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Chapter 1

Introdiction

The use of Computational Fluid Dynamics (CFD) simulations in aircraft design is already well estab-
lished. Much less common however, is the use of formal CFD-based optimization procedures to guide
the design process. Traditionally, inverse design tools, whereby a prescribed pressure distribution is
used to determine the geometry, have been used. The main limitation of inverse methods is that they
require a-priori knowledge of the pressure distribution that will produce a well posed problem, and
lead to a satisfactory solution. An alternative to inverse design is the use of optimization methods.
In this case, the geometry is determined so as to minimize a cost functional, such as drag, subject
to some constraints. These methods do not require a—priori knowledge of the pressure fields and
therefore are much more general, and generate well defined problems. An additional advantage of
optimization methods is that they can be easily incorporated into multi-disciplinary optimization
formulations [44] which offer the potential for aircraft designs with significantly improved fuel burn,
through a combination of lower aircraft weight and reduced drag. (For a discussion of successful
approaches to incorporating CFD into the aircraft/airfoil design process, the reader is referred to
Reference [40}.)
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1.1 Literature Review

The main obstacle to formal gradient-based optimization procedures is the high cost associated with
the calculation of aerodynamic sensitivities. In recent years however, there has been a rapid growth
in the use of adjoint methods for the calculation of cost function sensitivities. This is due to the
huge potential savings that the method offers, over finite difference and direct method approaches,
for optimization problems in which the number of design variables is large. The initial spark was
provided by Jameson [25], but there have been other significant contributions (6, 24, 23, 43]. Adjoint
methods for the calculation of sensitivities can be formulated in two different forms. The first
approach is the variational sensitivity analysis approach, where an analytic equation for the adjoint
function is derived and then discretized leading to an approximation to the sensitivities of the exact
problem. This means that the validity of the computed sensitivities relies on the discretization errors
being sufficiently small. The second is the discrete sensitivity analysis approach, where a discrete
formulation of the adjoint problem is derived directly starting from the discretized flow equations.
The sensitivities thus obtained are exact for the discrete problem regardless of the discretization

€errors.

A recent study by Jameson et al [27] has demonstrated drag minimization at fixed lift for the 3D
Euler equations using single-block structured grids complemented by an inverse design capability,
based on the 3D Navier-Stokes equations discretized on a single-block structured mesh. This combi-
nation allows for the solution of a drag-minimizing pressure distribution using the Euler optimizer,
and then, inclusion of viscous effects using the inverse design Navier-Stokes tool. Reuther et al
[39) demonstrated lift-constrained, multipoint drag minimization based on multi-block structured
analysis for the 3D Euler equations. Both of these studies are based on the so called variational

sensitivity analysis approach and an explicit, multigrid time-marching scheme.

For the discretization of flowfields over complex domains, unstructured meshes offer significant ad-
vantages over alternative methods. They allow for the grids to be generated automatically, dra-
matically reducing turnaround times, and allow for adaptive grid procedures to be incorporated
in a natural manner. For the solution of inviscid flows, unstructured mesh methods are now well

developed, and work is currently in an advanced state of progress to incorporate viscous effects.

Newman et al [31] developed a capability to perform Euler optimization based on 2D unstructured
grids and the discrete sensitivity analysis approach. An implicit approach was used which incor-

porated backward Euler timestepping and ILU preconditioned GMRES. Their lift-constrained drag

18



minimization examples demonstrated the power of the method by finding a supercritical high-aft-
loaded geometry at the optimum. They have since extended their capability to 3D unstructured
grids [30]. The large storage and computational cost requirements asscciated with the implicit solu-
tion limited the usefulness of the approach in 3D. In a previous paper [14], the author also reported
the implementation of an optimization system based on the discrete adjoint approzch implemented
on 3D unstructured meshes using a fully explicit scheme. The low memory requirements and the
ensuing parallelization of the flow and sensitivity analysis solvers allowed practical optimization of

complete aircraft configurations on rather fine meshes [16}.

In terms of optimization based on viscous solvers, this has been demonstrated for the 2D turbulent
incompressible (3] and the 2D compressible laminar [15] Navier-Stokes Equations. This thesis reports
the extension of the capability reported in [15] to three dimensions. Viscous optimization based on
the 2D Euler equations coupled with an integral boundary layer solver has been available for many

years [12].

1.2 Inviscid Analysis

This thesis reports more fully on the development of the approach presented in [14] and [16] and the
further development to incorporate a 3D lift-constrained, multipoint drag minimization capability
based on the Euler equations discretized on unstructured grids. Solution of the problem using
the particular features of the latter capability is considered important for the following reasons:
(1) unstructured grids allow rapid automatic grid generation around complex geometries; (2) drag
minimization rather than inverse pressure design relieves the aerodynamic designer from relying on
experience and intuition in specifying the target pressure — although now experience and intuition
are required to set the objective function and constraints; (3) incorporation of the lift constraint
is critical since, in traditional design procedures, the weight of the aircraft is generally known long
before the angle of attack; and (4) inclusion of off-design points in the optimization process is
important for military aircraft where performance specifications are often made at more than one
condition, but also for transonic commercial aircraft where single-point optimization often results in

“point-designed” geometries with poor off-design characteristics.

Therefore, development of an unstructured drag-minimization capability based on the 3D Euler equa-
tions will allow efficient design of transonic and supersonic aircraft with wing-influencing engines or

with other non—-.‘andard topologies, aircraft in high lift, multi-element mode and lateral-directional
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control configurations such as wings with deployed ailerons or spoilers. For this part, we neglect
viscous effects — in the hope that the optimum design point is not significantly affected by their
presence — and focus on the development of the modal inverse design and drag minimization capa-
bilities based on the 3D Euler equations for unstructured grids. Specific focus is given to the means
by which the constraints are incorporated for the drag minimization capability. The main conclusion
of this part of the thesis is that a subspace BFGS optimization strategy provides a practical and ro-
bust optimization strategy. The 2D and 3D tests carried out resulted in credible optimal geometries
based on inviscid flows, although as is pointed out in the next section, some of these tests tend to

emphasize the need to include viscous effects.

1.3 Viscous Analysis

Although optimization based on the Euler equations is a useful capability for performing inverse
pressure design of aerodynamic bodies especially for high Reynolds number flows where boundary
layers are thin and the decambering associated with their displacement surfaces causes only small
shock movements and lift changes, alinost any drag minimization exercise based on the Euler equa-
tions and applied to modern supercritical wings in cruise condition is certain to faii. This is because
the baseline wings have been designed to maximize L/D by pushing the upper surface shock as far aft
as possible - at least over the highly-loaded outboard portion of the wing where the transonic effects
are the most severe and where the wave drag is usually the highest. The beneficial lift improvement
associated with this aft movement of the shock is counterbalanced by an increasingly severe adverse
pressure gradient in the recovery region which typically, at shock positions of around 60% — 70%,
causes trailing edge separation and the associated detrimental effects of drag increase and lift loss.
Many modern supercritical wings are therefore designed such that the boundary layer is on the verge
of separation as it reaches the trailing edge. Hence it is clear that any drag minimization exercise

applied to supercritical transport wings must include viscous effects.

Other flow regimes in which viscous effects play a large role are those associated with high lift
takeoff and landing configurations. In these cases, without inclusion of viscous effects, accurate
modelling of the outer flow is often not possible even for fully attached flow. Typical regimes feature
boundary layers whose displacement thicknesses form a significant proportion of the gaps (between
wing elements) through which they pass. Hence these boundary layers have a large impact on the

beneficial lift improvement often found due to the interaction between elements. (This interelement
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interaction is heavily exploited by aerodynamic design engineers — but typically using unsatisfactory
tools such as 2D viscous or 3D inviscid CFD tools, supported by copious expensive wind tunnel
testing.) Furthermore local areas of separation are often present in these regimes, and indeed the
maximum lift is often set by the onset of trailing edge separation on one or more elements. Further
complications include off the surface slat wake flow reversal which can have a large impact on the

lift achieved by landing configurations.

One effective way of including viscous effects is to solve a coupled viscous/inviscid system incorpo-
rating, for example, a viscous solver which solves the integral boundary layer equations [13]. This
can result in a system which generates solutions more efficiently than Navier-Stokes solvers which
typically require many points to resolve the boundary layer, resulting in both higher cost per itera-
tion due to more mesh degrees of freedom and more iterations to convergence due to the requirement
of smaller timesteps for stability, for both explicit and implicit time relaxation schemes. There are
three factors which stack up against this option. Firstly, for separated flow, use of the direct cou-
pling method (which most naturally fits into our current algorithm) results in an unstable scheme.
Fully sirultaneous [13] and semi-inverse schemes are possible alternatives which are stable but each
would require significant amounts of work tc incorporate into our current (explicit or point implicit)
relaxation scheme. Secondly, while impressive work has been done on fully 3D integral boundary
layer solvers, [32, 29], confidence in the aerospace industry in their results has not yet reached the
levels found for their 2D counterparts and some theoretical issues remain to be resolved such as
the imposition of hyperbolic boundary conditions. Application of the 2D results via strip theory
may introduce a further source of error. Thirdly, use of displacement surfaces to implement the
effect of the boundary layer on the inviscid flow leaves upen the difficulty of applying this surface at

geometric intersections such as wing/body intersections or wing/strut intersections.

On the other hand solving the Navier-Stokes equations throughout the flowfield is a more natural
extension of the Euler optimization. capability developed as the first part of the thesis research
(14, 16] and discussed in the previous section. Also, this capability can serve as a benchmark for

future work towards coupled viscous/inviscid solvers.

Although the algorithm presented herein has only been implemented for the 2D and 3D laminar
Navier-Stokes equations so far, it represents a significant preliminary step towards the ultimate
goal of high Reynold’s number, fully turbulent 3D Navier-Stokes optimization. The features of
the laminar algorithm allow direct extension to a practical turbulent algorithm. In particular, the

residual Jacobian storage scheme implemented here leads to an efficient implementation of a 3D
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turbulent Navier-Stokes optimization algorithm.

1.4 Overview

The flow analysis algorithm for both inviscid and viscous simulation is described in Section 2.1.
Descriptions are given of the optimization problem (Section 2.2), the sensitivity analysis calculation
(Section 2.3), the time integration algorithm (Section 2.4), the parallelization of the flow and sensi-
tivity analysis schemes (Section 2.5) and the constrained and unconstrained optimization algorithms
(Section 2.6). These flow (Sections 3.1 and 3.2) and sensitivity (Section 3.3) analysis algorithms are
validated in Chapter 3. Inviscid (Chapter 4) and viscous (Chapter 5) optimization examples are pre-
sented thereafter. Finally, some conclusions and recommendations for future work are also presented

(Chapter 6).
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Chapter 2

Algorithms

2.1 Flow Analysis

Two different flow analysis schemes are presented which were developed to allow efficient sensitivity
calculation for inviscid and viscous flows, respectively. This was because in the course of extending
the Euler optimization capability [14, 16, 17] tc Navier-Stokes, it was found that switching to a
spatial discretization scheme which can be described as mixed finite volume/finite element [34, 35]
allowed a far more memory-efficient sensitivity calculation scheme than one based on the original
scheme with viscous contributions. Since we also present 2D and 3D Euler results here and since we
discuss the relative merits of either scheme vis-a-vis the sensitivity calculation, we find it appropriate

to devote some space to discussion of the main components of both spatial discretization schemes.

The first scheme can be considered to be a finite volume scheme directly extended fror the inviscid
solver discussed in [14, 16]. In this case, the gradients required by both viscous and artificial
dissipation fluxes are found exactly in each triangle/tetrahedron, based on the piecewise linear
functions used to quantify the spatial variation of U. This scheme will henceforth be referred to
as “Scheme I". The second scheme can be considered to be a mixed finite element/finite volume
scheme directly extended from the fundamental algorithm underlying FELISA [35], in which the
average gradients over each nodal control volume are used for both the artificial dissipation and

viscous fluxes. We will henceforth refer to this scheme as “Scheme II". The only difference between
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the two schemes is the way in which the gradients are calculated.

For illustration purposes, the algorithms are described based on the 2D algorithm. The 3D algorithm
is a direct extension thereof. Both schemes begin with the integral form of the Navier-Stokes
equations:-

90 _ [ 9 ai_yi _]{1_:‘_
nat‘m‘/naz,-(G F)d0 = § (G — Fi)nyar @2.1)

where U = (pl PUI:WZ,PE)Tv

PU; 0 1
. puiu; + poy; ) Tj
Fi = Gi= 2.2)
puauj + poa; T2;
uj(p + pE) uiTij + kgT'J;

and Q is a closed control volume with boundary, I'. Here 7;; is the tensor of viscous stresses and is

given by

_ Ou; Ou; 2 aﬁ
T = H (6:::j + B:c.-) 3”6‘1 6a:k (23)

We first assume that G/ = 0 and present the underlying inviscid discretization which is almost
identical for both schemes. The discretization of U and F7 on an unstructured triangulation of the
domain is accomplished using piecewise linear polynomials. The spatial discretization is completed
by using the finite volume formulation with control volumes associated with each node i consisting of
all triangles having vertex i. The line integration given by Equation (2.1) is performed exactly around
the outer boundary of this control volume. (It is noted in passing that an identical discretization
can be achieved by forming a Galerkin weighted residual statement using the same piecewise linear
functions as the weight functions, and lumping the mass matrix entries onto the diagonal.) Using

this spatial discretization, the following set of semi-discrete equations results:-

dU;

L

+Ri(U;) =0 (2.4)

where, through the use of an edge-based formulation [35, 26], the residual at node i can be written
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K
Ri= )[Rl (2.5)

k=1

Here ik represents the edge connecting nodes ¢ and k and the residual increment for an interior edge

is given by,

(Rlix = — (2.6)

F"_';FE A
where Sji is the area vector associated with edge ik and is calculated as follows (see Figure 2-1):-

Sit = (Yrt1 = Yk—1,Th-1 — Tht1) (2.7)

As shown in Equation (A.6) in Appendix A, the residual contribution for a wall boundary edge is

o] |o
b pitm, |1 0 = s Fi+F -
(Rl = —{T( ) ) +F}-Sp ~ * 51141 (2.8)
0 1
0 0

where the second term ensures closure of the control volumes (see Figure 2-1) and,
So = (i — yi, i — 1) (2.9)

As may also be derived from Equation (A.6), for a farfield boundary edge the contribution to the

residual becomes

I'-:@+Fb 2?,‘ 3 F.“FF‘
L) el - S

b —
[Rl']“ - 2 2

(2.10)

where the superscript b indicates that the flux includes a 1st order diffusive contribution that effects

upwinding using Roe-averaging, as described below, between the given node and the freestream state

vector Uy

- - F + F

F¢.§, =12
Sy >

= S
5 = SIAI(U; - Ua)
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N

Figure 2-1: Area vectors for boundary and interior edges

where A = 8(F - #4;)/8U is the standard Roe matrix [41] resolved in the direction of the boundary
normal A, = S, /Sy and can be formed from the Roe-averaging of U; and Us,. These expressions
for the fluxes at the boundaries ensure that correct boundary conditions are imposed and that we
have R(U) = 0 at steady state everywhere in the domain including the nodes on the boundary.
This boundary treatment allows simple treatment of both adjoint and flow sensitivity boundary

conditions for the sensitivity analysis as pointed out in the next section.

To stabilize the scheme, a dissipative term, premultiplied by a matrix coefficient, is added to the

above equations for interior and farfield boundary fluxes.
D,'k = EIA(UHU’C)I(UI - Uk) = -2-P|A|P (U, - Uk) (2.11)

where S = |§.—k| and A is now resolved in direction of the face normal fi;x = Sk /S and is based on
a Roe-averaging of U; and Uj. This ensures positivity of the coefficients multiplying increments of
characteristic variables, AW;; = P~*AUj; resulting in a scheme with local extremum diminishing
(LED) (26] properties (see Appendix B). However, the added dissipation makes the scheme first
order accurate and causes it to be too diffusive. To correct this, we add antidiffusion that is limited
in a nonlinear manner to maintain the LED properties — similar to the antidiffusive contribution

added to the one-dimensional scalar residual in Appendix B. Hence the diffusive flux takes the form:-

Dy = gPIAl(P“AU.-k _ L(PT'AU-,PTIAUY)) (2.12)
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Several options are available for the limiter function L(u,v). Here we simply take
L(u,v) = minmod{ u, v) (2.13)

for inviscid calculations and

u+v

L(u,v) = minmod( 2u, 2v, 2

)- (2.14)
for viscous calculations. Note that the latter limiter is more likely to return the third argument,
and by examination of Equation (2.11), results in a scheme with a desirable third order dissipative
flux. The reason for using Equation (2.14) for the viscous calculations is that other researchers (21]
have found that this limiter is less dissipative than Equation (2.13). For viscous calculations, drag
astimates — especially close to separation — tend to be very sensitive to the amount of artificial

dissipation present.

For Scheme I, AU~, AU? are formed exactly from the gradients in the cells that either end of the
edge points into [4, 26]. For example,

AU?* = (VU)+ (i — Zk) = (VU)+ - Tk = €, AUy + €;,AU;, (215)

where the nodes in the element that the edge points intc have been labelled i,7,s and €;, €5 are,
by construction, always positive. To see why this is so, we write the equation for the plane that
passes through the three points, k, ¢ and p with coordinates in (z,y,v) space giver by (zx.yx, k),
(Zq»Yq,Vq) and (Zp, ¥p, vp). Note that v is intended to represent the dependent variable which might
be any one of the components of U and k, ¢ and p represent the vertices of the eleme:t into which

the edge points (see Figure 2-2). The equation for the plane is given by (see for example {48}
Alz—zk)+Bly-y) +Clv—wv) =0 (2.16)

where 7 = (A4, B, C). Therefore the gradient is simply

A B
Vv=—(=,= 2.17
v=-(5g) (217)
The normal — in (z,y,v) space — is given by
= ke X Tk (2.18)
Tkq X Tkp
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and

q

Figure 2-2: Gradient calculation method
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1
Akqp

(—Akquvkp + AkpoA'qu)- (2.19)

Examination of the signs of these areas reveals that the coefficients must always be positive.

For Scheme II, AU~, AU* are also calculated from the gradients, but here the gradients are
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calculated as averages over the control vclumes. Applying the Divergence Theorem to (U,0,0), for

example gives for the average,
dau 1 1
—_— = - V. ) dQ = = UdS‘ .2
T /,, (U,0,0)d2 = 5 ]{. (2.20)
Evaluating this line integral in the same fashion as the flux integrals in Equation (2.1) results in

the following formula which combines the interior and boundary edge contributions as given by
Equations (A.4) and (A.6) :-

oU;, 1 (& Ui+Ur,, <X2(3U;+U U;+ U ;
a_z,-=n_.-(z—2 "5!~+Z{ 5 Su+ = ’S,{,H} (2.21)

ik=1 il=1

where p; is the number of nodes neighbouring node 1, np,y is the number of boundary edges con-
tributing to the residual at i0de i and subscript ik represents the edge connecting nodes i and k.
The rigorcis LED character of the scheme is lost but Scheme II tends to produce smoother and less

dissipative solutions than Scheme I for transonic and low supersonic flows.

Note that in both cases, the addition of antidiffusion causes the scheme to now resemble a high order

MUSCL scheme. For further details of similar inviscid algorithms, the reader is referred to [35, 34].

For both schemes (although the only viscous results presented herein are for Scheme II), the means
for inclusion of viscous terms recycles the nodal gradients used for the dissipative fluxes. For Scheme
I, the edge-based data structure can be retained, and F{, for example, in Equation (2.6) is sim-
ply replaced by F — GJ. For Scheme I, on the other hand, inclusion of viscous effects demands
that we return to an element-based data structure, whether the viscous terms are included via the
Finite Volume or the Finite Element method [36]. This has a detrimental impact on the memory

requirements for both flow analysis and sensitivity analysis (as pointed out in the Section 2.3.3).

2.2 Optimization Problem Statement

We consider the general optimization problem of finding an optimal design variable vector B°P, of

dimension N, that minimizes a given cost functional F, that is,
B = arg m&n F(B) (2.22)
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subject to M constraints of the form
¢j(B) =0, j=1...M (2.23)

In our case, the cost function is either a weighted sum of the drag coefficients at M flow cenditions,

M
F =Y w;iCp;(B) (2.24)

i=1

or the area-integrated sum of squared differences of the actual pressure from a target pressure
distribution over the target surface, as given by Equation (D.1). The N components of the design
vector B are the parameters used to represent the aircraft geometry and. for some cases, the M
angles of attack corresponding to each flow condition. (M > 1 for multipoint cases.) The constraints

considered (in some of the problems) are the lift at each operatirg point. Thus,
c¢j(B)=CL,(B)-C® =0, j=1.M. (2.25)

The weights w;, associated with each operating point, are given and kept constant throughout
the optimization process. The above problem can be easily generalized to incorporate additional
constraints, including inequality constraints, without substantially changing the approach to be

described below.

The solution of problem (2.22) is attempted using iterative gradient based techniques. We therefore
require a feasible initial guess for the parameter vector which corresponds to a baseline geometry
and the angles of attack that satisfy the constraints (2.25). The problem is then decomposed into
the evaluation of the gradients, or sensitivities, and the updating of the design variables using a

suitable descent strategy.

In practice, the drag coefficient at each operating point j, is calculated from a computed numerical
solution of the Euler or Navier-Stokes equations. One obvious possibility is to approximate the
sensitivities using finite differences which require the computation of flowfields for different values of
the design parameters. Whilst this approach may be feasible when the number of design variables

is small, it becomes impractical when the dimension of 3, N, is large.

A more convenient approach which allows for exact sensitivities to be calculated is to consider the

numerical flow solution as additional design variables which are constrained to satisfy the Euler
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equations at each operating point. If we denote by Uj; the solution that satisfies the Euler equations

at the flow condition j, fcr a given B, we can write
Rj(ﬂ,Uj):O, j=1...M. (2.26)

This equation implicitly defines U;{3) which in turn can be used, in a straightforward manner, to
compute Cp, and thus F. Therefore, we can write the following modified but equivalent problem:
find B°?* such that

g = argml;n F(B,U1(B), U2(B),. .Um(B)) (2.27)

subject to the M original constraints of equation (2.23) plus the M additional constraints of equation
(2.26).

2.3 Sensitivity Analysis

Consider, for the purposes of simplicity of notation, that the design variable B contains only one
component and so can be written as a scalar 8. Furthermore, assume that for each condition j, the

drag coefficient is given by
Cp, = Cp,(U;(B), B). (2.28)

Differentiating the steady state version of Equation (2.4) and Equation (2.28) produces, respectively,

OR 0U OR

30 98 = ~%8 (2.29)

and

dCp, _9Cp, _8Cp, dU
8~ 88 T oU ap

(2.30)

The first term on the right-hand side of (2.30) can be calculated relatively easily. The second term

is far more difficult. Two approaches are the direct and the adjoint method.
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The direct method involves direct solution of Equation (2.29) and substitution of the resulting vector
8U /0P into Equation (2.30). The means by which Equation (2.29) is solved is discussed below. Note

that Equation (2.29) must be solved once for each compcnent of 3.

The adjoint method is based on the recognition that Equations (2.29) and (2.30) can be combined

to give:

dCp, aCp, acp, an ~' [6R

—t = — (2.31)
d |R-o 08

Due to associativity of matrix multiplication, the right-hand-side double product calculation may be

performed either by first multiplying the Jacobian inverse by the term to its right — which gives the

direct method — or by the term to its left — which gives the adjoint method. It is convenient to write

the result of the intermediate calculation for the adjoint method in terms of the adjoint variable v

which satisfies

R\ acp,\T
5 v=-{7) (232
and
ch aCp, .1 {g}
IR_O 28 + B (2.33)

It is noted that equations (2.26) and (2.32) correspond to the stationarity conditions of a Lagrangian

formed by augmenting the cost function with the constraint termns

M
LB, Uy,...,Up,¥y,..., %) = F(B,Uy,...,Un) + D_ %] R;(U, B). (2.34)

=0

With this interpretation, the intermediate variables 1; play the role of Lagrange multipliers [23]. To
see this, we write the optimality conditions, which are found by setting to zero the first variations

of £ with respect to 1,
6Ly = L(B, U, + &%) - L(8,U,9) = §9"RIU, ) = 0 (2.35)

resulting in the steady state version of Equation (2.4); and with respect to U,

TaR al/D

6Ly = L(B, U +6U,y) - L(B,U,9) = (¢ )6U 0. (2.36)
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resulting in Equation (2.32). The third optimality condition, requiring the variations of £ with

respect to 3 to be zero, leads to

f:u,aCD‘ i ,1.0{ } 0. (2.37)

j=0

The matrices R/8U and OR/3X (the residual sensitivities to grid nodal coordinates, which are
needed in the calculation of 8R,/3B), are constructed in exactly the same fashion as R(U), namely
by looping over the edges of the triangulation. This allows for debugging and comparison with finite
difference quantities at the edge level. The corresponding equation to Equation (2.5) for sensitivities

is
Z[ ].kU,,, (2.38)

ik=1

where, for example, for an interior edge,

laUp, = [~ "’F* S+ 5o (SPIANAW ~ LAW™, AW*)) +
7

[BU 2

(SP|A|)aiUJ_(AW.-k - L(AW~,AW)*))]Ug,

For the adjoint problem the transposed Jacobian is required.

(Cr: = Z[ Tl (2.39)

The chain rule is applied to the forcing term derivatives. Thus, we have:-

OR ORdX

B = 29X 48 (2.40)

and dX/dp, the variation of the nodal coordinates, X, with respect to the design variables, 3, is
also calculated by looping over the edges. The grid movement algorithm and the calculation of the

grid movement sensitivities are discussed in the next subsection.
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2.3.1 Sensitivity and Adjoint Boundary Conditions

Implicit inclusion of zero-normal velocity boundary conditions in the residual definitions for the Euler
equations, as described in the Section 2.1, guarantees that the implicit function theorem — used
in deriving Equation (2.29) holds automatically and that correct sensitivities will be calculated.
Taking this approach rather than carrying out an a posteriori sweep to zero the nodal normal
velocities allows a straightforward boundary treatment and avoids complications associated with
differentiating the velocity projection process. For Navier-Stokes simulations, the & posteriori no-
slip condition enforcement process cannot be avoided but a similar treatment of boundary adjoint

and flow sensitivity variables is far more straightforward as described in the next paragraph.

The effect of the no-slip boundary conditions is to eliminate the momentum equation residuals at the
wall from the system to be solved. Therefore the adjoint variables (which are in essence Lagrange
multipliers for each nodal residual equation[17, 23]) corresponding to the momentum equations at
the wall should have no impact on the final adjoint solution elsewhere [3]. In the current implemen-
tation, this has been by performing an & posteriori sweep on the wall boundary nodes in which the

momentum adjoint variables are zeroed out.

2.3.2 Mesh Movement

Grid motion is accomplished using Jacobi-like iteration based on the force equilibrium of springs

one of which lies along each edge of the triangulation. The relaxation scheme is

-.In+1 _ Z k.’jg;-‘

" =S (2.41)
where k;j = |AZ;;|~! and

X+l = Xn 4 gntl (2.42)
and & is the vector of nodal displacements. Therefore the grid sensitivity is simply

dX 96" 95" asV' o6 88° (2.43)

a8~ 88 95" Tos a6 0B

where we have performed N Jacobi iterations of the grid relaxation scheme. The coefficients of the

matrices, 8°/86'~! in the above product are found from Equation 2.41 while 36°/9/ is determined
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from the expression for the wing surface design variable perturbation.

For the Navier-Stokes calculations, we reverted to a scheme in which the grid movement at a location
x; is simply given by the sum of the airfoil surface modal perturbations corresponding to that value
of ;. This eliminates the potential problem of negative volume elements in the perturbed grid in
the boundary layer due to the small mesh spacing in the normal direction. This will obviously have
to be dealt with ir a more satisfactory manner when extending to more complex configurations.
Note that, in this case, there is a mechanism for relaxation of the grid perturbation to zero at the

farfield boundary.

2.3.3 Implementation Issues: Jacobian storage

One of the main obstacles to sensitivity calculation based on the Euler and Navier-Stokes equations
using the direct and adjoint approaches is that associated with the large memory cost of storing
the residual Jacobian matrix, JR/8U. The matrix is usually sparse due to compact support of the
shape functions used commonly for both the finite volume or finite element residual statements.
This results in only the immediate neighbours having an influence on R, the residual at ncde i (an
exception would be a spectral scheme). Dissipative fluxes required for stability and shock capturing
can extend the stencil to include the neighbours of the neighbours depending on the formulation

used. Nonetheless, it is obviously very expensive to store the whole sparse matrix, 6R/0oU.

One obvious improvement is to store the Jacobian entries on an edge basis. This results in the
storage costs scaling as O(N) rather than O(N?) for the full matrix. However the costs are still

large and prohibitive for 3D cases unless a parallel architecture with distributed memory is used.

Several approaches have been used in the past to circumvent these memory cost problems. In some
cases [6], schemes have been limited to first order accuracy in order that JR/0U may be more easily
stored due to the smaller stencil. An alternative option is to resort to schemes in which the entries
in 8R/AU aie recalculated “on-the-fly” [30, 14]. The authors found that although this obviously
provides enormous memory savings, it results in large CPU cost increases [17] — about a factor of

four increase for our 2D and 3D Euler schemes.

Use of the continuous sensitivity analysis approach (25, 38] avoids these problems since the relaxation
scheme used for solving the flow analysis system can be recycled to solve the adjoint problem.

Stability can be provided either by reverse biasing of the difference operators due to the reversed
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direction of the zone of dependence for the adjoint problem or simply by addition of a dissipative
flux of the same form as that for the flow analysis scheme. Of course, one of the drawbacks of the

continuous sensitivity analysis approach is that calculated sensitivities cannot be exact except at

the limit of an infinitely fine grid.

The extension to Navier-Stokes introduces further complications. Use of Scheme I {14, 16] results in
a very small stencil for the Euler equations causing low memory costs for 9R/0U. However, when
viscous stresses and heat fluxes are included when extending to the Navier-Stokes equations, Scheme
I loses its small stencil advantage. (This is because exact integration of, for example, the viscoue
fluxes results in dependencies on the 3rd (and 4th in 3D) nodes in the 2 elements containing a given
edge.) Switching to an element-based data structure because of this, causes an increase in memory

for both flow analysis and a large increase in the size of SR /9U for sensitivity analysis.

Reverting to the control-volume-average gradients in Scheme II and implementing the Jacobian
storage scheme described for Scheme I without adaptation results in a far higher memory cost
especially in 3D. This is because the residual contribution for a given edge is dependent on the
nodal gradients at either end of the edge, and the gradient at node i is in turn dependent on its
immediately adjacent neighbours as shown in Equation (2.21). Therefore the residual contribution

for edge ik can be expressed as:
[R]l'k = [R]ik(Uii Ukl Uil y* Ty Ul'y.‘ ) Ukl [} Ukﬂk) (244)

[Rix] can be dependent on as many as (2 x 10+ 2) nodes in 2D and (2 x 40 + 2) nodes in 3D. Direct

calculation of each dependency obviously results in a prohibitive memory cost for IR /0U.

This problem can be avoided by calculating dR/AU in two stages. It can be seen from Equations

(2.2), (2.6) and (2.11) that the residual contribution for a given edge can be written as
R(U) = R(U,U,;;U) (2.45)

Following previous researchers, e.g.[5], we apply the chain rule and obtain,

R _ OR R
dU ou; 90U

R OR 3U.,
aU; " 8U,, 8U

(2.46)
where we have used the shorthand U,; = 8U/dz;. In addition further savings can be realized by
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eliminating redundancies in the otherwise, quite large dU,,/0U matrix. It is found after examining
the expression used to calculate Uz,, Equation (2.21), that each conservative variable component
is only dependent on neighbouring nodal values of that same conservative variable component.
Therefore 84U, /80U is only nonzero if the differential with respect to the same conservative variable
components is sought. Also U, /0U is the same for all conservative variable components. Therefore
dU,,/dU is quite small, and R /JU can be stored using about the same amount of memory as was

required to store the Euler residual jacobian based on the Scheme I discretization.

In practice, a small connectivity array additional to the normal “side” array is needed. This repre-
sents the indices surrounding a given node. The entries of the matrix, dU,/dU, are then accessed
according to the ordering of the “surrounding nodes” array. Care is required in perforining the chain
rule multiplication in order to avoid a prohibitively slow calculation. For example, an inefficient im-
plementation of the multiplication representing the contribution via the gradient — subscript I in
Equation (2.46) — to the update of the flow variable sensitivity, would be as follows,

OR; i

RHS; iy = (
0Gj,jv.ig

8G j,jv.ig OUk,jv
OUkjv OB

) (2.47)

in which the whole calculation takes place within a loop over edges and the parenthesized multipli-
cation is performed using a nested loop over the surrounding points within this loop over edges. (In
Equation (2.47), subscripts 7, j and k represent nodes, subscripts iv and jv represent components
of the state vector U at points 7 and j, respectively and jg represents a component of the vector
in one of the directions z;, =2 or z3.) However, the calculation can be performed much more effi-
ciently if the parenthesized multiplication is performed as a loop over points with a nested loop over

surrounding points

0Gjjvis _ ;9Gjjv.ig OUk,jv

= 2.48
before the final result is obtained using a loop over edges
RHS, 5, = oriv 9Gsivdo (2.49)

0Gjjvjqg OB

The calculation can be performed in a similar manner for the adjoint methed. In this case the

following product is required to the find the update to the adjoint variable:-

OR;,iv B
RHSy j» = ((6_@,,—-.,),, Vi iv (2.50)
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- @ALQEM) y
N (3iju.jg AU jv Vi (2.51)

aRt.w ) an.l'v.!'g

I“.l 2. 2
(‘b anJvJy aUk..iv ( 5)

Here, the order of looping over edges and looping over points must be reversed. First, an intermediate

variable was calculated by looping over edges:-

L 6R1 iv
Qj.jv.jg = BGJ v '!’i iv (253)

Then the calculation is completed by looping over points with a nested loop over the surrounding

points:-

aGJ ]V

RHSk jy = s,

‘b Jv.gg (2.54)

2.4 Time Integration

2.4.1 Flow Analysis

In the current research we have used a four-stage explicit time-stepping scheme for the Euler calcu-

lations. Specifically, the form of the explicit method is as follows.

ul) = ur

ng) = Ul+a —1R(l)

U = Ur+ e fRY (2.55)
UE” = Ul+as %?RES)

UMM = P 4 oy BLRW

where R(*) = R(U®) is implied and (a;, az,a3,a4) = (0.25,0.333,0.5,1.0).

For the Navier-Stokes calculations it was found that an implicit scheme was needed due to the

small sizes of the elements in the boundary layer in the normal direction and the resulting slow
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convergence rates. For preliminary studies a point implicit time-stepping algorithm scheme was
used. It was found to allow at least a doubling of the asymptotic convergence rate for one fourth of

the per-iteration CPU cost of the multistage scheme for the adjoint calculation.

The point implicit algorithm follows the ideas elucidated in [20, 21], but differs in that the exact
block diagonal entries of the JR/8U matrix are used on the left hand side as opposed to only the
first order terms. In brief, the relaxation scheme is

LAU; = (Q; + At, gg JAU; = AR, (2.56)

where
U;‘“ = Ut + AU;. (2.57)

Finally, a viscous correction was made to the At; in an effort to ensure that the viscous tinie step

limit is not exceeded, thereby compromising stability. This correction is given by

At

Aty = —————
]. + 4/R6A3‘

(2.5%)
where Ati™ is the time step limit found using linearized Fourier analysis for the inviscid scheme
(18] and Rea,; is the Reynolds number based on the length of the smallest edge in the elements
surrounding node i. It has been found by several researchers that this stability limit can have a

large influence for well-resolved, low Reynolds number flows (46, 1, 9.

2.4.2 Sensitivity Analysis

It is possible to adopt exactly the same relaxation algorithm to solve equations (2.4), (2.29) and
(2.32). This is done by introducing an artificial unsteady term into, for example, the adjoint equation

resulting in the following semi-discrete equation.

dy; OR; aCp, " _
& dt,+[aT] il [BU,} = (2.59)

These schemes possess the same stability properties because the spectral radii corresponding to the

direct and adjoint sensitivity analysis schemes are identical to that of the linearized flow analysis
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scheme in its semidiscrete form

% ~ - Ql'_)g—g:zmy (2.60)
which governs its asympotic convergence behaviour. Here, AU; represents the error from the steady
state solution. The spectral radius of the errormode amplification matrix implied by Equation (2.59)
is the same as that for the linearized flow analysis since transposing a matrix does not change the
modulus of its eigenvalues. Indeed for all calculations performed using Scheme I, the asymptotic
convergence rate of analysis, direct and adjoint schemes was found to be very close. A sample set

of convergence plots based on Scheme I is shown in Figure 2-3.

To extend the point implicit timestepping scheme to the adjoint system, it is necessary to replace
L with LT, since this ensures that the eigenvalues of the error amplification matrix remain the
same as for linearized flow analysis. As can be seen in Figure 2-4 which shows the convergence
histories for flow, sensitivity and two adjoint analyses for flow over a NACA0012, identical asymptotic

convergence behaviour was found using this approach.

2.4.3 LED CFL-like Condition

It was found that use of a linearized Fourier stability analysis to determiine the allowable timestep
[18), allows convergence to machine accuracy only for very low CFL numbers for 3D inviscid problems
usizg Scheme I. For practical CFL levels, limit-cycling was observed. It is found that for flow analysis,
the solutions produced are acceptable when this limit-cycling occurs at residual levels that are low.
However, the sensitivity analyses performed for baseline state vectors U whose solution convergence
histories exhibited this limit-cycling behaviour can be unstable at the CFL numbers that the analyses
were run at. For example, at o = 0.5, limit cycling was typically observed for flow analysis and the
sensitivity analysis was unstable, while for ¢ = 0.05, convergence to machine accuracy was typically

found for both flow and sensitivity analyses although this was very slow.

The problem was solved by supplementing the local timestep calculation with a check on violations
of the LED CFL-like condition. For a scalar equation, TVD conditions for the semidiscrete form of

a scheme that can be expressed as

du E
o — . 4 —
dt g Coi(Ui — o) (2.61)
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i >0 i=1,--, K (2.62)

where K reprecents the total number of nodes that contribute to the residual at node i. When the

Forward Euler time discretization is performed, the fuily discrete scheme is

K K
upt! = ul + At Eco,-(u.- —Uo) = Y doithi + oty (2.63)

i=1 i=1
In this case, the TVD conditions become

doj = Dtcej >0 j=1,---,K (2.64)

K
po=1-AtY coi>0 (2.65)

i=1
The latter is a multidimensional LED CFL-like condition.

For the discretization of the Euler equations using Scheme I (described in Section 2.1), with time
integration algorithm given by Equation (2.55), a similar approach i¢ used. Since Yok S = (0,0),
the residual, which includes the “physical” contribution — given by Equation (2.6) — and the

dissipation term — given by Equation (2.12) — can be rewritten as

K — —
Fe-F, = S - L AvT— o
R, = _kz{ "2 -S.-k——2—P|A|(P AUy - L(P'AU-,PT1AUY))}
tk=1

P|A|(P!AU; — L(P~'AU-,PT1AUY))}

_ f:{SA(Uk -U,) S
ik=1 2 2

_ 3" (SPA-IADPTI(U -

: Uo) §P|A|(L(P"AU‘,P“‘AU+))} (2.66)

ik=1

If this represents the residual at a typical stage in the Runge-Kutta time integration scheme —
Equation (2.55) — then premultiplying both sides of the expression for the change in state vector,
AU, for that stage by P~! to get W(n+1) — W(n) x P=1(U(n+1) — (), the stage change in the

characteristic variable vector:-

P (Ut gy wint+1) _ win)
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—ai.m- At. E{S(A !I;I)AWko

Q

% A(L(AW=, AW*)
ik=1

Q

At,(Z( CiMtAW + CLPY AW PY + CRAAWES) + (2.67)

ok=1

bou

2 Cbau AWbou

kop
where the four coefficients in the inner parenthesis represent maximum multipliers of characteristic
differences, AW = P~1AU. (Note that an approximation sign must be used here since P is in fact
different for every edge.) They correspend to interior “physical” fluxes, 1st order diffusive fluxes,
antidiffusive flures and boundary fluxes, respectively, and ara found by equating coefficients between
the last two equations. For example,

Cmt upw _

u SAmaz (2.68)

g
Q
These two coefficients are the ones that already appear in the calculation based on lincarized Fourier
stability analysis (usually only for the first order scheme) and are the ones used commonly to calculate
the allowable local timestep. It is apparent that an extra term ought to appear if the total variation
is desired to decrease. This “antidiffusive” coefficient can be found by performing the following

manipulation on the averaging function

L(AW;O, AW:O = ¢(TID)AW;O
= ¢(r:¢,)P_l (€orAUgr + €5,AU,4) (2.69)
Hence we find
ag
Cf:‘ = 'Z:(Cir + fia)S/\maz¢(r)lma: (2.70)

where ¢(r) is the widely used notation for the limiter function and is related to L(u,v) in Equation
(2.69) by L(u,v) = u¢{v/u) . For the present case, with the minmod limiter, #maz = 1. Finally the
LED CFL-like condition analagous to Equation (2.65) for the Euler equations using Scheme I is

edges bou
;=1 At 2 (Citt +CP* + Ciy + ) Chey (2.71)
kip

The supplemental LED check consisted of modifying At; such that u; > u; = 0 was obtained. In
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fact it was found that this led to rather small values for At and consequently, slow convergence and
subsequent investigation revealed that using a threshhold value of 1, < 0 allowed quick convergence
without limit-cycling. Tigure 2-5 shows the convergence histories of a typical flow analysis scheme
with and without a check on the LED CFL-like condition (using p; = —1). It can be seen that the
check leads to dramatically improved convergence properties. Furthermore, the sensitivity calcula-
tion, with an identical At, was found to be stable for the CFL number the analysis scheme had been

run at.

2.5 Parallelization

The resulting solution algorithm is readily parallelised, using domain decomposition and explicit
message passing. The implementation is such that the message passing libraries MPI or PVM can
be employed and the code can run on a variety of platforms, ranging from clusters of workstations
to mainframe parallel machines, such as the IBM SP2 and the CRAY T3D. At present, the mesh
generation is carried out in a serial manner and the computational mesh is decomposed after the
mesh generation is completed. It has been decided to follow a strategy in which the mesh is parti-
tioned in such a way that edges belong to a single subdomain, whereas nodal points may be shared
between several subdomains. The domain is decomposed using a coordinate bisection algorithm. All
the communication arrays, necessary for the transfer of information between the subdomains, are
evaluated during the domain partitioning stage. Within each subdomain, the edges are subdivided
into two groups. One group contains the inter-domain boundary nodes, i.e. the nodes requiring
communication. The second group contains interior nodes only. Typically, a loop over all the edges
containing boundary nodes is performed first. The values accumulated at the boundary nodes are
then broadcast to the neighbouring domains. The interior edges are considered next and the infor-
mation from the neighbouring domains is received. In this way, communication and computation
take place concurrently. The parallel efficiency achieved using this strategy with 12 processors on
the IBM SP2 at MIT is higher than 95% for the simulation of practical problems. With this im-
plementation, the inviscid flow analysis code (based on Scheme I) requires 0.32 microseconds per
time step per mesh point while the adjoint code (with Jacobian calculations performed on the fly,

as discussed above) requires 2.42 microseconds.
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2.6 Optimization Algorithm

Two unconstrained optimization algorithms were used: (1) the BFGS algorithm, which is an efficient
gradient-based algorithm suitable for use when gradients are calculated via either the adjoint or the
direct method and (2) the Inverse Design Newton method, suitable for use especially with the direct
method, which uses the flow variable sensitivities to make an estimate of the Hessian matrix. These

ar discussed in the following two sections. Constrained methods are discussed in the last subsection.

2.6.1 Unconstrained BFGS

In the BFGS method (19, 37], an increasingly accurate estimate, By, of the Hessian matrix, H,
{whose entries are given by H,; = %) is made based on changes in the gradient vector along the

optimization path. The expression for the updated approximation to the Hessian at iteration k is

1
Bi+1 = By + gx81 + J——T—kykyf (2.72)

E;f Pk LY P

where g;. is the gradient while py is the search direction both at iteration k, Yk = 8k+1 — g and 6,

is the step size from iteration & along direction pi. A Newton step is then taken, whereby

Bipr = —gi (2.73)

and the update to the design vaiiable is

Bis1 = B + 6kpr. (2.74)

The initial estimate for the Hessian is By = 1.

To find éx, an adapted version of the Golden Section line search was used for some inverse design
optimization cases discussed in Chapter 4. For those design iterations where the design variable up-
date led to an increase in cost function, due to the nonparabolic nature of the cost function variation
for example, the design change was continually reduced by an amount given by the golden section
factor AB*! = 3—'@@Aﬂ" until a decrease in the cost function was found. Otherwise Equation (2.73)

was used to perform just one update on the design vector for each iteration, k, and 6 = 1 is taken.
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2.6.2 Unconstrained Inverse Design Newton

This is a Newton algorithm [12, 19] in which an approximation, By, of the Hessian matrix (H) is

mrade to estimate the location of the minimum.

N Op dp
Z 36, 56, (2.75)

where Ny, is the number of point on the wing or target surface. This estimate becomes increasingly
accurate as the target is approached. Once again Equation (2.73) is used to find the update to the
design vector. The “informal” form of the Golden section line search described in the previous

section was also used with this algorithm.

2.6.3 Constrained algorithms

For constrained optimization problems in Chapters 4 and 5, the approach taken is to incorporate
the constraints during the optimization stage. This approach assumes the availability of constraint
gradients aj; = 8c; /8 and partially solves a sequence of linearly constrained subproblems. Each
linearly constrained subproblem is one in which the constraint is modelled as possessing linear

variation,
Ck=cr+ AL( (276)

where A; is a matrix whose rows are the constraint gradients, a , for subproblem k.

We shall first discuss the incorporation of constraints in the context of the Steepest Descent method.

The extension to the more efficient BFGS algorithm is discussed afterwards.

The Constrained Steepest Descent method finds a search direction, p, by simply subtracting from
the steepest descent direction, —g, all components of the scaled cost function gradients which are
parallel to the set of constraint gradients a;. The Constrained Steepest Descent method can be
shown to be equivalent to the Steepest Descent method in the feasible subspace and in turn to
augmenting the cost function with a term of the form —pufc(B) to form a Lagrangian [12, 19].
The Lagrange multipliers, u,, are determined by solving a system including equations defining the

steepest descent direction of the Lagrangian and equations enforcing the constraints. The search
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direction thus obtained can be expressed as

Pr = —gk + AT[ALAT] ' Asgs (2.77)
which can be alternatively written as

Pr = ~ZZi gk (2.78)

where Z is the matrix whose columns form an orthonormal basis for the space spanned by the set of
vectors orthogonal to the rows of Ag. In this work, Z; is formed by performing an LQ decomposition
of Ak.

For every Constrained Steepest Descent direction, a line search is performed. If § denotes the line
search parameter, a one-dimensional quadratic model, F(8), of the objective function along the
search direction is constructed. The algorithm used makes use of the slope information available at
the start of the line search but is tailored to avoid further slope calculations due to the relatively high
ccst of adjoint analysis relative to flow analysis in our explicit algorithms. In short, it involves first
taking a step, along the search direction, that is small enough so that a reduction in the cost function
is guaranteed. Thereafter, the minima of successive one-dimensional quadratic representations of the
search space are tested until no further reduction in F(8) is found. The successive quadratic models
are generated using slope and function information which follows the quadratic/cubic backtracking

algorithm described in Dennis et al [10].

The Constrained Steepest Descent algorithm used in this work varies from the “sequence-of-linear-
subproblems” algorithm suggested in [19] in that each linear subproblem is only partially solved.
Once an adequate estimate of the minimum in direction p; has been found, a new linear subproblem
is formed by constructing a new model for the constraint variation as given by Equation (2.76).
The constraint gradients a; are computed by solving the constraint adjoint equation — analogous
to Equation (2.32) — at f3,, the design variable vector found at the end of line search k. This
modification to the usual approach is intended to avoid wasting effort in finding the optimum for a
subproblem, to a high degree of accuracy, while still being far from the minimum of the nonlinearly

constrained problem.

The nonlinearity of the constraints requires an algorithm for returning the design back to the feasible
subspace at the end of each subproblem line search, k. This is done by performing a projection, in

the subspace AT spanned by the constraint gradients, a;. Therefore, the step qx required to return

46



the design to feasibility is a combination of the constraint gradients,
— AT
ax = A py (2.79)

where py is a vector in the subspace Y formed by using the constraint gradients a; as a basis. The

feasibility condition is simply

Creasible = €k + Axqx = 0. (2.80)
Elimination produces

pr = —[AsA]] ek (2.81)

which is an easily solved M x M linear system. Finally, we arrive at the starting point 8, for the

next subproblem

Bi+1 = Bi + 0kPr + Q. (2.82)

The algorithm for constrained optimization method described, can be extended to the more efficient
constrained BFGS (quasi-Newton) method that was actually used in the three-dimensional calcu-
lations. In the uncenstrained BFGS algorithru, an increasingly accurate estimate of the Hessian

matrix is built up as discussed in Section 2.7.1. The details of the algorithm are described in [19].

The modification to the BFGS algorithm for incorporation of constraints is simply to form the
approximation to the Hessian in the subspaces Z, found for each subproblem, k. The resulting

expression for the updated approximate projected Hessian is

1 T 1 T
BZ‘ =BZ.+‘—_ z2.8z, + T——F—Yz.Y (2-83)
k+1 & E%.,qu 82, 2y 51:}'2‘ 2 kJ 2y

where pz, = ZTpr, yz, = ZT(gk+1 — 8x) and & is the step size from the previous iteration. As

before, a Newton step is then taken, whereby

BszZg = —BzZ. (2‘84)

and the search direction is found using px+1 = Zpyz, .
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The advantage of the BFGS algorithm over the Steepest Descent zlgorithm is that once a good
estimate, By, of the local Hessian, H, is formed and once the current design 3 is close enough to
3°P*, quadratic Newton convergence is found. Also, for the problems we have encountered, we have
found that after a sufficiently accurate first line search, the constrained BFGS algorithm requires

only one solution to be performed per line search.

Furthermore, it is noted that implementation of the BFGS algorithm in the subspace Z; orthogonal
to A’,’: ensures that the Hessian approximation, By, remains positive definite (provided sufficient
progress is made towards the minima of each line search) even though the subspace Zj in general
changes from one iteration to the next. (Note that an algorithm which forms the BFGS approximate
Hassian Bj in untruncated design space, and follows this by projection of the resulting direction
px into the feasible subspace, may form a non-positive-definite Bx. This may imnpede or prevent
convergence of the optimization process [19].) For the current algorithm, the fact that Zx changes
causes By to more slowly approach the actual Hessian H, and thus slows convergence. However, in

our tests so far, we still observe adequate asymptotic convergence.

Finally, it is noted that for the BFGS method, each design iteration requires M flow solutions as
well as 2M adjoint solutions for the sensitivities of the objective and the constraints (barring the
first iteration for which we find it useful to perform an accurate line search and therefore nM flow

solutions where n > 1 is some integer).
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Chapter 3

Validation

This chapter presents a brief review of some of the validation exercises performed for the flow and
sensitivity analysis algorithms using Scheme I and Scheme II. Scheme I was used for the inviscid
examples presented here and only sensitivity validation examples are presented. Scheme II was used
for the viscous examples presented here and both flow analysis and sensitivity analysis validation

examples are presented.

3.1 Inviscid Sensitivity Validation

Validation of design variable sensitivities from selected applications are presented in this section for
the algorithm referred to above as Scheme I. Table 3.1 shows cost function sensitivities to these
design variables. The first example uses Cy and C;— Equation (D.3) and Equation (D.2) — for
the cost function while the last three examples use the area-integrated sum of squared differences of
the actual pressure from a target pressure distribution over the target surface, as given by Equation
(D.1).
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Application | Cost Design AD AD FD
Function | Variable | (Adjoint) | (Direct)

2D Single | Ci a 0.231 0231 |0.233
2D Single | Cq a 1.69e-2 | 1.69¢-2 | 1.72e-2
2D Single | C camber | 24.63 2463 | 24.35
2D Single | Cq4 camber | 1.451 1.451 1.481

2D Multi Inv Des | flap rot. | 1.93e-4 1.91e-4 | 1.88e-4
3D Single Inv Des | camber | -0.634 -0.635 -0.656
3D W/B Inv Des | camber 1 | -3033. -3020. -2807.

Table 3.1: Comparison of Various Sensitivities

3.1.1 2D Single-element Flowfield — Angle of Attack Design Variable

The grid and Cp distribution from the flow analysis solution are shown in Figures 3-1 and 3-2.
Figures 3-3 and 3-4 compare distributions of the local values of dpF/8a as found using the direct
method and the finite difference method, respectively. Figure 3-5 shows a comparison of analytic
versus finite difference sensitivities 0pE/Oa for the angle of attack design variable on the airfoii
surface. Close agreement is evident in all cases. Use of these direct method solutions as part of the
calculation of dC;/da and dCy/da results in the values listed in the first and second rows of Table
3.1. (Also tabulated are corresponding divided difference and adjoint values.) The third and fourth
rows contain sensitivities to the NACA0012 meanline design variable whose associated functional

variation in z is given by Equation (C.9).

3.1.2 2D Multielement Airfoil Flowfield — Flap Rotation Design Variable

The grid and flow analysis solutions are shown in Figures 4-1 and 4-3. The direct-method point
flow sensitivities were validated by comparing them with corresponding finite difference quantities.
An example of this comparison is shown in Figure 3-6 where surface density sensitivity to the flap
rotation design variable — given by Equation (C.12) — is plotted versus axial location for finite
difference and direct sensitivity analysis. Other variables tested — such as a main element camber
variable — Equation (C.9) and a flap vertical deflection variable — Equation (C.11) — exhibited

similar agreement. Correlation away from the airfoil surface was also good. Cost function sensitivities
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as calculated by both direct and adjoint methods - using Equations (2.29) and (2.33), respectively
- were validated also by comparing with finite difference. These comparisons are presented in row
5 of Table 3.1 for the flap rotation design variable. Differences on the order of less than 1% were
usually found betweer adjoint and direct methods (depending on the level of convergence), while
comparison of the analytic sensitivities versus finite difference produced differences on the order of

2% or so but, in this case, also depending on the size of the design variable perturbation.

3.1.3 3D Infinite Straight Wing Flowfield — Camber Design Variable

The grid and the C, distribution from the flow analysis solution are shown in Figures 4-7 and 4-
9. Figure 3-7 shows a comparison of surface density sensitivity to the camber design variable —
Equation (C.9) — as calculated by direct and finite difference methods (using Ag = .0001c). It
can be seen that the agreement is quite good, with some of the noisiness in the finite difference
plot. being due to traversal of discontinuous portions of the limiting function distribution for some
edges. Further validation of the sensitivity calculations was provided by performing the full cost
function sensitivity calculation for adjoint, direct and finite difference methods. For the camber
design variable, the values are printed in row 6 of Table 4.1. (The cost function is calculated based
on a target, p*(z), generated by perturbing the design variables by such an amount as to reproduce
the NACA1410 airfoil - or a close replica of it since thickness was applied vertically from the meanline

rather than normal to it).

3.1.4 3D Wing/Body Flowfield — Camber Design Variable

The grid and flow analysis solutions are shown in Figures 4-11 and 4-13. Figure 3-8 thows a
comparison of analytic versus finite difierence sensitivity at n = 66% for a design variable whose
associated chordwise f;(z) and spanwise gx(y) finctions are given hy Equation (C.9) and Equation
(C.13), respectively. The chordwise and spanwise functions are combined using Equation (C.3).
For this design variable, Equation (C.13) is used with yx_1 = Yroot, Y& = Ymidspan and Y41 = Ytip-
Again agreement between the analytic sensitivities and the finite difference sensitivities is quite good
with discrepancies being due to the size of the finite difference step size. Similar agreement is found
at other span stations and for other state vector variable sensitivities. Full cost function sensitivity
calculations were performed and are shown in row 7 of Tab'e 3.1. The cost function in this case is

calculated based on a target pressure distribution generated by perturbing the two camber design
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variables with a chordwise function given by Equation (C.9) as above and two spanwise functions
given by Equation (C.13) and two thickness design variables with a chordwise function given by
Equation (C.10) and the same two spanwise functions given by Equation (C.13). The first spanwise
function is described above. The second uses yx—1 = Ymidspan, Y& = Yeip and Yk4+1 = Yeip. The
perturbation sizes for the target correspond to vertical movemeat of the mean line by Ak (£ =
.4) = .02 (at the spanwise design variable maxima) for the camber variables and to a change in

maximum thickness of —.04c for the thickness variables.

3.2 Viscous Flow Analysis Validation

As mentioned earlier, the flow analysis scheme — Scheme I — used for the inviscid optimization
examples is quite dissipative. Although the flow analysis scheme — Scheme II — used for the viscous
examples uses a slightly different gradient calculation method for the dissipation, the constants
multiplying the dissipative fluxes were chosen to result in approximately the same net amount of
dissipation for Schemes I and II. Hence, although the objective of this research is to produce an
efficient design optimization scheme rather than a high fidelity flow analysis scheme, it was felt that
it would be prudent to verify that the flow analysis scheme does possess some degree of accuracy, and
that the artificial dissipation does not overwhelm the physical viscosity present for the Navier-Stokes
calculations. Towards this end, 2D and 3D validation exercises are presented which demonstrate
that the corresponding codes do reproduce, to an adequate degree of accuracy for the purposes of

this research, the expected results for flow over a flat plate and flow over a NACA0012 airfoil.

3.2.1 2D Flat Plate

This test case or variations of it have been extensively tested by other researchers [34, 2, 47]. At
sufficiently large distances from the leading edge, the boundary layer profile is expected to closely
approximate the Blasius profile [50] — provided sufficient spatial resolution is used. The grid used
is shown in Figure 3-10. No slip boundary conditions are applied along the lower boundary from
z = 0 to z = 1.5; free slip boundary conditions are applied on the lower boundary from z = -1.5
to z = 0; non-reflecting Riemann boundary conditions are applied at the left boundary; pressure is
specified while the appropriate characteristic variables are extrapolated from tne interior along the

top and right boundaries. Flow is from left to right. Freestream conditions are My, a = 0° and
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Re = 1000.

The profiles found at z = 1.215 using Scheme II for successively coarser grids (coarsened by removing
every other vertical and horizontal in multigrid fashion [2]) are shown in Figure 3-9. It can be seen

that the solution spatially converges to a close approximation of the Blasius solution.

3.2.2 2D NACAO0012

This subsection presents the results of a more relevant validation example, that of a NACA0012
airfoil immersed in a flow with the following freestream conditions: M = 0.8, a = 3.5°, Re == 2000.
Without a theoretical solution with which to approximately validate the results, we resort to MSES,
a coupled Euler/integral boundary layer code [11]. The grid for the Scheme II solution is shown
in Figure 5-9. The Cp and M distributions are shown in Figures 5-10 and 5-11. There are 7081
points in the grid and 17 points in the boundary layer at the trailing edge, although only the first 9
elements are “structured” [33]. This small number of “structured” elements in the boundary layer
is the possible cause of the wiggles observable in the C, distribution. Another possible cause is
insufficient spatial resolution in the outer pari of the boundary layer. In spite of these low level
errors, surface C, and Cj distributions agree quite well with the corresponding distributions as
found along the displacement surface and airfoil surface, respectively, by MSES. This can be seen in
Figures 3-11 and 3-12. On the lower surface, agreement is quite good, while on the upper surface,
the differences are partly due to the non-zero normal pressure gradient through the boundary layer
and partly due to the larger presence of artificial viscosity in the Scheme II solution which has the

effect of thickening the boundary layer.

3.2.3 3D Flat Plate

The grid used is shown in Figure 3-13. The boundary conditions applied in this calculation are
identical to the 2D flat plate calculation with the exception that an additional symmetry boundary
condition is applied at the spanwise (or z) boundaries. Flow is again from left to right. Variation of

C, and pu for the resulting solution are shown in Figures 3-14 and 3-15.

As in Section 3.2.1, at sufficiently large distances from the leading edge, the boundary layer profile is
expected to closely approximate the Blasius profile — provided sufficient spatial resolution is used.

The profiles found at z = 0.96 — for various locations in the spanwise direction — are shown in
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Figure 3-16. It can be seen that the solution represents quite a close approximation of the Blasius
solution. Slight variation of the boundary layer profiles in the spanwise direction are due to the
effect of different control volumes at either spanwise boundary resulting in different discretization
errors. It was found that this spanwise variation decreased as the grid was refined, as expected.
Convergence to a somewhat close approximation of the Blasius displacement thickness is observed

sufficiently far away from the leading edge.

3.2.4 3D NACAO0012

A calculation was performed for a two-dimensicnal wing, formed by extruding the NACA0012 airfoi!
in the spanwise direction, with freestream conditions of M = 0.8, a = 3.5°, Re = 2000. The grid is
shown in Figure 3-17. The C, and M distributions are shown in Figures 3-18 and 3-19. The surface
C, distributions are compared with the corresponding distributions as found along the displacement
surface by MSES in Figure 3-20. Both surfaces exhibit good agreement and boundary layer quantities

such as 6* and Cy (not shown) also agree well.

3.3 Viscous Sensitivity Validation

Validation of design variable sensitivities for selected applications are presented in this section for

the viscous algorithm referred to above as Scheme II.

3.3.1 2D NACA0012

Sensitivity calculations were performed based on the solution described in Section 3.2.2. Comparison
of the resulting dpu/dc distribution (Figure 3-21) with that found using the finite difference method
based on Aa = 0.01 deg (Figure 3-23), reveals good agreement. Comparison of 8C;/86 and 0C4/0f
as found by finite difference, adjoint and direct methods are shown in Table 3.2 below for design
variables of a and a NACA 4-series meanline camber mode — Equation (C.9). Quite good agreement
is found for a. The discrepancies for the camber mode are believed to be due to the finite difference
step size used in making that estimate. A8, = 0.001 was used corresponding to a movement in the

airfoil surface of 0.1% of chord.
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To put a proper perspective on the source of this discrepancy, much can be learned by examining
the sensitivities of the only flow quantities that contribute to the lift and drag. Surface pressure
sensitivities are compared in Figure 3-22 revealing good agreement. Surface values of d71,/9 are
shown in Figure 3-24 and also reveal good agreement. Similarly good agreement is observed for
8712/8B and 3152/80. Since these 4 scalar valnes are the only ones that contribute to C; and Cy,
8C, /8B and 8C/3p are expected to show similarly good agreement. The fact that the discrepancies
shown in Table 3.2 are larger than expected is presumably due to the small errors — observable in
Figures 3-22 and 3-24 — for an integration which essentially involves taking the difference of two
large numbers to obtain a small number. This is a scenario which is conducive to error magnification.
Nonetheless it would probably be concluded at this juncture that the analytic derivatives are the
ones with higher accuracy after examination of Figures 3-22 and 3-24. Further tests in the course of
the optimization exercises (discussed in Section 5.1.2) by comparison of AB;0C;/88; with AC; and
AB;0Cq/3B; with ACy provided further definitive evidence in this regard.

B 8Ci/0Blpp | 8C1/8Blag; | OCi/0Bl4ass

camber | -0.9086 -1.0075 -1.0075

a 0.04707 0.04811 0.04811
9Ca/0Blpp | 0Ca/0Blog; | 9Ca/0Bl4i

camber | -0.0385 -0.04902 | -0.04917

a 0.00627 0.00634 0.00634

Table 3.2: Comparison of 2D sensitivities to @ and NACA 4-serics meanline mode

3.3.2 3D NACA0012

Sensitivity calculations were performed based on the solution described in Section 3.2.4. Com-
parisons (finite difference versus analytic derivative) of the resulting surface dp/3p8 and GpE/0f
distributions are shown for the angle of attack design variable (Figures 3-25, 3-27) and the NACA
4-series meanline mode design variable given by Equation (C.9) (Figures 3-26, 3-28) revealing good
agreement. The adjoint sensitivity module has been fully validated versus both finite difference and
the direct sensitivity module. Table 3.3 shows the results for the parallel version of the code using

only C; as the cost function.
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B aCl/aﬂ]FD aCxlaﬁI.. j
camber | -0.3296 -0.3700
a 0.03943 0.03917

Table 3.3: Comparison of 3D sensitivities to & and NACA 4-series meanline mode
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nacs/abs/Ms=0.8,a=1.25;nu=.0625
Box from (-0.23, -0.63) to ( 1.09, 0.68)

.8;Re=2e3
Box from { -0.23, -0.63) to ( 1.09, 0.69)
Energy From -1.550To 0.150 in 17 steps.

Computational Grid

Figure 3-1: NACAQ012 Grid

naca/vis/aaqg/M=0.8;Re=2e3
Box from ( -0.23, -0.63) to ( 1.09, 0.69)
Cp Fron -1.000To 1.000 In 20 steps.

Figure 3-3: NACA0012. Analytically found dis-
tribution of dpE /da

naca/vis/aag/M=0.8;Re=263
Box from (-0.23, -0.63) to ( 1.08, 0.69)
Energy From -1.550To 0.150 in 17 sleps.

(@)

Figure 3-2: NACA(012 Cp Distribution. M =
0.8, a = 1.25°

Figure 3-4: NACA0012. Distribution of 9pE/da
found using finite difference method.

58




020

0.00

-0.20 4

-0.40
Energ

-0.60 -

-0.80

-1.00 4

4

020

0.40

0.60
X Coo

120 4

40

4.0

il
I
!
!

e aiter
e ence
—

T

-
0250

0.350

T T

T
0450 0550
Lengt

T
0.650

T

T

0.750

T

0.850

Figure 3-5: NACAQ012. Finite Difference and Figure 3-7: 3D Analytic and FD density sensi-
Analytic Sensitivities: 9pE/0a v.

0.0600

0.0500

0.0400 -

0.0300
Dens!

0.0200 4

0.0100

0.0000 4

0.0100

|

—i
—

0.00

020

0.40

T T

0.60
X Coo

T

0.80

1.00

T

1.20

1.40

Figure 3-6: Analytic and FD density sensitivity

V. X

59

tivity v. x at y=-.35 symmetry plane

1.20

1.40

Figure 3-8: 3D Wing/body Analytic and FD den-
sity sensitivity v. x/c at 67.5% semispan



0.350

0.300

3250 ¢

0.200

0.150

0.100

0.050

0.000

+

T T T Ll T
0.150 0200 0250  0.300

y

Y T T Ls
0.000 0.050 0.100 0.350

Figure 3-9: Spatial convergence of boundary
layer profile at x=1.2 with local Blasius profile

Figure 3-10: 41x17 grid used for flat plate calcu-
lations

NACA 0012
vlo Mach « 0.800
Re = 0.002¢10°

» 3,500
CL - 0.0937
Co €0 - 0.11673

Ch - 0.0226
t/0 - 0.80
Neriv » 9.00

Figure 3-11: distribution for

Surface C,p
NACA0012, Re=2000, Mo = 0.8, a = 3.5deg:
Scheme II and MSES solutions

60

NACA 0012
Ma - 0.8000 a - 3.5300° € - 0.0937 Tap X, - 1.0000
Re - 0.002-10° N = 9.00 Co = 0.11673  BoL X, = 1.0000

0.25

-0.05}
0.0

n.2 O.VM 0.8
Figure 3-12: Surface Cjy distribution for
NACA0012, Re=2000, My, = 0.8, a = 3.5deg:

Scheme II and MSES snlutions




Cp from

-0725to

1.3226

0
v
‘VA'A""': ﬁ""""""’ '
b W
1 h’n’l’l ) 0

Y,
s Y
AV
i

Figure 3-13: Grid used for flat plate calculation

x-momantum from

0000t 1.0370

Figure 3-14: pu distribution for flat plate calcu-

lation

61

var

from -0725t0 1.3226

Figure 3-15: C, distribution for flat plate calcu-
lation

0.580

B S N

0.400

e eedean-d.

0.320

0240

0.080

Figure 3-16: Comparison of 3D boundary layers
at (x,y)=(0.96,0), (0.96,0.125), (0.96,0.25) with
that found using 2D NS solver and Blasius solu-
tions



Density from 644210 1.3574

Mach number from .000010 1.0859

Figure 3-17: Grid used for 3D NACA0012 calcu- Figure 3-19: M distribution for NACA012,

lations
Re=2000, M, = 0.8, @ = 3.5deg
Cp from -6611l0 1.2408
-2.0 puses NACA 0012
v3.0 Mach = 0.800
Re = 0.002-10°
-1.5 Alfa = 3,%00
' 3D MIDSPAN CL = 0.0937
Co €0 = 0.11673
MSES CH - 0.0226
-1.0 L/D = 0.80
Nerjt = 9,00
-0-5 ......
0.0
0.5
[ —
1.0
/ﬂ
N

Figure 3-20: Surface Cp distribution for
NACA0012, Re=2000, M, = 0.8, a = 3.5deg:

Figure 3-18: C, distribution for NACA0012, 3D NS solver midspan v. MSES

Re=2000, My, = 0.8, a = 3.5deg
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Figure 3-21: dpu/da distribution for NACA0012, Figure 3-23: 8pu/ba distribution for NACA0012,
Re=2000, M., = 0.8, a = 3.5deg (Scheme II) Re=2000, M, = 0.8, a = 3.5deg (Scheme
found by direct method II)from finite difference with Aa = 0.01
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Figure 3-22: Surface Op/0f. distribution for Figure 3-24: Surface 8m,/80. distribution for
NACAO0012, Re=2000, My, = 0.8, a = 3.5deg NACAO0012, Re=2000, M, = 0.8, a = 3.5deg
(Scheme II v. Finite Difference) (Scheme II v. Finite Difference)
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Chapter 4

Inviscid Results

4.1 Inverse Design Examples

Although it is felt that inverse design is less preferable than drag minimization as a means of
designing airfoils, wings and aircraft (due to the requirement for knowledge of a desirable pressure
distribution), inverse design exercises, in which the target is generated by perturbing design variables
by a known amount, also serves the purpose of providing a more complete validation of the cost
function sensitivities across a range of design space. Also, inverse design exercises tend to be better
behaved due to the more parabolic nature of the design surface than, for example, a design surface
in which the objective function is drag with a constraint on the lift. Hence, the initial tests for the

inviscid optimization system were based on inverse design.

4.1.1 2D Multielement Airfoil

To demonstrate the accuracy of the sensitivities, a modal inverse design optimization exercise on a
multielement airfoil was performed. The baseline geometry was a NACA4412 main element with a
scaled-down NACA4415 flap placed just below and aft of the main’'s trailing edge with 3% overlap.
The initial grid is shown in Figure 4-1. The baseline solution at freestream conditions of Mo, = 0.425,

a = 9.0° is shown in Figure 4-3. Three design variables were used: flap rotation angle about a point
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near the flap leading edge — Equation (C.12); flap vertical deflection — Equation (C.11); and a
camber design variable on the main element — Equation (C.9). This camber variable is given by
a vertical surface perturbation with the same z variation as the NACA 4-series meanline [49] with
maximum camber at 40% of chord. Equation (D.1) was used for the cost function to allow modal
inverse design optimization. The target pressure distribution, p*, for the inverse design exercise was

generated by perturbing all three design variables. For example, the flap was rotated 5°.

Two inverse design optimization exercises were performed: one each based on the direct and adjoint

sensitivities.

Wirstly, based on the sensitivities found using the direct method, the geometry was perturbed to
a new state. In this case, the Newton descent algorithm discussed in Section 2.6.2 was used. The
evolutions of surface pressure distribution and geometry in the course of the direct-method-based
optimization process are shown in Figures 4-2 and 4-4. Figure 4-5 shows the variation of cost
function and design variables as a function of design iteration. Convergence to the target is reached

in 3 steps.

Secondly, with the adjoint-method-based sensitivities, we can no longer make such a good initial
estimate of the Hessian matrix as we do with the direct-method-based sensitivities. Therefore, we
use the BFGS method described in Section 2.6.1. As expected, this required more iterations (10
in this case) to reach convergence. With only three design variables, the direct method is about
twice as fast as the adjoint method. However for a larger number of design variables the adjoint is
expected to be much more efficient. Furthermore, for drag optimization in which the direct method

loses its advantage of an accurate Hessian [12], the adjoint metkod is far superior.

4.1.2 3D Single-element Airfoil

For this case, the baseline geometry was a straight wing formed from NACAO0012 sections and
of spanwise extent equal to 70% chord. The computational domain is bounded by eight surfaces
including two symmetry planes at the spanwise extremities of the wing. Freestream conditions are
My = 0.8 and a = 1.25°. Figure 4-7 and 4-9 show baseline grid and Cj, contours, respectively. Two
design variables were chosen to be that of the NACA 4-series meanline — Equation (C.9) — and

thickness distributions — Equation (C.10) — with the meanline maximum located at 40% of chord.

Next, modal design optimization was performed based on the sensitivities found using the adjoint
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method. For this case, the BFGS described in Section 2.6.1 was used. Resulting geometry and
surface pressure evolutions are shown in Figures 4-8 and 4-10 while the evolution of design variables

and cost function is shown in Figure 4-6. Convergence is found at about 6 design iterations.

4.1.3 3D High Aspect Ratio Wing/Body

This case was based on a seed geometry which included a fuselage with circular cross-sections and a
wing lofted by placing NACAQ012 sections into a planform with the following parameters: leading
edge sweep, ALg = 25°, aspect ratio, A, = 9, taper ratio, A = 0.2. Freestream conditions were
chosen to be M, = 0.8 and a = 1.25°.

The baseline grid and pressure contours are shown in Figures 4-11 and 4-13. The mesh contains
65,000 nodes and 350,000 elements. This optimization case was performed using the serial flow and
adjoint solvers. Four design variables were used. The first two design variables were camber design
variables with a chordwise function given by Equation (C.9) and two spanwise functions given by
Equation (C.13). Equation (C.13) is used with yx_1 = Yroot, ¥k = Ymidspan and Yk+1 = Yeip for the
first spanwise function while the second uses yx_1 = Ymidspan, ¥k = VYrip a0d Yk4+1 = Yip- The second
two design variables were thickness design variables with a chordwise function given by Equatioa
(C.10) and the spanwise functions given by Equation (C.13) with the same values of yx—1, yx and

yx+1 used for the pair of camber design variables.

A target pressure distribution was generated by perturbing the camber design variables by an amount
corresponding to vertical movement of the mean line of A% (Z = .4) = .02 (at the spanwise design
variable maxima) and to a change in maximum thickness of —.04c. Hence the geometry of the target
corresponds closely to a linear loft into the baseline planform of NACA2408 sections from 1 = 55%
to n = 100% and a NACAQ012 section at the wing-body intersection. It should be realized that
this represents a one-third reduction in thickness and a very large camber change, both of which are
probably much larger than the magnitudes of thickness and camber changes that might typically be
found in a transport wing design process. They therefore represent a more challenging target than

would typically be found.

Using the resulting pressure distribution as the target pressure, p*, in the expression for the cost
function, cost function sensitivities were calculated by the adjcint method. Modal design optimiza-
tion was performed using the BFGS method, described in Section 2.6.1. Resulting geometry and

surface pressure evolutions are shown in Figures 4-12 and 4-14 while the evolution of design vari-
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ables and cost function is shown in Figure 4-15. It should be noted that after the eighth iteration,
the BFGS optimization process had to be restarted because it was found that the optimization
had reached a local minimum. This is not to be unexvected considering the large design variable
changes that were being demanded. Also, at this point the thickness design variables were rescaled
such that unit thickness design variable change caused approximately the same magnitude of max-
imum airfoil surface movement as unit camber design variable change. It can be seen that after
the restart/rescaling action, the design process rapidly drives geometry and pressure to the target
distributions. The robust convergence to the target, in addition to validation exercises (such as
those described in Chapter 3 and those in [14]) provides confidence that the sensitivities are being

accurately calculated by the current scheme.

4.1.4 3D Business Jet

This optimization example is of a business jet configuration consisting of wing, body, horizontal
and vertical fins and fuselage mounted engines. Freestream conditions are M = 0.85 and a =
2°. Engine exhaust total pressure and temperature increases are not modelled, i.e. flow through
conditions are assumed. The baseline grid and pressure cortours are shown in Figures 4-23 and
4-19, respectively. The grid contains 160,000 nodes and 860,000 elements. The target pressure
distribution, p*, was chosen to be that found on the wing when the strut-nacelle assembly is removed
at the same conditions. This pressure distribution is shown in Figure 4-20. It can be seen that the
“clean wing” pressure distribution is more desirable as it carries more lift inboard due to the shock
being much farther aft. The selected design variables are all six permutations of products of two
spanwise functions given by Equation (C.14) with peaks at yroor and Ynacetle—centertine amd three
chordwise functions given by Equations (C.8), (C.4) and (C.7). Note that the chordwise functions are
given by a shear function (which is similar to a twist variable for small geometry perturbations), and
two Hi-ks-Henne functions. Note that the spanwise functions are both zero outboard of a location
y2 which lies halfway between the engine centerline and the planform break. Slope and function
continuity in the final geometry is ensured with this spanwise variation albeit at the expense of

having zero slope at the maxima of these functions.

The grid perturbation algorithm is more challenging for this case because movement of the wing-body
intersection requires nodes lying on the fuselage surface to move also. This is to avoid generation of
highly skewed elements or even elements with negative volume. This was done by taking advantage

of the circular geometry of the fuselage sections. Points close to the wing/body intersection were
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moved circumferentially by an amount determined by the product of a function, g(f), taken to be
linear in @ (the angular coordinate for the circular section associated with the local value of z) and

the circumferential movement of the wing/body intersection at. that x-location.

Ab(z,6(z)) = Ab,,/4(z)9(0(2)) (4.1)

The linear function g(#) is constructed such that it tends to zero at the symmetry plane below and
the circumferential coordinate corresponding to the lower limit of the strut which is a constrained
obstacle. The chain rule is applied to find grid sensitivities associated with this grid movement.
Ideally, a CAD tool should be used to find the new surfaces and intersection curves, along with a
scheme to automatically relocate the grid points on these surfaces. This process should be readily
differentiable which would retain the capability of calculating exact grid sensitivities. In the interest

of expediency, this task has been left as future work.

Sensitivities were calculated using the adjoint method and optimization proceeded using the BFGS
method. It should be noted that golden section line searches were used for the 2nd and 3rd design
iterations to ensure adequate reduction in the cost function and hence global convergence. This is a
common approach for quasi-Newton optimization strategies. Convergence to the minimum was found
after 7 iterations. Also, it should be noted that regridding was performed for the modified geometry
after 4 design iterations due to excessive stretching of elements at the wing-body intersection. Surface
geometry and pressure evolutions are shown in Figures 4-16 and 4-18, respectively. The final pressure
distribution is shown in Figure 4-21. Cost function and design variable evolutions are plotted in
Figure 4-22. It can be seen that much of the lift found for the “clean wing” case has been recovered.
As expected, some of this has been achieved by moving the wing away from the strut-nacelle assembly
whose blockage is the source of the high pressure region. Unexpectedly, more leverage on reducing
the cost function appears to have been found by cambering the wing and hence increasing the lift.

At the minimum, the cost function has decreased by a factor of 43%.

This was the first example performed using parallel versions of flow and adjoint analysis solvers.
Various partitioning strategies of the domain were used in this exercise, with the number of domains

used varying from 6 to 20.
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4.2 Lift-constrained Drag Minimization Examples

Results have been obtained that demonstrate that the descent algorithms described in Section 2.6.1
and 2.6.2 produce plausible optimal geometries in 2D and 3D. In order to determine the most
effective non-linearly constrained optimization algorithm for the ultimate goal, the 3D problem, a
series of tests were performed in 2D, including a variety of single- and double-point, lift-constrained
drag minimization problems. We report herein a comparison of two candidate strategies in 2D
— the subspace Steepest Descent and BFGS algorithms. These tests resulted in credible optimal
geometries in spite of the coarseness of the 2D grids. The most appropriate algorithm was then

selected to perform the 3D optimization exercise.

4.2.1 2D Two-point, Single-element Airfoil

The two 2D test cases both solve the same double-point, lift-constrained drag minimization problem.
They minimize the average drag coefficient — i.e. w; = 0.5, wp = 0.5 in Equation (2.24) — for the
following two conditions: (M, = 0.80; C,‘l'"'" = 0.3438) and (Mo, = 0.82; C',‘:'g = 0.3348). The
baseline geometry is a NACA0012 airfoil. The grid is not shown but contains very few points (658
points and 1236 elements) for the purpose of fast turnaround time. The first two design variables are
the angle of attack at either condition. The four shape design variables were Hicks-Henne functions,

which are given by Equation (C.4) for which the exponents p, are given in Table 4.1. It should

function | definition Tpeak/C
hy ay

hs Qs

hs sin(w(z/c)?-75%) | 40%

hg sin(m(z/c)!-3%8%) | 69%

hs sin(m(z/c)}-#434) | 70%

he sin(m(z/c)31983) | 80%

Table 4.1: Airfoil Parameterization for 2D problem

be noted that all the shape variables have non-zero trailing edge slope. This allows Af,., the
meanline slope change between leading and trailing edges, to vary. This is an important property

for the design variable set to possess since it provides a powerful means for changing the net airfoil
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circulation. This in turn allows the angle of attack variables to vary significantly since the lift lost due
to a reduction in a;, for example, can be compensated by a corresponding increase in Afy,.;. This
provides considerable leverage over the chordwise distribution of lift which is vital for approximating
the truly optimal shock location. It also ensures that modern, high aft-loaded, supercritical airfoils

fall into the space spanned by the design variable set.

The first optimization strategy tested was the Steepest Descent method. The search direction is
simply the negative of the cost function gradient in a scaled design variable space, as discussed in

Section 2.6.3. This scaling is performed using
Bk, = gr=0.Bk (4.2)

‘This causes the gradient components in the transformed space to be initiaily unity which in turn

causes the steepest descent method to be much better behaved, as reported in [12].

At each iteration a line search is performed. Note that rather accurate iine searches were performed
for this case. The line minimum was assumed to have been reached when the quadratic backtracking
algorithm described in Section 2.6.3 resulted in the minimum being bracketed for the first time.
However, if the constraint was violated by an amount greater than 0.001, then the line search was

stopped and the next line search commenced at the last point with |cx] < 0.001.

The evolution of the shape design variables (pane 1), angle of attack design variables (panes 2-3),
cost function (pane 4) and projected gradient (pane 5) are plotted in Figure 4-24. Note that these
are the values found at the end of each line search and after projection back into feasible space using

Equations (2.79), (2.81) and (2.82).

It can be seen that after five iterations (line searches) little change in the cost function is observed

and the design variables also have converged.

The geometry and pressure coefficient evolution are shown in Figures 4-25 to 4-27. Note that a highly
aft-loaded supercritical airfoil has been obtained. The rooftop levels have been significantly reduced
by moving much of the lift to the aft part of the airfoil. This allows the initial reduction in the
shock strength. Subsequent optimization iterations result in a shock-free airfoil at either condition
—- although it is questionable whether the airfoil would remain shock-free for the grid-converged flow
analysis solution. Furthermore, this is not a realistic pressure construction for typical jet transport
conditions, since the presence of such a severe trailing edge adverse pressure gradient would surely

cause separation if viscous effects were present. (This is, of course, entirely the behaviour we expected
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and lends weight to the argument that inviscid drag minimization exercises at transonic conditions

are only of academic benefit or of use for debugging optimization strategies.)

The second optimization strategy tested was the subspace BFGS strategy. The summary plot (Figure
4-28) for this exercise shows that the cost function converges slightly more slowly than the Steepest
Descent method. However, since only two function evaluations are required per line search (one
Newton step and one constraint correction step), while up to four or five were performed with the
Steepest Descent algorithm with the rather accurate line searches, this strategy ends up costing
less in terms of floating point operations. The geometry and pressure coefficient evolution shown in
Figures 4-29 to 4-31 show similar behaviour to that found for the Steepest Descent exercise. Also
note that the final design variable states and, of course, cost function values agree closely for the

two exercises.

4.2.2 3D Two-point, Low Aspect Ratio Wing/Body

Based on the superior performance of the BFGS optimization strategy on the 2D case, it was decided

to use it for the 3D case.

The 3D case is a double point drag-minimization exercise with w; = 0.5 and w, = 0.5. The two flight.
conditions are (Mw, = 0.9,CL, = 0.450) and (M, = 1.6,C, = 0.125). The baseline geometry is
a wing-body configuration with an area-ruled body. The wing has a low aspect ratio (AR = 2.67),
with leading edge sweep, A g = 45°, trailing edge sweep, Arg = 0°. It has uniform airfoil maximum
thickness of 5% of chord, has uniform twist of ¢(y) = 0° and is uniformly uncambered across the
span. The baseline grid is shown in Figure 4-32. It contains 1.13 million elements and 211,000 points.
An optimization exercise based on the same wing and forward fuselage and freestream conditions

but with different design variables has been reported in [28]

The baseline transonic solution (My, = 0.9) is shown in Figure 4-33. The sectional pressures are
also plotted in Figure 4-38. To achieve the required Cy, with the untwisted, uncambered wing, quite
a high angle of attack is required. Combined with the sharp leading edge, this results in a region of
high suction at the leading edge terminated by a <trong shock. However, this shock does not extend
far into the flowfield compared to the aft shock. The leading edge shock is highly swept with sweep

angle even higher than that of the planform leading edge.

Because of the obliqueness of the shock, the flow region aft of the leading edge shock remains



supersonic. This region ends in an almost unswept aft shock which is quite strong and extends
between quarter and half a chord into the flowfield. It is therefore the source of most of the transonic
wave drag. Inboard (around n = 35%), the aft shock is located at about z/c = 65%, while outboard
(around n = 80%), it is located at about z/c = 50%. The leading edge and aft shocks coalesce at
around n = 90% to form a single strong shock suggesting possible off-design problems. The relatively
far forward position of the shock invites the possibility of significant drag improvement through aft
movement of the shock in the optimization process. A very similar transonic solution was found
in [28] with shock structure very close and with the attack angle a required to achieve the target
lift distribution agreeing to two significant digits. However, the baseline drag was off by a factor of
three partially due to the quite large amount of artificial dissipation used in the present Scheme I

(and possibly partially due to the different aft fuselages used).

The baseline supersonic solution (My, = 1.6) is shown in Figure 4-34. Examination of Mach
sectional contour plots (not shown) across the span reveals quite strong trailing edge shocks but
very weak leading edge shocks. The cause of the latter phenomenon is found by comparison of the
Mach angle for the supersonic case p = sin“‘(-A}—w) = 38.7° with the leading edge sweep angle.
Therefore, based on infinite swept wing theory, one would expect the oncoming flow component
normal to the leading edge to be subsonic, and so, if even present, leading edge shocks should be
weak. The supersonic solution appears to also agree with that reported in [28] since, once again,

the attack angle a required to achieve the target lift agrees to within two significant digits.

The optimization was performed using twelve design variables. Two of these were a; and a2, the
angles of attack at each condition. The other ten were combinations of three chordwise furictions
and four spanwise functions. The chordwise functions, f;(z/c) — based on Equations (C.4) and
(C.8) — and spanwise functions, e;(y) — based on Equation (C.14) — are summarized in Table
4.2. The construction of the actual design variables from e and f is also shown in Table 4.2. Only
the twist design variable was used at the tip since the other two exhibited strange initial behaviour,
and it was decided that the prudent path to take would be to initially exclude these design variables
which might be affected by the high gradients in the region of the wing tip.

It should be pointed out that the spanwise functions ensure slope continuity, but at the expense of
requiring zero spanwise gradient at the maxima of those functions. Also it should be noted that as
for the 2D cases, the chordwise functions all have non-zero trailing edge slope and are associated with
quite high values of C, sensitivities and therefore allow close tailoring of the chordwise variation of

lift and therefore the shock position.
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func | definition range

f sin(w(z/c)%-7%5) 0<zfc<
fa sin(m(z/c)!-9134) 0<zfc<l
fs | z/c 0<z/c<]

el sin?(Z(y —y0)/(y1 — ) | Yo <y <wm
cos? (Z(y—v)/ (w2 —m)) [ m <y <w
ex |sinf(3y—w)/(2—-m)) | m<y<wp
cos?(5(y —v2)/(y3 —¥2)) | ¥2 <y <3
es | sin®(3(y—v2)/(us—¥2) |¥2<y<vys
cos?(5(y — v3)/(va = ¥3)) | y3 <y <wa
es | sin®(F(y—vs)/(wa—v3) | va<y<wa
var hy hy hs hy hs he h; hg ho hio

defn || frey | faer | faer | fre2 | fae2 | fze2 | fres | faes | faes | fres

Table 4.2: Surface Parameterization for wing-body problem

Scaling of the design variables was not as straightforward here as in the 2D case. The source
of the problem was that the two flight conditions were on either side of the M, = 1.0 point.
As a result, the sensitivities to Cp and C| associated with some of the design variables were
of the opposite sign for either flight condition. Hence, direct use of Equation (4.2) resulted in
movement in the wrong direction for some design variables. Replacement of Equation (4.2) with
an expression like B; = |go,|B; solves some of the problems. However, some other problems are still
present. For example, if the drag sensitivities associated with a particular design variable for the two
conditions were of the opposite sign but approximately equal in magnitude then, g; « dCp, /00;
and g; < dCp,/d0: resulting in the search direction being dominated by these design variables. It
was decided that the best approach was to normalize design variables associated with each of the
three chordwise functions by their counterparts at the n = 38% span station. Better behaviour was
expected because at n = 38%, the 3 design variables tended to have associated sensitivities whose
magnitude and sign were representative of the behaviour across the wing. Also the magnitude of

the cost function sensitivity at 7 = 38% is on the order of either drag sensitivity (|g:| = |0Cp, /0Bil)

As usual for the BFGS algorithm, the first line search proceeded in an identical fashion to the
Steepest Descent method. The above choice of normalization resulted in a quite reasonable shape
for the wing, lending credence to the choice of design variables. The optimization process was

thereafter continued as in 2D with just two iterations per line search, that is one Newton step
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followed by one constraint correction step. One exception should be mentioned. During the fourth
line search, severe problems were encountered in obtaining a converged solution for both flow and
adjoint analyses. Close examination of the grid in the region of the largest surface movement revealed
that some of the tetrahedra were severely compressed on the upper surface and severely stretched
on the lower surface resulting in very high aspect ratio elements. The net movement upward was
because nose down twisting movement (baianced by positive cambering movements) were demanded
by the optimization process. Regridding (based on a new surface definition perturbed by the current
net design variable movements) resulted in a return to reliable robust convergence behaviour in flow

and adjoint analyses and an almost seamless continuation of the optimization process.

Final C, distributions are shown in Figures 4-35 and 4-36 for either condition while sectional geom-
etry and C, evolution are plotted in Figures 4-38 to 4-40. A summary of the optimization exercise

is shown in Figure 4-37. After seven line searches, a 5.14% reduction in the cost function is found.

The cost function reduction breakdown is summarized in Table 4.3. It can be seen that all of the
improvement has come from an 8.14% reduction in drag at condition 1, with the drag increase found

at the supersonic condition merely acting as a penalty on the improvements found at the transonic

condition.
Condition 1 | Condition 2 | Total
My 0.9 1.6
CL 0.450 0.125
Qg 6.338° 2.565°
a7 5.628° 3.115°
Cp, 0.1290 0.0432
Cp, 0.1185 0.0447
ACp/Cp, | —8.14% +3.47%
Aw;Cp/Fy | —6.10% +0.87% -5.14%

Table 4.3: Summary of wing-body design changes

The source of the drag improvement at condition 1 can be found by examination of the transonic
solution based on the final geometry as shown in Figures 4-35 and 4-38. The first thing to note
is that the shock has moved back from z/c ~ 55% to z/c ~ 85%. This allows less lift to be

required at the leading edge and so the region of highly expanded supersonic flow there has almost
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vanished. Furthermore, the aft shock has acquired a lower sweep angle which is closer to that of
the local planform z/c lines. This results in lower wave drag (and better off-design performance).
Examination of the sectional pressure plots in Figure 4-38 reveals that the aft shock upstream Mach
number levels are far lower outboard than the baseline although slight increases are found inboard.
This also, is a cause for the lower wave drag. However, there is also a new weak leading edge shock

with negative sweep. This only extends over a region very close to the wing tip.

This favourable movement of the aft shock has been achieved by net design variable movements that
are similar to those found in the 2D case. The angle of attack at condition 1, a; has decreased while
the twist design variables have all increased, resulting in lower incidence angle, as in 2D. The net
z/c = 70% camber variable changes have been positive as in 2D resulting in airfoils with the expected
highly aft-loaded, supercritical characteristics. However, the net change in the z/c = 46% camber
design variable components here have been positive whereas the corresponding (single) component
change was negative in 2D. This is possibly due to the different impact of the supersonic second
condition in 3D compared to a far different coupling of a transonic second condition in 2D. As in 2D,
the need for inclusion of viscous effects is apparent from these results: the strong adverse pressure

gradients would likely cause boundary layer separation.

Although detailed breakdowns of the drag contributions have not been performed, examination of
the spanload for the baseline and optimized geometries revealed that the baseline actually appeared
to have closer to an elliptic distribution. However, the difference was marginal. Nevertheless, this
suggests that as other researchers have found, most of the optimization benefit has come from wave
drag reduction. Of course this may be coincidental, and other exercises, may reveal that induced

drag reduction can have a larger impact.

The source of the supersonic Cp increase is evident after examination of Figure 4-34, 4-36 and
Figure 4-40. Comparison of baseline and designed pressures revea!s higher levels of expansion at the
aft end of the upper surface on the outboard part of the wing for the latter configuration causing
a stronger trailing edge shock. However, the resultant Cp increase is evidently far lower than the

decrease found at Condition 1 {My, = 0.9).

The optimization exercise reported in [28] found a rather larger 140 count Cp reduction for the
transonic case. This is partially due to the different set of design variables which are local in nature
and appear to allow elimination of the shock albeit at the cost of a point-designed geomet:y with

high chordwise curvature — and likely severe off-design problems.
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Figure 4-1: Grid used for seed 2D multielement
airfoil calculation
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Figure 4-23: Surface grid for baseline business jet calculation
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Figure 4-34: Condition 2 (M=1.6) baseline C, Figure 4-36: Condition 2 (M=1.6) “Design 7" C,
distribution for 3D optimization exercise distribution for 3D optimization exercise

87



3D BFGS Optimization Summary

— Y T T

—ola=d7.6%
- rolai7.1%
-~ ela=78.8%
- - olam100%

x01-x10

0.01

. 40% camber
x 70% camber

-0.01
0

Figure 4-37: Cost function and design variable

evolution for 3D BFGS optimization exercise

1.00
ETR
0.80

0,00/ — — — — - - o - — s

Figure 4-39: Geometry evolution for 3D BFGS
optimization exercise

. oEsIcn )

~. 0E315x 8

ors1tu ¥

DESICR 2

T L BASELINE
ETR
0.80
0.60
0.40
0.20

0000 - m e — e — —— — — — e
AL i)

1.00
[31:]
0.80
0.60
— - DESICN 7
0.40 g T TEERs 0CSIGN 6
- DESICN 4
OESIGN 2
BRSEL INE
0.20
0,000 — -~ —- i i — - - - X/C

Figure 4-38: Condition 1 (M=0.9) C, evolution
for 3D optimization exercise

88

Figure 4-40: Condition 2 (M=1.6) C}, evolution
for 3D optimization exercise




Chapter 5

Viscous Results

5.1 Lift-constrained Drag Minimization Examples

5.1.1 2D Attached Airfoil

Scheme II was used for flow analysis for this problem. The baseline geometry was a very thin airfoil
(with about 1% maximum thickness), with a thickness distribution that had already undergone
considerable design and optimization for low Reynolds number viscous flow, albeit at a slightly
higher Re=10000. The original airfoil is under consideration for use in micro unmanned aerial
vehicles (u-UAVs). It has significant camber, but it was decided that a well behaved zero-camber
airfoil was needed as an initial test for the optimization system, so the camber was removed from
the airfoil by a simple geometric operation. At a = 3.5°, M = 0.8, and Re = 2000 it was found
that the boundary layer C; distribution was well above zero everywhere. The high Mach number
was chosen, not for its realism in representing the flight conditions of p-UAVs, but because it allows
quicker convergence of the flow analysis calculations. It was decided that drag minimization with
a lift constraint was an appropriate initial test, even though not much of a drag reduction was
expected. The design variables were chosen to be the modal amplitudes of Hicks-Henne camber
functions given by Equations (C.4) and (C.5) with p; chosen to be such that peaks occur at 20%,

40%, 60% and 80% of chord. In addition, the angle of attack was chosen as a design variable.
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The baseline grid, pressure distribution and Mach distribution are shown in Figures 5-1 to 5-3.
The baseline grid contains 8506 nodes and at the trailing edge there are approximately 20 points
in the boundary layer. However for this case, the elements with “structure” in the boundary layer
number about 16, which is the probable cause of the reduced presence of wiggles in the solution
compared to the NACAQ012 solution described in the previous section. In spite of the low level
error associated with these wiggles, the surface Cp distribution was found to match that found by
MSES even more closely than the match shown in Figures 3-11 and 3-12. Note that although there
is locally supersonic flow, no shocks are present, although the ability to capture these shocks is an

inherent vart of the flow analysis algorithm.

The constrained BFGS algorithm described in Section 2.6.3 was used to minimize Cy at the baseline
Ci. The final Cp distribution is shown in Figure 5-4 while the evolution of design variables, C;
distribution, Cp distribution and geometry are shown in Figures 5-5 to 5-8. It can be seen that the
minimum appears to have been almost reached after about 4 line searches which is about what should
be expected for a well behaved design surface. The cost function has cnly decreased by 18 counts
or about 2.2% of the baseline C4. This modest decrease was expected since the baseline solution
exhibited quite healthy boundary layer behavicur. Note that the decrease has come about partially
by a reduction of the leading edge pressure peak. The resulting reduction in the net pressure increase
and adverse pressure gradient along the upper surface causes the momentum thickness to be lower

at the upper surface trailing edge, indicating a more healthy boundary layer and lower drag.

Also it should be noted that this optimization exercise was reproduced using MSES and and LIN-
DOP, its associated optimization driver [12]. A similar reduction in Cy was observed, although the
final geometry was slightly different. It is believed that this is due to the relatively shallow minimum

and obvious differences between the flow analysis algorithms.

5.1.2 2D Separated Airfoil

Scheme II is also used for flow analysis for this problem. This case is a more challenging one due to
the presence of separation over the aft 55% of the upper surface. However, more of a drag reduction
is expected due to the poor initial health of the upper surface boundary layer. It was felt that
thickness design variables would possess powerful leverage over setting the separation point on the
upper surface, so two thickness design variables with peaks at 20% and 40% were chosen as well as

one camber design variable with a peak at 50%, along with the angle of attack. In addition to the lift
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constraint, for this case, it was decided that an area constraint should also be imposed. Otherwise,
the airfoil would be driven uselessly to zero thickness. The baseline grid, C, and M distributions

are shown in Figures 5-9 to 5-11.

Once again, the constrained BFGS method was used to minimize Cy4 and the baseline C;. It should
he noted that this optimization exercise did not proceed nearly as smoothly as the one discussed in
the previous paragraph. The presence of the separated flow seemed to cause two major undesirable
effects. Firstly, as soon as tke flow separates on both lower and upper surface, the flow becomes
unsteady due to the onset of vortex shedding, and no fully converged flow or adjoint solution can be
found. The way this undesirable feature was dealt with in the optimization algorithm was to assume
a very large value of the objective function at that point and thereafter to trace back along the line
search direction until a steady solution could be found, and then to search for a new direction from
there. The second undesirable effect was that the presence of separation caused larger deviations
from quadratic behaviour than usual. This appears to have slowed down the convergence of the
approximate Hessian to the value found at the minimum. It is not clear that a good approximation
has been made for the final design point depicted. The optimization process was stopped after 3 line
searches when successive iterations resulted in the search direction not changing significantly with
the design poised to enter the part of design space in which the above-mentioned vortex-shedding

unsteadiness occurs.

The final C, distribution is shown in Figure 5-12 while the evolution of design variables, Cy distri-
bution, C, distribution and geometry are shown in Figures 5-13 to 5-16. The cost function for this
case has decreased a far larger 120 counts or about 10.6% of the baseline Cq. This larger decrease
was expecwed due to the presence of separation in the baseline solution. Note that the decrease has
been accomplished partially by a reduction of the leading edge pressure peak. Also the thickness
distribution has been redistributed such that the maximum is about 15% further aft. Like the early
natural laminar flow airfoils [49), this delays the start of the adverse pressure gradient to aft of that
maximum thickness point. Consequently the upper surface separation point moves from 45% to
about 65%. This movement appears to be limited by the appearance of separation on the lower

surface and the resulting above-mentioned unsteadiness as can be seen in Figure 5-14.

Agreement with a similar optimization exercise perfornied using LINDOP and MSES revealed sim-
ilar initial behaviour although the LINDOP geometry evolved to one with negative camber — a
configuration not allowed by the current Navier-Stokes optirizer due to the intervening onset of

vortex shedding as the maximum camber passes through zero.
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5.1.3 3D ONERA M6 Wing

Scheme 11 was used for flow analysis for this problem. The baseline geometry was the ONERA M6
wing. This wing has no camber and is untwisted. The nondimensional airfoil sections that the wing is
lofted from are uniform across the span and have quite a large maximum thickness of t/cmaz = 9.7%.
Therefore some separation is likely and indeed is found on the upper surface at the baseline conditions
of a = 3.5°, M = 0.8, and Re = 1600 based on the rcot chord. However it is limited to the aft 10%-
20% of the airfoil and therefore the design space was expected to be rather smooth. It was decided
that drag minimization with a lift constraint was an appropriate test, even though, once again, not
much of a drag reduction was expected. The design variables were combinaticns of two chordwise
functions and five spanwise functions. The chordwise functions, f;(z/c) — based on Equations (C.4)
and (C.8) — and spanwise functions, e;(y) — based on Equation (C.13) — are summarized in Table

5.1. In addition, the angle of attack was chosen as a design variable.

func | definition range
fi sin(w(z/c)) 0<z/c<]1
f2 z/c 0<zfc<1
er | -u)/(y—w) [p<y<wn
e2 | (¥-wo)/(v1—w) | o<y<m
(i =y)/(y2—y) | <y<wp
es | (y—n)/(y2—-w) | n<y<wmy
(y2—y)/(ya—v2) | y2<y<uys
es | (W—v2)/(ys—y2) | y2<y<ws

(va—vy)/(ya—y3) | 13 <y<uys

es (y—y3)/(ys —w3) | y3 <y <ys
var || he h3 hy hs he hq hsg hg hio
defn || fies | fiez | faea | fies | faes | freq | foes | fres | faes

Table 5.1: Surface Parameterization for viscous wing problem

The baseline grid, pressure distribution and Mach distribution are shown in Figures 5-17 to 5-19.
The baseline grid contains 101,900 nodes and 578,880 tetrahedra. The grid was generated using
HYPGEN [8], the grid generation program associated with OVERFLOW [7] Each hexahedral cell
in this structured grid was divided into six tetrahedra using a similar prismatic grid generation

process used to generate the 3D tetrahedral grids from 2D triangular grids in Sections 3.2 and 3.2.
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At the trailing edge there are approximately 12 points in the boundary layer. It should be noted
that the gradient contributions, via %%g% were removed from L in Equation (2.56) since it was
found that fluctuations in the result of the minmod limiter were destabilizing in the early stages of
the calculation. Good convergence was found using o = 2.5 and v = 2.0. Note that although there
is locally supersonic flow, no shocks are present, although the ability to capture these shocks is an

inherent part of the flow analysis algorithm, as before.

The constrained BFGS algorithm described in Section 2.6.3 was used to minimize Cp at the baseline
C.. The final C, and M distributions are shown in Figures 5-20 and 5-21 while the evolution of
geometry, Cp, Cy and @ distributions and design variables are shown in Figures 5-22 to 5-26. it can

be seen that the minimum has been practically reached after 4 line searches.

Figures 5-27 to 5-29 summarize the first three line searches. All of these plots show the variation
of the cost function as found by numerical analysis, F, and the linear model, F* which is based
on the gradients of g = %, and the value of F at the start of the line search. Figures 5-27 and
5-29 also show F**, the quadratic fit to 8F /88, F(6 = 0), and F(6,) as discussed in Section 2.6.3.
Furtkermore, Figure 5-29 shows another quadratic model which is available at the start of the line
search. This uses the BFGS prediction, By, of the Hessian to estimate the variation along the search
direction. This is included to show why a slightly different approach was taken during this line search.
Basically By was suspected as being inaccurate for this line search, and therefore it was felt that
the full Newton step should not be taken. Therefore the initial step was § = 0.1. Another case was
simultaneously run at § = 0.03" °, making use of the golden section ratio. Ir the course of running
these cases, another quadratic model F*** was fit based on F(6 = 0), F(6§ = 0.1), F(8 = 0.0318),
using unconverged cost function values. Then another case was run at § corresponding to the
minimum of F==*, which is also plotted in Figure 5-29. Since this resulted in a large increase in the
cost function, the minimum was taken to be 4 = 0.1, for which the fully converged point is plotted in
Figure 5-29. The final line search brought a much better estimate of the Hessian and the full Newton
step was taken, resulting in minimal change in F and the optimization process was considered to be

converged.

Mauch of the behaviour observed for this case is similar to that observed for the 2D case discussed
in Section 5.1.1. This might have beer expected since similar design variables were utilized and
minimal separation is present. Firstly, the cost function has only decreased by a small amount —-
in this case, 4 counts or about 0.4% of the baseline Cp, whereas the 2D case resulted in an 18-count

reduction. The smaller decrease may be due to the lower number of camber design variables per

93



section for the 3D case — just one was used per span station, whereas in the 2D case, four were used.
As for the 2D case, this modest decrease was expected since the baseline solution exhibited quite
healthy boundary layer behaviour. Another similarity to the 2D case is that the decrease has come
about partially by a reduction of the leading edge pressure peak. The resulting reduction in the
net pressure increase and adverse pressure gradient along the upper surface causes the momentum
thickness to be lower at the upper and lower surface trailing edge — as can be seen in Figure 5-
25 — indicating a more heaithy boundary layer and lower sectional drag for each section. Indeed
analysis using the Squire-Young formula [42] based on boundary layer quantities at the trailing edge
at four sample span stations indicated profile drag decreases at each section. Induced drag was not
examined. Unlike the 2D NACAO0012 case, little change in the separation point at any section was

observed.
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Figure 5-1: p-UAV airfoil grid Figure 5-3: Baseline M distribution for p-UAV
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Figure 5-4: Final C,, distribution for p-UAV air-
foil, Re=2000, M, = 0.8, o = 3.5deg

Figure 5-2: Baseline C, distribution for u-UAV
airfoil, Re=2000, M = 0.8, a = 3.5deg
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2D MUAYV Optimization Summary
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Figure 5-18: Baseline Cp distribution for ON- Figure 5-20: “Design 4" C),, distribution for ON-
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Chapter 6

Conclusion

Schemes have been developed that allow efficient optimization based on the two- and three-dimensional
Euler equations and the two- and three-dimensional Navier-Stokes equations. Both modal inverse

pressure design and modal lift-constrained drag minimization have been demonstrated.

Three components are required to allow these types of optimization: (1) an efficient flow analysis
scheme, (2) an efficient sensitivity analysis scheme and (3) an efficient optimization driver, which

are discussed in the following sections.

6.1 Flow Analysis Scheme

For the Euler equaticns, a flow analysis scheme based on the Finite Volume method (or developed
through use of a Galerkin weighted residual statement using piecewise linear trial functions) was
used to perform the spatial discretization. Explicit multistage time-marching schemes were used for
the Euler calculations discussed herein. A limited fourth order dissipative term, premultiplied by
the Roe matrix, was used to stabilize the scheme and allow shock capturing. The gradients used for
this dissipative scheme were calculated using a method that allows efficient storage of the residual
jacobian — required for efficient sensitivity analysis — and preserves the LED properties of the

underlying 1st order scheme.
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On the other hand, for the scheme based on the Navier-Stokes equations, the gradient calculation
method was based on a finite volume statement of the divergence theorem applied to an appropriate
form of the gradient vector. This was complemented by an innovative scheme for efficient storage of
the residual jacobian matrix — including the viscous terms. Although the rigorous LED character
of the scheme is lost, this scheme tends to produce smoother and less dissipative solutions than the
scheme described in the previous paragraph for transonic and low supersonic flows. Otherwise the
spatial discretization of the two schemes are identical. It was also found necessary to use a point
implicit time integration algorithm for the Navier-Stokes scheme to allow practical convergence to
sufficiently low levels. The 3D versions were fully parallelized. Validation of the 2D and 3D Navier-
Stokes schemes was performed by comparing with Blasius flat plate solutions and with NACAQ01z

solutions calculated using a coupled Euler/integral boundary layer solver (MSES).

6.2 Sensitivity Analysis Scheme

Use of the adjoint method based on the discrete sensitivity analysis approach allowed the cost of the
sensitivity calculation to be independent of the number of design variables. The sensitivity analysis
scheme incorporated an artificial unsteady term similar to that used for flow analysis, and was based
on the recognition that such an approach would result in a stable scheme since it would have the
same errormode amplification matrix as the flow analysis scheme. To eliminate severe convergence
problems in the adjoint solver associated with low-level limit-cycling in the flow analysis calculations,
an innovative check on local timestep satisfaction of the LED CFL-like condition was used. With
this approach, near identical convergence rates were found for flow and both adjoint and direct
sensitivity analysis schemes. The 3D versions were fully parallelized. Validation of viscous and

inviscid sensitivity calculations was performed by comparing with finite difference sensitivities.

6.3 Optimization Algorithms

Algorithms were implemented to allow robust convergence of both modal inverse design and lift-
constrained drag minimization processes. The best method for the former problem was found to be a
BFGS algorithm. The best method for the latter was found to be through use of a BFGS algorithm
implemented in the subspace orthogonal to the constraint gradients. This scheme incorporated a

QR method to allow projection into this design subspace and a constraint enforcement step to return
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the step based on the linear model of the lift constraint back to feasible space from a point that was

unfeasible due to the nonlinear nature of the actual lift variation.

6.4 Peripheral Points

Two pitfalls associated with viscous optimization problems jump to mind. The first was that for
some cases with high levels of separation in the baseline solution, unsteadiness in the course of the
optimization march impeded progress. This typically occured when there was separation on both
surfaces and in some cases, even when it occured at low levels of residual convergence, caused the
sensitivity analysis calculation to be unstable. However, a somewhat satisfactory workaround was
developed which involved considering these design points as being of very high drag, and thereby

rejecting those points in the course of a typical line search.

The second pitfall was that for some cases, separation tended to result in sudden large increases in
drag — for significant movement of the separation point — and this resulted in nonsmoothness in
the design space and therefore poor convergence of the BFGS algorithm to a good approximation

of the Hessian. The workaround for this pitfall was just to use more careful line searches.

Fears expressed in the literature that the discontinuous nature of the nonlinear flux-limiting functions
used in the flow analysis scheme would not allow accurate sensitivity calculation proved to be
unfounded for the solver used herein. Although the limiting functions are discontinuous with respect
to U at some points, the functions are piecewise differentiable and so in the limit of a finite difference
step size tending to zero, the sensitivity calculations are exact. Although the limiting functions do
result in some non-smoothness in the design space, this was found to be at a sufficiently low level

that the optimization march was not impeded.

6.5 Future Wdrk

The viscous calculations presented herein have been for low Reynolds numbers and laminar flow.
A more useful capability would be to allow accurate modelling for higher Reynolds numbers. This
requires incorporation of an accurate turbulence model suitable for use with unstructured grids.

Possible options are the Spalart-Allmaras model [45] and the k —w model of Wilcox [51]. The exten-
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sion te higher Reynolds number also requires development of unstructured grid generation methods
which provide sufficient resolution in the laminar sublayer and the log-law layer and improvement
to the time-marching scheme to allow quick convergence for these grids with control volumes of very

small dimension in the direction normal to the wall.

Incorporation of the Cy constraint directly intc the flow analysis scheme would remove the require-
ment of performing an adjoint calculation for Cy at every iteration. The savings would be only
about 10% per line search based on this factor since the adjoint calculations were found to be about
one quarter the cost of the flow analysis calculations. The real savings would be in removing the
requirement to incorporate a constraint correction step and perform the associated flow analysis.
Hence incorporation of the C constraint directly into the flow analysis scheme would reduce the

cost per line search by on the order of 50%, assuming there was no increase in flow analysis cost.
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Appendix A

Weights for Edge Data Structure

The weights associated with each edge are derived through the use of the finite volume mecthod.
Discretization of U and F7 on a 2D unstructured triangulation is acco.aplished through the use of
piecewise linear trial functions. Referring to Figure A-1, an exact evaluation of the line integral in

Equation (2.1) for the control volume associated with node a results in,

Fo+F, o  FatFy z  FasFe g
0,5 = I EIE 222 Su e TatRe 5
l 2
Fa+Fs = Fs+Fs » Fe+F, =
4 5 - Ssq + 5 6 '565"'_65_—1'515} (A_l)
4 3
o 2
5
6 1

Figure A-1: Typical Triangulation
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where, for example, 521 =(y2 ~ 1,71 — T2). Simple algebraic manipulation results in

Qod_zjt—o = {Fl §1+— gg F3'53+E'§ §5+ Se}

(A.2)

where S = (yk41 — Yk—1,Thk—1 — Tk41) (With k+ 1, for example, representing the node at the other
end of the next edge in the counterclockwise direction). Note that the relation N Sk = (0,0) has
been used. Each term in (A.2) is recognizable as a contribution from an individual edge. A similar
analysis for the control volume centered at node 1, for example, reveals that the contribution from

the edge connecting nodes o0 and 1 is

by

_";_'ﬂ .S, (A.3)

[Rlko =
with k = 1. Hence if a loop over edges is performed, the residual contributions to nodes o and
1 corresponding to a given edge can be calculated at the same time, resulting in a factor of two
savings over algorithms which loop over the elements or control volumes. In summary, the residual

increment for an interior edge is simply

F,+F. &
[R]ox = —L;—L - Sk. (A.4)

Special treatment is required along the boundary integration paths in the edge formulation. This is
because typically boundary information is applied to some of the state vector components there. This
requires adaptation of the contributions from boundary nodes for some residual increments while
other contributions, associated with the closure of the control volume, have no boundary-associated

adaptation.

Referring to Figure A-2, the application of a similar procedure to the interior edge-based approach
described above results in the following expression for the time rate of change for the state vector

at a.
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YAVAN

Y

dU Fi+F, 2 F+F; 5 Fa+F 5 F+F . F+F .
—= = - - 2 21+ d 3'332 & 4'543 Sos + LSt
dt 2
Fo+F, o FotFo o F+F+2F, .
= - 2 ¥ o-Sz-I- 3t %o S3 + 4+F°+2o Sos+
2 2 2
Fo+F+2F, - Fq+F, - F,+F g
1 ; 2. 8o + 5 2.8 e 1.5, (A.5)
where the relation ), S = (0,0) has once again been used and where the superscript b indicates
that the flux is formed based on information known about the boundary state vector, such as zero
ncrmal wall velocity, or the direction of propagation of characteristic quantities in the farfield. In this
equation the first two terms are recognizable as edge contributions, and the last four terms represent
the boundary contributions for two boundary edges where the boundary contribution from a given
edge il to node i can be written as
B4R 4oF o B4+ F o
R}y = -—— =-S5 - St (A.6)
2 2
where the subscripts are now based on Figure 2-1.
In 3D, the edge based data structure results in the following
dy, Sit £
Ql—dt_ = - Z a -(F;+F1¢)+< Z D (4F7 + 2F7 ; +2F} , + 2F7 - F} ;- F’,‘zf)> (A.7)
11.=1 I=h 1

where the first summation extends over all the edges e which contain node I. Here the term (---), is

included only when the node I lies on the boundary. Sy, = (S};_,S};.,53,.) and can be calculated

114



as follows

; Qg ON; Ty Ty
S} =- ——] + < > Ln; , Dy=-L (A.8)

E%;e 2 0zl \/jG 12 " 24
F'=F-# (A.9)

where Ny is a piecewise linear, FEM-type, trial function with maxirnum at node I, while the overbar
in F7 signifies that boundary information is used in the flux calculation. The first summation here
extends over all elements E which contain the edge I1.. The term (- ), is included only if the edge
e is a boundary edge. For further details, the reader is referred to [35].
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Appendix B

Local Extremum Diminishing

(LED) Schemes

LED schemes are ones that have the properties that maxima should not increase while minima
should not decrease. The theory for these schemes is briefly developed here for one-dimensional
scalar schemes, multidimensional scalar schemes and finally multidimensional schemes hased on
systems of equations. The reader is referred to [26] for a more comprehensive treatment of the

subject.

For a scalar equation, LED conditions for the semidiscrete form of a scheme that can be expressed

as
du K
o — . . —
= ‘Z=;c,,.(u. uo) (B.1)
are
Ci>0 i=1,- K (B.2)

where K represents the total number of nodes that contribute to the residual at node i. This can
be seen by considering the cases where u, represents (a) a local marimum and (b) a local minimum.
For case (a), u; —u, < 0 implying that if the TVD conditions hold, then du,/dt < 0 and the maxima

must decrease. It is straightforward to see that the opposite is true for case (b). It is noted that in
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1D, these conditions also imply that the scheme is total variation decreasing (TVD).

B.1 One-dimensional Scalar Schemes

Consider a one-dimensional scalar conservation law.

Ou Of(u) _
aﬁ-ﬁ— =0 (B.3)

If the scheme is approximated in semi-discrete form as

du; | hjr2 —hiye 0

dt Az (B.4)
where h;,1/2 is a combination of a physical flux and a diffusive flux:
hjti2 = f—Jﬂz—fJ — ajp1/2(uje — uj) (B.5)
then the scheme can be rewritten as
du;
AId—tJ = =hji2+hjoy
ajt1/2 a;_
(*J—;L + O‘j+l/2) Aujyyyg — ( ! 21/2 + aj-x/z) Au,_y/2 (B.6)
where a;, /2 is an approximation to the wavespeed a = 3f/0u and satifies
fir1 = fi = ajp1p2(ujen — u5) (B.7)
The LED condition is satisfied if
lajyi/2]
Qjp1/2 2 —J;—l/— (B.8)

It is noted that the least diffusive first order scheme which satisfies the LED condition — taking the
equality in Equation (B.8) — produces the first order upwind scheme.

Higher-order accurate LED schemes with much lower diffusion can be constructed by including

antidiffusion in the diffusive flux which is limited in such a way that the scheme may still be written
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in the form of (B.1) with positive coefficients. For example, by extending the stencil one node to

the left and one node to the right, we could use,

hir1y2 = fiv1y2 = @jpryz {Dtjpr72 — L(Aujpase, Auj_y)} (B.9)

where L(u,v) is a limited average such as the minmod function This results in

du.: a; -
AI'd—tJ = (—%1/2' + aj+1/2 + aj—l/2¢(r )) Auj+1/2 +
a;_
(_ ] 21/2 —Qj_1/2 — aj+1i2¢(1'+)) Auj_qy2 (B-10)

where L(u,v) = u¢(v/u) = vé(u/v) and

v By DYiap

= , = . B.11
A‘u.j_]_/z A'u'j+1/2 ( )

Hence the scheme is LED if aj41/2 > |—°'-+7'/i| and ¢(r) > 0. The latter is satisfied by many nonlinear
flux-limiting functions including the minmod limiter. The reader is referred to [26] and [22] for a

comprehensive list of candidate flux limiting functions which could be used.

B.2 Multi-dimensional Scalar Schemes
Consider a scalar version of Equation (2.1).
du -
—d§l = f(—F’)nde‘. (B.12)
0t r 4

Using the same method of discretization as that described in Appendix A restlts in the following

semi-discrete expression for interior nodes.

du, ﬁk—fo 5
Q°E+2k: o5k =0 (B.13)

This can be rewritten as

du,
° dt

Q + ) akoDug, =0 (B.14)
k
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where ag, satifies
(F.k - Fo) : §k = ago(Ur — Uo)- (B.15)

Finally to produce a scheme satisfying the positivity requirements of a LED scheme, we add a

dissipative flux to produce:-

d

Q, ;‘t + Xk: {ako — Ctko} Attgo = 0 ' (B.16)

where now a;, > |ak.| is required.

B.3 Multi-dimensional System Schemes

Following the LED ideas for the one-dimensional and multidimensional scalar cases, we can construct
a scheme for multidimensional systems of equations whereby the contributions to the rate of change
of the local characteristic variables — based on the direction associated with the the current edge
— satisfy the positivity condition. This treatment has been found by many researchers to capture
shocks over very few points with little or no overshoot. Indeed, in one dimension, shocks are captured

with just one interior point [26).

The governing equations are taken to be of the form given in Equation (2.1), but with G = 0. The

first order scheme is written as

QodU°+Z{Ek;—Fa"§k-a‘lATk°|(Uk_Uo)}=o (B.17)
k

where A, is 2 mean value Jacobian following Roe's derivation which satisfies
Ak (Ug = U,) = (Fy - Fo) - Sk,
IAkol = PkoIAkolp;ol

and Pj, is the matrix of eigenvectors of Ay, and Ay, is a diagonal matrix containing the corre-

sponding eigenvalues. Isolating the contribution from one edge to Q,dU,/dt, and premultiplying by
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P}, produces
(A - o ADPL (Ui - U,)

or in terms of the local characteristic variables,
(A —alA AW,

So coefficients multiplying characteristic increments are positive on a local basis as long as a > 1.
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Appendix C

Sample Shape Design Variables

In this research, most design changes to the surfaces (except for the design variable corresponding

to Equation C.12) were implemented using the following expression.

Zupper (T, Y) =22pper(-'5,y) +Zf21" ihi(z,y) (1)

Zlower (T2Y) = 2uer(:Y)  + TNk pifihi(z,y)

where gy is —1 and 1 for thickness and camber design variables, respectively and 23,,,., for example,

represents the baseline upper surface. In 2D, we set

' hi(z,y) = fi(z) (C2)

and select from the functions listed in Section A.1 below. In 3D, we set the total change to be a

function that is separable into functions of z and y as follows.

hi(z,y) = fi(z)gk(y) (C.3)

and select gx(y) from the functions listed in Section A.2 below.
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C.1 Chordwise Functions

Hicks-Henne: non-zero trailing edge slope

ful@) = sin(n(Z)*)

Hicks-Henne: non-zero leading edge slope

fu(@) = sin(x(1 - 2)™)

Hicks-Henne: zero slope; forward peak

fi(z) = sinz(n(%)"")

Hicks-Henne: zero slope; aft peak

ful@) = sin?(x(1 = 2)*)
Twist/shear

fi(z) =

DR

4-Series meanline

(0.8(z/c) — (x/c)?)/0.16 0<z/c<04
fi(z) =

(0.2 + 0.8(z/c) ~ (z/c)?)/0.7056 04 <z/c<1

4-Serjes thickness

fi(z) = 0.2969+/z/c — .12810(z/c) — .35160(z/c)? + .28430(z/c)* — .1015(z/c)*

Vertical Deflection

fi(z) =1
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C.2 Rotation about a point

z; z. cosfp —sinf 20—z,

+ (C.12)
vi Ye sinfl  cosf vy —y.

C.3 Spanwise Functions

In general, the spanwise functions were defined to have maxima at yx and to only be nonzero between
yk—1 and yg41, where yx—1 < Yk < Yk+1. Two types were used: one based on the linear trial function
concept borrowed from the finite element method, and one based on similar piecewise sinusoidal trial
functions for which there is slope continuity — although at the price of zero slope at the extremities

of the “element”.

Linear

(v =)/ (e —vk—1) W1 <Y<k
9;(y) = (C.13)

(v - ye+1)/ Wr+1 —Uk) Uk <Y < Yr1

Sinusoidal

sin?(5(y — yk-1)/(¥k = ¥&-1))  Yo-1 <y <k
9i(y) = : (C.14)

cos?(5(y — vk)/(We+1 — k) ¥k <¥ < ¥i+1
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Appendix D

Sample Cost Functions

D.1 Cost Function Definition for Inverse Design

Nll'lll"
F= Y (pe(Ui) - p;)*Asi (D.1)
k=1

where p}, is the target pressure at node k, and Nying is the number of points on the wing or airfoil

surface.

D.2 Force Definitions

—F,sina; + F; cosa;

C
L Qoo; Sre !

(D.2)

F;, cosa; + F;sing;

CD QOo.-Sref

(D.3)

In these equations, F; and F are the axial and vertical forces which can be estimated from the

numerical flow solution U by using a piecewise linear approximation to the pressure at the wall. In
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2D, for example, we obtain,

. AzF 2
F, = f up(l,O)Tnds = Z 5 Zp: (D.4)

L j=1

while in 3D, we obtain,

k 3
F, =}( p(l,O,O)TﬁdS=E/ pdydz:ZﬁZpg
wall k Qe k 3

i=1

where QF are the triangular wall faces (3D) or line segments (2D) and j is an index for the vertices
of QF.
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