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Abstract

In recent years, automatically-collected data from many transit agencies have been made
available to the public in real time. This has dramatically improved the experience of riding
transit, by allowing passengers to use detailed information on the current state of service to
make more informed travel decisions. The “open data” movement has allowed independent
mobile-phone app developers to create a variety of useful tools to improve the passenger
experience. However, agencies’ use of real-time data for operational purposes has lagged
behind customer-facing app development.

This research examines the use of real-time data for the application of operational control
strategies on transit services. Two high-frequency bus routes of the Massachusetts Bay
Transportation Authority are used as a case study. It begins with the development of
an application to download, interpret, and present data on bus service and recommended
control actions in a graphical user interface. This application is then used to conduct
an experiment with a terminal-based holding strategy on MBTA Route 1. The results of
this experiment drive further investigation into the causes of deviations from scheduled or
assigned departure times at terminals. To supplement the experimental data, a simulation
model of MBTA Routes 1 and 28 is developed. This simulation is used to test additional
control strategies, as well as the effect of reducing unexplained operator deviations from
assigned departure times.

The research finds that real-time data can be used to create significant operational im-
provements. In particular, holding strategies at terminals, along with reducing unexplained
operator deviations from assigned terminal departure times, have a strong effect. Several
specific recommendations are made for a number of strategies that the MBTA can use to
improve the precision of terminal departure times on bus services. This research also finds
that holding at midpoints and short-turning can provide some additional benefit, but the
costs and benefits to passengers of these strategies are more complicated and should be
investigated with further research and implemented using optimization schemes rather than
the heuristic rules used here.

Thesis Supervisor: Nigel H.M. Wilson
Title: Professor, Department of Civil and Environmental Engineering

Thesis Supervisor: John P. Attanucci
Title: Research Associate, Department of Civil and Environmental Engineering
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Chapter 1

Introduction

This research examines the application of control strategies for improving reliability on high-

frequency bus routes using real-time Automated Vehicle Location (AVL) data. Improving

reliability has several components, including operations planning, control strategies, and staff

behavior and attitudes. Performance data from both regular service and an experiment, as

well as simulations, are used to determine a feasible and effective strategy for controlling

buses to improve reliability.

1.1 Motivation

This research is motivated by the importance of reliability to the passenger experience on

high-frequency bus services, as well as the availability of technology that allows easy access

to real-time bus location data.

1.1.1 The importance of reliability

Reliability on high-frequency bus routes is an ongoing problem for transit agencies. Factors

such as traffic, weather, passenger arrival rates at stops, and operator behavior are all highly

variable and difficult to predict, leading to a high variability in travel times. Variability in

travel time in turn leads to a pattern commonly known as “bunching”, in which a bus that

has been delayed encounters further delays due to the increased build-up of passengers at

stops ahead of it, while its following bus speeds up due to picking up fewer passengers, until

the two buses are bunched together (Newell and Potts, 1964). This leads to poor service

for passengers who face longer wait times than if headways were even, and are more likely
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to experience very crowded buses. It even leads to poor perception of service among those

who have a short wait, but observe multiple buses arriving together.

1.1.2 Technological progress

Control strategies for dealing with bus bunching have been studied through models, simu-

lations, and experiments for many years. However, it is only recently that data on locations

of buses has become generally available in real time. Using real-time data, researchers have

tested different control strategies, often applied by supervisors receiving radio instructions

from dispatchers at a control center (Pangilinan et al, 2008, Strathman et al, 2001, and

Bartholdi and Eisenstein, 2012). Even more recently, the availability of cheap, easy-to-use

mobile devices with fast Internet access has opened up even more options for implementing

control strategies.

1.2 Objectives

The goal of this research is to develop and test control strategies which are both effective and

easily implemented given the constraints faced by typical American transit agencies, and

the technology available today. These constraints include limited supervisory personnel with

heavy workloads, crowded bus terminals with many routes intersecting, long and variable

bus dwell times due to variability in boarding passengers, and a low tolerance of passengers

for disruptions to their expected service. This thesis will examine both the effectiveness of

particular strategies, and also the operational challenges that must be dealt with to control

bus operations more effectively.

1.3 Approach

This section summarizes the approach of this thesis, which involves analysis of AVL data,

experimental testing, and simulation modeling.

1.3.1 Automated tool development

The approach begins with the development of an automated decision tool. We first describe

four types of control strategies (holding, deadheading, expressing, and short-turning), and
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the data requirements for implementation of the various strategies. We then develop a design

for a generic software application to use real-time data to implement a control strategy on

a transit service, including the necessary components and the options that are available for

each. Finally, we present a specific application developed for a specific case: an experimental

test of a holding strategy on MBTA Route 1.

1.3.2 Experimental approach

Next, we conduct an experiment using the automated tool to control buses on Route 1.

The results of the experiment shed light on the effectiveness of the strategy, and also give

important insight into the challenges faced when implementing control strategies. We also

gather supporting data on the environment at the terminals, including scheduled and actual

cycle times, operator behavior on breaks, and passenger loading times, to better understand

these challenges. Some of the problems identified, such as issues with the terminal layout,

are specific to Route 1. However, many of the issues identified are common to many routes,

and the analytical approach applied can be used to find similar issues on other routes.

1.3.3 Simulation modeling

Finally, we use simulation to test more possible approaches, varying the route, the type of

control (adding midpoint-holding and short-turn options), and operator behavior (varying

the level of adherence to assigned departure times by operators). The simulation approach

complements the experimental approach, providing data to support potential future experi-

ments. The midpoint-holding and short-turn strategies applied are specific to the individual

routes, but similar strategies can be found on many bus routes in the MBTA system and

elsewhere.

1.3.4 MBTA application context

This thesis will use case studies and examples from the Massachusetts Bay Transportation

Authority (MBTA). The MBTA is the primary public transportation operator in the Greater

Boston region, operating bus, rapid transit, commuter rail, and ferry services. MBTA Bus

Operations operates 174 bus routes, including local, express, and bus rapid transit (BRT)

routes, and covering areas ranging from the inner city to distant suburbs. Fifteen of these

are designated as “Key Bus Routes”, which are local routes that serve high-density corridors
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with heavy demand for service on all days of the week (MBTA Service Delivery Policy, 2010).

The Key Routes are operated with longer spans of service and at higher frequencies than

other local routes. In this thesis, two Key Routes in particular will be examined: Route 1, a

crosstown route running from Cambridge to Roxbury, and Route 28, a radial route running

from Mattapan to Ruggles Station.

1.4 Outline of Thesis

Chapter 2 reviews the literature on service reliability and bus supervision, models of bus

service control, and experiments with controls. This literature informs and sets the stage

for the research done for this thesis.

Chapter 3 covers the use of automated tools for transit performance management. Var-

ious control strategies are described, along with the data requirements for implementing

them. A generic design for a software application to implement a control strategy is de-

scribed, followed by a specific implementation of this design in the context of MBTA Route

1.

Chapter 4 describes an experiment performed on the MBTA’s Route 1 bus route. A

basic description of Route 1 is given, with baseline reliability conditions established using

AVL data. An initial test run as well as the weeklong experiment are described using results

from the AVL data as well as qualitative observations of operator and supervisor behavior.

Following the experiment results, the chapter examines obstacles to the implementation of

terminal control strategies. Behavior of bus operators and supervisors, the layout of Dudley

Station, and the boarding time of passengers are all discussed as possible causes of ineffective

dispatching at Dudley.

In Chapter 5, a simulation of bus routes is developed, based on simulation models by

Sanchez-Martinez (2014) and Milkovits (2008). This simulation is validated against two

MBTA bus routes. In Chapter 6, the simulation is used to test various additional strategies

that could be implemented using real-time data, including holding at midpoints and short-

turning. It is also used to test the effect of operator deviations from assigned departure

times on performance.

Chapter 7 summarizes the findings of this research, and presents recommendations for

operational and policy changes at the MBTA. In addition, potential avenues for future
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research are described.
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Chapter 2

Literature Review

This chapter reviews the literature on transit service reliability and bus operations control,

including both models and experiments. The literature informs the direction of this the-

sis in examining holding strategies and skip-stop strategies using both experimental and

model data. Section 2.1 covers literature on transit service reliability, including measures of

reliability, causes of unreliability, supervision practices, and data collection methods.

2.1 Transit service reliability

Abkowitz et al. (1978) presented a comprehensive review of transit service reliability, includ-

ing the impact of reliability on passengers and on the transit agency, empirical measures of

reliability, causes of reliability problems, and techniques for improving reliability.

The authors noted that reducing travel time and wait time variability increases the utility

of transit relative to other modes, and can attract new riders to transit as well as increasing

transit use by existing riders. They also noted that reliability improvements can reduce

capital and operating costs for agencies.

Causes of unreliability were grouped into “environmental” and “inherent”, with traffic

and demand variability being two of the most significant causes of unreliability.

Methods for improving reliability were classified as priority (signal priority or lane pri-

ority), control (holding or skip-stop strategies) and operational strategies (improvements in

timetables or fleet and labor management).

By enumerating and classifying the most common causes of unreliability, Abkowitz et al

provide a foundation for most subsequent research in the area of unreliability.
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2.1.1 Bus supervision

Levinson (1991) conducted a review of bus supervision practices used by twenty North

American transit agencies. The review identified four main factors that contribute to reliable

bus service:

∙ Realistic routes and schedules

∙ Adequate maintenance

∙ Sound personnel policy

∙ Effective supervision

Levinson identified several impediments to good supervision on bus routes, mainly trac-

ing back to limited financial resources. Financial difficulties led to insufficient numbers of

supervisors, as well as increased maintenance problems which took away supervisors’ time

from monitoring service. Inadequate communications technology was another impediment

to proper supervision.

Pangilinan (2006) created a framework for the deployment of supervisory personnel to

manage and improve reliability of bus service. The study examined the roles of three types

of supervisory personnel: Post supervisors, mobile supervisors, and control-center staff.

Based on an assessment of the availability of information, communications, and personnel,

recommendations are made for system-level deployment of personnel. Case studies are

performed on Chicago Transit Authority Route 20 and the MBTA Silver Line Washington

Street route.

Pangilinan’s overall recommendations involved changing supervisor roles as better com-

munications technology becomes available; for example, moving staff from post-supervisor

to mobile-supervisor roles. Eventually, Pangilinan recommended a focus on terminal depar-

ture adherence with automated instructions given to operators similar to a “ring-off bell”,

as well as “exception-based reporting” in which AVL data is processed in real time to draw

the attention of control-center staff to large gaps or other bus reliability problems.

2.1.2 Measuring unreliability and its causes

Cham (2006) developed a framework for applying automated data collection to the evalua-

tion of service reliability, first using metrics to measure reliability, and then determining the
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causes of unreliability. The framework was used to examine the MBTA Silver Line Wash-

ington Street bus service, and Cham determined that irregular departure times from the

terminal were the main cause of unreliability. Trips that departed the terminal with leading

headways close to the scheduled headway were much more likely to maintain that headway

downstream than trips that left with larger or smaller headways. Cham’s recommendations

for the Silver Line include improved terminal supervision as well as signal priority and in-

creased separation of the right-of-way. Her paper motivates our focus on terminal departures

in this thesis.

2.2 Automatically-collected data for transit service improve-

ment

Research on uses of automatically-collected data for transit service improvement is summa-

rized by Furth et al (2006). The authors review the uses of archived AVL and APC data

for service planning, scheduling, and performance evaluation. They describe the historical

uses of AVL data for real-time applications, and APC data for after-the-fact analysis. In

particular, they note that the typical AVL system does not provide archived data in a useful

format for analysis.

Furth et al also discuss the various providers of software that may be used for analysis of

archived data: transit agencies (in-house software), equipment vendors, scheduling system

vendors, third-party vendors, and researchers. They note that in-house software has the

most flexibility but a high cost in staffing and maintenance, while software from third-party

vendors has flexibility but may be difficult to justify within the constraints of a typical

transit agency budget.

The authors generally conclude that the transition to a data-rich environment provides

opportunities to expand the analysis of performance, including setting new, more precise

service standards. The need for integration with related databases, such as stop locations,

schedule information, and fare-collection data, is also highlighted. This study, although it

does not consider real-time decision tools, provides a useful analysis of the choices available

to agencies during the software procurement process, as well as the types of data available

to agencies. These concepts will be utilized in this thesis in the context of an automated

decision tool.
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2.3 Simulation models of bus service

Moses (2005) created a simulation model of a CTA bus route, but was unable to validate

the model. The main difference between the simulation and real AVL data was that the

simulation had more irregularity than was observed in reality. Varying parameters such as

standard deviations of travel times and passenger demand levels did not solve the problem.

Moses suggested two reasons for the lack of validation: correlations between parameters such

as successive run times or passenger demand levels, and operator behavior such as purposely

slowing down or speeding up to even out headways.

Milkovits (2008) developed and validated a simulation model of CTA Route 63, adding

to previous models a detailed treatment of schedule deviation at terminal departures. By

explicitly modeling terminal departure behavior, Milkovits was able to accurately recreate

the conditions on the route.

Sanchez-Martinez (2012) developed a simulation model of a high-frequency bus route in

London. It was used for the purpose of testing allocation of resources on the route. The

key addition of this model was the use of a bivariate running-time distribution, in which

running times on route segments were randomly drawn from a distribution of observed

vehicle running times, grouped by two factors: the time of day, and the vehicle’s running

time on the previous segment.

2.4 Heuristic strategies for transit control

Several authors develop insight into control strategies through exploration of heuristic rules

that either provide approximate solutions to intractable optimization problems, or exact

solutions to simplified versions of these problems. These rules take as inputs factors such

as vehicle locations, running times, and arrival rates, and output values that define control

actions, such as holding time at stops.

2.4.1 Holding

Turnquist (1981) examined vehicle holding strategies, including schedule-based holding for

low-frequency routes and headway-based holding for high-frequency routes. He compared

two possible holding strategies: The “Prefol” strategy, in which a vehicle is held to split

the headway between the preceding vehicle and the following vehicle, and the “scheduled
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headway” strategy, in which each vehicle is held until the scheduled headway has elapsed

since the previous vehicle’s departure. Using a simulation model, Turnquist found that the

Prefol strategy is superior to the scheduled-headway strategy, although it loses its advantage

as successive headways become more strongly correlated.

Turnquist and Blume (1980) used a probabilistic model to identify situations where

holding controls are effective. In particular, they noted that the ideal control point is one

where relatively few people are on the vehicle and many passengers are waiting to board

at subsequent stops. This maximizes the benefits (which accrue to downstream passengers

who experience more regular headways) while minimizing the costs (which mainly fall on

passengers already on a bus that is held). In general, these criteria lead to the ideal control

point being at or near the departure terminal.

2.4.2 Skip-stop strategies

Skip-stop strategies are strategies in which vehicles skip some of their scheduled stops.

These include deadheading, expressing, and short-turning. The costs and benefits of these

strategies are similar, as each involves a trade-off between additional wait time for skipped

passengers, and saved time for downstream passengers.

Eberlein et al (1998, 1999, 2001) examined holding, deadheading, and expressing strate-

gies using a deterministic quadratic program with a rolling horizon. The model has the

objective of minimizing total passenger wait time, and includes the effect of dwell time on

vehicle delay and headways. A heuristic solution to the combined control problem of using

all three strategies is presented, and tested in a simulation. Eberlein found that the use of

both holding and stop-skipping strategies resulted in improved performance over a single

strategy, as well as reducing the frequency and extent of stop-skipping.

Song (1998) developed a heuristic strategy for controlling rail service (using the MBTA

Red Line as a case study) from a terminal, including holding, expressing, deadheading,

and short-turning possibilities. The author uses a model with an objective of minimizing

passenger waiting time, with deterministic travel times and dwell times modeled as a function

of the number of passengers boarding and alighting from the train.
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2.5 Rolling-horizon optimization

In addition to heuristic strategies, rolling-horizon optimizations are another method for

making control decisions. These involve predicting how service on a route will continue over

a limited time horizon, and using optimization techniques to search through a constrained

set of solutions. With continuing advances in computing power, real-time use of these

optimization techniques has become feasible.

Delgado et al (2012) created a non-linear model for optimization of holding times of all

vehicles of a transit line at all stops, taking into account vehicle capacity constraints. In

addition to holding, limiting passenger boardings was also allowed by the model. The model

assumed passenger arrival rates and running times between stops were constant over time,

and it was tested in a simulation.

Sanchez-Martinez (2014) built upon the model of Delgado et al, adding running times

and passenger arrival rates that vary dynamically over time. Sanchez-Martinez found that

holding controls based on optimization with these dynamic inputs were superior to those

based on static inputs, as well as to the “even headway” or “threshold headway” heuristic

strategies. The improvement was found to be largest under conditions of heavy crowding,

and limited under low to moderate crowding conditions.

2.6 Holding experiments

Experiments with bus holding strategies began decades ago, but prior to the availability

of vehicle location data in real time, they required large numbers of staff, both to execute

the strategies and to collect data. With the advent of AVL systems that provided vehicle

locations in real time, as well as advances in mobile device technology, a broader variety of

experiments became feasible. In this section, experiments are described that span a variety

of different strategies and implementation methods.

Abkowitz and Lepofsky (1990) performed an experiment on two MBTA bus routes:

Route 1, a crosstown route, and Route 57, a radial route. A threshold-based holding strategy

was applied, in which buses were held until a minimum headway was reached from the

previous bus. Various points including both midpoints and terminals were used for the

control strategy. They found a small but noticeable improvement in headway and travel-

time reliability when Route 1 was controlled at a midpoint, and no improvement when Route
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1 was controlled at Harvard or when Route 57 was controlled at a midpoint. Their results

were limited by small sample sizes and difficulties with manual data collection and manual

implementation of the strategy.

Strathman et al (2001) conducted an experiment using real-time AVL data to inform

supervision of buses departing downtown Portland during the PM Peak period. A dispatcher

using the AVL system communicated with a supervisor who would instruct buses to depart

based on Turnquist’s “Prefol” strategy of splitting headways. Other strategies available to

the supervisor included short-turning and substitution of runs in the schedule. The results

showed that headway variances declined 3.8% overall and 15.8% at the control point, with

most of the benefits appearing at the first three timepoints on each route. Passenger load

variance also decreased by 16%, and the authors conclude that “small improvements in

service regularity can potentially generate more substantial improvements in passenger load

maintenance.”

On CTA Route 20, Pangilinan et al (2008) tested a prefol strategy implemented at a

terminal and two points along the route, in the AM Peak period in the peak direction.

Allowed control actions were: holding, “dragging the street” or driving the bus more slowly

than usual, and departing earlier than scheduled from the terminal. The supervisors on the

street were in communication with a control-center supervisor who gave them instructions

based on real-time AVL data. The realized reduction in variation from the experiment was

less than that predicted by a Monte Carlo simulation, but its effects persisted farther down

the route than in the simulation.

Problems with implementation of the controls included:

1. The control-center dispatcher not being able to devote full attention to the experiment,

and thus missing some big gaps

2. Missing real-time data, when some buses did not appear in the AVL system

3. Variations in departure time caused by factors at the terminal, such as passenger

boarding, distractions, and other tasks performed by the on-street supervisor.

At the mid-route control points, holding more than 1-2 minutes was deemed infeasible

due to irritation caused to passengers already on-board the bus.

Bartholdi and Eisenstein (2012) created a new method for holding buses, based solely on

the trailing headway of the control vehicle, that is, the headway between the control vehicle

29



and the next vehicle approaching the control point. The amount of time to hold a vehicle

is given as 𝛼ℎ𝑛, where ℎ𝑛 is the trailing headway and 0 < 𝛼 < 1 is a control parameter that

determines sensitivity to perturbations. The authors first verify using an idealized model

that this will lead to more regular headways, then conduct an experiment on a Georgia Tech

shuttle bus route through Atlanta using control points at the ends of the route. They find

that the strategy leads to reduced variation in headways and elimination of severe bunching.

They also find that it responds quickly to the removal of a bus from service.

Xuan et al (2011) formulated a holding strategy based on a “virtual schedule” of predicted

arrival times at stops (as opposed to the published schedule which typically shifts times

earlier to avoid early departures from stops). They use deviations from this virtual schedule

of the control vehicle and the trailing vehicle as inputs to determine holding times at points

along the route. They find that this strategy improves both headway regularity and schedule

adherence.

The authors have since founded a start-up company called VIA Analytics, which has

implemented a version of this control strategy using tablet computers placed on-board buses,

giving instructions directly to bus drivers. They have installed their system on two bus routes

in San Sebastian, Spain, and found that excess passenger wait times decreased by 40%, along

with reductions in schedule deviation (VIA Analytics, 2013).

Finally, Lizana et al (2014) tested the optimization-based strategy developed by Delgado

et al (2012), which was described in Section 2.5. They used tablet computers in a similar

fashion to VIA Analytics, and observed reductions in wait time and crowding when the

strategy was implemented on two bus routes in Santiago, Chile.

2.7 Summary of literature review

Abkowitz et al, Levinson, and Pangilinan summarized measures taken to improve bus ser-

vice reliability, including priority (signal priority or exclusive lanes), control strategies, and

operational strategies (timetables and fleet management). Good communication, lack of

distractions from other duties, and appropriate positioning of supervisors were found to be

key to effective controlling. This thesis will further explore the factors that cause difficulty

with precise controls of bus departure times.

Many different models have been used to test different holding strategies. Heuristics
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such as Turnquist’s Prefol strategy and Bartholdi and Eisenstein’s method based on trailing

headways have held up well under simulation and experimental testing. Rolling-horizon

optimization routines such as those created by Delgado and Sanchez-Martinez are able to

improve upon the heuristics, mainly in cases of heavy crowding.

Experiments with bus control strategies have been performed by Strathman et al, Bartholdi

and Eisenstein, and Xuan et al, among others. A variety of heuristic and optimization strate-

gies have found success, although communications problems, operator compliance, and poor

data have appeared as difficulties. If vehicles are held at midpoints, the experiments typ-

ically limit this holding to a maximum of 1-2 minutes to avoid passenger irritation. The

experimental portion of this thesis will use a terminal-based control strategy, similar to the

work of Strathman et al and Bartholdi and Eisenstein.

Simulation models have been used extensively in the study of control strategies, such as

by Delgado et al and Sanchez-Martinez. This thesis will use a simulation model based upon

the work of Sanchez-Martinez to test the effects of changing terminal departure behavior,

as well as midpoint-holding and short-turning strategies.
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Chapter 3

Automated tools for transit

performance improvement

Automatically-collected data from transit vehicles has been used to manage and improve

service for many years, both through real-time tracking of vehicles, as well as archived data

for later analysis. Recently, technological advancements have enabled a new application of

real-time data: Automated decision-support tools. These can both improve performance

directly through real-time control of service, and also improve data analysis by adding

explicit information about what control actions were taken.

In this chapter, we will show how automated decision-support tools can be created to

improve both management of service and analysis of performance. We will first define what a

decision-support tool is, and describe how it fits into the process of improving performance

and operational control. Next we will discuss the various control strategies that can be

implemented using automated tools, and the requirements for their implementation. We

then describe the way that archived data from an automated decision tool can improve

the analysis of performance and support service planning, by giving analysts an accurate,

automatically-collected record of when control actions are taken. Finally, we present a

generic design for a decision support tool based on automatically-collected data, followed by

a specific case study consisting of a tool developed to implement a holding strategy on an

MBTA bus route.
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3.1 Automated decision-support tools

In the context of bus transit operations, an automated decision-support tool is software that

uses real-time vehicle location data to provide recommendations for control actions. These

may come in a variety of forms, from exception-based suggestions made to a dispatcher that

can be followed or ignored, to departure-time instructions given directly to a bus operator

trained to follow the automated directions.

Furth et al (2006) describe the use of archived Automatic Vehicle Location (AVL) and

Automatic Passenger Counter (APC) data to improve transit performance and management.

They place these automatically-collected data in the context of “service quality improvement

cycles” (Figure 3-1), showing how these data sources can improve both real-time operations

management and passenger information (the “real time loop”) and the analysis of perfor-

mance and demand (the “off-line loop”).

In Figure 3-2, we show how an automated decision-support tool can fit into Furth’s

service-quality improvement framework. It contributes directly to operational control by

providing control decisions, but it is also a key contributor to the off-line data used for

performance and demand analysis. It enables analysts to directly observe whether, for

example, a holding strategy was used, when analyzing factors such as on-time performance

or dwell time. Without the automated tool, either a manual record of control actions would

have to be kept, or analysts would need to infer control actions based on AVL or other data.

Real-time control will be discussed in Section 3.2 and uses of off-line data in Section 3.3.
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Figure 3-1: Service quality improvement cycles (Furth et al, 2006)

Figure 3-2: Service quality improvement with automated decision tool

35



3.2 Real-time control strategies

Implementing more effective real-time control strategies is the immediate motivation for the

creation of decision-support tools for transit. Such strategies can be applied without any

automatically collected data, but the use of automation reduces the amount of resources

required to implement them, and increases the effectiveness of the resulting decisions. In

this section, we will discuss holding, deadheading, expressing, and short-turning strategies,

and how an automated decision-tool could be used to implement them or to improve existing

implementations.

3.2.1 Holding

Holding is the strategy of instructing an operator to remain at a stop for a period of time

to improve schedule adherence or the spacing between vehicles. A variety of holding strate-

gies exist, including schedule-based, headway-based and optimization-based strategies. The

strategies can be applied at any number of control points, from a single timepoint up to

every stop on the route.

Schedule-based holding entails delaying buses that arrive early at control points until

their scheduled departure time. Implementing this strategy requires schedules with a well-

adjusted amount of slack time, along with supervision to ensure that buses depart on time

(Turnquist 1981). Too much slack time leads to buses spending too much time idling, causing

increased travel time for passengers. Too little slack time results in buses running late most

of the time and the strategy not being applied.

Schedule-based holding can be implemented without the use of any AVL data. It requires

only that bus operators be aware of the scheduled departure time from each control point.

Because of this, schedule-based holding is a popular control strategy among transit agencies.

However, the strategy relies on operator compliance, particularly when holding is to be

applied mid-route without a supervisor present. In this respect, AVL data is very helpful

because it allows monitoring of many operators by a single supervisor, either in real-time or

after the fact with archived data.

Headway-based holding refers to any strategy in which holding decisions are made based

on the headways of buses on the route. This recognizes the fact that on high-frequency

routes, passengers generally arrive at stops without regard for the schedule. Assuming
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that passengers arrive randomly, the expected wait time per passenger is a function of the

distribution of headways, and increases with the square of the coefficient of variation of

headways. This motivates the focus on achieving even headways over schedule adherence

on high-frequency routes.

Approaches to headway-based holding range in what factors they take into account, and

thus what types of data they require. Various approaches that have been tested in the

literature are described below.

∙ The "Single Headway" strategy (Turnquist, 1982): Hold a bus until its preceding

headway is equal to a defined minimum headway. Required data: Departure time of

the preceding bus.

∙ The "Prefol" strategy (Turnquist, 1982): Hold a bus until its preceding and trailing

headways are similar. Required data: Departure time of the preceding bus, predicted

departure time of the trailing bus.

∙ The "Self-equalizing headway" strategy (Bartholdi and Eisenstein, 2012): Hold a bus

for a length of time equal to its trailing headway multiplied by a control parameter

0 < 𝛼 < 1. Required data: Predicted departure time of the trailing bus.

The headway-based holding strategies all rely on the actual departure times of the pre-

ceding bus and/or the predicted departure time of the trailing bus. The departure time of

the preceding bus can be observed without AVL data, by a supervisor posted at the control

point, but this is a very inefficient use of personnel, and vulnerable to measurement error or

inattentiveness by the supervisor. In any realistic application, AVL data must be used to

calculate holding times. Bartholdi and Eisenstein note that the predicted departure time of

the trailing bus is easier to obtain from publicly-available data sources than the departure

time of the preceding bus. This will be discussed further in Section 3.4.2.

Rolling-horizon optimization is a set of strategies that have been developed much more

recently, as they require real-time vehicle location data and significant computing power.

The basic framework for such a strategy requires an optimization model, a performance

model, and a cost model. The optimization model feeds information about the system

(running time, demand, locations of vehicles) as well as potential holding times into the

performance model. The performance model predicts the evolution of the system over
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a "rolling horizon" and feeds this information into the cost model, which calculates the

expected cost (Delgado, 2012, and Sanchez-Martinez, 2014). The costs are then used by the

optimization model to select the optimal holding times.

This general framework allows for a variety of real-time or static data to be used as inputs,

depending on the implementation. Information about the locations of vehicles is required

at a minimum, while data on passenger demand and running times could be calculated in

real time or based on historical observations.

3.2.2 Deadheading and expressing

Expressing and deadheading are two strategies that involve skipping stops on a route, to

improve spacing. Expressing involves sending a bus that currently has passengers on-board

to a downstream stop bypassing intermediate stops. It involves a trade-off between two sets

of passengers:

∙ Negatively impacted passengers: Those on-board whose destinations are skipped (who

must alight and transfer), and those waiting at skipped stops downstream.

∙ Positively impacted passengers: Those on-board whose destinations are beyond the

express segment, and those waiting beyond the express segment (who may see reduced

waiting times).

The ideal situation for expressing a vehicle is one in which the preceding headway is

long and the trailing headway short, and passenger demand beyond the express segment is

high (Wilson et al, 1992). This scenario maximizes the cost-benefit ratio to the impacted

passengers.

Deadheading is similar to expressing, but involves taking a bus out of service, typically

at a terminal, and running it empty over a segment of the route. The groups of passengers

impacted are then simply those waiting downstream who are skipped, and those beyond

the deadhead segment, who may see reduced waiting times. This is generally only done at

terminals because deadheading from a midpoint would force all passengers to alight early,

and thus be strictly worse than expressing from a midpoint (as some passengers could remain

on-board). Deadheading saves time over expressing because passengers are not boarding at

the initial stop.

38



The availability of real-time data greatly enhances the ability of agencies to apply dead-

heading and expressing strategies. The data required to evaluate a potential deadheading or

expressing action are leading and trailing headways, as well as passenger demand. Vehicle

locations and predicted times at stops are readily available via AVL systems, as discussed

in the previous section. Passenger demand at downstream stops, on the other hand, must

be estimated. This can be done using historical demand patterns combined with knowledge

of recent headways. If APC or AFC data are available in real time, these can be valuable

inputs to the estimation of demand along the route.

3.2.3 Short-turning

Short-turning involves ending a trip early, i.e. at a stop prior to the terminal, and immedi-

ately beginning the next trip in the reverse direction. Short-turning is ideally applied to a

bus when the passenger load is small, the following headway is small, and there is a large

gap in service in the reverse direction (Wilson et al, 1992). The groups of passengers affected

by a short-turning strategy are very similar to those affected by expressing: A segment of

the route is not served, to the benefit of service downstream of the segment. The main

difference from the other stop-skipping strategies is that with short-turning, passengers in

the skipped segment do not see a bus pass them by, and likely are unaware that any control

action has been taken.

The real-time data requirements for a short-turning decision tool are similar to those for

expressing and deadheading. In this case, rather than downstream demand, the passenger

load on the vehicle is the key variable not available via AVL data. This can be estimated

based on historical demand patterns and preceding headways, or, if it is available in real

time, APC or AFC data can be used.

3.3 Performance analysis and service planning

In addition to enabling implementation of control strategies to improve service, an automated

decision-support tool can provide benefits in the form of the data it archives. In this section,

we discuss the benefits to performance analysis and service planning that are derived from

the archived data.
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3.3.1 On-time performance

The analysis of on-time performance is crucial to service planning. A late departure from a

stop may be caused by insufficient scheduled time, poor operator behavior, control actions

applied by a supervisor, or external factors such as heavy demand at the stop. An early

departure could also be caused by either poor operator behavior or a deliberate control

action. In order to improve on-time performance, the causes of these irregular departures

must be identified.

Cham (2006) proposed a method to infer the causes of poor on-time performance at

terminals based on the recovery time available to an operator on arrival at the terminal

and several assumptions about the minimum required dwell time at the terminal and when

supervisors might take deliberate actions affecting departure time. It is a useful approach,

but its heavy reliance on assumptions leads to uncertainty and would likely be unpopular

as a method of identifying poor on-time performance by individual operators.

The use of automated decision tools removes the need to infer whether control actions

were applied. By examining archived data from an automated decision tool, managers can

determine much more accurately whether early or late departures were caused by control

actions. This reduces the uncertainty of who is responsible for individual early departures,

paving the way for operator-specific discipline or interventions. Late departures may still be

caused by factors beyond the control of the operator, and must still be examined carefully.

3.3.2 Running-time analysis

Running-time analysis is a key part of any scheduling process. Furth et al (2006) describe

the data agencies use to set schedules. Agencies frequently set scheduled running times and

half-cycle times for routes based on percentiles of observed running time. Agencies that

use a schedule-based holding strategy, very common in North America, face a challenge in

identifying the running-time distribution to use to set their schedule: They must exclude

time spent holding at stops, or else their estimates will be biased.

Some agencies examine data on when doors were open; others use unusually long dwell

times as a signal that holding may have occurred. When using an automated decision tool,

identifying time spent holding should be easier, regardless of what holding strategy was

used.
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3.4 Decision-support tool for real-time control of high-frequency

bus routes

In this section, we describe a design for a mobile phone or tablet application that uses real-

time bus location data to provide decision support for operations control. In the following

section, we will describe a specific implementation of this design. It is specifically oriented

toward decision rules that are fully automated; that is, they take as inputs data about the

current (and recent) state of the system, and output a recommended control action. The

only decision made by a human is whether or not to follow the application’s recommendation.

The components of the software application are shown in Figure 3-3.

Figure 3-3: Framework for decision-support software
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3.4.1 Data sources

The data required for real-time control of buses is, at a minimum, locations of all buses

on the route. Other data provided by a typical CAD/AVL system include identifiers for

the vehicle, block, and trip, as well as scheduled and predicted arrival/departure times for

downstream stops. In a software application context, the physical source of the data (AVL

hardware) is not the specific concern, as we assume that the agency involved has already

procured this equipment. Rather, the important factor is the Application Programming

Interface (API) through which the data is downloaded. APIs available for transit vehicle

location and prediction data differ across several dimensions:

∙ Public availability - Using data from a feed that is open to the public provides

a more convenient base from which to program applications (due to fewer security

requirements) and reduces the maintenance needs of the agency (which does not need

to maintain two separate feeds). A feed for internal use only, on the other hand, may

include more data, such as operator IDs and operator run information, which agencies

may not wish to include in the public feed.

∙ Standardization of format - Some transit data feeds use standardized formats such

as GTFS-realtime, which allow apps written for one agency to be easily ported to other

agencies’ data feeds. Others find that the existing standardized formats do not meet

all their needs, and create proprietary formats, which may be based on an existing

standard but with additional features added, or may be entirely proprietary.

∙ Ownership of data feed - The implementation of AVL data feeds is typically done

through a contract with an information technology company rather than by agency

staff (with New York City Transit being a notable exception). Depending on the details

of the contract, the agency may have full control over the data and the data feed, or the

contractor may retain various rights, such as the copyright over a proprietary format,

or even the right to exclusive use of the data that is provided.

∙ Data downloading process - Some data feeds, such as GTFS-realtime, require all

data from an agency to be downloaded at once. This is ideal for an application with

heavy data needs, across many different routes. Such an application must host the

entire dataset on a server and periodically download it in full. Other data feeds use
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“web service” interfaces that allow only the data specifically needed by a single user

to be requested. These are appropriate for more limited use cases.

Each of these factors is important to consider in any implementation. In many cases,

agencies will have multiple available data feeds for AVL data, and application developers

can select the most appropriate for a particular use case.

3.4.2 Prediction interpreter

Typically, AVL data feeds provide two basic types of data: Locations and predictions. Lo-

cations typically consist of latitude-longitude coordinates from the most recent observation

of the vehicle, while predictions typically give a projected arrival time for at least one down-

stream stop. As described in Section 3.2.1, many control strategies require as inputs not only

predicted arrival times, but also a recent history of departure times from stops previously

visited by each vehicle.

For this application, we develop a software component which we refer to as the “pre-

diction interpreter”, which takes location and prediction information from the data feed,

and translates it into a useful data set for the application of the control strategy, including

recent departure times. The logic for this component will depend heavily on the data feed

used, but the basic concept consists of observing when a prediction for a vehicle’s arrival

at or departure from a stop disappears from the feed. This indicates that the vehicle has

arrived at (or departed from) the stop. If this method is found to be unreliable (which

commonly happens at terminals), then an additional criterion can be added, specifying a

minimum distance from the stop that a vehicle must report in order to be considered to

have departed. The specific implementation must be developed using knowledge of the data

feed and testing against human observations.

3.4.3 Decision engine

The other key component of the system is the decision engine, which creates suggested

departure times for vehicles based on a given rule. It must accomplish the following:

1. Read in current status of vehicles, including predicted arrival times, recent departure

times, and locations, from the prediction interpreter module
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2. Apply the decision rule to determine the suggested departure times for vehicles to be

controlled.

3. Send all data about the current state of the system to the database module.

4. Send all data about the current state of the system to the user-interface module.

The decision engine implements the control-strategy logic. In many cases (when no ad-

ditional information is needed), it may be the only module that needs to be changed to

implement a new strategy. As seen in Section 3.2, many control strategies can be imple-

mented with a full set of vehicle locations and predictions on the route. In a situation where

APC or AFC data were available in real time, the decision engine could be modified to read

in those data as well as inputs to the control strategy.

3.4.4 User interface

The user interface must be adapted for the type of user and the type of device used to view

the app. There are three basic categories of operations personnel who might be users of a

real-time decision-tool:

∙ Dispatchers using a desktop-computer interface. They often face a heavy workload

and would likely be best-served by an “exception-based” system such as that described

by Pangilinan et al (2006). This would alert the user only if a threshold of importance

is reached, which could be calibrated based on the dispatcher’s workload.

∙ Supervisors may use a tablet or mobile-phone to access the app, or have a laptop

if they are assigned a vehicle. Location-based services could be helpful in this case,

as supervisors are likely close to the vehicles they are supervising. Bartholdi and

Eisenstein (2012) used this type of app.

∙ Operators must access an app through a tablet or touch-screen built in to their vehicles.

An app aimed at operators must have an extremely simplified user interface, to avoid

distracting the operator. Lizana et al (2014) as well as the start-up company VIA

Analytics have both deployed this type of app.
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3.4.5 Archived data

In addition to automating the application of a control strategy, a decision tool also pro-

vides a new source of automatically-collected data for performance evaluation and service

planning. Having a record of the control actions that were recommended by the app adds

value to the existing AVL dataset and allows for more accurate and more detailed analy-

sis of bus movements. These uses were described in Section 3.3, and here we describe the

implementation of the data archive.

The archive should be stored in a relational database, ideally as part of a larger system

already present at the transit agency. Since the use of a tool like this requires that an agency

already have at least an AVL system, it can be assumed that some type of database exists.

It is crucial to integrate the new data source on control decisions into the existing database

structure to allow for the new information to be easily integrated into existing analytical

systems. As Furth et al (2006) note, the utility of transit datasets depends on their effective

integration.

3.5 Implementation for MBTA experiment

This section describes a particular implementation of the decision-support tool design from

Section 3.4. The implementation is a mobile app used to provide instructions to MBTA

bus supervisors based on Turnquist’s “prefol” strategy described in Chapter 2. Chapter 4

describes an experiment performed using this app on MBTA Route 1. Here we describe how

each component of the design is implemented.

3.5.1 Data sources

For this application, we chose to use publicly-available data feeds. These are easy to access,

require no special permission, and can easily serve the needs of a decision-support tool with

only minor modifications. The MBTA provides AVL data to the public in three formats:

GTFS-realtime, the NextBus API, and MBTA-realtime. Their characteristics are described

in Table 3.1.

GTFS-realtime is an extension of the General Transit Feed Specification (GTFS), an

open standard for public transportation data popular among North American agencies. It

has the advantage of being a popular open standard, so that code developed to process a
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Table 3.1: Real-time data feeds
Data feed Modes Requests available Agencies using Owner of feed
GTFS-realtime All modes Full system dataset Many agencies MBTA
NextBus API Bus only Specific queries Many agencies NextBus
MBTA-realtime All modes Specific queries MBTA only MBTA

GTFS-realtime feed from one agency should be easily usable with data from another agency.

It is designed in such a way that the data for an entire agency must be downloaded at once,

which is a benefit in systems aiming for efficiency in a large-scale implementation, but a

negative for applications which require only a small subset of the data.

NextBus is a company that provides arrival predictions for transit vehicles based on AVL

data. The company is contracted by the MBTA to provide predictions to the public via its

web application as well as its open API. The advantage of the NextBus feed is the accuracy

of its predictions, which are based on more sophisticated algorithms than the simple lateness

measure used by the MBTA’s CAD/AVL system, and the simplicity of its API. The main

disadvantage is that it is a proprietary data feed, and if the MBTA ceased its relationship

with NextBus, the company would probably not continue providing the feed, as it does not

make any advertising revenue from its website.

Finally, MBTA-realtime combines features of the other two. It is a web API, like

NextBus, and thus provides flexibility for developers to request only the subset of the data

that they need. Unlike NextBus, its source code is owned by the MBTA, and therefore

there is little reason to worry that it might disappear. Similarly to GTFS-realtime, it suffers

from the fact that its predictions are simply based on the estimated lateness at the current

location from the CAD/AVL system.

For our app, we decided to use the NextBus API because of its more accurate predictions

and ease of use. However, it shares a problem with all three data feeds: As a passenger-

oriented service, it focuses on predicting future arrival times of buses, and does not provide

any history of departure times, which is necessary to execute the prefol strategy. Methods

of dealing with this issue are discussed in the next section.

3.5.2 Prediction interpreter

The prediction interpreter is the critical component to transforming the passenger-oriented

predictions feed into a useful dataset for control strategies. For the prefol strategy, we
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need the most recent departure time of a vehicle from the control point. Our prediction

interpreter accomplishes this by downloading a set of predictions for the terminal stop and

several nearby stops, as well as the location of the next bus to depart. Because the API

provides only predictions, and these predictions disappear as soon as a bus has departed,

we infer whether or not a bus has departed based on whether it has a prediction available.

Because NextBus was observed occasionally to remove buses from the departure predictions

even when they had not departed, we also set a minimum distance from the terminal of

75 meters. This threshold value was determined through observations; over two hours of

observations at each terminal, 75 meters was found to be sufficient in all observed cases to

distinguish between buses which had left the terminal, and those which remained at the

terminal but whose predicted departure time had disappeared for some other reason. The

steps taken by the prediction interpreter are described below. They are executed every 15

seconds, after downloading the most recent data from NextBus (although each individual

bus transmits a location update every 60 seconds).

1. Download predictions for the terminal stop and all downstream stops

2. Based on whether or not arrival and departure predictions exist for each bus at the

terminal, divide buses into three categories: “Approaching” (prediction exists for ar-

rival at terminal), “At Terminal” (prediction exists for departure from terminal), and

“Departed” (only predictions for downstream stops exist).

3. If a bus previously categorized as “At Terminal” has moved to the “Departed” category,

check if its location is at least 75 meters away from the terminal.

(a) If the bus is at least 75 meters away from the terminal, estimate its departure time

from the terminal as follows: Given the predicted arrival time 𝑡𝑠 at downstream

stop 𝑠 (the first stop for which predictions are available), the current time 𝑡0, and

the average running time 𝑟𝑠 from the terminal to stop 𝑠, estimate the departure

time as min(𝑡𝑠 − 𝑟𝑠, 𝑡0).

(b) If the bus is less than 75 meters away from the terminal, re-categorize it as “At

Terminal.”

In the worst-case scenario, a bus will be mis-categorized as “At Terminal” when it has

in fact departed but not yet traveled 75 meters, but this situation is unlikely to persist
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for any significant period of time, as it will be corrected after bus reaches this threshold

distance. The method of estimating departure times is crude, as it uses the average running

time over all peak and midday time periods, but because the stops used are very close

together (typically the first stop after the terminal is the one for which predictions are used

in step 3a) the running times on the segment do not vary greatly. This method was tested

against in-person observations over three hours during peak and midday periods at Harvard

and Dudley; the root mean squared error (RMSE) was 9 seconds at Harvard and 12 seconds

at Dudley, and the 95th percentile deviation was 19 seconds at Harvard and 18 seconds at

Dudley.

3.5.3 Decision engine

In our case the decision engine includes the prefol strategy with a constraint that no vehicle

may depart earlier than scheduled. The decision engine consists of the code defining the

strategy’s logic, and the code that interfaces with the input and output modules. Although it

is central to the overall structure of the application, it requires less code and is generally less

complicated than the other modules, due to the simplicity of the strategy being implemented.

3.5.4 User interface

The initial decision made for the user interface was who the target user would be. Due

to resource limitations, it was decided that the holding strategy would be implemented

by supervisors stationed at terminals, using either a mobile phone or handheld computer.

After several iterations, including a test run where a supervisor used the app to control bus

departures from one terminal, we settled on the user interface shown in Figure 3-4.

The main difficulty in designing the UI was in striking a balance between providing more

information about buses on the route, and simplifying to show at a glance whether, and for

how long, to hold the current bus at the terminal. We decided to show the predicted arrival

times of the next two upcoming buses, as well as the scheduled, suggested, and actual

departure times of buses that departed recently, to provide context for the supervisor to

understand why the app was making its recommendations, and to provide a reminder that

data on adherence to the app suggestions was being recorded.

Figure 3-5 shows the three possible types of messages that could be given by the app.

The larger, yellow typeface indicates that the user must take an action, while the smaller,
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green typeface indicates that no special action is required.

Figure 3-4: Screen shot of app, taken on an Android phone running Google Chrome

Figure 3-5: Types of instructions, from top: depart on schedule, depart after holding, depart
as soon as possible

3.5.5 Archived data

In our app, the decision engine writes records to a single database table, called “snapshots.”

The snapshots table records the state of the system every time the decision engine refreshes,

including details on the status of all vehicles as provided by the AVL system, along with

the suggested departure time provided by the decision engine. Vehicles in this table are
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identified by vehicle ID, operator ID, and trip ID, which is sufficient to match the snapshots

to records in the AVL timepoint database.

The table is stored in the “data warehouse”, a PostgreSQL database created by MIT

researchers to unify the various automatically-collected datasets available at the MBTA.

Storing the data in this database makes it easy to join data from, for example, the APC or

AFC systems to the decision-tool records.

3.6 Summary

In this chapter, we have outlined the components of an automated decision-support tool,

the decisions that must be made in implementing such a tool, and its various uses. A wide

variety of control strategies can be considered, including holding, deadheading, expressing,

and short-turning strategies. These range in complexity and in data requirements, ranging

from the simplest headway-based holding strategy which requires only the predicted arrival

time of the trailing vehicle, to short-turning strategies which ideally would require real-time

data on passenger loads.

The benefits of a decision tool include not only the implementation of control strategies,

but also the archived data it produces, which can be used to improve performance analysis

and service planning. When control strategies are applied in an ad-hoc way through radio or

in-person communication, typically no records are made of the actual control decision, and

so users of archived data must infer whether or not a control action was taken. Archived

data from an automated decision tool allows much more precise knowledge of whether or not

a control action was recommended, which then allows for more accurate tracking of on-time

departures, dwell times, and run times.

As described in this chapter, a variety of data sources, decision algorithms, and user-

interface options exist, but all must fit into a basic structure for downloading the data,

applying an algorithm, outputting the suggested control actions to users, and archiving the

control actions. Typically a “prediction interpreter” component will be needed to convert

customer-facing data sources, which focus on predicted arrival times in the near future, into

a useful format for decision tools, which often require a recent history of departure times.

50



Chapter 4

Experiment

This chapter describes the results of an experiment performed on the MBTA’s Route 1 bus

service, using the mobile app described in Chapter 3. During the experiment, irregular

terminal departures were observed, which prompted further investigation of causes of and

potential solutions to these irregular departures. These are also explored in this chapter.

Recommendations are made aimed at improving regularity of departures and enabling more

precise control of departure times.

4.1 Description of experiment

The experiment was conducted from 2:30 PM to 6:30 PM each day from Monday, September

8, 2014 through Friday, September 12, 2014. In this section, we describe the experiment,

including Route 1, the strategy used, and the personnel who implemented the strategy.

4.1.1 Route 1

Route 1 is a crosstown route running from Harvard Square in Cambridge to Dudley Square

in Roxbury, mostly along Massachusetts Avenue, a major street that is often congested. The

route connects a variety of employment centers, residential neighborhoods, and commercial

areas. The published map is shown in Figure 4-1.
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Figure 4-1: Published map of MBTA Route 1

4.1.2 Strategy

The strategy used is a variant of Turnquist’s prefol strategy, which was described in Sec-

tion 3.2.1. In this version of the strategy, when a bus arrives at a terminal, a departure time

is selected based on the departure time of the previous vehicle to leave the terminal, and the

predicted departure time of the trailing vehicle. The ideal departure time, according to the

strategy, is the average of these two times. We constrain it to be no earlier than the sched-

uled departure time. This simplifies calculations and ensures that downstream passengers

relying on NextBus predictions (which may be schedule-based) will not miss a bus due to

holding.
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4.1.3 Personnel

Implementation of the strategy was accomplished with two people stationed at each terminal:

One inspector and one researcher. Inspectors, in MBTA Bus Operations, are supervisory

personnel who manage various aspects of bus service, including managing garage pull-outs

and pull-ins, responding to bus breakdowns or accidents, assisting passengers, adjusting ser-

vice in response to delays, and many other field responsibilities. Bus operators are required

by their contract to follow any special instructions given by inspectors. The inspectors for

this experiment signed up for a special overtime detail covering the period of the experiment;

on days when no inspector had signed up, either an inspector was pulled from mobile “radio

car” duty or a higher-ranking official from the Southampton garage covered the detail. The

role of the inspector was to read the assigned departure time from the app, instruct bus

operators to depart at the assigned time, and observe the operators to ensure compliance.

In addition to the inspector, one researcher was present, either a student from MIT or

a member of the MBTA’s research or IT staff. The role of the researcher was to bring the

mobile device (one phone and one handheld computer were used), start up the app, and

explain the use of the app to the inspector. After explaining the app and answering any

questions, the researcher was not needed until the end of the shift, when they would return

to pick up the device. However, in most cases the researcher would remain and observe the

experiment for at least one or two hours.

4.2 AVL data analysis for three typical weeks

The weekdays of the three weeks following the experiment, running from September 15 to

October 3, 2014, were used as a “control”, both as a baseline for comparison and for insight

into the typical causes of departure delays. These weeks were selected as they were during the

academic year and contained no holidays, and were thus comparable to the experiment week

of September 8 - 12. We first consider the effect of scheduled cycle times on performance,

then examine how a vehicle’s headway departing the terminal propagates along the route,

and finally compare available recovery time to schedule deviation to determine how many

early or late departures can be attributed to operator behavior.
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4.2.1 Recovery time and half-cycle time

Available and actual recovery time

Tables 4.1 and 4.2 describe the recovery times at the terminals. “Scheduled recovery time”

refers to the scheduled time between an arrival of a vehicle at Harvard and the next departure

of the same vehicle within the same block. “Available recovery time” refers to the difference

between the arrival time and the next scheduled departure time for that vehicle, which may

be negative if the vehicle arrived after its next scheduled departure time. “Actual recovery

time” is the actual time that elapsed between a vehicle’s arrival and its next departure.

Most notable is that available recovery times at Harvard during the observation period

were insufficient during the Midday and PM Peak periods, when the median available re-

covery times were very low. This could be caused by either insufficient cycle time in the

schedule, or late departures from Dudley. To determine the cause, we examined the half-

cycle times in each direction.

Table 4.1: Recovery Times at Harvard

Time Period Trips
Observed

Median Recovery Time (mins) Median Lateness
of DepartureScheduled Available Actual

AM Peak 182 11.0 7.8 8.2 0.2
Midday Base 275 9.0 1.1 2.7 1.6
Midday School 147 10.0 1.7 3.5 2.2
PM Peak 230 9.0 -0.3 2.9 3.0
Evening 316 10.0 6.0 6.2 0.3
Other (Late/
Early AM) 421 11.0 5.8 6.4 0.4

Table 4.2: Recovery Times at Dudley

Time Period Trips
Observed

Median Recovery Time (mins) Median Lateness
of DepartureScheduled Available Actual

AM Peak 182 9.0 8.4 10.3 1.3
Midday Base 279 12.0 6.8 9.2 1.7
Midday School 178 11.0 5.4 6.9 1.5
PM Peak 245 12.0 4.1 7.4 3.2
Evening 321 10.0 8.2 10.0 1.1
Other (Late/
Early AM) 473 8.0 4.3 4.7 1.1
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Half-cycle time analysis

To show that insufficient half-cycle time is the cause of the lack of recovery time, we com-

pare the scheduled half-cycle times with the distribution of observed run times. Tables 4.3

and 4.4 show the scheduled half-cycle times in each direction and the median, 90th, and 95th

percentile of run times. The 95th percentile of run time is commonly used to set scheduled

cycle times, with the goal that 95% of trips will arrive before the next scheduled departure.

At some agencies the 90th percentile is used.

The 95th percentiles of run times for the three-week baseline period exceed the scheduled

half-cycle time for trips from Dudley to Harvard in the Midday and PM Peak periods. In

the PM Peak, there is an offsetting amount of extra time available in the Harvard-to-Dudley

direction that could be shifted. However, in the Midday School and Midday Base periods

the half-cycle time is too short in both directions, and therefore does not have such a simple

solution.

Table 4.3: Half-cycle time analysis - Trips from Harvard to Dudley

Time Period Median
Run Time

90th Pctile
Run Time

95th Pctile
Run Time

Median Sched.
Half-Cycle Time

Extra Half-Cycle
Time vs. 95th pctile

AM Peak 40.6 47.6 50.7 49.0 -1.7
Midday Base 41.3 50.2 53.2 54.0 0.8

Midday School 49.1 60.5 63.7 58.0 -5.7
PM Peak 46.2 54.6 56.9 60.0 3.1
Evening 35.1 40.8 42.6 46.0 3.4

Other (Late/
Early AM) 27.6 34.5 35.7 33.5 -2.2

Table 4.4: Half-cycle time analysis - Trips from Dudley to Harvard

Time Period Median
Run Time

90th Pctile
Run Time

95th Pctile
Run Time

Median Sched.
Half-Cycle Time

Extra Half-Cycle
Time vs. 95th pctile

AM Peak 37.5 43.4 47.1 44.5 -2.6
Midday Base 42.0 53.2 55.4 45.0 -10.4

Midday School 40.7 51.6 55.8 46.0 -9.8
PM Peak 42.6 52.3 55.3 52.0 -3.3
Evening 32.5 39.2 41.9 42.0 0.1

Other (Late/
Early AM) 25.2 32.3 35.9 32.0 -3.9
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4.2.2 Headway variance along the route

In this section, we use a framework developed by Cham (2006) to examine the effect of

departure headway on downstream performance. In Appendix C, Tables A.1 and A.2 show

how headways vary along the route, using the ratio of actual headway to scheduled headway

at the terminals and at Hynes as a major midpoint stop. Consistent with Cham’s findings

and those of other authors, the coefficient of variation of headways increases as buses travel

along the route. Also, buses that begin their trips with headways close to the scheduled

headway have a lower coefficient of variation throughout the trip, and buses that depart with

a headway ratio between 0.8 and 1.2 generally maintain these headway ratios throughout

the entire trip.

4.2.3 Deviation from scheduled departure time

Figures 4-2 and 4-3 show the distribution of deviations from scheduled departure times at

Harvard and Dudley, grouped by the available recovery time. Shades of green are used for

trips with 2 or more minutes of recovery time available, and red and orange for trips with

insufficient or negative recovery time. Cham used this to estimate the minimum amount of

time needed to turn around at Dudley on the Silver Line at approximately 2-3 minutes. We

find a similar result, observing that recovery times of 2-4 minutes were sufficient for most

operators to depart on-time at both terminals.

By graphing the schedule deviations in groups by amount of recovery time, we can extend

Cham’s analysis. Most notable is that on the Harvard graph, on-time performance improved

with additional recovery time, increasing up to the groups that had at least two minutes of

recovery time, which all had very similar distributions tightly clustered around the scheduled

time. At Dudley, on the other hand, buses with two to four minutes of recovery time had

the best performance, but buses with more than four minutes of recovery time had worse

performance. This may be because operators are more likely to take breaks at Dudley than

at Harvard, and are more likely to take those breaks when they have more recovery time

available.

56



0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

-‐5	  or	  
less	  

-‐4	   -‐3	   -‐2	   -‐1	   0	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  or	  
more	  

N
um

be
r	  o

f	  d
ep

ar
tu
re
s	  

Devia2on	  from	  Scheduled	  Departure	  
(in	  minutes;	  nega2ve	  numbers	  indicate	  early	  departure)	  

Distribu2on	  of	  Schedule	  Devia2ons	  at	  Harvard	  
by	  Available	  Recovery	  Time	  

-‐4	  to	  -‐2	  

-‐2	  to	  0	  

0	  to	  2	  

2	  to	  4	  

4	  to	  6	  

6	  to	  8	  
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4.3 Summary of holding instructions given and deviation from

instructions

In this section, we examine the range of instructions that were given by the app to supervi-

sors, and the compliance of the supervisors with these instructions. The data from Friday

September 12 were excluded from this analysis because there were severe delays, only one

inspector was available (stationed at Harvard), and alternative strategies were attempted.

Of the 184 trips made during the experiment:

∙ 15 were instructed to depart on schedule

∙ 31 were instructed to depart “ASAP”

∙ 121 were given holding instructions, per the prefol strategy

∙ 17 have unknown status, due to missing data

4.3.1 Holding instructions

Here we summarize the holding instructions that were given during the experiment, to

illustrate the impacts of the strategy on regular bus operations. Appendix B shows the

distribution of suggested layover times; that is, the difference between the arrival time of a

bus and its suggested departure. Recommended layover times varied widely, from 0 minutes

up to 25 minutes. Figure 4-4 shows the distribution of lateness of suggested departure times

vs. the schedule. This is important as holding buses too far past their scheduled departure

times may eventually incur additional costs in overtime pay for operators, if an operator

is unable to make up the delayed time on later trips. Buses given the “ASAP” instruction

are excluded because they are not being held for any extra time. The figure shows that the

majority of suggested departure times were later than the scheduled time by 8 minutes or

less.
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4.3.2 Deviations from suggested departure times

In this section, we examine deviations from the suggested departure times given by the

app. For this purpose, we separate departures into those made with instructions to depart

“ASAP” and all other types of departures.

“ASAP” departures

We first examine those trips for which the bus arrived later than its scheduled departure

time and the app advised a departure “ASAP”. For these trips, operators and supervisors

both had a strong incentive to begin the next trip as soon as possible. Thus, the realized

recovery times in these scenarios will shed light on how much recovery time is needed at each

terminal. The distribution of recovery times is shown in Figure 4-5. Of the 17 such trips

at Harvard, the recovery time had a mean of 2.3 minutes and a standard deviation of 0.7

minutes. On the other hand, at Dudley, the 14 departures in this group had a mean of 4.6
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minutes and a standard deviation of 2.6 minutes of recovery time, indicating a significantly

longer and more variable turnaround process.
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Figure 4-5: Deviation from suggested departure with “ASAP” instructions

Other departures

Figure 4-6 shows deviations from the suggested departure times among trips other than the

“ASAP” trips described above (including both “on-schedule” departures and those that were

held). Although in theory the inspectors stationed at the terminals should have been able

to control the departure times, it is clear that this control was frequently ineffective. We

draw particular attention to early departures, which can only indicate poor performance by

the supervisor at the terminal. Operators may share the blame if they knew the suggested

time and departed early anyway, but since all instructions to operators came through direct

communication from supervisors, departure-time control during the experiment must be

primarily driven by supervisor diligence.
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To see if there was any pattern of poor performance by specific supervisors, we examined

the number of departures that occurred at least 2 minutes early by date and terminal in

Table 4.5. This shows that 8 of the 10 total departures that were made more than 3 minutes

early were made under the supervision of just 3 of the 12 supervisors: The supervisor at

Dudley on 9/10, and those at both terminals on 9/8.

The supervisor at Dudley on 9/10 alone was responsible for four of these extremely early

departures, suggesting that something went seriously wrong with the implementation of the

strategy on that date. Discussion with MBTA staff revealed that there was some delay in

delivering the handheld device to be used with the app to Dudley that day. However, this

alone cannot explain the deviations, since there were major deviations throughout the shift,

not just at the beginning. The same inspector was on duty the following day at Dudley, and

had no such early departures, so it may be that specific conditions on that day caused the

inspector to be unable to implement the strategy correctly. Ensuring effective supervision

will be key to any future implementation of this strategy, and we will recommend that

inspectors be given strict instructions and informed about what data is being gathered on

the performance of the strategy, in an effort to encourage compliance.

Table 4.5: Early departures by date and terminal

Date Departure Terminal # of Departures
3+ Minutes Early

9/8 Harvard 2
9/8 Dudley 2
9/9 Harvard 0
9/9 Dudley 0
9/10 Harvard 0
9/10 Dudley 4
9/11 Harvard 1
9/11 Dudley 1
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Figure 4-6: Deviation from suggested departure at each terminal

4.4 Impact of the experiment on headway regularity

4.4.1 Coefficient of variation of headway

To determine the impact of the experiment, we first examine the coefficient of variation of

headways (the standard deviation divided by the mean) during the experiment, and compare

it to the baseline period of the three weeks following the experiment, excluding Fridays. The

results are shown in Figure 4-7 for trips departing Harvard, and Figure 4-8 for trips departing

Dudley. The results differ strongly between the two terminals.

For trips departing Harvard, the coefficients of variation were lower during the experi-

ment period than the baseline period, at all timepoints except for the second-to-last time-

point during the PM Peak period. The magnitude of the improvement in the midday period

was strong all along the route, while in the PM Peak the effect decreased as buses got closer

to Dudley. This is likely a result of higher variation due to traffic during the PM Peak period
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Figure 4-7: C.O.V. of headways - Harvard to Dudley

making the effects of holding at terminals less persistent throughout the route.

For trips departing Dudley, the coefficients of variation during the experiment were

generally similar to or worse than those during the baseline period. Factors contributing to

the poor performance at Dudley will be explored in the next section.
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Figure 4-8: C.O.V. of headways - Dudley to Harvard

4.4.2 Average passenger wait time

Average wait time experienced by passengers at a stop is calculated using the formula 𝑊 =

1
2 ·𝜇ℎ · (1+(𝜎ℎ

𝜇ℎ
)2), where 𝜇ℎ is the average headway between vehicles at that stop, and 𝜎ℎ is

the standard deviation of the headways of vehicles at that stop. Figures 4-9 and 4-10 show

the average passenger wait time along the route in each direction. The weighted average

wait time is calculated using the number of boardings at each stop during the relevant time

periods. It is assumed that passengers at non-timepoint stops experienced the same headway

as at the nearest timepoint.

The results are broadly similar to the coefficients of variation of headways, with an

overall average improvement of approximately one minute in passenger wait time for trips

originating at Harvard, and no improvement for trips originating at Dudley. In the Harvard

results, it is interesting to note that the improvement of average passenger wait time is higher

in the middle of the route than at the beginning. Even though the coefficient of variation
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Figure 4-9: Average passenger wait time by timepoint - Harvard to Dudley

did not improve as much at the midpoint, the higher magnitude of wait times meant that

this is where the largest absolute improvement in wait time was found.
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Figure 4-10: Average passenger wait time by timepoint - Dudley to Harvard

4.5 Factors contributing to unreliability at Dudley

It is clear, based on the deviations from the app suggestions, as well as the high variation in

departure headways, that headway control at Dudley was not effective. Three factors stood

out as contributors to large variation in departure times at Dudley: Operator discipline

and supervision, the layout of Dudley station, and the long boarding times of passengers at

Dudley.

4.5.1 Terminal departure discipline

The most important aspect of operations at Dudley leading to irregular departure times

is operator behavior, specifically, operators returning late from breaks or departing early.

Operators frequently take breaks while laying over at Dudley, due in part to easy access to

a bathroom. If the operator does not return to the departure area before the next departure

time, a late departure results.
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Terminal departure discipline is a core issue at all transit agencies. Using real-time and

archived AVL data, it can be addressed through improved scheduling, operator training and

discipline, and the use of real-time displays at terminals. In this section, we examine these

methods of improving departure discipline, with a focus on methods that have been used

successfully at other transit agencies.

Scheduled recovery time

One reason breaks at Dudley are more popular is the scheduled cycle time mentioned pre-

viously; because there is not enough time scheduled for trips from Dudley to Harvard,

operators rarely have any time available to take a break at Harvard, and thus are much

more likely to take breaks at Dudley. Insufficient cycle time is an obvious contributor to

poor on-time performance at terminals, as an operator who arrives at a terminal later than

his next scheduled departure time cannot possibly depart on time.

In the context of our holding strategy, the lack of sufficient recovery time may have had a

positive impact on implementation at Harvard. Operators who arrive at Harvard with little

or no recovery time typically do not leave their vehicles, making it easier for an inspector

to control departure time. Adjusting the scheduled cycle time to increase recovery time at

Harvard might actually have the effect of reducing the effectiveness of a holding strategy by

creating more opportunities for operators to leave the bus stop area. If a holding strategy

were to be implemented on a permanent basis during peak hours, it would be important to

carefully consider the appropriate amount of recovery time at each terminal.

Supervisor effectiveness

The ineffectiveness of supervisors during the experiment contributed to poor departure-

time adherence. Section 4.3.2 discussed in particular the incidence of very early departures,

but in general, the frequency of both early and late departures relative to the suggested

times indicates that supervisors did not strictly adhere to the strategy. This implies a

need for an improvement in the culture of supervisors, starting with training and including

continuing monitoring of performance. Supervisors must be aware of the metrics used to

evaluate performance, and understand the connection between their control actions and the

customer experience.

One example of an agency culture change comes from the Chicago Transit Authority,
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which undertook several agency-wide initiatives in 2007-2008 under President Ron Huber-

man. The CTA focused on management-level interventions, with weekly meetings between

upper management and garage managers. For these meetings, a report was prepared with

a table of “Big Gap” metrics for each route and “Key Levers”, meaning factors impacting

performance such as early or late departures, accidents, absences, etc. This focus on ac-

countability at the garage management and supervisor level, not just the operator level, is

important to creating a culture of departure-time discipline. The CTA was able to reduce

the rate of late departures from 15.3% to 10.6%, and early departures from 5.0% to 2.7%.

Another important part of supervisor culture is the use of technology. Currently, the use

of technology by supervisors varies widely. Some actively use the handheld devices provided

by the MBTA to observe bus locations and statuses on the TransitMaster screen, in support

of their role. Others ignore the technology available and make interventions based only on

information available via radio or other methods. Explanations given by supervisors include

the difficulty of use of the handheld devices, which are large and run software designed

for desktop computers. The use of technology in support of the supervisory role must

be emphasized in training, and more user-friendly mobile technologies developed, oriented

towards use in the field rather than in the control center.

Operator training and performance monitoring

Creating a culture of on-time terminal departures among operators is a challenge for all

transit agencies. The influence of the agency on operator culture includes: 1) Training

2) Monitoring performance and 3) Re-training. Automatically collected data provide an

opportunity to analyze and influence operator behavior. We spoke with staff from RTD in

Denver and Metro Transit in Minneapolis to find current industry best practices in improving

on-time performance. They focused on the use of data to monitor and re-train operators,

but the same data and concepts should also be emphasized during training to create an

expectation of on-time performance from the start of an operator’s career.

Both RTD and Metro Transit use AVL data to create operator on-time performance

reports. They emphasize the importance of limiting analysis of late departures to cases in

which the operator had sufficient recovery time to depart on-time. RTD began an initiative

in May 2014 to use performance reports to initiate conversations between division managers

and bus operators about on-time departures, which they defined as 15 seconds early to 1
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minute late. They compared operators who had an intervention from a manager to those

who did not, and found a statistically significant improvement of 15% in on-time departures

vs. a control group improvement of 6%.

Metro Transit follows two strategies to use AVL data to improve departure-time disci-

pline. One is a similar report to that used by RTD, showing early or late departures for

managers to discuss with operators after the fact. A second strategy is used in real time:

Using a setting in the TransitMaster AVL system, control-center staff are able to see pop-up

alerts when a bus departs early from a terminal. They can then communicate directly to

the bus operator, providing immediate feedback and a clear reminder that early departures

are unacceptable.

Two examples of operator departure-time analysis are given below. Table 4.6 shows the

percentage of departures made 1 or more minutes early by each operator. Table 4.7 shows

departures made 3 or more minutes late in cases when there was at least five minutes of

available recovery time. This sample output uses the baseline time period of the three weeks

following our experiment, and all departures from terminals made by operators from the

Cabot garage who made at least 20 trips during the study period are included.

Table 4.6: Early terminal departures by operators from Cabot Garage, Sep. 15 - Oct. 3,
2014

Operator Total Trips Departures
>1 min Early % Early Departures

A 96 56 58.3%
B 145 80 55.2%
C 138 59 42.8%
D 77 32 41.6%
E 142 59 41.5%

95th percentile 20.8%
Median 3.9%

For comparison purposes, the median values and 95th percentiles of the early departure

and late departure statistics are included, and show that the values seen in this table are

abnormal, and that a small number of operators are causing a large fraction of early or

late departures. Managers should have access to this information so that they can speak to

these operators about their on-time performance. Operator behavior must be the first area

to improve, because if operators do not comply with schedules and instructions, the other

potential improvements listed below will be useless.
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Table 4.7: Late terminal departures by operators from Cabot Garage, Sep. 15 - Oct. 3,
2014

Operator Total Trips Departures
>3 min Late % Late Departures

F 136 28 20.6%
G 94 17 18.1%
H 193 31 16.1%
I 90 14 15.6%
J 137 19 13.9%

95th percentile 11.8%
Median 3.2%

Real-time displays

Encouraging on-time performance can be achieved through visual or auditory cues at the

terminal. One strategy that is used on the MBTA heavy rail system is the “ring-off” bell,

which indicates to both train operators and customers that the train is about to depart,

putting pressure on the train operator to depart quickly. At a station like Dudley, where

many bus routes pass through, a bell might not be sufficient to indicate a specific route’s

imminent departure. An alternative would be to use the departure boards that list the

next scheduled departure time. LED boards capable of displaying text have recently been

installed at several bus berths at Dudley, but are not currently in use. These should be used

to display the next departure time of each route at its actual berth which could be a better

way of informing both operators and customers of the next departure time, and encouraging

operator compliance. In addition, by adjusting the departure times displayed, these signs

could provide a way to implement terminal holding strategies in the future. They would

allow dispatchers or an automated system to communicate special departure instructions to

bus operators easily, without the need for a supervisor on-site.

4.5.2 Boarding times

During the experiment, we observed unusually long boarding times at Dudley. One reason

for this was a large number of passengers adding value to their stored-value CharlieCards

as they boarded the bus. The bus fare is $1.60 with a CharlieCard vs. $2.10 when paid

directly with cash, incentivizing customers to use the stored-value option. The Roxbury-

Dorchester-Mattapan Transit Needs Study (2012) found that in lower-income communities

such as those along the bus routes that feed into Dudley, passengers add value to their
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cards more frequently and have less access to off-board methods of adding value. The study

recommended increased availability of CharlieCard vending machines in the neighborhood

as well as policy changes such as a change in the fare structure or a minimum level of value

to add on a bus. There is a CharlieCard vending machine at Dudley station, but it is not

well-utilized and is located far from the Route 1 berth.

Another reason for the long boarding times was a higher number of passengers in

wheelchairs. The process of deploying the ramp, boarding, strapping the wheelchair in,

and resetting the ramp took several minutes, during which no other passengers could board.

To mitigate the problem of long boarding times, one possible strategy is the use of

handheld CharlieCard validators. The MBTA already uses such validators on the Green

Line, and is in the process of purchasing additional validators for use by Bus Operations.

The inspector assigned to the Silver Line area at Dudley can see the Route 1 and other berths

from his typical post, and intervene when a bus is experiencing a slow boarding process. We

will recommend that inspectors at Dudley be provided with a handheld validator to speed

up the boarding process whenever they observe a long queue of passengers waiting to board.

4.5.3 Dudley station layout and operations

This section describes factors relating to the layout of Dudley Station and typical operations

at the station that contribute to unreliable departures.

Layout of Dudley Station

The layout of Dudley Station is shown in Figure 4-11, and in Figure 4-12 we show the area

used by Route 1 buses. There are two lanes used by four different bus routes, one for pulling

up to the curb to load and unload passengers, and the other for laying over or leaving buses

for a change of operator (a “swing-off”). Passengers are unloaded at or near Berth 18, and

buses on Route 1 typically then pull into the layover area, as far up to the front as possible,

to allow for more buses to pull in behind them. Usually buses occupy at least some part of

the layover space, and as many as four buses have been observed occupying this area at one

time. Route 1 is the only route with berths in this section that terminates at Dudley, but

occasionally buses from other routes such as Route 66 may also use this layover lane.
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Conflicts between routes

Delays were observed in situations where conflicts existed between the different routes and

parked buses. For example, a bus parked at the back of the layover area and needing to pull

in to pick up passengers for departure could be in conflict with a bus picking up passengers

in Berth 19, especially if there are more buses parked in front of it. Layover space is not

necessarily used in a “first-in, first-out” manner because buses may arrive out of order or

may have scheduled layovers that overlap due to interlining or crew changes.

Another problem caused by the layout of the station is the difficulty in loading passengers

early, before the scheduled departure time. Operators at Harvard were frequently observed

allowing passengers to board a few minutes before the scheduled departure time, allowing

them to depart immediately once the scheduled departure time is reached. At Dudley,

however, pulling up to the berth early can lead to blocking buses from other routes, in

situations where the layover space next to Berth 19 or Berth 20 is occupied. Figure 4-13

shows an example of a scenario where a Route 8 bus is blocked by a Route 1 bus loading at

Berth 20 and another Route 1 bus laying over.

Reversing difficulty and “loop-around” maneuver

Reversing a bus is a difficult maneuver even in the best of circumstances, and in the crowded

conditions at Dudley, it is even more difficult. During a follow-up visit to Dudley on Novem-

ber 10, 2014, operations on Route 1 were observed between 2:30 PM and 5:30 PM, with

arrival times, operator break times, passenger loading times, and departure times recorded,

along with other notes.

One key observation was that buses parked far up in the layover area either had to reverse

in order to pull up to the curb at Berth 20, or had the option of pulling out of the station and

looping around via Warren Street and Washington Street to re-enter the station. Operators

looping around in this way typically left 2-3 minutes prior to the scheduled departure time,

to compensate for the added time. After pulling up to the berth and loading passengers, all

operators then departed immediately, regardless of the scheduled departure time. Looping

around is undesirable because of the uncertainty it adds to departure times, and the changes

we propose for Route 1 layover procedures at Dudley should eliminate this as an issue.
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Proposed procedure

We propose a revised use of layover and passenger loading areas at Dudley. It entails using

the Route 1 berth as a space to lay over, and blocking off a part of the layover area to allow

other buses to pass the Route 1 berth. The primary goal of this procedure is to allow bus

operators to pull up and begin boarding in advance of the departure time.

1. Upon arrival at Dudley, drop off passengers at or behind Berth 18.

2. If the current bus is the next bus to depart from Dudley:

(a) Pull up to park and lay over at Berth 20.

(b) If more than two minutes of recovery time is available before the next scheduled

departure, the driver may leave the bus for a regular break.

(c) Two minutes before the scheduled departure time, the driver should return to the

bus and begin to allow passengers to board.

3. If the current bus is not the next bus to depart from Dudley:

(a) Pull up as far forward as possible within the layover area, without blocking the

area marked as “No Layovers” in Figure 4-14. (This area should be marked with

a sign or paint).

(b) The driver should return to the bus with enough time to pull up to the berth and

begin boarding passengers at least two minutes prior to the scheduled departure

time.

In addition to allowing for early boarding, this procedure should eliminate some of the

conflicts with other bus routes and eliminate the requirement for buses to occasionally loop

around local streets. The cost would be only the reduced layover space shown in Figure 4-14.

This still leaves sufficient space for four buses to lay over, which is equal to the maximum

number of buses observed utilizing the space at any time during the course of this research.

This strategy should be combined with the use of the LED sign to display the next de-

parture time as described above. There are two reasons for this: The first is that passengers

will, at least initially, be confused by a bus laying over at its usual departure berth, and the

LED sign will clearly communicate the next departure time. The second reason is that it is
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not always clear to a bus operator whether or not their bus is the next in line for departure,

for example if the leading bus has fallen behind or pulled out of the garage late. The LED

sign will provide an easy way for the operator to see if their departure is the next one, and

thus, if they should pull up to the berth or park in the layover area.
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Figure 4-11: Diagram of Dudley Station
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Figure 4-12: Route 1 loading and layover area at Dudley Station

Figure 4-13: Blocking scenario

Figure 4-14: Proposed layout
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4.6 Deadheading and expressing strategies

In addition to the holding strategy used in this experiment, several control strategies exist

that allow buses to reduce big gaps by skipping some scheduled stops. During the exper-

iment and the earlier test run in April 2014, inspectors at Harvard Square were observed

implementing different strategies, including one used on the Friday of the experiment that

was clearly inferior to the regular route. In order to allow for the best use of real-time data,

a standardized strategy or set of strategies must be developed. In this section, we examine

the deadheading, expressing, and short-turning strategies available for Route 1 at Harvard

Square. We pay particular attention to strategies that can be implemented with little or no

visibility to customers, that is, without denying boardings or directly bypassing stops.

4.6.1 Types of strategies

A variety of control strategies are used by transit agencies to close a large gap ahead of a

vehicle. These include short-turning, in which a bus discharges passengers and turns back

without reaching the terminal, deadheading, in which a bus departs the terminal without

picking up passengers and skips some number of stops, and expressing, in which a bus first

picks up passengers, then skips some stops. Several such strategies are available at Harvard

due to the dense street grid near the terminal stop, and the circuitous route normally taken

by Route 1.

Figure 4-15 shows four possible routes for the turnaround at Harvard: (1) is the standard

route, (2) is the version used by the inspector at Harvard on the Friday of the experiment,

(3) is a short-turn down Bow Street that was observed during the May 2014 pilot of the

app, and (4) is a proposed deadhead or express alternative that turns down Dunster Street,

skipping several stops around Harvard Yard. Versions (2) and (4) are similar in that they

skip the same set of stops, but (2) takes a much longer distance to achieve the same result,

and passes through six traffic signals. Therefore, we discard (2) as an inferior routing.

4.6.2 Evaluation of possible strategies

To evaluate possible strategies, we must examine the impacts on different groups of passen-

gers. Each of these strategies saves time for a vehicle that is running behind, at the cost

of additional waiting time for passengers at the stops that are skipped, as well as irritation
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Figure 4-15: Four possible turnaround options at Harvard

from passengers who must alight early, or who see a bus go by without stopping.

Table 4.8 summarizes the impact on passengers by considering a case in which a bus

has been delayed so that it is arriving with a leading headway double the regular scheduled

headway. This is a typical example of a scenario where one of these strategies would be

used. Using APC data on passenger boardings and alightings in the PM Peak period, we

estimate the number of passengers who would be affected by each strategy in this scenario.

Dwell-time impacts are estimated using a value of 3.5 seconds per boarding and 2 seconds

per alighting (based on the Transit Capacity and Quality of Service Manual), and assuming

that alightings are evenly split between the front and rear doors.

We distinguish between passengers who are denied boarding and those who are “bypassed
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completely,” meaning that the bus did not pass by their stop at all. Passengers who are

bypassed in this way will experience the longer waiting time but not the irritation caused

by seeing a bus go by without stopping.

Table 4.8: Expected impact on customers of each strategy after a 2x-headway wait
Expected impact

per trip
Express via
Dunster St.

Deadhead via
Dunster St.

Short-turn
via Bow St.

Time savings 5:20 5:42 7:31
No. of passengers
denied boarding 0 6.3 0

No. of passengers
bypassed completely 13.6 13.6 20.0

No. of passengers
forced to alight early 0 0 16.8

This analysis is based on a single scenario, but it makes clear the tradeoffs between

deadheading, expressing, and short-turning:

∙ The short-turn saves about one additional minute of running time, at the cost of

forcing all passengers destined for the Harvard stop to alight early.

∙ The deadhead option removes the need for passengers to alight early, but the passen-

gers waiting at the terminal who would otherwise have been bypassed by the short-turn

are denied boarding instead.

∙ The express option is similar to the deadhead, but passengers at the terminal are

allowed to board at a small cost in additional dwell time.

The improvement in dwell time of the deadhead option over the express option is limited,

due to the relatively small number of boardings that typically happen at the Harvard stop.

Only if a large number of passengers were waiting at the stop, and the following bus were

close behind, would it make sense to use the deadhead strategy. The short-turn strategy has

the dwell-time advantage of not picking up Harvard passengers, as well as an estimated 1

minute and 49 seconds of additional running-time savings due to the shorter route. This time

savings benefits all passengers waiting downstream, but may be reduced by the time needed

to explain to passengers that they must alight early. It also must be weighed against the

inconvenience and irritation caused to affected passengers, factors which will be discussed

further below.
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One potential issue with the Dunster Street route is its width. Although currently

coaches do use Dunster Street, there may be scenarios in which a double-parked delivery

vehicle could prevent a bus from passing down the street. The feasibility would have to be

investigated through observations of Dunster Street and test runs, and potentially parking

spaces on the street might have to be moved.

4.6.3 Low-visibility strategies

In general, passenger irritation is an important consideration in the costs of all of these

strategies. Passengers expect to be able to board the first bus on their route that appears,

and for it to bring them to their destination without stopping except to pick up and drop

off passengers. Violating these expectations causes frustration and confusion among pas-

sengers beyond that caused by regular delays. Carrel et al (2013) studied factors that lead

customers to reduce their transit ridership. They found that in-vehicle delays due to traffic,

medical emergencies, or other factors immediately visible to the customer had no significant

impact on a person’s likelihood of reducing their transit use, but delays due to “problems

downstream,” including holding of vehicles, were associated with a strong and significant

increase in the likelihood of reducing transit use.

Because of this poor perception of delays caused by visible control actions, agencies

typically avoid measures such as expressing and midpoint holding except in extreme cases.

Pangilinan et al (2008) conducted an experiment with the CTA in which expressing and

deadheading were completely left out to avoid irritating passengers. Similarly, experiments

by Bartholdi and Eisenstein (2012) and Strathman et al (2001) used holding at terminals

only.

However, a short-cut such as the Dunster Street route discussed here enables a bus to

skip stops without directly driving past them. If the express version of this route is used

(allowing boardings at Harvard), the only passengers negatively impacted will be unaware

that they have been skipped.
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Table 4.9: Time from Harvard to 1st Timepoint (Mt Auburn St @ Putnam Ave) (minutes)
TimePeriod Mean Time to 1st Timepoint Std. Dev. Time to 1st Timepoint
AM Peak 7:03 1:45
Midday Base 6:53 2:07
Midday School 7:03 1:21
PM Peak 7:20 2:00
Evening 6:17 1:13
Other (Late/Early AM) 7:20 2:00

4.7 Recommendations

Based on the experiment results, we have identified above various problems that caused

ineffective implementations of the control strategy, particularly at Dudley. We have also

identified potential solutions to these problems. In this section, we make recommendations

to the MBTA based on our observations from the experiment.

4.7.1 Departure discipline

Operator departure discipline at Dudley was identified as a significant problem. To address

this problem, we recommend several measures based on those used by other agencies:

∙ A report of operator on-time performance for terminal departures similar to that shown

in Section 4.5.1 should be generated on a regular basis, and used for conversations

between garage managers and bus operators.

∙ The TransitMaster feature used by Metro Transit to alert dispatchers to early depar-

tures by bus operators should be enabled in the MBTA control center, and dispatchers

should contact operators who appear to have departed early.

∙ The LED sign at Berth 20 at Dudley Station should be used to display the next

scheduled departure time for Route 1.

4.7.2 Operations planning

Our examination of half-cycle times showed that insufficient time is provided for buses to

complete trips on time with 95% confidence in the Midday School, Midday Base, and PM

Peak periods. We recommend that the MBTA re-examine the scheduled cycle times on

Route 1 to ensure that sufficient recovery time is provided in each direction. At certain

81



times, this may be a matter of re-allocating cycle time from one direction to the other, while

at other times the problem is in both directions, and only additional resources or lengthening

scheduled headways could solve the problem.

4.7.3 Back-door boarding

Long boarding times at Dudley were identified as a problem. A CharlieCard validator should

be provided to inspectors at Dudley, and should be used at the discretion of the inspector to

allow back-door boardings on the Silver Line. Use of this device should be formalized and

extended to Route 1 (and other routes easily accessible from the Silver Line berth); cutting

down a long dwell time by allowing back-door boarding could have a large impact on an

individual route’s performance, while only requiring a few minutes of an inspector’s time.

4.7.4 Layovers

Crowding in the bus lane and layover area at Dudley was identified as a problem. Bus

operators should be instructed to park in the departure berth itself if they are next in line

to depart, as in the procedure described in Section 4.5.3. Part of the layover area should

be reserved for use as a passing lane so that Route 1 buses laying over at the berth will not

prevent other buses from pulling through, as shown in Figure 4-14.

4.7.5 Guidelines for special control strategies

Special control strategies such as deadheading, expressing or short-turning are currently

used on an ad-hoc basis by inspectors. The lack of a standardized strategy was a problem

during the experiment, with one inspector implementing an ineffective strategy at Harvard.

As a first step, standardized strategies should be identified whenever possible and taught

to inspectors as part of their training. Special attention should be paid to "low-visibility"

strategies such as the express route via Dunster Street. In the future, more research should

be conducted on these strategies, including simulation testing, to lead up to the eventual

incorporation of these strategies into an automated decision tool.
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Chapter 5

Simulation

Experimental testing provides us with valuable information about the performance of control

strategies under real-world conditions, but it is limited by cost and the willingness of transit

agencies to allow their standard procedures to be changed for research purposes. Simulation

modeling allows us to expand our analysis of alternative strategies by testing a wider range of

control strategies under different conditions. In this chapter, we will describe a simulation

model to evaluate a variety of possible control strategies, as well as different contexts in

which they could be used.

The simulation model is based on work by Gabriel Sanchez-Martinez. The simulation

framework was developed in his Master’s thesis (Sanchez-Martinez, 2012), and implemented

in various forms in his Ph.D. thesis (Sanchez-Martinez, 2014). The framework describes

a method of simulating a high-frequency bus service using various automatically-collected

data as inputs.

Sanchez-Martinez used two different types of model: A model of an idealized route,

in which vehicles enter service at the beginning of the simulation and leave service at the

end, and order of vehicles is preserved throughout the simulation, and a realistic route,

with vehicle schedules drawn from a London Buses route. The idealized model was used to

compare static and dynamic optimization strategies with headway-based holding strategies

such as those used in this research. The realistic model was used to test the dynamic

optimization strategy in various contexts. In this research, we adapt the realistic route

model to use MBTA data sources as inputs, and to simulate holding and other strategies

in the context of the MBTA’s vehicle schedules. We also add to the model a more detailed
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treatment of operator departure behavior at terminals, based on the work of Milkovits

(2008).

5.1 General framework

5.1.1 Route

A route consists of (typically) multiple variations. Each variation consists of a sequence of

locations, in the order that they are visited by vehicles serving the route. A simple uni-

directional loop route might have only one variation, while a simple bi-directional route will

have one variation for each direction. Multiple variations exist when a route has branches

or different locations where vehicles might reverse direction or enter (leave) service.

5.1.2 Locations

Locations in this model represent terminals, stops, and route segments. Each location is

assigned a location controller, which governs the behavior of vehicles at that location. When

a vehicle arrives at a location, the location controller determines how long the vehicle will

remain at that location, what location the vehicle will visit next, and how many passengers

will board or alight at that location.

∙ Stops - A stop is a location at which passengers may board or alight from a vehicle.

Each stop controller draws from a Poisson distribution, using the arrival time at the

stop of the previous vehicle, to determine the number of passengers waiting to board

the vehicle. The number of passengers alighting is determined based on an “alight-

ing fraction”, that is, the fraction of passengers that typically alight at the stop, by

variation and time period. It determines the next location for the vehicle based on

the route variation being served. The time that a vehicle departs is determined using

control logic. For example, a holding strategy may be applied or a vehicle may simply

be dispatched immediately.

∙ Terminals - A terminal is a location where vehicles may be brought into service or

taken out of service. A terminal is considered distinct from a stop, even in cases where

a stop and a terminal may occupy the same physical space. A terminal controller

determines, based on the schedule, whether a vehicle arriving at the terminal should
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go out of service. If it continues in service, the controller assigns its next scheduled

trip, and determines the dispatch time and next location based on the variation being

served.

∙ Links - A link represents a segment of the route between two stops. Each link controller

determines the running time of the vehicle on that link. In our simulation, running

times are drawn from a bivariate distribution of observed running times, as described

below.

5.1.3 Vehicles

A vehicle is an object with a specific identity in the simulation. Each vehicle is assigned to a

block from the schedule, giving it a series of scheduled trips to run on the different variations

of the route. Vehicles are the only type of agent in this simulation, meaning that passenger

boardings and alightings, for example, are handled by the vehicle object. This simplifies the

tracking of costs to on-board passengers.

5.1.4 Events

The model used here is an event-driven simulation, meaning that events such as vehicle

arrivals at stops and passenger boardings and alightings are processed in chronological order.

A heap data structure is used to store events as they are generated and process them

chronologically. A replication is a single run of the simulation, representing one day of

service on the modeled route.

5.1.5 Terminal departure behavior

The initial departure time of a vehicle on a trip may be affected by a variety of factors.

There are four distinct processes which may affect terminal departures, each of which is

subject to operator behavior and external sources of randomness.

∙ Recovery time is the period between the arrival of a vehicle (and operator) at a termi-

nal, and its subsequent departure on its next scheduled trip. This time is often used

by operators for breaks, leading to variability in the amount of time taken.
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∙ Garage pull-outs happen before the first trip of the day for a particular vehicle. Vari-

ability in these first departures may be caused by delays leaving the garage, or by

traffic between the garage and the start of revenue service.

∙ Operator reliefs generally take place at terminals, where one operator ends their shift

and their vehicle is taken over by a new operator. The major source of delay from

operator reliefs is late arrival by the relieving operator.

∙ Interlining is the practice of scheduling a single operator to run on multiple routes

during a single shift. Since our model only simulates a single route, this means that

some vehicles enter the simulation having previously arrived at a terminal from a

different route.

The topic of terminal departure behavior was explored extensively by Milkovits (2008).

We follow his method of simulating recovery time as the maximum of two values: Minimum

required recovery time, and available recovery time. Minimum required recovery time repre-

sents the time needed for a vehicle operator to take a personal break. This is stochastic, and

modeled using a normal distribution. Available recovery time is the amount of time avail-

able before the vehicle is supposed to depart on its next trip, whether based on schedule or

following a control strategy. This value has a random component representing the operator’s

deviation from the assigned departure time. It is modeled as a two-stage distribution: First,

a uniform distribution is used to determine whether the departure will be early or late, and

then an exponential distribution determines the magnitude of the schedule deviation. The

estimation of parameters for these distributions is discussed below.

In addition to the operator behavior modeled by Milkovits, we must also consider in-

terlining and garage pull-outs, two situations in which a bus enters the simulated system

with a degree of randomness. We handle this by drawing from the distribution of observed

arrival times at the first terminal departure of the day, for each vehicle. Once the vehicle

has arrived at the terminal, we use the minimum recovery time and schedule deviation as

described above to determine when it will depart.

5.1.6 Boardings and alightings

Passenger boardings and alightings are modeled in this simulation to allow for measurement

of the impact on passengers of the different strategies to be tested. Since we are not explicitly
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modeling dwell time, the number of passengers waiting at a stop will have no impact on the

running time of a vehicle. Passenger arrivals at a stop are generated using a Poisson process,

while alightings at each stop are determined using the alighting fraction, (as defined above).

5.2 Adaptation to MBTA context

5.2.1 Routes

For this research we will model two MBTA bus routes. Routes 1 and 28 are both part of the

Key Bus Routes program, an MBTA initiative to emphasize service quality on high-density

corridors with frequencies and spans of service similar to the MBTA rapid transit services.

Route 1, discussed in Chapter 4, is a cross-town route connecting various residential and

commercial neighborhoods along its route from Harvard Square to Dudley Square. Passen-

gers Route 28, by contrast, is a radial route connecting Mattapan, a primarily residential

section of Boston distant from downtown, with Dudley and Ruggles Stations, two major

transit hubs closer to the employment centers of the city. Load profiles on the two routes

are quite different, as seen in Figures 5-1 and 5-2. Route 28 has loads that gradually increase

from Mattapan in to Dudley, and strongly directional travel patterns (mainly inbound loads

in the AM Peak, and outbound in the PM Peak), while Route 1 has its maximum load point

near the middle of the route, and roughly even loads between the two directions of travel.

Figure 5-1: Load profiles on Route 1 (Fall 2014)
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Figure 5-2: Load profiles on Route 28 (Fall 2014)

5.2.2 Segment running times

Running times are drawn from an observed distribution of running times taken from the

MBTA’s Automatic Vehicle Location (AVL) system. This system uses a “geo-fencing” tech-

nique to measure arrival and departure times at major stops, or timepoints, along each bus

route. We limit our simulation to timepoints and the route segments between them, rather

than including all stops on the route, in the interests of simplicity and because the geo-

fencing technique creates the most accurate data available from the MBTA’s AVL system

on arrival and departure times. The data are taken from weekdays during the period from

September 15, 2014 to October 31, 2014, excluding Fridays, which have a different schedule

from the other weekdays, and the Columbus Day holiday. The sample thus contains 27

days of observations. Running times on each link are drawn from a bivariate distribution

similar to that described by Sanchez-Martinez (2012). First, observed running times on a

link are grouped into 30-minute time periods, e.g. 5:30 AM-6:00 AM. Next, within each

time period, each running time observation is paired with the observed running time of the

same vehicle on the previous segment. On the initial segment of a simulated trip, a running

time is drawn randomly from the observations in the 30-minute time period. On subsequent

segments, the window is further narrowed based on the running time from the previous

segment. For example, if a simulated bus is departing Harvard at 9:40:00 AM, it will draw

a running time on the initial link from the set of observations between 9:30 AM and 10:00

AM. Assuming it draws a value of 384 seconds, it will arrive at the Putnam timepoint at
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9:46:24 AM. On the following link, the running times will first be narrowed down by time

period (in this case the same time period as before), and then by previous running time,

using a window width equal to 20% of the previous running time, in this case 76.8 seconds.

So only observations taken between 9:30 AM and 10:00 AM, for which the previous running

time was between 345.6 and 422.4, will be available to draw from. The size of the windows

from which running times were drawn was examined by running the simulation 100 times,

and observing each window that was sampled. For segments that were the first in their trip,

the window sizes ranged from 5 to 103, with a median of 72. For subsequent segments, the

windows narrowed down by previous running time were found to range from 1 to 112, with

a median of 18 observations.

5.2.3 Terminal departure behavior

Operator behavior departing a terminal is a key component of transit operations. As dis-

cussed in Chapter 4, operator adherence to schedule or to supervisor instructions can make

a significant difference in the effectiveness of a particular control strategy. Therefore, it is

necessary to add a component to our simulation to model the behavior of operators at termi-

nals. We build upon the work of Milkovits (2008), who examined the behavior of operators

on a high-frequency bus route in Chicago.

Minimum recovery time

To create a distribution for minimum recovery time, we examine the AVL dataset for

cases in which no recovery time was available, that is, the arrival time at the first timepoint

of a trip was later than the scheduled departure time. In these cases, we assume that bus

operators will take the minimum possible recovery time, given their constraints including

passenger unloading and loading, as well as restroom or other breaks. We exclude cases

where the recovery time was in excess of 20 minutes; these are likely outliers caused by

mechanical failures or other issues unrelated to operator behavior.

Table 5.1 shows summary statistics of the recovery times. As was noted in Chapter 5,

less slack time is scheduled for Route 1 buses at Harvard than at Dudley, but recovery times

at Harvard are shorter and less variable. On Route 28, the number of trips with no available

recovery time is more evenly balanced between the two terminals, but recovery times are

both longer and more variable than on Route 1.
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Table 5.1: Minimum required recovery time distribution
Route Terminal Observations Mean Std Dev Min Max
1 Dudley 553 3.1 2.4 0.32 18.0
1 Harvard 755 2.3 1.6 0.28 18.0
28 Ruggles 603 3.5 2.2 0.85 19.3
28 Mattapan 563 4.5 2.8 0.13 9.6

Schedule deviation

In order to measure schedule deviations, we will need to examine a sample of departures

for which sufficient recovery time was available for an operator to depart on-time. To set a

cutoff value that defines “sufficient recovery time,” we examine the cumulative distribution

function of recovery times taken when a vehicle arrived after its scheduled departure time

in Figure 5-3.

Figure 5-3: Cumulative distribution of actual recovery times for buses arriving with no
available recovery time

Notably, the minimum recovery time that was required at Mattapan was significantly

higher than at the other terminals. In order to determine the cause of this, field observations

were conducted of bus departures on Routes 28, 31, and 245 (which have berths in the same

section of the station) at Mattapan. Comparison of the observed departure times with

AVL data suggested that part of the variability in departure times is due to a traffic signal

that these buses pass through to exit the station onto Blue Hill Avenue. This signal has a

two-minute cycle with 106.5 seconds of red time and 13.5 seconds of green time. Because

they are still within the geo-fence area while stopped at the signal, the buses’ departures
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are not recorded by the AVL system until they pass through the signal. Similar issues

may exist at Ruggles station, where Furth et al (2010) found that signal delay was a major

factor impacting bus service around the terminal. The remainder of the high variability at

Mattapan seems to be due to bus operators’ tendency to take long breaks due to the ample

break facilities available, nearby amenities such as coffee shops, and lack of supervision.

Milkovits used a cutoff value of 4 minutes to include at least 80% of observed minimum

recovery times at each terminal. In our case, the 80th percentile of minimum recovery times

at Mattapan would be 6 minutes, but we subtract one minute to account for the added vari-

ability due to the traffic signal, as this is present in all cases regardless of available recovery

time. Using our cutoff value of 5 minutes, we fit an exponential distribution to the early

and late departures from each terminal, shown in Figures 5-4 and 5-5. In general, the expo-

nential distribution fits the observed deviations well. The parameters for the distributions

used are given in Table 5.2.
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Figure 5-4: Route 1 - Schedule deviation among vehicles with >6 minutes of recovery time
available
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Figure 5-5: Route 28 - Schedule deviation among vehicles with >6 minutes of recovery time
available

Table 5.2: Schedule deviation - distribution parameters
Early departures Late departures

Route Terminal Observations Mean
earliness % Early departures Mean

lateness % Late departures

1 Dudley 2643 119 26% 148 74%
1 Harvard 2081 61 41% 91 59%
28 Ruggles 2091 74 44% 148 56%
28 Mattapan 2346 58 15% 166 85%
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5.2.4 Even-headway strategy

The minimum-layover and schedule-deviation factors that were modeled in Section 5.1.5

create deviations from the scheduled departure times, an important component of the sim-

ulation. With an even headway strategy, we expect to observe similar deviations from the

departure times after holding. Indeed, we observed in the experiment results in Chapter 4

that departure times frequently deviated from the instructions given to operators and su-

pervisors. In this section we will refer to the deviation factor more generally as “departure

deviation,” to include both the schedule-following and even-headway strategies.

For the even-headway strategy at terminals, we will draw values from the same distribu-

tions that were used for calculating minimum layover time and departure deviation in the

schedule-following case. Minimum layover time functions in the same way: Upon a vehicle’s

arrival at a terminal, a value is drawn for the minimum required layover at that terminal,

and the vehicle is not permitted to leave before the layover is up.

However, departure deviation is somewhat more complicated. The key distinction be-

tween the even-headway strategy and the schedule-following strategy is that in the even-

headway strategy, departure times are updated as new information becomes available.

Specifically, in our simulation the departure time is updated every minute. The random val-

ues for departure deviation cannot be re-drawn each time the holding period is re-calculated,

as this would bias the distribution of deviations against extreme values.

A naïve solution to this problem would be to draw the value for departure deviation

only once for each terminal departure, and to re-use that same value even when the holding

period is re-calculated. This creates a problem, however, when a particularly long value

is drawn. For example, if a deviation of 10 minutes of lateness is drawn during a period

when scheduled headways are less than 10 minutes, the vehicle will sit at the terminal for

the full 10 minutes, during which time one or more other vehicles will depart. It will then

re-calculate a new, later departure time, and add 10 minutes to that. Vehicles that draw

long departure times will thus get “stuck” at the terminal.

To solve these problems, while retaining the ability of the even-headway strategy to

update its departure times periodically, we use the following procedure upon the arrival of

a vehicle at a terminal: 1. Draw a value for minimum layover time (as in Section 5.2.3) 2.

Hold until the minimum layover time has passed 3. Draw a value for departure deviation (as
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in Section 5.2.3) a. If early departure: Set the earliness as a fixed value for this vehicle. All

recalculated departure times will be adjusted by this earliness value. b. If late departure:

Add the lateness value to the initial calculated departure time. This departure time becomes

a minimum departure time; the vehicle may not depart before this time. If the departure

time is re-calculated to fall after this minimum, the vehicle will depart at the exact re-

calculated time.

This procedure can be explained conceptually as follows: Early departures can be

thought of as being driven by an operator’s desire to stretch the rules by departing ear-

lier than instructed, and thus may move earlier or later as the departure is recalculated.

Late departures, on the other hand, are typically caused by a vehicle operator being away

from the vehicle at the instructed departure time. The value that is drawn for lateness can

be thought of as the amount of time before the operator returns to the vehicle. Upon the

operator’s return, he is able to depart at the instructed time, and thus we do not add more

lateness if the departure time is recalculated.

5.2.5 Boardings and alightings

Passenger boarding and alighting information is derived from two sources: Automated Fare

Collection (AFC) and Automated Passenger Counter (APC) data.

AFC data is used to estimate passenger arrival rates at stops with the following pro-

cedure: The day is divided into 30-minute time periods. For each stop, the number of

boardings on each bus is determined, along with the leading headway. Boardings on the

first bus of each period are split between that period and the preceding period, proportion-

ally to the part of the headway that was in each period. Passengers boarding the first trip

of the day at a stop are assumed to have arrived randomly during the five minutes prior to

the scheduled departure of the bus from that stop.

APC data is used to estimate the alighting fraction. The APC system determines a

passenger load and number of alightings for each stop, and the alighting fraction is averaged

over all alightings at a stop during each 30-minute time period.

Stop-level boardings are aggregated to the next timepoint along the route. This is done

so that the sum of boardings will equal the estimated load at each timepoint.
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5.3 Validation

In order to verify that the model sufficiently represents the transit system being studied, we

must go through a process of validation. To validate our simulation, we attempt to simulate

the conditions of typical MBTA service, and compare our results to observed data.

In this section we compare the performance of buses on a simulated version of MBTA

Route 1 with the actual performance on that route from September 15, 2014 to October

31, 2014. For evaluating performance statistics, the MBTA divides the service day into 7

time periods, shown in Table 5.3. The time periods of interest to our simulation are the

AM Peak, Midday Base, Midday School, and PM Peak periods, as these are the busiest

periods of the day and have high frequencies of service, making them suitable time periods

for the implementation of headway-based control strategies. We follow a similar method

to Sanchez-Martinez (2012), and calculate each statistic over groups by time period and

location, plotting them against a 45-degree line to visualize the similarity or difference, and

calculate the root mean squared error (RMSE) of the simulation results with respect to the

observed data.

Table 5.3: Time periods for analysis
Time Period Start End
Early AM 06:00 07:00
AM Peak 07:00 09:00
Midday Base 09:00 13:30
Midday School 13:30 16:00
PM Peak 16:00 18:30
Evening 18:30 22:00
Night/Sunrise 22:00 06:00

5.3.1 End-to-end running time

Figure 5-6 shows a comparison of means and standard deviations of end-to-end running

times in the simulated dataset, as compared with the real-world observations. One dot

represents a single direction of travel during one of the time periods. Our simulated mean

values of end-to-end running times match up very well with the observed values. The RMSEs

are 3.1 minutes for Route 1 and 2.1 minutes for Route 28, which is fairly low given that

the mean values were between 35 and 55 minutes. The simulated variability in end-to-

end running times was somewhat less accurately modeled, as can be seen on the lower two
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charts. Variability of running times was underestimated by the simulator on average, with

an RMSE of 2.0 minutes for Route 1, and 1.6 minutes for Route 28. Our simulation takes

into account correlations between adjacent segments, as described in Section ??. However,

it is likely that more complex correlations exist that drive running-time variability higher

than our simulator suggests.
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Figure 5-6: Validation of end-to-end running time means and standard deviations

5.3.2 Headways

Figure 5-8 shows the comparison of headway statistics from the simulator results against

the observed data. Each point represents a timepoint in a particular direction during a

time period. There is a clear distinction between the results for Route 1 and Route 28 in

this measure. The mean headway values from the Route 1 simulation match the observed

values very closely, with an RMSE of 0.5. The standard deviations are somewhat less closely

matched, but show no particular bias.
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The mean and standard deviation values for Route 28, on the other hand, are consistently

underestimated by the simulation. The lower mean-headway values indicate that fewer trips

are being made on Route 28 in real life than in the simulator. To test this, we compared the

scheduled number of trips, as well as the scheduled number of runs, with the actual trips

and runs served on each day in the sample (see Figure 5.4). On Route 28, a median of 7.3%

of scheduled trips were dropped each day, and a median of 1 scheduled run was dropped

completely. These dropped trips could be due to operator absenteeism, vehicle maintenance

issues, or vehicles being moved to serve other routes.
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Figure 5-7: Validation of headway means and standard deviations

97



Table 5.4: Dropped trips and runs
Dropped trips Dropped runs

Route 1 Route 28 Route 1 Route 28
Minimum 0 (0%) 1 (0.4%) 0 (0%) 0 (0%)
Median 5 (2.2%) 17 (7.3%) 0 (0%) 1 (2.6%)
Maximum 13 (5.8%) 31 (13.3%) 2 (4%) 3 (7.7%)
Total scheduled 223 233 50 39

5.3.3 Even-headway strategy

The simulation of the even-headway strategy, as described in Section ??, is based on the

strategy used in the experiment described in Chapter 4, but uses the same distributions of

departure-time deviations, rather than using the distributions observed in the experiment.

The purpose of this is to provide an “apples-to-apples” comparison of the two strategies,

with similar levels of deviation from instructed departure times, and to allow for the effect of

reducing departure-time deviations to be studied separately from the effect of the strategy. In

addition, the experiment provided a relatively small sample of data, with only four weekdays

with one four-hour period each weekday. Due to the fact that the sample size is small and

the model is based on driver behavior observed during the schedule-following strategy, we

do not necessarily expect a close correspondence between the simulation results and the

observed data.

Table 5.5 shows a comparison of running-time statistics from the experiment and from the

simulation of the even-headway strategy on Route 1. (The “Midday” time period referenced

here is that portion of the Midday School period that was part of the experiment, from

2:30 PM to 4:00 PM). Running times were notably both lower and less variable during

most of the experiment time periods than in the simulation. This may be partly due to the

implementation of the strategy leading to faster running times through dwell-time factors

not modeled in the simulation, but the sample size is small enough that it may simply be

due to random variation in travel times.

Figure 5-8 compares the simulated and observed values of mean headway and standard

deviation of headway, aggregated at the timepoint and time-period level as in Section ??.

Observed mean headways were slightly longer than simulated, implying that fewer trips were

completed during the experiment than in the simulation, and the Root Mean Squared Error

of mean-headway values was 0.9 minutes.

The standard deviations of headways have a worse fit, with a RMSE of 1.5 minutes.

98



Table 5.5: Comparison of running-time statistics for even-headway strategy

Direction Time Period
Mean

Running Time
Std Dev of

Running Time
Observed Simulated Observed Simulated

From Dudley Midday 39.9 42.1 3.0 5.7
PM Peak 43.7 48.8 7.3 13.0

From Harvard Midday 52.0 52.6 8.9 6.7
PM Peak 48.3 50.1 6.3 8.8

In general, the variability of headways on trips from Harvard was better in the experiment

than in the simulation, while the variability of trips from Dudley was at times worse, and

at times better. This agrees with the observations from Chapter 4 that trips from Harvard

performed significantly better than trips from Dudley during the experiment. The RMSE

for trips from Harvard was 1.7 minutes, while for trips from Dudley it was 1.2 minutes.

The fact that trips from Harvard had better performance in the real-life experiment than

in the simulation suggests that, as expected, the simulation is pessimistic when calculating

departure deviations for the even-headway strategy. The relationship between departure

deviation and the even-headway strategy will be explored further in the next chapter.

Figure 5-8: Comparison of headway statistics for even-headway strategy
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5.3.4 Summary of validation

The root mean squared error statistics are summarized in Table 5.6. In general, by adding

the element of operator behavior at terminals, we have improved upon the Sanchez-Martinez

model in better capturing the mean and standard deviation of headways. The downward

bias of the model in predicting values for Route 28 is concerning, but the RMSE values are

nevertheless low. We were unable to achieve as close a fit to the distribution as Milkovits did,

most likely because the Milkovits model explicitly incorporated dwell times and passenger

behavior.

Table 5.6: Validation summary - root mean squared error statistics
Running times Headways

Route 1 Route 28 Route 1 Route 28
RMSE of means (minutes) 3.1 2.1 0.5 1.0
RMSE of std. devs. (minutes) 2.0 1.6 0.8 1.3
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Chapter 6

Simulated Experiments

In this chapter, the simulation model developed in Chapter 6 will be used to further explore

control strategies based on real-time vehicle location data. The simulation experiments will

explore the following scenarios:

∙ The route on which the strategy is implemented

∙ The magnitude of deviations from assigned departure times

∙ The number and location of control points

∙ The type of strategy employed

We will first determine metrics to assess the results of the experiments, including both

metrics based on the passenger experience, reflecting the wait times, as well as a metric that

reflects the cost to agencies of the additional vehicles required to provide a good service

despite irregular headways.

6.1 Passenger experience metrics

6.1.1 Passenger wait time

Passenger wait time is the time between a passenger’s arrival at a stop, and the time that

passenger boards a vehicle. We will consider both total passenger wait time (TPWT) of all

passengers during a particular time period, as well as average passenger wait time (APWT).

We use the following notation, taken from Tribone (2013):
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𝜆𝑜
𝑝 = passenger arrival rate at origin station 𝑜 in period 𝑝

ℎ𝑜𝑖 = headway for trip 𝑖 at station 𝑜

Assuming that passengers arrive at a uniform rate (a random arrival process), the average

wait at station 𝑜 for trip 𝑖 will be ℎ
2 , and the total number of passengers served by this trip

will be 𝜆ℎ. Therefore, the total passenger wait time over all stations and trips within a time

period is as follows:

𝑇𝑃𝑊𝑇 =
1

2

∑︁
𝑖

∑︁
𝑜

(𝜆𝑜
𝑝ℎ

𝑜
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1

2
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𝑖

∑︁
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2 (6.1)

The average passenger wait time, then, is simply the total divided by the number of

passengers boarding during the time period:

𝐴𝑃𝑊𝑇 =
1
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(6.2)

Under “ideal” conditions of perfectly even headways, the APWT will be half the scheduled

headway. Under real-world conditions, the APWT will always be higher than this value.

For example, Route 1 during the PM Peak has a constant scheduled headway of 8 minutes,

which under perfect schedule adherence would lead to an APWT of 4 minutes. However,

the observed APWT for this time period on Route 1 between Sep. 15, 2014 and Oct. 3,

2014 was 6 minutes, 19 seconds.

6.1.2 Effective headway

Effective headway, as defined by Tribone (2013), measures the average headway at a stop,

weighted by the number of passengers experiencing each headway. Equation 6.3 defines the

effective headway at a stop, which is derived based on the assumption of random arrivals by

passengers at a rate of 𝜆. The number of passengers experiencing headway ℎ𝑖 is 𝜆ℎ𝑖, so the

effective headway 𝐻𝐸 is as follows:

𝐻𝐸 =

∑︀
𝑖
(𝜆ℎ2𝑖 )∑︀
𝑖
𝜆ℎ𝑖

=

∑︀
𝑖
(ℎ2𝑖 )∑︀
𝑖
ℎ𝑖

(6.3)
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We may extend the effective headway metric to cover all stops on the route by weighting

each observation by the passenger arrival rate at each stop (using the notation of the previous

section):

𝐻𝐸 =

∑︀
𝑖

∑︀
𝑜
𝜆𝑜
𝑝(ℎ

𝑜
𝑖 )

2∑︀
𝑖

∑︀
𝑜
𝜆𝑜
𝑝ℎ

𝑜
𝑖

(6.4)

Because of the assumption of a random arrival process for passengers, the effective head-

way is simply twice the average passenger wait time. It is a useful metric as it acts as a

bridge between the passenger-experience perspective, represented by average passenger wait

time, and the service-planning perspective, represented by scheduled headway. This rela-

tionship will be used in Section 6.2 to create a new metric relating headway variability to

the resources needed to operate a route.

6.2 Additional Vehicles Required metric

Metrics based on the passenger experience, as described above, are useful in communicating

the cost to passengers of irregular service in a way that is easy for passengers to understand.

However, passenger experience is only one consideration faced by decision-makers at transit

agencies; cost considerations are equally important in the decision-making process. An

agency operating a route with irregular headways should consider the implicit cost consisting

of the additional resources needed to operate its scheduled level of service. Thus, it is useful

to translate the passenger-focused metrics into a resource-based metric that relates the

irregularity of headways to the number of vehicles required to operate a route.

In this section, we define a metric, which we call "additional vehicles required," to

approximate the number of additional buses that would be needed to operate the route such

that the actual effective headway would be equal to the original scheduled headway, given

no change in operations management and control. Using this metric, managers can measure

the impact of an intervention in operations management not just in minutes of passenger

wait time saved, but also as an increase in the efficient use of resources.
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6.2.1 Assumptions

The Additional Vehicles Required metric is a translation of existing metrics using equations

that relate service characteristics such as scheduled headway, scheduled cycle time, and

coefficient of variation of headways. The relationships between these values will be true

only if certain assumptions are satisfied, and may be thought of as “approximately true” in

cases where these assumptions are not fully satisfied. The assumptions are as follows:

1. The arrival rate of passengers is constant over the time period at the selected stop.

2. The capacity of vehicles is non-binding, meaning that no passenger is denied boarding.

3. The process of vehicle arrival and departure is independent of the passenger arrival

and boarding process.

4. The mean observed headway for the time period is the scheduled headway for the time

period.

5. The scheduled cycle time, scheduled headway, and number of vehicles in service are

constant over the time period.

Assumptions 1-3 are similar to the assumptions used to set up the simulation. Assump-

tion 4 will be approximately true, given a sufficiently large sample size. We achieve a large

sample size by running 500 replications of the simulation for each scenario. Assumption

5 depends upon the existing schedule for the service. Because of the fluctuating levels of

service provided throughout the day, as well as the constraints imposed by vehicle and crew

scheduling needs, and the MBTA’s use of a scheduling system which makes fine adjustments

to cycle times throughout the day, Assumption 5 will not be perfectly satisfied.

In order to select appropriate time periods for analysis, we examine the scheduled head-

ways, cycle times, and number of buses in service throughout the day. In Figures 6-1 and 6-2,

we show the scheduled cycle times measured beginning at the Boston terminal (Dudley or

Ruggles) and the scheduled headways in each direction. Figure 6-3 shows the number of

buses in service throughout the day on each route. Cycle times, headways, and buses in

service vary significantly throughout the day, and do not follow the same patterns across

both routes. The AM Peak, from 7:00 AM to 9:00 AM, is highlighted as a time period

during which both routes have fairly consistent cycle times and headways, although both
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oscillate between headways that differ by one minute. The number of buses in service is also

consistent for each route, apart from a “run-up” period at the beginning of the time period

during which new buses are coming into service. Route 28 also has a long period in the

afternoon with fairly consistent scheduled headways and cycle times, and 13 buses in ser-

vice. In the analysis of the simulation, we will use the AM Peak period for both routes, and

the Midday School period on Route 28, for illustration of the “additional vehicles required”

metric.

Figure 6-1: Scheduled cycle times and headways on Route 1

Figure 6-2: Scheduled cycle times and headways on Route 28
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Figure 6-3: Number of buses in service per Fall 2014 schedule

6.2.2 Formulation of metric

We begin with an alternative formulation of the effective headway metric, shown in Equa-

tion 6.5 with �̂�ℎ representing the sample mean headway and ̂︂𝐶𝑉
2

ℎ the sample coefficient of

variation. This is a version of the formula described by Welding (1957), and, as shown in

Appendix A, is equivalent to Equation 6.3.

𝐻𝐸 = �̂�ℎ(1 +̂︂𝐶𝑉
2

ℎ) (6.5)

In Appendix B we show that this formula can be expanded to cover all stops along the

route by weighing each stop by the passenger arrival rate at that stop using the following

definitions of weighted mean and weighted coefficient of variation (for convenience, define

𝑀 =
∑︀
𝑜

∑︀
𝑖
𝜆𝑜
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(6.7)

In addition to this formula, we use the simple formula 𝑐𝑆 = 𝑛𝐻𝑆 , which shows that the
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scheduled cycle time 𝑐𝑆 on a route is equal to the scheduled headway 𝐻𝑆 times the number

of buses operating on the route 𝑛.

For this metric, we use the subscript 0 to represent the existing schedule, and the sub-

script 1 to represent the hypothetical case where additional buses are added to bring the

effective headway 𝐻𝐸1 down to the level of the original scheduled headway 𝐻𝑆0 . Using

Assumption 4, we substitute the scheduled headway 𝐻𝑆0 for the mean headway 𝜇ℎ in Equa-

tion 6.5:

𝐻𝐸0 = 𝐻𝑆0(1 +
̂︂𝐶𝑉

2

0) (6.8)

With our assumption that the scheduled cycle time will remain constant on the route

during the selected time period, we have the following:

𝑐 = 𝑛0ℎ𝑆0 = 𝑛1ℎ𝑆1 (6.9)

Finally, we set ℎ𝐸1 = ℎ𝑆0 and ̂︂𝐶𝑉 0 = ̂︂𝐶𝑉 1 and find 𝑛1 in terms of 𝑛0:

ℎ𝐸1 = ℎ𝑆0 =⇒ ℎ𝑆0 = ℎ𝑆1(1+
̂︂𝐶𝑉

2

1) =⇒ 𝑛1ℎ𝑆1 = 𝑛0ℎ𝑆1(1+
̂︂𝐶𝑉

2

0) =⇒ 𝑛1 = 𝑛0(1+̂︂𝐶𝑉
2

0)

(6.10)

Thus, in order to bring the effective headway on a route down to its scheduled headway,

as measured during a particular time period, the number of buses operating on the route

must be increased by a factor of 1 +̂︂𝐶𝑉
2

0. The square of the coefficient of variation, then,

represents the percent increase in buses on the route needed to provide the level of service

indicated on the schedule, given no change in operations management and control. This

is a worst-case scenario; in reality, adding buses to a route could be combined with other

service improvements. The Additional Vehicles Required metric, as defined here, is most

useful when comparing different service interventions, such as the holding and short-turning

strategies explored in this research, with each other or with a baseline level representing

current service. If a control strategy leads to a significant reduction in Additional Vehicles

Required, this indicates that the vehicles on the route are being used more efficiently.
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6.2.3 Percentage value vs. integer value

The calculations above result in a percent change in the number of buses required on a

route. In reality, this will be translated into a number of buses. When examining a single

route independent of any resource-sharing with other routes, the number of buses required

is found by rounding 𝑐
𝐻𝑆

up to the next higher integer:

𝑛 =

⌈︂
𝑐

𝐻𝑆

⌉︂
(6.11)

The practice of interlining allows fractional values for 𝑛. Interlining is the practice of

using a single vehicle on multiple routes over the course of a day. For example, consider

two routes, each with a cycle time of 70 minutes and a target headway of 20 minutes. If

the routes are scheduled independently, then
⌈︀
70
20

⌉︀
= 4 buses would be required on each, for

a total of 8 buses. However, if they share a terminal and can be scheduled using the same

vehicles, then interlining can be implemented by considering the two together as a combined

route with a cycle time of 140 minutes, requiring only
⌈︀
140
20

⌉︀
= 7 buses. This can be thought

of as 3.5 buses on each route.

Large agencies such as the MBTA, which operate many routes out of shared terminals,

have many opportunities for interlining, including much more complex examples than the

one given above, made possible by the use of optimization schemes. In the Fall 2014 bus

schedule, which is the schedule used in this thesis, vehicles on Route 1 interline with 10

other routes. Vehicles on Route 28, on the other hand, do not interline except in special

cases, as Route 28 draws from a separate fleet of articulated buses which are used on only

a few MBTA routes.

Even when interlining is used, schedulers are limited to a discrete set of values for 𝑛,

the number of buses used on a route. Without knowing the details of the specific schedule-

optimization methods used, it is impossible to determine how many additional buses would

be required for a particular scheduled headway. When presenting results for the AVR metric,

we will give two values: The percentage change in 𝑛, which is an “ideal” value that could be

achieved given perfect interlining, and the rounded value, which is the worst-case number

of additional vehicles required if no interlining is possible.
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6.3 Impact of even-headway strategy

The implementation of an even-headway strategy using an automated decision tool should

improve bus performance in two ways. First, by adjusting departure times to even out head-

ways, and second, by improving operator compliance with assigned departure times. As an

even-headway strategy can only be implemented with some type of direct communication

with the operator, whether through an automated device or through a supervisor or dis-

patcher, we expect that operator compliance will improve significantly. In this section we

investigate the impacts of these two factors.

6.3.1 Improvement from reducing deviations

First, we examine the impact of reducing operator deviations from instructed departure

times. We begin with the full values for deviations determined in Chapter 6, and then

reduce those values by a factor of two. The original and reduced parameter values are given

in Table 6.1. This represents a realistic reduction in deviations, as the halved values are

similar in magnitude to those found by Milkovits (2008). The results are given in Table 6.2.

The improvement in average passenger wait time from reducing the magnitude of deviations

is non-linear; reducing from the full deviations to half deviations has a larger impact than

going from the halved deviations to zero deviation. This non-linear relationship is consistent

with the fact that wait time is a function of the square of the coefficient of variation of

headways.

Table 6.1: Reduction in parameters for departure deviations (seconds of deviation)
Full deviations Half deviations

Avg Earliness Avg Lateness Avg Earliness Avg Lateness
Dudley 123 147 62 74
Harvard 61 90 31 45
Mattapan 59 160 30 80
Ruggles 77 153 39 77

109



Table 6.2: Improvement in average passenger wait time from reducing deviations (using the
schedule-following strategy)

Average passenger wait time
(minutes)

Route 1 Route 28
Peak Midday Peak Midday

Full deviations 7.26 8.64 6.14 6.54
Half deviations 7.07 8.39 5.97 6.28
Zero deviations 6.99 8.37 5.90 6.20

6.3.2 Improvement from implementing even-headway strategy

In this section, we examine the improvement from implementing the even-headway strategy.

We use the halved deviations in both the even-headway and schedule-following versions of

the simulation, in order to create an “apples-to-apples” comparison. The improvement from

implementing the strategy is consistently larger than the improvement from halving the

deviations, and the total reduction in APWT ranges from 0.68 to 0.76 minutes.

Table 6.3: Combined improvement from both halving deviations and implementing strategy
Average passenger wait time
(minutes)

Route 1 Route 28
Peak Midday Peak Midday

Schedule 7.07 8.39 5.97 6.28
Even-headway 6.55 7.88 5.39 5.87
Improvement
from strategy 0.51 0.51 0.58 0.41

Improvement
from deviations 0.19 0.25 0.17 0.27

Total improvement 0.70 0.76 0.75 0.68

To demonstrate the use of the Additional Vehicles Required metric, we show in Figure 6.4

the improvement over the three time periods defined above. In the AM Peak on Route 28,

the largest improvement is observed, with the AVR dropping from 32.0% to 11.9% when the

even-headway strategy is implemented, along with an improvement of 4.6% from reducing

the deviations by half. This means that a total improvement of 24.7% was achieved, implying

that implementing the even-headway strategy on this route during this time period had an

effect equivalent to a 24.7% increase in the number of vehicles devoted to this route. The

other two time periods, the AM Peak on Route 1 and the Midday School period on Route

28, show improvements of 7.7% and 7.4%, more modest in magnitude but still significant to

an agency’s bottom line.

It is also useful to examine the total amount of service provided in each scenario. Cer-
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Table 6.4: Improvement in Additional Vehicles Required
Route 1 Route 28

AM Peak AM Peak Midday
School

Schedule 9.7% (1 bus) 32.0% (4 buses) 10.1% (2 buses)
Even-headway 6.4% (1 bus) 11.9% (2 buses) 7.4% (1 bus)
Improvement
from strategy 3.4% (0 buses) 20.1% (2 buses) 2.7% (1 bus)

Improvement
from deviations 4.3% (1 bus) 4.6% (0 buses) 4.7% (0 buses)

Total improvement 7.7% (1 bus) 24.7% (2 buses) 7.4% (1 bus)

tain types of even-headway strategies may appear to reduce average waits by evening out

headways, but might in fact be simply increasing the number of trips made by reducing the

average layover. This is unlikely to be the case with our strategy, because of the constraint

preventing departures before the scheduled departure time. Nevertheless, for completeness

we present in Table 6.5 the number of vehicle-timepoints served in each scenario; that is, the

number of times each timepoint was served by a vehicle in each direction. This shows that

in fact, slightly less total service was provided under the even-headway strategy, making the

improvements in passenger waiting time even more impressive.

Table 6.5: Vehicle-timepoints served
Route 1 Route 28

Peak Midday Peak Midday
Schedule 535 592 736 1002
Even-headway 529 590 724 1009

6.4 Additional control strategies

In this section, we examine different strategies beyond the terminal-only holding strategy.

These strategies rely on specific route characteristics, and so we limit our tests in this section

to Route 1 only, which has more appropriate conditions for both strategies. First, we add to

the terminal control points an additional mid-route control point in each direction, testing

both a limited and unrestricted holding strategy. Next, we test a short-turn strategy that

was identified during the experiment. In both cases, the new strategy is in addition to

the terminal-based holding strategy, rather than a standalone strategy. This is because

both midpoint holding and short-turning suffer from negative customer impacts that are
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not incurred by terminal-based holding, and so to minimize these impacts, the strategies are

best used in combination with terminal holding.

6.4.1 Midpoint holding

The midpoint holding strategy tested here is conceptually similar to the basic even-headway

strategy already discussed. In this strategy, in addition to controlling departures from the

terminals, we select a single midpoint in each direction at which buses will be held to even

headways. Providing additional control points should lead to better regularity of headways,

and reduce the magnitude of holding necessary at each control point.

The cost to passengers of holding at a midpoint is greater than at a terminal, because

at any midpoint stop, there are likely to be passengers on-board the vehicle who are being

delayed in the middle of their trip. This is a very unpleasant experience for passengers, and

was cited in conversations with MBTA staff as a reason the agency has avoided midpoint

control strategies in the past. Pangilinan (2008) limited midpoint holding to a maximum

of two minutes in his experiment with Chicago bus routes for this reason, and Sanchez-

Martinez (2014) also uses a two-minute limit for midpoint holding. In our simulation, we

test both unrestricted holding at the midpoint as well as holding limited to a maximum of

two minutes.

We selected the Massachusetts Avenue subway station as the control point in both direc-

tions on Route 1. This stop is a good candidate for holding as it is one of the major transfer

points on the route. Passengers who are connecting to another transit service would be very

frustrated if the bus were held before the transfer point; conversely, passengers connecting

to the Route 1 from the subway may be grateful that the bus was held at the transfer

point if the hold allows them to make this connection. Figure 6-4 shows that the Mass

Ave station (represented by a vertical black line) comes at a point where the number of

passengers traveling through (neither boarding nor alighting) is relatively low (during many

periods there is a “dip” in the load profile around this station), and the number of passengers

boarding and alighting is relatively high. These two factors may help mitigate the in-vehicle

holding time cost. Massachusetts Avenue was selected over the other major subway station,

Hynes Convention Center, as it has bus pull-outs which would allow buses to hold without

interrupting traffic on the street.
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Figure 6-4: Load profiles on Route 1 by time period and direction

6.4.2 Short-turn

The final strategy simulated is the short-turn strategy described in Chapter 4. This strategy

(shown in Figure 6-5) is implemented at the second-to-last stop approaching Harvard, at

Bow Street and Massachusetts Avenue. A bus at this stop can turn down Bow Street and

begin its next trip immediately, cutting off significant distance and travel time from the

route. This short-turn strategy was noted by MBTA staff as a convenient option that is

occasionally used by experienced dispatchers or supervisors. The added cost to passengers is

that all of those on board a bus that is short-turned will be forced to alight, and either walk,

or wait for the next bus. Mitigating this is the fact that the distance from the short-turn

stop to the final stop is very short (approximately 850 feet) and that the short-turn strategy

is likely to be implemented in cases where bunching is occurring, meaning that another bus

will likely be available to pick up passengers quickly.

In this simulation, we will implement the strategy using a heuristic similar to that used

for the holding strategies. The goal of the decision-rule is to use short-turning to improve
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Figure 6-5: Short-turn strategy with timepoints marked

the evenness of headways; thus, it will be used when a vehicle at the control point has a

long leading headway and a short trailing headway.

Figure 6-6 shows the basic structure of the route and the strategy, as modeled in the

simulation. As the simulation is at the timepoint rather than the stop level, we approximate

the location of the short-turn by its nearest timepoint, which is the timepoint at Mt. Auburn

Street and Putnam Ave, abbreviated “maput.” Each timepoint is treated separately in each

direction, so the Mt. Auburn and Putnam timepoint is labeled as “maput-IB” and “maput-

OB” in the “Inbound” (toward Dudley) and “Outbound” (toward Harvard) directions. The

Harvard terminal and directional stops are represented here as simply “hhgat” for simplicity.

The strategy is implemented as follows:

1. A bus arrives at maput-OB (this will be referred to as the “control vehicle”).

2. If any buses are active on the route between maput-OB and maput-IB, do not short-

turn.

3. If any buses are scheduled to enter service at Harvard before the control vehicle departs,
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do not short-turn.

4. If neither of the above two conditions holds:

(a) Predict the next departure time from maput-IB following the control vehicle,

assuming that it does not hold beyond the scheduled departure or short-turn.

(b) Calculate the ideal departure time for the control vehicle from maput-IB as the

time that would equalize the vehicle’s leading and trailing headways at maput-IB.

(c) Predict the arrival time of the control vehicle at maput-IB if it follows the short-

turn strategy and if it follows the regular route.

(d) Choose the strategy which leads to an arrival time closest to the ideal departure

time calculated in 4b.

Figure 6-6: Implementation of the short-turn strategy in the simulation

To create a distribution of running-time data on the short-turn segment, we must use

APC data, as the AVL data source is only available at the timepoint level. We create

a set of short-turn running times by combining a vehicle’s running time on the inbound

segment from Mt. Auburn and Putnam with that vehicle’s subsequent running times on the

outbound segments between Quincy St and Mt. Auburn and Putnam. As the APC system

is installed on a limited number of buses, the set of observed running times is smaller.

However, because the mean running times on these segments do not vary greatly across

time periods, we combine them into a single sample for the entire day, giving a total of 162

observations, with a mean of 176 seconds and a standard deviation of 45 seconds.

In addition to the running time on the short-turn segment, we must account for the

additional dwell time necessary to unload all passengers on board the bus. As dwell time is
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not explicitly modeled in our simulation, we add a constant one minute to the running time

to account for the additional dwell time necessary to instruct passengers and allow them to

disembark.

6.5 Impact of midpoint holding

In this section, we examine the results of the midpoint-holding strategy, with and without

a 2-minute limit on holding time, compared with the terminal-only holding strategy and

the schedule-following strategy. The cost in time to passengers is decomposed into time

spent waiting at stops and time spent holding on-board buses, and these are compared to

determine the relative benefit of adding control points along the route.

Tables 6.6 and 6.7 show a comparison of the results from the terminal and midpoint

strategies in the peak periods and midday periods, respectively. In these tables, “Wait time”

refers to the waiting time of passengers at stops, while “In-vehicle holding” refers to the

time spent by passengers in a vehicle holding at a midpoint. The tables show the savings

in average passenger wait time, the cost in average minutes of in-vehicle holding time per

passenger, and the average total delay which is simply the sum of the two sources of delay.

All values represent the average per day over 100 simulations.

Table 6.6: Comparison of strategies in the peak periods on Route 1

APWT
(minutes)

Avg. in-vehicle
holding time
(minutes)

Avg. total delay
time (minutes)

Schedule 7.07 0 7.07
Even-headway
(terminals only) 6.55 0 6.55

Even-headway
(terminals + midpoints) 5.99 0.60 6.59

Even-headway
(terminals + midpoints,
with 2-min limit)

6.28 0.25 6.53
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Table 6.7: Comparison of strategies in the midday periods on Route 1

APWT
(minutes)

Avg. in-vehicle
holding time
(minutes)

Avg. total delay
time (minutes)

Schedule 8.39 0 8.39
Even-headway
(terminals only) 7.88 0 7.88

Even-headway
(terminals + midpoints) 7.27 0.62 7.89

Even-headway
(terminals + midpoints,
with 2-min limit)

7.72 0.24 7.97

Table 6.8 shows the Additional Vehicles Required metric, as calculated for the different

holding strategies. Although none of the values is sufficiently large to constitute an additional

vehicle, the percentage change from 9.7% for the schedule-following strategy to 5.0% for

limited midpoint holding constitutes almost half a bus (given the scheduled level of 10 buses

in service), and thus could represent significant resources if interlining is possible.

Table 6.8: Additional Vehicles Required on Route 1 in the AM Peak period
Additional Vehicles

Required
Schedule 9.7% (1 bus)
Even-headway
(terminals only) 6.4% (1 bus)

Even-headway
(terminals + midpoints) 3.3% (1 bus)

Even-headway
(terminals + midpoints,
with 2-min limit)

5.0% (1 bus)

Overall, there appears to be no significant benefit to adding midpoint holding on Route

1. Holding vehicles at Mass Ave station did not reduce the average delay time to passengers,

instead re-distributing a small portion of the delay from waiting time to in-vehicle holding

time. In the next sections, we will discuss the relative importance of waiting time and in-

vehicle holding time, and the change in the way delays were distributed across passengers.

6.5.1 Relative weights of wait time and holding time

The assessment of the costs of midpoint holding strategies depends upon the relative weights

of wait time at stops and in-vehicle holding time. Significant research has been devoted to
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the relative disutility of different components of journey time. In this section, we will discuss

some of this research, and how it applies to the question of in-vehicle holding time vs. waiting

time.

Studies of travel behavior typically decompose travel time into two components: in-

vehicle time and out-of-vehicle time, sometimes splitting out-of-vehicle time into access

time (e.g. walking to a stop), initial wait time, and transfer time (Ben-Akiva and Lerman,

1985). Typically, wait time is found to be more onerous to passengers than in-vehicle time

by a factor of 2 to 3 (Iseki et al, 2006). Sanchez-Martinez (2014) and Delgado et al (2012),

in their simulations of holding strategies, used cost functions that included a factor of 2 for

this value.

In the literature, in-vehicle time is typically treated as a single value, with no separate

treatment for time spent holding in vehicles. The reason for this is simply a lack of data:

In order to evaluate the impact of holding time on passengers, one would need detailed

records of holding time on vehicles as well as specific data on individual passengers’ trips by

vehicle. Such data has only very recently become available, and only on the largest transit

systems. In order to determine how to treat in-vehicle holding time, we will examine related

literature.

Carrel et al (2013) examined the effects of various attributes of service on San Francisco

Muni travelers’ likelihood of shifting modes away from transit. They obtained two findings

that are relevant to this research:

1. “[...] in-vehicle delays are more likely to drive people away from transit than longer

waiting times at passengers’ origin stops.” This notably contradicts the research men-

tioned above.

2. Delays caused by traffic, vehicle breakdowns, and other causes easily visible to passen-

gers had a significantly weaker effect than delays whose causes were not visible, such

as congestion at tunnel portals.

The first finding may be related to the increasing availability of real-time vehicle arrival

predictions. Authors such as Chow et al (2013) and Ferris et al (2010) have found that the

availability of predicted arrival times significantly reduces passengers’ estimation of their

wait time and increases satisfaction with transit service. The second finding, while not

specifically applied to holding strategies (which are not commonly used by Muni), likely
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applies to the case of holding. Even if a hold is announced to passengers, the reason for the

hold is not obvious, and its benefits are entirely hypothetical, from the point of view of the

passengers already on-board.

For these reasons, we believe that in-vehicle holding time is significantly more onerous to

passengers than in-vehicle travel time, and should not be treated in the same way. Without

a strong reason to believe that in-vehicle holding time has a stronger (or weaker) effect

on passengers’ utility than wait time, we treat the two equally, and sum them to create

a measure of total delay time, which leads to the conclusion that total passenger cost is

not improved by the addition of midpoint holding. We acknowledge that further research

is needed in this area, perhaps using a targeted survey of the type implemented by Chow

(2014), in combination with archived data from a decision tool, as described in Section 3.4.5.

6.5.2 Distribution of passenger cost

We have shown that, in terms of total passenger delay time, adding midpoints to the holding

strategy has little effect; it simply trades in-vehicle holding time for waiting time, leaving

the total delay approximately constant. Another way in which the strategy may be an

improvement for passengers is if it reduces the variation in total passenger cost. Tables 6.9

and 6.10 show the median and 95th percentile values of passenger wait time and in-vehicle

holding time.

Table 6.9: Distribution of passenger costs during the peak periods on Route 1
Percentile values
of waiting time

(min)

Percentile values
of in-vehicle

holding time (min)
50th 95th 50th 95th

Schedule 5.6 18.7 0 0
Even-headway
(terminals only) 5.3 16.7 0 0

Even-headway
(terminals + midpoints) 5.0 15.1 0 4.4

Even-headway
(terminals + midpoints,
with 2-min limit)

5.1 15.9 0 2

It is clear that the variation in waiting time is reduced by the addition of midpoint

holding. The limited midpoint holding strategy reduces the 95th percentile waiting time

by 0.8 minutes in the peaks, and 0.3 minutes in the midday, likely because the 2-minute
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Table 6.10: Distribution of passenger costs during the midday periods on Route 1
Percentile values
of waiting time

(min)

Percentile values
of in-vehicle

holding time (min)
50th 95th 50th 95th

Schedule 7.0 20.9 0 0
Even-headway
(terminals only) 6.8 18.9 0 0

Even-headway
(terminals + midpoints) 6.4 17.2 0 4.6

Even-headway
(terminals + midpoints,
with 2-min limit)

6.6 18.6 0 2

constraint is more restrictive relative to the longer midday headways. Unfortunately, be-

cause the simulation does not model individual origin-destination pairs, we cannot create

a distribution of total passenger delay time. However, if wait time and in-vehicle holding

time are negatively correlated, then we can infer that the distributions of total delay time

in the midpoint holding scenarios are still narrower than the distribution for terminal-only

holding.

To show that wait time and in-vehicle holding time are negatively correlated, we first

note that any passenger who arrives during a hold will, by definition, have zero wait time

and positive in-vehicle holding time. For the remaining passengers, the negative correlation

between wait time and in-vehicle holding time is created by the fact that vehicles are held

when their leading headway is shorter than their trailing headway, and so on average, held

vehicles have shorter leading headways than vehicles not held (this is shown in Figure 6-

7). Passengers on-board a vehicle with a short leading headway most likely experienced a

short wait time, and vice-versa. Therefore, for individual passengers, longer wait times are

associated with shorter in-vehicle holding times.

Because of this inverse relationship between wait time and in-vehicle holding time, we can

generally say that the midpoint holding strategies spread out the passenger cost more evenly

among passengers, by reducing the wait time of the longest-waiting passengers, but adding

holding time to those passengers who had short waits. The magnitude of the reduction

in 95th-percentile total delay time is, at most, equal to the reduction in 95th percentile

waiting time shown in Tables 6.9 and 6.10. The reductions of 1.6 minutes in the peak and

1.7 minutes in the midday periods, shown by the unlimited holding strategy, are significant,
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but due to the large amount of in-vehicle holding time necessary (greater than 4 minutes in

the 95th percentile case), it is unlikely that these would be acceptable. In the more realistic

scenario of midpoint holding with a 2-minute cap, the reduction in 95th-percentile wait time

is much smaller, particularly in the midday as mentioned above.

Figure 6-7: Leading headways by time period and holding strategy (Route 1)

6.6 Impact of short-turning

The results of the short-turning strategy are shown in Tables 6.11 and 6.12. The improve-

ment in average passenger wait time, and the distinction between the peak and midday

periods, as well as the costs in forced alightings, will be discussed in detail in this section.

Table 6.11: Impact of short-turn strategy in the peak periods (at Harvard, Route 1)

APWT
(minutes)

Percentile values
of waiting time

(min)
% of trips
short-turned

% of outbound
passengers
forced to alight50th 95th

Schedule 7.07 5.6 18.7 - -
Even-headway
(terminals only) 6.55 5.3 16.7 - -

Even-headway
(terminals + short-turn) 6.33 5.2 15.9 2.8% 2.9%

121



Table 6.12: Impact of short-turn strategy in the midday periods (at Harvard, Route 1)

APWT
(minutes)

Percentile values
of waiting time

(min)
% of trips
short-turned

% of outbound
passengers
forced to alight50th 95th

Schedule 8.39 7.0 20.9 - -
Even-headway
(terminals only) 7.88 6.8 18.9 - -

Even-headway
(terminals + short-turn) 7.84 6.8 18.7 5.7% 3.2%

6.6.1 Improvement in APWT

The results of the short-turn strategy are strikingly different between the peak and midday

periods. In the peaks, the short-turn strategy reduced average passenger wait time by

an additional 0.22 minutes over terminal-only holding, and reduced the 95th percentile wait

time by an additional 0.8 minutes. In the midday, on the other hand, the short-turn strategy

only saved 0.04 additional minutes of APWT and reduced the 95th-percentile wait time by

0.2 minutes.

To understand this difference, we examine the wait-time tradeoff between passengers

waiting on the skipped segment, who face a cost in additional wait time whenever the short-

turn is implemented, and passengers waiting downstream, who benefit from reduced waiting

time. We refer to the set of stops which are skipped by short-turned vehicles as the “Harvard

Loop.”

Figure 6-8 shows the cost to passengers on the Harvard Loop, in the form of distributions

of APWT values over the 100 replications of the simulation. Figure 6-9 shows the benefits,

in the form of reduced APWT on the remainder of the route. The difference between the

two time periods shows up both on the cost and benefit side: As summarized in Table 6.6.1,

the costs are greater, and the benefits smaller, in the midday than in the peaks. In the next

section we will explain the mechanism behind this difference by examining the distributions

of headways among short-turned vehicles.
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Figure 6-8: Distributions of average passenger wait time on the Harvard Loop

Figure 6-9: Distributions of average passenger wait time at all other stops
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Table 6.13: Costs and benefits in TPWT from short-turn strategy in different periods
All values are
means over
100 replications

Cost in add’l TPWT
on Harvard loop

(pass.-hrs)

TPWT savings
at other stops

(pass.-hrs)
Midday periods 4 5
Peak periods 0 13

6.6.2 Usage of short-turn in different time periods

As described above, the short-turn strategy had very different impacts on passenger wait

time in the midday periods vs. the peak periods. Another difference between the two periods

was in the frequency of short-turning; although the percentage of passengers forced to alight

was approximately the same (2.9% in the peak vs. 3.2% in the midday), the percentage of

trips short-turned was much higher in the midday (5.7% vs. 2.8%).

Figure 6-10 shows that the minimum leading headway required to justify a short-turn

is approximately 10 minutes in all periods. 10-minute headways naturally occur more fre-

quently during the midday, due to the presence of fewer vehicles in service, which is why the

frequency of short-turning vehicles is higher during the midday. The reason the percentage

of passengers forced to alight does not similarly rise in the midday is that the vehicles short-

turned are on average less crowded relative to other vehicles in the same period; a 10-minute

headway may even be shorter than the scheduled headway during the midday.
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Figure 6-10: Leading headways of short-turned vehicles at the short-turn point

Figure 6-11: Trailing headways of short-turned vehicles at the short-turn point
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One possible reason for the disparity might be that we need to apply a higher threshold

to the short-turn decision in the midday periods than we do in the peaks. To test this,

we extend the decision rule as follows: Given the ideal departure time from maput-IB

𝑡𝑖𝑑𝑒𝑎𝑙, the expected departure time with short-turning 𝑡𝑠ℎ𝑜𝑟𝑡, and the expected departure

time without short-turning 𝑡𝑛𝑜𝑟𝑚𝑎𝑙, we short-turn a bus at maput-OB if |𝑡𝑖𝑑𝑒𝑎𝑙 − 𝑡𝑠ℎ𝑜𝑟𝑡| +

𝑑 < |𝑡𝑖𝑑𝑒𝑎𝑙 − 𝑡𝑛𝑜𝑟𝑚𝑎𝑙|, for some threshold value 𝑑. The threshold value can be raised to

decrease the amount of short-turning, and use it only in cases where the benefit to headway

regularity is highest. With a value of zero, the strategy is identical to that describe above.

We show the results with various threshold values in Table 6.14. The results are similar

regardless of threshold, which confirms that the short-turning strategy provides no benefit

over the terminal-only even-headway strategy in the midday periods. Reasons for this will

be discussed in Section 6.6.3.

Table 6.14: Impact of short-turn strategy in the midday with varying threshholds (at Har-
vard, Route 1)

Threshold
(minutes)

APWT
(minutes)

Percentile values
of waiting time

(min)
% of trips
short-turned

% of outbound
passengers
forced to alight50th 95th

0 7.84 6.8 18.7 5.7% 1.6%
2 7.84 6.8 18.7 4.1% 1.3%
4 7.89 6.8 18.9 2.3% 0.8%
6 7.86 6.8 18.8 0.2% 0.0%

6.6.3 Impacts on groups of passengers

To explain the differences in performance of the strategy during different time periods, we

examine the impact of a short-turn on passenger wait time. This analysis uses assump-

tions similar to those used by Eberlein (1999) to model deadheading and expressing. The

assumptions are the following:

∙ Headways remain constant along the route

∙ Passenger arrival rates are constant

∙ The control vehicle will not hold at the terminal if it is not short-turned

∙ The trailing vehicle will neither hold at the terminal nor be short-turned
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These assumptions reduce the realism of the model, but it is nevertheless illustrative of

the relationships between the main factors influencing the costs and benefits of the short-

turn. We will use the following notation for these factors:

𝜆𝑖 = passenger arrival rate at stop 𝑖

𝑆 = the set of skipped stops (the Harvard Loop)

𝐷 = the set of downstream stops

ℎ𝑙 = leading headway of control vehicle

ℎ𝑡 = trailing headway of control vehicle

𝑡0 = running-time savings of short-turn

There are three groups of passengers who experience a change in wait time when the

Bow Street short-turn is implemented:

Costs on the Harvard Loop

The first group consists of those passengers who would have boarded the control vehicle if

it was not short-turned. These passengers arrived between the leading vehicle and the time

that the control vehicle would have arrived, a length of time equal to the leading headway

ℎ𝑙. Thus, the number of passengers in this group is equal to ℎ𝑙
∑︀
𝑖∈𝑆

𝜆𝑖. The cost to each

passenger is the additional wait time they face before boarding the trailing vehicle, which is

equal to the trailing headway ℎ𝑡. The total cost in passenger-minutes, then, is ℎ𝑡ℎ𝑙
∑︀
𝑖∈𝑆

𝜆𝑖.

Costs to downstream passengers

The second group consists of those passengers downstream who would have boarded the

control vehicle if it was not short-turned, but because of the short-turn, arrive too late and

must wait for the trailing vehicle. They arrive on an interval of length 𝑡0, the time between

when the control vehicle would have arrived and when the trailing vehicle actually does

arrive, so the total number of passengers in this group is 𝑡0
∑︀
𝑖∈𝐷

𝜆𝑖. The cost to them is equal

to their additional waiting time, which is ℎ𝑡, and the total cost associated with this group

is ℎ𝑡𝑡0
∑︀
𝑖∈𝐷

𝜆𝑖.
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Benefits to downstream passengers

The third group consists of those passengers downstream who board the control vehicle

whether or not it is short-turned. These passengers arrive between the leading vehicle’s

arrival and the control vehicle’s actual arrival (after implementing the short-turn), a time

period of length ℎ𝑙− 𝑡0. The total number of passengers is (ℎ𝑙− 𝑡0)
∑︀
𝑖∈𝐷

𝜆𝑖, and the benefit to

these passengers is the reduction in waiting time, equal to 𝑡0. The total benefit in passenger-

minutes is 𝑡0(ℎ𝑙 − 𝑡0)
∑︀
𝑖∈𝐷

𝜆𝑖.

Net benefit in passenger wait time

Based on the three groups outlined above, the net benefit NB of short-turning is estimated as

shown in Equation 6.12, and the total number of affected passengers 𝑃 as in Equation 6.13.

The net wait time benefit per affected passenger is NB
𝑃 .

NB = −ℎ𝑡ℎ𝑙
∑︁
𝑖∈𝑆

𝜆𝑖 − ℎ𝑡𝑡0
∑︁
𝑖∈𝐷

𝜆𝑖 + 𝑡0(ℎ𝑙 − 𝑡0)
∑︁
𝑖∈𝐷

𝜆𝑖 (6.12)

P = ℎ𝑙
∑︁
𝑖∈𝑆

𝜆𝑖 + 𝑡0
∑︁
𝑖∈𝐷

𝜆𝑖 + (ℎ𝑙 − 𝑡0)
∑︁
𝑖∈𝐷

𝜆𝑖 (6.13)

This equation shows the basic mechanism by which the midday period differs from the

peak periods. The mean values for the inputs to this equation are shown in Table 6.15.

Between the two periods, the demand levels are approximately 55% higher in the peaks

than the midday, an increase which is roughly constant between the loop segment and the

downstream segment. The major differences are that headways are longer in the midday,

because fewere buses are in service, and the time savings from the short-turn strategy is

reduced, because running times on the loop are shorter due to reduced traffic. These differ-

ences lead to a increase in the magnitude of the first term (costs to passengers on the loop),

and changes in magnitude of the other two terms which are unclear, but are dominated by

the first term as headways increase. A numerical example is shown in Table 6.16, which uses

the values from Table 6.15 as inputs to calculate the benefits and costs of each component

and the net benefit.

These results show that the net benefit of the short-turning strategy did not simply vary

with the level of demand on the route during the different periods, but that in fact the costs
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Table 6.15: Example inputs to net benefit of short-turn (mean values from simulation)

Leading headway
ℎ𝑙

Trailing headway
ℎ𝑡

Arrival rate
on loop

∑︀
𝑖∈𝑆

𝜆𝑖

Arrival rate
downstream∑︀

𝑖∈𝐷

𝜆𝑖

Time savings
𝑡0

Midday 25.0 min. 3.5 min 0.9 pass./min 4.0 pass./min 4.7 min
Peak 22.3 min. 1.2 min 1.4 pass./min 6.2 pass./min 5.7 min.

Table 6.16: Example calculation of net benefit of short-turn
Cost on Loop

per affected pass.
Downstream cost
per affected pass.

Downstream benefit
per affected pass.

Net benefit
per affected pass.

Midday -0.2 pass.-min. -0.3 pass.-min. 3.5 pass.-min. 3.0 min.
Peak -0.6 pass.-min. -0.5 pass.-min. 3.1 pass.-min. 1.9 min.

were lower, and the benefits higher, during the peak. This simplified model still shows a

positive net benefit in the midday example scenario, but the net benefit in both scenarios is

overestimated due to the assumption of deterministic headways which ignores the loss from

irregular running times along the route.

This demonstration shows that the benefits of short-turning can vary dramatically across

time periods, and different characteristics such as demand patterns, headways, and running-

time savings. If a heuristic strategy like this one is to be used on a route, significant

simulation work should be done first to ensure that the strategy will be effective. To ensure

that all factors are fully taken into account, an optimization-based approach would be ideal,

with estimates (or real-time measures if available) of passenger loads and passenger demand

levels as inputs in addition to running-time estimates.

It is also important to note that unusual circumstances could create specific cases in

which the short-turning strategy performs poorly. For example, an incident on the Red Line

subway service could lead to a high number of passengers boarding Route 1 at Harvard. This

would result in a temporary increase in demand for service on the Harvard Loop, and thus

an increase in the cost of short-turning. Without a way to measure the demand at a stop

in real-time, it is impossible to adjust the strategy to react in real-time to such disruptions.

This means that, in the absence of real-time data on demand at bus stops, a short-turning

strategy like this one must be implemented in the context of a decision-support tool rather

than a fully-automated tool, so that a dispatcher or supervisor makes the final decision to

short-turn.
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6.6.4 Cases of short trailing headways

Another reason to consider the trailing headways of vehicles that were short-turned is to

track cases in which a short-turned vehicle will have a very short trailing headway. Such

cases are noteworthy for two reasons:

1. Our simulation does not allow passing, and has every passenger board the first available

vehicle. Therefore, it probably overestimates loads on the lead vehicle of a closely-

bunched pair.

2. An alternative strategy for a closely-spaced pair of vehicles could be to short-turn the

trailing vehicle, which likely has fewer passengers on board. Our heuristic rule does

not handle this type of strategy, but it could be implemented in a real-world scenario,

especially in a case where real-time data on passenger loads is available.

For both peak periods, the 75th percentile trailing headway is approximately 2 minutes,

meaning that most short-turned vehicles have very short trailing headways. The midday

periods have a much wider range of trailing headways, meaning that the strategy is used

in a wider range of scenarios in the midday. This means that we are likely overestimating

the number of passengers forced to alight in the peak periods, and also that an alternative

strategy based on short-turning the vehicle with the smaller load would probably perform

better in this period.

6.7 Summary

In this chapter, we have examined the impacts of reducing schedule deviations and im-

plementing midpoint-holding and short-turning strategies. We defined metrics including

passenger wait time and effective headway. We also created a new measure, Additional Ve-

hicles Required, which uses the effective-headway concept to estimate how many additional

vehicles would need to be added to a route, given a fixed level of variation of headways, to

bring the effective headway down to the level of the scheduled headway.

The largest impact was found in the implementation of the terminal-only holding strat-

egy, which was found to reduce the Additional Vehicles Required by an estimated 2 buses in

the AM Peak period on Route 28, and 1 bus in the Midday School period on Route 28. Re-

ducing deviations from assigned departure times by half the current average values (through
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improved training and supervision) would also improve service significantly, reducing the

Additional Vehicles Required by 1 bus on Route 1 in the AM Peak period.

Adding mid-route holding points did not significantly improve the overall performance

of the strategy. The midpoint strategy reduced waiting time at the cost of increased in-

vehicle holding time, with this trade-off being approximately equal in passenger delay time.

Whether this constitutes an improvement depends on how in-vehicle holding time is valued

relative to waiting time at stops; based on existing research we suggest that in-vehicle holding

time may be just as onerous as out-of-vehicle waiting time, but with no specific research in

this area, it is unclear how to weigh the two forms of delay. One minor area of improvement

is in the reduction in variation of total passenger cost; essentially, the midpoint holding

“spreads out the pain” of delays among passengers.

The short-turn strategy was found to reduce passenger wait time significantly in the peak

periods, but not in the midday periods. This was explained by the longer headways and

reduced time savings in the midday period vs. the peaks, and the way in which these factors

interact. The complexity of these relationships suggests that an optimization framework,

rather than a heuristic approach, would be the ideal method to use for a decision-support

tool. Also, since the short-turn impacts fell disproportionately on more-crowded buses during

the peak, a more sophisticated version of the strategy that allows for short-turning the

trailing vehicle of a bunched pair would probably be more effective. We emphasize the

advisory (rather than compulsory) nature of short-turn suggestions from a decision-support

tool, as unusual situations such as unexpected spikes in demand may quickly invalidate the

tool’s suggestions.

Overall, these results suggest that implementing a terminal-only holding strategy, along

with improving operator compliance with instructions, should be top priorities for the

MBTA. In addition, using the short-turn strategy during the peak periods would add a

significant additional benefit, but a more sophisticated optimization should be developed

that takes into account passenger load.
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Chapter 7

Conclusion

This thesis has explored the uses of real-time data to improve bus service, using both exper-

imentation and simulation. In this chapter, we first summarize the results of the previous

chapters. We then make specific recommendations for the MBTA regarding its potential use

of real-time data for operations management. Finally, we outline areas for future research.

7.1 Summary

This research began with a review of existing literature on transit service reliability, control

strategies used to improve reliability, and experiments and simulations. This was followed

by an investigation of real-time decision-support tools, in which a software application was

designed and implemented using real-time data from MBTA buses. Using this application,

an experiment was conducted, the results of which led to an investigation of issues with

regulating terminal departures. To augment the experimental results, a simulation model

of two MBTA bus routes was developed and validated. Finally, the simulation was used to

test the effect of reducing operator deviations from assigned departure times, as well as two

additional control strategies. The results are summarized in this section.

7.1.1 Literature review

Chapter 2 presented a review of existing research on factors affecting bus service reliability,

control str. Abkowitz et al, Levinson, and Pangilinan describe measures taken to improve bus

service reliability, including priority (signal priority or exclusive lanes), control strategies,

and operational strategies (timetables and fleet management). They find that effective
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supervision and good communication are key to precise control of bus departure times.

As control strategies are an essential component of this thesis, we described the variety

of control strategies that have been explored in the literature. Specific strategies include

heuristics such as Turnquist’s Prefol strategy and Bartholdi and Eisenstein’s method of “self-

equalizing headways”, as well as optimization routines such as those developed by Delgado

et al and Sanchez-Martinez. In some cases they have been tested experimentally, as in the

work of Strathman et al, Pangilinan, and Xuan et al. In other cases, they are tested with

simulations. Sanchez-Martinez developed the particular simulation framework which was

used in this work.

7.1.2 Application design

In Chapter 3 we outlined the components of an automated decision-support tool, the deci-

sions that must be made in implementing such a tool, and its various uses. We described

a variety of control strategies that might be implemented using a decision-support tool,

including holding, deadheading, expressing, and short-turning. These range in complexity

and in data requirements, ranging from the simplest headway-based holding strategy which

requires only the predicted arrival time of the trailing vehicle, to short-turning strategies

which ideally would use real-time data on passenger loads.

The benefits of a decision tool include not only the implementation of control strategies,

but also the archived data it produces, which can be used to improve performance analysis

and service planning. When control strategies are applied in an ad-hoc way through radio or

in-person communication, typically no records are made of the actual control decision, and

so users of archived data must infer whether or not a control action was taken. Archived

data from an automated decision tool allows much more precise knowledge of whether or not

a control action was recommended, which then allows for more accurate tracking of on-time

departures, dwell times, and run times.

A variety of data sources, decision algorithms, and user-interface options exist, but all

must fit into a basic structure which we describe. The software components must download

the necessary data, applying a decision algorithm, output the suggested control actions

to users, and archive records of the control actions. Typically a “prediction interpreter”

component will be needed to convert customer-facing data sources, which focus on predicted

arrival times in the near future, into a useful format for decision tools, which often require
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a recent history of departure times.

Using this basic design, we developed a specific software application to provide decision

support for a holding strategy to be implemented on MBTA Route 1 by supervisors using

mobile phones. The application is specific to the MBTA context, but the decisions made in

its implementation are common to any implementation of an automated decision-support

tool. The process included selecting the data sources, method of delivering instructions,

design of the user interface, and the structure of the archived data. The process is instructive

for any large North American transit agency, many of which have similar IT infrastructure

and face similar challenges as the MBTA.

7.1.3 Experiment

Using the decision-support tool described above, we performed an experiment on MBTA

Route 1, a major crosstown route. The strategy consisted of a variant of Turnquist’s Prefol

strategy, a simple method of holding vehicles to equalize the leading and trailing head-

ways. It was implemented at the route’s two terminals, Harvard and Dudley Stations. The

implementation of the strategy resulted in a reduction of approximately one minute of av-

erage passenger wait time in the Harvard-to-Dudley direction, but no improvement in the

Dudley-to-Harvard direction.

Poor adherence to the suggested departure times provided by the mobile app was a ma-

jor problem at both terminals, and significantly worse at Dudley. Deviations from suggested

departure times were significantly more frequent and of a larger magnitude Dudley, and for

those departures that were suggested to be made “ASAP”, departures from Dudley were

frequently delayed by as much as eight minutes. The causes of these deviations were iden-

tified as operator discipline, the layout and use of layover and passenger-boarding areas at

Dudley, and long boarding times due to cash fare payment or adding value to CharlieCards

on-board buses.

In addition to the results during the experiment, the scheduling on Route 1 was examined

further. It was found that scheduled half-cycle times are typically shorter than the 95th

percentile of running times in the Dudley-to-Harvard direction, another factor that can lead

to irregular departures. In the peak periods, enough extra half-cycle time exists in the

opposite direction to compensate for this by shifting the schedule, but in the midday there

is simply insufficient total cycle time.
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Based on the problems identified during the experiment, we made specific recommen-

dations for operational improvements on Route 1, some of which are applicable across all

MBTA bus routes:

∙ Better training of both operators and supervisors with respect to the importance of

on-time terminal departures

∙ Management intervention with operators who show a pattern of poor departure-time

discipline, using AVL-based reports

∙ Use of LED signs to display departure times at bus berths

∙ Use of the Route 1 berth at Dudley for layovers to allow passengers to board early

∙ Increased use of a handheld CharlieCard validator to allow boarding at the rear door

on buses at Dudley

∙ Specific instructions to inspectors on when and how to use express, deadhead, or

short-turn strategies

The results of the experiment highlighted the importance of precise control of terminal

departure times, a result that echoes past work by Pangilinan (2006), Cham (2006), and

Milkovits (2008). The importance of first improving terminal departures before implement-

ing any control strategies will be one of the key recommendations of this thesis.

7.1.4 Simulation

In Chapter 5, we drew upon the work of Sanchez-Martinez (2014), who created a simulation

model of a high-frequency bus route based on automatically-collected data. This model

simulates running times at the timepoint level by drawing from a distribution of observed

running times. Beginning with code written by Sanchez-Martinez for his PhD dissertation,

we first modified the software to use MBTA data sources. We then added two elements

that improve the validity of the simulation: A bivariate distribution of running times, and

a detailed treatment of terminal departure behavior.

The bivariate distribution of running times is a concept described in earlier work by

Sanchez-Martinez (2012), and implemented in our simulation. It extends the simple distri-

bution of running times based on time of day, by using the running time of the same vehicle
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on the previous segment. This allows the correlation between successive running times on

a single trip to be modeled, which is a key component of the mechanism that leads to bus

bunching.

We used the work of Milkovits (2008) as a basis for our treatment of terminal departure

behavior. We calculated recovery times at terminals as the minimum of two values: minimum

required recovery time and available recovery time. The minimum required recovery time

represents the amount of time needed by the bus operator to board and alight passengers and

perform any other necessary tasks, and is modeled with a normal distribution. The available

recovery time includes a random deviation component, which represents voluntary deviations

from the assigned departure time on the part of the operator. The negative exponential

distribution suggested by Milkovits was found to be a good fit for these deviations.

Using the bivariate distribution of running times combined with the terminal-departure

model, we were able to enhance the original Sanchez-Martinez simulation code to accurately

simulate MBTA Routes 1 and 28. Comparing the means and standard deviations of end-to-

end running times and headways in the simulation against real-world observations showed

that these enhancements improved the validity of the model over what had originally been

achieved by Sanchez-Martinez with Transport for London.

7.1.5 Simulated experiments

In Chapter 6, we used the simulation model from Chapter 5 to examine the impacts of re-

ducing schedule deviations and implementing midpoint-holding and short-turning strategies.

We defined metrics including passenger wait time and effective headway. We also created

a new measure, Additional Vehicles Required, which uses the effective-headway concept to

estimate how many additional vehicles would need to be added to a route, given a fixed level

of variation of headways, to bring the effective headway down to the level of the scheduled

headway.

The largest impact was found in the implementation of the terminal-only holding strat-

egy, which was found to reduce the Additional Vehicles Required by an estimated 2 buses in

the AM Peak period on Route 28, and 1 bus in the Midday School period on Route 28. Re-

ducing deviations from assigned departure times by half the current average values (through

improved training and supervision) would also improve service significantly, reducing the

Additional Vehicles Required by 1 bus on Route 1 in the AM Peak period.
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Adding mid-route holding points did not significantly improve the overall performance

of Route 1. The midpoint strategy reduced waiting time at the cost of increased in-vehicle

holding time, with this trade-off being approximately equal in passenger delay time. Whether

this constitutes an improvement depends on how in-vehicle holding time is valued relative

to waiting time at stops; based on existing research we suggest that in-vehicle holding time

may be just as onerous as out-of-vehicle waiting time, but with no specific research in this

area, it is unclear how to weigh the two forms of delay. One area of improvement is in the

reduction in variation of total passenger cost; essentially, the midpoint holding “spreads out

the pain” of delays among passengers.

The short-turn strategy was found to reduce passenger wait time significantly in the

peak periods, but not in the midday periods. We showed that the reason for this difference

is that, given a roughly constant value of time savings from the short-turn strategy, an

increase in headways leads to a large increase in costs and a smaller increase in benefits

of short-turning. In addition, since the short-turn impacts fell disproportionately on more-

crowded buses during the peak, a more sophisticated version of the strategy that allows for

short-turning the trailing vehicle of a bunched pair would probably be more effective.

Overall, these results suggest that implementing a terminal-only holding strategy, along

with improving operator compliance with instructions, should be top priorities for the

MBTA. In addition, the specific short-turn strategy that was tested was found to add a

significant additional benefit, but in order to implement such a strategy, an optimization

should be developed that takes into account real-time or estimated passenger loads.

7.2 Recommendations

The MBTA should move towards a more systematic use of real-time data for operations con-

trol and performance management. Specific recommendations were outlined in Chapters 4

and 6, but in general, they fall into three categories: improvements to terminal departure

adherence, improved uses of existing technology for operations management and planning,

and the implementation of automated control strategies.
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7.2.1 Terminal departure adherence

This research has shown that on-time terminal departures are a key driver of reliability

throughout a route, and a major factor in explaining poor performance on the MBTA bus

routes studied. To combat poor schedule adherence at terminals, the MBTA should institute

a policy of tracking on-time departure performance by individual bus operators at termi-

nals. This could be used, as it has been at agencies in Denver and Minneapolis, in regular

counseling meetings between garage managers and the worst-performing bus operators. As

emphasized in Chapter 4, these improvements to departure discipline should be made before

any type of systematic control strategy is implemented.

The MBTA should also examine terminal-specific factors that influence departure times,

including the allocation of space for layovers, the location of operator break facilities, and

the locations of fare vending machines. These physical factors, as discussed in Chapter 4,

can have a strong effect on the ability of bus operators to depart on time.

Finally, the MBTA should examine factors influencing dwell time, including payment

with cash and adding value to CharlieCards on-board the bus. The long dwell times associ-

ated with passengers adding value to CharlieCards are a result of the MBTA’s fare structure

and the lengthy process of paying in cash or adding value on a bus. Both the fare policy and

the technology used to accept payment should be re-examined with a focus on dwell-time

impacts. In addition, the use of hand-held CharlieCard readers to speed up boarding times

should be implemented at major stops such as Dudley which suffer from long dwell times.

7.2.2 Operations management and planning

MBTA supervisors currently use the technology available to them in a very limited way. In

order to utilize supervisors more effectively, the MBTA should develop applications aimed

at the information needed by supervisors in the field, including, for example, information

on vehicle and crew schedules. Improved software can also enhance the effectiveness of

dispatchers; for example, exception-based reporting that highlights early departures from

terminals when they happen can be used to provide real-time feedback to operators on their

performance.

Operations planning is another area where automatically-collected data should be used to

enhance service. The MBTA should analyze running times from AVL data more frequently
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to ensure that sufficient half-cycle time is provided in the schedule. Also, the Additional

Vehicles Required metric developed in this thesis can be used to identify routes where

resources are being used inefficiently due to high variability in service, and where targeted

control interventions or other service improvements could lead to a reduction in resources

required.

7.2.3 Automated control strategies

The MBTA should move toward implementation of automated control strategies on its

routes. Off-the-shelf products exist that allow for implementation of holding strategies on

bus, light-rail, or heavy-rail routes. Rail lines are good candidates for trial runs, as they have

dedicated dispatchers who could observe automated decisions and override them if anything

went wrong. The Mattapan Trolley line in particular is frequently used to test technologies

for later use in other parts of the system. On bus routes, automated control strategies could

be implemented with devices installed in buses, or through the use of electronic signs such

as the ones installed at Dudley, Ruggles, and other major bus terminals, which could be

used to display dynamic departure times.

At a minimum, a policy of holding at terminals to improve headways should be applied.

It is clear from this research, as well as past work, that holding at terminals can lead to

significant improvements in passenger wait times. Holding at midpoints was shown not to

provide an additional benefit over terminal-only holding, and so terminals should be the

primary focus for interventions. The short-turn variant used in the simulation model of

Chapter 6 should also be explored, although a more sophisticated model should be used in

order to more precisely account for the costs and benefits.

7.3 Future research

During the course of this research, many opportunities for future research have been iden-

tified. In this section, we will describe areas with potential in the use of real-time data and

mobile technology to improve transit service. The three main areas identified are software

frameworks, simulations, and the passenger experience of holding strategies.
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7.3.1 Software frameworks

In this thesis, a framework for a decision-support tool using real-time data was developed

and used to create a mobile app supporting a control strategy. In addition, a simulation

framework developed in previous research was extended to model a pair of MBTA bus

routes. Future work on software for transit research could develop a platform to combine

these two types of software, by specifying an API for simulation software to communicate

with decision-tool software. Using such an API, researchers could easily test different control

strategies in simulations as well as in actual transit operations.

7.3.2 Simulations

With the increasing availability of automatically-collected data, and recent advances in an-

alyzing these data such as origin-destination inference, many opportunities exist to improve

upon the simulation used in this research.

∙ The simulation in this thesis used timepoint-level running-time data, due to the lim-

itations of the AVL system. Additional data sources such as the Automated Stop

Announcement system could be used to infer stop-level arrival and departure times.

∙ Our simulation used arrival rates and alighting fractions to model the loads on board

each bus. Using origin-destination inference, scaled appropriately using Automated

Passenger Counter data, individual passenger trips could be modeled explicitly, al-

lowing for disaggregate measures of passenger wait time, in-vehicle holding time, and

total delay.

∙ Dwell time was not explicitly modeled in our simulation, although dwell-time effects

represent an important component of the benefits of holding strategies. The dwell-

time model used by Milkovits (2008) could be re-examined using the more-accurate

AVL and AFC data available today, to further refine the model.

In addition to these specific improvements, our investigation of a specific short-turn strat-

egy suggested that an optimization-based approach would be best-suited to short-turning

and other strategies. The optimization framework developed by Sanchez-Martinez (2014)

could be expanded to include the possibility of short-turning. Since short-turn options are

typically limited to a few convenient locations on a route, and their running-time impacts
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are fixed for a particular time of day, adding short-turning possibilities to the set of holding

options used by Sanchez-Martinez should not add significant computational complexity to

the problem.

7.3.3 Passenger experience

As discussed in Chapter 6, there is a significant need for further research in the area of

passenger experience of in-vehicle holding time. Although we have recommended against

implementing midpoint holding on bus services, midpoint holding is often necessary on

subway and light rail, as delays propagate down the line. As increasing numbers of agencies

use automated tools to support and track holding strategies, detailed datasets on holding

times will become available. These can be used in a framework such as a discrete-choice

model to estimate the disutility of in-vehicle holding time for passengers, and allow agencies

to make well-informed decisions about the tradeoffs of midpoint holding. In addition to

discrete-choice modeling, the prompted-recall survey methodology developed by Chow et al

(2014) could be used to survey passengers and match their responses with automatically-

collected data on in-vehicle holding time.
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Appendix A

Headway Ratio Analysis

Table A.1: Headway Ratio at Inbound Time Points by Headway Ratio at Harvard
Headway Ratio
at Harvard

Total
Trips

Harvard Hynes Dudley

Mean Std.
Dev.

Coeff.
of Var. Mean Std.

Dev.
Coeff.
of Var. Mean Std.

Dev.
Coeff.
of Var.

0 to 0.4 100 0.22 0.12 0.53 0.43 0.46 1.07 0.67 0.72 1.08
0.4 to 0.8 157 0.65 0.11 0.17 0.63 0.41 0.65 0.66 0.54 0.81
0.8 to 1.2 696 1.00 0.10 0.10 1.01 0.34 0.34 1.07 0.57 0.53
1.2 to 1.6 133 1.34 0.10 0.07 1.51 0.41 0.27 1.37 0.69 0.50
1.6 to 2 73 1.73 0.10 0.06 1.87 0.40 0.22 1.91 0.67 0.35
>2 45 2.34 0.27 0.11 2.42 0.51 0.21 1.54 0.80 0.52
All Trips 1204 1.02 0.44 0.43 1.07 0.58 0.54 1.08 0.68 0.63

Table A.2: Headway Ratio at Outbound Time Points by Headway Ratio at Dudley
Headway Ratio
at Harvard

Total
Trips

Dudley Hynes Harvard

Mean Std.
Dev.

Coeff.
of Var. Mean Std.

Dev.
Coeff.
of Var. Mean Std.

Dev.
Coeff.
of Var.

0 to 0.4 71 0.23 0.12 0.50 0.71 0.54 0.77 0.79 0.56 0.70
0.4 to 0.8 206 0.64 0.11 0.17 0.55 0.36 0.66 0.61 0.46 0.75
0.8 to 1.2 560 1.00 0.10 0.10 0.96 0.43 0.44 0.93 0.57 0.61
1.2 to 1.6 196 1.35 0.10 0.07 1.35 0.47 0.35 1.29 0.63 0.49
1.6 to 2 29 1.75 0.10 0.06 1.35 0.54 0.40 1.30 0.69 0.53
>2 28 3.00 0.88 0.29 1.31 1.16 0.88 1.82 0.65 0.36
All Trips 1090 1.02 0.48 0.47 0.96 0.54 0.56 0.96 0.62 0.65
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Appendix B

Layover time distribution during

experiment
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Figure B-1: Suggested Departure vs. Arrival Time at Each Terminal

145



146



Appendix C

Equivalent formulations of effective

headway

Notation:

𝜇ℎ = sample mean of observed headways

𝜎ℎ = sample standard deviation of observed headways

ℎ𝑖 = headway on trip 𝑖 at the selected stop

𝑁 = the total number of trips observed

In this appendix, we demonstrate the equivalence of two formulae given in Section 6.1.2

for the effective headway metric.

𝜇ℎ

(︃
1 +

(︂
𝜎ℎ
𝜇ℎ

)︂2
)︃

=

∑︀
𝑖
(ℎ2𝑖 )∑︀
𝑖
ℎ𝑖

(C.1)

Beginning with the left-hand side, substitute the statistical definitions of 𝜇ℎ and 𝜎ℎ.

𝜇ℎ

(︃
1 +

(︂
𝜎ℎ
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)︂2
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(︂
1 +

𝜎ℎ
2

𝜇ℎ
2

)︂
=

1

𝑁

∑︁
𝑖

ℎ𝑖

⎛⎜⎜⎜⎝1 +

1
𝑁

∑︀
𝑖
ℎ2𝑖 −

(︂
1
𝑁

∑︀
𝑖
ℎ𝑖

)︂2

(︂
1
𝑁

∑︀
𝑖
ℎ𝑖

)︂2

⎞⎟⎟⎟⎠ (C.2)

Then simplify as follows:
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1
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1
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(C.3)
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Appendix D

Weighted version of coefficient of

variation

In this appendix, we determine the appropriate formula for the weighted coefficient of vari-

ation to use in our calculations. We follow a similar approach to that found in Appendix C,

but this time in reverse, as we begin with the formula for effective headway, weighted by

passenger arrival rate at each stop.

For convenience of notation, let 𝑀 =
∑︀
𝑜

∑︀
𝑖
𝜆𝑜
𝑝. By a similar transformation to that

used in Appendix C, we decompose the effective headway into the weighted mean 𝜇ℎ =

1
𝑀

∑︀
𝑖

∑︀
𝑜
𝜆𝑜
𝑝ℎ

𝑜
𝑖 and a component containing the squared coefficient of variation.

𝐻𝐸 =

∑︀
𝑖

∑︀
𝑜
𝜆𝑜
𝑝(ℎ

𝑜
𝑖 )

2∑︀
𝑖

∑︀
𝑜
𝜆𝑜
𝑝ℎ

𝑜
𝑖

=
1

𝑀

∑︁
𝑖

∑︁
𝑜

𝜆𝑜
𝑝ℎ

𝑜
𝑖

⎛⎜⎜⎜⎝1 +

1
𝑀

∑︀
𝑖

∑︀
𝑜
𝜆𝑜
𝑝(ℎ

𝑜
𝑖 )

2 −
(︂

1
𝑀

∑︀
𝑖

∑︀
𝑜
𝜆𝑜
𝑝ℎ

𝑜
𝑖

)︂2

(︂
1
𝑀

∑︀
𝑖

∑︀
𝑜
𝜆𝑜
𝑝ℎ

𝑜
𝑖

)︂2

⎞⎟⎟⎟⎠

= 𝜇ℎ

⎛⎜⎜⎜⎝1 +

1
𝑀

∑︀
𝑖

∑︀
𝑜
𝜆𝑜
𝑝(ℎ

𝑜
𝑖 )

2 −
(︂

1
𝑀

∑︀
𝑖

∑︀
𝑜
𝜆𝑜
𝑝ℎ

𝑜
𝑖

)︂2

𝜇ℎ
2

⎞⎟⎟⎟⎠
(D.1)

In order for Assumption 4 in Section 6.2.1 to hold, we must show that the sample mean

headway �̂�ℎ is approximately equal to the scheduled headway 𝐻𝑆 . We begin by noting that,

since the passenger arrival rate at each stop is assumed to be constant throughout the time

period, 𝜆𝑜
𝑝 is constant with respect to the bus trip 𝑖. Therefore, 𝑀 =

∑︀
𝑜

∑︀
𝑖
𝜆𝑜
𝑝 =

∑︀
𝑜
𝜆𝑜
𝑝

∑︀
𝑖
1 =
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𝑁
∑︀
𝑜
𝜆𝑜
𝑝, where 𝑁 is the number of trips. We can rewrite the weighted mean headway as

follows:

𝜇ℎ =
1

𝑁
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𝑜
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𝑜
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𝑜
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𝑖

ℎ𝑜𝑖

)︃
(D.2)

Since the sum of the headways at a particular stop
∑︀
𝑖
ℎ𝑜𝑖 is simply the time span from the

first departure at that stop to the last departure, this value will be approximately constant

across each origin stop 𝑜 on a route. Treating
∑︀
𝑖
ℎ𝑜𝑖 as a constant gives us the following:

1

𝑁
∑︀
𝑜
𝜆𝑜
𝑝

∑︁
𝑜

(︃
𝜆𝑜
𝑝

∑︁
𝑖

ℎ𝑜𝑖

)︃
=

1

𝑁
∑︀
𝑜
𝜆𝑜
𝑝

∑︁
𝑖

ℎ𝑜𝑖

(︃∑︁
𝑜

𝜆𝑜
𝑝

)︃
=

1

𝑁

∑︁
𝑖

ℎ𝑜𝑖 (D.3)

Therefore, the weighted mean headway is approximately equal to the mean headway at

any particular stop, which is approximately equal to the scheduled headway.
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