows by setting c = x-1 in Lemma 2.3.3 and then reasoning as

in Lemma 2.3.2. E
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2.3.2 Verifying the New Equation

In this section we will compute j's new equation.

We say that a function h satisfies a Confluent Heun Equation (CHE) if

there are complex parameters -y, 6, p, a, and o and a function G such that

d2h dh
Th (r-r,)(r-r-) +(y(r- r)+6(r-r)+p(r- r)(r-r))y-+ (2.16)

(ap(r - r-)+ -) h = G.

A straightforward calculation shows that g satisfies such a CHE with

7 = 2r1+ 1 eyo,

6 = 2 + 1 6o,

p = -2iw po,

a = 1 ao ,

a = 2amw - 2wri -AKm - a2 2  o,

G = (r - r+)-6(r - r-)-e"rF G o .

We need an integration by parts lemma whose straightforward proof is omitted.

Lemma 2.3.5. Let T denote a Confluent Heun operator as defined in (2.16).

Then

f2 (Tf) (r - r+)~1(r - r-)y-lePrhdr

= (r - r+)5(r - r- )Ye pr 1If-h - f --
\dr dr
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/32

+ f32 (Th) (r - r,)(r - r- )'YleP'f dr.
01

Next we will compute j's equation for y > 0.

Lemma 2.3.6. If y >0 we have

02
(z - r+)(z - r_)-+

((z - r+) + (1 - 4iMw)(z - r_) - 2iw(z - r_)(z - r+)) -+ax

(-2iw(2q + 1)(z - r_) + 2amw - 2wr-i - Ami - a2 W 2 ) j =

where

G = e r+(r - r - r_)(r - r+)2 e- 2 rGo(r)dr.

Proof. Since the coefficients of the CHE are all holomorphic, we may take the

derivatives in the CHE to be complex derivatives. Let Lr denote a Confluent

Heun Operator in the r variable with parameters (Yo, 6 oPo, ao0 , o-o) and right

hand side Go. Let L2 denote a Confluent Heun operator in the z (= x + iy)

variable with, to be determined, tilded parameters.

We wish to determine if

in+ e A(zr)(rr) (r _ r_) 2 77(r - r,+)2 ,e2iwrg (r)dr

is a solution to a CHE with tilded parameters. When y > 0 the exponential

damping in the integral allows differentiation under the integral sign, and we

see from Lemma 2.3.5 that the following two conditions will suffice:

(L2 - Lr) eA(z-r-)(r-r-) = 0,
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(r - r+)O (r - r_)7o ePore A(z--)(r-r) (A(z - r_)g - = 0
\h 0dr.

Vz such that y > 0.

We have

e-A(z-r-)(r-r_) (Lz - Lr) eA(z-r-)(r-r-) -

A (A(r+ - r-) + P) (r - r_)(z - r-)- A (A(r+ - r-) +po) (r - r-)2(z - r_)

-A (- o + 6o +po(r+ - r_) - - 3-P(r, - r_)) (z - r_)(r - r-)

+(Ay(r+ -r) +jP) (z -r-) - (A'y(r+ -r_)+ aopo) (r -r) +(& -o).

From this it is clear that we must have

A = -P(r- r_)-I = 2iw(r+ - r_)-1

pPo =-2iw,

& = 7o,

= ao = 1,

S= Yo + 6o - = 1 - 4iMw,

&= o.

We still need to check that the boundary conditions are satisfied. Since g

and d both decay for large r, the exponential decay from eA(z-r-)(r-r-) clearlydr

implies that

(r - r+)lo(- r _)yoePoreA(z-r-)(r-r-) A(z - r)g - (r = 00) = 0
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for all z with y > 0.

Since 60 = 2 + 1, with purely imaginary, and IgI extends continuously to r.,

we see that

- r_)g - )((r - r+) 5O(r - r_)^0oeporeA(z-r-)(r-r-) (A(z (r = r+) = 0 ->

dg

dr*(r+) =0

If we r* differentiate the expression defining g, we get

dr*

We conclude that j satisfies Lzj = 0. Lastly, since j is holomorphic in the

upper half plane, Q - a. El

Finally, using the analysis from Section 2.3.1 we can upgrade this lemma

to

Lemma 2.3.7. When y = 0, is smooth in (r+, oo) and we have

02j

(x - r)(X- rX) 2+
(2.17)

((x - r+) + (1 - 4iMw)(x - r_) - 2i(x - r_)(x - r.)) +
+x

-2iw (217 + 1) (x - r_) + 2 amw - 2wr- i - AKmj - a 2 W2) j = 0

where

a er -r--(r - r_) 2 n (r - r+)2 e- 2'wrGo(r)dr.
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Proof. One consequence of the analysis in Section 2.3.1 is that (x + iy) con-

verges to j in Hx as y -- 0. In particular, we may take y -+ 0 in the weak

formulation of the equation from Lemma 2.3.6 to conclude that j(x) is a weak

Hx solution of (2.17). Since G is smooth,6 we may then conclude the proof by

an appeal to elliptic regularity.

2.3.3 Asymptotic Analysis of g

Recall that in Section 2.3.1 we saw that j = 0 (x- 1 ) as x -+ oo. In this section

we will carry out the somewhat subtle task of identifying

lim x (x)|.
X--+00

We start with

Lemma 2.3.8. Let h be a smooth function on [r, oo) which vanishes on

[r, + 2, oo). and recall that F is defined by (2.13). For n n nd > 0, define

fe"r(r - r+ iT)2 h(r)dr.

Then we have

Z (v,T )| < un

where the implied constant does not depend on r.

6Recall that

O(x) = e - (x-r- )r-r-(r - r-)"(r- r+) ei'fdr

where F is smooth and compactly supported in (r+, oo).
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Proof. Integrating by parts twice produces the following expression for Z (v, T):

Z (V, T) =f e"' (r - r, + ir)2 h(r)dr (2.18)

- (iv) 1 iv"(r++"') (v-i + iT) h (r+ + v- 1 ) (2.19)

+ (iv)-2 ei"V(++"- ((- - r, + iT) h(.)) (r+ + v- (2.20)

4 (iV-2 00 d2
+ r++ijl eivr dr2 ((r - r, + iT)2 h(r)) dr. (2.21)

The lemma follows by direct inspection of each term. E3

The following lemma is the technical core of our argument. The proof

consists of minor adaptions of techniques discussed in the books [13] and [26].

Lemma 2.3.9. Let h be a smooth function on [r, oo) which vanishes in [r, +

2, oo), and recall that ( is defined by (2.13).

For v > 0, define

Z(v) e Z (V, 0) = es"' (r - r,) h(r)dr.

Then we have

Z (v) = exp (1+ 2() r (2 + 1) h(r.)e" (V as v-+ oo

where

F (z) e-ttz-ldt

is the Gamma function.

Proof. The key trick is to come up with a clever form of the anti-derivative of

eivr (r - r+)2 . In order to do this, we extend eivr (r - r+)2 to s E C- {(-oo, r+]}
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where we are taking the principal branch of (s - r,)2&. One may easily check

that (s - r+)2 = exp (2 log (s - r+)) is uniformly bounded in the region

{s: Re(s) E [r, r, + 2)}.

Thus, keeping in the mind the exponential decay from eivs as Im (s) -+ oo

and Cauchy's Theorem, we may unambiguously define

1 (r, v) e - f e

whenever r E (r+, r, + 2). This will satisfy

Al

- (s - r+) 2' ds

= e" (r - r+)2
Or

Now, integrating along the curve t '-* r + it implies

1 (r, V) = -ieivr e-Vt (r - r+ + it)2 ; dt.

Now, keeping in mind that z2 a exp (2 log z), we have

lim 1 (r, v) = -il+ 2 teivr+ et 2 edt

-il+2YCiLr+V-1-2 P (2 + 1)

More generally, changing variables in 2.22 implies

l (r,v) = --iiv V-1
00

e-t (r
0
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Now we are ready for an estimate:

Z (v, T) = eIr+ (r - r+)2' h(r)dr

= -(r,v)h(r)dr

= ij 2 f (2 + 1) h(r.)eivr+V-l~2

1 (r, v) h'(r)dr

=ij*2 f (2 + 1) h(r+)eivr+v-1- 2

+ iv-1 I e-t (f 0 eivr (r h'(r)dr) dt.

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

We have used (2.25) and Fubini in the last equality.

To conclude the proof we just need to show that

f001f et (
0

00 r /rfr+- r+ + ) h'(r)dr) dt = 0 (v- 1 ). (2.32)

However, this follows by an application of Lemma 2.3.8 to the inner integral.

Let's apply this analysis to j.

Lemma 2.3.10. As x -+ oo we have

(x) = (exp
(iw

(1 + 2 )) F (2 + 1) (r+ - r)" e-A(r+-r-)r-e-iwr+

x (2w (r+ - r)- (- - r+)- R (.)) (r+)

x eAx(r+-r-)X-1-2) +0 ( - 2 ).

(2.33)

(2.34)

(2.35)

Proof. Let X(r) be a positive smooth function which is identically 1 on [r+, r +
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1] and identically 0 on [r, + 2, oo). We may write

eA(x-r-)(r-r-)( _ r_ _ )e-iwr R(r)X(r)dr

+ f eA(x-r-)(r-r-)(r - r4 - r+) e-iwrR(r) (1 - X(r)) dr.

The second integral satisfies

JIr

(2.36)

(2.37)

eA(x-r-)(r-r-) r -i7 (r - r )e R(r) (1- (r)) dr

rf eA(x-r-)(r-r-)

x ((r - r-)"(r - r+) e-rR(r) (I - X(r))) dr

= 0 (X-2)

We have used the boundary condition (1.21).

Now we conclude the proof by applying Lemma 2.3.9 (with v = Ax) to the

first integral.

2.3.4 Putting Everything Together

Now we will prove Propositions 2.3.1 and 2.3.3.

Proof. (Proposition 2.3.1)

Recall the definition of ft:

i2(x*) (x 2 + a2)1/ 2 (x - r+)-2iMwe -xx

2iw

f e +--(--

D

(2.38)

(2.39)- r+)fe-irR(r)dr.
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In terms of we have

L (*) = (x2 + a2 )1/ 2 (x - r)- 2iMw e-iwx

In particular fi is smooth on (r+, oo) and Proposition 2.3.1 follows from Lemma 2.17

and a straightforward (if tedious) calculation. l

Proof. (Proposition 2.3.3)

Keeping in mind that

(x - r+) (x - r_) Oi
X2 +a 2  ax~

the lemma follows immediately from

S(x*) = (X2 + a 21/2(X - r)-2iMw e-iwx

the fact that j is C' at r+ (see Section 2.3.1), and Lemma 2.3.10. 0

Recall that we are omitting the proof of Proposition 2.3.2 since it is much

easier and follows from the same sort of reasoning as the proofs of Proposi-

tions 2.3.1 and 2.3.3.

2.4 An Estimate for the Wave Equation Ra-

dial ODE

The goal of this section is to prove the following proposition which will be

useful later in Section 2.5.
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Proposition 2.4.1. Let

dc {(w,m,l) RxZxZ, 1m,1

be a set of frequency parameters with

C,/= sup (wl+wK-+ mI+Il)<oo.
(W,m,I)EW

Consider (w, m, 1) E W and suppose that u(r*) = (r2 + a2) 1 /2 R(r) is smooth,

R satisfies the mode solution boundary conditions

eiwr*
R-- asr-+ oo,r

i(am-2Mr+w)

R ~ (r - r,) r+-r- as r -+> r+,

and u solves (2.9) with a smooth, compactly supported right hand side H(r*) =

F(r). Then we have the estimate

f | R|2 dr B (Cg) [Iu(-oo)2 + u (oo)1 2 + f 0F(r)12 r'dr].

It will sometimes be useful to switch our "perspective" with regards to -oo

and oo and write u's equation as

U"+ (w- Vo)u =H

where
am

WO = W - 2Mr+'
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V0 = V + W2- 2

For the following estimates the relevant properties of V and V are

1. V is uniformly bounded.

2. V = O(r-2 ) at oo.

3. Vo= O(r - r+).

4. For fixed non-zero a, m, and M > 0 there exists a constant c > 0 such

that am - 2Mr+w -c (A.,a + a2w2 ) = U(r+) > 0.

The last statement is the only non-obvious one, and the relevant computations

can be found in [21]. It will also be useful to note that

Anmi + a2W2 > Im (m( + 1) . (2.40)

This follows from the observation that when a2w 2 = 0, the eirnmSni() are

simply spherical harmonics with corresponding eigenvalues all larger than

ml(Iml + 1) (see [21]).

Note that the eigenvalue estimate above in particular implies that there

exists a constant b (CI) depending on Cs so that

_dV 0w2 < b(C.) -> d (r+) > 0. (2.41)WO - dr

In the following sections we will introduce the "currents" and then system-

atically explore various estimates and their realm of applicability. At the end

we will show how they can be combined to establish Proposition 2.4.1.
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2.4.1 The Currents

Our ODE estimates will be based on the "microlocal viral" and "microlocal

redshift" currents. These were first introduced in [18].

Definition 2.4.1. Let y(r*) be a continuous and piecewise CI function and

u(r*) be a smooth function. Then the corresponding microlocal virial current

is

Q,[u] e yu'12 + y (w 2 _ V) U1 2.

Definition 2.4.2. Let z(r*) be a continuous and piecewise CI function and

u(r*) be a smooth function. Then the corresponding microlocal redshift current

is

Qrzed[u] z + iwou 2 - zVOlu1 2.

We will often suppress the [u] in both QY [u] and Qed [u.

The following lemma is a straightforward calculation.

Lemma 2.4.1. Suppose that u(r*) is a smooth function satisfying the radial

ODE

u" + (w2 V) u = H.

Then

(QY)' = y'|u'12 + y'w 2 u 2 
- (yV)' fU1 2 + 2yRe (H-i'). (2.42)

(Qe d)' = z'u'+ iwouI2 - (zVo)'JU12 + 2zRe ((u' + iwou) H). (2.43)

2.4.2 Virial Estimate I

The estimate we give in this section will hold for all frequencies (W, m, 1) E W

but will degenerate as r* - -oo (r -+ r+).
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Lemma 2.4.2. Let (w, m, 1) E d, u = (r2 + a2)1/2R solve the radial ODE with

right hand side H = A (+ F(r), and suppose that R satisfies the boundary

conditions of a arising from a mode solution. Then, for every ro > r,, we have

f~ [|R 2+ dr 2] dr B (ro, Cd) |u(oo)|2 + |0 F(r)| 2 r4 dr].

Proof. Integrating (2.42) gives

f0 (y'|u' 2 + y'w 2 Ju12 (yV)' U12 ) dr* =

QY(oo) - QY(-oo) - f 2yRe (u'77) dx*.

We want to choose y so that the left hand side controls u12 + u'12 (with weights

which degenerate as r* + oo) and so that the boundary terms are controllable.

Let ((r*) be a non-negative function which is identically 1 near r* = -oo and

equals r-2 near r* = oo. We set

y(r*) = exp (-C f (dr*).

Here C is a large parameter to be chosen later. We have y(r,) = 0, y(oo) = 1,

and y' = C(y > 0. We will show that the term

- f0(yV)'l U 2 dr*

which threatens to destroy the coercivity of our estimate can in fact be ab-

sorbed into the other two terms. After an integration by parts and the in-
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equality jabjl lal + (4E)-1jbj, we find

(yV)'I u 2dr* <

1
00y'U'2dr* + 2 f 00 (y'w2) 2 U1 dr* + (yVIU|2) 10 1.-0 _00 W2 (Y/)2 _00

Note that IVI is uniformly bounded, decays like r-2, and that y/y' C-1 r2 .

Also, the boundary terms clearly vanish. Thus, for sufficiently large C (de-

pending on w), we get

JM: (yV)' IU1 2 dr*

Lastly, the boundary conditions for R imply that

QY(oo) B (Ce) Iu(oo)12

QY(-oo) = 0.

Thus, we end up with

J 0 (y'KI' 2 + y'w 2 JU12 ) dr*B (C,) [lu(o) 2

The usual Cauchy-Schwarz argument then gives

- 00 yRe (u'I) dr*].

J (y'u'12 + y'w 2 JU12 ) dr* B (C) [u(0o)12 + J y1H2r2dr*].00 -*f (2.44)

The proof concludes by a straightforward change of variables from r* to r. l
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2.4.3 Virial Estimate II

The estimate we give in this will not degenerate at r* = -oo. However, it will

require that wo is bounded away from 0, and thus it does not cover all triples

(w, m,l) Ed.

Lemma 2.4.3. Let (w,m,l) E w Msuch that W2 ' 2 )2 > 0, let u =

(r2 + a2)1/2 R solve the radial ODE with right hand side H F(r),

and suppose that R satisfies the boundary conditions of a arising from a mode

solution. Then, for every r1 > r., we have

ri |R2 dr B(rl,W2,Cd) [u(-oo|2 + f |F(r)|2 r4 dr].

The constant B(ri,wIC.t) blows up as * 0.

Proof. We rewrite the virial current as

QY _ ylu'12 + y (W2- v0) u12.

Let ((r) be a positive function equal to A near r = r., and equal to 1 near

r = oo. Then define

y(r*) exp (-C f (dr*).

Integrating the virial current gives

0 (-y'u' 2 _ y'W21uI 2 + (yVo)' u12) dr* =

-QY( 00 ) + QY(-oo) + f 2yRe (u'77) dx*.

We may deal with the (yVo)' exactly as in the previous section, but the nec-
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essary largeness of C now depends on how small w' is. We also have

QY(oo) = 0

QY(-oo) B (Cz,) [Iu(-oo)2 + Iu'(-oo)12]

We end up with

f0 (-y'In'1 2 _ Y'I12 )dr*<

B (Cy) Ilu(-oo)2 + IU'(-oo)12 +
'00

As in the previous section, the standard Cauchy-Schwarz argument yields

(-y'Iu' 2 - yW 2 ) dr* <

B(C ) [Iu(-oo)2 + lu'(-oo)12 +

(2.45)

f 00 F12 dr].

The lemma then follows from a straightforward changing of variables from r*

to r.

2.4.4 The Red-Shift Estimate

The estimate in this section will not degenerate at r* -+ -oo and will cover the

regime when w 2is small.

The following Poincar6 type inequality will be useful.

Lemma 2.4.4. Suppose h has support in [r+, r + c] and has

((. - r+)h 2 (.)) (r+) = 0.
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Then

h|2dr C(1 + e2) |h' + iwoh|2 dr.

Proof. Keeping in mind that

dh _ (r -r+)(r -r_) dh
dr* r2 +a2  dr'

we have

d dh- dh
h2dr= -2 (r - r -) h+h- dr=

r . dr dr dr

-f (r2+a2) h'h+hh')dr =
r+ r - r-_

-+ a2 (h'+ ioh) h+ h N-h iwoh) dr.
r. (r -r_ /

From here the lemma follows by the usual argument. l

Now we are ready for the estimate.

Lemma 2.4.5. Let (w,m,l) E d such that w2 is sufficiently small, let u =

(r2 +/a2)1 2R solve the radial ODE with right hand side H =F(r),

and suppose that R satisfies the boundary conditions of a arising from a mode

solution. Then, there exists e > 0 such that

r++/2 R12 dr

f R| dr

B (Co) (u(r*(r))|2 + u'(r*(r))12) dr* + f IF(r)1 2 dr].
f/2 ((-00

Proof. We begin by noting that the boundary conditions for R imply that

(u' + iwou)(r*) = O(r - r,) near r* = -oo. Hence, if we consider a Qded current

and take z to be a function which blows up at -oo (at an appropriate rate),
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the boundary terms will still be finite. With this in mind, let ((r) be a bump

function identically 1 on [r., r+ + e] and vanishing on [r+ + 2e, oo). Here e is

a free parameter that we will later take sufficiently small late. Now consider

Qded with the function z defined by

z(r*) (r(r*))

Note that z' > 0 near -oo since (Vo(-oo) > 0 by (2.41). We also have

(Qrzed) _I(_ =2

which has a good sign. For r E [r, r+ + c], (2.43) gives

(Qred )' = ZIU'+ iWOu1 2 + 2zRe ((u'+ iwou) 71).

Note that we have z' (r - r.)-1 in this region. 7 For r E [r+ + c, r+ + 2E] we will

treat everything as an error:

I(Qred)I B (C) (Iu'I2 + Ju12) + IzRe ((u' + iwou)H)|.

Of course for r > r+ +2c we have (Qded)' = 0. Thus, putting everything together

will produce an estimate for

(r - r+)-2 u(r*(r)) + iwou(r*(r)) 2 dr.

For c sufficiently small, an application of Lemma 2.4.4 will show that this

'Keep in mind that

= (r-r+)(r-) dz
r2 +a 2 dr'
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controls

f r++E/2 Iu(r*(r))1 2dr

at the expense of introducing error terms

f r++E

r"+E/2 (IU'(r*(r))1 2 + u(r*(r))1 2) dr.

We end up with

(r - r+)-2|u'(r*(r)) + iwou(r*(r))j2dr +
r+ Zd+

f 
2/

,5/2

f rE

(|u| 2 + |u'|2 ) dr* + f zRe ((u'+ iwou) 7)1 dr*.
-o0

As usual, Cauchy-Schwarz implies

r+ (r - r+)-21u'(r*(r)) +iwoU(r*(r))12dr + J u(r

B [f ( (r*(r)) 2 + u'(r*(r))12) dr* + f F(r) 2 dr

2.4.5 Proof of Proposition 2.4.1

Now we are ready to prove Proposition 2.4.1.

Proof. Let b1 E (r+, oo) be sufficiently close to r+

Lemma 2.4.2 and conclude

and bo = 1b, First we apply

|R12 + y1 ) dr B (bo , CI) | u(oo)|2 +
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u(r*(r))12 dr B (Cd)

(2.46)

r++c/2

(2.47)

El

( f 00O

F|2r4dr]. (2.48)

r++e

* (r)) 12 dr <



Now, depending on whether wo is small or large, we either appeal to Lemma 2.4.3

or Lemma 2.4.5, take b, sufficiently small and fix its value, and combine

with (2.48) to get

I 00
|R1 2 dr < B (C') |U(-oo)|2 +u (oo)12 + I | fF(r)12 r4dr].

0

2.5 Proof of the Mode Stability Results and

the Microlocal Horizon Energy Flux Bound

In this section we will use our extension of Whiting's integral transformations

and Proposition 2.4.1 from the previous section to prove Theorems 1.5.2, 1.5.3, 1.5.1,

and 1.5.4.

2.5.1 Mode Stability in the Upper Half Plane

We start with the proof of Theorem 1.5.2.

Proof. (Mode Stability, Theorem 1.5.2) Suppose we have a mode solution with

corresponding (u, Sml, AKm) and w = WR + iWI with w, > 0. Let ii be defined

by (2.11), and consider the microlocal energy current associated to ii:

QT =Im(i'~WU)

Proposition 2.3.2 implies that QT (+oo) = 0. We proceed as in our discussion
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of Schwarzschild from Section 2.2.4 with ft replacing u:

0 = -QT|_ = -f ( |T)'dr* = f (w1 '|2 + IM (4W) Ij2 ) dr*.

Hence, if we can show that Im (<bE) > 0, we may conclude that E vanishes.

An easy computation using the formula from Proposition 2.3.1 gives

Im (O() = W (X )_TO +
((x2 +a2)2

(x r+)(x - _)
(x2 +a2)4

(x - r+)(x -)Im (ArMI)),
(x 2 + a

2 )2

Xpo IW2 (x - r+)2(x - r_) + w12 [8M2 (x - r_)
r, - r_

a 2 (x - r+) + 4M2 W2 (x - r_),

IF1 ea2 ( x - - r_) + 2Mx(x2 - a2).

All of these terms are clearly positive except for -Im (AnmliU). For this term

we need to return to SamI's equation (1.14):

1 d sin 0dSmi)
sin 0 dO dO )

_m2

sin2
- a2

U
2 cos 2

o ) SKml + ArmISKml = 0.

Now multiply the equation by wSaml sin G, integrate by parts, and take the

imaginary part. There are no boundary terms due to Sml's boundary condi-

tions,8 and we find

f11 (1 dSKmi 2
o dO sin 2

+a 2 2 cos 2) sin OdO =

8 Recall that the boundary conditions (1.15) required that e"S"/Smi (0) extend smoothly
to S 2. More explicitly, let x - cos 0; then an asymptotic analysis of the angular ODE shows
that the boundary condition (1.15) is equivalent to Si ~ (X 1)1mI/2 as x - +1.
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-1 Im (A...lW) SMi|1 2 sinOdO

- Im (AnmIO) 0. (2.49)

We conclude that Im (<D1) is positive, and hence that ft must vanish.

In terms of R, this implies that

0(x) e r)(r-r)(r -r_ - -r)e-wrR(r)dr

vanishes for all x E (r,, oo). To see that this implies that R vanishes, we first

extend R by 0 to all of R and note that the Fourier transform of (r - r_)?(r -

r+) e-iwrR(r) is, up to a change of variables,

R(z) 0 0 e2ilw12 (rr) (r - r_) 7 (r - r+)(e-wrR(r)dr.

In view of the support of R, ft extends to a holomorphic function on the

upper half plane. The vanishing of R for x E (r+, oo) implies that f vanishes

along the line { : y E (1, oo) }. Analyticity implies that Nt and hence R itself

vanishes. D

Note that the above proof occurs completely at the level of d and Sim,.

In particular, we neither need Whiting's differential transformations of Saml

(see Section IV of [44]) nor a physical space argument with a new metric (see

Section VI of [44]).

2.5.2 Mode Stability on the Real Axis

Now we prove Theorem 1.5.3.

Proof. (Mode Stability on the Real Axis, Theorem 1.5.3) Suppose we have a
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mode solution with corresponding (u, Smi, AKml) and W E R \{}. Let i be

defined by (2.11), and consider the microlocal energy current associated to ii:

QT Im (f' W) .

Then, noting that 4D from Proposition 2.3.1 is real, a straightforward compu-

tation shows that we have conservation of energy:

( )'= o -~

QT(oo) - QT(-oo) = 0.

Now the boundary conditions from Proposition 2.3.3 imply that we get a useful

estimate out of this:

QT(oo) - QT(-oo) =

1 (W2Iit(o)12 + li'(oo) 2 + W2r+ - r- lt(O0)12 + r+ j'(-00)2).
2 r. r+ - r

The unique continuation lemma from Section 2.1 implies that ii must vanish.

In terms of R, we see that

R(y) e e2 iwyr-r) (r - r-)"(r - r+) e-iwrR(r)dr

vanishes for y e (1, oo), where we have extended R by 0 so that it is defined on

all of R. However, it is well known that the Fourier transform of a non-trivial

function supported in (0, oo) cannot vanish on an open set. 9

As an alternative to this argument, one may instead use the fact from

9This follows from holomorphically extending to the upper half plane and the Schwarz
reflection principle.
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Proposition 2.3.3 that

2_ (r+ - r_)2 |F (2 + 1)12 Iu(-oo)1 2

8MW 2r+

to conclude that u(-oo) must vanish. Proposition 2.2.1 then implies that

u(oo) and hence u vanishes (again using the unique continuation lemma from

Section 2.1).

Note that this proof is even simpler than the proof of mode stability in the

upper half plane since we only need to refer to .

2.5.3 Quantitative Mode Stability

To produce quantitative estimates for the Wronskian we shall need to work a

little harder than we did for the qualitative statements.

The following proposition and lemma will be useful for the proof of Theo-

rein 1.0.1.

Proposition 2.5.1. Let (w, m, 1) E d, let u = (r2 + a2)1/2R solve the radial

ODE with right hand side H = (r2+2)1 2F(r), and suppose that R satisfies the

boundary conditions of a arising from a mode solution. Then

U(-oo)12 < B (C.1 ) f F(r) 12 r4dr. (2.50)

Proof. Let ft be defined by (2.11), and consider the microlocal energy current

associated to it:

QT IM (W').
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A straightforward computation (and the fact that 4} is real) yields

(~T'=Wlm (fti ) =::

QT(oo) - Q(-oo) = wf Im (t) d*. (2.51)

As in the proof of Theorem 1.5.3, the boundary conditions from Proposi-

tion 2.3.3 imply that we get a useful estimate:

QT(oo) - QT(-oo) =

+ ii,'(oo)12 + w 2 r. - -2 + L'(-oo)12
r+ r+-r)

(2.52)

Next, note that for any E > 0, changing variables and applying Plancherel

implies

00
f0o Imff

dr* B I(4c) - f IF(r) 2 r4dr + E f 00 R(r) 2 dr].

Thus, combining (2.51), (2.52), and (2.53) implies

f 00 R(r)|2 dr]1+ 0 IF (r)1 2 r4 dr + E (2.54)

Now, recall that Proposition 2.3.3 gives

2 _ (r+ - r_) 2 I' (2 + 1)12 Iu(-oo)1 2

8Mw 2r+

Thus, we obtain

IU(-oo) 2 < B (C;) [(4E)-1 I IF(r) 2 r4 dr + cf IR(r) 12 dr] (2.55)
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|j(oo)|2 < B (C.) (4c)-
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Next, we consider the microlocal energy current QT for u:

QT = wIm (u'U.

This satisfies

(QT)' = Am (HU).

Integrating and using R's boundary conditions yields

w 2 IU(oo)1 2 - w (am - 2Mrw) |u(-oo)|2 <

B(C) (4E)-1 IF(r)12 r'dr +,e ff | MR(r)12 dr].

Combining this with (2.55) yields

IU(-oo)12 + u(oo)1 2 B (Co) [(4e)-' f+ F(r)12 r4 dr + 6 JR(r)|2dr].

(2.56)

Finally, taking e sufficiently small, and combining (2.56) with Proposition 2.4.1

easily establishes (2.50) and finishes the proof. 0

Next, we switch gears a little and directly construct solutions to the inho-

mogeneous radial ODE via the following lemma.

Lemma 2.5.1. Let H(x*) be compactly supported.

define

u(r*) = W1 Uout(r*)

+ Uhor(r*) Jr

Uhor(X*)H(x*)dx*
00

out(x*)H(x*)dx* ).
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Then

u"+ (w 2 - V) u = H,

and R = (r2 + a2 )- 1 /2u satisfies the boundary conditions of a mode solution

(1.20) and (1.21).

Proof. This is a simple computation.

Finally, we can prove Theorem 1.5.1.

Proof. Define ii via Lemma 2.5.1. Then we have

00 2

Iu(-oo)|2 = |WI 2 1 out(X*)H(x*)dx* 2

Combining this with Proposition 2.4.1 gives

0f " (r 2 + a2)1/2A-1H 2 r 4dr
W <B rI 2

f_ uout(x*)H(x*)dx*l

Of course, W is independent of H, so it remains to pick any particular com-

pactly supported H we want so that the right hand side is finite. Since for

sufficiently large x, luout - eiwx* I < 2 for an explicit constant C (see, for exam-

ple, [35]), it is certainly possible to find such an H. Thus, we have produced

a quantitative bound for W-1. l

2.5.4 The Microlocal Horizon Energy Flux Bound

We start by reviewing the notation introduced for the statement of Theo-

rem 1.5.4 and then introduce some more notation. Let 4 be a solution to the

wave equation Ego = 0 arising from compactly supported initial data along Eo

such that 4 is "admissible" in the sense of Definition 1.5.1. Let x be a cutoff
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function such that X is 0 in the past of EO and identically 1 in the future of

We then define

E ((DgX) 7P + 2V'XV).

Next, we let F be the projection onto the oblate spheroidal harmonics of

the Fourier transform of (r2 + a2 )--1 p2 E, i.e.

F ja 2 , f(r2 +a 2 )-1 2 Eew"t' mSmmi sinG dt d4 dO.

Then let u(r*) similarly be the projection onto the oblate spheroidal harmonics

of the Fourier transform of (r2 + a2 ) 1/240, and

(r 2 +a 2 ) 1/ 2 F.

We get

"+ (w2 - V) u = H, (2.57)

4Mramw - a2m 2 + A(AKmI + a2
U)

(r2 + a2 ) 2

+ + A 2 ) 4 (a 2A + 2Mr(r2 - a2 )).(2+ a23

Finally, let - c R and W c {(m, 1) E Z X Z: 1: >m} be such that

C, sup (IW +IwV1 ) < 00
W EM

Cle sup (|m|+ l) < oo.
m,lE'e
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The define d 4 x W c R x Z x ZImi. We will have

C, e sup (Iw +fw- + fM + )< o.
(w,m,1)Ed

Next, we observe that the arguments of Section 5.3 of [21]

lowing lemma.

Lemma 2.5.2. Let 4 be an admissible function on Kerr that is

to the wave equation Elgo = 0 with compactly supported initial

every (w, m, 1) E R x Z x Z,1mI, set

imply the fol-

also a solution

along E0 . For

1 o
R(r,wml) 1 eiwte-imekS,,ml (0, r,) 4' sin 0 dw dO do.7/2=, f f2

Then R satisfies the boundary conditions so that e-iwIeim*SumIR is a mode

solution in the sense of Definition 1.3.1.

Now we check that we can control the L1 (r*) norm of H and that H is

smooth in r*.

Lemma 2.5.3. We have

sup f IHI dr* < oo,
(W,M,1)EC,, -00

H is smooth as a function of r*, jr*(r) H dr* is a smooth function of r, and

f*(r) H dr* vanishes for large r.

Proof. The standard L - L' inequality for the Fourier transform (and chang-

ing variables from r* to r appropriately) imply

00

sup f H| dr* B |rF| dVol.
(WM,)E -oo J supp(vx)
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Since 0 has compact support, it is easy to see that the right hand side of this

inequality is finite.

An analogous argument shows that H is smooth as a function of r* and

that j_ (r) H dr* is a smooth function of r. The final statement of the lemma

follows from O's compact support.

The following representation formula is a useful starting point.

Lemma 2.5.4. We have

u(r*) = W- (uout(r*) f Uhor(X*)H(x*)dx* (2.58)

+ Uhor(r*j uout(x*)H(x*)dx*.

Proof. Standard ODE theory (see [35]) implies that Uhor, Uhor, u0 t, and uat

have a finite Lo , norm. Thus, since H E Ll(r*) and Theorem 1.5.3

implies that W * 0, the right hand side of (2.58) is absolutely convergent.

Define ii(r*) by the right hand side of (2.58). Now, since H is a smooth

function of r*, we can apply the fundamental theorem of calculus and easily

check that ft is a solution to

i2"+ (w 2 - V)i = H.

Next, using Lemma 2.5.3, one sees that R = (r2+a2)- 1/2f satisfies the boundary

conditions associated to a mode solution. Thus, e-itweimSml(R - P) is a real

mode solution. Theorem 1.5.3 then implies that R = f and thus that u = 6. L

We are finally ready to prove Theorem 1.5.4.
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Proof. Lemma 2.5.4 immediately yields

-U 2 dWI If 00|- Uhor(r*)H(r*)dr* Idw.
(m~l~ef 2(m,l)EW -

Theorem 1.5.1 then yields

fW-2 Uhor(r*)H(r*)dr* d 
(m,l)ef -*

oo 2
B(Cw) fJ Uhor(r*)H(r*)dr* dw.

(m,l)EW -

Thus the theorem is reduced to proving

~~0 2 f ~ jraH(V~df, )' JUhor(r*)H(r*)dr* dw B E )12. (2.59)

The first thing we observe, is that unfortunately, passing the .12 into the

integral with a naive Cauchy-Schwarz inequality will produce too many powers

of r to establish (2.59) (keep in mind that H(r*)dr* = (r2 + a2 )1/2F(r)dr).

However, if we introduce a cut-off function (r) which is identically 0 for

r E [r,, r, + 10M] and 1 on [r+ + 20M, oo), then using the L- - L' inequality

to control the L* norm of H in (w, m, 1) E d, we easily obtain via a Cauchy-

Schwarz inequality in r

coo 
2f Z - 5) Uhor(r*)H(r*)dr* dw B )12 +[ 1a|2 ] dV ol

(m,l)e oo J supp(VX)

(2.60)

B |4 |2 dVol

B f| a|2.
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In the second line we appealed to a standard Hardy inequality, which says that

for all f which vanish for large r, we have

f 'f12 dr B r2 lOf1 2 dr, (2.61)

and in the third line we have used a finite in time energy estimate.

Thus, we have reduced the theorem to establishing

(2.62)
f 00 

2z uhor(r*)H(r*)dr* d s B
S(m,)V -00

Next, standard ODE theory implies that lUhor - eiwr* B(C,). Note when-

ever we gain a power of r, then the argument of (2.60) becomes applicable.

We conclude that the theorem will follow from the estimate

(2.63)fe'wr*H(r*)dr* dw B f )12.
(m,I)e I oo 2

In order to control this term, we will exploit the oscillation in w via a

suitable application of Plancherel. However, we first need to fully account for

the w dependence of H. Writing out everything explicitly in Boyer-Lindquist

coordinates, and applying the easy Cauchy-Schwarz argument from above to
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any terms which pick up additional decay in r, yields

00 2

jeiwr*H(r*)dr* dw
(mn,l)EWf *

Bf ffiwtfi* X' (t)e-im;Smi(,w)rsindtdrd d dw+

0f 00 2

Bf Ife21 eY"* x" ffe-imoS,,i(O,w )r sinGdt dr d6 d dw+

=B[I+II+f jaO.

We begin with an analysis of the first term I. We have

00 0 2

f, Jf~foo re iwteiw"* x' Oto p) e-i"*OSLmi(O, w)r sin Odt dr dO do dw22

(m B R ewt ezw"* x'(Ot@ P) rdt dr 2dw sin96 dO dq$

B Je J J (&&$)r dr (x')2 dw dt sin 0 d d

B ff ff |t0|2 r2(X/)2 dt dr sinG dO do
-oo Jr+ J2 Jr+

s 8$2

In the first line we used the orthonormality of the e-imkSmi, in the second

line we use that support of X' is compact in the t-direction, in the third line

we used Plancherel in w, and in the final line we used a finite in time energy

estimate.
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For the term II, proceeding exactly as we did for term I yields

j00i 1+ eiWteivr*X r'oeimo SL,ml (0, w)r sin dt dr d do 2 dw
(M,1)EWg -00 T

roo f coo 2

<BJ J J reiw r dr (x")2 dw dt sin0 dO do.

However, now write eiwr* = (iW)- (1 + 0 (r-1)) 2 (eiwr*) and integrate by

parts in r. We obtain

S22

12 JS2' Jf Jr f ew , d r 1 2  I dtsn2d2f Ie" r r )2 dr dxsidw dt sin 0 dO do
coo r oo 2

+ Bw- 1 J J J (00 ) eiwr*@r dr (X1 ")2 dw dt sin d d

+ Bw-1 J JJ J e" dr (x")2 dw dt sinG d dq.

For the first term on the right hand side of this inequality we can now proceed

as we did with term I. For the other two terms, we can also proceed as we did

before, we just have to append the Hardy inequality (2.61) at the very end.

Adding everything together finishes the proof. F
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Chapter 3

Mode Instability for the

Klein-Gordon Equation

The goal of this chapter is to prove Theorems 1.6.1 and 1.6.2. We start in

Section 3.1 with a review of linear ODE's with regular singularities. Then, in

Section 3.2 we apply the analysis of Section 3.1 to the radial ODE. Finally, in

Section 3.3 we prove Theorem 1.6.2, and in Section 3.4 we prove Theorem 1.6.1.

3.1 Linear ODE's with Regular Singularities

Let's recall some facts about linear ODEs in the complex plane.

Lemma 3.1.1. Consider the complex ODE

d2H dH
+ f(z, A)- + g(z, A)H = 0. (3.1)

We will assume that there exists {f3(A)}, {gj(A)}, r, and open U c C such

that for z E B,(zo) and every compact K c U there exists { FK)} and {G K)}
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such that

|fj(A)| F(K) and |gj(A)l | G(K) when A E K,

Z GSK)(z - z0 )i and E FK)(z - z0)J converge absolutely,
j=0 j=0

{f,(A)} and {gj(A)} are holomorphic in A E U,

00 
00

(z - zo)f(z, A) = E fj (A)(z - zO) and (z - zo) 2 g(z) = E gj (A)(z - zo)j.
j=0 j=0

If these hypotheses hold we say that zo is a regular singularity. Set

Q(a, A) a(a - 1) + fo(A)a + go(A).

The indicial equation is

Q(a, A) = 0.

We suppose that a holomorphic a(A) has been chosen such that

Q(c(A),A) = 0 and minlQ(a(A) +j,A)I = A(A) >0.
jEz+

Then there exists a unique solution to (3.1) for z near zo of the form

h(z, A) = (z - z0)c(')p(z, A)

such that p(zo, A) = 1. Furthermore, p is holomorphic for z E Br0 (zo) and

A E K where ro is sufficiently small and K c U is sufficiently small.

Proof. One can extract a proof of this from the discussion of regular singu-

larities in [35]. For the sake of completeness we will give the needed slight

extension here. Without loss of generality we may set z0 = 0. We begin by
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looking for a formal solution of the form

h(z, A) = za(") E pj (A)zj
j=0

where we set po(A) = 1. Formally plugging this into (3.1) we find (see [35])

Q ((a(A), A)) = 0,

j-1
Q (a(A) + j, A) pj (A) = - ((a(A) + k) fj-k(A) + gi-k(A) ) pk(A) for j 1.

Since Q(a(A), A) = 0 by hypothesis, the first equation is satisfied. Furthermore,

by assumption Q(a(A) + j, A) * 0 for any j. Hence, the second equation

determines p2 (A) recursively. This establishes the uniqueness of p. It remains

to check that the series converges appropriately. We will do this by majorizing

the series. Let us pick an arbitrary compact set K c U sufficiently small and

r0 < r sufficiently small. After applying Cauchy's estimate to the holomorphic

functions EZ F(K)zi and Ej G (K)z, we may find a constant OK so that

|fj(A)| CKTrO and g(A)I CKrJ3~ for A E K.

Let /3(A) be the other root of Q(-, A), and set n(A) a(A) -(A)1. Since

Q(a(A)+k, A) = k(k+a(A)-/(A)), our hypotheses imply that a(A)-f(A) / Z<O.

Next, define bj(A) by

b3(A) = pj (A)I for j n,

j-i

j(j - ca(A) - #(A)I)bj(A) = CK Z (Ia(A)l + k + 1) bk(A)ro for j > n.
k=O

It is easy to check by induction that Ipj(A)l bj(A) for all j. For sufficiently
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large j, one finds that

roj(j - a(A) - f(A)I)bj(A) - (j - 1)(j - 1 - oa(A) - #(A))bj-1(A) =

CK(la(A)l + j)bj-i(A).

Now the ratio test implies that the series Ego bj (A)zj converges in the ball

of radius ro. Hence, by the comparison test, Zgo pj(A)zi converges in the

same ball. Since ro was arbitrary, we find that for every A E K, E'o pj (A)zi

converges and is holomorphic in z E B,(O). Next we may freeze z E B,(0) and

consider p(z, A) = EZo p,(A)zi as a function of A. For every compact K c U,

our proof has shown that p(z, -) is a uniform limit of holomorphic functions.

Hence, p(z, A) is holomorphic for A E U.

3.2 Local Theory for the Radial ODE

3.2.1 The Horizon

Let's apply the theory from Section 3.1 to the radial ODE. Recall that we

earlier set
i(am - 2Mrw)

r+ - r_

First we consider the case where am - 2Mr+w 0. In this case the indicial

equation has two distinct roots which do not differ by an integer. Hence a

local basis of solutions to the radial ODE around r+ will be given by

{(r - r+)p1(r), (r - r+) -p 2(r)}
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where each pi(r) is holomorphic near r, and is normalized to have pi(r+) = 1.

Our boundary conditions require that R must be of the form A(r - r,) p1 (r)

for some A E C. Hence, for every w and pt so that A is defined (see (1.14) and

Lemma 1.3.1), we consider the unique solution to the radial ODE of the form

(r - r+),p(r, W, /p) (3.2)

where p(r, w, M) is analytic in r, holomorphic in w, analytic in p, and p(r+, w, P) =

1. Let us remark that if a mode solution with real w and am - 2Mrw # 0

vanishes at r, it must vanish identically.

Now let's consider what happens if am-2Mrsw = 0. In this case the indicial

equation has a double root at a = 0 and lemma 3.1.1 only produces one solution

near r. One must then consider solutions which have a logarithmic singularity

at r,. The standard theory (see [35]) then implies that a local basis of solutions

is given by

{p1 (r), log(r - r+)(p 2 (r) + p3(r)

where the cpj are all holomorphic near r., 1(r+) = 1, p2(r+) = 1, and <p3(r+) =

0. It will be important to note that lemma 3.1.1 implies that 'pi is embedded

in the family of local solutions (3.2).

Lastly, it will be useful for the bound state analysis to note that everything

said in this section so far applies verbatim to the equation

d RRdR=0d- d- -W R - vAR = 0 for vE R.
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3.2.2 Infinity

The local existence theorems quoted in this section can be found in chapter 7

of [35]. Let us note that the radial ODE can be written as

dR2  OrA dR W,IR0
dr2  A dr A 2

d R2  (2 2)R 2M(2w2 _ , 2 )d2 +( - +0(r-2) -- + ( (C2 _ A2) +2( 2y2 + 0(r-2) R = 0.
dr2  r ) dr r

Let's write w = WR + iWI. We will need to construct a local basis at infinity

that depends holomorphically on w and analytically on p.

Lemma 3.2.1. For all w and M with p2 
-W2 (-oo,0] there is a unique

f 2 (r, w, p) which solves the radial ODE and satisfies

_ M(2w
2

p 
2
) _ M(2w

2
-j 2

# 2 (r,wp) = eV 2_2r
1  - +0 (ev' ,2_ V,2Z_2

Furthermore, /2 depends holomorphically on w and p. The square root is

defined by making a branch cut along the negative real numbers.

Proof. One can more or less extract a proof of this from the discussion of irreg-

ular singularities in Chapter 7 section 2 of [35]. For the sake of completeness

we will give the needed slight extension. We let C denote a sufficiently large

constant which can be taken holomorphic in p and w. One may find a formal

solution to the radial ODE of the form

1 M(2w2_I 2 ' oa w
L(r, w,f e- /2_w2 rr /22 a1: w,f

j=O Z3

where ao = 1 and the a3 are holomorphic in w and p. See Chapter 7 section 1
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of [35] for the computations behind this. Let's set

M(2w
2

_ 2 n-

Ln(r, w, p) = 6- / 2 _w2 rr \2-_2 a i A

j=0

Then

d2 Ln

dr2
+ rA dLn
A dr

W Ln
A 2 = e 12_-,

2
'r -1- 2/- 

2
)

where Bn(r, W, A) Cr-n-1 . Let's look for a solution p2 of the form

32 (r, CJ, ) = Ln(r, W, A) + E(r, W, A).

We must have

+ OrA de W,,
A dr A 2

_ 2 w2 u 2_r 2

+ (w 2 _ A 2 ) 6 =

12wr &9rA dEi W
-6 A dr (A2 + (w2 _ 2).

K(r, t) a

Variation of parameters gives
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Let's set
e 1 2 , 2(-t) - e- V 2_j,(-t)

2 p 2 -_w2

C (r, W, p)0 =



f00 K(r, t) x

( e ys~sit M /2_2 Bn (t) C(t) + OtA(t)

We may solve this by iterating in the usual fashion. Set ho(r, w, [t) = 0 and

h,1 (r, w, p) =

00

K(r,t)x

( 1 M(2w
2  

2)

e-N/ 2 L 2tt r2_ B.- W,(t) + w2 _ /12)h(t)
A2 (t)

+ atA(t) dhi (t) dt.
A (t) dr)

It is easy to see that

1hi(r, w, p)I+ dh(r W, ) I

M(2w
2

_ 
2 )

Ce-V' 7 2rr V

I"In-

M(2w2 -_2)'\
I / 2 2L)

Then, with induction one can show that

- ~(r~~jt +dh +1  dh,
h1 - h (r, , P) + dr d (r,W)

-_M(2w 2_ u27

Cje- 22r2r Vf2.

n +
rn

M(2w 2 - t2)

A2

For w and p in a sufficiently small compact set and sufficiently large n, the

hj (r, w, ,) will converge uniformly in r, w, and p.

It is of course easy to pick a second holomorphic family of solutions #1 (r, w, IL)
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that is linearly independent of /2. One can show (Chapter 7 of [35]) that we

must then have
1 M(2w2_12)

# 2 (r, w, p) ~ er-2rr /,2_w2

1+ M(2w 2
-

2
)

pi (r, w, /-) ~ e%/2_s,2rr VA2-_w2

Lastly, we note that a similar discussion can be carried out for the equation

d IdR
A- A --W,1R+vAR =0.

dr \dr

3.2.3 Reflection and Transmission Coefficients

Let's fix some set of frequency parameters with p2 - W2 (- oo,0]. Above we

constructed p(r, w, M) holomorphic in w and p so that (r -r+) p(r, w, p) gives a

solution to the radial ODE with the correct boundary condition at r+. We can

then introduce reflection and transmission coefficients A(w, p) and B(w, M):

R(r, w, M) (r - r+)Ip(r, w, pi) = A(w, p)/31(r, w, /t) + B(w, A)p2 (r, W, P)

Let W(., -) denote the Wronskian. Then

A= W(R, 2 )
W(pi, 2)

Thus A is holomorphic in w and analytic p. Similarly, B is holomorphic in w

and analytic in p.
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3.3 Proof of Theorem 1.6.2: Restrictions on

Mode Solutions Corresponding to Real w

We will start with the proof of Theorem 1.6.2 since it is simpler than and

motivates the hypotheses of Theorem 1.6.1.

3.3.1 Part 1

Let R be a solution to the radial ODE with parameters (w, m, 1, p) such that

w e R \ {}, [t2 > U2, and R satisfies the boundary conditions associated with

a mode solution. We wish to show that

am - 2Mr~w = 0.

Let's define the energy current,

t)-. - Tn(A dRP'

An easy calculation yields
dQT

d =0.
dr

Since R must decay exponentially at infinity, we have QT(oo) = 0.

using the horizon boundary condition (1.20), we get

0 = QT(oo) = QT(r+) = (2Mr)Im ((r+)R(r+))

Hence,

= (am - 2Mr~w) R(r.)12 .

Thus, either am - 2Mr~w = 0 or R(r,) = 0. However, R(r+) = 0 implies that

R is identically 0 (see Section 3.2). We conclude that am - 2Mr~w = 0.
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3.3.2 Part 2

Again we let R be a solution to the radial ODE with parameters (w,m,1, )

such that w E R \ {0}, /2 > W2 , and R satisfies the boundary conditions asso-

ciated to a mode solution. From the previous section we know that we must

have

am - 2Mrw = 0.

We now wish to show that

am # 0.

Using am - 2Mrw = 0, we may write

Wt, = -(r2 + a2 ) 2W 2 + 4M2 w2r,(2r - r,) + L (Atmi + a2W 2 + r2 2 ). (3.3)

We now argue by contradiction. If 2Mr+w = am = 0, then

W, = A (Aomi +r2 i 2) = A(l(l+ 1 r2 A2) 0.

Now consider the function

( dR-).
f(r) Re A r

Since our mode solution must be exponentially decreasing at infinity, we see

that f(oo) = 0. The boundary conditions at the horizon imply that f(r+) = 0.

Hence,
00 df dR 2 W

0= -dr=f (A - + Wz|IR|) dr.
r, dr r dr A

This contradicts the non-triviality of R.
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3.3.3 Part 3

We still let R be a solution to the radial ODE with parameters (w, m, 1, p)
such that w E R \ {0}, pi2 > W2 , and R satisfies the boundary conditions of a

mode. From the previous two sections we know that

am - 2Mr~w = 0,

am * 0.

We wish to show that there exists a function C(w, m, 1) such that

W2 <2 <W2 + C(w, m, l).

Starting from (3.3), using w 2 = 2 , and (2.40), one finds4M2 r' an id

dr4 (r+) = -4r+ (r2 + a2 )W2 +8M 2 w2r + (r+ - r_) (Ami + a2W2 + ry 22)

=8Mr+w 2 (M - r+) + (r+ - r_) (AmI + a2w 2 + r 2 )

(r -r_) - +Ami+a 2w2 +r p2)
Mr+

>(r -r_) Im(m+1) a2 m2 +rp22 >0.
Mr+

In the third equality we used that 2 (M - r+) = - (r+ - r_), and in the last line

we used that a < M < r+. Away from r., increasing p strictly increases W,,

and as long as 2 > W 2 the potential converge to oo as r -+ oo; hence, we may

conclude that there exists C(w, m, 1) such that

2 > 2 >0.
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Now the proof concludes exactly as in Section 3.3.2.

In order to establish that

lim C(w, m,l) = 0,1-+oo

it suffices to know that
aA.mi

ap
> 0'

lim Asml = o0.
l-oo

This second fact follows from standard Sturm-Liouville theory.

Thus, the proof is finished with the following lemma.

Lemma 3.3.1. When w is real, we have

OA
> 0.

ap

Proof. Let
as

S =

We have

1 d si( sin
sin 6d9

(m2

sin2 
- a2(W 2 _ /12) cos 2 0 ) + AS =

2a2A cos2 _dA) S.

One may easily check using the theory from Section 3.2 that S, still satisfies

the boundary conditions of an eigenfunction. Thus, multiplying the equation
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by S, integrating by parts, and taking the real part gives

f (2a21.cos2 _- S1 2 sin OdO = 0.

3.4 Proof of Theorem 1.6.1: Construction of

Mode Solutions

Now we will prove Theorem 1.6.1.

3.4.1 Outline of Proof

Before beginning the proof we will give a brief outline. As mentioned in the

introduction, we start by constructing real mode solutions. The key technical

insight is a variational interpretation of real mode solutions. The variational

problem will posses a degeneracy, but this will turn out to be a minor technical

problem. Next, we will perturb our real mode solution into the upper complex

half-plane by slightly varying w and IL. This argument relies on observing

that mode solutions are in a one to one correspondence with zeros of a certain

holomorphic function of w and M. Given this, an appropriate application of

the implicit function will conclude the argument. Lastly, we analyze how a

mode in the upper half-plane can cross the real axis. The upshot will be that

as long as we are in a bound state regime (p 2 > W2), a mode must become

superradiant (Proposition 3.4.3) and lose mass (Proposition 3.4.5) as it enters

the upper half-plane. Putting everything together will conclude the proof of

Theorem 1.6.1.
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3.4.2 Existence of Real Mode Solutions

We begin with construction of modes corresponding to real w. In light of

Theorem 1.6.2 we shall fix a choice of w, m, and 1 such that am - 2Mrsw = 0

and w * 0. In the rest of this section all constants may depend on W, m, and 1.

A Variational Interpretation of Real Mode Solutions

First, we shall need to review the local theory for the radial ODE. As recalled

in Section 3.2, when am - 2Mrw = 0, a local basis around r, of solutions to

the radial ODE is given by

{1, log(r - r+)W2 + 03}

where the Wp are all analytic near r,, W1(r,) = 1, W2(r,) = 1, and w 3(r+) = 0.

Our to be constructed solution R should be a non-zero multiple of 01. It will

be useful to further observe that the analysis of Section 3.2 implies that if a

solution of the radial ODE does not satisfy the correct boundary condition,

then it is exponentially increasing.

Next, we explore the graph of - . Using the formula (3.3) and the as-

sumption w2 4- one may derive

Wt a2m2 4M2(r - r)-- M- = - A + 4Mr + + AKm + a2w 2 + r2, (3.4)
A 4M2 r 2 r - r_

In particular, combining this with (2.40) and the inequality a < M < r+ gives

W a2 m2 +AKmi
t,(r+) =- +Am +22+rP2

A~'t ' Mr+

a2 m2  / a2 )
S- + Im(Im|+1)+rp2>m 2 1- + +rp 2 >0.
Mr, Mr+
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Furthermore, it is easy to see that

w
-I =r 2 ([Z 2 _ W2) + 0(r) as r -* oo,

Thus, there exists r, < rA((p 2 ) < rB(1 2 ) < oo such that W, can only be

non-positive on (rA, rB).1 Furthermore, we can take rA increasing in M2 and

rB decreasing in /2. Below, in Lemma 3.4.1 we will see that for p2 sufficiently

close to w 2, W, does in fact get very negative in (rA, rB). This suggests that

we could look for bound states of the radial ODE by minimizing the functional

,() f ( , + If12 dr

over functions of unit L 2 norm. Note that any solution f of the radial ODE

with 1,(f) < oo will automatically satisfy the correct boundary conditions (at

r = r+ and r = oo). This is the crucial way that the am-2Mrsw = 0 assumption

enters the construction. The degeneration of the radial ODE at r, poses some

difficulties for a direct variational analysis of L.. Nevertheless, we will be able

to overcome this by working with regularized versions of ,. In Section 3.4.2

we will prove the following two propositions.

Proposition 3.4.1. For every p sufficiently close to but larger than w, there

exists a non-zero ft, satisfying the boundary conditions of a mode solution and

a constant v, 0 such that

I (dfjjSA - Wf" + v,,A f" = 0.

Furthermore, v,, can be taken to be increasing in p 2 .

1Note that this structure is absent in a study of the wave equation (M = 0).
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Proposition 3.4.2. There exists po and corresponding fl 0 such that vO = 0.

The f, 0 is the solution we seek.

We will close the section with a preparatory lemma. Recall that we have

fixed w, m, and 1 which are assumed to satisfy am-2Mrw = 0 and w E R\ {0}.

Define

d =- {p > 0: A2 > W2 and 3f E CO with L,(f) < 0}.

Lemma 3.4.1. Let p be sufficiently close to but larger than w. Then we will

have

[ E. /.

Proof. For every fixed f, L,(f) is continuous in M. Thus, it is sufficient to

find a smooth f with compact support such that

4W(f) < 0.

First, we note that near infinity

= -2Mw 2r + 0(1).
A

Hence, for f supported in (A, oo) with A large, we write

4C(f) = ((r + O(r)) - (2Mw2r +O(1))|fl dr.

Since w + 0, if we set f to be equal to r-3/4

K and 0 outside a slight enlargement of K,

as negative as we please.

We remark that this lemma is the only

hypothesis.

on a sufficiently large compact set

it is clear that we can make L4(f)

E

place where we shall use the w # 0

115



Analysis of the Variational Problem

It will be useful to consider the following regularization of ,,:

A* )u + fIf)dr.

Lemma 3.4.2. If p2 > W 2 , then there exists f,) E H (r+ , oo) with unit

L2(r,+ E, oo) norm such that Le achieves its infimum over HoJ(r+ + E, oo)

functions of unit L2 (r+ + , oo) norm on 0

Proof. If omitted, all integration ranges are over (r+ + 6, 0o). Recall that in

Section 3.4.2 we showed that W is increasing in p2, is non-negative near r.,

and goes to infinity as r -+ oo. More specifically, we established

W
4 r) > L21

-f= r2 (,2 _ W 2) + 0(r) as r - oo.

Hence, we can find r, < B < B1, CO > 0, and (71 > 0 only depending 2 on an

lower bound for [t 2 such that

f ( d-I+ Cor2 1[BOB](12 _ W2) f2 )dr C1 I BiBo
f 2 dr + L() (3.5)

From this it is clear that

v() +inf {L ,(f) f E Cc and IIf = L2 > -oo.

Let {f}(f~ 1 be a sequence of smooth functions, compactly supported in

2 Remember that we
depend on these.

have fixed w, m, and 1 and that all constants in this section may
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(r+ + c, oo), with f = 1, such that

~(f,2E) -+v,00.

The bound (3.5) implies that f H1 is uniformly bounded. We now apply

Rellich compactness to produce a Ef(' Hd such that a re-labeled subsequence

of {fj converges to f () weakly in H1 and strongly in L2 on compact subsets

of (r+, oo).

We claim that no mass is lost in the limit, i.e. |f/ H|L2 = 1. Suppose not.

Then, for any compact set K, there will exist infinitely many of the f,'s such

that

11fnA I2 ([r+, o-) \K) e>0

It is easy to see from (3.5) that this will give a contradiction if K is sufficiently

large.

Using the boundedness of weak limits and the strong L2 convergence, we

then get

(0(E)< L- f < liminf C/l' WO V .

This implies that <L achieves its minimum on f/P.

Now we are ready to prove Proposition 3.4.1.

Proof. First we observe that (v) } is bounded and decreasing in E. Set

v~, =limE-o (0. Lemma 3.4.1 implies that /- E d which in turn implies that

v, < 0. For any interval K = (r+ + , n) with n large, (3.5) implies that

sup f/P ooS>p A-IH1(K)
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inf f,) >0.
E>0 I L2 (K)

After an application of Rellich compactness and passing to a subsequence, we

may find a non-zero f, H1 that is a weak H1 and strong L 2c limit of f, )

Using the Euler-Lagrange equations associated to L', we find

Ad - WLf, + v,1Af, = 0.

On any compact subset K of (r+, oo), boundedness of weak limits and the L 2

convergence of the f,) imply that

f 12A +L W If,| 12 v( dr A

Hence,

dr < 00. (3.6)

Near r+ the local theory from Section 3.2 implies that

fl, = Ap + B (log(r - r+)02 + 3 )

for some constants A and B and non-zero analytic functions Spi. However, if

B # 0, then

& dr =oo.
r+ dr

Hence, B = 0. Near infinity the local theory from Section 3.2 implies that that

fi, is asymptotic to a linear combination of an exponentially growing solution

and an exponentially decaying solution. The bound (3.6) clearly implies that

fl, is in fact exponentially decaying. Thus, f, satisfies the boundary conditions

of a mode solution. E
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Finally, we can prove Proposition 3.4.2.

Proof. First we will show that v, is continuous for A E W. Let us normalize

each f(' so that f = 1. We have
i4)= L 2 ~ 2()+~~i11

(f (E) L (E) +42 2 dr

y,2 - pl -2 fp 2 d.
(E) 2- 2 r+E , r

Reversing the roles of pi and p2 gives

- 1 -p f r2(f 2 + f2 (Idr

2 2 2

C' y p14

In these inequalities we have used (3.5), f = 1, and the fact that the V,(

are negative. Since the constant C' is independent of e, we may take c to 0.

By Lemma 3.4.1 d * 0. Hence, we may set

po sup .d.

It is clear that for any y E Q/, we cannot have W, strictly positive on (r+, oo).

Thus /-o < oo. Since v, is increasing in y, we may extend v,, continuously so

that vjO exists. We will of course have vjO : 0. Suppose that v10 < 0. Then, one

may easily show that 1o E d, and hence we can run the existence argument

above to construct a corresponding fV 0. Next, by continuity we could slightly

increase 1to to /t E d, run the existence argument again, and conclude that
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viz < 0. This of course contradicts the definition of [o. We conclude that

v/1 = 0.

It remains to show that there exists a corresponding f,10. From the local

theory in Section 3.2, for every [ and v, we have a unique solution R(r, yL, v)

to
d (Adf R '?Vf
dr dr)

which satisfies R(r+, p, v) = 1. At infinity there will be a local basis of solutions

spanned by fi (r, p, v) and f2(r, p, v) where ,5 i is exponentially increasing, /i2 is

exponentially decreasing, and both depend analytically on r, [-, and v. Lastly,

we have analytic reflection and transmission coefficients A([t, v) and B(pt, v)

defined by

R(r, [, v) = A(p, v) 1 j (r, y, v) + B(p, v)1 2 (r, [, v).

As p t po we have A(pi, v,) = 0. It follows that A(po, 0) = 0. We may then set

J/okr' r, yo, ,).

3.4.3 Construction of the Exponentially Growing Modes

In this section our goal is to perturb the real modes into the complex upper

half-plane with an appropriate application of the implicit function theorem.

Using the previous section we may start with a solution R to the radial ODE

satisfying the boundary conditions of a mode and with frequency parameters

(WR(0), m, l, P(0)) such thatWR(0) e R and/p2 (0) > W2(0). For any w =LJR+iU)
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and t sufficiently close to wR(0) and p(O) respectively, the local theory from

Section 3.2 will give us two linearly independent solutions to the radial ODE

ij1(r, w, p) and p2 (r, w, M) such that #1 is exponentially increasing at infinity,

P2 is exponentially decreasing at infinity, and both depend holomorphically on

w and analytically on p. Furthermore, the local theory around r, tells us that,

up to normalizing properly, for each w = WR + iw1 and M we have a unique local

solution R(r, w, p) around r, satisfying the correct boundary condition. We

have

R(r, w, p) = A(w, p)p1(r, w, p) + B(w, A),p2(r, w, pt). (3.7)

As shown in Section 3.2, A and B are holomorphic in w and y. Finding a mode

solution is equivalent to finding a zero of A. We have picked our parameters

so that A (wR(0), P(O))) = 0. Let's write A = AR + iA,. Next, we note that an

application of the implicit function theorem will produce our unstable modes

if we can establish

aAR .9AR

det OW '9 (WR(), A(0) * 0.
aA1 MA1

In order to do this, we shall return to the energy current

QT =Im A R.
dr 

Recall that in Section 3.3 we saw

dQT

dr

QT(r+) = am - 2MrwR.
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We have used the normalization JR(r)12 = 1 in the second statement. Next,

let's write QT in terms of j and P2.

QT =| dp1%QT = JA (dr P)
d+m

AIm BAIM d2=
dr dr

Before examining this at infinity, let us note the precise asymptotics of the pj
as recalled in Section 3.2.

~2 2

-1+ M(2w Rp
2

V2 2
p 2 e 2Rr -- R

Furthermore, it's easy to see from the construction of the j that they are both

real valued. Now let's compute QT(oo). Since the pj are real, the first and

last terms clearly vanish. The exponential powers cancel in the middle terms,

and we find

Q2(oo) = - w2Im (AE ) - ,p2_w2 1m(BA) = 2 2 1-m( AB).

We conclude that

am - 2MrWR = 2 ,p2 - wIm (Ad).

Since A(wR(O), [(O)) = 0, taking derivatives of (3.8) implies that

-2Mr, = 2 p2(0) - w2(0)Im
(WR ( ),P(0))7 ((), (0))
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0 =2 p2(0) - wR(0)Im (wR (0), (0))B(wR(0), (0)).

Since B (wR(0), Ap(0)) * 0, these two equations imply that the vectors (a, I )
and ( ,AR 2A-- are linearly independent at (WR(0), (0)) if and only if

O AA(WR(0), A(0)) # 0,
OP

i.e. (OAR OA Rdet OWR a
8A1 _A149AI ao

(wR(0), [(0)) # 0 #>
OA

(wR(0), [(0)) # 0.

It remains to establish

Lemma 3.4.3.
OA

-- * 0.

Proof. For the sake of contradiction, suppose that 2 (WR(0), (0)) = 0. Dif-

ferentiating (3.7) gives

OR

WR(0), [p(0)).

This implies that 2 is exponentially decreasing at infinity. The analysis from

appendices 3.1 and 3.2 implies that OR is smooth at r,.3 Differentiating the

radial ODE with respect to p, multiplying by R, and integrating gives

foo0(A2 R )r. r ArO)
'mdrd=

A ay ) I CC ( 2plr 2 + Opi) |R|2 dr.

Integrating by parts twice on the left hand side will produce no boundary terms
3 Recall that, as discussed in Section 3.2, R is smooth at r+ when am - 2Mr+ = 0.
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since both R and are exponentially decreasing at infinity and A (r,) = 0.

Thus we have

f k ( 2 -R WI OR dr

J -- A Tr A R1W dr = 0

r+ y O r ( r A

We have used that W is a solution of the radial ODE in the last equality.

Plugging this into (3.9) then gives

7 2pr 2 + AKM1 |R|2 dr = 0.

Since Lemma 3.3.1 gives us
OAKmI > 0

Op'

we conclude that R vanishes, a contradiction. El

3.4.4 Modes Crossing the Real Axis

In this section we shall investigate how a mode can "cross" the real axis. Let's

introduce a little more notation. From the analysis of the previous section we

have a family of solutions R(r, c) to the radial ODE satisfying the boundary

conditions of a mode with parameters (w(E), m, 1, [(E)) where w(E) = WR(E)+ie.

Implicitly we have also been using the existence of a family A,m, of eigenvalues

to the angular ODE (see Lemma 1.3.1). These functions are all defined for

jej << 1. In what follows we will often omit the E's and we shall assume 0 <

WR(E) < P(E)- Using the symmetry of the equations under (w, m) F-+ (-w, -m)

one may check that this assumption implies no loss of generality. The function

R will satisfy
Or OR W
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i(am-2Mr+w)

R ~ (r - r,) r+-r- at r+,

_ M(2w
2

_-j
2

R ~e-r Ar 2. at r = oo,

WI =-(r 2 + a + 4Mamrw - a2m 2 + A (A + a2W2 + p2r2

We also have

S(sin0- 2  a2(W 2 _2)cos20 S+AS=0
sin 0 190 ( 0 sin 2o -a

where S(, E) : 0 E (0, 7r) - C is given boundary conditions so that e-imoSmi

extends smoothly to S2. Note that we have suppressed the r, m, and 1 indices

from Smi and Ami.

From Theorem 1.6.2 we know that

am
WR(0) = am (3.10)

2Mr+

We wish to investigate the signs of &WR (0) and -"(0). The condition (3.10)

corresponds to our mode solution being exactly on the threshold of superra-

diance. This makes sense because when c = 0 the solution neither grows nor

decays with time. For e > 0 the mode solution will grow with time. Hence, we

expect the mode to become superradiant (1.28).

This leads us to

Proposition 3.4.3. If e > 0 we must have

w(e) + E2<
WR (2Mr+)

In particular
OWR (0) 0.
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Proof. We now introduce a variant of the microlocal energy current QT:

QT Im A- a .

For c > 0 we have

QT(oo) = QT(r+) = 0

QT E R 2 +m WJR12
Or Or + A

f OR 2 WA I M 2

r+ -Im )R| dr=0.

We have

Im (-W,a) = c ((r2 + a2) 2 2 
- a2 m2 + Ar2 2) - AIm ((A + a2 w2 ) )

= C( W1 2 [A 2 + (4Mr - a2 ) A + 4M2r2]

- a2m 2 + Ar2 2) - AIm (AW) .

Appealing to the statement (2.49) (that statement was proved under the as-

sumption 1-t = 0, but the same proof works if L * 0) now gives

-Im (Aa) > 0.

Furthermore, Im (-W,i) is increasing in r. Thus, R * 0 implies that

Im (-W,5) (r+) < 0 <>

2 (IE) + E2 2 am )r
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(0)
ae

Proof. Let's set
aS

se

At c = 0 we have

1 DI DSE
- sinG 

sin 0 D )

m2

sin 0
- a2 (w 2 _ A2) cos2 0) Se

2a2 cos 2 o (WR (Dec

Using Section 3.1 one may check that S, is regular at 0 = 0, 7r. Multiplying by

S and integrating by parts implies

0 2a 2 cos2 0 WR +i) -p'- )

Using Proposition 3.4.3 we conclude that

(0) 0 => Re - (0) 0.

Finally, we examine 2 (0).

ac

.DR
Re eL .
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Proposition 3.4.4.

0 => Re OA) (0) 0.
(-0

+ A |S2 sin OdO = 0.
/e

Proposition 3.4.5.

Proof. Let's set

aawkA- .. . - kil- , .- - . - - -

+ AS, =

+i -jp + A)S.
ac ac



We have
a O8RE )W R WR.
ar Rr =A. (3.11)

Now we want to multiply by W and integrate by parts. However, we have to

be careful with regards to R's boundary conditions. At infinity Re may easily

be seen to be exponentially decreasing, but at r, the proper condition is more

subtle. By construction

-i(am-2Mr+w(e))

(r - r+) r+-r- R(r, E) G(r, E)

is analytic in r and E near (r+, 0). At E = 0 we have

-i(am-2Mr+w)

(r-r) r+-r- Re-

2Mr+ I
r+ -r_ (

. R)(o raf(r

Re(r,0) = (

-i(am-2Mr+ w)

-r+ ) r+-r- log(r - r+)R=
0G

OIE

OWR 0GI - i ORlog(r - r+)R(r, 0)+ aG(r, 0).

Now we multiply (3.11) by W, take the real part, and integrate by parts. We

end up with

= 00Re(- |R|2 dr=

f +00
A-1(2WR (A2+ 2

1 00(Re() +2r2[L |R|2 dr.

Now Proposition 3.4.4 finishes the proof.

128

-2Mr |R(r+)12



3.4.5 Following the Unstable Modes in the Upper Half

Plane

Following our construction of unstable modes near the real axis, it is natural

to ask if one can continue to decrease p and produce more unstable modes.

We will not explore this in detail in this paper, but we will briefly describe

the expected behavior. One believes that one can vary p and produce a 1-

parameter (at least continuous) family of modes with frequency parameters

(w(p), p, m, l).1 As long as these modes are in the upper half plane, Propo-

sition 3.4.3 shows that they will remain superradiant. Hence, if and when

they cross the real axis, they will satisfy wI 7II. Now, note that Proposi-

tion 3.4.5 implies that in the bound state regime (/t 2 > W2 ), an unstable mode

can cross the real axis only by increasing the mass. Hence, as long as we

decrease p and maintain p > al, the curve of modes cannot cross the real2Mr+'

axis, and, by continuity, we conclude that these modes would have to remain

unstable.

U

4A potential approach is to more directly exploit the underlying analyticity, see [29] for
ideas along these lines.
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