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Abstract

Although oxygen and extracellular matrix cues both influence differentiation state and metabolic

function of primary rat and human hepatocytes, relatively little is known about how these factors

together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of

pericellular oxygen tension on hepatocellular function, we employed 2 methods of altering oxygen

concentration in the local cellular microenvironment of cells cultured in the presence or absence of

an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas

phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic)

and measured the local oxygen concentrations in the pericellular environment using custom-

designed oxygen microprobes. From these measurements of oxygen concentrations, we derived

values of oxygen consumption rates under a spectrum of environmental contexts, thus providing

the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and

matrix microenvironment were found to synergistically regulate hepatocellular survival and

function as assessed using quantitative image analysis for cells stained with vital dyes, and

assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic

conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological

oxygen concentration, and this effect was mitigated at still greater supra-physiological

concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study

underscores the importance of carefully controlling cell density, medium depth and gas phase

oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent

hepatocellular function are profound.
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Introduction

In human liver, the oxygen concentration in blood plasma drops as blood flows down the

sinusoid, from ~85uM near the portal triad (“periportal” region) to ~45uM at the central vein

(“centrilobular” region) (Jungermann and Kietzmann 2000; Martinez et al. 2008). This

oxygen gradient contributes to gradients in metabolic activity along the sinusoid in part

through the influence of oxygen tension on expression of metabolic enzymes (Allen and

Bhatia 2003; Arteel et al. 1999; Bradford et al. 1986; Haussinger 1983; Jungermann and

Kietzmann 2000; Nahmias et al. 2006; Pang and Terrell 1981). Hence, local hepatocellular

oxygen concentration is an important variable to both predict and control in in vitro liver cell

culture models of liver function and physiology.

Hepatocytes have a relatively high intrinsic metabolic activity and are typically cultured at

high density to maintain cell-cell interactions that regulate differentiated function (Swift and

Brouwer 2009; Takehara et al. 1992). The combination of these factors makes virtually

every mode of in vitro hepatocyte culture diffusion-limited for oxygen, resulting in local

pericellular (i.e., located just at the cell surface) oxygen concentrations well below the value

of ~185 uM for medium equilibrated with humidified air. Oxygen diffusion gradients can

fortuitously result in physiological ranges of oxygen concentration (45-85 uM) at the surface

of static monolayer cultures for appropriate combinations of cell density and culture medium

depth (Guarino et al. 2004). Conditions for maintaining physiological oxygen concentrations

in more complex culture configurations, including 3D bioreactor cultures, can readily be

defined provided the cellular oxygen consumption rate is known (Domansky et al. 2009).

While estimates of cellular oxygen consumption derived from perfused liver measurements

can be a useful guide for setting up in vitro culture conditions (Broetto-Biazon et al. 2008;

Matsumara et al. 1986; Matsumara and Thurman 1983; Meren et al. 1986), metabolic rates

are typically context-dependent and in vitro measurements are desirable to obtain more

precise control over culture variables that influence oxygen concentration in the

hepatocellular microenvironment. The compendium of measured in vitro hepatocellular

oxygen consumption rates under various culture configurations is growing as interest in 3D

liver models increases (Domansky et al. 2009; Metzen et al. 1995). Interestingly, despite the

widespread use of in vivo mouse models for liver biology, in vitro oxygen consumption rates

for mouse hepatocytes have not been reported, even for the common genetic background

C57/Bl6. Because the specific rates of oxygen consumption are generally greater for mouse

hepatocytes than those for rat, conditions that are suitable for culture of liver cells from

other species may not be optimal for mouse cells (Porter and Brand 1995).

In standard 2D static monolayer cultures, cell density and culture medium depth together

determine the oxygen tension at the cell surface as governed by diffusion of oxygen to the

metabolically active cell monolayer. Hepatocytes are typically cultured at high confluence

(>60,000 cells/cm2) to preserve cell-cell interactions crucial for phenotypic maintenance,

hence cultures maintained under substantial depths of medium risk hypoxia. In rat

hepatocyte cell cultures, the onset of hypoxia occurs for medium deeper than 2mm when

cultures are confluent (Delraso and Frazier 1999; Sbrana et al. 2012), but the constraints

may be more severe for mouse cells, as the in vivo oxygen consumption rates in liver are
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higher for mouse than for rat (Harper et al. 1998; Kantrow et al. 1997; Porter and Brand

1995).

Here, we investigate how local pericellular oxygen tension of primary mouse hepatocytes

derived from C57 /Bl6 mice depends on cell density, culture medium depth, and

extracellular matrix microenvironment under standard incubator conditions (20% oxygen)

and conditions of systematically varied gas phase oxygen tension. We employed a constant

confluent cell density of 80k cells/cm2 to preserve hepatocellular function, and used

different combinations of medium depth and gas phase oxygen tension to create conditions

at the cell surface reflecting three regimes of oxygen concentration: (i) approximately

periportal liver zonation (> 60 uM); (ii) approximately centrilobular liver zonation (~50 uM)

or (iii) hypoxic (<30 uM), aiming for each regime to create these conditions by two different

combinations of variables. We evaluated two independent systems for measuring

pericellular oxygen in real-time: a commercially-available system with proprietary sensing

plates, and a recently developed custom oxygen microprobe system (Inman 2011). The real-

time oxygen measurements from the microprobe system were compared to concentrations

inferred to be either hypoxic or normoxic based on reaction with pimonidazole

(Hypoxyprobe), and were subsequently used to derive values of cellular oxygen

consumption rates. Further, we examined the effects of a well-known modulator of

hepatocellular function, extracellular matrix, on cellular responses.

Materials and Methods

Cell Isolation and culture

Primary mouse hepatocytes were isolated using a two-step collagenase perfusion method

from 6-12 week old, male C57Bl6 mice based on a protocol described previously with minor

changes (Martinez et al. 2010). Livers were excised and dissociated in Isolation/Plating

Medium [Williams E base medium (WEM, Sigma) supplemented with 1ug/ml aprotinin

(Sigma), 10ug/ml Insulin Transferrin Sodium Selenite (Roche), 2mM Glutamax

(Invitrogen), 1X antibiotic/antimycotic (Invitrogen), 10mM HEPES (Sigma), 0.1uM

dexamethasone (Sigma), and 10% FBS (Sigma)]. Cell yield and viability were determined

using a trypan blue exclusion test. Hepatocytes were further purified by centrifugation using

a 45% Percoll solution. Viable hepatocytes were washed twice, subsequently resuspended in

Isolation/Plating medium and plated on 12- or 24-well plates pre-coated with 9 ug/cm2

adsorbed rat tail collagen I (BD) at a density of 8 × 105 cells/cm2 and a medium depth

1.3mm. Cells were allowed to attach for 4 hours at 37°C and 5% CO2 in a humidified

incubator before medium was changed to Maintenance Medium [same as Isolation/Plating

Medium, but without FBS] at a medium depth of either 1.3 mm or 2.6 mm. For conditions

with Matrigel supplement, Maintenance medium was supplemented with Matrigel (~10

mg/mL) to by adding 3% (v/v) Matrigel to medium to yield a Matrigel concentrion of ~0.3

mg/ml. This was was added 4 hours after plating at a medium depth of either 1.3 mm or 2.6

mm. The 3% Matrigel in solution does not form a gel layer, but provides ECM adhesion

molecules that can be bound and organized by cells, and also provides additional growth

factors. Medium was replaced on a daily basis. Perfusions yielded initial cell viability above

80% and final viability of around 90% after Percoll purification. For experiments performed
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at 10% or 5% oxygen, oxygen tension was controlled by a FormaScientific 3140 incubator

connected to a nitrogen gas cylinder. For experiments performed at 40% oxygen, oxygen

tension was controlled by a compact oxygen controller (ProOx P110, BioSpherix) connected

to a 95% oxygen/5% CO2 gas cylinder.

Non-Invasive Oxygen Concentration Measurements

Oxygen tension at a fixed height (0.5mm) above the cell surface was measured in a

minimally-invasive, real-time manner using 0.5mm diameter optical probes incorporating an

oxygen-sensitive ruthenium complex (Inman 2011). A custom-designed culture lid was

fabricated to house oxygen sensors such that the height of probes was maintained at 0.5 mm

above the surface of the culture dish. Briefly, a lid was fabricated with holes in defined

locations centered above each well of a 12-well tissue culture plate. Each hole comprises a

threaded pocket, such that when a sensor is fed through the hole, a threaded annulus can be

screwed in place to fix the sensor vertically in the hole. Further, there are three posts

extending from the bottom surface of the lid which fix the height of the lid relative to the

bottom of the culture well. These posts are fastened by screwing them into the bottom of the

culture lid. The sensor lid was assembled by feeding each sensor probe through a hole in the

lid until it touches cell culture surface at the bottom of the well. Once all of the sensors have

been fixed in place, exactly touching the cell culture surface at the bottom of the well, the

three posts on the bottom of the culture lid are removed and 0.5 mm thick spacing washers

are inserted between the posts and the bottom of the culture lid. With these calibrated

washers in place, the probes reside exactly 0.5 mm above the bottom of the wells. Sections

were cut in several 12-well plates to verify placement of the probes. (See results section for

a schematic.) The error in the probe height is expected to be <±0.05mm, based on a potential

5% error in actual spacer height and less than 1% error that might arise if the probe bends.

The probes were calibrated before each use using a 10g/L sodium sulfite solution and air-

saturated water as the 0% and 100% air saturation standards, respectively. Real-time oxygen

measurements were recorded every 3 minutes for each well in each experiment. All

conditions were tested in triplicate from at least 2 independent isolations. Measurements at

the 0.5mm height were used to estimate the local cell-surface oxygen concentration by

presuming Fickian diffusion in stagnant culture medium, as described in results.

Immunohistochemical Evaluation of Hypoxia

Hypoxia was evaluated by incubating cells with Hypoxyprobe™-1 Plus (Chemicon) for

subsequent detection of pimanidazole adducts (Khan et al. 2006). Separate plates were

prepared for assessment of hypoxia using cells from the same isolations under which oxygen

measurements were collected. Four hours after plating, medium was changed to

Maintenance Medium with 200uM Hypoxyprobe™. For conditions with Matrigel™

supplement, medium was changed to 3% (v/v) Matrigel™ in Maintenance Medium with

200uM Hypoxyprobe™ after 4 h. Each condition was tested in duplicate. At 24 h after

seeding, cultures were fixed in 2% paraformaldehyde in PBS for 20 minutes and stored at

4°C in PBS until they were stained and imaged. Samples were permeabilized with 1%

Triton-X-100 for 5-10 minutes and subsequently rinsed using PBS with 0.1% Tween-20

(PBS-T) (Cosgrove et al. 2008; Walter et al. 2008). Samples were blocked for 30 minutes at

room temperature using PBS with 0.1% Tween-20, 1% BSA, and 5% FBS (PBS-TB) added.
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Samples were incubated for 1 h with FITC-conjugated MAb1 diluted 1:100 in blocking

solution and a 1:1000 dilution of Hoescht 33258 (Invitrogen). Samples were washed once

with PBS-TB, resuspended in PBS and imaged using a Compucyte Laser Scanning

Cytometer.

Results

Minimally invasive measurements of oxygen in the pericellular environment

We investigated two different methods for real-time assessment of oxygen concentrations in

the pericellular microenvironment of hepatocytes maintained in confluent monolayers, using

variation in medium depth and gas-phase oxygen: (i) The commercially available PreSens

OxoDish and SensorDish Reader oxygen-sensing system, which employs a small disc of

sensor material in the middle of the culture surface area in the well covering ~5% of the well

surface area in a 24-well plate, allowing real-time reporting of oxygen tension beneath the

monolayer of cells plated on top and (ii) a custom probe sensor built in house and described

in Materials and Methods.

The real-time oxygen traces for the PreSense OxoDish over the first 48 hr of culture for

primary mouse hepatocytes cultured first for 5 hr in 1.3 mm medium depth, then

subsequently in either 1.3 mm or 2.6 mm medium depth for an additional 43 hr, are shown

in Figure 1. As illustrated by the graphs in Figure 1, after the first and second medium

changes, the oxygen concentration reaches steady state within minutes, though a moderate

degree of long time-scale variation is seen at the 2.6 mm depth. For cells cultured at the 2.6

mm medium depth, a drop in oxygen concentration at the cell layer after the medium change

was expected due to the increased oxygen diffusion distance, and such a drop was observed

(from 125 uM to 50 uM, Figure 1). However, for cells cultured at 1.3 mm medium depth, an

increase in dissolved oxygen (from 125uM to 150uM) was observed after the medium

change. This increase in oxygen suggests the loss of live cells from the surface of the sensor

layer during the first medium change, though the steadiness of the oxygen tension at both

medium depths following subsequent medium changes suggests cell loss did not occur

subsequently.

Phase contrast images showing the edge of the sensor spot demonstrated an area devoid of

cells directly around the sensor spot (Figure 1). The sensor spot itself is optically opaque,

preventing in-situ phase contrast imaging of cell morphology on the sensor layer, and

autofluorescence of the sensor spot similarly inhibits fluorescent imaging of cells above and

around the sensor spot. The sensor surface appeared textured under fluorescent imaging,

hence offers a different adhesive environment than standard culture plates.

Next, we used a ruthenium-based microprobe system adapted to provide real-time in situ

measurement and recording of local oxygen tension in the static culture medium 0.5 mm

above cells maintained in a 24-well plate format according to the geometry depicted in

Figure 2. The surface area of the probe is <0.1% of the culture surface area of a well in a 12-

well plate. Real time oxygen traces over the first 48 hr in culture (Figure 2b) for cells

cultured as described above (5 hr culture at 1.3 mm medium depth, followed by medium

exchange to defined depth of 1.3 mm or 2.6 mm) exhibit features similar to those shown in
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Figure 1: a steady state is reached rapidly after a spike in oxygen tension after medium

exchange. Similar behavior is observed if the gas phase oxygen partial pressure is reduced to

10% or 5% (Supplemental Figure 1). The oxygen concentration at the cell monolayer can be

calculated from the oxygen concentration recorded by the probes at their location 0.5 mm

above the cell monolayer by using a 2-D (radially symmetric) discrete diffusion-reaction

equation (see Supplemental Methods). Placement of the 500 um diameter probe slightly

distorts the otherwise linear concentration profile of oxygen along its diffusion path, creating

a modest depression of oxygen concentration for cells located immediately beneath the

probe compared to cells distant from the probe as illustrated by an example concentration

profile obtained from the simulation (Figure 2). The magnitude of the offset between the

probe measurement and concentration at the surface of the cell monolayer for cells directly

under the probe and cells in the bulk far from the probe was determined for a range of

placement heights h above the cell surface, medium depths L, and cell consumption rates

qO2 in order to interpret data subsequently reported herein (see Supplemental Methods). For

ease of use, in situ imaging, and minimal footprint on the culture area, the oxygen

microprobes were used for subsequent analyses.

Pericellular Oxygen Concentration is a function of Medium Depth and Gas Phase Oxygen
Saturation

The real-time measurements (Figure 2, Supplemental Figure 1, and data not shown) indicate

that unperturbed cultures maintain a constant oxygen concentration over 20+ hours, after

recovery from transients associated with medium changes. Thus, to aid visual comparison of

differences between local pericellular oxygen concentrations for cells maintained under

different conditions of ambient oxygen, medium depth, and matrix, oxygen concentration

measurements obtained every 3 min via microprobes maintained 0.5 mm above the cell

surface were averaged over a period of 6 hours during each day (120 measurements) and a

pericellular oxygen concentration value associated with each condition and day was derived

using the methods described above (see also Supplemental Methods).

The Day 1 oxygen concentration values estimated at the cell surface range dramatically,

from 10 uM to 150 uM depending on the medium depth and gas phase oxygen tension. The

20% shallow (1.3 mm depth) oxygen concentration is above 100 uM, slightly greater than

physiological oxygen concentrations reported in the periportal region of the liver. 10%

shallow (1.3 mm medium depth) oxygen conditions average around 45 uM, at the low end of

physiological oxygen concentration in the pericentral region of the in vivo mouse liver. In

contrast, the 20% deep (2.6 mm) and 5% shallow oxygen conditions result in pericellular

oxygen concentrations indicative of borderline or frank hypoxia (10-30 uM). Pericellular

oxygen concentration values did not change dramatically over several days of culture

(Figure 3a, Supplemental Figure 1).

For most conditions, there was no significant difference in measured pericellular oxygen

concentration between hepatocytes cultured in the presence of 3% Matrigel in comparison to

those cultured in the absence of 3% Matrigel. Hepatocytes cultured in two different

conditions predicted to give comparable pericellular oxygen tensions -- deep medium (20%

O2 with 2.6 mm medium depth) and reduced incubator oxygen (10% O2, 1.3 mm) – as well
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as conditions expected to give very hypoxic conditions (5% O2, 1.3 mm medium depth)

experienced pericellular oxygen concentrations significantly lower than hepatocytes cultured

at high oxygen (20% O2, 1.3 mm) (p<0.001).

The local pericellular oxygen concentrations derived from probe readings are consistent with

an independent chemical measure of local tension (Figure 3B). Hypoxyprobe is a water

soluble, cell-permeant molecule that forms stable intracellular pimanidazole protein adducts

when local intracellular oxygen concentrations fall below 14 uM, a threshold that may be

reached for extracellular concentrations above 14 uM due to oxygen gradients from the cell

exterior to interior. We therefore stained cells maintained just above and below this

threshold. Global intracellular staining indicative of hypoxia was not observed for two

different conditions where cells were maintained under conditions where extracellular

oxygen was > 100 um (Figure 3b, <5% of image area stained positive). In contrast, global

intracellular hypoxyprobe staining was intensely apparent for hepatocytes maintained in four

different conditions where extracellular oxygen ranged from 12-29 uM (Figure 3b,

38%-45% of image area positively stained). Significant oxygen diffusion gradients between

the cell surface and the intracellular mitochondria can help explain the discrepancy between

25 uM cell surface oxygen and <14 uM intracellular oxygen (Jones and Mason 1978;

Jungermann and Kietzmann 2000). Moderate staining was seen in the two conditions which

had moderately low extracellular oxygen (37-42 uM), suggesting that there are intracellular

regions of these cells with oxygen tensions below 14 uM as well (Figure 3b, 27% of image

area positively stained). These data agree with in situ studies where gradients in hypoxia

staining are seen between the periportal and pericentral regions (Arteel et al. 1997; Arteel et

al. 1995). Thus, modulation of either medium depth or incubator oxygen levels can result in

comparable oxygen tensions at the cell surface.

Cell Viability and Oxygen Consumption Rates are Affected by Oxygen Concentrations and
Extracellular Matrix Supplementation

Primary mouse hepatocytes were plated at a nominal total cell density of 80,000 cells/cm2 at

standard incubator oxygen conditions and 1.3 mm (“shallow”) medium depth, and then

moved to the trial conditions after 4 hr in culture. Live/dead staining was performed at 24 hr

(Day 1) and Day 4 for all oxygen and matrix conditions and then cell density and cell

viability were measured using a laser scanning cytometer. As shown in Figure 4, there were

no statistical differences in the average total cell numbers between conditions on Day 1, nor

significant differences between Days 1 and 4 for any of the conditions. Figure 4 shows

composite data from 9 different cell isolations, as not all conditions could be tested for any

single isolation due to limitations in the total cells available from a single mouse liver and

each condition was run in duplicate or triplicate from at least two separate isolations. Scatter

in the initial cell numbers for any given condition on Day 1 reflects variations in the

properties of cells isolated on different days. However, not surprisingly, statistically-

significant reductions in cell viability were observed for conditions associated with the 10%

and 5% incubator oxygen tension conditions (Figure 4b).

The values for oxygen flux at the cell monolayer were calculated for each of the 20%, 10%

and 5% oxygen culture conditions on Day 1 (Figure 5a). At standard culture conditions
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(20% oxygen, either of 1.3 or 2.6 mm depth) the per-cell oxygen consumption rate is

estimated as 380 pmol/million cells/s, based on an average viable cell density of 45,000

cells/ cm2. Because the cellular oxygen consumption rate leveled off at the highest measured

(20%) oxygen conditions, 0th order oxygen consumption kinetics with a constant oxygen

consumption rate of 19 pmol/cm2/s were then used to estimate local oxygen concentrations

for hyper-oxygenated conditions (40%) where probe sensitivity was low (Figure 5b). The

predictions suggest that the 40%/2.6mm condition should represent an oxygen tension at the

cell surface around 200 uM while the 40%/1.3mm medium condition represents a hyperoxic

environment with an oxygen tension of approximately 280 uM (Figure 5b).

Effects of oxygen concentration on hepatocyte function

The effects of oxygen on hepatocellular metabolism were assessed by measuring cellular

albumin secretion rates over 4 days (Figure 6). On Day 1, differences in albumin production

were correlated with oxygen availability, as cells maintained under the higher oxygen

conditions (40%/1.3mm, 40%/2.6mm, and 20%/1.3mm medium conditions) produced more

albumin than the lower oxygen conditions (20%/2.6mm, 10%/1.3mm and 5%/1.3mm

conditions), regardless of the presence or absence of Matrigel supplement (p<0.05). But by

day 4, albumin production was significantly greater for conditions with 3% Matrigel in

comparison to 0% Matrigel, for all four 40% and 20% oxygen conditions (p<0.05).

Interestingly, the 3% Matrigel condition associated with the very highest oxygen tension

(40%, 1.3 mm medium depth) resulted in a statically lower set of values for albumin

secretion at the later times points (days 2 and 4). These data demonstrate that increased

oxygen supply to hepatocytes leads to increased early albumin production, but that ECM

and possibly growth factor cues present in Matrigel are important for sustained albumin

production, and that a biphasic response of cells to increasing oxygen tension is observed.

Discussion

Despite the widespread use of mice in experimental biology, the basic physiology of

primary mouse hepatocytes in culture is relatively less characterized than that of primary

liver parenchymal cells from humans and rats. A wide variety of different culture conditions

have been used for mouse cultures (Table 1), many of which employ cell densities and

culture medium depths that were determined in this study to lead to hypoxia and adverse

effects on cell viability (Chandra et al. 2001; Clayton and James E. Darnell 1983; Klaunig et

al. 1981; Klingmuller et al. 2006; Leist et al. 1994; Li et al. 2010; Maslansky and Williams

1982; Nemoto and Sakurai 1993; Swift and Brouwer 2009; Swift et al. 2010; Walter et al.

2008). Our findings indicate that both oxygen tension and contributions from a complex

ECM additive (Matrigel) regulate hepatocellular function.

In this study we employ 2 methods of altering oxygen availability at the cell surface:

changing medium depth and gas-phase oxygen saturation. Medium depth is the most

accessible parameter to adjust but adjusting this parameter between otherwise identical

culture conditions changes the rate of accumulation of autocrine factors in the media as well

as the rate of depletion of media components. Hence, we also employ the complementary

approach of changing the incubator oxygen tension. The local oxygen tension in the cellular
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microenvironment could also be varied by decreasing (or increasing) the cell density used,

which alters the rate per unit area that oxygen is consumed at the cell layer, and thus the

local oxygen tension for a given medium depth. However, decreasing the cell density also

changes the cell confluence and reduces the number of cell-cell contacts, leading to

increased cell spreading more and subsequent changes in differentiation state (Swift and

Brouwer 2009). This study demonstrates that both changing the incubator oxygen tension or

the medium depth can alter cell-surface oxygen in comparable ways.

Under standard culture conditions (20% O2 at either 1.3 or 2.6 mm medium depth), our

observed per cell oxygen consumption rate of approximately 0.4 nmol/106 cells/s (assuming

~1 mg protein/106 cells) is comparable to those rates measured in perfused livers and

mitochondrial preparations from mice, which range from 0.3-0.8 nmol/106 cells/s (Broetto-

Biazon et al. 2008; Matoba et al. 2006; Porter and Brand 1995). We posit this is the first

reported value of per-cell oxygen consumption from in vitro mouse hepatocyte cultures.

These values are also of a similar magnitude to those reported for rat and human in vitro

hepatocyte cultures, which range from 0.2-0.7 nmol/106 cells/s (Broetto-Biazon et al. 2008;

Domansky et al. 2009; Matsumara et al. 1986; Metzen et al. 1995). While mouse

hepatocytes are found to be more highly metabolic than rat and human hepatocytes when

tested in a single lab, there is a wide range of variability in measured oxygen consumption

rates across labs, making it difficult to definitively assess how our observed consumption

rates would compare to primary rat hepatocytes cultured similarly.

The values we observed for albumin secretion under standard culture conditions (between

250-380 ug albumin/106 cells/day for all timepoints for hepatocytes plated at 20%

O2/1.3mm medium depth) are higher than those previously reported for mouse hepatocytes

(which range between 1-250 ug albumin/106 cells/day), although medium depth is rarely

specified in the literature (He and Feng 2000; Higuchi et al. 2006; Iacob et al. 2011; Sakai et

al. 2002; Sharma et al. 2009; Takagi et al. 2012). We also observe significantly increased

albumin production and maintenance at 40% incubator oxygen (between 300-1000 ug

albumin/106 cells/day). Previous studies with primary rat hepatocytes under

supraphysiological oxygen have also shown significant improvement in metabolism and

drug clearance (Kidambi et al. 2009). We also observe that at hyperoxic levels, albumin

production plateaus, as demonstrated from the 40% shallow condition (40% O2/1.3mm

medium depth), which has either the same or lower albumin secretion rates than the 40%

deep condition (40% O2/2.6mm medium depth). This behavior suggests that there is a supra-

physiological oxygen concentration value at which hepatocytes no longer benefit and could

represent the point at which the effects of oxidative stress begin, as previously reported

(Martin et al. 2002).

It is well established that primary hepatocytes cultured on or under Matrigel (i.e. sandwich

configuration) retain cell polarity and maintain higher levels of albumin secretion (Dunn et

al. 1989; Dunn et al. 1991; Moghe et al. 1996). In this study, Matrigel plays a large role in

the maintenance of albumin secretion through Day 4, even when used as a medium

supplement (concentrations as low as 3%) added solely on Day 0. By regulating matrix cues

in conjunction with oxygen availability, primary mouse hepatocytes can be maintained in

culture with high levels of function.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Evaluation of PreSens OxoDish + SensorDish Reader. A. Real-time oxygen traces, recorded

every 3 minutes over the first 48 h of culture for primary mouse hepatocytes cultured first

for 5 h at 1.3mm medium depth, then subsequently either 1.3 mm or 2.6 mm medium depth.

B. Representative phase contrast image of hepatocytes cultured adjacent to the edge of the

sensor spot, after 48 h of culture. C. Representative fluorescent image of sensor surface on

OxoDish culture plate.
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Figure 2.
Precise placement of oxygen sensors allow for real-time measurement of oxygen

concentration near the cell surface. A. Schematic diagram showing a cross-section of the

sensor lid with integrated sensors in a 12-well culture plate. Once the probes are secured

flush with the bottom of the plate, 0.5 mm spacers are added to the legs to raise the sensors

0.5 mm above the well bottom. B. Diagram showing the cross-section of a single culture

well with a 0.5 mm diameter probe situated in the center of the well, 0.5 mm above the well

bottom, with 1.3 mm medium depth. C. A discrete diffusion-reaction model showing oxygen

concentration in a radial cross-section of a culture well with the oxygen probe placed in the

center, assuming steady-state oxygen consumption along the bottom of the well. D. Real-

time oxygen traces, recorded every 3 minutes over the first 48 h of culture for primary

mouse hepatocytes cultured first for 3 h at 1.3mm medium depth, then subsequently either

1.3 mm or 2.6 mm medium depth.
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Figure 3.
Pericellular oxygen concentration is a function of medium depth and gas phase oxygen

saturation. A. Oxygen concentration at the cell surface, calculated from averaging probe

measurements for Days 1 and 4. Data * indicates statistically significant difference from 20

% / 1.3 mm condition (p <0.001, n=2 ). B. Representative images of hoescht (blue) and

hypoxyprobe (green) staining 24 h after initial seeding. All images have common exposure

intensities and thresholding. Non-specific staining of dead cells is observed in all conditions.
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Figure 4.
Results of quantitative imaging following Hoechst/EtBr staining on Days 1 and 4. A. Dot

plot showing density of viable cells calculated for each biological replicate, as a function of

gas-phase oxygen saturation and medium depths. B. Percentage of live cells, defined as the

fraction of non-EtBr stained nuclei. * indicates statistically significant difference from 20

% / 1.3 mm condition (p <0.05).
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Figure 5.
Modeling and predicting steady-state oxygen consumption based on experimental data. A.
Day 1 oxygen consumption rates, calculated from cell-surface oxygen measurements and

gas-phase oxygen saturation. B. 0th order oxygen diffusion model fit to the Day 1

experimental averages of oxygen concentration at the cell surface.
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Figure 6.
Albumin secretion is influenced at early timepoints by oxygen and at late timepoints by

Matrigel and oxygen. Conditioned media from hepatocyte cultures was collected/replaced

with fresh medium ever 24 hours and albumin was quantified via ELISA. Standards and

samples were tested in triplicate. All conditions shows statistically significant difference

from 20% O2/1.3mm conditions except * (p<0.05, n>2).

Buck et al. Page 18

Biotechnol Bioeng. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Buck et al. Page 19

Table I

Compendium of Geometric and Cell Density Culture Conditions for Mouse Hepatocytes

Reference Total
Cell
Number

Plate Type Medium
Volume

(ml)

Cell Density
(×103

cells/cm2)

Medium
Depth
(mm)

(Clayton and James E. Darnell 1983) 10M
10M

150mm plate
150mm plate

15
20

56.6
56.6

0.8
1.1

(Leist et al. 1994) 80k 24 well plate 0.2 40.0 1.0

(Nemoto and Sakurai 1993) 15M 100ml dish 10 63.7 1.3

(Li et al. 2010) 600k 35mm dish 1.5 62.5 1.6

(Walter et al. 2008) 5M 9cm diameter 10 79.4 1.6

(Swift et al. 2010) 1.25M
350k

6 well plate
24 well plate

1.5
0.5

130.2
175.0

1.6
2.5

(Klaunig et al. 1981) 1M 25cm2 flask 5 40.0 2.0

(Maslansky and Williams 1982) 500k 25cm2 flask 7 20.0 2.8

(Swift and Brouwer 2009) 1M 6 well plate 3 104.2 3.1

(Chandra et al. 2001) 1.5M 6 well plate 3 156.3 3.1

(Klingmuller et al. 2006) 1M 6 well plate 3 104.2 3.1

Biotechnol Bioeng. Author manuscript; available in PMC 2015 May 01.


