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Abstract

The scalability of Wavelength Division Multiplexed All Optical Networks (WDM AONs)
is intimately linked to the way optical signals interact with the physical network and the
overall network architecture and protocols. The physical interaction can lead to degra-
dation of signal quality. There are multiple causes of signal degradation that occur as
optical signals propagate between two users in a WDM-AON, an important one of which
is crosstalk. In previous research, the analysis of crosstalk was developed employing
Gaussian and worst case assumptions for the interference portion of the detected signal.
Furthermore, the crosstalk-crosstalk beat which occurs due to the square-law nature of
the optical detector was neglected and the interferers were assumed to be at the same
rate and synchronous with the signal. This thesis presents rigorous crosstalk analysis
techniques starting from a worst case approach for one interferer, to more general cases
which account for the rate differences of the signal and the crosstalk, the asynchronous-
ness of their bit slots and the randomnesses of their phases and polarizations. In each
step, the error probability of the optimum detector is evaluated. The impact of the
AC-coupled decision thresholding on the performance is also investigated for some cases.
Finally, an accurate analysis is performed for multiple crosstalk sources employing an
MMSE estimation for the crosstalk-crosstalk beat terms and the tightest Chernoff bound
for the error probability. The error probability curves for three practical examples are
illustrated, including a system using a Lucent Waveguide Grating Router (WGR) whose
specifications were experimentally determined. Furthermore, the validity of the Gaussian
approximation and the neglection of crosstalk-crosstalk beat terms are argued and the
regions of system parameters which make these assumptions valid are illustrated.

Thesis Supervisor: Dr. Richard A. Barry
Title: Staff, MIT Lincoln Laboratory



Acknowledgments

I feel very fortunate to have Dr. Rick Barry as my thesis advisor. I am deeply
thankful to him for his incredible guidance, support and patience throughout this work.
His clarity of thought, deep knowledge, enthusiasm for his work and his commitment to
excellence was a great inspiration and will always set an example for me throughout my
life.

I am also grateful to Professor Robert Gallager for providing invaluable help and
advice. This work would be impossible without his support, teachings and intellectual
inspiration.

I would like to thank Dr. Roe Hemenway for letting me use the AON Laboratory and
his invaluable help and advice on the experimental part of this work. I also thank Lori
Jeromin and Mark Stevens for many stimulating, helpful discussions and Paul Green for
letting me use his images.

I greatly appreciate the support I have received from the U.S. Government, through
U.S. Army Research Office of Sponsored Research grant DA AH04-95-1-0103.

Finally, I am deeply grateful to my lovely wife Asu, for always being there for me,
her patient support and encouragement. I would like to thank all my family members

for their support, love and for always believing in me.



Contents

1 Introduction 14
1.1 Background . . . . . . ..o e .o 15
1.1.1 Crosstalk Mechanism . . . . . . . . - . . ot oot e e 15

1.1.2 Network Crosstalk . . . . . . . .« . oo 18

1.2 System Model . . . . . ..o 28
121 Crosstalk Model . . . . . . . . .« o i o 28

1292 Receiver Model . . . . . . . . . . i e 31

1.3 Impacts of Coherent Crosstalk on Receiver Performance . . . . . ... .. 33
©1.3.1 QGaussian Approximation . . . . .. ... ..o 34

1.3.2 Worst Case Analysis . . . . . . o v v v v v vt i o 35

1.3.3 Improving System Performance Under Crosstalk . . . . ... ... 35

1.4 Outline of the Thesis . . . . . - - o v o v v v v b e e oo 36

2 Baseline and Worst Case Performances 38
9.1 Crosstalk-free Performance Curve (Baseline) . . . . .. .. ........ 38
911 First Method . . . . .« . . o o ittt 39

212 Second Method . . . . . . . . . . . e 44

9.2 Worst Case Crosstalk Performance Curve . . . . . . ... ... ...... 48
93 CONCHISIONS - - « v v v v e e e e e e e e e e e e 54



3 Crosstalk as a Random Process

3.1 Synchronous Bit Slots . . . . ... .. ... ... ... ... ... ...,
3.1.1 Lower Crosstalk Bit Rate . . ... ... ... e e e e
3.1.2 Higher Crosstalk Bit Rate . . . . ... ... ............

3.2 Asynchronous Bit Slots . . . . . .. .. .. ... ... ... ... ...
3.2.1 Higher Crosstalk Bit Rate . . . ... ... ... ..........
3.2.2 Lower Crosstalk Bit Rate . . . .. ... .. ... .........

3.3 Conclusions . . . . . . . . . e

4 Crosstalk with Random Phase and Polarization

41 Crosstalk Model . . . . . . . . . .. .. ...
4.2 System Performance . ... .. ... ... ... ... .. .. ...
4.2.1 Higher Crosstalk Bit Rate . . . . . ... ... ... ... .....
4.2.2 Lower Crosstalk Bit Rate . .. .. ... ... ...........
43 Conclusions . . . . . . . . . e e
5 Multiple Crosstalk Sources
5.1 Modeling the Process . . . . .. .. .. S
511 Definitions . . . . . . . ...
5.1.2 Crosstalk-Crosstalk Beat Terms . . . . ... ... ... ......
5.1.3 The Linear Approximation . . . . . . .. .. ... ... ......
5.2 Evaluating the Error Probability . .. ... .. ... ... ........
53 Examples . . . . . . . .. e e
54 Summary and Conclusions . . . . . . . . . . ... ...

6 Conclusions

57
58
58
72
79
79
82
89

92
92
95
98
99
102

105
106
106
110
113
116
124
128

129



List of Figures

1-1

1-2

1-3
1-4

1-5
1-6

1-7

The detected frequency spectrum is shown by the solid curves. The wide

and the narrow dashed curves illustrate the optical and the electrical filters

respectively. The big solid curve centered at f. is the communication

signal and the other solid curves are the crosstalk components. Note that
the difference between the center frequency of a signal and a coherent
component is less than the electrical bandwidth whereas, that between
the signal and an incoherent component is much wider than the electrical
bandwidth. . . . . . . ... .o
There are nonlinear components (small dashed curves located near the
tails of the electrical filter) located at frequencies f,; and fo2. . . . . . .
A WDM-AONwithNmodes . . . . ... ... ... .. ..........
Signal on the first channel is routed differently depending on which input
portitisimserted. . . . . . . . . .. L. L. L .
Every node has N trancievers tuned to N different channels. . . . . . . .
AON LAN and MAN hierarchy. Odd numbered channels remain local to
each LAN, and are re-used in every LAN domain. Even numbered channel
interconnect LANs at the MAN hub. MAN frequencies are re-used 8 times
within the MAN domain. . . . . .. .. .. ... ... ... ... .....
Waveguide Grating Router (a) schematic and (b) transmission through

adjacent inputs and (c) mask pattern . . . . . ... ... ... .. ....



1-8 This setup is constructed to calculate the transmission function of the

router for the selected input and output ports. . . . . . .. .. ... ... 23
1-9 Input port 2 and output port 4 is connected. The main peaks are 26.09

dB higher than the neighbor peaks. . . .. ... ... ... ........ 24
1-10 Input port 2 and output port 4 is connected. This time a larger frequency

span is adjusted. Many FSRs are supported. . . . . ... ... ...... 25
1-11 This setup is constructed to simulate the coherent crosstalk. All the input

ports are switched one by one and all the outputs are sketched on one graph. 26
1-12 Output port 3 is connected. At channel 12, the peak coherent crosstalk is

S27.39dB. . .. e e 27
1-13 Qutput port 4 is connected. At channel 12, the peak coherent crosstalk is

2860 dB. . ... 27
1-14 The incoherent crosstalk peaks are 27 lower than the signal on the average. 28
1-15 Detected Cwrrent for N =11. . . . . . . . . . ... ... . 31
1-16 Detected Current for N =101 . . . . ... ... .. ... e 31
1-17 Thereceiver model. . . . . . . . . . .. . ... 32
1-18 Power Penalty versus Crosstalk for Various Thresholds [6] . . ... ... 36
2-1 Impulse Response of the Matched Filter . ... .. ... ... ...... 41
2-2 The Density of the Detected Current Conditioned on the Signal . . . . . 42
9-3 Error Performance Curve of the Crosstalk-free System . . . . . . . . ... 43
2-4 OOK symbols: Mark with energy E;, space with energy 0. . . . . . ... 46
2-5 The pdf of the detected current conditioned on the signal . . ....... 47
2-6 Conditional pdf of the sampled signal under worst case crosstalk. . ... 30
9-7 Baseline and Worst Case for -20 dB crosstalk. Electrical Power Penalty =

2dB . . e e e e e e e e 52
2-8 Baseline and Worst Case for -17 dB Crosstalk. Electrical Power Penalty

=3dB . . .. e e e e e e e e e 53



2-9

Electrical Power Penalty versus Crosstalk. 2 dB and 3 dB penalties due
to -20 dB and -17 dB crosstalk respectively. . . ... ... ... .....

2-10 Optical Power Penalty versus Crosstalk. 1 dB and 1.5 dB penalties due

3-1

3-2
3-3

3-5

to -20 dB and -17 dB crosstalk respectively. . .. ... .. ... ... ..

Crosstalk Signal, Communication Signal and the time slots. Communica-
tion Signal is twice as fast as crosstalk. . . . ... ... ... ... ..
The pdf of the detected current conditioned on the transmitted signal.

The derivative function shows us that there is a global maximum of the
performance function when z=2r—2r. . . . .. ... ... ... ...
It can be seen that %ﬁl is monotonically increasing and z = 24/7 —2r is
the optimum value over the given range of values of %% and z. dZiE =0
plane is also illustrated. . . . . .. ... ... ... ... .. ...
The first, second, and third terms of the Expression 3.6 ((2), (i), (444))
are illustrated as dotted curves respectively. r.I‘he solid curve represents
P(E) when 7 = —20 dB. It can be observed that the third term dominates
among thethree. . . . ... .. .. .. ... ... ..o
The position of the threshold (illustrated with bold solid lines) fluctu-
ates between the two limit points almost linearly since the averaging is
performed over ng > 1 crosstalk bits. The square wave represents the
crosstalk bits. Note that the scale is adjusted for clarity. . .. ... ...
The position of the threshold (illustrated with bold solid lines) settles to
the optimum value faster this time (ng signal bit periods). The square
wave represents the crosstalk bits. . . . .. .. ..o
The error probabilities for AC thresholding (¢ > 1) and optimized sta-
tic thresholding are illustrated with solid and dashed curves respectively.
There is an extra 0.75 dB power penalty for not using static optimized

thresholding. . . . . . . .. .. .. ...

58

60

62

63

65

- 68



3-9 The best and worst error probability curves (conditional on signal bit)

for AC thresholding are illustrated with solid curves (¢ = 1) and the DC

coupled best performance is illustrated with dashed curve. The overall

performance of the AC coupled case is close to the worst curve. . . . . . 71
3-10 The error probabilities for AC thresholding (¢ < 1) and optimized static

thresholding are illustrated with solid and dashed curves respectively. The

peformance of the AC coupled case approaches to the DC coupled case

asymptotically. . . . . . .. ... 71
3-11 Crosstalk Signal, Communication Signal and the time slots. Crosstalk

Signal is twice as fast as communication. . .. .............. 72
3-12 The probability density of the detected current conditioned on the signal

bit. n=3forthiscase. .. .. ... ... ... ... .. ... 73
3-13 The derivative of the probability of error expression for various values of

rate ratio. ' denotes normalized = (i.e., 377;). These sketches show us

that ., is achieved at 24/7 — 2r for n values close to 1, and approaches

t0 /T —T aST INCTeases. . . . . . . . . .. 76
3-14 It can be seen that gi_I;ngl is monotonically increasing and z = 0.75 (2/7 — 2r)

is the optimum value over the given range of values of % and z for n = 10.

%}1 = 0 plane is also illustrated. . . . . . ... .. ... ... ...... 77
3-15 Dotted curves represent the baseline and the worst case performances. The

solid lines represent optimized static n = 10, optimized static n = 100

performances. n = 10 curve performs 1 dB better than the worst case

and 0.35 dB worse than n = 100 which performs 0.65 dB worse than the

crosstalk-free system. . . . . . .. ... Lo ool 78
3-16 Communication and crosstalk signals where n=2. d is the amount of asyn-

chronism between the two. . . . . . . . . &« . . . .« i e 80



3-17 d—’?}? is illustrated versus z’ = ﬁ_g for n = 1,2 and 10. The thresh-
old levels that minimize error probabilities are very close tothose of the
Synchronous system. . . . . . . . . .. .o oo it

3-18 The two plots correspond to the error performances for n = 1 and n = 10.
The solid line illustrates the performance of a system where the signal
and the crosstalk bits are synchronous and the dotted curve shows the
performance where the two are asynchronous. . . . ... ... ......

3-19 Communication and crosstalk signals where n=2. d is the amount of time
shift between the two. . . . . . . . .« . . . o e

3-20 A transition signal bit is shown below the crosstalk signal. One crosstalk

bit ends and the next one starts during the transmission of the transition

3-21 %}l versus z’ at 7’:3,-‘; =18 dB for n = 1,2 and 10. z’ = 1 for all n.
The threshold levels that minimize P (E) are very close to that of the
synchronous system. . . . . .. .. .. ..o

3-22 The two plots correspond to the error performances for n = 1 and n = 10.
The solid line illustrates the performance of a system where the signal
and the crosstalk bits are synchronous and the dotted curve shows the

performance where the two are asynchronous. . . .. ... ........

4-1 The direction of E, is illustrated as it is initially injected in the fiber. . .
4-2 Showing one evolution of the polarization state along a fiber. The light

86

93

traverses a distance Ly.,: before returning to the original polarization state. 94

4-3 The derivative of the error probability versus z' = 57— is illustrated in

the figure. The above figure is for n = 1 and the below figure is for n = 10.

The optimal thresholds are lower than those utilizing worst case parameters. 100

10



5-9

5-6

The performance curves at the optimum threshold for n =1 and n = 10.
The curves for n = 1 and n = 10 are almost 0.4 dB and 0.3 dB superior
compared to those with worst case polarization & phase parameters (which
are illustrated with dashed lines) respectively at Ey/Ng =16dB. . . . . .
The derivative of the error probability versus z’ = 2\/'_:—5 is illustrated in
thefigure. . . . . . . . ..o
The optimum performance curves for random phase and polarization (solid
line) and worst case phase and polarization (dashed line). The curve for
random phase and polarization is 0.4 dB superior to that with worst case

polarization & phase parameters at E,/Ng=18dB. . . . ... ... ...

The percentage of the variance of the crosstalk-crosstalk interferer versus
N -1 for r——30dB. As the number of interferers exceeds 50, the crosstalk-
crosstalk variance starts to dominate. . . . . . . .. .. ..o
The percentage of the variance of the crosstalk-crosstalk interferer versus
N —1 for » — —40 dB. As the number of interferers exceeds 150, the
crosstalk-crosstalk variance starts to dominate. . . . . . .. .. ... ...
The impacts of the ripples of the sample 'density becomes negligable at the
1171 S
Iustration of 5.60 versus N — 1 for constant % = 16 dB, r = —25 dB.
One can observe that the approximations are good if N < 5 (the curve
stays below 0.25). . . . . . . . ...
Illustration of 5.60 versus N — 1 for constant %’: = 16 dB, r = —30 dB.
One can observe that the approximations are good if N < 10 (the curve
stays below 0.25). . . . . . . .. ...
Ilustration of 5.60 versus N — 1 for constant % = 16 dB, r = —40 dB.
One can observe that the approximations are good if N < 50 (the curve

stays below 0.1). . . . . . ...

11

102

112

112



3-7

5-8

The perfromance curve of the system with a 32 x 32 wavelength router
(solid curve) and the baseline (dashed curve). The power penalty is 4 dB
when the error probability is ~ 107°. Note that the solid curve gives the
tightest bound for the error probability of the system in the give region. .
The perfromance curve of the system with Lucent 000371695 wavelength
router (solid curve) and the baseline (dashed curve). The power penalty
is 2.8 dB when the error probability is ~ 10710, Note that the solid curve
gives the tightest bound for the error probability of the system for %’;— <19

The perfromance curve of the system with 5 intruders all at different rates
(solid curve) and the baseline (dashed curve). The power penalty is 0.5
dB when the error probability is ~ 107, Note that the solid curve gives
the tightest bound for the error probability of the system for % <19dB
(P(E)210718). L oo

12

125



List of Tables

1.1

1.2

1.3

Routing table of a wavelength router. The entry 4, j represents the wave-

length at which j** input port communicates with the i** output port. . 20
The routing table of the Lucent 000371695 WGR at the specified condi-

7 T ) 1< 24
The steps of the analysis. . . . . .. ... ... ... ... ......... 37

13



Chapter 1

Introduction

The explosive growth of telecommunications and computer communications has placed
increasing demand on the global communications infrastructure. A global research effort
is currently underway to determine if Wavelength Division Multiplexed All-Optical Fiber
Optic Networks (WDM-AONs) can meet these needs.

Wavelength division multiplexing (WDM) allows multiple useré to share a fiber optic
link or network in a manner similar to radio communications. WDM takes advantage
of the tremendous bandwidth of optical fibers, which is on the order of 25,000 GHz. In
practice, the usable bandwidth in a fiber link or network is lower than 25 THz and is
determined by a complex interplay between the components and devices and the link or
network architecture. In a WDM transmission link, different wavelengths (A1, Az, . .
., An) are combined at the input of an optical fiber and separated at the fiber output,
with each wavelength carrying different information. Wavelengths are combined and
separated using wavelength division multiplexers/demultiplexers. An important quality
of a WDM link is that multiple optical channels are transmitted together and amplified
simultaneously and are then converted to electronic signals only at the link output.

WDM-AONSs establish communication paths between different users and each path
appears as a point-to-point WDM link without optoelectronic regeneration at the nodes.

The term “all-optical” comes from the fact that the transmitted data remains as an
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optical signal throughout the network. Access to the network and connections within the
network are achieved by “adding,” “dropping” and “routing” wavelengths at each node.

The scalability of a WDM-AON is intimately linked to the way optical signals interact
with the physical network and the overall network architecture and protocols. The phys-
ical interaction can lead to degradation of signal quality. There are multiple causes of
signal degradation that occur as optical signals propagate between two users in a WDM-
AON including signal attenuation, crosstalk, signal distortion and noise accumulation.
These effects reduce the signal-to-noise ratio (SNR) at a photoreceiver, resulting in bit
errors in digital systems or distortion in analog systems.

The rest of this chapter contains four sections. Basic definitions on crosstalk, the
mechanisms of it and the network structure is presented together with a practical exam-
ple of a wavelength router in Background section. The following section illustrates the
possible models for crosstalk and the receiver which will be used throughout the thesis.
The third section reviews the past work on crosstalk analysis and discusses their weak-
nesses which motivate this work. In the final section, the following chapters are briefly

introduced.

1.1 Background

1.1.1 Crosstalk Mechanism

Crosstalk is the leakage of light from one received wavelength channel to another. It is
especially important in WDM-AONSs due to the cascading of multiple fiber links, optical
amplifiers and network nodes over any given path. Crosstalk can be classified as linear
and nonlinear depending on how it is generated.

Linear crosstalk can be caused by leakage of unwanted optical power from same or ad-
jacent wavelengths through an optical filter, multiplexer /demultiplexer, photonic switch,
or an add/drop element. Intersymbol interference is another kind of linear crosstalk

which occurs between time slots in digital systems due to fiber dispersion.
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Nonlinear crosstalk can occur between multiple wavelength channels through optical
nonlinearities in optical fiber or in optical amplifiers since new optical frequencies can be
generated that coincide with the desired signal wavelength. Nonlinear crosstalk is much
worse in cascaded fiber/amplifier chains.

Crosstalk can be further classified as coherent or incoherent, depending on its wave-
length relative to that of the desired signal. If linearly or non-linearly generated interfer-
ence is at the same wavelength with the signal, this is referred to as coherent crosstalk;
if it does not coincide with that of the desired signal, this is referred to as incoherent
crosstalk.

Once the signal is detected at the photoreceiver, power from wavelengths at or other
than the desired channel that pass through the optical filter will be converted to an elec-
trical crosstalk signal which is then filtered electrically. Typically, the receiver electrical
bandwidth is much narrower than the spacing between the desired channel and neighbor-
ing channels, only a little portion of which remains at the output of the optical filter (-30 -
35 dB for a typical optical filter). Thus, the signal-incoherent crosstalk beating is filtered
out. However, the electrical filter cannot reject the interference components which are at
the same wavelength as the desired channel since the signal-coherent crosstalk beating is
within the electrical bandwidth. Therefore, coherent crosstalk can be much more severe
than incoherent crosstalk because it beats with the strong signal. We will deal with the
impacts of coherent crosstalk throughout the thesis. Note that, in practice the lasers that
transmit at the same channel may have a difference between their resonant frequencies.
Furthermore, lasers have non-zero linewidths. The signal and crosstalk spectrum has a
bandwidth of the order of sum of the laser linewidths and modulation bandwidth. In
this thesis, we assume that the bandwidth of the electrical receive filter is much wider
than the frequency difference of the lasers which transmit on the same channel.

To make the definitions clear, an illustration is given in Figure 1.1. There are three
channels. The desired channel is at optical frequency f.. The other two channels are

at fincoh1 and fincon,2 Where the subscripts stand for incoherent. There are three lasers
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fincoh 2

Figure 1-1: The detected frequency spectrum is shown by the solid curves. The wide
and the narrow dashed curves illustrate the optical and the electrical filters respectively.
The big solid curve centered at f. is the communication signal and the other solid curves
are the crosstalk components. Note that the difference between the center frequency
of a signal and a coherent component is less than the electrical bandwidth whereas,
that between the signal and an incoherent component is much wider than the electrical
bandwidth.

transmitting at each wavelength. The optical filter at the receiver input rejects most
of the incoherent crosstalk, and the signal-incoherent crosstalk beat is centered at a
frequency which is outside the electrical baseband. There is a difference between the
center frequencies of the lasers that transmit on the same channel and the lasers have
non-zero linewidths. Most of the coherent crosstalk cannot be rejected by the electrical
filter though, because for a high speed transmission, the filter should have a bandwidth
large enough to cover the signal-crosstalk beat frequencies.

There may be nonlinearly generated interference components due to the nonlinearities
in the fiber, optical amplifiers, etc. Nonlinear crosstalk might be severe if its center
frequency is close to that of the signal (i.e., the signal-nonlinear crosstalk beating is in
the electrical baseband). Such a case is illustrated in figure 1.2 where the non-linearly

generated components are centered at fn1 and fnp.
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fineoh.l fineoh 2

Figure 1-2: There are nonlinear components (small dashed curves located near the tails
of the electrical filter) located at frequencies fr,1 and fro.

1.1.2 Network Crosstalk
Network Structure

In a WDM-AON there may be more than two nodes communicating using the same
wavelength. This is called wavelength reuse and Figure 1.3 illustrates such a network.
Each node has N transmitters and NV receivers that are tuned to different wavelengths
(i-e., A1, Ag,...,Anr). Communication between a transmitter and a receiver is handled
by the Network Router which has N? internal connections to connect N input ports
to N output ports. Thus there are N? distinct transmission functions one can observe
corresponding to all input-output port pairs. The peak locations of the functions are
shown on the routing table of the router. A typical routing table is shown in Table 1.1
and Figure 1.4 illustrates the paths that a signal at \; follows when it is inserted from

different input ports.

Every node has a multi-wavelength transmitter (N light sources and a multiplexer)
and the corresponding receiver (a demultiplexer and N detectors) as shown in Figure
1.5.
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to another network

Figure 1-3: A WDM-AON with N nodes

Figure 1-4: Signal on the first channel is routed differently depending on which input
port it is inserted.
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Table 1.1: Routing table of a wavelen
at which j** input port communicates with the it* output port.

Transmitter #3

|Output / Input— 1 2 (3|4 N-1| N
1 A [ XA A Av_1 | Ay
2 P SV DY YR
3 s | e |25 | N N
4 M s e | Y | A
N-1 AN—1 | AN | A1 | Ag AN_3 | ANz
N Av | M| A Ag Av_z | AN_1

AN
p i p—
u—

NL(@

Router (AWG)

gth router. The entry i, j represents the wavelength

Receiver £3

AN

_3 @ o} —33

7

Fe

At T

Multiplexer

“—a2
S

Demu!ﬁplexér

Figure 1-5: Every node has N trancievers tuned to N different channels.
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Figure 1-6: AON LAN and MAN hierarchy. Odd numbered channels remain local to
each LAN, and are re-used in every LAN domain. Even numbered channel interconnect
LANs at the MAN hub. MAN frequencies are re-used 8 times within the MAN domain.

The ATT/DEC/MIT AON test-bed [3] uses two levels of passive wavelength routing
to partition the networks into multiple area domains which are local area subnetworks
(L-0’s) and metro-area networks (L-1s) [1], [2]. It is illustrated in Figure 1.6.

Standard AON channels are separated by 50 GHz and enumerated with integers
starting from 0 at 1561.5 nm, increasing by 1 with increasing frequency.

In the L-0 hubs, the odd numbered channels are confined to the L-0 domain, so that
they can be re-used within other L-0 domains. L-0’s communicate with each other by
means of the L-1 hub using even numbered channels which are spaced by 100 GHz. There,
a second level of wavelength routing takes place utilizing an N x N Arrayed Waveguide
Grating Router. This allows frequencies to be re-used within the L-1 hub up to N times.

Arrayed Waveguide Grating Router (AWGR)

This section will evolve to crosstalk in WGRs starting from the WGR operation. Al-
though WGR’s are not the only crosstalk source in AONS, it is useful to understand the
crosstalk in WGR to ﬁgure out the mechanism of crosstalk.

AWGR Operation Waveguide Grating Router is a key component for multi-wavelength

cross-connects. The operation of the router [3] is illustrated schematically in Figure 1.7.
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Figure 1-7: Waveguide Grating Router (a) schematic and (b) transmission through ad-
jacent inputs and (c) mask pattern

There are two identical M x M star couplers which are connected by M waveguides.
N input optical waveguides enter the first star coupler, where M > N so that a fraction
of the inputs may not be connected. The signal from any of the N input ports is
diffracted and distributed over the M outputs of the first star coupler and hence to the
M waveguides, whose lengths progressively decrease by a fixed amount (Al ={; — liv1).
Thus there occurs a progressive phase delay between adjacent waveguides, A¢ = 2—”—?‘—"
Therefore, as f increases by z%—, ¢ increases by 27 which means that the same response

[

is observed every xi— Hz. This period is called free spectral range (FSR).

c

FSR=o— (1.1)
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Figure 1-8: This setup is constructed to calculate the transmission function of the router
for the selected input and output ports.

The refractive index of the silica substrate is dependent on the temperature, thus so

are the free spectral range and transmission peaks.

Lucent 000371695 WGR The Lucent 000371695 is an 8x8 wavelength router. We
constructed some experimental setups with Lucent 000371695 to find its specifications
and the amount of crosstalk introduced by it.

First, we evaluate the transmission function of the router for some input output
couples. We used a white light source to stimulate the entire spectrum and an Erbium
Doped Fiber Amplifier to amplify the source to emit sufficient power. The rest of the
connections are as shown in Figure 1.8.

We observed a 5 dB lower response than we had with the same setup when the router
is disconnected. Therefore the insertion loss of the router is 5 dB.

Some typical responses are as shown in Figures 1.9, 1.10. The data correspond to

input port 2, output port 4 as labelled on the graphs. We can observe from Figure 1.10
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Figure 1-9: Input port 2 and output port 4 is connected. The main peaks are 26.09 dB
higher than the neighbor peaks.

that the router supports many free spectral ranges. The FSR is 800 GHz. When carefully
examined, it can be observed that there are seven peaks in between the two main peaks
which are separated by 100 GHz. These peaks are the even numbered standard AON
channels. The routing table at 92.5°C is given in table 2 where the entries indicate the

standard AON channel that the input-output port pair supports.

| Output/Input — 1 2 3 4 5 6 7 8

1 18,2 | 16,0 | 14,-2 | 12,4/ 10,-6 | 8,24 | 6,22 | 4,20
4,20 | 18,2 | 16,0 | 14,-2]12,-4 | 10,6 | 8,24 | 6, 22
6,22 | 4,20 | 18,2 | 16,0 | 14,-2 | 12,-4 | 10,-6 | 8, 24
8,24 | 6,22 | 4,20 | 18,2 | 16,0 | 14,-2 | 12,-4| 10, -6
10,-6 | 8,24 | 6,22 | 4,20 | 18,2 | 16,0 | 14,-2 | 12, -4
12,-4 10,6 | 8,24 | 6,22 | 4,20 | 18,2 | 16,0 | 14, -2
14,-2 (12,4 10,6 | 8,24 | 6,22 | 4,20 | 18,2 | 16,0
16,0 | 14,-2112,-4(10,-6 | 8,24 | 6,22 | 4,20 | 18, 2

N W N

Table 1.2: The routing table of the Lucent 000371695 WGR at the specified conditions.
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Figure 1-10: Input port 2 and output port 4 is connected. This time a larger frequency
span is adjusted. Many FSRs are supported.

Crosstalk in AWGRs As explained in section 2.1, there occurs an N-fold frequency
re-use within the L-1 hub by the help of the WGR. For instance for Lucent 000371695, at
92.5°C, the connection between input port 3 and output port 5 is achieved at channel 6.
The same router handles the communication between nodes 2 and 4 at the same channel,
and nodes 2 and 3 at the neighboring wavelength 4. However 100% of the input port
power could not be coupled to the output port due to the insertion loss and leakage of
the signal to other output ports. We defined this as coherent or incoherent crosstalk
depending on the channel of the leakage. A

It is important to know what percent of the input power leaks to the other ports in
a router. To find out, we constructed the experimental setup shown in Figure 1.11.

Having the laser adjusted to the required channel, we choose the input port by means
of the demultiplexer. After that, we connect the spectrum analyzer to the output port
whose crosstalk is to be investigated. On the same graph, we sketch the observed spec-
trum at the output port as we connect the same channel to different input ports. Figures

1.12 and 1.13 are the observed responses for different output ports at channel 12. The
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Figure 1-11: This setup is constructed to simulate the coherent crosstalk. All the input
ports are switched one by one and all the outputs are sketched on one graph.

output port and the channel are labelled on the graphs.

These figures illustrate the coherent crosstalk. The main peak is the desired commu-
nication signal. There are 7 other peaks under the main peak which are the signals at
the same channel that leak from other input ports. As there are 8 input ports, there are
7 such signals and the strongest one is 27 dB lower than the main communication signal
on the average. This quantity is labelled at the bottom of the graphs on the right. The
peak communication signal power can be seen on the left. These 7 interference signals
have an aggregate average power of 23 dB lower than the communication signal.

Finally, keeping the same setup, we changed the laser wavelength for an input port,
output port pair. All the data is sketched on the same graph so that we can observe
the incoherent crosstalk as shown in Figure 1.14. From the figure, the peak incoherent
interference is about -26 dB; therefore we can conclude that the incoherent crosstalk is

as severe as the coherent at the output of the router.
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Figure 1-12: Output port 3 is connected. At channel 12, the peak coherent crosstalk is
-27.39 dB.

Figure 1-13: Output port 4 is connected. At channel 12, the peak coherent crosstalk is
-28.69 dB.
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Figure 1-14: The incoherent crosstalk peaks are 27 lower than the signal on the average.

1.2 System Model

1.2.1 Crosstalk Model

In an AON, an optical signal is converted to electronics only at the link output. It
remains optical (i.e., electromagnetic wave) until it is detected; therefore, we have to
focus on the electric field at the input of the detector. This field is composed of both the
desired signal and the signals that coherently or incoherently couple to it. Our model

shall contain only the coherent crosstalk since its effects are more severe.

Definition 1 If there are N — 1 coherent intruders at the channel centered at the optical
frequency f., the detected field will be

cos [05(t)] cos [2m f.t + ¢, (2)]

Edet = Es (t)
sin [05(t)] cos [2m fot + ¢, (t) + Us(2)]
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+ NZ B | o lnOleosnhit + (0]

(1.2)
i=1 sin [0:(t)] cos [27 fet + ¢, (t) + Vai(t)]

where E,(t) and E,;(t) are the amplitudes and ¢,(t), ¢.;(t) are the optical phases of
the signal field and i** crosstalk component field respectively [9]. The optical phases are
assumed random and uniformly distributed in (0,27) with fluctuations that are rapid
(~MHz) compared with the slow (~Hz) fluctuation in the polarization states of the
signal and crosstalk which are specified by Us(t), 65(t) and ¥,;(t), 0.:(t) respectively.
However even a fluctuation of the order of MHz is small compared to the bit rate, thus
one can assume phases and polarizations remain constant within a bit time. ¥ and 6 are
uniformly distributed in (0,27) as well. Some insight in these polarization parameters
can be obtained by considering some special cases.

For example when W,(t) and ¥,;(t) = 0 or £, signal and ** crosstalk component
field are linearly polarized. When V,(t) = 7 and 6,(t) = §, the signal is circularly
polarized. If we assume aligned polarizations for all the N — 1 coherent intruders and
the signal (i.e., ¥, () = U,;(t) and 6,(t) = 0,;(t) for all i), the direction of the signal and
crosstalk fields will be the same and we can drop the vector notation. In this case, the
detected electric field can be written as [4]-[8]

N-1

Eger(t) = Ei(t) cos (2n fut + 6,(£)) + ) Exi(t) cos (2m fet + 6,4(1)) (1.3)
i=1 ’
E,(t) and E,;(t) are OOK modulated, thus they attain two values randomly (0 or E,
for the signal, 0 or E;; for the crosstalk where E,; and E,;; are the amplitudes of the
signal and crosstalk respectively) at instants separated by a bit period which may be
different for signal and crosstalk.

Using definition 1, leads to an expression for the detected current [9] as follows.
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Definition 2 The current at the output of the detector at an instant t is proportional to

the square of the magnitude of the electric field vector at that instant.

ldet () = REG,, (t) Bae (£)  (1.4)
= RP,(t) + 2RV/P.() 2{ )08 [4,(t) — 6us(t) +75]  (15)

f (95, 9::1'., q’s, ‘I"zz)}

N-1 N
+§RZ Z V Fui( ) cos [¢z_1 (t) — ai(t) + ’Yi,j] £ (05, 0z, Usjy Usi)
=1 j=i+1l
where
£ (65,00, 0, U) = % {2+ cos [2 (8 — 62)] [L + cos (¥, — W)
+cos[2 (6, + 02:)] [1 — cos (T, — Ty,;)]}/2 (1.6)
o sin (6,) sin (0,;) sin (U5 — ¥;)
Vos = tan” (cos (6.) <08 (8) + in (6,) 5in (0.7) sim (T — \1:,,,-)) (1.7)
and

sin (9 ) sin (0,,_,,) sin (‘I’zz - ‘II.‘L‘])
z])) (18)

Yy = tan” (cos (82:) cos (8z5) + sin () sin (0,;) sin (T,
Here R is the detector’s responsivity, Py(t) = 1 [E,(¢)]%, Pu(t) = % E.;(t)]* are the in-
stantaneous optical powers of the signal and i** crosstalk component respectively. The
polarization-dependent quantities v,; and +;; have no significance, since they are in-
dependent of the optical phases ¢,(t), ¢,;(t) which are uniformly distributed in [0, 27].
Therefore cos (¢,(t) — ¢,:(t) + 7, ;) and cos (¢,;(t) — @,:(t) +7;;) have the same distri-
bution as cos (¢,(t) — ¢,;(t)) and cos (¢,;(t) — ¢,(t)) respectively. Definition 1 will be
explained in more detail and Relations 1.5 through 1.8 will be derived later in Chapter
4.
There are some simulated detected currents for different number of intruders in Fig-
ures 1.15 and 1.16. The amplitude of the signal is normalized to 1 in each case. Each

intruder is at the same rate with the signal, however they all are asynchronous with a
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Figure 1-15: Detected Current for N = 11
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Figure 1-16: Detected Current for N = 101

random amount of time which is uniformly distributed in a bit period. The power of
each component is 28 dB lower than that of the signal. One can observe that when the
number of intruders increase, the fluctuations become more frequent and have greater

amplitude.

1.2.2 Receiver Model

Our receiver is modeled as an optical detector followed by a matched filter demodulator
as shown in Figure 1.17.The optical detector is modeled as a polarization insensitive
device where the current at the output of such a device is proportional to the square of
the electric field intensity it is illuminated with (i.e., RETE). The optimum filter in the
absence of crosstalk is the cross-correlation type which is equivalent to the matched filter
demodulator [13].
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Figure 1-17: The receiver model.

The electrical filter in the demodulator is matched to rectangular pulse shape because
our system uses OOK signalling. Such a filter is equivalent to an integrator whose
integrating interval is a pulse length. Perfect timing recovery is assumed to be achieved
by means of a sampler which samples the output of the integrator every T seconds where
T is the pulse length. The decision device is a simple comparator whose reference is
a threshold which is constant or varying depending on whether the device is DC or
AC coupled respectively. In the DC coupled case, we assume that the threshold is
optimized minimizing bit errors. An AC coupled decision circuit basically filters out the
DC component of the signal (so that the average of the signal at the output is 0) at
its input and sets the threshold to 0. The performance of every AC coupled decision
circuit is upper and lower bounded with a best and a worst curve which will be dealt
with in Chapter 3. We will mainly focus on DC coupled decisions. We will deal with
the AC coupled decision systems in a separate section in Chapter 3 in a detailed manner
and prove that they perform no better than DC coupled decision systems if the system
parameters are static.

In optical communication, there are two main noise sources depending on the gener-
ation mechanism: fiber generated and receiver generated. Examples to fiber generated
noises are the shot noise (or quantum noise) which is due to the Poisson nature of the
photon arrivals, and the dark current noise which results from the generation of photons

at room temperature even if there is no input. The noise generated in the receiver is
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the thermal noise. The shot noise is a white Poisson process and the dark current and
the thermal noises are white Gaussian. Under room conditions thermal noise dominates,
i.e., the fiber generated noises are negligible compared to thermal noise. However, if the
optical signal is amplified by means of an APD, then the fiber generated processes are
amplified (i.e., their variances are increased by a factor of the square of the gain of the
amplifier, the shot noise becomes a bulky Poisson process, where every photon at the
input of the amplifier stimulates other photons and the output is the amplified process)
and they start to become dominant. Also, if there are in line optical amplifiers another
noise is generated at the amplifier due to Amplified Spontaneous Emission (ASE) which is
white Gaussian. We only consider thermal noise in this thesis (hence the optical detector

is a pin diode).

1.3 Impacts of Coherent Crosstalk on Receiver Per-
formance

Coherent Crosstalk is extremely detrimental to the performance of the receiver, especially
if the scale of the network is large. The amount of degradation in performance can be
calculated in terms of a “power penalty”. The power penalty is basically the factor
by which the detected optical power should be increased to achieve the bit error rate
performance of the crosstalk-free system.

The signals emitted by an OOK optical transmitter (i.e., Intensity Modulation Sys-
tem) can be modelled as a Bernoulli Process. As defined before, the detected current is
proportional to the square of the electric field intensity (power density), it is illuminated
with (EX,Eq4e) and it involves three terms: signal term, signal-crosstalk beat term and
crosstalk-crosstalk beat term. Crosstalk-crosstalk beat power is very small compared to
signal crosstalk beat power; however for N — 1 crosstalk components interfering, signal-
crosstalk beat power is composed of N — 1 terms, while crosstalk-crosstalk beat power

involves &2_11 . Therefore for large numbers of network nodes communicating, that
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term may dominate. This phenomena will be examined in Chapter 5.

As N increases, the signal-crosstalk and crosstalk-crosstalk beat power terms become
the sum of a large number of correlated discrete random variables which makes them hard
to deal with. Thus, two common techniques have been used to analyze them: Gaussian

[4], [6], [7], [9]-[12] and worst case [5], [6], [16].

1.3.1 Gaussian Approximation

Gaussian approximation is a common technique for analysis of the sum of IID random
variables. It is based on the celebrated Central Limit Theorem which analytically can be
stated as.follows [14].

Theorem 3 Let S, be the sum of n IID random variables X, ..., X, whose mean and

variance are X and o2 < oo respectively. Then,

lim P ((5}71—27) <v)=1-Q0) (19)

Gaussian approximation is used in most papers on coherent crosstalk (4], [6], [7], [9]-[12].
In these papers, the crosstalk-crosstalk terms are ignored and the sum of the signal-
crosstalk beat terms is modeled as Gaussian. The problem with doing this can be stated
as follows.

The Gaussian approximation is valid only if the number of crosstalk sources is large
(ie., N —1>> 1). However, as the network size gets larger, the crosstalk-crosstalk beat
terms start to become dominant since there are O (N?) such terms (it will be considered
in Chapter 5 in a more detailed manner). Thus ignoring crosstalk-crosstalk terms and
Gaussian approximation cannot be reasonable at the same time. If crosstalk-crosstalk
terms are not ignored, there are two main problems with using Gaussian approximation.

The Gaussian approximation is valid for the sum of independent random variables.
However, the crosstalk-crosstalk beat terms are not a sum of independent random vari-

ables. Besides, the terms that signal-crosstalk beat power is composed of, are not in-
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dependent of those of crosstalk-crosstalk beat power. The negligible crosstalk-crosstalk
beat power assumption is doubtful as well, because the Central Limit Theorem is rea-
sonable for large N, whereas the crosstalk-crosstalk beat power is negligible for small
N.

Furthermore, for large values of y, Theorem 3 does not yield a very good approxi-
mation for reasonable values of n. It is for this reason that the word central appears
in the name “Central Limit Theorem”. That is, the Gaussian Approximation is not an
accurate approximation in the tails of the Gaussian function. As we deal with the error
probabilities of ~ 107, this approximation may not give accurate results.

As a result, Gaussian approximation may not be suitable for this work.

1.3.2 Worst Case Analysis

Worst Case Analyses give us an idea about the performance of systems, when every
parameter in the corresponding model is assigned their worst possible value to deteriorate
the system performance [5], [6], [16]. The worst case crosstalk for our model occurs when
all the crosstalk components interfere with the signal with aligned polarization and out
of phase with 7 rads. The worst case bit seqﬁence depends on the decision device. It will
be defined in Chapter 2 for DC-coupled decision device and Chapter 3 for AC-coupled
decision device. The theoretical performance under worst case crosstalk is a function
of threshold. The power penalty versus the crosstalk is given in Figure 1.18 for various

thresholds and analysis techniques [6].

1.3.3 Improving System Performance Under Crosstalk

Coherent crosstalk is extremely detrimental to WDM-AONs and becomes a serious issue
especially when the network scale is large. Therefore methods to improve the system
performance under crosstalk should be sought.

Up to date, not too much work on communication theory has been done to eliminate
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Figure 1-18: Power Penalty versus Crosstalk for Various Thresholds [6]

stalk in WDM optical networks. The current approaches to this issue are not based

Cros:
demodulation or coding, but protocol design and networking instead. For

on modulation,

instance the approach in [18] is ensuring that a switch is not used by two connections

simultaneously. The cost of eliminating the crosstalk is a decrease in the capacity of the
communications (e.g., a smaller bit rate, less circuit allocation duration).
The problem, analogous to crosstalk in wireless communications is “cochannel inter-

ference” which limits the performance of a multiple access communication link {19], [20].
hannel interference.

There are communication theory based approaches to suppress coc
filters) [21]

They are mostly based on system theory (i.e., in terms of special pre, post-

and coding.

1.4 Outline of the Thesis

We will begin our work by analyzing the error performance of the receiver shown in

Figure 1.17. The thesis work will begin with a worst case analysis for single crosstalk
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Analysis steps | # of interferers | C.talk bits | Polarization,Phase
Case 1 1 all 1’s aligned, out of phase ()
Case 2 1 random | aligned, out of phase (r)
Case 8 1 random random, random
Case 4 N>1 random random,random

Table 1.3: The steps of the analysis.

source. Step 2 extends the analysis to random crosstalk bit sequence, step 3 analyzes
the performance when the phase and the polarization state of the crosstalk is random,
step 4 generalizes the analysis to multiple crosstalk sources. It is important to note that
the notion of the random bit sequence covers the random bit rate case as well; thus the
analysis is general in the sense that all the sources have the freedom to transmit pulses
at the any rate (e.g., the error performance curve of a 622 Mb/s channel can be found
under the interference of 3 other channels at 155 Mb/s, 2.488 Gb/s and 9.95 Gb/s). The
optimum threshold will be calculated in every step. These steps are summarized in Table
1.3.

The remainder of the thesis is organized as follows. Chapter 2 initiates the analysis
with discussing the crosstalk-free and worst cases, and Chapter 3 extends it to the case
of random crosstalk bit sequence. Chapter 4 evaluates the error performance when the
phase and the polarization of the detected signal are random. Chapter 5 generalizes the
analysis to cover the network performance where more than one crosstalk source is active.

Chapter 6 presents the conclusions drawn from the thesis and the future work.
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Chapter 2

Baseline and Worst Case

Performances

In this chapter, we will present an introduction to the analysis methods we will employ
in the thesis by analyzing the two extreme cases, crosstalk-free (baseline) and the worst
cases. In the latter case, the crosstalk field is assumed to be pointing in the same direction
(or the opposite) as that of the signal. Thus, we will drop the vector notation and use
Equation 1.3 for the electric field at the input of the receiver.

The remainder of the chapter is organized as follows. Section 2.1 deals with the case
where there is no crosstalk and introduces two different methods which will lead to the
error probability as a function of E,/Ny, the signal energy per bit / one sided power
spectrum of the noise. Section 2.2 gives an introductory crosstalk analysis by evaluating
the error probability of the worst case. Finally, the important conclusions deduced from

the chapter are presented and similarities and differences with other works are discussed.

2.1 Crosstalk-free Performance Curve (Baseline)

Let us recall Equation 1.3.
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N-1

Eget(t) = E,(t) cos (2 fot + ¢,(t)) + Z E.i(t) cos (2m fot + ()

i=1

In this section, we will assume E,; = 0 for all <. In the following two subsections, an

expression for the error probability will be derived using two different methods.

2.1.1 First Method

Since the detector is assumed to be polarization independent, it is useful to drop the

vector notation. After that the detected field becomes,

Eqet(t) = E(t) cos (27 fet + ¢,(t)) (2.1)

therefore the signal square is,

[mmm=mwfﬁ+§mmm+wmﬂ (2.2)

The double frequency term is rejected by the detector. The baseband DC component of

the detected signal can be written as follows.

1
P(t) = 5 [E:(t)]" (2.3)
and the detected photocurrent can be found as
is(t) = RP,(t) (2.4)

For OOK signals, is(t) is constant at is; given that the signal is a mark, and constant at
0 given that the signal is a space.

The noise n(t) is assumed to be additive, white and Gaussian with two-sided power
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. N,
spectral density of N(f) = 5 Amp?/Hz'. The power spectrum (N(f)) at the output

of the matched filter becomes,

N(f) = IH@PN(G)
= |H() 52 Amp?/Hz (25

Thus, the variance of n’'(t) is

[e o]

U?z'(t) = /N'(f)df

- 32 [Py (26)

Using Parseval’s relation, the variance can be written as follows.

2 NO

Ty = 5 |h () dt (2.7)

33

where h(t) is matched to rectangular pulse as shown in Figure 3.1 where T is the period
of a pulse.
Thus, Equation 2.7 simplifies to

=2

o ,,211 (t)

° 7 |h(t)|* dt

T (2.8)

| Z ol

1The thermal noise for the optical receiver is assumed to be white, Gaussian with two sided power

spectral density &¢ = %RE} where kg is the Boltzmann constant, T is the absolute temperature and Ry

is the load resistance seen at the output of the receiver [23].
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1 h(®)

Figure 2-1: Impulse Response of the Matched Filter

The detected current at the output of the sampler (kT is (the input of the sampler
is the integral of 4,(t) within the interval equal to the length of a pulse) given in the

following expression.

) Ti,, +n'(kT) when signal bit is a 1
i'(kT) =
n'(kT) when signal bit is a 0

The probability density of the detected current conditioned on the transmitted pulse is
given in Figure 3.2.

When the threshold is set to TEs—z’-l-, the error probability becomes

P(E) = Q(f’—)

T ()

17,
- of 2] o

Let the average energy per symbol be E; and the average power per symbol be P,. They
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Figure 2-2: The Density of the Detected Current Conditioned on the Signal

are equivalent to average electrical energy per bit E, and P, respectively because the rate

of transmission is 1 bit/symbol.

1. 1
P, = 523,1 + 502
1.
= —2-1.3’1 ' (210)
Therefore, the energy per bit becomes
g 1
E, = / Pydt = §Ti§,1 (2.11)

0

As a result, the error probability can be written as

P(E)=Q (\/%) (2.12)

Probability of error is illustrated in Figure 2.3.
From now on this will be our baseline. We will evaluate power penalties, using this

curve as a reference.
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2.1.2 Second Method

The following analysis presents another way of getting the same curve. This section is
useful in the sense that it gives intuition on the basics of crosstalk analysis of optical
CDMA networks. It can be a reference for the interested reader and might be skipped
otherwise, since the results derived in this section will not be used later in this thesis.

The fundamentals of the analysis are presented in [24].

Parameters of the Signal Space

Let the signal space W (S) be composed of M signals.

S={Sk,1<k<M}

The following items are the parameters of the signal space.

1. The actual dimension of the signal space S,

N = dim {W(S)} (2.13)
2. The rate of the signal space,
r = log, M bits/symbol (2.14)
3. The average energy per symbol,
E, = E[|ls|”]
1 M
= 372 llskll” joules/symbol (2.15)
k=1

where ||sx||%is the magnitude of the k** signal in the space and the average energy per

bit is



E; joules/symbol
r bits/symbol

Es . .
= Tjoules/b1t (2.16)

4. The minimum squared distance of the space W(55),

&2,0(S) =min s = &'|° (217)

and for each s € S, the number of nearest neighbors K,;,(S) is the number of s’ € S

such that ||s — §'||> = d2,_(S) and the average number of nearest neighbors can be found

as

Kmin(S) = E[Kmu(s)]

% Z Kmin(sk) (218)

. No .
5. The two sided noise power spectrum is —59 joules/sec/Hz. We have to reflect
this quantity onto the space spanned by the signals and find the variance of noise per

dimension.

o2 = % joules/sec/Hz = 2W Hz
= NoW joules/sec (2.19)

where W is the bandwidth of the channel. The quantity found in Equation 2.19 is the
power (energy per second) of white noise after it is filtered. We have to convert it to

energy per symbol and energy per dimension consequently. The maximum symbol rate
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Figure 2-4: OOK symbols: Mark with energy E,, space with energy 0.

achieved by a channel with bandwidth W Hz is 2W real symbols per second (i.e., 2W

1D/sec) in the absence of ISI. Hence, the noise variance per dimension becomes,

2 '_ NoW j/sec
per=D T OW 1D/sec
N,
= 7°j/1D (2.20)

Performance of an OOK System

The signal constellation of an OOK system is illustrated in Figure 3.4. The energy
levels are mark and space. The energy mark is E; and that of a space is 0. Let us
evaluate the pre-defined parameters going over the following steps.

1. The signal space is 1 dimensional (N = 1).
2. The rate is r = log, 2 = 1 bits/symbol.

3. The average energy per symbol is E; = %, and the energy per bit is E, = % = %
joules/bit.

4. The minimum squared distance of the signal space is d*>,, = E; = 2E, = 2E,, and
Kmin(S) = 1.

The probability density curves of the detected signal conditioned on a mark and a

2

space bit are illustrated in Figure 2.5. The variance of the Gaussian curves are o2,._,

because the signal space is 1 dimensional. The probability of error when the threshold is
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Figure 2-5: The pdf of the detected current conditioned on the signal

set at %\/El can be found as follows.

dmin
PE) = Q(zo_per_D)
d2min
N Q( 40'%e1'—D

(/%)

Using this result leads to BER expression of other signal spaces.

2
dmin

2
4aper—D

d2,
= Kmin(S)Q 2;1-;;

for any signal space. The above relation can be written as

P(E) = Kmin(S)Q(
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dzmin Eb
P(E) = Knia(S)Q [\/ (=) (%) (223)
dz,
o ﬁi will be called the coding gain and the BER expression can be rewritten as
b
Ey
P(E) = Kmin(S)Q Ye A (2.24)
0

Writing the error probability expression in this form helps us compare the error proba-

bility of systems with different crosstalk statistics.

2.2 Worst Case Crosstalk Performance Curve

To analyze the worst case performance, we have to define what the worst case is and
when it occurs for our system. In this section we will only deal with the single crosstalk
source case. The detected electric field is composed of two components, the signal and
the crosstalk. They add to each other as vectors. The sum of two vectors is minimum
when they are in opposite directions. Thus, a necessary condition for the worst case to
occur is that the crosstalk field points in the opposite direction of the signal field. For this
condition to be satisfied, the phase and polarization parameters should be as follows. The
signal and crosstalk fields should be either out of phase with 7 rads and have the same
state of polarization or vice versa (actually, both are different definitions of the same
thing). Another necessary condition for the worst case crosstalk is that the crosstalk
component is a mark all the times since we make the analysis for DC coupled decision
threshold. Note that the worst case bit sequence for an optical system is different from
that of a non-optical system in the following sense. In a non-optical system a constant
interferer has no impact on the performance since it is deterministic and independent
of the signal. However, in an optical system the signal at the output of the detector is
proportional to the square of the electric field strength at its input. Thus, the interference

portion of the current becomes a function the communication signal due to the signal-
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interference beat terms. It takes on different values depending on whether the signal bit
isa 1ora0. Therefore, even though we know everything about the crosstalk in the fiber,
we cannot do anything to cancel the interference at the receiver.

With the assumption of phase and polarization being constant within the transmis-

sion, the received field can be written as follows.

Eact(t) = Es(£) cos (2nfut + 6,(t)) + Be(t) cos (2n fut + 6, (2)) (2.25)

where ¢,(t) = ¢.(t) + 7. Therefore the detected current becomes

Euet(t) = [Es(t) — E(t)] cos (2n f.t) (2.26)

and the square of the baseband component of the detected field is

Blu_polt) = 3B2(t) — B.(0)EL(t) + LE2(®) (227)

Using Pi(t) = 3E2(t) and P.(t) = 1EZ(t), the detected optical power and the detected

current can be expressed as

Piet(t) = Py(t) — 2/ Ps(t) Ps(t) + Pe(t) watts (2.28)
and
Gdet (t) = RPaes(t) = NP, (t) — 2R/ Ps(t) P.(t) + RP.(t) Amps (2.29)

respectively. Let is(t) £ RP,(¢) and i.(t) £ RP.(t). With these two definitions, the

detected current becomes

igen(t) = is(t) — 24/75(0)ia(®) + io(t) Amps (2.30)

is(t) is constant at i, given that the signal is a mark and 0 given that the signal is a

space. The amplitude of the crosstalk signal is constant all the times at i.; given the
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Figure 2-6: Conditional pdf of the sampled signal under worst case crosstalk.

worst case. Let us define

o,

c,l Pc,l
-s,l -Ps,l

—

A
r=

(2.31)

o~

The noise statistics were given in section 2.1.1. The detected current at the output of

the sampler is

T (s + %1 — 24/%s1%1) +n/(kKT) when signal bit is a 1
'Z,(kT)={ ( 11 i]' ,1 11 ( ) gn

(2.32)
Tica+n'(kT) when signal bit is a 0 :

The conditional probability densities of /(kT') given that the signal is a mark and
given that the signal is a space are illustrated in Figure 2.6. When the decision threshold

is set to iy, = %(1 — z) where z is the normalized difference between the threshold

and % (the optimum threshold of the crosstalk-free case), the performance becomes

P(E) = SP(E|Ho) + 5 P(E|H))
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L\D

1 Ti2,

) 1 T2
= §Q<(1—x—2r) 2N0)+§Q((1+$—4\/;+2r) 2N0)(233)

1
If we plug E, = §Ti§,1 in our BER expression, we get the following.

((1—x—2) E")+ Q<(1+m—4\/—+2r)\/§2) (2.34)

The two curves p(s|H;) and p(s|Hp) given in Figure 2.6 have the same variance. Thus,

P(E) =

mll—!

the optimum threshold is located at the mid point of the means of the two. It is straight-

forward to find the optimum z as follows

Topt = 20/7 — 2r (2.35)

and the optimum performance becomes,

P(E) = Q ((1 —2/7) %)
) <\/(1 - 27)? %) (2.36)

The worst case performances are sketched in Figures 2.7 and 2.8 for crosstalks of -20 dB
(r=0.01) and -17 dB (r = 0.02) respectively. One can observe from 2.36 that the worst

case curve is the scaled version of the baseline with

7, = 10log [(1-2v7)"] dB (2.37)
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Figure 2-9: Electrical Power Penalty versus Crosstalk. 2 dB and 3 dB penalties due to
-20 dB and -17 dB crosstalk respectively.

where 7, is the power penalty due to the worst case for a crosstalk of 10log(r) dB. It is
important to note that this power penalty is electrical. The corresponding optical power
penalty is thus,

_ 7,(dB)
70p - 2

= 10log (1 —2v/7) dB (2.38)

Electrical power penalty can also be observed from the performance graphs. There is 2
dB electrical power penalty due to -20 dB crosstalk and 3 dB electrical power penalty due
to -17 dB crosstalk. Electrical and optical power penalties (7, 7,,) versus the crosstalk
are sketched in Figures 2.9 and 2.10 respectively.

2.3 Conclusions

In this chapter, we introduced basic crosstalk analysis methods for the two simplest cases
which are the 0 crosstalk (baseline) and the worst cases. The most important conclusion

of this chapter is that we understood the difference between a fiber-optic system and a
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Figure 2-10: Optical Power Penalty versus Crosstalk. 1 dB and 1.5 dB penalties due to
-20 dB and -17 dB crosstalk respectively.

non-optical system (wireless, non-optical wired communication systems) in the following
sense. In a non-optical system a constant interferer has no impact on the performance
since it is deterministic and independent of the signal. However, in an optical system
the signal at the output of the detector is proportional to the square of the electric field
strength at its input. Thus, the interference portion of the current becomes a function
the communication signal due to the signal-interference beat terms. It takes on different
values depending on whether the signal bit is a 1 or a 0. Therefore, even though we
know everything about the crosstalk in the fiber, we cannot do anything to cancel the
interference at the receiver. The following chapters will base on this idea. The results
we get for the electrical and the optical power penalties are consistent with those found
in [4] and [6]. The optical power penalty curve given in Figure 2.10 is the same as
the one sketched for DC-coupled worst case in [6]; and the electrical power penalty curve
presented in Figure 2.9 is the same as the one illustrated for the worst case power penalty
at optimized decision threshold setting in [4]. The only difference is that the crosstalk-
crosstalk beat terms are neglected by [4] and [6]. This only affects the optimum threshold
level and not the error probabilities. Thus, the power penalty curves sketched in this
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chapter are the same as those illustrated in [4] and [6].
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Chapter 3

Crosstalk as a Random Process

In Chapter 3, we analyzed the systems under worst case crosstalk. We made the assump-
fion that the crosstalk is constant for all time. Starting from this chapter, we will model
it as a random process.

We generally assume that the coherent crosstalk is formed as a result of the mixing
of another communication signal. Therefore, it is composed of binary symbols which are
random in each slot. These time slots are not necessarily synchronous with those of the
communication signal and even the bit rate of the crosstalk signal may not be equal to
that of the desired signal’. In the evolution of this chapter, we will assume the phase and
the polarization parameters of the crosstalk are at the worst case and remain unchanged
throughout the communication. Therefore, we will drop the vector notation along-with
this chapter and deal only with the amplitudes.

This chapter consists of three sections. First section contains the analysis of the
system when the bit slots of the crosstalk are synchronous with those of the signal. Section
2 generalizes the analysis to the case where signal and crosstalk are asynchronous. Each
section is separated into two subsections where one of them deals with the case where the

crosstalk bit rate is less than that of the signal; and the other deals with greater crosstalk

1We assume that the bit rate of the crosstalk is either an integer multiple or an integer factor of that
of the signal which is commonly the actual case in practice. The standard optical channels OC-1 to
OC-192 have such bit rates and we will pursue the analyses with this assumption.
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Crosstalk Signal

Communication Signal

1 ' 2 ' 3 ' 4 : t

Time slots

Figure 3-1: Crosstalk Signal, Communication Signal and the time slots. Communication
Signal is twice as fast as crosstalk.

bit rates. There is a subsection about AC coupled decision thresholding as well at the
end of the first section. The chapter will be finalized with conclusions and remarks.

3.1 Synchronous Bit Slots

3.1.1 Lower Crosstalk Bit Rate

A sample sequence where the crosstalk is synchronous to the signal at a lower bit rate is
given in Figure 3.1

The ratio of the bit rates of the two signals given in Figure 3.1is n = 2. One can
observe that the figure {llustrates all the possible combinations of signal and crosstalk.
In four consecutive time slots, (signal, crosstalk) pair becomes (1,1), (0,1), (1,0), (0,0) in
the given order. As indicated before, the matched filter behaves as an integrator with an
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integrating interval T where T is the bit period of a signal pulse. We have just illustrated
that when the signal and crosstalk are synchronous and crosstalk is at a lower bit rate,
in an interval of integration, crosstalk remains constant at 4, or 0 with probability 1.
Consequently, we may write the detected current as in Equation 2.30.

laet(t) = 16(t) — 2v/45(t)ic(t) + ic(t) Amps (3.1)

This time .(t) is not a constant as it was in Chapter 2. i,(t) is constant at i;; and 0

given that the signal bit is a 1 and a 0 respectively. Let us redefine 7 as follows.

-y 2c,1
s,1 Ps,l

(3-2)

The detected current at the output of the sampler ¢'(kT") is

( T(is1+ te1 — 24/%s,1%,1) + 7' (KT) when the signal and crosstalk are both 1

#(KT) = Tisy +n'(kT) when the signal is a 1 and crosstalk is a 0
Tic1 + 1/ (KT) when the signal is a 0 and crosstalk is a 1

n'(kT) ‘when the signal and crosstalk are both 0

\

where n/(t) is the noise portion of the signal at the output of the integrator. The condi-
tional pdfs of #'(kT") given that the signal is a mark and given that the signal is a space are
illustrated in Figure 4.2. (Note that the curve p(s|H;) = 3p(s|H;, % = 0) + 3p(s|H;, i =
ic1))-

When the decision threshold is set to s, = T’—f (1—z), the error performance becomes,

1 1
P(B) = ;P (E|Hoic=0)+ ;P (E|H,ic=0)
1 ) .
+iP (ElHo, ’ic = ic,l) + ZP (E|H07 e = Zc,l) (33)
1 Tis1 1 Tisq 1 Tis1
= - s 1-— - —(1 - ——(1l—z-2
4Q (20'.,,_1(,:)( z)) + 4Q (2Unf(t)( + -'l?)) + 4Q (20‘nl(t)( z T))
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Figure 3-2: The pdf of the detected current conditioned on the transmitted signal.

Tis1

1
+5@ (m (2+2r —4vr—1+ :1:)) (3.4)

Revwriting 2?’,’(1) as (Z:;"); and 02, ,) as 22T, and finally plugging Ey, = 1T'%, 12 simplifies
n'(t n’(t

the expression to

P(E) = iQ((l—z) %)+%Q((1+x) %)+%Q((l—x—2r) %)
+%Q ((1+:c+2r—4\/7_‘) %) (3.5)

DC Coupled Decision Threshold

If we use DC coupled decision thresholding, z will be set to its optimum value and
kept unchanged throughout the communication. To minimize Expression 3.5 to find
the optimum static threshold (DC-coupled), we equate the derivative of P(E), which is
illustrated below, to 0. Note that the following expression is not the actual value of the
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derivative (It is proportional to the exact expression).

5 - en(i-12)w(128) (o273

—exp ((1+$+2r—4\/—)2 E") (3.6)

Figure 3.3 illustrates the derivative of P(E) at % = 16 dB versus z and Figure 3.4
presents thé three dimensional plot where %l, f,—t, z are the three axes (%P = 0 plane
is also given in the figure). Note that, given 3 —h ﬂ@ is monotonically increasing over z
values. Therefore, P(E) is a convex function of z, and with z = 24/r — 2r which is the
only solution to Jd—l = 0, the error probability is globally minimized.

If we examine Figures 3.3 and 3.4, we observe that the optimum z (= z,,) is very close
to 2+/7 — 2r over the range of B, values where the error probability is very low (~ 107°).
z = 2,/r — 2r makes the a.rguments of the final two terms equal which are the aposteriori
error probabilities given that the crosstalk bit is a 1.

If we plug z,,: in Equation 3.4, we get

P(E) = iq((l_z\/hzr) %) iQ((1+2\/' 2r) ff")

~ - -

@ (34)

+ %Q ((1 —2V/7) \/?) | 3.7)

~

N

(44d)

These three terms of Equation 3.7 ((4), (¢2), (¢it)), and their sum (i.e., P(E)) are illus-
trated separately in Figure 3.5 for 7 = —20 dB, we observe that the second term ((3%)) is
negligible and the exact error probability is almost equal to (i7). The performance curve

is upper and lower bounded as given in the following relation.
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Figure 3-4: It can be seen that
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5@ ((1 —2v7) ) <P(E) <] Q ((1 —2V7) \/%) (3.8)

These bounds are the same as the expression for error performance of the worst case
within a scaling factor. The lower bound and the exact performance curve were illustrated

in Figure 3.5. Using these bounds, the optical power penalty can be evaluated as follows.

Yop = —1010g(1 — 2,/7)dB (3.9)

where 7., was illustrated in Figure 2.10. In Expression 3.9, we ignored the effect of the
factor %. In fact, there is a small effect due to the factor. Let vy, 7 be the effective electrical
power penalty taking the effect of a factor k near the Q function into consideration. The
following analysis calculates the impact of that & on the power penalty of the system.

Ey oy 2
kQ ( No) = kQ ( 'y ) (3.10)
where 7, and v,, are the electrical and the optical power penalties respectively. Recall

E
that 7, = 72,. Let y = \M;lﬁz' Then,

QW = 5 [Tkew(-F)a (3.11)
L [0,
- 5 e (5)
- Q( v;l%—ln(k))
I

Thus,
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illustrated as dotted curves respectively. The solid curve represents P(E) when r = —20
dB. It can be observed that the third term dominates among the three.
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Vefr = (’Y; t- %) - (3.13)

= —10log (7;1 - ;‘:}2 ) dB

First, let us consider the upper bound, namely when k = %. For % ~ 16 dB, (P(E) ~
1079), Yess = 2.94 dB whereas v, = 3 dB. Therefore, there is only a 0.06 dB difference
3

in power penalty due to the factor 3. Next, if we consider the lower bound, namely

E
k= % around the same Fi values, 7,¢; = 2.97 dB which is even closer to 7,- Therefore,
the effective electrical power penalty is between 2.94 and 2.97 dB. We can deduce from
this result that the performance of this system is very close to that utilizing worst case

parameters where we have a power penalty of exactly 3 dB.

AC Coupled Decision Threshold

In the previous section after evaluating the error performance, we minimized it over the
threshold level parameter z to find the optimum performance. Doing that, we assumed
that the threshold is static and remained unchanged throughout the communication. In
this section we will investigate what happens to the performance when the threshold is
dynamic.

In AC coupled decisioning, the threshold varies depending on the detected waveform.
Basically, the decision device filters out the average of the discrete waveform at the
output of the sampler, i.e., it has a 0 DC response and the threshold is set to 0. This
process is equivalent to setting the threshold to the average of the waveform. Note that
this averaging should be performed over a large enough number of samples to guarantee
that the ratio of the mark signal bits to the space is almost 1. Let g be the ratio of
the number of samples that the averaging is performed to n (which is the ratio of the
bit rate of the signal to that of the crosstalk). There are three possible cases depending

on whether the number of samples that the averaging is performed is much larger than,
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comparable with or much less than n (¢ > 1, ¢ = 1 or ¢ < 1). In all three cases, the
expected threshold level is Tt =$1(1 — %) where Z,; = 2+/7 — 2r. This is the mid point
of the optimum thresholds for the worst case (T” —21(1 — Zoy)) and the crosstalk-free case

T” =21) because, the possible cases are uniformly distributed between these two cases. The
dynarmcs of the threshold around this mean depends on the region of g. In the following
three sections, these cases will be examined and corresponding error performances will

be analyzed.

Averaging for ¢ > 1 If ¢ > 1, then the averaging is performed over a large number
of crosstalk bits as well as signal bits. Since the variance of the threshold around its
mean is inversely proportional to g, it can be assumed constant at its expected value.

Consequently, the error probability is as given in the following expression.

p = to((-%)(B) +ie((+ ) /)
e ((-3-2) /)
+%Q((l+%’”+2r—4\/¥) %) (3.14)

_ EQ((I_\/;+) ff")+ Q((1+\/‘—r) ffb)

a(0-vi-nyB)+4 lo(0ar-v0yfR) @

The first two terms and the last two terms of these expressions are found by conditioning
on a 0 crosstalk bit and a 1 crosstalk bit respectively. Note that g should be > 1ifn =1

since the averaging should be done over a large number of signal bits.

Averaging for ¢ ~1 If ¢ = 1, then the averaging is over a small number of crosstalk

bits. This case can occur only for n >> 1 because the operation is performed over a large
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Figure 3-6: The position of the threshold (illustrated with bold solid lines) fluctuates
between the two limit points almost linearly since the averaging is performed over ng > 1
crosstalk bits. The square wave represents the crosstalk bits. Note that the scale is
adjusted for clarity.

number of samples and a small number of crosstalk bits.

In this case, the threshold is highly variant. Since the averaging is performed over
ng > 1 samples, it varies slowly but never settles at a level completely. For instance,
if ¢ = 1, the threshold varies as shown in Figure 3.6. In the figure, the crosstalk bits
and the threshold is illustrated simultaneously. Since n >> 1, the threshold varies almost
linearly. Since the threshold is variant, so is the error probability. The probability of
error in detecting a given bit correctly conditioned on the signal bit being a 0 or a 1
varies in a region enclosed by the worst and the best curves. This region can be defined

as follows.

3

Q ((1 +2v/r —2r) F) < PE)KQ ((1 — 4y/T + 2r) %) (3.16)

The upper bound represents the error probability given a mark signal at the instant when
the threshold is at the optimum value for crosstalk free case. The lower bound represents
the error probability given a mark signal bit at the instant when the threshold is at the
optimum value for the worst case interference.

However, if we average the error probabilities over all the possible cases, the result will
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Figure 3-7: The position of the threshold (illustrated with bold solid lines) settles to the
optimum value faster this time (ng signal bit periods). The square wave represents the
crosstalk bits.

be much closer to the worst case error probability, since the possible cases are uniformly

distributed between the worst and the best cases.

Averaging for ¢ < 1 As explained in the previous section, when n > 1, if we average
over a large number of samples (ng > 1) then the performance is highly variant and the
threshold can hardly settle to the optimum value. This deteriorates the error performance
considerably since the worst case is dominant. Thus, for n > 1, performing the averaging
over rather small number of samples (which is still 3> 1) by choosing ¢ < 1 seems to be a
better alternative for the threshold to catch the optimum value and settle. The threshold
behavior for the same sample of crosstalk bits as in Figure 3.6 is illustrated in Figure 3.7.
It can be observed from the figure that the threshold settles to the optimum value faster
with a shorter transient. Therefore, the performance remains optimal over a long number
of samples. As q approaches 0, the fraction of times that the system achieves optimum
performance approaches 1. The performance, thus approaches the following expression

asymptotically.
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Figure 3-8: The error probabilities for AC thresholding (¢ > 1) and optimized static
thresholding are illustrated with solid and dashed curves respectively. There is an extra
0.75 dB power penalty for not using static optimized thresholding.

P(E)=2Q ( %) +3Q ((1 —2v7) \/%) (3.17)

where the first term represents the probability of error on a 0 crosstalk bit and the second
is on a mark.

The error probability curves corresponding to the cases where ¢ > 1, ¢ < 1 and the
best and the worst curves for the case ¢ = 1 are illustrated in Figures 3.8, 3.9 and 3.10
together with the error probability of static threshold at » = —20 dB.

In fact, the dynamic thresholding is a method to keep the threshold at its optimum
value when the system parameters (e.g., received power, crosstalk power, etc.) are not
constant. Also, with dynamic thresholding there is no need for any initial adjustment
on the threshold. However, as we proved in the above sections, the performance of the
systems can be satisfactory only under some certain conditions with dynamic thresh-
olding. Furthermore, it may not be stable at the optimum value even when the system
parameters are constant.

Another very important result can be deduced considering the case where q < 1

70



100 :-——%_ ——. . I
10" _ _______________ E_ _____________________________ \t _______
] S . . N
& 10 : : :
T4 i S A R A,
o s i s |
10 0 5 10 15 20
Eb /No {dB)

Figure 3-9: The best and worst error probability curves (conditional on signal bit) for
AC thresholding are illustrated with solid curves (¢ ~ 1) and the DC coupled best
performance is illustrated with dashed curve. The overall performance of the AC coupled
case is close to the worst curve.
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Figure 3-10: The error probabilities for AC thresholding (¢ < 1) and optimized static
thresholding are illustrated with solid and dashed curves respectively. The peformance
of the AC coupled case approaches to the DC coupled case asymptotically.
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illustrated in Figure 3.10).

3.1.2 Higher Crosstalk Bit Rate

of the signal (i.e., T). This time, in one period, the crosstalk signal may not be constant,

because there are n, bit periods of crosstalk (i.e., T.) in T secs. Hence,
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Figure 3-12: The probability density of the detected current conditioned on the signal
bit. n = 3 for this case.

T, =

S|

(3.18)

Let us define m such that, m of the n crosstalk bits under a signal bit is 1. Therefore at

the output of the sampler, we have

T (is,l + Eic,l —o is,licyl) +n/(kT) when the signal bit is a 1.
i'(kT) = n n

T%ic,l + 0/ (kT) when the signal bit is a 0.
(3.19)

Since the consecutive bits are independent and 0, 1 are equally likely m has a Binomial

distribution over [0, n], which is,

Pm=1) = (’l”) (%)" (3.20)

The pdf of #'(kT) conditioned on the signal bit is illustrated in Figure 3.12. There are

n + 1 peaks on each curve (the ones over 0 are not distinguishable) due to the Binomial
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distribution of crosstalk. The error probability conditioned on m is

1 1
P(E|m =1) = ZP(Elm =1, Hy) + 5 P(Elm =, Hy) (3.21)

When the threshold is set to T—é’-'l(l — z), the above probability becomes,

P(Em=1)= %Q ((1—2—27%) \/%) +%Q ((1+$ —4%\/774-21%) \/%’:)

(3.22)
The unconditional error probability is thus,
P(E) = Y P(Elm=1)P(m=1)
1=0
n n 1 n+1 l Eb
=206 e (- VR)
+Q ((1 +z— 4%\/1_”+2r%) \/%) (3.23)

To optimize the threshold, we take the derivative of both sides with respect to z and
equate to 0. Differentiating the error probability, we get

o - £ O (-0

=0
l [ Ey
+ exp ((1 + Topt —4;\/17+2r;) Fo)

This expression is illustrated for n = 2,10 and 100 when % = 16 dB in Figure 3.13.

(3.24)

The three dimensional plot where i%(;@, %, z are the three axes is also given in Figure
3.14 for n = 10 together with the plane 5 = 0. It can be seen from this figure that

Zopt = 0.75(24/7 — 2r) in the given range of values of % and it increases with increasing
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E, dP(E)

%. Note that, given —, is monotonically increasing over z values. Therefore,
(1]

o dz
P(E) is a convex function of z, and with the z value which is the only solution to
dP ’
dEcE) = 0, the error probability is globally minimized.

Finally, the performance of the system for n = 10 and n = 100 are sketched for the
static threshold which is optimized at 1—%— = 16 dB together with the baseline and the
worst case performance curves in Figure 3.15 for r = —20 dB. One can observe from the
figure that at probability of error of 10719, there is 1.5 dB power penalty when n = 10
and 1 dB power penalty when n = 100. We can conclude that as the rate of the crosstalk
increases, the performance improves.

The reason for this can be explained as follows. The mean and the variance of the
crosstalk portion of the sample at the output of the matched filter can be written as

follows.

mean = ——nr

(3.25)

. (1Tc )"’
variance = n| ——r

- (3.26)

conditioned on a 0 signal bit, and

= —Jr+ % (3.27)
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variance = n

17, 2 1T, \?2
(ﬁ‘fzﬁ) ¥ (é‘fr)
1.2
-7

= — (3.28)

conditioned on a 1 signal bit. The above results show that the mean of the crosstalk
sample is constant and the variance decreases inversely with n. Therefore, the error
probability decreases with increasing n. As n approaches oo, the error probability under
crosstalk of power r times as much as the signal power approaches to that of the worst
case system with crosstalk which has power § times the signal power. Also, along with
the mean and variance values found above and for large n, we can approximate the

distribution of the crosstalk sample as Gaussian.

3.2 Asynchronous Bit Slots

3.2.1 Higher Crosstalk Bit Rate

A sample sequence of the signal and crosstalk is given in Figure 3.16 where the signal is
asynchronous with the crosstalk and the crosstalk source is transmitting at a higher bit
rate. The ratio of the bit rates of the two signals given in Figure 3.16 is 2.

One can observe from the figure that there are two crosstalk bits during the trans-
mission of which the signal transition occurs. We will call these bits, the “transition
bits”? and all others, the “non-transition bits”. d is the time after the start of the first
transition bit before the transition of the signal. It is reasonable to define d as a uniform
random variable over (0, T) where T is the bit period of the crosstalk signal. Note that
T = nT,. T, — d is the time before the end of the second transition bit after the signal

2Note that the transition is defined as the instant that one bit ends and the next one begins. These
two bits are not necessarily different.
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Figure 3-16: Communication and crosstalk signals where n=2. d is the amount of asyn-
chronism between the two.

transition. Let r;; and r; > represent the bit values of these two transition bits, namely,
1 if the transition bit is 1 and 0 if it is 0. Therefore 7;; and r; » are IID Bernoulli random
variables. Within a signal bit time, the total duration of transition bits is 7, and that of
non-transition bits is (n — 1)T; (i.e., T+ (n — 1)T, = T'). Let us define m as the number
of non-transition crosstalk bits that are 1. At the output of the sampler we have the

following.

m
n—1

Zl(kT) = T’L's,l + ic,l [(n - l)Tc + d’l‘t,;l + (Tc - d)rt,g]

-2 is,lic,l [(n - 1)11;7:"—1 + d"'t,l + (I:; - d)T't,Q:, (329)

when the signal bit is a 1. Rewriting this with 7.3 = ri,; and T. = Z, ¢'(kT') becomes,
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#(kT) = Ti, { 14 (r— 2v7) [T% + 2 (rua - rm)] } (3.30)

Let g(d m,n,r; 1Tt 2) = [m+ﬂ2 + %(Tt,l - rt,2)]- Then,

i'(kT) = Tis, [1 + (r —2v/r)g(d, m,n, T 1, rt,z)] (3.31)

When the signal bit is a 0, the detected current at the output of the sampler becomes,

7 (kT) = Tisarg(d,m,n, 11, 742) (3.32)

When we set the decision threshold to ‘T =2=(1 — z), the probability of error conditioned

on g = g(d, m,n, Tt1,Tt2) becomes,

1

P(E|g(d7m,n,7't,1,’f't,2)) = EQ[

Tis,l
20w(t)
Tzs 1
20ms)

= —Q [\/7(1+x+(2r—4\/_)g(dmnTtlﬂ‘tz))}

+%Q [\/Fo(l —z—2rg(d,m,n,r, 1,7‘t2))] (3.34)

Since d,m,r;,; and r;o are independent, the unconditioned probability of error can

(14 + (2r — 4y/)g(d, m,n, 741, T‘t,z))]

—Q { (1—z—2rg(d,m,n,r.;, rt,z))J (3.33)

be found using total probability theorem as follows.

P(E):/0 nnz_: 3 Z P (Elg(r,m,n m,m))—("‘l) (;) (%)2017
T (3.35)

The optimum decision threshold (i.e., optimum z) can be found by solving the following

equation.
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dP(E)
dz

=0 (3.36)

where

%(f) =/Or/nnz-: 3 Z dP (E|g(r,m,n, rtl,rtz))T(n;l) (%)"‘1 (%)ZdT

m=0r41=0r; 2=0
(3.37)
The derivative of the probability of error with respect to z versus z’ = ﬁ is illustrated
in Figure 3.17 for n = 1, 2 and 10 at constant % = 16 dB. One can observe that
when n = 1, the optimum z is approximately 2,/7 — 2r. As n increases, this optimum
value approaches to /7 — 7. Similar to the synchronous system, %P is monotonically
increasing and the solution to the equation %@ = 0 is the global minimum of P(E).
Note that the optimal thresholds are very close to that of the synchronous system (See
Figure 3.12 for the optimum thresholds corresponding to the synchronous system).
Figure 3.18 illustrates the performance for n = 1 and n = 10, together with those of
the synchronous system. Even with a careful observation, it is very hard to distinguish
these two curves for synchronous and asynchronous slots. Also, the difference between
the crosstalk penalty of the asynchronous system and that of the synchronous system
decreases as m increases since the number of transition bits are 1 of the total number of
bits and this ratio decreases as n increases. However, the two perfofma.nce curves are
very close to each other even for n = 1. Therefore, the error probability when the bit
slots are synchronous is almost equal to that when the bit slots are asynchronous if the

bit rate of the interferer is higher than that of the signal.

3.2.2 Lower Crosstalk Bit Rate

A sample sequence of the signal and the crosstalk is illustrated in Figure 3.19. In this
figure, the rate of the signal is twice as high as the crosstalk interferer.
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Figure 3-18: The two plots correspond to the error performances for n = 1 and n = 10.
The solid line illustrates the performance of a system where the signal and the crosstalk
bits are synchronous and the dotted curve shows the performance where the two are
asynchronous.
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Figure 3-19: Communication and crosstalk signals where n=2. d is the amount of time
shift between the two. :

In this section, we will define the “transition bits” as the signal bits which occur
during the transition of the crosstalk bits. Recall that the transition is defined to be
the instant that one bit ends and the next bit starts. d is the amount of the time shift
between the signal and the crosstalk sequences. A transition signal bit can be examined
as two separate parts as illustrated in Figure 3.20.

Let r:; be the bit value of the crosstalk signal in the first (d sec) portion of the
transition bit and 79 is that in the second (T — d sec) portion of the transition bit (In
Figure 3.20, r;; = 0,7¢2 = 1). 1 and 72 are IID Bernoulli random variables. We will
pursue the analysis by calculating the probability of error in detection of a transient bit
and a non-transient bit separately.

If the bit is non-transient, the analysis is the same as that in section 3.1, where
the signal and the crosstalk bits are synchronous. Therefore, the probability of error
conditioned on a non-transition bit is given in Equation 3.5 for a threshold of T—’zzi(l —z).

If the bit is a transient, the current at the sampler becomes,
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d T

Figure 3-20: A transition signal bit is shown below the crosstalk signal. One crosstalk
bit ends and the next one starts during the transmission of the transition bit.

2’(kT) = Tis,l + Z'c71 (d'rt,l + (T - d)’f't,g) + 2\/ is,lz'c,l (d’f't,]_ + (T et d)rt,2) (3.38)

when the signal bit is a 1. Rewriting this with i.; = 7i, 1, i'(kT) becomes,

{(kT) = Tisq [1+ (r —2v/r)g(d,m = 0,n = 1,11, 712)] (3.39)

where g(d,m,n,ry1,7:2) wWas defined in section 3.2.1. When the signal bit is a 0, the

detected current at the output of the sampler for a transition bit becomes,

V(kT) = Tis1rg(d,m =0,n = 1,741,742) (3.40)

Thus, the probability of error for a transition bit, if we set the threshold to 2’;fi( 1-12)

conditioned on g = g(d,m = 0,n = 1,71, 7 2) is,
1 E,
P(E|g(d,m =0,n=1,141,T12)) = §Q Fo (1 +z+ (2r— 4\/;)9)
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+§Q

ﬁ (1—z— 2rg)] (341)

Let us recall that the ratio of the bit rate of the crosstalk source to that of the
communication signal is n = % It is obvious that % of the signal bits are transient and
the rest (2% of them) are non-transient bits. With the above argument, the probability

of error conditioned on g = g(d,m =0,n = 1,71, 7:,) can be written as,

1 -1
P(E|9(d,0,1,71,7:0)) = ;P(E |transition bits, g) + nTP(E |non-transition bits, g)3.42)

ST
;1@(\/7<1—w—2r)> +10 (\/E(1+z+2r—4\/_))}
+(§){— Vs sy

Q (1 -z — 2Tg)] } . (3.43)

+

1
2

The unconditioned error probability P(E) can be written as follows.

/ Z ZPE|97'm 0n=1 Ttl,rtz))—-dT (3.44)

74,1=07¢,2=0

To find the optimum decision threshold (i.e., optimum z), we take the derivative of
P(E) with respect to z and equate to 0. The derivative of the probability of error versus
= m is illustrated in Figure 3.21 for n = 1,2 and 10 at constant %g— = 18 dB.
Similarly, the z value that makes the derivative 0 is the global optimum value of the
point of the error probability. One can observe that the optimum z is approximately
24/r — 2r for any n which is also the optimum value for the synchronous system.

Figure 3.21 illustrates the performance for n = 1 and n = 10 together with those of the
synchronous system. The difference between the crosstalk penalty of the asynchronous
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system and that of the synchronous system decreases as n increases since the number
of the transition bits are % of that of the total number of bits, and this ratio decreases
inversely with n. However, even for n = 1, this difference is almost negligible. Therefore
the probability of error can be assumed to be equal for the two systems (synchronous
and asynchronous) when signal has a higher bit rate as well as when it has lower bit
rate. Another important observation is that for n = 1, the performance is equal to that
of the section 4.3 with n = 1 (because g(d, m, n, Te1:Te2) = g(d,m = 0,n = 1,741,75)

for n =1 in section 4.3) which verifies the correctness of the analyses in some sense.

3.3 Conclusions

The major conclusions drawn from this chapter can be summarized as follows.

If the signal has a bit rate higher than that of the crosstalk, then the power penalty
is very close to that of the worst case. In fact, we found out that the difference between
the two cases is no more than 0.05 dB at the error probabilities close to 10~° for an
interferer of power 20 dB below that of the signal. We also considered the effects of
dynamic thresholding within this case and argued that, with dynamic thresholding the
performance could be no better than that with optimum static threshold most of the times
(equally well only under some certain conditions). It may be advantageous if the received
signal power and the crosstalk power are not constant throughout the communication.
Note that these results are consistent with found in [4] and [6] for both AC and DC
coupled thresholding except that in [4] and [6], the crosstalk-crosstalk beat terms are
neglected.

Another neat result is that even if the bit sequence of the crosstalk is known by the
receiver, the error performance of the system cannot be improved considerably using that
information.

Next, we considered the case where the bit rate of the signal is lower than that of
the crosstalk. We deduced that if the ratio of the rates is small, namely, the rates are
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Figure 3-22: The two plots correspond to the error performances for n = 1 and n = 10.
The solid line illustrates the performance of a system where the signal and the crosstalk
bits are synchronous and the dotted curve shows the performance where the two are
asynchronous.
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close to each other, the performance is close to the worst case and the error probability
is a decreasing function of this ratio. As n gets larger and larger, the probability of error
approaches that of the worst case with a crosstalk power equal to half the original.
Finally we considered the case where the bit slots of the signal and the crosstalk are
asynchronous for two subcases when the bit rate of the crosstalk is higher and the con-
verse. We presented that, if the bit rates of the two are equal, the optimum threshold and
the error probabilities of the asynchronous system is almost equal to those of the synchro-
nous system. Indeed, they get even closer as the ratio of the rates increase. Therefore,

it is reasonable to assume that the bit slots are synchronous to simplify analyses.
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Chapter 4

Crosstalk with Random Phase and

Polarization

In Chapters 2 and 3, we assumed that the relative phase and the polarization of the
crosstalk is always opposite to that of the signal. With this assumption, we dropped the
vector notation to simplify the expressions for the received electric field.

In this chapter, we will generalize the analysis done for constant phase and polariza-
tion of the crosstalk source to one for random phase and polarization. In Section 4.1, we
will present the crosstalk model and using that model in Section 4.2, we will analyze the

performance of our system.

4.1 Crosstalk Model

In this chapter, we will assume that, the polarization of the optical wave inserted into the
fiber by the laser is arbitrary and this state is not necessarily maintained as the signal
propagates. Thus, the electric field at the output of the transmitter can be modeled by a
vector whose direction is random and the amplitude is OOK modulated. Hence, we can

represent this signal as follows.
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Figure 4-1: The direction of E,, is illustrated as it is initially injected in the fiber.

Etr = Re {Eymp(t)e?PrFt+¢ [cos (6,()) a7 + sin (6,(t)) a3] (4.1)

or equivalently,

By = Bon(t) cos (6;(t)) cos (27 f.t + ¢,(t)) (42)
sin (6(t)) cos (27 fot + ¢,(t))
where E,mp(t) is the amplitude (OOK modulated), 6;(¢) is the initial value of polarization,
which may vary in time, f. is the optical frequency, ¢,(¢) is the initial phase of the wave
and a; and @, are the unit vectors as shown in Figure 4.1. The phase of the field is a
function of time because of the non-coherent characteristics of the laser.
As the field propagates in the fiber, due to birefringence, the state of polarization is not

maintained and hence it varies with time. Namely, if we insert a linearly polarized pulse

into the fiber, both the amplitude and the phase of the pulse changes as it propagates,
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Figure 4-2: Showing one evolution of the polarization state along a fiber. The light
traverses a distance Ly.,: before returning to the original polarization state.

thus the state of polarization is not maintained. This change occurs with a periodic
nature (with a large period) as illustrated in Figure 4.2. Note that the fluctuations in
optical phases are rapid (~ MHz) compared to the fluctuation in the polarization state
(~ Hz). Thus, we will assume that the polarization state is constant for a time much
longer than one bit period.

This phenomena can be modeled by an extra parameter ¥(¢) which appears only
in one of the components of the vector. The overall field at the input of the detector

together with the crosstalk signal which has similar characteristics is the following.

cos [0,(t)] cos [2m fet + ¢,(t)]
sin [05(t)] cos [27 fot + ¢,(t) + ¥s(t)]

LEL(f) cos [0, (t)] cos 27 ft + ¢, ()] (43)

sin [9:1: (t)] Cos [27cht + ¢, (t) + ¥, (t)]
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This time, the parameters are those of the received electric field. It is reasonable to
assume that at an instant t = t*, 6,(t*), 6,(t*), ¢,(t*), 4, (t*), ¥,(t*) and ¥, (t*) are all
independent and uniformly distributed in (0, 27). E,(t) and E.(t) are OOK modulated
amplitudes of the signal and the crosstalk components respectively; thus, samples of
E,(t) and E,(t) at t = t* are Bernoulli random variables with two equiprobable values
E;, and E_; respectively and 0. Note that, as we mentioned at the end of Chapter 3,
we will assume that the crosstalk bit slots are synchronous with those of the signal (i.e.,
there are no transition bits).

With these definitions, the stochastic modeling of the detected field is completed.

4.2 System Performance

In the previous section, we modeled the crosstalk and the signal in terms of their random
amplitude, phase and polarization statistics. In this section, we will use that expression
to derive an expression for the detected current and the probability of error. Throughout
the section, to simplify the notation, we will use the parameters which are functions of
time without the argument (¢) (i.e., f(t) — f).

The detected current is proportional to the detected optical power, i.e.,

2.det: = RP, det (4-4)

where R is the detector’s responsivity. The instantaneous detected power is proportional
to EI ,E4qe;. The constant of proportionality is €/2 where € (= ¢,¢,) is the dielectric

constant of the fiber. Therefore,

idet = %éReEgetEdet (45)
= %§Re {E? [cos® (85) cos® (27 f.t + ¢,) + sin® (8) cos® (27 fot + ¢, + 7,)]
+2E; E; [cos (§,) cos (6,) cos (27 ft + ¢,) cos (27 f.t + ¢,) (4.6)

+sin (6,) sin (6.) cos (27 fet + ¢, + W) cos (2w fot + ¢, + T,)]
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+E7 [cos® (6;) cos® (2 fet + ¢,) + sin® (6,) cos® (2 fot + ¢, + T,)] }

_ %?Re {Ef [0052 ®.) 1+ cos (47;fct +29,) +sin? (,) 1+ cos (41rfctz+ 2¢, + 2\113)}
+EE; [cos (0,) cos (0;) (cos (47 f.t + ¢, + ¢,) + cos(d, — ¢_)) (4.7)

+sin (6;) sin (6;) (cos (47 fet + ¢, + ¢, + U, + U,) + cos(@, — ¢, + U, — T,))]

+B? [cosz 6.) 1+ cos (4 f.t +2¢,) 1+ cos (4 f.t + 2¢, + 2\I!,)J }

-2
> + sin® (6,) 5

The detector will not respond to the double frequency terms. Hence,

idet = %gRe {%Ef + %Eg + ES‘ESB [COS (93) cos (ex) COS(¢8 - ¢z)
+sin (0;) sin (6;) cos(¢, — ¢, + ¥, — T, )]} (4.8)

Let us define P, £ J¢E? and P, £ 1¢E?. The detected current becomes,

iget = RP,+RP, +2R\/P,P, (4.9)
x [cos (6,) cos (6) cos(, — ¢,) +sin (8,) sin (6,) cos(d, — ¢, + ¥, — ¥.)]
~

We defined the terms in big bracket as . Let us rewrite ¢ as follows.

¢ = cos(f;)cos(6;)cos(¢, — ¢,) + sin (6;) sin (6,) cos(¢, — ¢, ) cos (¥, — T,)

—sin (6,) sin (6;) sin(¢, — ¢,) sin (¥, — T,) (4.10)
= [cos (6.) cos (8) + sin (6,) sin (6,) cos (¥, — ¥,)] cos(9, — ¢,)

— [sin (6,) sin (8,) sin (¥, — ¥,)]sin(4, — 6,) (4.11)
= {[cos (65) cos (6:) + sin (6;) sin (8) cos (¥, — ¥,)}*

+[sin (6,) sin (6,) sin (¥, — ¥,)]*}"* cos(¢, — ¢, +7) (4.12)

= - in(6s) sin(fz) sin(¥s—¥z)
where 7 = tan™" (cm(o,)czlsll(os):zn(G,)s;(Oz)cos(\Ils—\Ilz))'

¢ = [cos®(6;)cos? (6,) + sin® (8,) sin? (4,) cos? (¥, — T,)
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+ sin? (6, ) sin® (6,) sin® (¥ — )
+2.cos (8,) cos (8,) sin (8,) sin (6;) cos (¥, — ¥,)]Y*cos(¢, — ¢, +7)  (4.13)

[(1 +c025(203)) (1-{—0025(203)) 4 (1—c02s(203)) (l—cozs (20,))

1/2
+2cos (¥, — ¥,) % sin (26,) sin (20z)] cos(¢ps — ¢, +7) (4.14)

[211- (1 + cos (26,) + cos (26,) + %003(203 +26,) + %cos(263 - 26‘3))
1
+7 (1 — cos (26,) — cos (26;) + %cos(203 +26;) + %cos(ZBs - 29z))

1 1 12
+3 cos (T, —0,) 5 (cos(28; — 26,) — cos(20, + 20_,))] (4.15)
: COS((ﬁs - ¢z + 7)

[% + 3003(203 +26,) + %cos(%s -260,) + %cos (¥, — ¥;)cos(26s — 26,)
1 1/2

—7 08 (Vs — ;) cos(26, + 29;)] cos(@, — ¢, +7) (4.16)

% [2 + cos(26 — 26,) [1 + cos (¥s — ¥,)]

+cos(26, + 26,) [1 — cos (¥, — ©,)]]*? cos(é, — ¢, + ) (4.17)

Let us define ¢, = ¢, — ¢, ¥, = ¥, — ¥,. Both ¢, and ¥, are uniform in (0, 27).

Since v is independent of ¢,, cos(¢, + 7) has the same distribution as cos(¢,). Let us

rewrite ( as

¢ = ((6,,0,,6,,0,) = % 12+ cos(26, — 26,) [1 + cos (¥, — T,)]
+cos(26, + 260,) [1 — cos (T — U,)]]** cos(d, — ¢, +7) (4.18)

and let i, = RP, and i, = RP.. Along with these definitions, the detected current

ldet = s + ic + 2v isicC(¢ra ‘I"ra 037 03) (4’19)
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After this point, the analysis is pretty much the same as the analysis given in Chap-
ter 4 for synchronous bit slots. The only difference is that we have an extra factor
¢(¢,, Yy, 05,0,) near \/7 (where r = :—:'f) since the phase and the polarization is random.
We will evaluate the error probability for two separate cases where in the first case the

crosstalk, and in the second case the signal is at a higher rate.

4.2.1 Higher Crosstalk Bit Rate

Rewriting 3.19 with phase and polarization parameters, the detected current at the out-

put of the sampler becomes

i'(kT) = Ty, [1 + %r - 2%/?(@,, 0,6, 9,)] (4.20)

if the k** signal bit is a 1,

i (kT) = Tz's,lgr ' (4.21)

if the k** signal bit is a 0 where m of the n crosstalk bits are 1. Hence, for a threshold of
%ﬂ(l — ), the probability of error conditioned on ¢ = ¢ (¢,,%,,805,0,) is the following.

P(E|¢,m —l)——Q (\/E;(1+x+2ri—4 \/’c))+—;-Q (ﬁ(l—m—%i))

(4.22)
and, thus the unconditioned probability of error is

P(E) = /0 - /0 - /0 - /0 2wiP(E|C, ( ) (%)n (%)4d¢rd\llrd03d0,, (4.23)

To find the optimal threshold, we apply a similar approach to Chapter 3, i.e., solve
E%E—) = 0. %ﬁl is illustrated for » = 1 and 10 in Figure 4.3, versus 7/ = 2,/;_-2» at

Ey/Ny = 16 dB. Note that, since %Q is monotonically increasing, the solution to the
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equation %ﬂ = 0 is unique and the corresponding z value minimizes P(E) globally.
The optimum threshold parameters for n» = 1 and n = 10 are z’ = 0.81 and z’ = 0.59
respectively. Due to random polarization and phase values, at the given value of E; /N,
the optimum threshold is now higher than that with worst case parameters.

Figure 4.4 illustrates the performance for n = 1 and 10 for r = —20 dB when the
threshold is set to its optimum value, together with those with the worst case polarization
and phase statistics. If we compare the optimum threshold and performance curves
illustrated in 4.3 and 4.4 with those with worst case phase and polarizations, we observe
that the optimal thresholds with all random parameters are closer to T—’;'l (i.e., the signal
mark level) and achieve 0.3-0.4 dB superior performances at 7 = —20 dB. The increase
in the threshold level is expected since the effects of the interferer are less severe with
random parameters than the worst case even though the improvement in the performance

is very minor.

4.2.2 Lower Crosstalk Bit Rate

In this section, we will repeat the derivation introduced in Section 3.1.1 for random
polarization and phase. The error probability conditioned on the phase and polarization

parameters (¢ = ¢((¢,, ¥y, 0s,6,)) can be written as follows.

P(E|non-transition, () = —Q (\/E(l - :r)) + %Q ( % 1+ x))

+Q ( % (1-2— 27')) (4.24)

EQ (\/F(1+:c+2r—4\/_C))

The unconditioned error rate is thus,

2 P2 P27 2T 1 4
P(E) = /0 /0 /0 /0 P(E|¢) (27) drdé,dV,do,ds, (4.25)
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Figure 4-4: The performance curves at the optimum threshold for n = 1 and n
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Figure 4-5: The derivative of the error probability versus z’ = Wf——% is illustrated in the
figure.

The derivative of the probability of error versus z’ is illustrated in Figure 4.5 at
Ey,/N, = 18 dB. Since %Z is monotonically increasing, the solution to the equation
%(IE) = 0 is unique and the corresponding z value minimizes P(F) globally. Figure 4.6
illustrates the performance of the optimal detector together with the worst case curve.
Note that if the bit rate of the signal is higher, than this optimal value is valid regardless
of the rate of the crosstalk. Similar to the previous section where the crosstalk bit rate
is higher, the optimum threshold level when the signal bit is at a higher rate is increased

compared to the worst case. Also there is a 0.4 dB improvement in the performance at

r = —20 dB which is very minor.

4.3 Conclusions

In this chapter, the analysis done for the worst case phases and polarizations are gen-
eralized to those for random phases and polarizations. We expressed the detected field

as a vector employing four extra parameters (¢,., ¥,,0,,0,) to represent the randomness
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Figure 4-6: The optimum performance curves for random phase and polarization (solid
line) and worst case phase and polarization (dashed line). The curve for random phase
and polarization is 0.4 dB superior to that with worst case polarization & phase para-
meters at E,/Ny = 18 dB.

in the phases and the polarizations. This model which was introduced by [6] handles all
the states of polarizations (e.g., circular, elliptic, linear, etc.) and all the possible relati\‘re
directions of the crosstalk with respect to the signal from the worst case of matched
signal and crosstalk polarizations to orthogonal polarizations. Even with such a detailed
representation, the expression for the detected current is fairly simple. It is almost equal
to that with worst case parameters except that there is an additional factor which is a
function of ¢,, ¥,,0, and 0.

Next, we analyzed the error probability of the optimum receiver along with the model.
As expected, the optimum threshold level is increased compared to the worst case and
gets closer to I%"'l which is the optimum threshold level for the crosstalk-free case both
when the bit rate of the signal is higher and vice-versa. Regardless of the rates of the
signal and the crosstalk relative to each other, the performance of the system is very
close to the worst case which justifies the conclusions drawn by [9], namely, systems with

randomly polarized fields display a statistical preference for near-worst case operation (a
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substantial likelihood of operation within a few dB of the worst case).
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Chapter 5

Multiple Crosstalk Sources

Upto this chapter, we dealt with the performances of the systems where there is one
intruder. In this chapter, we are going to generalize the analysis to the case where
there is more than one interferer. Current waveforms observed at the output of the
optical detector were simulated for 10 and 100 crosstalk sources in Figures 1.15 and 1.16
respectively.

In this chapter, we will deal with the case where all the intruders are synchronous,
the polarization states are aligned and the intruders and the signal are out of phase with
7 rads. In the first section, starting from Equation 1.3 for the received electric field, we
will model the current at the output of the integrator with Bernoulli processes. Next, we
will specify a region where neglecting the crosstalk-crosstalk beat terms is not reasonable
and we will introduce a linear approximation for these terms. In the next section, we
will switch to the transform domain and use the Chernoff bound to determine an upper
bound for the error probability, and then optimize this bound over the threshold level
and the transform parameter s. The following section presents three practical examples
and illustrates the bound found in the second section for these examples. We end the

chapter with conclusions and a brief summary.
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5.1 Modeling the Process

3.1.1 Definitions

were at the same rate or the interferer is at a higher rate.

In this section, we will combine 4.1 and 4.2 for N — 1 intruders ! of which are at a
higher rate than the signal’. Since all the electric field vectors are in the same direction
and out of phase with the signal field, we can start with Equation 1.3 and rewrite it as
follows.

N—1
Eau(t) = (E ()~ E, (t)) cos (27 £.t) (5.1)

i=]
where f, is the carrier frequency of the optical waves, -E, is the amplitude of the signal
and E; is the amplitude of the it interferer. E, and E,; are OOK modulated. Let the
interferers be in the descending order of rates from i =1 to N — 1 so that E,,, ... By
are the components which are modulated at a higher rate than the signal. Thus, the

received optical power can be found similar to Equation 3.28 as follows.

N-1 N-1 N-2 N-1 (
Pl =P+ 3 Pu(t) -2 3 VBB 4 2 2 X VRP) (59

where
1 2
Pot) = S[E ()
Palt) = S[Ea @ 53




The photodetector current is,

N-1 N—2 N-1
iget (£) =z‘s(t)+zz’c,-( 22 Vs (t)ia(t) +2Z Z Ve ()ic; (t) (5.4)

where

idet (t) - §RPdet (t) '
is(t) = RPF(2) (5.5)
Since i, (t) is OOK modulated, it is constant at ¢,; given that the signal is mark and

0 given that the signal is a space. Also, i(t) varies between i.;; and 0 depending on

whether the i** intruder is a mark or a space. Let us define

>
oS

R

=

Ti

= & (5.6)

We will make a simplifying assumption at this point and assume r; = r for all ¢ where
T is a constant. This means that all the intruders have equal power?. Along with this

assumption, we can rewrite the detected current as follows.

N-1 N-2 N-1
iget(t) = is(t) 1+_§:p,.( 22\/0, +2Z Z \/pi t)pJ(t] (5.7)

where

%In a real system, this assumption may not be 100% precise. In general, it may be reasonable to take
r as the ratio of average interferer power to the power of the signal.
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r; wheni.; () >0

lt) = { 0 wheni.;(t)=0 58)

and

n(6) = { ri when is (t), i; () > 0 59)

0 otherwise

After defining the photodetector current, we will now find the samples at the output
of the matched filter. Let n; : i = 1,...,[ be the ratio of the rate of the i** interferer to
that of the signal and n; = 1fori=1+1,...,N — 1. In other words, there are n; bit
periods of the i*" intruder (i = 1,...,!) in T secs where T is the bit period of the signal.
Indeed, let us define Te; = -, where T.; is the bit period of the ¢** intruder (i = 1,...,1),
andlet T, =1fori=101+1,...,N —1.

Let k; be the ratio of the duration that the i** interferer is mark to the bit period of

the signal (T') for a signal bit. Thus, k; is a Binomial random variable whose probability

() () )

mass function is as follows.

Note that
1T,
=1
2
and
1T\
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1T,

4T

For small values of ITL", the i** crosstalk component is mark during almost half of the bit
period of the signal. Before writing an expression for the detected current at the output
of the matched filter, we first discuss the relation between the variable k; and the process
p;(t). Since p;(t) is constant (r) when the i** interferer is a mark and 0 otherwise, for the

signal bit which starts at time 7, k; can be defined as

1 [T pi(t)
ko= / D g (513)
4T
rTk, = / p;(t) dt (5.14)

Similarly, rewriting Expression 5.13 in a different form, we get

ki = % [ T+T,/"i7(t) dt (5.15)
VrTk; = T+T\/p,-(t) dt : (5.16)

T

At this point, we have enough tools to write the expression for a sample of the current
at the output of the matched filter. Since the shape of the pulses are rectangular, the
matched filter is equivalent to an integrator of duration T'. Therefore, if the signal bit is
a 1, the output of the sampler will be

(e+1)T N-1 N-1
i) = [ (1+zp,-<t>—2zx/_pi(t)

T i=1 i=1
N-2 N-1
23 5 aion) 6517
i=1 j=i+1
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(c+1)T N-=1 a(c+1)T N-1 a(c+1)T
= 11/ dt+2/ p;(t) dt—2Z/ Vpi(t) dt
c cT

T i=1 i=1 YT

N-2 N-1 (e+1)T -
2 3 [ Ve (5.18)

i=1 j=i+1v T

The final term in Equation 5.18 is very complicated to deal with as itself since it involves
the sum of the integral of the product of two different rate Bernoulli processes (namely,
the number of trials per second (bit rate) differs for different processes) and the terms
to be added are not independent. We are going to introduce an approximation for this

term to make it simpler.

5.1.2 Crosstalk-Crosstalk Beat Terms

In this part, we will identify the region of parameters in which the approximation we are
going to make in the next section is worth using, namely, where it improves the accuracy
of the results considerably without neglecting the crosstalk-crosstalk beat terms at all.

Conditioned on the signal being a mark, the variance of the sample is

ar [Z’(ﬂ] = var [21\12—2 NE_:I /(c+l)T mm dt

1’5,1 1:=1 j=’i+1 CT

—E / o (pz-(t) -2 pz-(t)) dt] (5.19)

T

Since the two terms of the above expression are negatively correlated, the variahce of the
sum of them is less than or equal to the sum of the individual variances. Also, in the
first term the variance of the integral of the product of two processes is less than or equal
to the variance of the integral of the square of the process with lower rate (i.e., 1/p;(t)).

Thus, an upper bound for the expression can be written as follows.

] ¢ e[S [0

i
8,1 i=1 j=it1V T
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N-1 a(c+1)T

3 (i) — 2v/5.0) dt}

i=1

k] + (r —2v/r)’var [NZ_I k,-] (5.20)
= 4r? Z—: (N —i—1)?var [k;] + (r —2\/F)2 Z—:var[k,]

Noting that since the process k; is Binomial which takes n; possible values from 0 to 1,

the variance of k; can be found as

b = () ()

= (5.21)

Rewriting the bound with the variance calculated for k;, we get

-y N-2 N-1
var F ,(CT)} < Y (N—-i-1) % +(r—2v)* Y 41 (5.22)

15,1 =1 pt n;

< %H (N=2)(N—1)@N —3)+r(N—1) (5.23)

The second inequality follows from n; > 1, (r — 2\/7_')2 > 4r. The first term in the
expression is due to crosstalk-crosstalk beat and the second is due to the signal-crosstalk
beat. The percentage contribution of the first term is sketched as a function of N when
r = —30 dB and 7 = —40 dB in Figures 5.1 and 5.2 respectively.

We can conclude from the two graphs that crosstalk-crosstalk beat variance becomes
increasingly important since it increases as O (N?3) whereas the signal-crosstalk variance
increases as O (N) and has an important contribution on the total interference process.

Therefore, neglecting these terms becomes more and more unreasonable as N increases.

111



c0
o

£

.

%60------------------------'-I------------T ----------- [ e
7 ; . :

o - | :

e 4ot booonoeenoas bennenonnnans
4 1 1

3 : : :

wm 1 I 1

S e H— P FoTTT
O : : :

2 0 ‘ ] 1 H

0 20 40 60 80 100

# of intruders
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N —1 for r — —30 dB. As the number of interferers exceeds 50, the crosstalk-crosstalk
variance starts to dominate.

£ 80

o

T 60 |

0 |

3 !

S 40 :

é |

3 :

g 20 1 1:. )

O X : X

BQ 0 : : :
0 50 100 150 200 250

# of intruders
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5.1.3 The Linear Approximation

In Equation 5.18, the rate of the second process inside the integral (,/p;(t)) is higher
than that of the first one (1/p;(t)). The below inequalities are valid for all p,(t), p;(t)

pairs at all times.

0 < Vpilt)y/p;t) < pi(t) (5.24)
0 < Vpilt)y/p;(t) < ps(t) (5.25)

These two inequalities lead us to employ the linear approximation of the form a,p;(t) +
asp;(t) + a3 to represent Vit \/;Xt—) . Evaluation of the three parameters a;,a; and
as can be viewed as a linear estimation problem. We will find the process of the form
a1p;(t) + agp;(t) + ag which is unbiased and minimizes the mean square error. Next, we

will indicate the important observations to develop the tools to solve the problem.

1. Let b(t) be the random binary wave. Namely, the value of b(t) between times cT'
and (c+1)T can be evaluated by a toss of a fair coin for an integer c. If the
outcome of the toss is “H”, the value is 1 and otherwise it is 0. One can make the

following observations.

pi(t) = rb(t) (5.26)
Vi(t) = Vrbi(t) (5:27)

where b;(t) is the normalized version of p;(t).

2. The autocorrelation function of the random binary wave b;(t) can be evaluated as

follows by straightforward manipulations on [22].

Rb(T) = {

(2-%) <7
, 712 T

(5.28)

L L L
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Let us return to the main problem and define the error process whose power is to be

minimized (to minimize the mean square error).

e (t) £ Vpi(t)y/pi(t) = [a1p:(t) + azp;(t) + as]

For the estimation to be unbiased, the mean of e () should be 0.

Ele@] = E[Va®y/o® - [mp) +0n0,0) +as]]
B

Pi(t)] E [\/Pj (t)l — a1E[p;(t)] — azE [p;(t)] — a3
T T T

a1z — Q9= —ag

2 2 g ™3

This leads to the first relation between a;, a, and as.

r
5((11"‘0:2)—0,3:0

=~

The covariance function of the error process can be found as follows.

K.(r) = Ble(t+r)e(t)]
= E{Vo G+ Voot +7)/o500)
=2 a1/ EF 7)oyt + 7)pu(®) + 0z fo, ¢+ )R F Ty 1)

(5.29)

(5.30)

(5.31)

(5.32)

+aip;(t +7)pi(t) + ar1aap;(t + 7)p;(8) + a100p;(t)p;(t + 7) + alp, (¢ + 7)p; (t)}

—2a3FE [V pi(t + 7')\/ pi(t) — a1p;(t) — azp; (t)] +aj
= E[rb;(t+7)b; (t)] E[rd; (¢t +7)b; (t)]
—2E [a,r%%; (t + 7) b; )] E [V/b; (t + 7)]

—2E [agr®2b; (t +7) b; ()] E [Vrbi (¢ +7)] + E [a3r?; (t +7) b; (£)]

+E [arrb; (¢ + 7)) E [agrb; ()] + E [a17b; (¢)] E [agrb; (¢ + 7))
+E [ag'rzbj (t + T) bj (t)] — 20/% + ag
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= 'rszi (1) Ry, (1) — alrszi (1) — (127'2ij (r) + a1r2Rbi (r) + %alazrz
+a2r2RbJ. (1) — ag

= 72 [Rb,- (1) Ry, (1) + %alaz + (a} — a1) Ry, (1) + (a3 — a,) R, (T)J —a? (5.33)

The mean square error is the variance of a sample of the error process, e (¢). Thus, the
MSE can be found as

0! = K.(0) (5.34)

= %r"’ [1 + 2a;,a0 + 2 (a,f - al) +2 (ag — 0,2)] —a;

Next, we will minimize this quantity together with the constraint i—% (a1 +a2)—a3 =0.

Let us define the objective function D (a1, a2,a3,A) as follows.

Dlara05,0) = 3r° 1420103 +2 (o}~ 02) +2 (o} - as)) —

—A [2 - g (a1 + ap) — a3] (5.35)

where A is the Lagrange multiplier. Taking the derivative of D (a1, ag, a3, \) with respect

to a3, az, and a3 yield

oD (ah 0,2,(13,)\) _ 1 2 r
5e. = 1 (2a9 + 4a; —2) + )\5 (5.36)
D A 1
3 (alézza as, ) = Z,,,2 (201 + 40,2 — 2) + /\% (5.37)
A
oD (aléZQa asg, ) — _203 + (538)
3

Note that in the expression for o2, if we plug in a3 = 7—3% (a1 + ap) (which is the equation
of the constraint surface), g—‘a’? = g—;’:ﬁ = ’2—2 > 0. Therefore, the error variance is a convex
function over the plane -3 (a1 +a3) —a3z = 0, and it has an global minima at the

3 aD(alia’21037A) —_ 6D(a1,a2,a,3,4\) —_— aD(a'l:a21a31A)
point where ba. = Ba = 22

= 0. Solving the three equations
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simultaneously on the constraint plane gives us that the minima occurs at a; = a; =
a3 = —7. The corresponding Lagrange Multiplier is A = —%r. The minimum mean

square error (MMSE) is thus,

9 1,/(1 r?
Te-mmse = 77 \5 ~ 16
= iﬁr2 (5.39)
Hence,
1
Te-MMSE = 7T (5.40)

Note that, the variance of a sample of the process /p;(t) p;(t) is &r? which is the

variance of the error process increased by a factor 3. Also, the variance of a sample of

the process 3 (p;(t) + p;(t)) — § is 372

5.2 Evaluating the Error Probability

Rewriting the sample value conditioned on the signal bit being a 1 along with the ap-

proximation, we get

(e+1)T N-1 ,(e+1)T
W) = [ @Y [T (s -2v/n®) a@

T i=1
N-2 N-1 (e+1)T
2y ¥ [ a0 +a0)-1] @
i=1 j=i+1v¢T
N-1 N-2 N-1
= Tigy [1+(r=2v0) Y k4ry. 3 (k +k; — —)} (5.41)
i=1 =1 j=i+1
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The last term in the above equation can be rewritten as follows.

N-2 N-1 r [N—2 N-1 N—-2 N-1 r N-2 N-1
339 (kz-+k,-— §) DI TDIDITLDDDD 1]
i=1 j=i+1 | i=1 j=i+1 i=1 j—-i+1 i=1 j=i+1

[N-2
= r E( —i—1)k; +Z Z—l)k——Z(N_"_l]

L i=1 =2 i=1

N-1
r(N —2) [Zk - } (5.42)

i=1

Plugging this back in the main expression together with the thermal noise, the sample

value of the current at the c** instant becomes

i (cT) = Tisy [1 + (r (N —24/7) szlk1 r(N - 2) W - )} +n' (cT)
= Tiy, [1 - % (N —2)(N - 1)]
+Tigy [r (N = 1) — 24/7] X_: k; +n' (cT) (5.43)

=1

Similarly, when the signal bit is a 0, the sample value of the current is in the following

form.

N-1
i (T) = ~Tis13 T(N —2) (N =1) + Tigar (N — 1) > ki+n'(cT) (5.44)

i=1
The constant term, —T'%,,5 (N — 2) (N — 1), is always present in the current expressions
regardless of the signal bit value. Thus, it has no effect on the performance of the system.

We will ignore the term after this point for simplicity. The total interference and noise
that perturbs the signal is

Zl = Tis,l [’I‘ (N - 1) — 2\/’FJ Z—lk, + n' (CT) (545)
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when the signal bit is a 1, and
N-1
Zo =Tigir (N —1) > _ ki +n'(cT) (5.46)

i=1

when the signal bit is a space. Let pg = Tis1r (N — 1) and py = Tis1 [r (N —1) = 2¢/7].

The transforms of the densities of Zo and Z; can be found as

Mgz, (s) = Elexp(sZ;)]

N-1 1 1 I_L n,; 1
l I 4= jat ) 262,52
| [2 + 5 exp (nlsﬂ exp (23 an,) (5.47)

=1

where j € {0,1} and 02, = —I%QT is the variance of the Gaussian noise samples at the
output of the matched filter. If the decision threshold is set to 8 = L’,fi (1 —z), the
Chernoff bound can now be used to provide a tight upper bound on the BER.

P (E) < $Mz, (5) &xp (~8) + 5 Mz, (~3) o0 (=55) (548)

where 3 = Tis; — G and s > 0. Note that the Chernoff bound has been found to be
very tight (exponentially) for the error probabilities we have been dealing with and it is
reasonable to assume that it is equal to the exact error probability. We will now minimize
the error probability over z and s.

It is obvious that when the threshold is set to its optimum value (i.e., T = Topt), the
two terms of the expression will be equal, namely the error probability conditioned on a
mark signal bit is equal to that conditioned on a space. This is intuitively reasonable if
we observe the pdf of the sample conditioned on the signal which is illustrated in Figure
5.3. The effect of the ripples located around 0 and T, , will disappear at the tails of the
distribution (which is perfectly valid at ~ 10-1° BER if we assume p; < 1; the region
in which this assumption is valid will be specified later). The optimal threshold is the

point where the two curves intersect. Hence,
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Figure 5-3: The impacts of the ripples of the sample density becomes negligable at the
tails.

Mz, () exp (—5B,p) = Mz, (=) exp (—580) (5.49)

where 3, = -TZ—;:i (1 — Zopt) and B, = T—lz"i (14 z,p). To simplify the calculations, we

are going to make the following approximation for M, (s).

oot \™ 1
Mgz, (s) = H [5 + 5 exp (#s)] exp (532012;')
i=1

2

N-1 1# n; 1

~ -7 T 2.2

= E (1 +3 o s) exp (23 an,) (5.50)
N-1

~ ni\ 14 12 o

= 11 (1 + (1)2 o s) exp (28 o (5.51)

1 N-1 1,,
= (1+ SH4S exp | 5570 (5.52)

where 5.50 follows from the series expansion of exp (%fs) ; is very close to 0 and we
assume at this point that |2u,s| < 1 (which is valid in some certain range of values and
that range will be specified later). Therefore, in the series expansion we neglected the

second and higher order terms. Relation 5.51 follows from the Binomial expansion of
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(1 + %%13) i and similarly neglecting the higher order terms with the assumption that
I% ;Ljs| < 1. Along with these approximations, 5.49 can be modified as follows.

1—-2us
Ti, = (N=1)In |—2717 )
jgsz = (N=1) [H%%J (5.53)

- (N—l)ln[1+%(_”1—#°)s]
14 Spos
1(opy —

H1 #0)5
~ (N-1)2 .
( ) T+ Tgs (5.54)

where 5.54 follows from the series expansion of In [1 + é(l_ﬁ—x:)f] and assuming that
2

Ly

2(1—:&#?)3 is close to 0. The optimum z as a function of s can be found as follows.
2

Vr=(N-1r

1+ S48

Top = (N = 1) (5.55)

Next, we are going to find out the optimum s value ‘as a function of z and solve it
together with 5.55. When the threshold is set to its optimum value, the error probability
conditioned on the transmission of a mark is equal to that conditioned on the transmission

of a space. Using Equation 5.52, the error probability can be written as

P(E) = exp L(N —1)ln (1 + %pos) + %szaﬁ, - sﬂ] (5.56)
= exp{ (N—1) []n (1 + %uos> + 2(%173203,,] —sp
= exp[(N —1)v(s) — sf] (5.57)

The optimum value of s (the value of s which makes the Chernoff bound tightest) can

be found by solving the below equation.

V() = 75 . (5-58)

120



%#o 1 B

1+%uos+N—1 ~ N-1

where 8 = G,,, = T—'z’-l (1 — Zopt). We will use the assumption that |%,u,03| < 1 one more

time to derive the optimal bound expression as follows.

o~ Bopt — 3t (N — 1)

o2,

(5.59)

'sopt

Plugging this back in expression 5.55 after rewriting [, with the optimum z value, we
get a complicated expression for Zopt ODnCE We solve the equation with MAPLE2. That
expression could be approximated as (N — 1) /r— (N — 1)%r (i-e., the numerator of 5.55)
since |3 uos| < 1.

Before we go on and evaluate the performance, we will identify the region that all our
approximations for finding out the optimal threshold (Zopt) and the optimal bound para-
meter (sop:) are reasonable. However, the only assumption we made was that I% [LOSI < 1.
Indeed,

%,uosow = %Tz’s,lr (N-1) g;.;ll [1— 2 — 7 (N — 1)%]
T2
= 2—]\’;:7-(N—1) [1-vr(N-1)]
Ey
= & (N=-1)[1-vr(N-1)] (5.60)

Figures 5.4, 5.5, 5.6 illustrate the absolute value of the Expression 5.60 (I%,uosopth versus
N —1 for r = —25, —30, and -40 dB respectively at % =16 dB. We can deduce from
these curves that the expressions we get for optimum z and s values are valid only under
some certain conditions which generally impose a limit on the maximum number users
that can be supported by the network. For instance, if the crosstalk per user is -30 dB,

Expressions 5.61 and 5.62 give very accurate estimates of the optimum z value and the

3Version 5, Release 4. © Copyright 1981-1998 Waterloo Maple Inc.
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can observe that the approximations are good if N < 50 (the curve stays below 0.1).

optimum s value respectively iff N < 10 (ie., |2p0s| < 0.25).

Now, we will turn back and plug the optimum values to the error probability ex-

pressions to find the tightest bound on the error probability.

are

Top = (N—1)vr—(N-1)°r
Tzsl

Sopt = %2, [1-Vr(N-1)]

and the tightest bound on the BER is thus,

P(E)

N

Mz, (Sopt) €XP (—SoptBopt)
o1 1 ™
H [2 + 5 exp ( #osopt)] exp (—SoptBopt)

i=1

N-1
{3+ 3o (30 -nB-vro—)

=1
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The optimal parameters

(5.61)
(5.62)

(5.63)

(5.64)



exp (- [1-2r(N - 1) +2r (N —1)2_ ;32 (VN —1)7] %)

9.3 Examples

In this section, we will examine three systems and use Expression 5.64 to determine their

error probability curves.

the users communicate at the same constant rate (n: = 1,¥5).
First of all, let us check whether %;uosopt is sufficiently small so that 5.61 and 5.62 are

reasonably close to the optimal valyes.

1 E, -
SHoSept = v, 10 ‘Br(1-31x10 9]
= 214x 1032 (5.65)

0

penalty at 10~10 error probability is ~ 4 dB.

1 By
SH0Sopt = mlo 3[7(1~7x0.032)]
E,
= -3
= 5.43 x 10 N (5.66)
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7: The perfromance curve of the system with a 32 x 32 wavelength router

Figure 5-

10 Note that the solid curve gives the tightest bound for the error
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Figure 5-8: The perfromance curve of the system with Lucent 000371695 wavelength
router (solid curve) and the baseline (dashed curve). The power penalty is 2.8 dB when
the error probability is ~ 1071%. Note that the solid curve gives the tightest bound for
the error probability of the system for % < 19 dB.

optimal curve until % ~ 18 — 19 dB. The power penalty at 10~° error probability is 2.7
dB.

The above two examples are examined in [25] in which crosstalk-crosstalk terms were
neglected. At optimum threshold, the power penalty was found to be ~ 1 dB for the first
example where N = 32, and ~ 1.5 dB for the second example where N = 8. One can
observe that the power penalty found by [25] for 8 intruders is 1.2 dB less than that found
using 5.64 and this difference becomes 3 dB for 32 intruders. This proves that neglecting
crosstalk-crosstalk beat terms become increasingly inappropriate with increasing N.

Finally, let us consider a communication system at rate 2.488 Gb/s. Let there be 5
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Figure 5-9: The perfromance curve of the system with 5 intruders all at different rates
(solid curve) and the baseline (dashed curve). The power penalty is 0.5 dB when the
error probability is ~ 1071°. Note that the solid curve gives the tightest bound for the
error probability of the system for % < 19dB (P (E) > 10718).

interferers, two at 9.95 Gb/s and the others at 2.488 Gb/s, 622 Mb/s and 155 Mb/s each
with power -30 dB. Then the condition of optimality for 5.64 is that

1 Ey __
SHoSopt = ]—V—om 3[5(1—5 x0.032)]
E
— -3
= 42x10 A (5.67)

should be sufficiently small. The error probability curve is illustrated in Figure 5.9 and
it is optimal for -1—{'3,% < 18 — 19 dB. The power penalty at 10~° BER is 0.5 dB.
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5.4 Summary and Conclusions

In this chapter, we presented a worst case approach for the case where there is more than
one intruder. We claimed that neglecting the crosstalk-crosstalk beat terms is not always
reasonable even when the crosstalk is low and we proved our claim by illustrating the
range of parameters that these terms are not negligible. Instead of neglecting them, we
introduced a linear MMSE approximation for the crosstalk-crosstalk beat terms. Next, we
employed a minimum Chernoff bound approach to determine the optimum threshold and
find the most strict bound on the error probability. Finally we analyzed three practical
examples to illustrate the results.

Some of the most significant results of this chapter can be listed as follows. In all
the past work encountered on the issue of crosstalk analysis of multiple interferers, the
crosstalk-crosstalk beat terms have been neglected. We presented a region where that
approximation is valid and the error probabilities found following that approximation
are precise. We found an approximate optimum threshold, specified the region where it
is close to the real optimum value, performed a very precise analysis without neglecting
the crosstalk-crosstalk beat terms, and covered a very general case where the rates at
which the signals transmit are arbitrary. We comba.red our results with those deduced in
the past work in which crosstalk-crosstalk beat terms had been neglected and found that
there is a considerable gap between the power penalties which increases as the number of
the interferers increases. This proves that neglecting those terms may be inappropriate

for many cases and may not yield accurate results.
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Chapter 6

Conclusions

In this thesis, we presented rigorous crosstalk analysis techniques for an optical commu-
nication system. We specified a number of different cases and identified our goals step by
step. Our analysis strategy was to begin from the simplest case and extend the ideas and
combine them with the new ones and those of the previous work to solve harder cases.
In all these steps, we were very accurate and did not make any assumptions without
making sure that they are reasonable. We verified some of the past results and showed
their weaknesses if their results are inaccurate.

In the first chapter, we introduced our models and system structures. We mentioned
that our motivation for this work was the approximations and assumptions made in the
past work which we find doubtful. We specified the steps of the analysis and indicated
the models and system parameters we used.

In the second chapter, we introduced ba,sicA crosstalk analysis methods for the two
simplest cases which are 0 crosstalk (baseline) and the worst cases. We showed that
even a deterministic optical interferer may harm the system since, due to the square-law
nature of the optical detector, ahy wave propagating beside the signal is multiplied with
the signal in the electrical domain. Thus, the interference portion of the current becomes
a function the communication signal due to the signal-interference beat terms. It takes

on different values depending on whether the signal bit is a 1 or a 0. This sets up the
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basic idea for the following chapters. We showed that even an interferer of power 20 dB
lower than that of the signal can cause 2 dB of crosstalk. We found out that the results
we get for the electrical and the optical power penalties are consistent with those found
in [4] and [6], only more accurate since we did not neglect the crosstalk-crosstalk beat
terms.

We divided Chapter 3 into two sections one of which consists of the analysis for syn-
chronous signal and crosstalk bit streams and the other generalizes this for asynchronous
streams. In the first section, we found out that if the signal has a bit rate higher than
that of the crosstalk, then the power penalty is very close to that of the worst case. In
fact, we determined that the difference between the two cases is no more than 0.05 dB
at the error probabilities close to 107° for an interferer of power 20 dB below that of
the signal. We also considered the effects of dynamic thresholding within this case and
argued that, with dynamic thresholding the performance could be no better than that
with optimum static threshold most of the times (equally well only under some certain
conditions). It may be advantageous if the received signal power and the crosstalk power
are not constant throughout the communication. We also showed that even the bit se-
quence of the crosstalk is known by the receiver, the error performance of the system
cannot be improved considerably. Next, we considered the case where the bit rate of the
signal is lower than that of the crosstalk. We deduced that if the ratio of the rates is
small, namely, the rates are close to each other, the performance is close to the worst
case and the error probability is a decreasing function of this ratio. As n gets larger and
larger, the probability of error approaches to that of the worst case with crosstalk power
equal to half the original. In the next section, we proved that the optimum threshold and
the error probabilities of the asynchronous system is almost equal to those of the syn-
chronous. Hence, assuming that the bit streams are synchronous is perfectly reasonable
and it simplifies analyses enormously.

In the fourth chapter, the analysis done for the worst case phases and polarizations

are generalized to those for random phases and polarizations for single interferer. We
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used the model which was introduced by [6]. All the states of polarizations (e.g., circular,
elliptic, linear, etc.) and all the possible relative directions of the crosstalk with respect to
the signal from the worst case of matched signal and crosstalk polarizations to orthogonal

polarizations can be represented with this model. The expression for the detected current

is fairly simple even with such a detailed representation. As expected, the optimum

threshold level is increased compared to the worst case and gets closer to T—’;'l which is
the optimum threshold level for the crosstalk-free case both when the bit rate of the signal
is higher and vice-versa. Regardless of the rates of the signal and the crosstalk relative to
each other, the performance of the system is very close to the worst case which justifies
the conclusions drawn by [9], namely, systems with randomly polarized fields display a
statistical preference for near-worst case operation (a substantial likelihood of operation
within a few dB of the worst case).

Finally in Chapter 5, we presented a worst case approach for the case where there
are more than one intruder. In all the past work encountered on the issue of crosstalk
analysis of multiple interferers, the crosstalk-crosstalk beat terms had been neglected. We
presented a region where that approximation is valid and the error probabilities found
following that approximation are precise. We found an approximate optimum threshold,
specified the region where it is close to the real optimum value, performed a very precise
analysis without neglecting the crosstalk-crosstalk beat terms, and covered a very general
case where the rates at which the signals transmit are arbitrary. We compared our results
with those deduced in the past work in which crosstalk-crosstalk beat terms had been
neglected and found that there is a considerable gap between the power penalties which
increases as the number of the interferers increases. This proves that neglecting those
terms may be inappropriate for many cases and may not yield accurate results.

The future work can proceed in different directions. First, it is necessary to find a
method to combine the ideas of Chapters 4 and 5 in order to get an expression for the

error probability of the most general case, multiple crosstalk sources all with random

phase and polarizations. In addition, it is more realistic in some cases to assume that the
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sources are not active all the times; in particular, a statistical model can be developed
for the number of users (e.g., Binomial) and the system can be analyzed with that
statistics. As a next step, methods to improve the crosstalk performance can be sought.
For instance, the results found and techniques used in this thesis can be modified to
analyze fiber-optic CDMA systems employing optical orthogonal codes. It can be proved
that, due to the orthogonal nature of CDMA codewords, such systems perform much
better compared to other multiple accessing schemes. It can be shown that instead
of using a WDM system with a large wavelength router, using CDMA over a rather
small router suppresses crosstalk drastically. However, more work needs to be done to
determine the ability of CDMA to suppress crosstalk.
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