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RoboClam is a burrowing technology inspired by Ensis directus, the Atlantic razor clam. Atlantic razor clams
should only be strong enough to dig a few centimeters into the soil, yet they burrow to over 70 cm. The animal
uses a clever trick to achieve this: by contracting its body, it agitates and locally fluidizes the soil, reducing the
drag and energetic cost of burrowing. RoboClam technology, which is based on the digging mechanics of razor
clams, may be valuable for subsea applications that could benefit from efficient burrowing, such as anchoring,
mine detonation, and cable laying. We directly visualize the movement of soil grains during the contraction
of RoboClam, using a novel index-matching technique along with particle tracking. We show that the size of
the failure zone around contracting RoboClam can be theoretically predicted from the substrate and pore fluid
properties, provided that the timescale of contraction is sufficiently large. We also show that the nonaffine motions
of the grains are a small fraction of the motion within the fluidized zone, affirming the relevance of a continuum
model for this system, even though the grain size is comparable to the size of RoboClam.

DOI: 10.1103/PhysRevE.92.042204 PACS number(s): 81.05.Rm, 87.19.rs, 81.40.Np, 81.70.Bt

I. INTRODUCTION

As we all know from common experience that a bowl of
sand will slosh around much like a bowl of soup. But stick
your finger into each, and the material resists quite differently.
The soup offers almost no resistance, and the sand’s resistance
increases quickly until you can’t push any further. But this is
more than just a whimsical exercise; burrowing into granular
materials is of great technological interest, in applications
such as anchoring vessels and laying undersea communication
cables.

Many animals also have a vested interest in the manipula-
tion of granular materials, needing to walk, swim, or burrow
through them. As such, they have evolved unique locomotion
strategies to make their way, often to optimize efficiency [1].
The sandfish lizard (Scincus scincus) swims through sand,
with motion resembling the undulations of a fish [2]. Clam
worms (Nereis virens) use crack propagation to burrow in
mud-like gelatin [3]. Nematodes (Caenorhabditis elegans)
move efficiently via reciprocating motion in saturated granular
media [4,5].

In contrast to a liquid, in which viscosity and density
do not change with depth, particles within a static granular
material experience contact stresses, and thus frictional forces,
that scale with the surrounding pressure, resulting in shear
strength that increases linearly with depth [6]. This means that
submerging devices such as anchors can be costly, as insertion
force F (z) increases linearly with depth z [7], resulting in
an insertion energy, E = ∫

F (z) dz, that scales with depth
squared.

The Atlantic razor clam, Ensis directus, can produce
approximately 10 N of force to pull its valves into soil [8].
Using measurements from a blunt body the size and shape of
E. directus pushed into the animal’s habitat substrate, this level
of force should enable the clam to submerge to approximately
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1–2 cm [9]. But in reality, razor clams dig to 70 cm [10],
indicating that the animal must manipulate surrounding soil to
reduce burrowing drag and the energy required for submersion.

E. directus burrows by using a series of valve and foot
motions to draw itself into underwater soils [Figs. 1(a)–1(e)].
Comparing this performance to the energy required to push an
E. directus-shaped blunt body to burrow depth in the animal’s
habitat substrate using steady downward force [Fig. 1(f)], we
find the animal is able to reduce its required burrowing energy
by an order of magnitude, even taking into account energy
spent manipulating its valves—motions that do not directly
contribute to downward progress [9].

But even though these valve motions do not advance the
animal downwards, these motions are critical. The uplift and
contraction of E. directus’ valves during burrowing locally agi-
tate the soil [Figs. 1(b)–1(c)] and create a region of fluidization
around the animal [9]. By fluidization, we mean the agitation
of the soil creates a region of higher void fraction, and thus
the soil becomes a dense, but no longer jammed, suspension.
Moving through fluidized, rather than static, soil reduces drag
forces on the animal to within its strength capabilities [9].
These fluidized substrates can, to first order, be modeled as a
generalized Newtonian fluid with depth-independent density
and viscosity that are functions of the local packing fraction
[11–16]. As a result, burrowing via localized fluidization
requires energy that scales linearly with depth, rather than
depth squared for moving through static soil [Fig. 1(f)].

E. directus is an attractive candidate for biomimicry when
judged in engineering terms: its body is large (approximately
20 cm long, 3 cm wide); its shell is a rigid enclosure with
a one degree of freedom hinge; it can burrow over half a
kilometer using the energy in an AA battery [17]; it can dig
quickly, up to 1 cm/s [8]; and it uses a purely kinematic
event to achieve localized fluidization, rather than requiring
additional water pumped into the soil. There are numerous
industrial applications that could benefit from a compact, low-
energy, reversible burrowing system, such as anchoring, subsea
cable installation, mine neutralization, and oil recovery. An E.
directus-based anchor should be able to provide more than
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FIG. 1. (Color online) (a–f) Ensis directus digging cycle kine-
matics and energetics. White arrows indicate valve movements.
Red silhouette denotes valve geometry in expanded state, before
contraction. (a) Extension of foot at initiation of digging cycle.
(b) Valve uplift. (c) Valve contraction, which pushes blood into the
foot, expanding it to serve as a terminal anchor. (d) Retraction of
foot and downwards pull on the valves. (e) Valve expansion, reset
for next digging cycle. (f) Energetic cost to reach burrow depth for
E. directus (red circles) and a blunt body of the same size and shape
(blue squares) as the animal pushed into static soil.

ten times the anchoring force per insertion energy as existing
products [18].

In previous work we have discussed the performance of
RoboClam, an E. directus-inspired robot [19]. By using a
genetic algorithm we found optimal parameters for digging
efficiency. These parameters corresponded to specific contrac-
tion and expansion times of the robot. These timescales, and the
size of the fluidized zone, can be predicted by a model derived
from soil, fluid, and solid mechanics theory, and only require
input of two commonly measured geotechnical parameters:
the coefficient of lateral earth pressure and the friction angle.
While the previous optimization testing was fruitful and was
consistent with the model in terms of the optimal timescales,
what remains is to test the model by directly measuring the
size of the fluidized zone.

In this paper, we use a refractive index-matching technique
to directly record the motion of the grains withina typically
murky 3D granular system, while the device is contracting. We
are then able to compare the size of the real fluidized region to
that predicted by the model. We vary the contraction timescale
and show under what conditions the model breaks down, an
important piece of knowledge for technical development of
new devices.

II. EXPERIMENTAL DETAILS

RoboClam replicates the digging kinematics of E. directus
(Fig. 1). Instead of using valves, RoboClam uses a simple
mechanical system to actuate the end effector. The robot
consists of three main parts: the “end effector,” which is
two pieces of metal (“shells”) able to diverge or converge
horizontally, imitating the valve motion of the organism. The
end effector is attached to a hollow extruded rod that is fixed to
a platform. Within this rod is a second rod that terminates on
either end outside of the hollow rod. At one end it terminates
in a wedge inside the end effector, at the other, it terminates in
a plunger outside of the hollow rod.

Moving the plunger up thus moves the wedge up (but does
not affect the vertical position of the end effector), which
then moves the sides of the end effector inwards. Moving
the plunger down has the opposite effect. Thus, the inner rod
controls the in and out motion of the end effector. The outer rod
can itself be moved to control the up and down motion of the
end effector [19], but we will not consider this complication
here. For these experiments, we solely focus on the contraction
of the effector, which acts to fluidize the surrounding soil.
We move this plunger with a stepper motor to control the
contraction time.

The end effector is of similar size as a juvenile E. directus
(9.97 cm long and 1.52 cm wide). It also has the capability to
contract up to 6.4 mm, which is about twice the contraction
ability of the adult organism. This enhanced capability was
added in order to test the effects of greater movements in the
artificial system. The end effector is sealed within a neoprene
boot to prevent particles from jamming the valve expansion
and contraction. Further design details and testing results can
be found in Refs. [19] and [20].

Our experimental setup is shown in Fig. 2(a). In order to
transcend the “clear as mud” nature of granular materials,
we used an index-matching technique that allows us to see
inside a normally opaque sample. Our grains are 3-mm glass
borosilicate spheres (Glen Mills). They are poured to fill a clear
box, 15 cm on each side. The box is then filled with a mixture
of DMSO (about 95 percent by weight), 0.12 M hydrochloric
acid, and Nile Blue 690 perchlorate dye (trace). The fluid
mixture is tuned to match the index of refraction of the grains,
so that the index mismatch is less than 0.005. A laser sheet is
set to illuminate a plane, which captures the contraction motion
[Fig. 2(b)], resulting in bright fluid and dark grains [Fig. 2(c)]
[21]. We image this slice during RoboClam’s contraction using
a high-speed, light-sensitive PCO.edge camera (PCO AG),
taking video data at speeds up to 150 fps.

From these videos we can extract the positions of the
grains at all times [Fig. 3(b)] during a contraction of the
Clam using established particle tracking routines [22]. As
the system is symmetric, we focus only on grains directly
to the right of the contraction. From these positions, we are
able to calculate particle displacements, local void fractions,
and nonaffine motions of the grains [23]. We measure these
quantities throughout the contraction. We further explore the
phase space of this system by varying the contraction speed
of RoboClam over an order of magnitude, corresponding
to inward contraction times of 0.053 < tin < 0.378 s. (The
contraction time of the organism is approximately 0.2 s [8].)
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FIG. 2. (Color online) The experimental setup. (a) The immer-
sion fluid is fluorescent and index-matched to the granular material.
A red laser sheet fluorescently excites a slice within the sample and
so the camera captures that slice only. The slice recorded is the plane
of motion of the end effector. Images are captured at 150 fps as
the end effector is contracting. (b) A top view of the end effector’s
motion, illustrating the plane the camera is capturing. (c) A portion
of an image taken. Due to the fluorescent dye within the fluid, the
fluid is bright red within the images, and the grains are dark. Images
are subjected to particle identification and tracking algorithms, which
yield measurements of individual grain trajectories.

We have measured the grain motions in the plane perpen-
dicular to the main contraction motion. We find no substantial
motion in this plane, which indicates the response of the grains
is almost solely in the direction of contraction. We have also
measured the motion in two planes parallel to the motion, but
away (1.5 and 4.5 cm) from the edge of the end effector. We
find no substantial grain motion in these fields of view. Both
observations indicate solely measuring motion in the central

FIG. 3. (Color online) (a) An actual sample image (inverted)
from an experiment. The blue arrows indicate the contraction motion
of the end effector, also shown. The yellow box illustrates the area
used for data analysis, to the right of the contracting end effector.
(b) Particle tracks for this same experiment. Particles are identified
and tracks are made by connecting particles between frames. The
overlaid points are particle positions for a full contraction cycle, and
the color indicates the relative time in the cycle. A streak of red-to-blue
represents a unique particle track.

plane is sufficient—out of plane motion is insubstantial. The
rest of this paper will discuss the mechanics within this central
plane.

III. MODELING THE SYSTEM

We start by briefly reviewing the results found for E.
directus [9]. As E. directus contracts, it reduces the level of
stress acting between its sides and the surrounding soil. As the
sides were (in effect) supporting the soil, this causes a stress
imbalance. When E. directus initiates contraction, rather the
stress imbalance creates a zone of active failure, specifically
creating a failure wedge determined by the friction angle of
the soil. The discontinuity in the failure surface enables the
fluidization: particles inside the failure zone are free to move
once the clam contracts, while those outside it are stuck in a
static pile. The motion of the clam reduces the volume of the
animal, which draws pore fluid toward the animal. This creates
a locally fluidized region of lower packing in the granular
material. The particles free to move are then advected by the
pore fluid, which moves inward with E. directus. The failure
wedge is of utmost importance here; without the wedge, all
particles will follow the movement of the fluid and effectively
not create a special fluidized zone.

To test whether these results are also applicable to
RoboClam, we start by looking into the fluid dynamics of the
system. Assuming Stokes drag (as was shown to be applicable
to E. directus [9]), the critical time required for a soil particle
to reach the pore fluid velocity can be estimated through
conservation of momentum:

mp

dvp

dt
= 6πμf D(vv − vp) → tcrit = D2ρp

36μf

, (1)

where D is the diameter of a particle, μf is the viscosity of
the fluid, mp is the mass of a particle, dvp

dt
is the acceleration

of a particle, and ρp is the density of a particle. For the 3-mm
borosilicate glass beads in DMSO used in our experiments,
tcrit = 0.275 s.

In our experiments, we vary the inward contraction time,
tin. For some experiments tcrit < tin and vice versa for others.
When tcrit is less than the contraction time, the particles can be
considered inertialess [9] and are advected with the pore fluid
during contraction. When it is greater, we posit that particles
will be less able to advect with the flow because of their inertia,
resulting in slower particles within the fluidized region and a
smaller fluidized region. (As we vary the timescale an order
of magnitude only, we do not expect to enter a fast contraction
regime where none or few particles are advected).

However, there is another effect competing with fluidiza-
tion. As the soil begins to fail, it will tend to naturally landslide
downward at a failure angle θf . At this point, the shear stresses
in the soil are equal to its shear strength. This condition is
shown in Fig. 4(a), with the applied stress circle b tangent to
the failure envelope, which lies at the same angle as the friction
angle of the soil ϕ, a property commonly measured during a
geotechnical survey. The failure angle is the transformation
angle between the principle stress state and the stress state at
failure. This angle can also be determined by connecting the
tangency point on the failure envelope, the horizontal effective
stress at failure σ ′

hf , and the principle stress axis [Fig. 4(a)],
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FIG. 4. (Color online) Details of the model. (a) Mohr’s circles
of stress states for equilibrium (a) and active failure (b). (b)
Cylindrical model of soil failure around the contracting end effector.
As RoboClam contracts it reduces the pressure acting between its
body and the soil, pi , below that of the equilibrium lateral soil
pressure, p0. This stress imbalance induces a localized failure zone
around the animal. R0 is RoboClam’s expanded size, and Rf is the size
of the failure zone. (c) Predicted size of the failure zone around the end
effector, using the full range of possible values for K0 ∈ [0.31,1.0]
and Ka ∈ [0.19,0.52]. The dashed yellow oval corresponds to the
expectation for our experimental system.

and is given by

θf = π

4
+ ϕ

2
. (2)

Equation (2) was used to plot the failure angle in Fig. 5,
with the friction angle of the substrate measured as 34◦.

For digging efficiency, the creation of the fluidized zone
must occur at a faster timescale than that required for the soil

to naturally fail and landslide toward the end effector. In our
material, the landslide [20] time is approximately 0.5 s, which
is comparable to but greater than our largest full contraction
period. Thus, we are not generally competing with landslide
effects. Further, we note that while this is an important design
consideration for efficient digging, this does not alter the size
of the fluidized zone, which is our main scope.

Another competing factor to fluidization is the sedimen-
tation of the particles themselves. If the particles settle on
a faster timescale than the contraction, fluidization will not
occur. Using the Richardson-Zaki equation (vs = vtε

n, where
vt is the terminal velocity of a single particle in a fluid, φ is the
void fraction, and n is the settling index ≈4.8 [9] to estimate
the particle settling time, we find that this is about 3 s, and so
not a concern for this experiment; however, it certainly could
be important for design considerations. More realistic soils,
i.e., smaller particles, will in general have even larger settling
times.

Figure 4(a) shows a Mohr’s circle representation [24] of the
effective stress states at equilibrium, before contraction (circle
a), and during the initiation of contraction, which brings the
soil into an active failure state, by an imbalance between radial
and vertical stresses (circle b). Effective stress is the actual
stress acting between soil particles, neglecting hydrostatic
pressure of the pore fluid, and is denoted in this paper with a
prime. The term “active” corresponds to the reduction (rather
than increase) of one of the principal stresses to induce failure
[6].

To describe the size of the fluidized zone, we turn to a
model of RoboClam as a cylinder with contracting radius
that is embedded in saturated soil [Fig. 4(b)]. To neglect
end effects, the length of the cylinder is considered to be
much larger than its radius. The relaxation in pressure can
be considered quasistatic and elastic [6]. The radial and hoop
stress distribution in the substrate can be described with
the following thick-walled pressure vessel equations [25],
which have been modified to geotechnical conventions (with
compressive stresses positive) and to reflect an infinite soil bed
in lateral directions [19,20]. Due to the radial symmetry of this
model, this will also work for our system; the center plane of
each system will be identical:

σr = R2
0(pi − p0)

r2
+ p0, (3)

σθ = −R2
0(pi − p0)

r2
+ p0, (4)

where σr is total radial stress, σθ is total hoop stress, R0 is
RoboClam’s size before contraction, pi is the pressure acting
on Roboclam, and p0 is the natural lateral equilibrium pressure
in the soil. It is important to note that these equations still hold
if there is a body force acting in the z direction, such as in soil.
In this case, the pressure vessel equations describe the state
of stress within annular differential elements stacked in the z

direction. The total vertical stress is given as

σz = ρtgh, (5)

where h is the clam’s depth beneath the surface of the soil, ρt is
the total density of the substrate (including solids and fluids),
and g is the gravitational constant. It should be noted that there
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FIG. 5. (Color online) Contour plots of the substrate’s local speed for different contraction times, after the contraction. In all images the
end effector is to the left of the image and is not shown. The shortest contraction times are on the left, and specifically: (a) tin = 0.053 s, (b)
tin = 0.153 s, (c) tin = 0.247 s, (d) tin = 0.295 s, and (e) tin = 0.378 s. The color scale is the same in all plots, and scaled such that active regions
moving displacing more than the cutoff distance D are in white, and static regions are in black. The angle of the failure wedge is predicted by
the green dashed line. The blue vertical solid line shows the prediction for the size of the fluidized zone, with the dashed blue lines representing
the range of possible sizes.

are no shear stresses within the soil in principal orientation,
as τrz = τθz = 0 because RoboClam is modeled with a high
aspect ratio (L � R0) and τrθ = 0 because of symmetrical
radial contraction.

The undisturbed horizontal effective stress in the substrate
is determined by subtracting hydrostatic pore pressure u from
the natural lateral equilibrium pressure:

σ ′
h0 = p0 − u. (6)

The undisturbed horizontal and vertical effective stresses
can be correlated through the coefficient of lateral earth
pressure:

K0 = σ ′
h0

σ ′
v0

, (7)

which is a soil property that can be measured through
geotechnical surveys [6,26]. By also knowing the void fraction
of the soil φ and the particle and fluid density, ρp and ρf ,
respectively, p0 can be determined as

p0 = K0σ
′
v0 + u = K0gh(1 − φ)(ρp − ρf ) + ρf gh. (8)

We shall make a brief comment on this equation. This
equation shows a linear dependence with depth. This assumes
RoboClam is submerged below the surface; for partial submer-
sion this would need to be modified. This should not change
for very deep systems, unless the container is of finite size, in
which case pressure saturation due to the Janssen effect might
be observed [30].

Failure of the substrate will occur when pi is lowered to a
point where the imbalance of two principle effective stresses
produces a resolved shear stress that exceeds the shear strength
of the soil. This resolved failure shear stress can be created by
an imbalance between radial and vertical stresses [Fig. 4(a),
circle b] or radial and hoop stresses. In real systems, the radial-
hoop mode [19] is dominated by the radial-vertical mode.
Further, experimentally, we are in a quasi-2D realization of
this model, and so radial-vertical modes only truly apply.

The relationship between stresses at active failure (circle b)
is

σ ′
rf

σ ′
vf

= σ ′
rf

σ ′
θf

= 1 − sin ϕ

1 + sin ϕ
= Ka, (9)

where the subscript f denotes the stresses at failure, and Ka

is referred to as the coefficient of active failure.
Soil failure due to an imbalance between radial and vertical

stresses will occur when the applied radial effective stress
equals the radial stress at failure. The radial location of the
failure surface in this condition, Rfrv , can be found by combing
Eq. (3) for radial stress with Eqs. (6), (7), and (9), and realizing
that the vertical effective stress at failure and equilibrium is
unchanged, namely

σ ′
r |r=Rfrv

= σ ′
rf

R2
0(pi − p0)

R2
frv

+ p0 − u = Ka

K0
(p0 − u),

yielding the dimensionless radius for radial-vertical stress
imbalance-induced failure:

Rfrv

R0
=

[
pi − p0(

Ka

K0
− 1

)
(p0 − u)

] 1
2

. (10)

In order to connect this equation to our system, we will
substitute in values for our conditions. First, as RoboClam’s
sides move beyond what is necessary for failure, there should
be complete stress release between RoboClam’s sides and
the surrounding soil, corresponding to pi = 0. Second, from
Eq. (8) we can calculate that u ≈ 0.5p0, for our system’s void
fraction and densities. Thus, Eq. (10) reduces to

Rf

R0
≈

(
2

1 − Ka

K0

) 1
2

. (11)

Equation (11) facilitates a prediction of Rf using only two soil
properties, Ka and K0, both of which are commonly measured
during a geotechnical survey [27]. Ka has an established
relationship with the friction angle ϕ as given in Eq. (9).
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K0, on the other hand, is sometimes written as K0 = 1 −
sin ϕ. Using typical friction angles and this equation, sands
are predicted to have K0 ≈ 0.6–0.7. However, this equation is
generally accepted as only a starting point for many substrates.
For sand, it may underestimate this ratio, as the material can
overconsolidate [28]. We will include 0.6 in our calculations
as a lower limit. And to calculate the full range of possible Rf

R0
we will include the possibility of K0 up to 1, as was measured
in a very similar system [20].

Applying the full range of possible Ka and K0 values to
Eq. (11) yields 1 <

Rf

R0
< 5 in most conditions [Fig. 4(c)].

These results demonstrate that soil failure around a contracting
cylindrical body is a relatively local effect, and for reductions
of pi to near zero, depth-independent. Equation (11) also does
not depend on any soil cohesion terms, indicating that localized
substrate failure and fluidization should be possible in both
granular and cohesive soils.

Equation (11) thereby gives a hard prediction for what
the size of the fluidized region should be around RoboClam.
Further, as long as tin is larger than tcrit, the size of the region
should be fixed. And as argued before, if tin is substantially less
than tcrit, the size of the zone should be smaller since particles
will not be able to advect.

For our particular values of K0 and Ka , incorporating
uncertainties from the friction angle and K0 we expect then that
1.6 <

Rf

R0
< 2.2, and specifically predict Rf

R0
≈ 1.7 for Ka = 1

and ϕ = 34◦. As it is more straightforward to compare our data
to Re, which is the radius of contracted RoboClam, we make
a further calculation, transforming R0 into Re. This gives an
expected range of Rf

Re
from 2.2 to 3.1, and a specific prediction

Rf

Re
≈ 2.4.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We visualize the size of the fluidized regions in the material
by looking at the local displacements within the material.
We obtain these displacements by the unique identification
of particles [22] and creation of particle tracks. We can then
create “speed fields” by looking at the absolute displacements
in the plane of the contraction, interpolated onto a grid. We
use absolute displacement, as a particle may be fluidized
(move more quickly) without necessarily following the exact
vectorial path of the end effector or its neighbors. In other
words, any significant speed, even if against the grain, should
necessarily count as a free, fluidized region. In Fig. 5, we
display these plots for five different contraction times. The
leftmost plot corresponds to the fastest contractions and
decrease in contraction speed going to the right. The plots
are also decorated by predictions for the extent of the fluidized
zone (blue lines) and the failure angle (green dashed line). We
define a cutoff distance D for the purposes of visualization:
particles displacing more than D will be considered in actively
moving regions and have a white color in the graph. For Fig. 5,
we have defined this cutoff distance to be one third of the end
effector’s displacement. We can comfortably adjust this cutoff
by about a factor of two in either direction and still get the
same qualitative pictures. Completely static regions are shaded
in black, and slow (but moving) regions are in red and yellow.

In Figs. 5(a)–5(e) we do see the presence of a locally
mobile region in all plots. As the contraction time increases, the
absolute speed of particles in the region increases, suggesting
that the particles are more effectively fluidized. At the
shortest time, the particles are mobile but do not approach
the speeds of the longest time. We also see the fluidized
zone tends to shrink as the contraction rate is increased (tin
is decreased), which aligns with our expectation from fluid
dynamical considerations. The apparent size of the zone seems
to qualitatively agree with our predictions (blue lines). We
also see the presence of the failure wedge in Figs. 5(a)–5(e),
predicted at θf = 62◦. Particles inside the failure wedge that
were not advected with the flow are starting to landslide toward
the end effector. This wedge is mostly clearly developed for
longer contraction times; for the shorter times the elapsed time
is not on par with the landslide time of the material (≈0.5 s).

To explicitly measure where fluidization occurs, we mea-
sure the void fraction in the system by identifying the local
neighbors within a 100 pixel radius of each particle. The
volume fraction of our undisturbed, randomly packed sample
is 0.62. The average area of a sphere in a 2D slice is A = 2

3πr2,
where r is the particle radius [30]. Thus, the local packing/void
fraction may be inferred by counting the distribution of
neighbors within a certain radius and assuming a random slice.
By averaging the void fraction over all vertical positions, we
can measure the horizontal extent of the fluidized zone. Figure
6(a) shows the void fraction φ for different contraction times
as a function of horizontal distance from the end effector.
Defining fluidization as a void fraction of φ0 = 0.41, as in
Ref. [9], this gives a direct measurement of the size of the
fluidized zone. For each contraction time data set, we fit the
four (normalized) void fraction versus position data points
closest to the end effector to a polynomial. We can thus
measure the extent of the fluidized region by seeing where
this polynomial has a value of 1. We plot the results of this
procedure in Fig. 6(b). We see that the size of the zone matches
the prediction of the mechanical theory for longer contraction
times, Rf

Re
= 2.2. We predicted this ratio to be specifically 2.4,

but 2.2 is well in the range of our uncertainty. Interestingly,
this measured ratio constrains our value of K0 to indeed be
approximately 1. We also see that the number is consistent
for contraction times longer than tcrit, and smaller for shorter
times, which aligns with our predictions.

It is important to underscore that we would not expect a
discontinuous “turn-on” of fluidization at tin/tcrit ≈ 1. There
is no phase transition occurring here, it is simply a competition
between particle advection and fluid flow. If the advective mo-
tion timescale is larger (more particle inertia), the fluidization
is less. However, we never get to a regime where tin is so short
that the particles do not advect at all. Thus, we see what looks
to be a continuous transition. On the other hand, the limiting
behavior of this curve might be of future interest and could be
measured with a wider dynamic range of tin. This would be an
interesting exploration for future studies.

Due to the granular nature and finite size of the system,
we also looked into nonaffine motions within the system.
Nonaffine motions can be the result of a variety of phenomena,
including irreversible rearrangements or force chain breakage.
Nonaffine motions point to deviations in the mechanical
behavior of the granular material from an ideal viscous, elastic,
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FIG. 6. (Color online) Quantifying local fluidization. (a) Localized fluidization around the end effector. Each histogram corresponds to a
different contraction time and depicts void fraction of the substrate as a function of distance from the end effector. The data are normalized with
respect to the fluidization void fraction φ0 = 0.41. The fluidization void fraction is marked by the black dashed line; fluidization corresponds
to data above the line. The position of crossover to fluidization yields plot (b), the size of the fluidized zone, for different contraction times,
normalized by the critical advection time. Error bars are smaller than the symbol size. The red vertical dashed line corresponds to the ratio
of tin to the tcrit equaling one. The shaded region bounded by horizontal dashed lines indicates the predicted range of Rf /Re, with the solid
horizontal line denoting the specific numerical prediction.

or viscoelastic medium. In short, the presence of significant
nonaffine motion suggests that continuum models are not valid.
To measure nonaffine motion, we use the quantity D2

min as
we have in previous work [23]: D2

min,i = min{∑j [
dij (t) −
Eidij ]}2. D2

min,i quantifies the nonaffine motion of j particles
in the neighborhood around a given particle i after removing
the averaged linear response to the strain, given by tensor Ei ;
a larger D2

min indicates more nonaffine motion. The vector
dij is the relative position of i and j , 
dij is the relative
displacement.

We have compared the nonaffine motion to the total
displacements and find no trends with contraction time or
position. Further, nonaffine motion accounts for less than 5
percent of displacement in all trials and frames. This might
be surprising, considering this is a granular system to begin
with, where rearrangements and force chain breakages are
significant events. It also suggests that our continuum model
is valid for use, despite the fact that the diameter of our grains
is only a factor of 5 less than the size of the end effector. But
upon reflection, this is exactly what we should expect, as the
system is not truly granular. The fluidized region has no force
chains to break, and the particles advect with the fluid. The
particles outside the failure wedge remain stationary. Only in
the late “landslide” behavior should nonaffine motions be in
any way significant, but this is not of interest for the model.

V. CONCLUSIONS

In conclusion, we have shown that a previously developed
mechanical model for E. directus captures the fluidization
dynamics of RoboClam within a 3D granular bed. Specifically,
it is shown that the size of the fluidized region is the size

we expect it to be based on this model: roughly the size of
the end effector itself. What can be tested in future work is
further variation of soil, fluid, and effector parameters. The
mathematical model can incorporate these variations, it is yet
to be determined if the model breaks down at some point.

We have also shown if the contraction time is too short, the
fluidized region will become smaller, because the particles will
fluidize less effectively. We have shown that as the contraction
time increases the fluidized region becomes larger. While this
points to maximizing the contraction time as one design goal,
it is not the only timescale: future experiments must also look
at the interplay between the timescales of fluidization, settling,
and landslides.

We also have seen the result that nonaffine motion is
actually quite insubstantial in this system. This is somewhat
counterintuitive not only because it is a granular system to
begin with, but also because the length scales of the particles
are comparable to the end effector size. Since it is a granular
system, one expects nonaffine effects to become important for
dynamics—however, if the system is always fluidized, this just
may be unimportant. The result ultimately supports the use of
this continuum model for this system; since deviations from
the average are small, a continuum model works well even
with large particles. Where these motions may become more
important is in the downward digging motion itself: while
the grains on the side are fluidized, the grains below are still
packed together, a topic for future exploration.
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Losert, Rev. Sci. Instrum. 83, 011301 (2012).

[22] S. Slotterback, M. Mailman, K. Ronaszegi, M. van Hecke, M.
Girvan, and W. Losert, Phys. Rev. E 85, 021309 (2012).

[23] K. N. Nordstrom, E. Lim, M. Harrington, and W. Losert, Phys.
Rev. Lett. 112, 228002 (2014).

[24] R. Hibbeler, Mechanics of Materials, 4th ed. (Prentice Hall,
Upper Saddle River, NJ, 2000), pp. 462–487.

[25] S. Timoshenko and J. Goodier, Theory of Elasticity, 3rd ed.
(McGraw, New York, 1970), pp. 68–71.

[26] T. Lambe and R. Whitman, Soil Mechanics (John Wiley & Sons,
New York, 1969), pp. 97–115.

[27] ASTM Standard D4767, “Standard Test Method for Consoli-
dated Undrained Triaxial Compression Test for Cohesive Soils”
(2003), http://www.astm.org/Standards/D4767.htm.

[28] R. Michalowski, J. Geotech. Geoenviron. Eng. 131, 1429
(2005).

[29] We are randomly sampling cross-sectional areas and so are
interested in the average area. For any object, the average
cross-sectional area over some depth Z is 〈A〉z = 1

Z

∫ Z

0 A(z)dz.
If Z corresponds to the diameter of the sphere, then the integral
is simply the volume, and 〈A〉z = 1

2r

4
3 πr3 = 2

3 πr2.
[30] J. Duran, Sands, Powders, and Grains: An Introduction to the

Physics of Granular Materials (Springer, New York, 2000).

042204-8

http://dx.doi.org/10.1038/433475a
http://dx.doi.org/10.1038/433475a
http://dx.doi.org/10.1038/433475a
http://dx.doi.org/10.1038/433475a
http://dx.doi.org/10.1146/annurev.py.06.090168.000515
http://dx.doi.org/10.1146/annurev.py.06.090168.000515
http://dx.doi.org/10.1146/annurev.py.06.090168.000515
http://dx.doi.org/10.1146/annurev.py.06.090168.000515
http://dx.doi.org/10.1063/1.3359611
http://dx.doi.org/10.1063/1.3359611
http://dx.doi.org/10.1063/1.3359611
http://dx.doi.org/10.1063/1.3359611
http://dx.doi.org/10.1139/t83-078
http://dx.doi.org/10.1139/t83-078
http://dx.doi.org/10.1139/t83-078
http://dx.doi.org/10.1139/t83-078
http://dx.doi.org/10.1098/rspb.1967.0007
http://dx.doi.org/10.1098/rspb.1967.0007
http://dx.doi.org/10.1098/rspb.1967.0007
http://dx.doi.org/10.1098/rspb.1967.0007
http://dx.doi.org/10.1242/jeb.058172
http://dx.doi.org/10.1242/jeb.058172
http://dx.doi.org/10.1242/jeb.058172
http://dx.doi.org/10.1242/jeb.058172
http://dx.doi.org/10.2307/1350364
http://dx.doi.org/10.2307/1350364
http://dx.doi.org/10.2307/1350364
http://dx.doi.org/10.2307/1350364
http://dx.doi.org/10.1002/andp.19063240204
http://dx.doi.org/10.1002/andp.19063240204
http://dx.doi.org/10.1002/andp.19063240204
http://dx.doi.org/10.1002/andp.19063240204
http://dx.doi.org/10.1016/0009-2509(67)80149-0
http://dx.doi.org/10.1016/0009-2509(67)80149-0
http://dx.doi.org/10.1016/0009-2509(67)80149-0
http://dx.doi.org/10.1016/0009-2509(67)80149-0
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1007/BF01503023
http://dx.doi.org/10.1007/BF01503023
http://dx.doi.org/10.1007/BF01503023
http://dx.doi.org/10.1007/BF01503023
http://dx.doi.org/10.1007/BF01542776
http://dx.doi.org/10.1007/BF01542776
http://dx.doi.org/10.1007/BF01542776
http://dx.doi.org/10.1007/BF01542776
http://dx.doi.org/10.1016/0095-8522(56)90023-X
http://dx.doi.org/10.1016/0095-8522(56)90023-X
http://dx.doi.org/10.1016/0095-8522(56)90023-X
http://dx.doi.org/10.1016/0095-8522(56)90023-X
http://data.energizer.com/PDFs/E91.pdf
http://dx.doi.org/10.1093/icb/icr038
http://dx.doi.org/10.1093/icb/icr038
http://dx.doi.org/10.1093/icb/icr038
http://dx.doi.org/10.1093/icb/icr038
http://dx.doi.org/10.1088/1748-3182/9/3/036009
http://dx.doi.org/10.1088/1748-3182/9/3/036009
http://dx.doi.org/10.1088/1748-3182/9/3/036009
http://dx.doi.org/10.1088/1748-3182/9/3/036009
http://dx.doi.org/10.1063/1.3674173
http://dx.doi.org/10.1063/1.3674173
http://dx.doi.org/10.1063/1.3674173
http://dx.doi.org/10.1063/1.3674173
http://dx.doi.org/10.1103/PhysRevE.85.021309
http://dx.doi.org/10.1103/PhysRevE.85.021309
http://dx.doi.org/10.1103/PhysRevE.85.021309
http://dx.doi.org/10.1103/PhysRevE.85.021309
http://dx.doi.org/10.1103/PhysRevLett.112.228002
http://dx.doi.org/10.1103/PhysRevLett.112.228002
http://dx.doi.org/10.1103/PhysRevLett.112.228002
http://dx.doi.org/10.1103/PhysRevLett.112.228002
http://www.astm.org/Standards/D4767.htm
http://dx.doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1429)
http://dx.doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1429)
http://dx.doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1429)
http://dx.doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1429)



