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Abstract
Advances in mass spectrometry-based proteomic technologies have increased the speed of
analysis and the depth provided by a single analysis. Computational tools to evaluate the accuracy
of peptide identifications from these high-throughput analyses have not kept pace with
technological advances; currently the most common quality evaluation methods are based on
statistical analysis of the likelihood of false positive identifications in large-scale data sets. While
helpful, these calculations do not consider the accuracy of each identification, thus creating a
precarious situation for biologists relying on the data to inform experimental design. Manual
validation is the gold standard approach to confirm accuracy of database identifications, but is
extremely time-intensive. To palliate the increasing time required to manually validate large
proteomic datasets, we provide computer aided manual validation software (CAMV) to expedite
the process. Relevant spectra are collected, catalogued, and pre-labeled, allowing users to
efficiently judge the quality of each identification and summarize applicable quantitative
information. CAMV significantly reduces the burden associated with manual validation and will
hopefully encourage broader adoption of manual validation in mass spectrometry-based
proteomics.

Keywords
Mass spectrometry; tandem mass spectrometry; protein identification; protein post translational
modification; computational analysis

Introduction
Recent advances in mass spectrometry technologies have ushered in a new era of high-
content, high-resolution proteomic datasets. Acquisition of hundreds of thousands of tandem
mass spectra (MS/MS spectra) in a single analysis is now routine, and by coupling high-
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speed data acquisition to sample pre-fractionation, millions of MS/MS spectra can be
generated from the analysis of a single biological sample. Despite the technological
advances that have enabled acquisition of these massive datasets, tools to accurately identify
the peptides and post-translational modification (PTM) sites defined by these tandem mass
spectra have evolved less rapidly.

In a typical workflow, MS/MS spectra are searched, with database search algorithms such as
Sequest [1], MASCOT [2], XTandem [3], or Andromeda [4], against protein databases to
generate putative peptide and/or PTM identifications for each MS/MS spectrum. Each of
these algorithms relies on a scoring system which weights a variety of parameters, including
the mass accuracy of the precursor ion m/z and the percentage and/or sequence of fragment
ions matching to the theoretical mass and fragmentation pattern of the putative peptide
identification. Due to a variety of factors, including the intensity, peptide sequence
(including PTMs), complexity of the sample, and fragmentation method, the MS/MS spectra
vary greatly in terms of their quality, as defined by their signal-to-noise and complexity.
This variation in quality leads to a wide difference in the searching algorithm scores for
putative peptide matches. Currently, there are no set ‘thresholds’ or ‘rules’ for determining
whether a particular peptide identification is correct, and each database search algorithm
weights aspects of the identification differently. With potentially millions of MS/MS spectra
per sample, the challenge of sorting through the putative identifications to determine the
accuracy of each assignment is monumental, yet is of utmost importance for correct
determination of the components within the biological sample.

The difficulty of accurately identifying a peptide defined by a given tandem mass spectrum
can be exemplified when one considers how much weight should be given to mass accuracy
of the measured precursor ion m/z compared to the theoretical m/z of the putative peptide.
As the accuracy of the measured mass improves, the number of potential peptides from a
given database matching to that mass decreases significantly. However, mass accuracy alone
is typically not sufficient for identification. Figure 1 illustrates the issue of relying solely on
peptide precursor mass to confirm identification. All tryptic fragments from proteins in the
Human 2009 proteome database were in-silico digested and binned based on different
accuracies. At 10 ppm, very few peptides are the sole occupant of their m/z bin. At 1 ppm,
roughly 5% of peptides are uniquely identifiable from their precursor m/z. The problem
becomes more daunting when the database increases in complexity to reflect the complexity
found in biological samples: the database should contain missed cleavages, non-tryptic
cleavages, and at least the most common dozen of the several hundred potential post-
translational or chemical modifications, as all of these are realistic possibilities for any given
peptide. Searches performed against a database of this size and complexity would require
massive computational resources. Searching algorithms fight an uphill battle against
combinatorial explosion as they seek to balance runtime considerations against erroneous
exclusion of relevant peptides. Unfortunately, searching against an incomplete database can
lead to false positive identifications, simply because the true assignments are not contained
within the search space, and therefore the next best match will automatically be reported.
Distinguishing between high scoring false positives associated with the ‘next best match’
and true positives is critical, especially given the ultimate goal of utilizing these peptide and
PTM assignments to inform biological experimental design [5].

Statistical Approaches to Assessing Quality
Currently, the most common approaches to assessing the validity of a given set of peptide
assignments are based on statistical analyses of the likelihood of incorrect assignments,
calculated as either a false-positive or false-discovery rate (FDR). In this approach, the MS/
MS spectra are searched against a forward database and also against a decoy, reversed or
scrambled, protein database [6]. The score thresholds that separate correct from incorrect
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peptide assignments are then altered to achieve a pre-determined false discovery rate,
defined as the quotient of the number of matches in the randomized decoy database to the
number of matches in the target database. While this approach can be used to rapidly assess
the quality of the overall set of peptide assignments, there are several factors that need to be
considered to accurately calculate the FDR. For instance, construction of an appropriate
decoy database is crucial, as the distribution of peptide lengths, amino acid composition, and
motif prevalence must be tuned to match that of the species database and the specific
enrichment experiment performed. In addition, replicate identifications can artificially
deflate the FDR if they are considered as independent tests. Several dozen MS/MS spectra
might be generated for an abundant species eluting from the chromatography column (these
replicate spectra are the basis for the label free spectral counting quantitative approach); it is
expected that each of these spectra will match to the same peptide sequence in the forward
database. Since these MS/MS spectra are effectively replicates of the same MS/MS
spectrum, if one of the spectra does not match to the decoy database, then it is likely that all
of the spectra will not match to the decoy database. Instead of considering these as
independent tests with several dozen hits with no decoy hits, corresponding to a low FDR,
this set of data should be considered as one hit with no decoy hit. Considering these factors
should significantly improve the accuracy of the FDR-based statistical estimate of global
data quality. It is worth noting that the FDR-based statistical approach only provides a
global quality metric and fails to identify which assignments are true vs. false-positives,
leaving doubt about the validity of any given peptide assignment in the dataset. In fact, it is
only on further manual inspection that the quality of each peptide assignment becomes
evident, even for MS/MS spectra with similar scores for given assignments. For instance,
two peptide identifications with similar MASCOT scores are presented in Figure 2. The
confidence in the accuracy of the assignment is much higher for the spectrum in Figure 2A,
as almost all fragment ions match to the expected theoretical fragment ions from the
assigned peptide. By comparison, in Figure 2B there are multiple intense ions that do not
correspond to any of the typically theoretical fragment ions for the given peptide
assignment, and therefore this MS/MS spectrum is likely to represent either an incorrect
assignment or potentially a ‘contaminated’ spectrum resulting from the simultaneous
isolation and fragmentation of multiple ions. In most cases, the database score reflects the
number of matched fragment ions, but does not consider the number of unmatched abundant
ions, as can be seen by the varied percentage of unmatched ions for similar database scores
in Figure 2C. Based on this analysis, it appears that any global score threshold will
automatically include low-confidence identifications, defined as spectra with a fair number
of unassigned abundant fragment ions.

An alternative to the FDR approach is to use machine learning-based techniques to automate
the validation process. A decision tree validation scheme has been shown to reduce the
FDR, yet still relies on searches against a general decoy database [7]. More recently, a
hybrid Support Vector Machine (SVM)/Dynamic Bayes Network (DBN) approach was used
to classify MS/MS data, and was shown to increase positive identifications in 1% FDR
search results [8]. To circumvent the need for large amounts of training data for
classification methods, another approach is to create a rule-based framework where
prominent fragments are predicted based on expert criteria [9], although codifying
experiential human knowledge still limits results to those peptides that match prescribed
criteria, therefore hindering generalization to peptides with different PTM’s. The “expect”
score in MASCOT provides another, peptide sequence specific, alternative to the FDR. This
score reflects the probability that a peptide assignment with a given MASCOT score would
occur by chance, taking into account the length of the peptide along with the sequences of
other peptides in the database to judge the likelihood of proper assignment.
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A number of algorithmic approaches have been proposed to automate the proper localization
of PTM’s, one of the key factors in the quality of an assignment. Among the most widely
used of these algorithms, ASCORE defines the PTM site(s) by assignment likelihood based
on key fragment ion peaks that differentiate multiple putative localizations [Beausoleil
2006]. PhosphoRS uses a similar scheme based on more of the ions in the spectrum and has
been applied to data sets from a more varied selection of instruments [Taus 2011]. Mascot
Delta Score (MDScore) leverages the probabilistic calculations included in the Mascot score
[Pappin 2006] and bases localization confidence on the difference between the Mascot
scores for the leading putative assignments. MDScore has been shown to achieve results
comparable to ASCORE for localizing tyrosine phosphorylation [Savitski 2011]. Each of
these algorithms is based on the principle that the PTM site assignment that matches the
most peaks is correct; however, localization to one out of several closely spaced residues is
often difficult, regardless of the algorithm. In these cases, the user can leverage prior
knowledge of a site’s biological relevance, a protein’s sequence homology, and the
purification procedures employed during sample preparation to assist in defining the most
likely assignment of a given site (see Supplementary Figure s3A/B).

From a larger perspective, all of these automated approaches face the difficult task of
limiting false positives while also limiting false negatives, thereby yielding the largest
dataset with fewest incorrect assignments. The balance between false-positives and false
negatives must be carefully considered, as the potential cost of false positives can be very
significant: false positives may distract research efforts and mislead experimental design,
potentially costing years of wasted effort [5].

Manual Validation of MS/MS Data
Despite the dilemma presented by the specter of false positives and the need to rapidly
validate large numbers of peptide assignments, the tools available to more rigorously
analyze a dataset have been limited. The gold standard for MS/MS peptide identification
verification is manual validation, where precursor and fragment mass observations are
manually evaluated against a theoretical fragment ion spectrum from the search algorithm
assignment [10]. Further confirmation can be achieved with synthesis of the putative peptide
and chromatography co-elution experiments, although these additional steps incur
significantly more cost and effort and are therefore typically reserved for the most
interesting peptide matches [11]. Through manual validation, the intensity of particular
fragment ions, coupled with the presence, absence, and missed assignment of other fragment
ions, can be evaluated by mass spectrometry experts to assess the strength of the assignment.
While there may be some variation in the particular implementation of the manual validation
process, efforts have been made to codify the process to ensure consistency. Key objectives
for the validation process (which peaks must be attributable to the sequence, expected
relative intensity of peaks for key fragments, PTM localization, and criteria for exclusion)
have been nicely summarized in previous works [10]. Briefly, in addition to assigning each
fragment ion to a specific fragmentation site in the peptide, the likelihood of identifying
particular fragment ions is also considered in the manual validation of a spectrum. For
instance, fragment ions assigned as neutral losses from specific fragmentation sites should
be appropriate to the residues contained within that fragment. The relative intensity of the
fragment ions is also considered relative to the proposed peptide sequence; favored
fragmentation sites should correspond to higher abundance fragment ions, while disfavored
fragmentation sites should be represented by lower abundance fragment ions. In general,
correct peptide sequences typically have all fragment ions over 10% of the base peak
intensity assigned to a specific fragmentation site in the peptide. As seen in Figure 2C,
unassigned fragment ions in the MS/MS spectrum suggest either an incorrect sequence or a
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mixed spectrum; both of which result in decreased confidence in the accuracy of the
assignment.

Manual validation can be tedious and time-consuming, as tens of significant peaks from
each MS/MS spectrum must be individually aligned and matched to the mass of a known
fragment derived from the proposed peptide. When applied to a large-scale dataset, this
approach can take weeks, if not months, to individually assess each of the thousands of MS/
MS spectra, with most of the time spent meticulously comparing lists of numbers and
relatively little time required for the final decision as to whether one should include the
assignment in the dataset. There is a clear disconnect in the speed with which millions of
spectra can be acquired and the time required for spectral validation. How, then, to increase
the speed of the manual validation process without sacrificing the level of rigor and
confidence in each peptide identification? As it turns out, many of the tasks associated with
manual validation can be assisted by computer automation, leaving the task of approval of a
particular peptide assignment to a human decision while expediting much of the tedious
tasks of collecting relevant MS/MS spectra from a particular analysis and calculating the
predicted fragment ions of a particular peptide. Here, we describe a Computer-Aided
Manual Validation (CAMV) package that mitigates the time-consuming portions of the
validation task and presents the relevant information in a streamlined format, allowing the
user to rapidly judge the accuracy and quality of database identifications. Application of
CAMV to a given LC-MS/MS analysis leads to a high-confidence set of peptide
identifications and a concise summary of any quantitative information from iTRAQ or
SILAC, all of which can be accomplished in hours instead of days or weeks.

Computer Aided Manual Validation Package
We have produced a computer-aided validation pipeline that expedites the validation process
without removing human judgment, helping to address the disconnect between manual
validation and high-throughput data generation while still maintaining data quality. CAMV
loads the MS/MS scans along with the putative assignment from the search engine.
Fragment ions are automatically labeled based on the sequence assignment and according to
a scoring rubric which has been developed and tested to assign the most likely labels to each
fragment. To assist the user in assessing the quality of the peptide assignment, additional
information is provided in the output of CAMV, including color-coded peak labeling,
magnified view of the mass-to-charge range of the MS scan around the precursor ion, and of
the MS/MS scan around the iTRAQ marker ion mass range (Figure 3). Color coded peak
labels allow the user to rapidly identify unlabeled or mislabeled peaks, both of which are
particularly valuable when confirming peptide sequence assignment or comparing multiple
PTM localizations within a given peptide sequence. Through this overall design, the various
aspects of manual validation software are apportioned to the most qualified entity: CAMV
performs the most tedious and time consuming tasks associated with peak labeling, and the
user is presented with the most relevant information to quickly make the correct decision.
Once an analysis has been user- verified, publication-ready figures and spreadsheets
containing the appropriate quantitative data can be generated from accepted assignments.

Data Preprocessing
The typical workflow for CAMV analysis is represented schematically in Figure 4. Here we
describe the current configuration, although in most cases the specific software tool
embedded in the package that has been utilized for a given task could be replaced with an
alternate option. Initially, the raw mass spectrometry data file is converted into Mascot
Generic Format (MGF) through DTA Supercharge, which de-isotopes the MS data files,
converting precursor masses to the mono-isotopic masses. The MGF file is then searched
with MASCOT against the appropriate database, with the associated post-translational
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modification options. The results of the MASCOT search are harvested as an XML file with
the input query data included, enabling one to match the MGF file query number to the raw
file scan number. To access the scan information in the MS raw data file, an mzXML is
produced using ‘msconvert’ from the Proteowizard package [12].

PTM Identification
Search algorithm (e.g. MASCOT) results are retrieved as an XML file containing global
information about fixed and variable modifications used in the search. Fixed modifications
are applied to all instances of a given residue while variable modifications may or may not
be present on any instance of a given residue. Scan-specific modifications to be applied to a
particular MASCOT identification are included in the XML file and are taken into account
when generating fragment masses; terminal fixed modifications are applied to every peptide.

Modified Sequence Generation
Most of the current searching algorithms perform well at assigning the base peptide
sequence and the appropriate number of modifications, but perform poorly at determining
the correct site-specific localization of each modification. This poor performance is due to
the number and similarity of the various theoretical fragmentation patterns, as for each
amino acid sequence and set of variable modifications, several permutations may exist, each
of which may be distinguished typically by differences in 2 fragment ions. To facilitate this
PTM localization task, CAMV generates all permissible combinations with a recursive
search. Although the system is easily modifiable to include additional modifications, in the
current configuration, CAMV handles the following modifications:

Fixed:

• iTRAQ labeling

• Cysteine Carbamidomethylation

Variable:

• Serine, Threonine, and Tyrosine Phosphorylation

• Lysine Acetylation (concurrently with iTRAQ)

• Methionine Oxidation

• Light, Medium, and Heavy SILAC Labeling of Arginine and Lysine (not
concurrently with Lysine Acetylation or iTRAQ)

Theoretical Fragment Ion Generation
For each candidate permutation of variable modifications, the full set of theoretical fragment
ion masses is generated. To calculate these masses, the N-terminal mass is determined based
on the type of iTRAQ (e.g. none, 4-plex, 8-plex) applied to the sample. Each residue is
added to the N-terminus in the proper order, with all resulting b-ion masses recorded. With
the full sequence, the precursor ion m/z values of charge states 1–5 are calculated and
stored. Next, all permissible combinations of neutral losses from each b-ion are calculated
and stored. Permissible losses include: H2O, NH3, H3PO4 (from pSer or pThr), HPO3 and
HPO3+H2O (from pTyr), and SOCH3 (from carbamidomethyl C), this list can be expanded
as needed, but it is important not to expand to include unlikely losses which can lead to
over-fitting of the data (e.g. by assigning unlikely fragment ions to the peaks, it becomes
more difficult to differentiate false-positives from true positives). Each b-ion and loss is
calculated for charge states up to and including the charge state of the precursor. Each b-ion
and loss also produces an a-ion fragment with the loss of CO2. The process is repeated from
the C-terminus of the peptide to produce y-ions and the corresponding losses. Additional
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frequently observed fragment ions are included: 216.04 (for pTyr) and bn+86 (for 8plex
iTRAQ).

Fragment Alignment
CAMV attempts to assign a label to all peaks in the MS/MS spectra whose intensity is
greater than 10% of the base peak intensity. To probe further into sparse regions of the MS/
MS spectrum, label assignments are attempted on all peaks whose intensity exceeds 2.5% of
the base peak intensity if they are a local maximum in a sparsely populated region (e.g. +/−
25 m/z). The accuracy of the fragment ion matching thresholds can be adjusted for high- vs.
low-resolution fragment ion spectra. The current configuration is set for validation of low-
resolution, linear ion trap CID spectra. With this setting, predicted fragment masses that are
within 1000 ppm (0.1% of the m/z) of the observed peak are candidate matches that are
denoted with a label and a green asterisk. Predicted fragment ion masses that are within
1500 ppm (0.15% of the m/z) of the observed peak may also be labeled and accompanied by
a magenta asterisk to indicate the lower confidence assignment. Isotope peaks of an
identified peak are labeled with a yellow asterisk. It is worth noting that it is straightforward
to change the thresholds for these matches to accommodate high mass accuracy, high
resolution MS/MS data from a time-of-flight or orbitrap mass analyzer. Peaks in the MS/MS
spectrum may match to multiple different theoretical fragment ions. To highlight the most
likely match, we have developed a scoring rubric; the optimal label for a given peak is
assigned based on the highest score in the following rubric:

• +12 for precursor fragments

• +10 for b- or y-series ions

• −1 for each neutral loss

• +0.5 for closest match to the observed mass

With this rubric, we have tried to capture the most commonly occurring fragment ions
associated with correct peptide identifications. Depending on the collision energy used to
drive fragmentation, the most abundant ions in the MS/MS spectrum are typically those
associated with fragmentation of the peptide backbone (e.g. y- and b-type ions) and neutral
losses from the precursor ion. These candidates are therefore given the highest scores in the
above rubric. Each neutral loss from these main fragmentation events becomes less likely, so
fewer points are awarded to these candidate fragment ion labels. Effectively, if the peptide
assignment is correct, then abundant ions in the MS/MS spectrum are more likely to result to
be a b- or y-type ion than to be a b- or y-type ion that has undergone 4 for 5 neutral losses.
In the current configuration of CAMV, the total points associated with a spectrum are not
considered in the final decision as to the quality of the peptide assignment. However, it is
conceivable that the number of high-scoring vs. low-scoring fragment ion assignments could
be reported as another metric to assist the user in their evaluation of each spectrum. Further
color-coding to separate high- and low-scoring peaks is another option that could be
considered in future versions of CAMV. From an extensive amount of manual and
computational analysis of true- vs. false-positives, the number of unlabeled abundant
fragment ions is often critical in determining false-positives [13]. Therefore unlabeled
abundant fragment ions, as defined by observed peaks that do not have any predicted
fragments within 1500 ppm, are labeled with a red circle.

Label Renaming
Since the scoring rubric does not consider all factors in assigning a label to a given peak in
the MS/MS spectrum, the user may change the assigned label. Clicking on an assigned label
will display a list of predicted fragment ions that match within tolerance, allowing another

Curran et al. Page 7

Methods. Author manuscript; available in PMC 2014 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



label to be chosen. It is also possible to select a label outside of the tolerance window, or
outside of the user-defined fragmentation options listed above. This user-defined label will
be applied to the peak, but no mass will be calculated and it will be shown with a black
asterisk.

Quantitative Accuracy and MS Scan windows
Importantly, CAMV also allows the user to assess the quantitative accuracy of isotopic
labeling strategies. For instance, by providing an image of the MS spectrum in the m/z
region of the precursor ion isolation window (right side, Figure 3), users can determine
whether SILAC peaks might have overlapping contaminant peaks, as can occur in complex
mixtures, and then select whether the quantification of this pair should be included in the
final dataset. On a similar note, for iTRAQ quantification, the user can determine whether
another ion above a given intensity threshold was present in the isolation window and may
therefore have altered the iTRAQ marker quantification values. The size of the isolation
window highlighted by the gray box in this image can be adjusted by the user according to
the settings used for data collection. The image of the MS spectrum in the m/z region of the
precursor ion isolation window also allows the user to evaluate whether the charge state of
the precursor ion was assigned correctly, an important consideration for low-level precursor
ions in complex mixtures.

Validating Spectra
The tree on the left-hand side of the GUI contains proteins rank-ordered by their respective
MASCOT scores and peptides for each protein listed alphabetically (first) and numerically
(second) in order of the MS/MS spectrum match (Figure 3). For each peptide matched to an
MS/MS spectrum, nested under each entry is an assignment with the appropriate number of
modifications, initially marked by a filled gray circle. After evaluating the peptide
assignment based on all of the above criteria, the user may select from one of three options
located on the bottom right of the MS2 window: “Accept”, “Maybe”, and “Reject”. The
choice is recorded, so that the peptide assignments can be sorted into lists for future
reference, and displayed graphically by changing the color of the filled circle in front of the
assignment, allowing the user to keep track of their progress. A search feature is included to
locate peptide identifications based on scan number or protein name.

Exporting Validated Spectra
Two buttons on the bottom right of the GUI export PDF figures. “Print Accept List” will
print all accepted assignments to the “output\run_name\accept\” folder. Similarly, “Print
Maybe List” does the same for all assignments marked “Maybe”.

Exporting Quantitation
iTRAQ or SILAC quantitation for all peptides marked “Accept” will be added to an Excel
spreadsheet in the “output\run_name\” folder simultaneously when the “Print Accept List”
button is pressed.

Preemptive Exclusion
To facilitate manual validation, many spectra are pre-emptively removed from peak
assignment to reduce the time spent on enumerating and preprocessing large numbers of
sequences that will never be accepted. The criteria for preemptive exclusion include:

• Excessively long peptide sequence

• Low database score
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• Excessive number of PTM permutations

• Excessive number of peaks to identify

• Incomplete SILAC labeling

• Poor MS1 data

• Contaminated precursor window (user defined)

The heuristics for most of these criteria are user-definable in CAMV, and can be altered
depending on the experimental conditions. For instance, longer peptides are produced by
proteolytic digestion with some enzymes, and therefore the ‘excessively long peptide
sequence’ and ‘excessive number of peaks to identify’ settings might need to be adjusted.
An important feature of the CAMV is that these pre-emptively removed spectra are still
listed in the output (see Figure 3), along with the reason(s) why the spectra were not
processed. For each of these spectra, the user can click the link, evaluate the reason for
removal, and request processing of the spectra. The spectra and peak labels are then
displayed for manual validation.

Exemplary Application to Tyrosine Phosphorylation Analysis
To evaluate the application of CAMV to facilitate manual validation of MS/MS spectral
assignments, we selected an example data set that had already been manually curated,
thereby providing a benchmark in terms of MS/MS spectral assignment and speed of
analysis. The particular mass spectrometry dataset chosen was a quantitative analysis of
tyrosine phosphorylation in glioblastoma patient tumor xenografts, where accuracy in terms
of phosphorylation site identification and quantification were critical for determining the
signaling pathways in these tumors [14]. Since the sample preparation involves a 2-stage
enrichment for tyrosine phosphorylated peptides from a small amount of starting material,
the sample complexity is fairly low, and the total number of MS/MS spectral assignments
above a given threshold are less than one thousand.

As expected, CAMV radically accelerated the process while minimally impacting the
quality of the final dataset. In fact, the main benefit to the user is a drastic reduction in the
time necessary to validate an analysis. Previously, the manual validation process would
require days to weeks depending on the complexity of the sample. With CAMV, the
preprocessing step (not including database search) takes less than an hour; often, it is only a
matter of minutes for phosphotyrosine-enriched iTRAQ-labeled or SILAC-encoded samples.
The user-friendly interactive interface with color-coded peak labels makes decision-making
on the various spectra fairly straightforward, and the total time required for the analysis was
reduced from days/weeks to hours. Although there is still the need for hours of user time to
validate the data, the result is a high confidence dataset with minimal false positives, and
virtually all of the user interaction time is focused on decision-making rather than tedious
table comparisons and arithmetic calculation.

The statistics from the final data set resulting from user validation assisted by the CAMV are
highlighted in Figure 5. The final set contained 284 scans, 201 of which were passed all of
the internal criteria and were also selected as high confidence assignments by the user
(Figure 5A green, also see Supplementary Figure s1). Of the 284 spectra in the final data set,
the algorithm pre-emptively excluded 79 scans based on one or more of the criteria listed
above (Figure 5A blue, also see Supplementary Figure s2). For many of these 79 spectra, the
individual scan Mascot score was below 25, or there were too many peaks to be identified.
The heuristics underlying the pre-emptive exclusion decision are user-definable and can be
altered in the future to tailor the number of exclusions based on experimental conditions and
dataset quality. Because the GUI lists both accepted and pre-emptively excluded
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assignments, it was fairly straightforward to rapidly check the quality of the excluded
spectra and rescue those that were high-confidence matches. These false negatives were
reintroduced to the dataset following user validation. Four scans (Figure 5A yellow, also see
Supplementary Figure s3A/B) were assigned to an alternate PTM state by the user; although
technically not false-positives, the site of modification was incorrectly assigned by our
scoring metric. Additionally, there were 33 false positive identifications (Figure 5A red, also
see Supplementary Figure s4) where the user did not find a sufficient match to the sequence
identified by MASCOT and therefore removed the spectra from the final dataset. The
breakdown of accepted and rejected MS/MS spectra versus MASCOT score is shown in
Figure 5B for the manually validated and CAMV software. Note that in each bin there were
some spectra that were initially rejected that were rescued by the user and some spectra that
would have been accepted based on a threshold scoring that were rejected by the user during
the manual validation process. All of the accepted validated spectra are available in PDF
format in Supplementary Figure s5. At the end of the analysis, despite a fairly rigorous
initial threshold, CAMV required less than a day and removed approximately 10% false
positives, based on low confidence in the MACOT-identified spectral assignments.

Conclusion
CAMV is a software package to aid the manual validation process of MSMS peptide
identification data. This software package has drastically improved a tedious and time-
consuming task that vastly exceeded the sample analysis time, creating a backlog in the
workflow of many projects. By partially automating this process, we have shifted the human
focus to the decision-making portion of the task, allowing user judgment to be rapidly
applied. We hope that CAMV will provide researchers with a streamlined way to perform
their manual validation without having to rely solely upon false discovery rates when
analyzing and reporting their data.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendices

Version Information
All analyses were performed with the following software versions:

Proteowizard: Release 2.0.1749 (used for included data), 3.0.4323 (update included with
CAMV distribution)

Thermo XCalibur: 2.1.0 SP1.1162

DTA Supercharge: 2.0b1 (part of MSQUANT 2.0b1)

MATLAB: 7.13.0.564 (R2011b)

MATLAB MCR: 7.16

Mascot: Release 2.1.03, additional support for 2.4.1

Mascot Search Parameters
Database: Human-2009 (37743 sequences; 17175626 residues)

Enzyme: Trypsin

Fixed modifications: iTRAQ8plex (K),iTRAQ8plex (N-term),Carbamidomethyl (C)

Variable modifications: Oxidation (M),Phospho (ST),Phospho (Y)

Mass values: Monoisotopic
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Protein Mass: Unrestricted

Peptide Mass Tolerance: ± 10 ppm

Fragment Mass Tolerance: ± 0.8 Da

Max Missed Cleavages: 2

Number of queries: 14406

The CAMV Software Package is freely available at http://web.mit.edu/icbp/data/
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Figure 1.
Sample complexity prevents identification of peptides from complex samples based solely
on accurate precursor mass measurements. Precursor masses from all tryptic fragments from
the Human 2009 database with charge states +2 to +4 that fall between m/z 350 and 1500
were considered. Precursor masses were binned into windows generated at four different
resolutions. As the number of peptides per bin increases the percentage of total peptides
accounted for increases. At 10ppm a vanishingly small percentage of peptides are the sole
occupant of their bin making it nearly impossible to accurately identify peptides based on
their precursor mass alone. At 1ppm this figure is improved to roughly 5%. This problem is
exacerbated when post translational modifications and missed or non-tryptic cleavages are
included.

Curran et al. Page 13

Methods. Author manuscript; available in PMC 2014 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Curran et al. Page 14

Methods. Author manuscript; available in PMC 2014 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
MASCOT score only provides a rough estimate of the quality of the spectral assignment.
Two scans with comparable MASCOT scores: (A) MASCOT score 27.12 and (B)
MASCOT score 26.7 were selected. Note the significant disparity in the number of
unassigned peaks in the two spectra. (C) Variation in percentage of unassigned peaks for a
given MASCOT score can also be visualized at the dataset level. For this analysis, all
peptide matches with MASCOT score above 25 from a representative phosphotyrosine
enriched analysis were included. In a given spectrum, all of the peaks above ten percent of
maximum intensity or above 2.5 percent in a sparsely populated region within a +/−25 m/z
window were included for consideration.
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Figure 3.
The Graphical User Interface (GUI) for the MATLAB implementation of CAMV. The left
tree contains a searchable list of protein hits in order of decreasing MASCOT score, each
peptide assignment made to that protein, and all possible combinations of PTMs for each
scan. The middle panel contains the MS2 scan data with pre-labeled peaks. On the right is a
survey of the precursor window of the MS1 scan and a view of any quantitation information
associated with the assignment. The peptide ladder at the top summarizes the sequencing
information: red for an identified fragment, black for missing. A peak color-coding scheme
allows for rapid surveillance of the quality of the match: within tolerance (green), within
1.5x tolerance (magenta), unmatched peak (red), and isotopic peak (yellow). Peptides which
are pre-emptively excluded by the software appear in red on the left-hand tree. For these
peptides, the reason for preemptive exclusion is displayed at the top left of the MS2 panel in
place of the sequence ladder, along with an option to proceed with processing.
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Figure 4.
Peptide Sequence Identification and Validation Workflow. Raw data from the instrument is
converted with DTA Supercharge into an MGF file that is searchable in MASCOT [2]. In
parallel, the Proteowizard [12] package is used to convert the RAW file into a format where
the scan information is readily accessible. These two paths converge on the Validation
Software which matches the search results with the relevant scan data in preparation for user
verification. Once complete, figures of validated scans are exported as PDFs and
quantitation information as a spreadsheet.
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Figure 5.
Results of CAMV applied to quantitative tyrosine phosphorylation dataset. (A) All peptide
matches following user validation of the dataset. Color code: Agreement between algorithm
and user 201/317(green), alternate identification chosen by user 4/317 (yellow), additional
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assignment included by user 79/317 (blue), and assignment rejected by user 33/317 (red).
(B) Distribution of user and CAMV decisions versus MASCOT score. Note that in many
cases the user rescued the spectra that were pre-emptively excluded by the software, while in
other cases the user rejected the spectral assignment based on the poor quality of the match.
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