
MIT Open Access Articles

Fluorescent penetration enhancers for transdermal applications

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Seto, Jennifer E., Baris E. Polat, Brett VanVeller, Renata F.V. Lopez, Robert Langer, 
and Daniel Blankschtein. “Fluorescent Penetration Enhancers for Transdermal Applications.” 
Journal of Controlled Release 158, no. 1 (February 2012): 85–92.

As Published: http://dx.doi.org/10.1016/j.jconrel.2011.10.018

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/99344

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-NoDerivatives

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/99344
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fluorescent Penetration Enhancers for Transdermal
Applications

Jennifer E. Seto1,a, Baris E. Polat1,a, Brett VanVellerb, Renata F.V. Lopez2,a, Robert
Langera,*, and Daniel Blankschteina,*

aDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
02139, USA
bDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract
Chemical penetration enhancers are often used to enhance transdermal drug delivery. However,
the fundamental mechanisms that govern the interactions between penetration enhancers and skin
are not fully understood. Therefore, the goal of this work was to identify naturally fluorescent
penetration enhancers (FPEs) in order to utilize well-established fluorescence techniques to
directly study the behavior of FPEs within skin. In this study, 12 fluorescent molecules with
amphiphilic characteristics were evaluated as skin penetration enhancers. Eight of the molecules
exhibited significant activity as skin penetration enhancers, determined using skin current
enhancement ratios. In addition, to illustrate the novel, direct, and non-invasive visualization of
the behavior of FPEs within skin, three case studies involving the use of two-photon fluorescence
microscopy (TPM) are presented, including visualizing glycerol-mitigated and ultrasound-
enhanced FPE skin penetration. Previous TPM studies have indirectly visualized the effect of
penetration enhancers on skin by using a fluorescent dye to probe the transdermal pathways of the
enhancer. These effects can now be directly visualized and investigated using FPEs. Finally, future
studies are proposed for generating FPE design principles. The combination of FPEs with
fluorescence techniques represents a useful novel approach for obtaining physical insights on the
behavior of penetration enhancers within skin.
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1. Introduction
Chemical penetration enhancers (referred to hereafter as penetration enhancers) are
molecules that facilitate drug delivery through a biological membrane. These membranes are
often composed of lipid assemblies, including the stratum corneum of the skin, epithelial
membranes (e.g. corneal, buccal, and intestinal), and cellular membranes. Many molecules
have been identified that can enhance drug delivery [1–5], particularly amphiphiles, which
are molecules that contain polar moieties (“head” groups) and non-polar moieties (“tail”
groups). Unfortunately, potent penetration enhancers are often also potent irritants [4].
Several investigations have been carried out to elucidate the molecular mechanisms involved
in penetration enhancement and in membrane irritation (primarily regarding transdermal
drug delivery [1, 4, 5], the focus of this paper). For example, proposed transdermal
enhancement mechanisms include extraction or fluidization of lipid bilayers, formation of
segregated phases within the bilayers, and others [1]. However, the mechanisms of
enhancement and of irritation are still not fully understood. Accordingly, the development of
new approaches to evaluate the interactions between penetration enhancers and biological
membranes would significantly contribute to a better understanding of the mechanisms
involved. In turn, this would aid in the design of potent, yet safer, penetration enhancers for
drug delivery.

In the life sciences, the generalized problem of studying the behavior of molecules within
biological tissues has often made use of fluorescence-based techniques. Using techniques
such as fluorescence resonance energy transfer (FRET), time-resolved fluorescence (TRF),
fluorescence polarization (FP), fluorescence recovery after photobleaching (FRAP),
fluorescence correlation spectroscopy (FCS), fluorescence lifetime imaging microscopy
(FLIM), and confocal and multi-photon fluorescence microscopy, one can study structure,
function, and interactions of molecules in biological systems [6]. These well-established
techniques require that the molecules of interest be either naturally fluorescent or
fluorescently-labeled.

To the best of our knowledge, penetration enhancers have never been synthetically modified
with a fluorescent label, presumably because it is believed that the relatively large size of
fluorescent labels (generally containing conjugated double bonds) would significantly affect
the activity of the enhancers. Therefore, the goal of this work was to identify naturally
fluorescent penetration enhancers (FPEs) in order to utilize fluorescence techniques to
directly study the behavior of FPEs within skin for the first time.

In this study, 12 FPE candidates with amphiphilic characteristics (see Section 2.1) were
selected and screened for skin penetration enhancer activity. Subsequently, two-photon
fluorescence microscopy (TPM) was used to directly visualize and compare the skin
penetration profiles of a significant and an insignificant penetration enhancer. In addition,
TPM was used to demonstrate that new insights can be obtained by directly visualizing the
behavior of FPEs within skin. In transdermal applications, penetration enhancers are often
part of a multi-component skin treatment or topical formulation that is designed to overcome
the skin barrier in a safe and effective manner. Our findings demonstrate that FPEs may now
be used to directly visualize the effect of skin treatments on FPE penetration into skin. This
paper presents the first direct visualization of passive, glycerol-mitigated, and ultrasound-
assisted FPE penetration into skin. The glycerol and ultrasound treatments are well-
established skin treatments that are utilized for decreasing and increasing skin penetration,
respectively. Glycerol, a well-known skin moisturizer (humectant), is often used in cosmetic
formulations in combination with irritating substances (e.g. surfactants) in order to mitigate
skin irritation [7]. On the other hand, low-frequency ultrasound is a physical skin penetration
enhancer that is often combined with chemical enhancers, resulting in synergism in
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enhancing transdermal drug delivery [8–10]. TPM has previously been used to study the
effect of these two skin treatments on penetration enhancers by treating skin either
simultaneously or successively with a penetration enhancer and a fluorescent dye in order to
indirectly visualize the effects of the penetration enhancer on the skin [11–13]. Similarly,
dual-channel TPM (which allows for the simultaneous imaging of an exogenous fluorescent
probe and the intrinsic skin fluorophores [14]) has previously been used to delineate
penetration enhancer-induced changes in permeant diffusion with respect to the skin
structural features [12–14]. These effects can now be directly visualized and investigated
using FPEs.

2. Materials and Methods
2.1 Selection of FPE Candidates

Many potent penetration enhancers are amphiphiles [1–5]. Therefore, 12 molecules that
have amphiphilic characteristics were selected as FPE candidates. Fluorescent molecules
with various head group chemistries, tail group lengths, and fluorophores were selected as
FPE candidates. A list of these 12 molecules is provided in Table 1, and the corresponding
chemical structures are shown in Figure 1. Molecules 1 – 4 were selected because they are
fluorescent and exhibit the following additional desirable features which are favorable for
penetration enhancers: (i) long, saturated, unbranched hydrocarbon chains (or tail groups)
[15], and (ii) low molecular weight (less than 500 Daltons) [16]. Molecule 5 was selected
because it is one of a handful of fluorescent dyes that is marketed as an amphiphile; this one
was selected because of its relatively low molecular weight among amphiphilic dyes.
Molecule 6 was selected because it is fluorescent, has a low molecular weight, and was
determined to be surface-active in our preliminary experiments (using the procedure
described in Section S7.1, molecule 6 lowered the oil/water interfacial tension by 2.8 ± 0.5
mN/m (95% confidence interval)).

Molecules 7 – 12 are all rhodamine derivatives. The selection of these molecules was
inspired by recent findings by Polat et al. regarding the amphiphilic nature of the fluorescent
dye, sulforhodamine B (SRB) [17]. SRB has repeatedly been utilized as a hydrophilic dye.
However, SRB is actually an amphiphile, despite being a bulky molecule. SRB was shown
to act as a penetration enhancer when combined with a low-frequency ultrasound skin
treatment [17] (low-frequency ultrasound is a physical skin penetration enhancer [8, 9]).
However, in preliminary passive experiments (without ultrasound), SRB was determined to
be an insignificant penetration enhancer (as will be shown in Section 3.1). It was
hypothesized that without ultrasound, SRB is too bulky to penetrate into skin in significant
amounts, and that smaller rhodamine derivatives may better penetrate into skin and may be
mischaracterized in the literature as hydrophilic instead of amphiphilic (as was the case with
SRB). Therefore, several rhodamine derivatives whose molecular weights are smaller than
that of SRB were selected as FPE candidates.

2.2 Sources of FPE Candidates
Acridine orange 10-nonyl bromide (AO), methyl orange sodium salt (MO), rhodamine 110
chloride (R110), rhodamine B chloride (RB), and SRB sodium salt were obtained from
Sigma-Aldrich (St. Louis, MO). 5-dodecanoylaminofluorescein (FLUOR), BODIPY®
500/510 C8, C5 (BODIPY1), and BODIPY® FL C11 (BODIPY2) were obtained from
Invitrogen (Carlsbad, CA). Rhodamine 6G chloride (R6G) was obtained from Acros
Organics (Geel, Belgium). Sulforhodamine G sodium salt (SRG) was obtained from Biotium
(Hayward, CA). 5-carboxytetramethylrhodamine (TAMRA) was obtained from ChemPep
(Wellington, FL). 2-{3-Cyano-4-[4-(dodecyl-methyl-amino)-phenyl]-5,5-dimethyl-5H-
furan-2-ylidene}-malononitrile (DCDHF) was a gift, synthesized at Kent State University.
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MO, RB, and SRG were purified via Büchner funnel vacuum filtration in order to remove
water-soluble impurities prior to use (see Section S1 for details). All the other FPE
candidates were used as received.

2.3 Sources of General Chemicals
Phosphate buffered saline (PBS) tablets, 1-octanol, and sodium lauryl sulfate (SLS) were
obtained from Sigma-Aldrich (St. Louis, MO). PBS was prepared from PBS tablets
according to the manufacturer’s instructions. Glycerol was obtained from Mallinckrodt
Baker (Paris, KY). 200-proof ethanol was obtained from EMD Chemicals (Gibbstown, NJ).
Deionized water dispensed from a Milli-Q academic water purification system (Millipore,
Bedford, MA) was used to prepare all solutions. All general chemicals were used as
received.

2.4 General Protocol for Diffusion Experiments
The following methods have been described previously [18]. Briefly, pig skin was obtained
from E.M. Parsons & Sons (Hadley, MA) according to a protocol which was approved by
the Committee on Animal Care at MIT. Human cadaver skin was obtained from National
Disease Research Interchange (Philadelphia, PA). Skin samples were prepared to a thickness
of 700 µm and then mounted into Franz diffusion cells (PermeGear, Hellertown, PA)
consisting of a donor chamber and a receiver chamber. Any skin sample having an initial
electrical resistivity of <50 kΩ cm2 (measured with PBS in both chambers) was considered
damaged and was discarded.

Subsequently, for all the 24-hour diffusion experiments described below, the PBS solution
in the donor chamber was exchanged for 40:60 (by volume) ethanol:PBS (referred to
hereafter as 40% ethanol) containing the specified solute concentration. Note that 40%
ethanol was used in order to solubilize all the FPE candidates. The donor chamber was
sealed using parafilm, and the diffusion cell was covered with aluminum foil to minimize
photobleaching. Experiments were conducted at room temperature (25°C).

2.5 Evaluating the Penetration Enhancer Activity of the FPE Candidates
The penetration enhancer activity of the FPE candidates was quantified by the skin current
enhancement ratio (ER), based on previous methods for screening penetration enhancers [4,
5, 19, 20]. 1 mM FPE candidate solutions were applied to pig skin (for DCDHF, 0.02 mM
was used due to low solubility). Note that 1 mM was chosen to solubilize most FPE
candidates in 40% ethanol. Because this was a low concentration compared to the typical
~1% used in previous studies (e.g. [4]), the typical sample size of 3 was insufficient to
evaluate penetration enhancer activity at the 95% confidence level. Therefore, the sample
size was increased to 9 – 13. Initial skin currents were measured 10 – 15 minutes after the
start of the experiment in order to obtain stable current measurements [20]. Final skin
currents were measured after 24 hours. The ER is defined as the ratio of the final to the
initial skin currents. Both currents were measured through the 40% ethanol solution present
in the donor chamber. 40% ethanol was used as the negative control3. 2 – 3 negative control
samples were included in each day of experiments, resulting in the accumulation of 40
replicates. 1 mM SLS was utilized as a positive control to provide a benchmark ER
exhibited by a well-known potent penetration enhancer under these experimental conditions.

3It was observed that the negative control ERs exhibited by pig skin harvested in November and December were significantly greater
than those reported in this paper (which were measured using pig skin harvested in earlier months in the year). This may be explained
due to seasonal variation in skin permeability [21–23]. Therefore, only pig skin batches that yielded low negative control ERs were
utilized in this study (i.e. skin from November–December were not used), so that the penetration enhancement induced by the 40%
ethanol would not mask the enhancement induced by the FPE candidates.
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Note that the experiments described herein were designed to compare each FPE candidate to
the negative control, and not to compare potencies among the FPE candidates or to the
positive control.

2.6 Two-Photon Microscopy (TPM) Case Study Methods
The purpose of these case studies was to use two-photon fluorescence microscopy (TPM) to
demonstrate several applications where the direct visualization of FPEs within skin can
provide new physical insight, which is a significant advancement over previous indirect
methods (see Section 1). Specifically, the following applications are demonstrated: (I)
comparison of the skin penetration profiles of a significant and an insignificant penetration
enhancer, (II) visualization of the effect of skin treatments on increasing and decreasing skin
penetration, and (III) simultaneous imaging of a FPE and the skin structure.

First, a rationale is provided for selecting which FPE candidate should be used to
demonstrate applications I – III. As will be shown in Section 3.1, SRG exhibited significant
activity as a penetration enhancer. Since the chemical structure of SRG (see Figure 1) is
similar to that of SRB, which did not exhibit significant activity as a penetration enhancer,
TPM was used to independently substantiate the interesting findings involving SRG and
SRB (application I). Subsequently, SRG became a convenient choice to demonstrate
glycerol-mitigated and ultrasound-assisted FPE skin penetration (application II) because
baseline images of SRG skin penetration were already obtained for application I. Finally,
SRG fluorescence could be filtered from that of the skin for dual-channel imaging
(application III).

2.6.1 Preparation of Skin Samples for TPM Imaging—For SRB-treated skin
(application I), 1 mM SRB was applied to pig skin for 24 hours. For SRG-treated skin
(applications I and II), 1 mM SRG was applied to pig skin for 24 hours. For skin treated
with SRG and glycerol (application II), the donor solution was prepared as follows: (1)
glycerol was added to 40% ethanol to attain 10 wt% glycerol (5–15 wt% glycerol is
commonly used in studies on the role of glycerol in cosmetic and pharmaceutical
formulations [24]), and (2) SRG was subsequently added to attain 1 mM SRG. For skin
treated with SRG and ultrasound (application II): ultrasound, with the solid probe tip
immersed in a coupling medium containing 1 mM SRG in 40% ethanol, was applied to pig
skin with a VCX 130 (Sonics & Materials, Newtown, CT) at the following ultrasound
parameters [25]: frequency - 40 kHz, intensity - 7.3 W/cm2 (for a coupling medium of 40%
ethanol, this corresponds to a 40% amplitude setting, as verified using calorimetry), pulsing
- 5 seconds on, 5 seconds off, tip displacement - 3 mm. The coupling medium was replaced
at least every 30 seconds (“on” time) to reduce thermal effects. Ultrasound was applied to
the skin until red patches (corresponding to localized regions [26] of SRG penetration) were
visible on the skin surface (requiring 2 minutes of “on” time, which is typical for treatments
involving ultrasound and a chemical enhancer [9, 10]), thus indicating that SRG had
penetrated into the skin in sufficient amounts for imaging.

For dual-channel TPM imaging (application III), 2 µg/mL (3.6 µM) SRG was applied to
human skin for 24 hours. The dilution of SRG (compared with 1 mM for applications I and
II) reduces the SRG fluorescence signal such that it is comparable with that of the skin,
which enables the detection of both signals. Note that dual-channel imaging with pig skin
was unsuccessful (data not shown) because pig skin fluoresces more intensely in the red
region than human skin [27]. As a result, pig skin and SRG fluorescence signals could not
be separated.

Immediately following the end of each skin treatment, the skin surface was rinsed with 40%
ethanol and blotted with a Kimwipe to remove excess solute. The treated skin area was

Seto et al. Page 5

J Control Release. Author manuscript; available in PMC 2013 February 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



isolated using scissors and inserted into an imaging chamber (Coverwell PCI-A-0.5, Grace
Bio-Labs, Bend, OR) with PBS as the mounting medium. The imaging chamber was sealed
with a No. 1.5 glass coverslip.

2.6.2 TPM Imaging—Images were obtained on a Zeiss LSM 510 microscope using a 63x
oil objective and a Spectra-Physics Mai Tai laser tuned to 780 nm. TPM imaging was
conducted based on previously published methods [13, 14, 28]. The following settings were
used for the three TPM applications: (a) for SRB-, SRG-, and SRG/glycerol-treated pig skin,
the laser power was measured at the sample to be 0.4 mW. Emission wavelengths ≤ 685 nm
were collected. Configurations were set such that in the absence of fluorophores, no signal
was detected, (b) for SRG/ultrasound-treated pig skin, the laser power was 0.7 mW for
imaging 0–20 µm below the skin surface and 5 mW for imaging depths > 20 µm. Emission
wavelengths in the range of 565 – 615 nm were collected. Configurations were set such that
in the absence of SRG, no signal was detected, and (c) for dual-channel imaging of SRG and
human skin autofluorescence, the laser power was 34 mW. In the “green” channel, emission
wavelengths < 515 nm were collected (corresponding to skin autofluorescence [29]). In the
“red” channel, emission wavelengths in the range of 565 – 615 nm were collected
(corresponding to SRG fluorescence; note that the SRG emission peaks at 548 nm, but the
collection of longer wavelengths minimized the overlap with the skin autofluorescence).
Using the stated experimental conditions and microscopy configurations, the skin
autofluorescence intensities in the presence and in the absence of SRG were found to be
comparable, thus verifying that SRG did not introduce noise in the green channel.
Configurations were set such that in the absence of SRG, no signal was detected in the red
channel (see Figure S1).

Up to six 200 µm × 200 µm sites were imaged within each skin sample. Images were
obtained in the plane parallel to the skin surface (xy-mode), and optical sections were made
in the z-stack mode (e.g. see Figure S2). In all the figures presented, a red color scheme is
utilized to illustrate routes of FPE penetration. It is important to recognize that the images
serve to provide qualitative information regarding the visualization of FPE penetration
patterns.

2.6.3 Image Analysis—Images were analyzed using ImageJ software (National Institutes
of Health, Bethesda, MD). The “Plot Z-axis profile” function was used to calculate the
average fluorescence intensity vs. skin penetration depth from each series of images
obtained in the z-stack mode (e.g. Figure S2). These data were averaged over all of the sites
imaged for each skin treatment. In addition, for all figures, the brightness and contrast of the
images was adjusted first by using the “Auto” feature in order to enhance the visibility of the
regions of FPE penetration, and second by increasing the minimum displayed pixel value.
These adjustments were propagated to control images to ensure that the control images
remained black.

It is important to recognize that SRB fluoresces more brightly than SRG in non-polar
environments. Therefore, in order to compare the penetration of SRB and SRG into skin, the
SRB fluorescence intensities were normalized by the ratio of the SRB and SRG fluorescence
intensities within PBS-saturated octanol (see Section S4 for details).

2.7 Statistical Analysis
Two-sample, two-tailed t-tests assuming unequal variances were used to compare skin
current ERs, fluorescence intensities, and oil/water interfacial tension values. In all analyses,
p values < 0.05 were considered to be statistically significant.
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3. Results and Discussion
3.1 Identification of Fluorescent Penetration Enhancers

The activity of the FPE candidates as skin penetration enhancers was quantified by skin
current enhancement ratio (ER). The results of these experiments are summarized in Figure
2. Eight of the twelve FPE candidates (BODIPY1, AO, SRG, RB, R6G, DCDHF, MO, and
BODIPY2) exhibited ERs significantly different from that of the negative control; therefore,
they are transdermal FPEs. These results demonstrate that the presence of a fluorescent
group in the structure does not prevent molecules from acting as skin penetration enhancers.

Next, several comments can be made regarding the chemical structures of the FPEs. First,
the rhodamine candidates (molecules 7 – 12 in Table 1) are generally bulkier than the
candidates with long, saturated carbon chains (molecules 1 – 5 in Table 1). Based on this
comparison, one would intuitively expect the candidates with long carbon chains to better
penetrate into skin and perturb the skin lipid bilayers. Nevertheless, the ERs of these
candidates and of the rhodamine candidates are evenly interspersed between the ERs of the
positive and negative controls. These results are in agreement with previous findings. Recall
that many drugs that are successfully administered via a transdermal patch are hormones
with multiple rings [30], similar to the rhodamine candidates. In addition, Mitragotri and co-
workers previously designed over 300 mutated chemical skin penetration enhancers based
on potency and safety [4]. Their 6 best compounds were ones with either long, saturated
carbon chains or with multiple rings.

Second, it is interesting that DCDHF, while applied to skin at 1/50th of the concentration of
the other candidates, still exhibited a significantly large ER. This indicates that this structure
has great potential as a FPE. There are three distinguishing features of DCDHF that may
contribute to its significant penetration enhancer activity: (i) nitrile head groups, which have
been linked with skin irritation and toxicity [31] (and these properties are often exhibited by
potent penetration enhancers [4]), (ii) a 12-carbon tail, which has previously been shown to
be the optimal tail length for skin penetration enhancers [15], and (iii) a compact
fluorophore with a small number of rings, located adjacent to the nitrile head groups.
However, in spite of the fact that DCDHF exhibited potency at a low concentration, it is
limited by its poor water solubility. This structure, which has been shown to be readily
derivatized [32, 33], may be improved by adding a water-soluble group such as sulfonic acid
(e.g. fluorophore 21 in [33], shown in Figure S5).

Third, in spite of the fact that SRG and SRB have similar chemical structures, SRG is a
significant FPE, while SRB is not. Furthermore, there is a significant difference between the
ERs of SRG and SRB, which was an unexpected but opportune finding based on our
experimental design (see Section 2.5). In Section 3.2.2, TPM was utilized to visualize the
skin penetration profiles of SRG and SRB in order to independently substantiate these
interesting results with data from image analyses. As discussed in Section 2.1, SRG was
selected as a FPE candidate because it is smaller than SRB. However, over the range of
molecular weights studied (327 – 581 Daltons), there is no correlation between molecular
weight and potency as a transdermal FPE (see Section S6). One difference in their chemical
structures that may contribute to their difference in skin penetration enhancer activities is
that the 3-ring xanthene structure of SRB has a delocalized charge of +1 due to resonance;
the xanthene structure of SRG is not necessarily protonated. Therefore, the structure of SRG
allows for a better distribution of charges and a clearer distinction between head and tail
regions (in fact, SRG is more amphiphilic than SRB; see Section S7). In addition, the +1
charge of the xanthene structure of SRB may result in different interactions with the
negatively-charged skin, intramolecular interactions with the sulfonate-containing pendant
group, or a higher degree of hydrophilicity. It would be interesting to investigate the
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structure-activity differences (i.e. the relationship between the chemical structure and the
penetration enhancer activity [34–36]) between SRG and SRB in future studies. Note that
ionization and hydrophilicity have previously been shown to affect penetration enhancer
activity [19, 37].

3.2 TPM Case Studies: Visualization of FPE Penetration into Skin
In the previous section, eight FPE candidates were demonstrated to be skin penetration
enhancers. These FPEs now enable the use of a multitude of fluorescence techniques to
investigate FPE-enhanced transdermal applications. As an example, two-photon
fluorescence microscopy (TPM) was used to demonstrate several applications where the
direct visualization of FPEs can provide new physical insight. This is a significant
advancement over previous TPM studies that indirectly visualized the effect of penetration
enhancers on the skin, as discussed in Section 1.

3.2.1 Visualization of the Effect of Skin Treatments on SRG Penetration—
Representative TPM images of SRG-, SRG/glycerol-, and SRG/ultrasound-treated skin
samples are shown in Figure 3. Recall that glycerol and ultrasound treatments are well-
established skin treatments that are utilized for decreasing and increasing skin penetration,
respectively (see Section 1). First, the effect of glycerol on SRG penetration into skin is
discussed. In SRG-treated skin, the SRG remained localized within the lipid bilayers
surrounding the corneocytes (see Figure 3A); this localization was observed uniformly
throughout the skin sample. With the addition of glycerol, the SRG penetration pattern
remained the same (see Figure 3B), however, SRG fluorescence intensities were smaller.
The images were analyzed to determine the average SRG intensity profiles in the presence
and in the absence of glycerol. These data, presented in Figure 4, show that glycerol
significantly reduced the intensity of SRG visualized within the skin, which is consistent
with the well-documented biological effects of glycerol on the skin [7, 12, 24, 38]. In
particular, the data is consistent with a previous report that glycerol reduces the average
aqueous pore radius in the stratum corneum, which sterically reduced the ability of SLS (a
penetration enhancer with lower molecular weight than SRG) to partition into the skin [24].
Note that it was verified that glycerol does not directly affect the fluorescence intensity of
SRG (i.e. the SRG donor solution fluorescence intensities with and without 10% glycerol
were the same; data not shown).

Next, the effect of ultrasound on SRG penetration into skin is discussed. Ultrasound
significantly affects the SRG penetration pattern. Figure 3C and Figure 3D show that
ultrasound assists the penetration of SRG into skin via irregular pathways. The spacing
between penetration routes is often less than 20 µm (see the scale bar), indicating that the
routes are transcellular. This is consistent with previous reports that ultrasound can create
transcellular pathways in the stratum corneum [13, 39]. Furthermore, SRG penetration was
only observed in discrete regions that were heterogeneously distributed across the treated
skin area, corresponding to localized transport regions (LTRs) that have been well
documented within ultrasound-treated skin [8, 9, 26]. LTRs are regions where ultrasound-
induced cavitation microjets drive the coupling medium into the skin [8, 25] (see [8] for an
illustration of ultrasound’s skin penetration enhancement mechanism). Finally, with the
assistance of ultrasound, SRG penetrated into the epidermis in localized regions in
significant amounts (see Figure 3E), whereas without ultrasound, SRG did not significantly
penetrate into the epidermis (not shown). Note that in Figure 3E, the 5-µm circular regions
where SRG did not penetrate correspond to the epidermal cell nuclei.

This TPM application demonstrates that by using a FPE, one can directly visualize how
changes to a topical formulation or skin treatment affect the partitioning, penetration, and
spatial distribution of the FPE within skin. FPEs can now be utilized to aid in designing safe
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and effective skin treatments and topical formulations, which often contain penetration
enhancers.

3.2.2 Visual Comparison of the Penetration Profiles of SRG and SRB—SRG-
and SRB-treated skin samples were imaged using TPM. In both cases, the fluorescence
remained localized within the lipid bilayers surrounding the corneocytes (see Figure S3).
However, Figure 5 shows that the fluorescence intensity profiles are significantly different.
In particular, the SRG surface intensity was significantly higher than that of SRB,
suggesting that SRG (which is a FPE; see Section 3.1) partitioned more readily into the skin
than SRB (which is not a penetration enhancer; see Section 3.1). With higher resolution
fluorescence techniques (such as single-molecule fluorescence techniques [6]), one may be
able to elucidate the differences in mechanisms of partitioning and diffusing into skin for
significant and insignificant penetration enhancers, which would aid in designing potent, yet
safe, penetration enhancers for drug delivery.

3.2.3 Dual-Channel Imaging of SRG and Skin Autofluorescence—Skin
autofluorescence stems from intrinsic skin components, including collagen, elastin, aromatic
amino acids, and cofactors [40]. These components reside in the lipid bilayers; by imaging
skin autofluorescence, one can delineate the corneocyte-lipid bilayer interface. Therefore, by
simultaneously imaging the probe spatial distribution and the skin autofluorescence, one can
identify changes in probe partitioning between the corneocytes and the lipid bilayers and/or
probe-induced structural changes in the skin structure [14, 40].

This is demonstrated using dual-channel TPM to image SRG-treated skin (see Figure 6). In
the green channel, the skin autofluorescence is generally limited to the intercellular regions
surrounding the corneocytes, thereby delineating the skin structure. The corneocyte
dimensions are approximately 20 µm, which is consistent with previous reports [41]. In the
red channel, it is clear that SRG is not always present throughout the entire intercellular
space; instead, there is an apparent preferential localization within a 1-µm thick region at the
corneocyte-lipid interface (see arrows in Figure 6). This region may include the 15-nm
cornified cell envelope, which is composed of a mixture of cross-linked protein filaments
and lipid molecules [41]. This localization is consistent with the amphiphilic character of
SRG, which was evaluated in Section S7. Other higher resolution fluorescence techniques
(such as single-molecule fluorescence techniques [6]) can be used to investigate this
localization further, which may contribute new physical insights on the interactions between
FPEs and the skin.

Note that in Figure 3 and Figure 6, SRG was applied to different skin membranes (pig and
human, respectively) and at different concentrations (1 mM and 3.6 µM, respectively).
These differences may impact the visualization of SRG localization in the corneocyte
envelope and in the intercellular lipids. Therefore, we caution the direct comparison of these
figures.

3.3 Proposed Studies for Generating FPE Design Principles
Future studies should be conducted to rank the FPEs by penetration enhancer activity. The
data reported in the present study could not be used to rank the FPEs because the method
described in Section 2.5 yielded a difference in ERs between the positive and negative
controls that is statistically significant, but small in magnitude (see Figure 2). This result
made it difficult to obtain significantly different ERs between the FPE candidates and SLS.
To elucidate the difference in potency between two FPEs, one may: (1) apply them to the
skin at higher concentrations to increase the range of ERs, and/or (2) increase the number of
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replicates to reduce experimental variability. It would be interesting to conduct this
experiment to rank various FPEs and generate FPE design principles.

For example, both BODIPY1 and BODIPY2 are significant FPEs (see Section 3.1), yet we
speculate that there may be a difference in their potencies which may lead to an exciting
area for future research. While both molecules have long hydrocarbon chains, the
fluorophore in BODIPY1 is positioned in the middle of the chain, and the fluorophore in
BODIPY2 is positioned at the end of the chain. Penetration enhancers with long
hydrocarbon chains can readily intercalate into the structured lipid bilayers of the stratum
corneum and disrupt the lipid packing, thereby increasing lipid fluidity and reducing the skin
diffusion barrier [42]. However, we hypothesize that the location of the fluorophore at the
end of the hydrocarbon chain (as in BODIPY2) would hinder the chain from intercalating
into lipid bilayers. Our hypothesis is supported by a previous study which showed that the
depth of penetration into a lipid membrane depends on the steric bulk of the intercalant [43].
If BODIPY1 is significantly more potent than BODIPY2, this would suggest that
positioning the fluorophore adjacent to the head group, as proposed in Figure S6, may result
in a more potent FPE. Note that BODIPY is a popular fluorophore because its robust
fluorescence properties are highly favorable for many imaging applications [44]. Therefore,
a potent BODIPY-based FPE has the potential to be utilized in many types of imaging
studies.

In a second application, SRG is more amphiphilic than SRB, but is less amphiphilic than
SLS (see Section S7). It would be interesting to see if this trend is observed when comparing
their penetration enhancer activities. To the best of our knowledge, correlations between
amphiphilicity and penetration enhancer activity have never been investigated, in spite of the
fact that many potent enhancers are amphiphiles [1–5]. We have already (unintentionally,
but opportunely) observed a significant difference in the ERs for SRG and SRB (see Section
3.1). The additional experiments described above would be needed to determine if SRG and
SLS exhibit significantly different ERs. If SRG exhibits significantly less penetration
enhancer activity than SLS, then the evaluation of a correlation between amphiphilicity and
penetration enhancer activity would be an exciting area for future study.

4. Conclusions
We have identified eight FPEs for transdermal applications. TPM was utilized to directly
and non-invasively visualize FPEs within skin for the first time, including: (i) visualizing
glycerol-mitigated and ultrasound-enhanced FPE skin penetration, (ii) visually confirming
that SRG and SRB exhibit significantly different fluorescence intensity profiles within the
skin, which is consistent with the finding that SRG is a FPE while SRB is not, and (iii) using
dual-channel TPM to demonstrate the visualization of a FPE with respect to the skin
structure. These demonstrations reinforce the novel strategy of combining FPEs with well-
established fluorescence techniques to elucidate mechanisms of penetration enhancement
and skin irritation. FPEs will allow a multitude of fluorescence techniques to be utilized in
order to directly visualize penetration-enhanced transdermal drug delivery. With further
studies, more potent transdermal FPEs may be designed. New physical insights obtained
using this approach will aid in designing effective penetration enhancers for transdermal
drug delivery applications.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Chemical structures of the fluorescent penetration enhancer (FPE) candidates.
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Figure 2.
Skin current enhancement ratios (ERs) exhibited by the FPE candidates considered. SLS
served as a positive control. Solute concentrations were 1 mM (except for DCDHF, 0.02
mM). Error bars indicate 95% confidence intervals. * indicates significant difference
compared to 40% ethanol (negative control). n = 40 for 40% ethanol; n = 9 – 13 for all
others.
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Figure 3.
SRG penetration patterns within SRG-treated, SRG/glycerol-treated, and SRG/ultrasound-
treated pig skin. The presence of SRG is indicated by the red color. (A) Representative
image of SRG-treated skin (image depth, 2 µm below the skin surface). (B) Representative
image of SRG/glycerol-treated skin (depth, 2 µm). (C, D) Selected regions of interest within
the stratum corneum of SRG/ultrasound-treated skin (depth, 2 µm). (E) Selected region of
interest within the epidermis of SRG/ultrasound-treated skin (depth, 34 µm). Bar = 20 µm.
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Figure 4.
Average SRG fluorescence intensity as a function of skin depth, in the presence and in the
absence of 10% glycerol. Fluorescence intensities are significantly different at all skin
depths. Error bars indicate 95% confidence intervals. n = 18 sites for SRG; n = 12 sites for
SRG/glycerol.
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Figure 5.
Average SRG and SRB fluorescence intensity as a function of skin depth. Fluorescence
intensities are significantly different at all skin depths. Error bars indicate 95% confidence
intervals. n = 18 sites for both SRG and SRB. SRB data were normalized as described in
Section 2.6.3.
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Figure 6.
Representative dual-channel images of SRG and human skin autofluorescence at the skin
surface. Left column, SRG channel (the presence of SRG is indicated by the red color); right
column, skin autofluorescence channel (the presence of skin fluorophores is indicated by the
green color). Arrows point to regions where SRG is only localized within the corneocyte-
lipid interface (i.e. SRG is not present throughout the entire intercellular region). Bar = 20
µm.
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Table 1

Name and molecular weight (MW) of each of the 12 FPE candidates. Chemical structures are provided in
Figure 1.

Acronym Name MW (Da) Structure

AO acridine orange 10-nonyl bromide 473 1

BODIPY1 BODIPY® 500/510 C8, C5 404 2

BODIPY2 BODIPY® FL C11 404 3

DCDHF 2-{3-Cyano-4-[4-(dodecyl-methyl-amino)-phenyl]-5,5-
dimethyl-5H-furan-2-ylidene}-malononitrile

459 4

FLUOR 5-dodecanoylaminofluorescein 530 5

MO methyl orange, sodium salt 327 6

RB rhodamine B chloride 479 7

R6G rhodamine 6G chloride 479 8

R110 rhodamine 110 chloride 367 9

SRB sulforhodamine B, sodium salt 581 10

SRG sulforhodamine G, sodium salt 553 11

TAMRA 5-carboxytetramethylrhodamine 430 12
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