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ABSTRACT 
 

The focus of this thesis is on the integration of and interplay between demand driven dis-
patch and revenue management in a competitive airline network environment. Demand driven dis-
patch is the reassignment of aircraft to flights close to departure to improve operating profitability. 
Previous studies on demand driven dispatch have not incorporated competition and have typically 
ignored or significantly simplified revenue management. All simulations in this thesis use the PODS 
simulator, where stochastic demand by market chooses between competing airlines with alternative 
paths and fare products whose availability is determined by industry-typical revenue management 
systems. 

Demand driven dispatch (D³) is tested with a variety of methods and objectives, including 
a bookings-based method that assigns the largest aircraft to the flights with the highest forecasted 
demands. More sophisticated methods include revenue- and profit-maximizing fleet optimizations 
that directly use the output of leg-based and network-based RM systems and a minimum-cost flow 
specification. D³ is then tested with a variety of aircraft swap timings, RM systems, and competitive 
scenarios. Sensitivity testing is performed at a variety of demand levels, demand variability levels, 
and with an optimized static fleet assignment. Findings include important competitive feedbacks 
from D³, relationships between D³ and both revenue management and pricing, and important nu-
ances to D³’s relationship with the level and variability of demand.  

Depending on how it is implemented, D³ may harm competitor airlines more than it aids 
the implementer. Early swaps in D³ lead to heavy dilution. Late swaps lead to smaller increases in 
loads but substantial increases in revenue. The relationship between revenue-maximization and cost-
minimization in profit-maximizing D³ is highly influenced by the timing of swaps, revenue estima-
tion, and demand levels. Finally, early swaps are susceptible to high variability of demand while 
late swaps are more robust. Findings indicate that the benefits of D³ can be estimated at operating 
profit gains of 0.04% to 2.03%, revenue gains of 0.02% to 0.88%, and changes in operating costs of 
-0.08% to 0.13%. 
 
 

Thesis Supervisor: Peter P. Belobaba 
Title: Principal Research Scientist of Aeronautics and Astronautics 
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Chapter 1: Introduction 

The planning process of an airline can be thought of as a series of decisions first at 
a strategic level and then at a tactical level as the departure date draws closer (Belobaba, 
2009b). Generally, airlines begin with fleet planning, then route planning, and then schedule 
development. Fleet planning can take place many months to many years in advance, route 
planning on a closer time horizon, and schedule development usually six or more months 
from departure. Schedule development involves first frequency planning, then timetable 
development, and finally fleet assignment, where aircraft types are assigned to specific 
flights. At this point, crew and maintenance schedules can be determined and more tactical 
decisions take over—namely pricing and revenue management. Due to this linear chronology 
in the airline planning process, aircraft schedules and therefore capacity on every flight is 
effectively fixed for pricing and revenue management, with exceptions for unplanned capac-
ity changes. These changes in capacity are then viewed from the perspective of pricing and 
revenue management as capacity disturbances.  

Demand driven dispatch swaps aircraft of different sizes on flight legs to change 
capacity in response to demand. With schedules having been made perhaps six or more 
months ahead of the departure date, pricing and revenue management then operate with 
the assumption of fixed capacity to maximize revenue. Demand driven dispatch makes ca-
pacity flexible again, changing aircraft assignments nearer to departure, often called close-
in refleeting. Thus, using more detailed and reliable demand information from the revenue 
management system, demand driven dispatch has the potential to better match capacity 
supplied with quantity demanded, simultaneously increasing revenues and decreasing oper-
ating costs (Berge & Hopperstad, 1993). 

 Theoretically promising, demand driven dispatch still poses a host of challenges, 
including not only potential disruptions to already complicated aircraft, crew, and mainte-
nance schedules, but also a significant interaction with the revenue management process. 
Revenue management, as it is practiced, assumes a fixed capacity on each flight and opti-
mizes fare class inventory accordingly; to date, the interaction of revenue management and 
demand driven dispatch in a competitive network environment has not been explored. Fur-
thermore, attention has not been paid to incorporating the full wealth of information pro-
vided by revenue management into the fleet assignment process of demand driven dispatch. 

 Therefore, while demand driven dispatch is a step towards a successful integration 
of scheduling and revenue management, a good deal is left to do before the integration is 
truly complete. Both the type of information gathered from the revenue management system 
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and how that information is put to use in fleet assignment can be better informed by the 
theory and application of subsequent inventory control. Second, demand driven dispatch 
must be analyzed in a competitive network environment. The aim of this thesis is to address 
these points and develop a better understanding of the impact demand driven dispatch has 
on the revenue and profit results of airline operations, with a particular focus on demand 
driven dispatch given both a competitive environment and the range of typical practices in 
revenue management. 

1.1. Variability in Airline Demand 

Variability in airline demand is a well-documented phenomenon. Demand for air 
travel varies by season, holidays and sporting events, day of week, time of day, the macro-
economy, security threats, weather, and countless other factors. From the perspective of a 
single airline, variations in realized demand are affected by relative fares and fare class 
availability, revenue management practices, competing schedules and routings from not only 
other carriers’ itineraries but their own as well.  

Yet, nearly every facet of the airline planning process relies on forecasts of demand 
for flight legs or paths, from network planning, scheduling and fleeting to pricing and reve-
nue management. Operations research has had some of its most notable applications in the 
airline industry, but operations research results in optimal outcomes only when its assump-
tions and inputs, largely forecasts, are correct. Therefore, the best possible forecasts in terms 
of accuracy are needed. As accuracy is lacking due to variability in demand, it is also 
important that the systems that use these forecasts are built robustly. Demand driven dis-
patch is one approach to addressing variability of demand and making the planning process 
more flexible, and therefore more robust. It is not as critical that the forecast that informs 
the original schedule and fleet assignment be accurate if the fleet assignment can be updated 
at a later date with presumably better forecasts. 

One of the key forecast strengths of using forecasts from revenue management is that 
they are made relatively close to the departure date. Uncertainty diminishes in expected 
demand both as the forecasts are generated closer to a flight’s departure date and of course 
as actual bookings are taken. With the notable exception of no-shows and cancellations, 
bookings that have already been taken are effectively deterministic demand. The original 
fleet assignment constrains future changes in capacity based on swapping options and crew 
constraints, etc., so that the original schedule and fleet assignment is certainly important. 
However, the ability to draw on improved forecasts from the RM system closer to departure 
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allows an airline to manage variability in demand by making adjustments to the fleet as-
signment. 

1.2. Current Planning and RM Process and Demand Driven Dispatch 

  The future of airline planning looks toward the integration of the different 
steps in the planning process. As is widely recognized, fleet planning depends on what routes 
an airline intends to fly, the profitability of routes not only depends on the available fleet 
but also the intended frequencies, and timetables rely on frequency plans but can also be 
tweaked to help optimize fleet assignment. Finally, the fleet assignment process relies on 
the selected timetables but also on pricing and revenue management practices such as will-
ingness-to-pay forecasting and optimization.  

Therefore, the different aspects of airline planning are interdependent and a true 
optimization of the whole “problem” of airline planning would have to be simultaneous—
an impossible task in practice. What is much more attainable is the partial integration of 
components of the process. Each stage of optimization in the airline planning process con-
strains the solutions of the next processes, but increasing the connections between the dis-
parate processes theoretically loosens the constraints put on subsequent optimizations. 
Demand driven dispatch is primarily an attempt to integrate some components of schedul-
ing, namely fleet assignment, with revenue management. 

 However, demand driven dispatch incorporates not only scheduling, or more precisely 
fleet assignment, and revenue management, it also affects and depends on all stages of the 
planning process. Fleet planning is essential to demand driven dispatch as both labor agree-
ments and industry regulation effectively allow only aircraft of the same “family” to swap 
flight assignments. Therefore it is important that the fleet contains multiple aircraft types 
of different sizes within the same family so that pilots can exploit cockpit commonality. 
Network planning is also important, as the architecture of the network determines both the 
ease of performing aircraft swaps (altering the fleet assignment) but also the number of 
feasible swaps at any given airport at any given time. Hub networks offer excellent oppor-
tunities for demand driven dispatch, while point-to-point networks do not disallow it but 
offer fewer swap opportunities. 

 Meanwhile, demand driven dispatch can better inform all of these aspects of airline 
planning. The ability to manage variability in demand with demand driven dispatch can 
allow airlines to strategically deploy larger aircraft to only high demand flights while the 
fleet at large is composed of mainly smaller aircraft, thus saving operating and ownership 
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costs (Berge & Hopperstad, 1993). The goal of an airline to engage in demand driven dis-
patch may also inform an airline’s decision to consolidate its fleet into swappable aircraft 
families, along with a host of other noted efficiencies gained from streamlined fleet compo-
sition. The ability to perform simplified demand driven dispatch can also be yet another 
factor in a long list that supports the recurring use of hub-and-spoke network design in the 
airline industry. On the other hand, demand driven dispatch can result in dilution that 
harms revenue performance. Pricing may have to adapt fare structures where possible to 
address this problem. 

 Demand driven dispatch is primarily an integration of components of scheduling and 
revenue management, but it effects and depends on all aspects of the planning process to 
some degree. The current airline planning process is often linear, with each decision process 
constrained by the decisions made before, and often by separate departments within an 
airline. Demand driven dispatch is a step towards breaking the information silos that come 
from such a process and, by increasing communication between fleet assignment and reve-
nue management, can improve performance outcomes in operating profit by both increasing 
revenues and decreasing operating costs. 

1.3. Motivation for Research 

 Demand driven dispatch thus far has largely been explored and tested as a process 
of taking demand forecasts from the revenue management system to repeat the fleet assign-
ment process automatically or manually closer to departure. The act of using demand fore-
casts from the revenue management (RM) system in the place of more aggregate forecasts 
to reassign aircraft is a likely improvement and accurately called close-in refleeting by some 
airlines. It does not, however, signify the successful or complete integration of revenue man-
agement and fleet assignment. 

 This thesis aims to develop a more thorough understanding of demand driven dis-
patch by focusing on the revenue management portion of demand driven dispatch, an area 
that has been somewhat neglected in previous studies. Revenue management systems can 
provide information to the fleet assignment model (FAM) beyond more accurate demand 
forecasts such as demand by fare class with network revenue values. Demand driven dis-
patch is simulated for this thesis using the Passenger Origin Destination Simulator (PODS), 
so that demand driven dispatch and its effects can be analyzed in a network setting with 
complete RM systems and competition, a very important factor. The airline industry is 
highly competitive and passengers are both price-sensitive and have at their disposal unri-
valed information when searching for the lowest fares. Demand driven dispatch must be 
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considered in the context of competition, and it should also utilize the full body of infor-
mation provided by RM and RM in turn should be informed in some fashion of capacity 
changes made by demand driven dispatch. Therefore, the primary contribution of this thesis 
is to analyze demand driven dispatch in the context of two competing network airlines using 
complete revenue management systems. 

 These revenue management systems, depending on their complexity, can supply a 
host of information to the fleet assignment process beyond a count of passenger demand 
and average selling fare. First and foremost, RM forecasts divides demand into inventory 
fare classes, each with its own associated fare value(s). Through effective inventory control, 
RM also applies a hierarchy of fare classes so that when making fleet assignment decisions 
with RM forecasts, it is possible to evaluate the marginal revenue value of each additional 
seat or block of seats on a particular flight. This detail is important, as the use of RM means 
that the additional revenue value of the “last” seat on a flight is necessarily less than the 
average selling fare. RM methods that consider the network revenue value of fare class 
inventory can also provide information on the revenue value of capacity on a flight not only 
to that flight but also to the network as a whole. Thus, the fleet assignment component of 
demand driven dispatch can incorporate some degree of the revenue management’s infor-
mation of network value to the fleet assignment decision. These opportunities to improve 
demand driven dispatch have not been fully explored. 

 Thus, the motivation for this thesis is to advance the science behind both revenue 
management and fleet assignment by developing a more thorough understanding of and 
several models for better integrating the two in demand driven dispatch (D³), especially 
with regard to RM’s role in informing D³, how it can be adapted to D³, and how it affects 
the outcome of D³. These areas, to date, have not been thoroughly addressed. This thesis 
is also motivated by the opportunity to simulate and analyze D³ with these innovations in 
a competitive network environment, something that has never been done. Thus, while ex-
isting research in demand driven dispatch promises increased operating efficiency and im-
proved profitability for airlines, many avenues for continued research remain. 

1.4. Outline of Thesis 

 The thesis begins with this introduction and then proceeds to a more thorough review 
of the background of demand driven dispatch with a literature review of pertinent topics 
(Chapter 2), most notably in demand driven dispatch itself but also revenue management, 
fleet assignment, and other topics. The different forms of revenue management systems used 
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in this thesis will be reviewed in Section 2.2. Chapter 3 contains an overview of the Passen-
ger Origin Destination Simulator (PODS) used to simulate demand driven dispatch for this 
thesis. This chapter contains details of its passenger demand components and its revenue 
management system components, which allow PODS to simulate imperfect knowledge of 
demand from the perspective of the airlines. The demand assumptions in PODS are also 
different from demand assumptions used in previous D³ research in that demand for differ-
ent fare classes is not independent. Passengers are generated with preferences and willing-
ness to pay and then choose the itineraries that best match their preferences and budget. 
PODS also incorporates competition, an important contribution to the literature on D³. 
The chapter also contains a description of Network D³, a hypothetical airline network spe-
cifically designed and constructed for simulating demand driven dispatch in PODS. 

 The subsequent Chapters 4 through 7 detail the results of tests of demand driven 
dispatch in PODS. First, bookings-based swapping is evaluated in Chapter 4 with a simple 
ranking algorithm. This is to simulate the simplest form of demand driven dispatch and to 
form a basis for which to judge the value of more complicated demand driven dispatch 
techniques incorporating more information from RM. The ranking algorithm is replaced 
with an assigner built on a network optimization (minimum-cost flow model) in Chapter 5. 
This assigner is then used with a series of revenue-maximizing objective functions, starting 
with leg-based revenue estimation and RM optimization and culminating in the use of net-
work bid prices. Finally, operating costs are also added to the objective function, which in 
turn maximizes operating profits. The results of tests using this assigner are shown in Chap-
ter 6. 

 Chapter 7 presents the results of tests where demand driven dispatch is implemented 
for operating profit maximization under a wider range of conditions. A new static fleet 
assignment is introduced to test the benefits of D³ given an optimized original fleet assign-
ment. Then, variation in demand is increased and decreased to test D³ benefits depending 
on variation in demand. Finally, the direct cost of aircraft swapping is tested at various 
levels. The thesis then concludes in Chapter 8 with a summary of results and concepts and 
suggestions for future research. 
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Chapter 2: Background & Literature Review 

This chapter reviews the general trends in the science of airline planning over the 
last few decades, as well as describe current planning processes at airlines. The chapter 
begins with a discussion of network planning, scheduling and fleet assignment, and then 
pricing. These processes usually occur sequentially and typically precede revenue manage-
ment and demand driven dispatch, should it be implemented. However, the approach used 
in these planning stages can limit or facilitate revenue management and demand driven 
dispatch. 

Following the description of network planning, scheduling, and pricing, revenue man-
agement is discussed, including current practices and near-future developments. The reve-
nue management section is divided into two sections—forecasting and optimization. 
Numerous approaches to forecasting and optimization are used in the industry, with the 
most recent developments being focused on forecasting and optimizing demand by willing-
ness-to-pay rather than strictly by fare class. 

The interaction between revenue management and spill (rejected demand) is dis-
cussed along with the modeling of spilled revenue. This section is brief but very pertinent 
to demand driven dispatch, as revenue management ultimately affects which types of de-
mand are spilled and which are not. 

Finally, Section 2.4 reviews the existing literature on demand driven dispatch. D³ 
debuted in academic journals in 1993 and has been researched since. The existing research 
primarily developed algorithms for modifying the fleet assignment problem to meet the 
specific constraints of demand driven dispatch. Competition among is not considered, nor 
is revenue management considered beyond simple representations of RM systems and de-
mand arrival processes. However, impressive work has been completed on assignment algo-
rithms, and analyses of live tests have also been conducted. 

2.1. Network Planning, Scheduling, and Pricing 

Network planning, also known as route planning, is in some regards the beginning of 
the planning process for deciding how to deploy an airline’s available fleet. Network plan-
ning not only includes the process of deciding what origin and destination markets (OD 
markets) an airline will provide transportation between, but how that transportation net-
work will be constructed. The most obvious decision in the architecture of a network is 
whether to deploy aircraft point-to-point or in a hub-and-spoke system. Point-to-point sys-
tems offer convenient service to individual passengers, as they do not have to connect. On 
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the other hand, with no connecting passengers on point-to-point flights, limited demand 
may result in few frequencies or no service at all. From the perspective of airlines, hubs 
have undeniable benefits from operational efficiencies in fleet assignment to crew and per-
sonnel scheduling. Most notably however, they allow airlines to use fewer aircraft and fewer 
flights to offer service to more destinations from any given origin in the hub-and-spoke 
network (Belobaba, 2009b). 

Hub-and-spoke-systems also have economic costs related to their operations, such as 
decreased aircraft utilization in order to time arrivals and connecting departures from a 
hub, congestion at the hub airports, and extended turnaround times to allow passengers to 
connect. The growth of low cost carriers has caused some to forecast more point-to-point 
service, a trademark of the low-cost carrier model. However, with weaker demand post-2001 
and 2008 and, until very recently, high fuel prices, hubs have been strengthened in recent 
years (Belobaba, 2009b). In fact, many airlines considered to be low-cost carriers utilize, if 
not hubs, focus cities. The term “hub” is difficult to define, but Southwest Airlines connects 
large numbers of passengers through several airports such as Midway in Chicago, and Jet-
Blue does the same at airports such as JFK. In fact, many low-cost carriers, if they don’t 
have outright “hubs,” have significant focus cities, as found in an analysis of European low-
cost carriers (Dobruszkes, 2006). 

This observation is critical for demand driven dispatch, as wherever and whenever 
two or more aircraft of an airline have turns at an airport at overlapping times, the possi-
bility for swapping exists. Thus, demand driven dispatch is possible for even dispersed point-
to-point networks so long as aircraft occasionally “meet” in the network. However, hub-
and-spoke networks provide for many more swapping opportunities, especially when aircraft 
are routed “to and from” hubs in short strings of flights. This fact has been recognized both 
in the literature and by airlines that have engaged in demand driven dispatch (Waldman, 
1993). The practicality of demand driven dispatch, especially concerning not disrupting 
maintenance routings, largely rests with the continued use of the hub-and-spoke model. 

Scheduling is equally important for the application of demand driven dispatch. 
Scheduling has also been the subject of a great deal of attention from operations research 
specialists. Scheduling can be seen as an umbrella term that includes frequency planning, 
timetable development, fleet assignment, maintenance routing, and finally crew scheduling. 
Frequency planning is often a part of network planning, where demand models and market 
analysis are used to determine the appropriate number of frequencies that should be pro-
vided to a route on any given day. Timetable development can be summarized as choosing 
the departure times of the frequencies that have been chosen, with the arrival times being 
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more or less determined by the departure time. Fleet assignment is then the matching of 
each flight with a type of aircraft in the available fleet. Maintenance routing is focused on 
assigning each specific aircraft to a series of flights, i.e. “tail numbers” to flights, with the 
goal that each aircraft receives the required maintenance and typically balancing the utili-
zation of aircraft. Crew scheduling is the assignment of crews to flights, with crews having 
a host of constraints, including what aircraft they can fly and how many consecutive hours 
they can fly. Thus, crew scheduling comes after fleet assignment, but not necessarily after 
maintenance routing.  

Each of these scheduling problems has been subject to optimization techniques, and 
integrated optimization problems have also been addressed. A recent development is an 
emphasis on robust solutions to account for the fact that severe weather and other factors 
often prevent an “optimal” schedule from being carried out as planned (Barnhart, 2009). 
Another recent focus of research in schedule optimization has dealt with de-peaking hub 
schedules and therefore mitigating the adverse effects of hub congestion, such as in Pita, 
Barnhart, and Antunes (2012) and Jacquillat and Odoni (2014). Mitigating this cost of hubs 
makes them more attractive than otherwise in a world of increasing air traffic, thus bolster-
ing opportunity for demand driven dispatch. 

More so than determining frequencies and timetables, routing and especially fleet 
assignment are critical for demand driven dispatch. Routing determines the ease with which 
demand driven dispatch can be performed. For example, making swaps with other aircraft 
is more difficult if the aircraft’s routing is a complicated string of flights between a series of 
distinct airports throughout a schedule week. As noted before, “there-and-back” routings 
and modest expansions on that theme provide for excellent swapping opportunities 
(Waldman, 1993), as do numerous trips between multiple hubs or focus cities (Berge & 
Hopperstad, 1993). 

Fleet assignment is the stage of scheduling that is most applicable to demand driven 
dispatch. In fact, the implementation of demand driven dispatch is in essence the partial 
integration of revenue management and fleet assignment. Many approaches to fleet assign-
ment optimization have been developed (see section 2.4 for examples in the context of 
demand driven dispatch), but most solve the problem by representing the flight schedule 
with flight arcs and ground arcs connecting points that represent specific airports and spe-
cific moments in time in a time-space network. An aircraft (type) can travel over a flight 
arc (fly a flight) or travel over a ground arc (remain at an airport). Each aircraft type has 
an associated revenue and cost value for traveling over an arc and the objective function is 
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to maximize operating profit. Constraints typically include balance, cover, and count. Bal-
ance stipulates that whatever enters a point must leave it, or, in other words, that if an 
aircraft lands at an airport it must eventually leave that airport. Cover stipulates that each 
of the flight arcs, representing flights in the schedule, must be traversed or operated by an 
aircraft. Count stipulates that the number of each type of aircraft must be the same at the 
beginning and end of a period of operations and at all times in between. In order to imple-
ment demand driven dispatch, a method for solving the fleet assignment problem must be 
used, and they typically take the form of a fleet assignment model (FAM) such as the one 
just described (Barnhart, 2009). 

Fortunately, the FAM used in demand driven dispatch can be greatly simplified from 
the one used in a static assignment because the static assignment already exists. Taking the 
original assignment, swappable pairs or groups of flights can be identified and then a rela-
tively simple linear model or minimum-cost flow model can be used to re-assign the fleet 
types from the original fleet assignment (Berge & Hopperstad, 1993). Alternatively, the 
original FAM can be used again in what can accurately be described as re-fleeting, although 
this would require significantly more computational power and more constraints as the 
flexibility for fleet assignment six or so months before departure does not persist in the few 
weeks before the departure date. 

Pricing is typically the last stage of the airline planning process before sales and 
revenue management begin, although changes in pricing frequently continue after seats 
become available for sale for a particular departure. The fundamental framework used in 
airline pricing is revenue maximization given a basic demand curve—a downward sloping 
demand function. 

 

Figure 1: Demand Segmentation 
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As Figure 1 illustrates, with only a single price point, a firm only captures the revenue 
represented by the Area A. If the firm engages in classic microeconomic price discrimination 
and uses three price points and successfully segments demand, it can capture consumer 
surplus and gain the revenue represented by Area B and also sell discounted seats to take 
advantage of supply otherwise not utilized, thereby gaining the revenue represented by Area 
C. This is of course a significant simplification, but nevertheless illustrates the primary 
reasoning behind common pricing behavior by airlines. Typically, they provide a number of 
fares from a few to over twenty in a market, each fare having a set of restrictions. These 
restrictions are intended to differentiate fare products and to segment demand.  

Typical restrictions include advanced purchase restrictions, roundtrip and Saturday 
night stay restrictions (a particularly powerful method of segmenting business and leisure 
passengers, the two primary customer groups), day of week travel restrictions, etc. (Belo-
baba, 2009a). The restrictions used to segment passengers by fare product are important 
not only for pricing but are defining assumptions for revenue management. They are there-
fore also important for demand driven dispatch. A recent trend in pricing has been the 
removal of many fare product restrictions. This allows passengers who would be willing to 
pay more and were previously deterred from buying the lowest fares by restrictions to now 
do so. This trend has in turn resulted in innovations in revenue management (Belobaba, 
2011), and therefore has important and heretofore underappreciated implications for de-
mand driven dispatch. 

2.2. Revenue Management 

Revenue management is a vital component of demand driven dispatch. Demand 
driven dispatch and revenue management are simulated with PODS, the Passenger Origin 
Destination Simulator, which simulates multiple revenue management systems designed to 
resemble those used in the airline industry, including systems with forecasters and optimiz-
ers with assumptions of independent fare class demand and without that assumption. Mul-
tiple variations of optimizers will also be simulated, leg-based and OD-based, to be described 
in further detail in section 2.2.2. Section 2.2 as a whole describes the general trends in 
revenue management and in more detail the systems used in PODS for the experiments 
conducted for this thesis.  

After discussing general trends in revenue management (RM), the section is divided 
into two more specific parts: forecasting and optimization. These roughly represent the two 
main steps in the revenue management process, with the forecasts of demand being required 
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as input along with the fares as determined by pricing for optimization. Optimization, and 
subsequently inventory or availability control, aims to determine the optimal number of 
seats to allocate to each of the fare classes, or price points, in order to maximize revenue. 

Revenue management has the objective of maximizing revenue and not profits as is 
more typical in economic theory because of the underlying assumption that supply, and 
therefore costs, are fixed. Given this assumption, profit maximization and revenue maximi-
zation become equivalent. This assumption is in large part true, although demand driven 
dispatch weakens the assumption by allowing planned changes in capacity, and therefore 
operating costs, during the revenue management process. Therefore, it is important that 
the decision making process for swaps have an objective of profit maximization and also 
that the potential for capacity disruption to revenue management be accounted for. 

RM optimization relies on demand forecasts for each fare class. In leg-based RM, the 
forecasts are needed for each leg, or departure. For original and destination revenue man-
agement (OD RM), forecasts are typically for each path of connected flights taken through 
the airline’s network (Gorin, 2000). Hence, these forecasts are called path-class forecasts as 
opposed to leg-class forecasts. The class refers to the fare class or fare bucket that demand 
is observed in. Forecasts are based on observed demand, or bookings, which are inherently 
constrained by both capacity and by revenue management itself via booking limits placed 
on each fare class. Therefore, these forecasts are unconstrained or detruncated to reflect an 
estimation of true demand, an approach widely used in statistics for censored data 
(Weatherford & Polt, 2002). Multiple approaches to this detruncation exist, but the result 
is demand forecasts by class that exceed or equal observed demand depending on the his-
torical availability of the fare classes in question. 

Each fare class, as well as having an estimate of its demand, is also associated with 
a revenue value, such as the average selling fare for itineraries in that fare class on a specific 
leg or departure. This allows the optimization and availability control portions of revenue 
management to weigh the expected revenue value of capacity allocated to one fare class 
against that allocated to another. When forecasted demand exceeds capacity, revenue man-
agement’s underlying purpose is exposed—it is the science of when to reject the lower-
valued demand. 

A common leg-based RM optimization technique known as EMSR has proven re-
markably popular among airlines. Its central concept is serial nesting of fare classes com-
bined with the expected marginal revenue of each additional seat allocated to a fare class 
(Belobaba, 1989). When the expected marginal revenue of the next seat allocated to the 
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highest fare class is less than the expected marginal revenue of the first seat allocated to 
the next lower fare class, the seat protection level has been found. Namely, that many seats 
should be protected for the highest fare class from all lower fare classes. If more seats than 
that number are available, the next lowest fare class should be allowed to take bookings.  

This reflects how the fare classes are serially nested. The highest fare class, being the 
most valuable, should be allowed to take as many bookings as there are seats available on 
the aircraft. However, only a limited number of bookings for the highest fare class are 
expected, so that each seat protected for the highest fare class has a diminished expected 
revenue value. Therefore, after protecting a number of seats for the highest fare class, as 
stipulated by the protection level, the next lower fare class would have an availability equal 
to the remaining capacity minus the seats protected for the highest fare class. The third 
fare class would have an availability equal to the remaining capacity minus the seats jointly 
protected for both of the two higher fare classes (Belobaba, 2009a). This concept is illus-
trated in Figure 2. 

 

Figure 2: Serial Nesting 

 In Figure 2, Fare Class 1 (FC 1), being the highest value fare class, has an availability 
of 20 seats, its booking limit. Its protection level is 5 seats, so that FC 2’s booking limit is 
15 seats. FC 1 and FC 2 have a joint seat protection level of 10 seats and FC 3 therefore 
has a booking limit of 10 seats and so on. 

 This concept was extended to origin-destination (OD) RM optimization techniques 
where local and connecting itineraries are controlled separately with optimization techniques 
such as Displacement Adjusted Virtual Nesting (Hung, 1998). Here, the fare classes are 
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replaced with virtual buckets with ranges of dollar values for each bucket. An itinerary is 
valued for a specific leg based on its total fare minus the estimated revenue displacement 
on any other connecting legs it uses. With this new valuation, it is mapped to the virtual 
bucket that contains its adjusted valuation and then EMSR optimization is applied to the 
leg’s virtual buckets. 

 From leg-based to OD-based RM, the next major development has been the adapta-
tion of RM to less restricted fares. This adaptation is important because less restricted fares 
make the assumption of independent demand for different fare classes much less valid (Belo-
baba, 2011). The primary response has been to forecast and optimize not by fare class but 
rather by willingness-to-pay; optimization input fares can be adapted to account for the 
fact that passengers who would be willing to pay a higher fare may buy a lower fare if it is 
available (Fiig, Isler, Hopperstad, & Belobaba, 2010). Willingness-to-pay forecasting and 
optimization represent the current frontier of revenue management. The tests of demand 
driven dispatch in this thesis use several revenue management systems, including leg-based 
EMSR, OD RM, and willingness-to-pay forecasting and optimization. 

2.2.1. Forecasting 

As stated, revenue management optimization models require as an input forecasts of 
demand for each fare class for each leg, or more granularly for each path. In the PODS 
simulations, three types of forecasts are used: standard leg-class forecasting, standard path-
class forecasting, and hybrid path-class forecasting. Each of these are briefly described below 
with references for further details. 

Standard leg-class forecasting in PODS is more specifically implemented as leg-based 
pick-up forecasting with booking curve unconstraining. All of the forecasting methods used 
in the experiments utilize the pick-up forecasting methodology which is widely used in in-
dustry. Pick-up forecasting refers to calculating at each day or data collection point (DCP) 
the mean “pick-up” of bookings to come (BTC) before departure. In other words, at each 
time period prior to departure, pick-up forecasting averages the historical bookings that 
were taken between that time period and the departure date and uses it as the forecasted 
BTC after unconstraining. Adding forecasted BTC to bookings in hand (BIH) yields esti-
mated bookings at departure (BAD).  

The final component for this forecasting methodology, used in conjunction with the 
pick-up methodology to generate the forecasted BTC, is booking curve unconstraining. This 
unconstraining or detruncation method replaces closed observations (those observations 
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whose demand was constrained by a booking limit) with an increased estimate of demand 
constructed from the mean of open observations (those observations whose demand was not 
constrained) multiplied by ratios that reflect the magnitudes of bookings from one data 
collection point (DCP) to the next. Details and an example can be found in Weatherford 
and Polt (2002), there called “booking profile unconstraining.” Finally, this pick-up forecast 
with exponential smoothing and booking curve detruncation is applied to each fare class for 
each departure or leg. Therefore, it is a leg-class forecast and will be referred to as a standard 
leg-class forecasting. 

Standard path-class forecasting in PODS is an extension of standard leg-class fore-
casting. It also uses pick-up forecasting with booking curve unconstraining. However, rather 
than forecasting for each class on each leg, it forecasts, as the name suggests, for each class 
on each path in the network. The result is that there are many more forecasts and they are 
considerably smaller in magnitude than a leg forecast. For example, for the OD-pair SEA- 
BOS, with a hub at MSP, there would be a forecast for demand in FC 3 for the path SEA-
MSP-BOS. This is in contrast to the leg-based forecast where there would be a forecast for 
FC 3 for the leg SEA-MSP, with demand to all final destinations aggregated together. In 
path-class forecasts, there is also a forecast for FC 3 for SEA-MSP, but this forecast only 
includes demand whose final destination is MSP. 

Hybrid forecasting in PODS is a combination of standard forecasting and what is 
known as Q-forecasting and will be used as the alternative to “standard” forecasting. Hybrid 
forecasting and Q-forecasting were developed to account for unrestricted fares and the en-
suing spiral down (Belobaba & Hopperstad, 2004). Passengers who were otherwise deterred 
by fare restriction purchase lower fare classes and are therefore recorded as demand in lower 
fare classes. This shift to lower fare classes in demand forecasts causes lower protection 
levels for higher fare classes and higher booking limits for lower fare classes, exacerbating 
the problem. This circuitous process whereby demand falls to the lowest fare classes is 
known as spiral down. Q-forecasting and hybrid forecasting, both forecasting techniques 
that incorporate concepts of willingness-to-pay (WTP), are meant to combat spiral down 
and preserve the benefits of revenue management. 

Q-forecasting operates first with an estimate of passengers’ WTP. This input, typi-
cally in the form of a negative exponential demand function, estimates what percentage of 
passengers would be willing to sell-up from the lowest fare class, the “Q class” and hence 
the name Q-forecasting, to a higher fare class. It also assumes that nearer to departure, 
potential passenger’s WTP increases, such that WTP estimates vary throughout the book-
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ing period. Q-forecasting also operates on the assumption that fare products are only dif-
ferentiated by price, and therefore all passengers will choose either the lowest available fare 
product or choose to not fly. Given this assumption and estimated WTP, historical booking 
data is transformed into a forecast for the demand of the lowest fare class should it be left 
available. Then, the demand is redistributed to the higher fare classes based on their fare 
ratio relative to the lowest fare class if they should be the lowest fare class available. The 
result is a forecast that consistently distributes forecasted demand to the higher fare classes, 
regardless of observed distributions of fare class bookings. Full details of Q-forecasting can 
be found in Belobaba and Hopperstad (2004). 

Hybrid forecasting is the combination of Q-forecasting and the aforementioned stand-
ard forecasting. Customers are separated into two groups: product-sensitive and price-sen-
sitive passengers. If a booking is made in a fare class that is the lowest open fare class, the 
passenger is assumed to be price-sensitive and the booking is subject to Q-forecasting. If a 
booking is made in a fare class that is not the lowest open fare class, the passenger is 
assumed to be product-sensitive and the booking is subject to standard forecasting. When 
both a standard forecast of product-sensitive demand and a Q-forecast of price-sensitive 
demand are completed, they are added together to create the hybrid forecast (Belobaba & 
Hopperstad, 2004). 

A final step that is paired with hybrid forecasting to combat spiral down is known 
as marginal revenue fare adjustment. The method also uses sell-up estimates to estimate 
how much total demand is available in each fare class, should that class be the lowest open. 
The marginal revenue of a fare class represents both the revenue gained due to a lower 
available price stimulating increased bookings and the revenue lost due to spiral down. This 
marginal revenue of the fare class is then used to calculate the revenue value of a booking 
in that fare class—the adjusted RM input fare. Details for methodologies for fare adjustment 
and the underlying theory can be found in Fiig, Isler, Hopperstad, and Belobaba (2010).  

The result is that the highest fare class retains an identical fare-value, while lower 
fare classes see reduced fare-values. The higher the estimate of the sell-up rate, the more 
aggressively fare adjustment devalues the lower fare classes. It is possible that the lowest 
fare classes have a negative marginal fare-value, and would therefore never be available, 
regardless of remaining capacity. This is an important point; when fare adjustment is used, 
the availability control may not allow a low fare class to be sold even when the joint pro-
tection level for higher fare classes is less than capacity. The sell-up rate used in fare ad-
justment can be tempered with a parameter (intended to adjust for the fact that the fare 
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products are not completely unrestricted), and in the experiments in this thesis, that pa-
rameter is 0.25 which is multiplied with the estimated sell-up rate. These adjusted fares are 
then used rather than the actual fares as input to the optimization process. 

2.2.2. Optimization 

The optimization process takes the input fares and forecasts and uses them to create 
booking limits for each of the fare classes, or alternatively a bid price that a fare must 
exceed in order to be booked. In this thesis’ tests, three alternate RM optimization tech-
niques are employed: EMSRb, DAVN, and ProBP. EMSRb is paired with standard leg-
class forecasting while DAVN and ProBP are paired with either standard or hybrid path-
class forecasting. When hybrid forecasting is used, the optimizer is also given adjusted fares. 
In this section, EMSRb, DAVN, and ProBP will be described and references for further 
study provided. 

As discussed earlier, EMSR is a leg-based optimization technique developed by Belo-
baba (1989) and EMSRb is a follow-up improvement to the technique (Belobaba & Weath-
erford, 1996). EMSR stands for expected marginal seat revenue. By applying cumulative 
Gaussian distributions to the demand forecast (mean and standard deviation), there is a 
50% chance of realizing at least the mean demand forecast, a greater chance of less bookings, 
and a lesser chance of more bookings. Multiplying the probability of realizing a booking by 
its fare yields the expected marginal seat revenue for that booking. When the EMSR of a 
booking in a higher fare class is less than the EMSR of the first booking in the next fare 
class, no more seats should be protected for the higher class from the lower class. Thus, 
serial nesting is employed. For the availability decision, each fare class has a booking limit. 
When that booking limit is reached, the fare class is “closed” and no more bookings can be 
taken. Thus, the availability decision for EMSRb optimization is whether or not a fare’s 
class is open or closed. EMSRb is perhaps the most widely used RM method in the airline 
industry, and is therefore the base case optimization technique in most experiments in this 
thesis. 

Displacement Adjusted Virtual Nesting (DAVN), described in greater detail in Wil-
liamson (1992) and Hung (1998), takes the same logic and extends it to full OD inventory 
control. The actual fare classes on each leg are replaced by virtual buckets, or value buckets. 
Each bucket is associated with a range of fare values. For example, the lowest virtual bucket 
may contain all itineraries that traverse the leg valued at $0 - $100, while the highest virtual 
bucket may contain all itineraries that traverse the leg valued greater than $1,200. These 
virtual buckets are then controlled with the EMSRb technique. If an itinerary is deemed 
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available on all of the legs that it traverses after it has been mapped to each legs’ virtual 
bucket and EMSRb is applied, it is available to book. 

How are itineraries mapped to the virtual buckets? Each fare, when valued on a leg, 
is valued as the itinerary’s fare minus the sum of the network displacement costs of the 
other legs the itinerary uses. These network displacement costs are derived from the shadow 
prices for each leg’s capacity constraint in a network linear program and represents the 
economic opportunity cost of other bookings that could have utilized the space this itinerary 
will use. Therefore, DAVN allows, through several layers of heuristics, for inventory control 
to be performed on the OD level rather than on the leg level. 

Probabilistic Bid Price Control (ProBP), approaches the same OD revenue manage-
ment problem from a slightly different approach (Bratu, 1998). Rather than employing the 
EMSR concept at the end for availability control, it applies it at the beginning for the 
calculation of the network bid prices, whose function is the same as the network displace-
ment cost (Bratu, 1998). These network bid prices are generated with the following iterative 
algorithm: 

1) For every leg, calculate the EMSR values for all path-classes that traverse a 
particular leg with no regard to network displacement costs. 

2) For each leg, find the EMSRc, or the EMSR value of the last seat on the leg, and 
designate it as the displacement cost for the leg. 

3) Prorate the original fares by the relative displacement costs across multiple legs 
and find the new EMSRc for each specific leg. 

4) Repeat Step 3 until the network displacement costs converge for all legs. 

The result is a probabilistic network bid price (displacement cost) for each leg in the system. 
Control of inventory is done by bid price: each itinerary’s fare is compared to the sum of 
the bid prices of the legs it traverses. If the fare is greater than the sum of the bid prices, 
the itinerary is available. If the fare is less than the sum of the bid prices, the itinerary is 
not available. Thus, ProBP, like DAVN, allows for full OD control of inventory. 

 

2.3. Airline Demand: RM, Spill, and Incremental Capacity 

With the application of revenue management (forecasting, optimization, and inven-
tory control) described in the previous sections, it is apparent that the “first and last seats” 
available on a flight are not of the same revenue value. The last seats on a flight will be 
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allocated to the lowest available fare classes, and the first seats on a flight will be protected 
for the highest fare classes. This hierarchy of demand has important implications for spill 
(demand that cannot be accommodated due to capacity constraints) and therefore for de-
mand driven dispatch which makes capacity flexible. The quantity and value of demand to 
arrive in the future is critical to inventory control but also to the determination of the 
optimal capacity on future departures. Demand is often modelled with a Gaussian distribu-
tion and some authors have argued other distributions may be more appropriate (Li & 
Oum, 2000) & (Swan, 2002). However, the actual revenue value of spilled demand is a 
critical consideration, regardless of the exact shape of its distribution. Belobaba & Farkas 
(1999) and Abramovich (2013) investigated the effects of RM on spill estimation and valu-
ation. 

Abramovich (2013) discusses the results of passenger choice and revenue manage-
ment on the value of spill and therefore on the value of incremental capacity. The findings 
included the importance of considering passengers ability to choose between flights, recog-
nizing that increasing capacity on one flight could increase revenue on that flight but de-
crease revenue on another flight operated by the same carrier. Likewise, when fare products 
are unrestricted and the RM system does not account for WTP, increased capacity can 
result in spiral down such that incremental capacity can have a negative revenue impact 
for the network and for that specific flight. Therefore, when considering the value of spilled 
demand, it is important to consider the revenue value of the demand being spilled and, 
given lower restrictions, the potential for incremental capacity increases to result in spiral 
down. 

2.4. Previous Research in D³ 

Demand driven dispatch traces its origins to discussions found in a presentation at 
an AGIFORS conference (Etschmaier & Mathaisel, 1984) and an internal memo at the 
Boeing Company (Peterson, 1986). The concept of the “rubber” airplane, capable of match-
ing any level of demand, as imagined at The Boeing Company in the late 1980s and early 
1990s, was to be the “penultimate hub aircraft.” Berge and Hopperstad (1993) formulated 
and tested the process. They developed an LP formulation and a sequential minimum-cost 
flow method for assigning aircraft; they then tested demand driven dispatch in a simulation 
with a single carrier performing EMSR-based revenue management and the assignment 
process solved with heuristics. With a number of side studies, the results of their simulations 
showed a significant increase in operating profits, from 1% to 5%. These were in part due 
to increased revenue but largely due to decreased operating costs, where smaller aircraft 
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were assigned to routes when more accurate demand forecasts predict low demand. This 
paper broke ground on demand driven dispatch and is heavily cited in all subsequent works. 

Waldman (1993) analyzes the practicality and profit potential of demand driven 
dispatch. He cites Berge and Hopperstad’s conclusion that feasible maintenance schedules 
are possible with demand driven dispatch, as well as provides solutions to other operational 
challenges: aircraft families with cockpit commonality and reserve cabin crew to solve crew 
scheduling and reserving certain cabin sections until after final fleet assignment to solve 
seat assignment. He also cites KLM’s successful implementation of demand driven dispatch. 
In a simulation of demand driven dispatch in a single hub network with one airline per-
forming EMSR-based RM, he finds profit enhancements consistent with Berge and Hopper-
stad. Cots (1999) simulates a single airline performing demand driven dispatch on a repeated 
flight, managing inventory with EMSRb-based RM. It then tests delaying swaps until later 
in the booking process and changing the RM input capacities to the minimum and maximum 
possible. As with the prior experiments, demand is assumed to be independent between fare 
classes. It also assumes a Poisson arrival process with demand variance fixed to equal the 
mean demand. 

Next, a series of papers were published describing and focusing on models and algo-
rithms for re-assigning aircraft. The first is a model for efficient airline re-fleeting (Jarrah, 
Goodstein, & Narasimhan, 2000) which does not explicitly cover the topic of demand driven 
dispatch but offers numerous modules to assist schedule users in manually re-fleeting, one 
scenario being changes in forecasted demand and fare levels. This reflects how demand 
driven dispatch has been implemented more on an ad hoc basis using decision support tools 
rather than in a systematic way. 

Bish, Suwandechochai, and Bish (2004) wrote on strategies for managing flexible 
capacity, including what they term demand driven swapping (DDS). They claim that swaps 
more than four weeks out will not disturb revenue management but utilize poorer forecasts, 
while swaps nearer in disrupt airline operations. They predict positive revenue results using 
analytical models based on data from United Airlines. Sherali, Bish, and Zhu (2005) devel-
oped a polyhedral analysis and algorithms for re-fleeting; they restrict swaps between air-
craft that share “loops,” or strings of flights that begin and end at the same airport at the 
same times. They relaxed the leg fare class-based passenger demand and allowed path fare 
class-based passenger demand. They also cite United Airlines and Continental Airlines test-
ing the swapping of aircraft for altered demand forecasts and that both airlines experienced 
significant gains as a result. 
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Jiang (2006) explored techniques for optimizing re-fleeting and de-peaking hub-and-
spoke systems, primarily using demand driven dispatch models generalized by Berge and 
Hopperstad (1993) and Bish et al (2004) for its schedule re-optimization model. It also seeks 
to de-peak the hubs busiest times to increase flexibility for dynamic re-fleeting. Passengers 
are generated by itinerary or path, with each itinerary having a single fare/fare class. Thus 
revenue management is not simulated. Profit increases of between 2.0% and 4.9% are pre-
dicted. 

A study of the potential for dynamic airline scheduling, both re-fleeting and retiming, 
was conducted by Warburg, Hansen, Larsen, Norman, & Andersson (2008) primarily based 
on Jiang (2006) with additional components. By adapting both the choice model and the 
operating cost model to match observed data and simulating with demand data from SAS, 
they predicted profit increases of -0.8% to 1.6%. Jiang & Barnhart (2009) addresses the 
same topic. It utilizes both flight refleeting and retiming to optimize the schedule. Tests 
using data from a major US carrier indicate profit increases of 2.5% to 5%. Demand was 
generated for OD markets with a single average fare, such that revenue management was 
not simulated. 

Hoffman (2011), on dynamic airline fleet assignment, essentially reuses the fleet as-
signment model (FAM) from the original, static fleet assignment to adjust for deviations 
from expected demand. A single airline implements re-fleeting with simulated profit gains 
of approximately -0.1% to 0.6% using data from Lufthansa. Notably, the study found that 
a version of the FAM emphasizing robustness outperformed other versions at all demand 
variation levels. Finally, Pilla, Rosenberger, Chen, Engsuwan & Siddappa (2012) developed 
a multivariate adaptive regression splines cutting plane approach to solving a two-staged 
stochastic programming. They then applied the approach in demand driven dispatch as 
outlined in Berge and Hopperstad (1993) and estimated, by comparing objective function 
values, that the value of demand driven dispatch was approximately a 6.74% improvement 
in profitability. Neither revenue management nor stochastic demand arrivals were simu-
lated. 

Two works attempt to fully integrate the fleet assignment optimization with yield 
management optimization, first by using dynamic yield management with swapping allowed 
(Wang & Regan, 2006). This work, where a pair of flights are designated as swappable with 
each other, the dynamic RM technique is given a regularly updated probability of swap 
given current demand. Three fare classes are used and controlled by bid price determined 
by expected revenue recursion while simultaneously determining fleet assignment. Demands 
for the fare classes are independent in the tests with Poisson arrival rates. Revenue increases 
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are estimated to be between 0.12% and 1.61% depending on the heuristics used to solve the 
dynamic optimization. Wang & Meng (2008) extends the same logic to more systemic fleet 
reassignment based on current bookings. While impressive in its theoretical framework, the 
practicality of an airline replacing its revenue management system and fleet assignment 
system to install such an integrated system is questionable. 

On a practical level, two papers have analyzed the results of live tests of demand 
driven dispatch. The first (Feldman, 2002), briefly discusses the positive results of a manual 
implementation at Continental Airlines of swapping aircraft in leisure markets based on 
estimated revenue increases and also of a large test at American Eagle, where more than 
10% of flights were swapped. Shebalov (2009) discusses the same instances of demand driven 
dispatch in the US and emphasizes that in live tests successfully estimating the revenue of 
potential swaps is critical. 

Based on this review of the existing literature on demand driven dispatch, several 
points are evident. First, a great deal of effort has been put into the improvement of fleet 
assignment models and algorithms, usually as extensions of the original FAMs used to create 
the static assignments prior to the implementation of demand driven dispatch. Second, in 
the vast majority of tests of such methods, revenue management is either not considered or 
given a secondary role. Fare classes are simplified, with no fare rules or restrictions, and 
demand is independent between fare classes and typically arrives via a Poisson process, the 
same demand model used in the development of the optimization methods. Where industry 
data is used to estimate results, a single airline’s booking data is used. Competition does 
not exist in any tests of demand driven dispatch, as far as the author of this thesis is aware. 
Finally, through many live tests and implementations at US carriers and European carriers, 
demand driven dispatch has been shown to be possible and has been found to have positive 
results. The opportunity exists for this thesis to further develop demand driven dispatch by 
incorporating a more comprehensive analysis of D³ with a focus on current revenue man-
agement tactics and in a competitive network environment. 

  



32 
 

Chapter 3: About PODS 

The Passenger Origin Destination Simulator (PODS) is the simulation tool used for 
the experiments described in this thesis. PODS, originally developed at Boeing to test pas-
sengers’ preferred travel windows, now simulates the generation of demand (each passenger 
with a set of attributes and preferences), several airlines, and complete RM systems. Criti-
cally, the demand is not generated with the same assumptions as those made in the RM 
models and the airlines must forecast and optimize using demand generated from historical 
bookings only—they do not have access to the actual demand. 

PODS therefore allows for the simulation of realistic revenue management systems 
in a full network setting with competition. Competition in PODS is critical, as ultimately 
revenue management and demand driven dispatch are competitive actions. Engaging in 
either has significant impacts on competitor airlines, and competitor airline actions have 
significant impacts on the subject airline. This chapter will describe the PODS simulator in 
greater detail. All information and figures in sections 3.1 through 3.4 are from a recent 
presentation of processes in PODS by Belobaba (September, 2010). 

3.1. Overview and Structure 

The structure of PODS consists of two components—the passenger demand compo-
nent and the airline component. The passenger demand component is characterized by de-
mand generation and a passenger choice model. The airline component is characterized by 
each airline’s revenue management system and the revenue results of its use. The only 
interaction between the two components is when passengers choose an itinerary and book 
and when the revenue management systems of the airlines provides fare class availability 
to the passengers via a choice set. Thus, the true demand, both the quantity and the arrival 
process, are not known by the airlines. Instead, they must rely on historical bookings to 
generate forecasted demand. Furthermore, passengers may choose any itinerary to their 
destination provided the itinerary is available via inventory control. This structure is dis-
played in Figure 3. 
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Figure 3: Structure of PODS 

 The passenger demand in PODS is generated stochastically for each market. 
This each passenger is then assigned, along with other characteristics, a preferred departure 
time or window, via the decision window model. These passenger characteristics then apply 
to the passenger’s choice set, also determined by the airline’s availability. The passenger 
makes a decision which has a revenue result to the beneficiary airline and that booking is 
recorded in the historical bookings for that airline. These historical bookings are then used 
in generating demand forecasts; the demand forecasts along with fare class revenue valua-
tions are used to by each airlines’ optimizations and inform the airlines’ availability deci-
sions. The resulting fare class availabilities define the choice set for future departures. 

The process detailed in Figure 3 also has a time dimension. The bookings period in 
PODS is 63 days, meaning passengers can book their itineraries up to 63 days prior to 
departure. Figure 4 displays the timeframes in PODS, which are dispersed through these 63 
days. 
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Figure 4: TF Definitions 

The time frames (TFs) are essentially PODS’s version of RM system data collection points 
(DCPs). At each of them, forecasted BTC and BIH are reassessed and reoptimization takes 
place or updated booking limits are calculated. The nearer the departure date, the closer 
together the TFs. At the beginning of the booking period, TFs are a week apart while at 
the end of the booking period TFs 15 and 16 are one day apart. 

3.2. Competitive Networks 

Beyond the processes of PODS, the setting in which passengers are generated and 
airlines practice revenue management is important to the insights provided by the simula-
tion: PODS has competitive networks. In the network used in this thesis, Network D, two 
airlines compete in the continental United States for passengers in every market. Therefore, 
passengers not only have a choice of path and fare class but also which airline to fly. 

Network D³ has passenger flow in two directions, East to West and West to East. 
Hub airports are also points of origin for passengers and points of destination. Each airline 
has its own hub and serves the spokes of the network with direct flights to and from the 
hub. Therefore, most markets are only served via connecting itineraries and airlines compete 
with their offered connecting itineraries. Direct flights to and from the hub have a service 
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quality advantage over connecting service. Therefore, the networks employed in the PODS 
simulator provide a setting, both as full networks and with competition, that other revenue 
management simulations do not provide. It is also a unique opportunity for testing demand 
driven dispatch. 

3.3. Demand Generation and Passenger Choice 

Every passenger is generated for a specific OD market with a set of characteristics. 
Each market has a mix (which fluctuates stochastically) of business and leisure passengers, 
and each passenger’s unique characteristics are dependent on what type of passenger they 
are. These unique characteristics, with means dependent on the passenger type, are also 
randomized. Thus, a fair degree of variability is achieved in passenger demand. The char-
acteristics of each passenger include a decision window, a maximum willingness to pay, and 
a set of disutility costs. Also randomized is the number of passengers who demand air travel 
in any given market and at a system level. 

A passenger’s decision window is simply when they prefer to fly. If a passenger is not 
able to fly at that time, these less preferable times incur a re-planning cost. Business trav-
elers are more inclined to have narrow decision windows than leisure passengers, and are 
therefore more time-sensitive. 

A set of disutility costs give dollar values to disutilities associated with the various 
restrictions applied to the fare products in each market. Disutilities also apply to re-planning 
and path quality costs, as well as having to fly on each passengers “unfavorite” airline, or 
simply not flying on their favorite airline (randomly assigned). Re-planning costs are asso-
ciated with not being able to fly at the preferred time, as described above. The path quality 
cost is more or less a penalty for having to connect versus having a non-stop flight. The 
disutilities associated with restrictions include such restrictions as Saturday night stays and 
change fees, which business passengers dislike more than leisure passengers on average. 

The maximum willingness to pay is a dollar amount that the passenger is willing/able 
to pay for travel. It is defined as a ratio of the lowest fare in each market, so that if a 
hypothetical business passenger is willing to pay 4 times the base fare of $150, their maxi-
mum willingness to pay would be $600. Business travelers on average have larger budgets 
than leisure passengers. 
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Figure 5: Demand Arrival 

As Figure 5 shows, business and leisure passengers also differ in their arrival times, 
or when, on average, they shop for their travel. Leisure passengers appear earlier in the 
booking period and business passengers appear later in the booking period. Because of the 
differences in traits of business and leisure passengers, this means that passengers that 
appear early in the booking process are likely to have lower maximum willingness to pay 
and to be more price-sensitive. Passengers that appear late in the booking period are more 
likely to have higher maximum willingness to pay and be more product-sensitive. This is 
keeping with industry experience. Furthermore, airlines in the simulation do not know when 
passengers shop or book what type of passenger they are, but PODS does report these 
statistics. 

Once these passengers are generated, they must choose an itinerary. All path-classes 
that match the passenger’s desired OD market are added to the choice set. Then, any path-
classes with fares greater than the passenger’s willingness to pay are removed, as are any 
path-classes that are not available due to the airlines’ inventory control or advanced pur-
chase restrictions. This narrows the options to the true choice set for the passenger. Not 
traveling is also a choice. 

These path-class options are then ranked by generalized cost, with the least costly 
being the preferred choice. The generalized cost is the sum of the actual fare (which is the 
only cost paid to the airline as revenue) and the dollar values of the disutilities associated 
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with the fare product. In the event of a tie, the passenger’s airline preference (randomly 
assigned) breaks the tie. Note that because path-classes, or itineraries, are ranked by gen-
eralized costs, that passengers do not always choose the least expensive, available itinerary. 
Instead, if a passenger is product-sensitive and the costs associated with disutilities exceed 
the difference between a higher and lower fare product, the passenger will choose the higher 
fare product. However, most leisure passengers will, as their first choice, desire the lowest 
fare product (i.e. fare class 6). If this is closed by availability or advanced purchase re-
strictions, they may or may not be persuaded to purchase a higher fare class. PODS there-
fore allows users to observe the choice behavior of passengers to a degree not possible in the 
real world. It also models a variety of passenger types whose unique characteristics create 
the variety of demand observed in practice, enhancing the quality of the revenue manage-
ment simulation. 

3.4. Modeling Demand Driven Dispatch in PODS 

Modeling demand driven dispatch in PODS involves primarily changing the capac-
ity of the flight legs. For each PODS simulation, the revenue management system, for in-
put to RM and for determining bookings limits for preventing denied boarding, takes a 
network file that includes capacities for every departure in the network, for all airlines. In 
swapping aircraft, these capacities change. Therefore, in base cases without demand 
driven dispatch the capacities from the calibrated network file are used throughout the 
simulation but in cases with demand driven dispatch the network file capacities are only 
used as the starting point—the original static fleet assignment. 

In changing capacities, legs are designated as swappable or not, and can only be 
swapped as leg-pairs to and from the hub. This will be described in greater detail in Sec-
tion 3.5., but its purpose is to constrain the number of swaps that are possible to rudi-
mentarily model the constraints from practical operations and also to maintain balance, 
count, and coverage. The decision of how to swap capacities is determined by a series of 
assignment models, first with a greedy bookings-based method and then with network op-
timization methods utilizing a minimum-cost flow model that maximizes either expected 
revenue or operating profit. These assignment methods are described in detail in the re-
spective chapters in which their results are reported. 

3.5. PODS Network D³ 

Network D³ was designed within PODS specifically for the testing of demand driven 
dispatch. Its architecture allows for the simulating of demand driven dispatch in a full 
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network setting with competing airlines, something that has not been done previously. It is 
also designed so that coverage, count, and balance can be maintained when swapping air-
craft assignments. PODS with Network D³ allows demand driven dispatch to be simulated 
not only in a competitive environment but also with different RM systems, including full 
O&D RM systems. This is also a first for simulating demand driven dispatch.  

The network has twenty airports on the West Coast of the PODS’ simulated U.S. 
and another twenty airports on the East Coast. There are two hub airports in the Midwest. 
Airline 1 has its connecting hub at MSP, Airline 2 at DFW. From each of the forty spoke 
cities, there are two non-stop flights a day to each airline’s Midwest hubs, and then two 
non-stop flights a day to the opposite coast. The hubs serve connecting passengers. There 
are also local passengers whose origin or final destination is MSP or DFW. With passengers 
traveling from West to East and East to West, as well as to and from the hubs, there are 
964 OD markets available to PODS’ simulated travelers. These 964 markets are served by 
the two airlines with 336 legs or flight departures daily, each airline operating 168 in com-
petition with the other. 

 

Figure 6: Network D³ Markets 

Figure 6 illustrates the destinations in Network D³ with two regions and two central hubs 
that are also destinations and points of origin. Figures 7 and 8 show the route maps for 
Airline 1 and Airline 2. 
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Figure 7: Airline 1 Route Map 

 

Figure 8: Airline 2 Route Map 

Each of the airlines operates 168 legs divided into strings of four legs each. Every 
day, each simulated aircraft operates one string of four legs. Each string originates on one 
coast, flies to the Midwest hub, the opposite coast, back to the Midwest hub, and finally 
returns to the original airport on the originating coast. 

 

Figure 9: Flight String Design 
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Figure 9, illustrates the design of a flight string. In this case, the hypothetical string would 
belong to Airline 1 with its hub at MSP. The aircraft originates at SAN and flies to BOS 
and back, with two stops at MSP. At each of those stops at MSP, the aircraft participates 
in a connecting bank, allowing passengers to connect to many OD markets and also allowing 
swaps. Passengers can connect at both of the two daily connecting banks. However, aircraft 
swaps are only allowed at the first connecting bank of each day. Therefore, aircraft always 
return to their originating airport at the end of the day and are in position for the next 
day. However, they are allowed to be swapped to routings that include any airport in the 
opposite coastal region. Therefore, in Figure 9, BOS may not be the East Coast turn location 
and Legs 2 and 3 are subject to capacity changes due to demand driven dispatch. 

 

Figure 10: Routing Options 

Figure 10 illustrates the options available daily to the aircraft originally assigned on the 
hypothetical SAN-MSP-BOS string. Any of the East Coast destinations are potential turn-
around locations for the aircrafts second turn of the day. It must return to SAN, however, 
so that every day its two legs between SAN and MSP are not swappable. Hence, only half 
of the flights or legs are swappable—the second and third flights of the day to the opposite 
coast. Swappable pairs of legs form a there-and-back routing from the hub with no overnight 
stay. 

The constraints determining the swappable set of flights or legs not only stipulate 
that half of the total set of flights are swappable but also stipulate that all flights or legs 
must be swapped in pairs—the leg from the hub and the leg back to the hub. From here 
on, such swappable sets are referred to as swappable “leg-pairs.” 
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For simplicity, each aircraft fleet has one aircraft family, the assumption being that 
the same crew can fly every aircraft. This hypothetical aircraft family is a mainline narrow-
body aircraft with three sizes: 130 seats, 150 seats, and 170 seats. Thus, the simulated 
aircraft family is comparable to the A320 and B737 aircraft families, which comprise a large 
proportion of most airline fleets today and in some cases the entire fleet.  

Both Airline 1 and Airline 2 have fourteen of each aircraft size, seven of each sta-
tioned on each coast for each airline. With these aircraft sizes and swappable leg-pairs, each 
aircraft has a set of 21 possible daily itineraries. From another perspective, for each day, an 
airline has the ability to choose from approximately 0.51 × 10  options for scheduling its 
West Coast aircraft and the same for its East Coast, even in this relatively small network. 
If you narrow the choices by ignoring specific aircraft or tail numbers and only consider 
that each leg-pair in an airline’s network has three capacity options, the set of feasible leg-
pair/capacity assignments is still approximately 399 million per day for each coast’s fleet. 
This is therefore a large number of swapping possibilities even in a small and schedule-
constrained network. 

Finally, Network D³ has a fare structure for each OD market. Both airlines offer the 
same fares (and restrictions) on each OD market. This is a simplifying assumption, but not 
altogether unrealistic given the current industry’s competitive pricing practices. Both air-
lines have six fare class products with a range of fares and fare restrictions. Figure 11 
illustrates the restrictions associated with each fare class in Network D³: 

 

Figure 11: Network D³ Fare Restrictions 

Each of the fare classes has an associated advanced purchase restriction (AP), ranging from 
zero days to twenty one days. Restrictions 1 through 3, signified by R1, R2, etc., represent 
such restrictions as minimum stay, refundability, and so on. A “1” in the restriction’s col-
umn signifies that the restriction is in place for that fare class. Each passenger is generated 
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with unique and randomly distributed disutilities for restrictions R1, R2, and R3, so that 
some passengers are product-sensitive rather than merely price-sensitive. 

 Each fare class in each OD market also has an associated fare. Table 1 shows a range 
of information of representative fares in each of the fare classes, with FC 1 being the “Full” 
Y fare and FC 6 being a restricted discount fare: 

Table 1: Network D³ Fare Structures 

 FC 1 FC 2 FC 3 FC 4 FC 5 FC 6 
Maximum Fare $  742.52 $  514.82 $  297.02 $  247.52 $  198.02 $  153.00 
Average Fare $  412.86 $  293.34 $  179.01 $  153.03 $  127.05 $  101.06 

Minimum Fare $  188.33 $  136.83 $    87.58 $    76.39 $    65.19 $    54.00 
Max. Fare Ratio 5.00 3.47 2.00 1.67 1.33 1.00 
Avg. Fare Ratio 4.09 2.91 1.77 1.52 1.26 1.00 
Min. Fare Ratio 3.20 2.36 1.55 1.37 1.18 1.00 

 

The fares range from $742.52 to $54.00 depending on the OD market and the fare class. 
The average fare ratio between the highest and lowest fare classes is 4.09, with the maximum 
and minimum ratios being 5.00 and 3.20. In conjunction with increasing fares, the difference 
between the fares of the highest fare classes is also larger than the difference between the 
lowest fare classes. Figure 7 illustrates this. 
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Figure 12: Network D³ Fare Structures 

These fare structures approximate actual fare structures to allow for realistic revenue anal-
ysis of the impacts of both revenue management systems and also demand driven dispatch. 
For example, the spread of fares and highest and lowest fares will be important when dis-
tinguishing the differences of swapping based on bookings or revenue. It will also be shown 
that advanced purchase restrictions in the fare products becomes critical in timing swaps 
for D³. Thus, taking all of these factors into consideration, from the fare products to the 
aircraft routing, Network D³ provides a comprehensive setting in which to simulate D³. 
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Chapter 4: Bookings-Based Swapping 

The simplest method of assigning capacities to legs in a network is by ranking esti-
mated bookings at departure (BAD). It is intuitive in that the flights with the highest 
estimated demand will be assigned the largest aircraft. It makes it possible to explore dif-
ferent dimensions of implementing demand driven dispatch and its competitive and revenue 
management context. Demand driven dispatch with bookings-based swaps also provides a 
useful benchmark for estimating the benefits of attempts at making revenue- and operating 
profit-based swaps in subsequent chapters. 

Chapter 2 begins with the testing of demand driven dispatch in PODS with a book-
ings-based algorithm for determining the final fleet assignments for each leg. The effects of 
demand driven dispatch will be explored, with special attention paid to the differences in 
the effects based on the timing of the swapping as well as the underlying demand levels and 
the RM systems employed by the airlines. 

4.1. Swapping Methodology 

The first swapping methodology will be called bookings-based swapping. The meth-
odology is simple and intuitive, albeit not optimal. Each leg-pair has a set capacity from 
the original fleet assignment. Each leg-pair also has an associated estimated bookings at 
departure (BAD) and bookings-in-hand (BIH). These attributes are the only criteria used 
in the bookings-based swapping methodology. Estimates of BAD are used to rank leg-pairs, 
where the leg-pairs with the larger BAD estimates receive larger aircraft. Meanwhile, it is 
important to consider BIH to prevent denied boarding. 

Estimated BAD for each leg is the combination of BIH and forecasted bookings to 
come (BTC). As the simulation does not have cancellations or no-shows, the BIH are de-
terministic. BTC are not deterministic, but rely on separately generated forecasts. Standard 
pick-up forecasting with booking curve unconstraining generates forecasted BTC in the 
airlines’ RM systems. This is a typical forecasting methodology with current airlines. In the 
simulation as in reality, the airlines’ forecasts are based on the airlines’ historical booking 
data, as described in the forecasting section of Chapter 2. Thus, actual demand can vary 
greatly from forecasts. As a direct result, there is a great deal of uncertainty in demand, 
but that uncertainty in the total BAD diminishes as the departure date draws closer. This 
is because BIH comprise a greater proportion of the forecasted BAD and BTC comprise a 
smaller proportion. The estimated BAD for each leg-pair is the sum of the estimated BAD 
for the two legs comprising it. The BIH for each leg is the number of bookings that have 
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taken place thus far in the booking process. The BIH attributed to a leg-pair is the maxi-
mum of the two BIH of the two legs. 

The assignment of aircraft to leg-pairs is based on a ranking algorithm. The available 
aircraft/capacities are ranked largest to smallest. Then the leg-pairs are ranked by sum of 
BAD largest to smallest. The leg-pair with the lowest estimated sum of BAD is assigned to 
the smallest available capacity such that the capacity is greater than or equal to the leg-
pairs’ BIH. The leg-pair with the second least estimated sum of BAD is assigned to the 
smallest available capacity such that the capacity is greater than or equal to the leg-pair’s 
BIH, and so on until all leg-pairs have been assigned a capacity. 

 

Figure 13: Bookings-Based Assignment Example 

Figure 13 illustrates the assignment algorithm. Leg-pair 6, with the lowest estimated sum 
of BAD, is assigned Aircraft 6, with the lowest capacity. Leg-pair 5 would be assigned 
Aircraft 5, except that its max BIH exceed 130, so it is instead assigned Aircraft 4. Leg-pair 
4 then gets Aircraft 5, as it is the smallest available aircraft, and so on until all leg-pairs 
and aircraft are matched. 

 This bookings-based methodology has several merits that make it a good place to 
begin the testing of demand driven dispatch, as well as several drawbacks. First, the meth-
odology is simple and intuitive. It assigns the largest aircraft to leg-pairs with the largest 
estimated BAD. In the simplest terms, it gives the biggest planes to the flights with the 
most forecasted bookings. Meanwhile, it prevents denied boarding due to aircraft swaps. 
This methodology provides intuitive swapping decisions for aircraft assignment and opens 
the door to a wide variety of tests with demand driven dispatch. It does not require cost 
inputs and allows it to be applied at any time in the booking process and with any revenue 
management system. 
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The first drawback is the result of the process of summing estimated BAD to rank 
leg-pairs. Figure 14 displays a scenario in which this weakness results in a suboptimal air-
craft assignment. 

 

Figure 14: Example of Suboptimal Assignment 

Suppose, in a very simple example, an airline has two swappable leg-pairs and two aircraft, 
a 130-seat aircraft and a 150-seat aircraft. No bookings have been taken so far. Leg-pair 1 
has the smaller sum of estimated BAD and would therefore be assigned a 130-seat aircraft. 
Leg-pair 2 would be assigned the 150-seat aircraft. Yet, if the estimated BAD are correct 
for each leg, Leg-pair 2 would never use the additional seats provided by the 150-seat air-
craft, while Leg-pair 1 would spill twenty units of demand on Leg B. This suboptimal 
solution is the direct result of a 1-stage ranking algorithm. To overcome this problem, either 
a two-stage ranking method or a linear program-like specification is needed. 

The most notable drawbacks of the methodology, however, are the ignoring of both 
operating revenue and cost. In revenue terms, the last fifty seats of a flight whose average 
selling fare is $500 are not worth the same to the network as those on a flight whose average 
selling fare is $125. For costs, the longer the flight, the more operating costs incurred, and 
the larger the aircraft generally the greater the operating costs per mile. The bookings-based 
methodology does not consider these factors. 

 Still, the methodology acts as both a proof of concept for testing demand driven 
dispatch in the PODS simulator and as a benchmark for more advanced swapping method-
ologies, providing a baseline against which to measure the gains of performing demand 
driven dispatch with more sophisticated revenue and cost inputs and optimization tech-
niques. 

4.2. Dimensions of D³ Experiments 

The bookings-based algorithm, effectively maximizing expected average leg load fac-
tor, is used for implementing demand driven dispatch in a variety of experiments. Demand 
driven dispatch is implemented at a variety of times in the booking period, ranging from 42 
to 5 days prior to departure (PODS has a 63 day booking period). Next demand driven 
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dispatch is performed with a variety of RM systems and with different competitive scenar-
ios. Finally, demand driven dispatch is performed at a variety of overall system demand 
levels. These tests provide important insights as to how demand driven dispatch interacts 
with its context—especially the context of a competitive network environment with revenue 
management. 

4.2.1 Timing Swaps 

The first set of tests involve the timing of demand driven dispatch. In these tests, 
swaps occur only once in the 63-day booking period of PODS. These swaps are tested at 
varying times throughout the booking period, however. Both airlines use identical RM tech-
niques—leg-based forecasting with standard pick-up forecasting and booking curve uncon-
straining. These leg-based forecasts are then fed to an EMSRb optimization along with full 
OD fares, a simplifying heuristic that gives higher value to connecting itineraries. 

 In the base case, the results of five trials of 400 sample departure days display a 
relatively equal outcome for the airlines. Both airlines provide approximately 25 million 
ASMs and sell approximately 20 million RPMs. This in turn results in system load factors 
for both airlines of around 80-81%. Yield for both airlines is about 9.0 to 9.3 cents per mile. 
Revenue for both airlines is about $1.8 million and they split market share roughly equally 
based on enplaned passengers. Airline 1 has slightly more market share with slightly fewer 
RPMs because MSP is more centrally located in the network as compared to DFW, as 
evidenced by Airline 1’s fewer ASMs. Table 2 provides the key metrics for the output in 
the base case. 

Table 2: Base Case Output with EMSRb 

Airline ASMs RPMs System LF Yield Total Revenue Market Share 
Airline 1 24,589,596 19,971,592 81.22% 0.0934 $1,864,432 50.19% 
Airline 2 25,365,524 20,396,679 80.41% 0.0902 $1,839,813 49.81% 

 In the base case, neither airline engages in demand driven dispatch. In the alternate 
cases, only Airline 1 engages in demand driven dispatch. All results will be in the form of 
changes in key metrics as well as bookings by fare class, etc. from the base case. 

 In each of the alternate cases, Airline 1 swaps aircraft at one of six times during the 
booking period. These swap times are distributed throughout the range of the 63 days 
available as one of PODS’ data collection points or timeframes (TF), ranging from 42 to 5 
days prior to departure. Figure 15 highlights the TFs in which D³ is applied and displays 
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the base case number of bookings taken in the system as well as the percentage of total 
final bookings. 

 

Figure 15: Swap Times 

For example, at TF4, 42 days prior to departure, 45% of system bookings, approximately 
6,000, have arrived. The timeframes TF4, TF6, TF8, TF10, TF12, and TF14 correspond to 
42, 31, 24, 17, 10, and 5 days prior to departure, respectively. The booking period begins 
63 days prior to departure. By TF14, 5 days prior to departure, 96% of bookings have 
arrived. Thus, swaps at this timeframe will be constrained by BIH and any changes in 
capacity will only effect the latest arriving demand. On the other hand, swaps in TF4 will 
take place soon enough that BIH will constrain few or even none of the potential swaps 
and, depending on the availability control of the RM system, the lowest fare classes may 
still be available. 

 Tests of swaps at TF8 and TF10 will be insightful because of their interaction with 
advanced purchase restrictions. A majority of bookings are in the lowest fare class, FC 6, 
which is closed by an advanced purchase restriction 21 days prior to departure. TF8 is 24 
days prior to departure and TF10 is 17 days prior to departure. Therefore TF8 and TF10 
fall on either side of the cutoff for bookings FC 6 and the test results will illustrate the 
importance of timing swaps relative to the fare structures in the market. 

 This importance is apparent in the Figure 16, which shows the total system revenue 
results of bookings-based demand driven dispatch at the various timeframes, with the earlier 
timeframes on the left and the later timeframes on the right. 
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Figure 16: Changes in System Revenue from Bookings-Based D³ at Different TFs 

For Airline 1, which has engaged in demand driven dispatch, the revenue results are in-
creases of between 0.34% and 0.54% in total system revenue. Note that generally the later 
the swaps occur in the booking process the more positive the change in revenue, the excep-
tion being implementation in TF10. As discussed previously, this is due to the closure of 
FC 6 due to advanced purchase restrictions. Additional capacity due to a swap is filled with 
FC 6 passengers when possible, as will be shown, and this is no longer possible in TF10. 

 Airline 2 experiences inverse results from Airline 1’s implementation of demand 
driven dispatch. In TF4, Airline 2 actually loses a greater percentage of system revenue 
than Airline 1 gains, as Airline 1 captures more demand. As the implementation of demand 
driven dispatch moves closer to departure, additional capacity proved by D³ does not cap-
ture as much additional demand, as the majority of demand has already arrived and either 
been booked or rejected. Thus, the effect on Airline 2 decreases when Airline 1 implements 
D³ closer to departure. These findings show that at least some and in some cases most of 
the gains of demand driven dispatch, especially in earlier implementation, come at the ex-
pense of the competitor. This narrative is supported by looking at percentage changes in 
RPMs by airline and by time of implementation. Figure 17 shows these percentage changes 
in RPMs, which illustrates this pattern. 
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Figure 17: Changes in RPMs from Bookings-Based D³ at Different TFs 

Note how RPMs decrease for Airline 2 in the earliest timeframes but level off in the later 
time frames. Also note the sharp decline in the RPM increase for Airline 1 between TF8 
and TF10 as FC 6 is closed and the number of additional bookings is limited when capacity 
is increased. The changes in ASMs are shown in Figure 18. 

 

Figure 18: Changes in ASMs from Bookings-Based D³ at Different TFs 

With later implementation, shorter routes in Airline 1’s network receive larger aircraft, 
slightly lowering ASMs and suggesting that in Network D³ shorter OD markets have a 
higher concentration of late-arriving demand. Airline 2’s ASMs do not change because 
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none of its aircraft are swapped. Figure 19 displays absolute changes in system load factor 
percentage points. 

 

Figure 19: Changes in System LF Points from Bookings-Based D³ at Different TFs 

As ASMs for Airlines 1 and 2 changed either a small amount or none at all (Figure 18), the 
change in system load factor percentage points mirrors very closely the changes in RPMs. 
The increases in load factor are significant given current industry interest in maintaining 
high load factors. It is however, also an indication of dilution, or a decrease in yield. 

 

Figure 20: Changes in Yield from Bookings-Based D³ at Different TFs 

Figure 20 displays the percentage changes in yield, which does decrease for Airline 1 in the 
earliest time frames by as much as 1.5%. The later the implementation, the less dilution 
occurs. Again, the AP cutoff between TF8 and TF10 is clearly visible in the results of D³ 
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being applied. In the latest timeframe, yield and RPMs both increase. The yield is increased 
due to additional capacity being allocated to the highest fare classes, the only ones still 
open five days prior to departure. Meanwhile, the targeted shifting of capacity to higher 
demand flights allows for an increase in RPMs. Although only about 4% of demand is yet 
to arrive at this point, this increase in both RPMs and yield leads to D³’s most positive 
revenue impact of 0.54% when implemented in TF4. This impact is due to booking more of 
the highest fare classes, to be shown in the discussion of changes in bookings by FC. 

 To provide a better understanding of the number of swaps taking place and their 
effects on bookings by fare class, Figure 21 displays the number of swaps occurring out of 
the set of all swappable leg-pairs. 

 

Figure 21: Percentage of Swappable Leg-Pairs Swapped, Bookings-Based D³ at Diff. TFs 

In TF4 implementation, 46.70% of swappable leg-pairs experience a change in their capac-
ity. This proportion monotonically decreases the later the implementation, leading to only 
27.63% of swappable leg-pairs experiencing a change in capacity in TF14 implementation. 
This means that in this simulation of demand driven dispatch, given bookings-based swap-
ping and the current set of advanced purchase restrictions, the most positive change in 
revenue is the result of the latest time frame implementation when only on average 13.82% 
of the flights in Airline 1’s system are engaged in swapping. 

 The number of swaps is expected to decrease the later the implementation of D³. 
First, as revenue management rejects demand, especially early arriving demand, the actual 
variability in realizable BAD decreases. Second, as bookings in hand increase, with many 
flights being full by TF12 or TF14, the number of leg-pairs still eligible for down-gauging 
decreases, and therefore the number of leg-pairs that can be up-gauged decreases. 
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Both the number of swaps and the remaining realizable demand by implementation 
time is clearly visible when analyzing the changes in bookings by fare class. Figure 22 
displays the average changes in bookings for all swappable leg-pairs by fare class, by the 
type of change in gauge, and by the timing of the swaps. 

 

Figure 22: Magnitudes of Booking Changes from Bookings-Based D³ at Different TFs 

First, note the significant decrease in the magnitude of changes between the earliest time 
frame implementation (TF4) and the later TF12. While FC 6 takes about 35 additional 
bookings on average on up-gauged flights, in TF12, FC 6 only takes about 2 additional 
bookings on up-gauged flights. Second, note that until TF14, almost all increases in bookings 
on up-gauged flights take place in FC 6. This is a very important result due primarily to 
the nature of revenue management—it is, fundamentally, protecting seats for higher fare 
classes. The forecasts for these higher fare classes are not changing due to a swap, and 
therefore the booking limits for lower fare classes are dependent primarily on changes in 
capacity, not changes in protection levels for higher fare classes. When capacity increases 
during an up-gauge and the joint protections levels for the higher fare classes do not change 
(due to relatively static forecasts) the result is higher booking limits for FC 6, and therefore 
more bookings in FC 6. 

 Finally, note that increases in bookings on up-gauged flights are greater than de-
creases in bookings on down-gauged flights. This is of course necessary for the observed 
increases in RPMs but also is the consequence of spill probability. Flights that are up-
gauged are typically up-gauged due to being forecasted to spill demand. Thus, up-gauged 
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flights are likely to result in more bookings, assuming accurate forecasts. Meanwhile, down-
gauged flights are down-gauged due to lacking forecasted demand. Assuming accurate (or 
unbiased) forecasts, this means a lower probability of spilling demand. 

 

Figure 23: Changes in Gauge vs. Changes in Bookings 

 Aircraft can either be up-gauged 20 or 40 seats, as aircraft have capacities of 130, 
150, and 170 seats. When D³ is implemented in TF4, the average up-gauge is an increase 
of 26 seats, as shown in Figure 23. However, the average increase in FC 6 bookings due to 
an up-gauge is 35. These appear to be contradictory results. However, it important to ob-
serve the decreases in all other fare classes after an up-gauge, averaging a decrease of about 
12 bookings. Thus, the average total increase in bookings across fare classes after an up-
gauge is 23, 3 less than the average number of seats added. 
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Figure 24: Timing Effects in Bookings from Bookings-Based D³ at Different TFs 

Figure 24 shows the same information as Figure 22, focusing on only TF8 and TF10. 
These two time frames are 24 and 17 days prior to departure, respectively, and therefore 
fall on either side of the 21-day advance purchase restriction. Note that before the 21-day 
AP restriction almost all increases in bookings due to an up-gauge take place in FC 6, the 
lowest. After the 21-day AP restriction, FC 5 has a larger increase in bookings than FC 6 
(which still sees increases in bookings due to feedback effects) and FC 1 and FC 3 also see 
increases in bookings. Also note that the average total increase in bookings across fare 
classes is much smaller than prior to the 21-day AP restriction. Figure 24 illustrates the 
importance of timing implementation of D³ relative to the characteristics of the fare re-
strictions in a market. 

Figure 25 also shows average changes in bookings, focusing on swaps occurring after 
the 21-day AP restriction, TFs 10, 12, and 14. These correspond to 17, 10, and 5 days prior 
to departure. The same conclusion can be drawn as from Figure 24—advanced purchase 
restrictions are important to determining the fare class composition of additional bookings 
due to up-gauges. Large increases in bookings are no longer possible because the lowest fare 
classes are no longer available. Simultaneously, spiral down is no longer possible and there-
fore increased bookings are seen in higher fare classes. 

As more AP restrictions set in, increases in FC 5 bookings become increases in FC 
3 in TF 12 and, in TF14, all increases in bookings occur in FCs 1 and 2. Thus, in TF 14 D³ 
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not only results in increased RPMs, it also results in increased bookings in the higher fare 
classes and therefore increased yield. 

 

Figure 25: Changes in Bookings after 21-Day AP, Bookings-Based D³ 

By testing the implementation of D³ at various timeframes, the effects of AP re-
strictions on the outcome of D³ become key results. Throughout the booking period, demand 
driven dispatch has a tendency to result in significant dilution. By preventing the sale of 
lower fare classes via AP restrictions, this dilution is successfully countered. 

4.2.2. Swaps with Different RM Systems & Competition 

The next section of tests for bookings-based swapping explores the implementation 
of D³ with different RM systems and with different competitive environments. As shown in 
the section on timing swaps, demand driven dispatch, like revenue management, is a com-
petitive action, and thus it is important to not only test what happens when Airline 1, the 
focus airline, engages in demand driven dispatch, but also what happens when Airline 2 
engages in demand driven dispatch and when both airlines implement it. 

Therefore, for each revenue management system employed, three tests will be run: 
Airline 1 engages in D³, Airline 2 engages in D³, and both airlines engage in D³. In each of 
these cases, demand driven dispatch is implemented at TF8 with the bookings-based swap-
ping algorithm. The only variable component is whether or not demand driven dispatch is 
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used. When used, the airlines use it identically. The base case for all tests is that neither 
airline uses demand driven dispatch. 

To further simplify the tests, both airlines will use identical forecasting and revenue 
management systems. In the first set of three tests, Airlines 1 and 2 use EMSRb optimiza-
tion with standard leg forecasting just as in the previous tests of timing swaps. Hence, the 
first test, with Airline 1 engaging in demand driven dispatch, the simulation parameters 
and results are identical to the TF8 test in the previous section, as shown in Figure 26. 

 

Figure 26: EMSRb, Airline 1 Uses Bookings-Based D³ 

Revenues increase for Airline 1 by 0.44% and decrease for Airline 2 by 0.38%. RPMs in-
crease for Airline 1 by a substantial 1.61% and decrease for Airline 2 by a more modest 
0.29%. ASMs increase only slightly for Airline 1, at 0.12%. Therefore a significant increase 
in system load factor percentage points can be inferred (in this case 1.21 %pts). Yield de-
clines by 1.18% with the large increase in FC 6 bookings observed before. This is the 
benchmark result of bookings-based swapping for implementation in TF8, or 24 days prior 
to departure with 70% of demand having already arrived. Figure 27 displays the same in-
formation with Airline 2 implementing demand driven dispatch, and Airline 1 not. The 
results are very similar.  



58 
 

 

Figure 27: EMSRb, Airline 2 Uses Bookings-Based D³ 

Airline 2 sees a revenue increase of 0.48%, as compared to Airline 1’s 0.44%. RPMs, mean-
while, increase by 2.07% and ASMs also increase by 0.55%. This is markedly more than 
Airline 1’s ASMs increased, suggesting that Airline 2’s initial fleet assignment is not as good 
as Airline 1’s, and that therefore Airline 2 has more to gain from demand driven dispatch. 
Changes in yield also follow consistently, with a decrease of 1.55%. 

 

Figure 28: EMSRb, Both Airlines Use Bookings-Based D³ 

Figure 28 displays the results of the test of both airlines engaging in bookings-based 
demand driven dispatch at TF8. As can be seen, their changes in revenue have become 
nearly neutral. Rather than one airline seeing increases and the other decreases of about 
half a percent, both airlines see slight increases in revenue of 0.02% and 0.08%, respectively. 
However, the bookings-based swaps still causes substantial increases in RPMs, from 1.34% 
to 1.42%, and decreases in yield, from 1.39% to 1.33%. Again, Airline 2 has a greater change 
in ASMs, suggesting an inferior initial fleet assignment. For implementation at either Airline 
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1 or Airline 2, the patterns are very consistent for changes in all primary metrics, and the 
results of both airlines engaging in demand driven dispatch are symmetrical. Interestingly, 
when both airlines implement demand driven dispatch, they realize almost identical changes 
in ASMs, similar but smaller changes in RPMs, similar changes in yield, but much less 
increase in revenue. They do much better, however, than they would if only their competitor 
engaged in demand driven dispatch. 

The results shown in Figure 28 are very important to understanding the competitive 
effects of demand driven dispatch. As when only one airline engages in D³ in TF8, both 
airlines see significant dilution. FC 6 takes increased bookings while FC 5 and higher either 
lose bookings or experience little change. This in turn results in fewer historical bookings in 
higher fare classes, lower protection levels for higher fare classes, and so on—spiral down. 
When only one airline engages in demand driven dispatch, increases in RPMs (capturing of 
more demand) are greater than decreases in yield. Therefore the revenue results are positive. 
When both airlines engage in demand driven dispatch, they are both in effect strategically 
assigning larger aircraft in hopes of capturing the same peaks in demand. There is not 
enough demand, however, for both airlines to succeed in overcoming losses in yield with 
increases in RPMs. Hence, the results show characteristic decreases in yield and increases 
in revenue, but decreases in yield are now as great as the increases in revenue. This balance 
in yield and RPM change leads to the relatively neutral revenue outcome. 

Next, the bookings-based swapping algorithm is tested with a full O&D RM system, 
displacement adjusted virtual nesting (DAVN) with standard path class forecasting. This 
RM system is similar to those employed at several large legacy carriers and assigns OD 
itineraries to virtual fare classes after adjusting their fares for network displacement costs, 
as calculated by a deterministic network linear program. Then bookings limits for these 
virtual fare classes are determined using the EMSRb method. The results of the first test, 
Airline 1 implementing demand driven dispatch when both airlines use DAVN, are displayed 
in the Figure 29. 
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Figure 29: DAVN, Airline 1 Uses Bookings-Based D³ 

The revenue changes are smaller than those with EMSRb. Airline 1’s revenue in-
creases by 0.20% and Airline 2’s decreases by 0.13%. Changes in RPMs are similar, with 
Airline 1 seeing an increase of 1.32%, as compared to 1.61%. However, rather than Airline 
2’s RPMs decreasing by 0.29% as they did with EMSRb, they now increase by that much. 
This suggests Airline 1 is being more aggressive with DAVN (providing less availability to 
low revenue-value itineraries) than it was with EMSRb, and is therefore spilling some de-
mand to Airline 2. ASMs change very little with Airline 1, and again yield decreases, this 
time by 1.14% rather than 1.18%. The pattern of changes in primary metrics is very con-
sistent whether the RM system employed by Airlines 1 and 2 is EMSRb or DAVN. The 
revenue changes are slightly less, however, and this might suggest that with “better” RM, 
there is less revenue to be gained through demand driven dispatch, or at least with the 
bookings-based swapping algorithm. This conclusion is premature, however, as shown by 
Figure 30. 

 

Figure 30: DAVN, Airline 2 Uses Bookings-Based D³ 
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The results of Airline 2 implementing demand driven dispatch is a revenue gain of 
0.61%, more than it realized with EMSRb. This is a reminder of how the details of an 
airline’s network, schedule, fare products, competition and RM system interplay. Airline 2 
also realizes a gain in RPMs of 2.49%, an increase in ASMs of 0.38%, and a decrease in 
yield of 1.82%, consistent with the changes from the other tests. 

 

Figure 31: DAVN, Both Airlines Use Bookings-Based D³ 

Figure 24 displays the changes from both airlines, using DAVN, implementing demand 
driven dispatch in TF8. The results are again very similar, with the revenue results being 
a balance of the two cases where only one airline implemented D³. RPMs increase, yield 
decreases, and ASMs change slightly, again more for Airline 2. As with both airlines imple-
menting D³ while using EMSRb, yield decreases and RPM increases are of similar magni-
tudes, leading to more neutral revenue outcomes. When both airlines implement D³, they 
are competing with capacity adjustments for the same low fare class demand; this compe-
tition leads to decreases in yield becoming more pronounced and increases in yield less so. 

 The same tests are conducted with a different O&D RM system, ProBP, or proba-
bilistic bid price control (Bratu, 1998). This methodology uses EMSR curves and an itera-
tive algorithm to calculate stochastic bid prices for each leg, and then uses these bid prices 
to control availability where each itinerary must have a fare-value greater than the sum of 
the bid prices of the legs it traverses. Figures 32 and 33 show the results of only Airline 1 
and then only Airline 2 implementing demand driven dispatch with ProBP. 
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Figure 32: ProBP, Airline 1 Uses Bookings-Based D³ 

 

Figure 33: ProBP, Airline 2 Uses Bookings-Based D³ 

These results are very similar to those with DAVN, with changes in the primary metrics 
within 0.1%. Again, Airline 2 gains more than Airline 1, with a greater change in ASMs, 
suggesting an inferior initial fleet assignment. RPMs increase and yields decrease. Figure 34 
shows the results of both airlines implementing demand driven dispatch. 
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Figure 34: ProBP, Both Airlines Use Bookings-Based D³ 

Again, the results with ProBP are almost identical to those with DAVN. The revenue effects 
fall from the results of one of the airlines implementing, RPMs increase, yields decrease, 
and Airline 2 experiences a greater change in ASMs. 

 Finally, the fourth set of tests involves both Airline 1 and Airline 2 using DAVN and 
standard path class forecasting and hybrid forecasting and fare adjustment (HF/FA) to 
relax the assumption of independent fare class demand. Because hybrid forecasting and fare 
adjustment work to prevent spiral down by closing lower fare classes earlier than capacity 
would require (Fiig, Isler, Hopperstad, & Belobaba, 2010), the expectation would be that 
demand driven dispatch with hybrid forecasting and fare adjust would result in less dilution 
and a smaller increase in RPMs. 

 

Figure 35: DAVN w/ HF/FA, Airline 1 Uses Bookings-Based D³ 

This is in fact the case, as shown in Figure 35 which illustrates the results of Airline 1 im-
plementing demand driven dispatch with both airlines using DAVN and HF/FA. Airline 1 
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experiences an increase in revenue due to D³ of slightly more than with DAVN without 
HF/FA, while RPMs increase less and yield decreases less. The same occurs for Airline 2’s 
implementation, as well as when both airlines implement demand driven dispatch, show in 
Figures 36 and 37. 

 

Figure 36: DAVN w/ HF/FA, Airline 2 Uses Bookings-Based D³ 

 

Figure 37: DAVN w/ HF/FA, Both Airlines Use Bookings-Based D³ 

As can be seen in Figures 36 and 37, revenue increases for the airlines that implement 
demand driven dispatch compared to cases where they do not, RPMs increase and yield 
decreases, but not as much as without HF/FA. As usual, Airline 2 experiences a greater 
change, always an increase, in ASMs due to D³. Similar tests were conducted with ProBP 
and HF/FA, but for brevity the results are shown in the appendix. They are consistent 
with DAVN with HF/FA. 

 It is important to note that HF/FA prevents some of the dilution inherent to imple-
mentation of D³ at TF8. Increases in RPMs and decreases in yield are considerably reduced 
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as compared to tests where HF/FA are not used. However, HF/FA still does not prevent 
dilution and spiral down from resulting in neutral revenue results when both airlines imple-
ment demand driven dispatch. When both airlines are adding capacity to the same high 
demand flights, competing for the same low fare class demand, decreases in yield become 
similar in magnitude to the increases in RPMs, regardless of the presence of HF/FA. 

 These trends can also be seen when examining changes in load factor percentage 
points alongside changes in yield. Figures 38 and 39 show these changes when either Airline 
1 or Airline 2 implement demand driven dispatch. 

 

Figure 38: AL 1 Implements D³, LF & Yield     Figure 39: AL 2 Implements D³, LF & Yield 

 When Airline 1 or Airline 2 implement demand driven dispatch, the effects of D³ are 
very consistent across RM systems, with the notable exception of DAVN with HF/FA. 
Either airline sees large increases in its own LF with much smaller changes in the other 
airline’s LF. Meanwhile, without HF/FA yield decreases by about -1.1% for Airline 1 when 
it implements D³ and by roughly 1.65% for Airline 2 when it implements D³. The airline 
that does not implement demand driven dispatch has decreased yield, but only moderately 
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relative to the airline that does. With HF/FA, the gap in yield decrease between the two 
airlines narrows, as does the decrease in yield itself. 

 When both airline implement demand driven dispatch, they both see significant in-
creases in their LFs and drops in yield. Figure 40 shows these results. 

 

Figure 40: Both Airlines Implement D³, LF & Yield 

Again, HF/FA tempers the changes in LF and yield when both airlines implement, but the 
general trends remain the same. Increases in LF for Airline 1 are slightly less or about the 
same as when it alone implements D³. Airline 2 experiences less of an increase in LF with 
all RM systems. Meanwhile, Airline 1’s yield drops more when both airlines implement D³ 
as compared to when it alone implement D³. When Airline 2 implements D³, its yield drops 
about the same amount whether or not Airline 1 implements D³. This corresponds to reve-
nue results being worse when both airlines implement D³ as compared to when only one 
does, and it also corresponds to Airline 2 having a better revenue result when both airlines 
implement D³ as compared to Airline 1. 
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A brief summary of the findings from demand driven dispatch with different RM 
systems and competitive action include several important points. First, the magnitude of 
revenue benefits from demand driven dispatch is related to the quality of the original fleet 
assignment. Second, although the magnitudes of percentage changes differ somewhat be-
tween Airline 1 and Airline 2 when they engage in demand driven dispatch, the trends in 
all of the primary metrics are the same. The RM systems affect the magnitudes of changes, 
but not the trends. Specifically, hybrid forecasting and fare adjustment helps to decrease 
dilution while limiting the increases in RPMs. Differences in the effects of D³ when the 
airlines use leg-based or network-based RM are small. 

In all cases, demand driven dispatch has a positive effect on revenue, but when both 
airlines implement D³, increases in RPMs are not of a greater magnitude than decreases in 
yield leading to neutral revenue results. Still, either airline has a better revenue outcome as 
compared to if it did not implement D³, and therefore both airlines implementing demand 
driven dispatch is, in these tests, the Nash Equilibrium (no player in a non-cooperative 
game can improve their outcome by changing their own strategy). It is important to note, 
however, that, especially when both airlines engage in D³ competitively, D³ results in sig-
nificant dilution because of increased capacity on high demand flights. 

4.2.3. Demand Level Effects 

The final set of tests using the bookings-based algorithm have Airline 1 implement 
demand driven dispatch at different base case demand levels. Previous studies, including 
Revenue Management under Demand Driven Dispatch (Cots, 1999), have suggested that as 
the base case demand increases and flights reach capacity more often the revenue gains of 
demand driven dispatch decrease. To test this hypothesis in the PODS simulator, seven 
demand levels were used, as shown in Figure 41. 

 

Figure 41: Base Case System Load Factors for Seven Demand Levels 
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All previous simulation runs occurred at demand level 4, or a base case system load factor 
for Airline 1 of about 80%. The full range of demand levels used for this test include a 
system load factor for Airline 1 as low as 69% and as high as 86%. At each demand level, 
the base case is without demand driven dispatch and the alternative case is the implemen-
tation of demand driven dispatch by Airline 1. 

 In all cases, Airline 1 implements demand driven dispatch at TF8 using the bookings-
based swapping algorithm. Both airlines are using DAVN with standard path class forecast-
ing for their RM systems. Thus, the results of the test of demand level 4 are identical to 
those of testing Airline 1 with DAVN in the previous section. For simplicity, only the results 
for Airline 1 are shown. 

 The first set of results, shown in Figure 42, are percentage changes in total revenue 
due to the implementation of demand driven dispatch at each demand level, shown in the 
figure below. Fitting the results to a trend line, the expected decline in revenue benefits at 
the higher load factors does occur. However, there also is a marked decline in revenue benefit 
in the middle demand levels with base case system load factors of about 76% and 80%. 

 

Figure 42: Revenue Changes from Bookings-Based D³ at Different Demands 

Looking at changes in LF percentage points, ASMs, and RPMs, shown in Figures 43 and 
44, reveal that the same pattern is occurring at all demand levels: ASMs change very little 
while RPMs increase substantially. Changes in LF therefore resemble changes in RPMs. 
Here, however, the general trend is that RPMs increase more with higher levels of demand. 
And again, there is a depression in the magnitude of changes in the middle demand levels. 
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Figure 43: LF % pt. Changes from Bookings-Based D³ at Different Demands 

 

Figure 44: Changes in ASMs and RPMs from Bookings-Based D³ at Different Demands 

The increase in RPMs becoming more pronounced at higher demand levels is likely due to 
the additional capacity, given to the highest forecasted flights, being more likely to realize 
additional bookings when more total demand exists in the system. 

 Changes in yield, shown in Figure 45, are also consistent with previous patterns. The 
increases in RPMs from implementation of demand driven dispatch at TF8 are accompanied 
by dilution. In these cases, as RPMs increases more at higher demands, yield decreases more 
at higher demands. Hence, it appears that while higher demands may limit the number 
swaps that are feasible due to capacity constraints, the primary cause of declines in revenue 
gains at higher demand levels is in fact greater dilution from up-gauged flights seeing large 
increases in bookings in the lowest fare classes. 
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Figure 45: Changes in Yield from Bookings-Based D³ at Different Demands 

The decrease in magnitudes of changes observed around the middle demand levels 
can be explained by the number of swaps taking place, as shown in Figure 46. 

 

Figure 46: % of Swappable Leg-Pairs Swapped, Bookings-Based D³ at Diff. Demands 

Figure 46 displays the percentage of leg-pairs in the swappable set that were in fact swapped. 
Note the decline in swaps that reaches its minimum at a base case system load actor of 
about 80%. It follows that if fewer swaps are taking place, or put another way, demand 
driven dispatch is being used less, demand driven dispatch would have a lesser effect on the 
revenue, RPMs, yield, etc. However, the question remains as to why fewer swaps are taking 
place at the middle demand levels. As the swaps are driven by forecasted BAD with the 
bookings-based swapping algorithm, the forecasted BAD likely hold the answer. In the fig-
ure 47, observe the average absolute difference of the forecasted BAD minus the initial 
assigned capacity for each leg. 
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Figure 47: Average Differences of Initial Capacity and Forecasted BAD 

At the lowest demand level, the average difference is about 35, meaning the average flight 
has a difference of about 35 between its expected bookings at departure and its initial 
capacity. At the high demand level, the average flight is forecasted to have a capacity/ex-
pected BAD discrepancy of about 40. At the medium demand level, discrepancies between 
the expected BAD and initial capacity are at their minimum. Thus, one would expect less 
motivation to engage in swaps, as well as fewer opportunities. 

4.3. Conclusions from Bookings-Based D³ 

The first set of tests in Chapter 4, dealing with the timing of swaps, illustrate that 
early swapping leads to greater increases in RPMs and greater decreases in yield, while late 
swapping leads to small increases in RPMs and small decreases to small increases in yield, 
depending on advance purchase restrictions and fares in the associated fare products. The 
timing of swaps in relation to not only the proportion of demand that has arrived but also 
the fare restrictions in the market is critical to the outcome. For implementation of D³ at 
any time, the revenue impact is positive. 

The second set of tests, dealing with the RM systems and competitive environment, 
illustrate that the trends in key metrics from the implementation of demand driven dispatch 
remain consistent throughout the various combinations, while the details of the RM system 
effect the magnitudes of the changes. When one airline engages in demand driven dispatch, 
the competitor airline loses revenue. When both airlines engage in demand driven dispatch, 
revenue changes are very small while both airlines gain RPMs and see decreases in yield. 
Hybrid forecasting and fare adjustment successfully prevent some of the dilution from de-
mand driven dispatch and lessen the increase in RPMs. 
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 In all cases where one airline implemented D³, demand driven dispatch improved 
revenue, ranging from increases of 0.10% to 0.63% depending on the RM system and the 
quality of the initial fleet assignment, as signaled by greater changes in ASMs. However, 
when both airlines implement D³, up-gauging the same high demand flights in competition 
for the same low fare class demand, yield decreases as much as or more than RPMs increase, 
leading to neutral revenue results. Still, an airline has better revenue performance when it 
engages in D³ given that its competitor is also doing so. Thus, both airlines implementing 
D³ is the Nash Equilibrium in this competitive, non-cooperative game. This outcome is an 
important contribution to the understanding of D³ in a competitive environment. 

The third set of tests with ranges of base case demand levels illustrated the expected 
decline in revenue gains from demand driven dispatch at higher demand levels and suggest 
that the primary cause of this decline is greater dilution. Furthermore, the magnitudes of 
changes in revenue, RPMs, yield, etc. are effected by the number of swaps that occur, which 
are in turn determined by the relationship between initial capacity assignments and their 
associated forecasted bookings at departure. 

In summary, although bookings-based swapping represents only the simplest (and 
suboptimal) method for re-assigning aircraft in demand driven dispatch, testing it has shown 
robust revenue improvements. The tests have also shown important relationships between 
the benefits of D³ and the initial fleet assignment, the RM system, timing of swaps relative 
to fare restrictions, and the competitive environment.  
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Chapter 5: Network Optimization Fleet Assignment 

 Bookings-based swapping assigns the largest aircraft to the flights with the most 
forecasted demand, effectively maximizing average leg load factor. Its simple inputs (BIH 
and forecasted BAD) allow it to be implemented with any RM system at any time in the 
bookings process. As shown in Chapter 4, this flexibility allowed for simulating D³ in a wide 
variety of scenarios that resulted in important insights. However, bookings-based swapping 
only represents a starting point in researching the interaction of revenue management and 
demand driven dispatch with a fleet assignment optimization being the next step. 

 Chapter 5 describes the network optimization methods used for fleet assignment in 
all subsequent experiments. Rather than a ranking algorithm, further tests of demand driven 
dispatch utilize a network optimizer that estimates either the incremental revenue or incre-
mental operating profit potential of swapping aircraft and changes aircraft assignments to 
maximize either the total revenue or operating profit of the network. Section 5.1 discusses 
the network optimization fleet assignment model (FAM), specified as a minimum-cost flow 
problem, in detail, first its specification and then its underlying assumptions. 

 In order to use this FAM, it is necessary to estimate both incremental revenues and 
costs for each flight leg. This task is more complicated than it may seem, in large part due 
to the effects of revenue management and the need to allocate revenue and costs that are a 
function of the broader network to specific legs. Section 5.2 discusses revenue estimation 
techniques used in conjunction with different RM systems. Section 5.3 discusses the estima-
tion of costs, confined to aircraft block hour costs in this thesis. 

5.1. The Network Optimizer 

To avoid the greedy nature of the ranking algorithm, all subsequent tests are con-
ducted with a network optimizer. This eliminates the risk of suboptimal swaps such as that 
described in Figure 13. Another key component of the network optimizer is that it works in 
units of currency rather than bookings, allowing swaps to be made so as to maximize reve-
nue and/or minimize costs rather than maximize bookings or LF. This point is critical in 
that there is wide variation in the revenue value of bookings by market and by fare class 
and that a swap that improves bookings or revenue may not offset the additional operating 
costs associated with the swap. As will be shown, attempting to maximize revenue by swap-
ping, as some airlines have done (Feldman, 2002), is not necessarily beneficial in terms of 
operating profit. It is important to consider both revenues and costs when capacity con-
straints are flexible, something that is not necessary in revenue management with static 
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fleet assignments. Thus, a network optimizer that assigns aircraft to maximize the operating 
profit of the network is critical to understanding the full interaction between demand driven 
dispatch and revenue management in a competitive network environment. 

5.1.1. Optimization Model 

The network optimizer is specified as a minimum-cost flow problem. Each aircraft 
or equipment type is modeled as a left node and each leg-pair (a pair of flight legs to and 
from a hub that must be operated by the same aircraft) as a right node in a bipartite 
network structure. The left nodes are source nodes that supply aircraft and the right nodes 
are sink nodes that demand aircraft. Each left node is connected to each right node by an 
arc that can take a binary value signifying whether or not that aircraft type operates the 
connected leg-pair. Therefore, the effective capacity of each arc is 1. Figure 48 shows a 
simple representation of the form of the model. 

 

Figure 48: Example of Min-Cost Flow Specification (by Matthew Berge) 

Q1 and Q2, the two left nodes, represent two aircraft/equipment types. In this small hypo-
thetical scenario, the fleet is composed of only three aircraft, two aircraft of type Q1 and 
one aircraft of type Q2. The number of aircraft is equal to the number of leg-pairs in the 
set of leg-pairs eligible for having their fleet assignment changed. Hence, there are three 
right nodes, representing the eligible leg-pairs (or spoke cities that these leg-pairs fly to and 
back from). Each leg-pair must be operated by exactly one aircraft. If aircraft type Q1 is 
assigned to leg-pair S1, the arc between Q1 and S1 is set to a value of 1 and all other arcs 
ending at S1 are set to 0. One unit of supply (one of the Q1 aircraft) is used and the demand 
for S1 is satisfied. 

 Each arc has an associated revenue and cost value. The associated revenue value is 
the expected incremental revenue to come of operating each aircraft type given the originally 
assigned aircraft type. Revenue to come is the revenue value of forecasted bookings to come. 
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The incremental revenue to come for an aircraft size would be the difference between that 
aircraft’s expected revenue to come minus that of the originally assigned aircraft. For ex-
ample, suppose that leg-pair S1 was originally assigned aircraft type Q1. The incremental 
revenue to come (RTC) of aircraft type Q1 would be zero. The incremental RTC of aircraft 
type Q2 is the RTC of aircraft type Q2 minus the RTC of aircraft type Q1. 

퐼푛푐푅푇퐶 = 푅푇퐶 − 푅푇퐶 ; 	푔푖푣푒푛	표푟푖푔푖푛푎푙	푎푠푠푖푔푛푚푒푛푡	푖푠	푄1. 

The associated cost value is constructed in the same way—it is the incremental aircraft 
operating cost of operating each aircraft type given the originally assigned aircraft type. 

퐼푛푐퐵퐻퐶 = 퐵퐻퐶 − 퐵퐻퐶 ; 	푔푖푣푒푛	표푟푖푔푖푛푎푙	푎푠푠푖푔푛푚푒푛푡	푖푠	푄1. 

Thus, the incremental profit contribution of any assignment over the original assignment is 
the incremental expected revenue to come minus the incremental operating costs. To fit the 
specification of a minimum-cost flow problem, each arc’s incremental profit contribution is 
multiplied by -1 and then by the binary value assigned to the arc. The sum of all assigned 
arcs’ incremental profit contributions is then minimized. 

푂푏푗푒푐푡푖푣푒	퐹푢푛푐푡푖표푛:					푀푖푛푖푚푖푧푒	푧(푥) = −1(푥 퐼푛푐푅푇퐶 − 퐼푛푐퐵퐻퐶 )
( , )∈

 

퐷푒푐푖푠푖표푛	푣푎푟푖푎푏푙푒:					푥 , (푖, 푗) ∈ 퐴 

In the objective function, each arc (푖, 푗) ∈ 퐴 connects source node 푖 with sink node 푗, where 
each source node 푖 ∈ 푁 is an aircraft type and each sink node 푗 ∈ 푁 is a swappable leg-pair. 
The following constraints apply, where 푏  is the number of aircraft type 푖 in the fleet: 

퐶표푛푠푡푟푎푖푛푡푠:					 푥
∈

= 푏 	푓표푟	푒푎푐ℎ	푖 ∈ 푁 

푥
∈

= 1	푓표푟	푒푎푐ℎ	푗 ∈ 푁 

푥 = 0	표푟	1	(푎푙푠표	푎푟푐	푐푎푝푎푐푖푡푦	푐표푛푠푡푟푎푖푛푡) 

First, for every source node 푖, the sum of the values of the arcs leaving it must equal 
the number of aircraft of type 푖. In other words, the fleet assignment solution must assign 
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exactly as many of each type of aircraft as exist in the fleet. Second, the sum of the values 
of the arcs arriving at each sink node 푗 must equal exactly 1. In other words, only one 
aircraft can be assigned to each swappable leg-pair. Third, each arc can take the value 1 or 
0. This requirement insures that each assignment possibility is either chosen for the fleet 
assignment solution or not. It is not possible for half of an aircraft to be assigned to one 
leg-pair and the other half to another. Nor is it possible for one aircraft assigned to a leg-
pair to be offset by a “negative” aircraft assigned to the same leg-pair. This constraint also 
operates as the capacity of each arc, the capacity being 1.  

Using this minimum cost flow specification, designed by M. Berge and closely resem-
bling that used in Berge and Hopperstad (1993), it is possible to quickly and efficiently 
solve for an optimal fleet assignment using a general minimum-cost flow solver (the model’s 
form allows it to be relaxed from an integer problem (IP)). 

Not only is the model simple to formulate and solve, especially relative to an IP, it 
is also adaptable to specific requirements for the fleet assignment process. For example, no 
aircraft swap should result in denied boardings. Therefore, the cost associated with an arc 
that would result in denied boardings is made to be prohibitively large. Effectively, the 
solution will never contain an assignment where capacity is less than the current bookings 
in hand for the legs in a leg-pair. The specification of the minimum-cost flow model allows 
these costs to be added directly to the incremental aircraft operating costs, requiring no 
structural changes to the model. 

Thus, the minimum-cost flow specification of the fleet assignment problem in de-
mand driven dispatch is a flexible and efficient method to find optimal fleet assignments 
given estimates of incremental operating costs and revenues for potential swaps. 

5.1.2. Modeling Assumptions 

The model also relies on many simplifying assumptions, some true in the context of 
PODS Network D³ and some not. First, the specification of the model assumes that all daily 
aircraft routings go from one coast to the opposite and back via two stops at directional 
connecting banks. This is true, as per the design of Network D³ (see Section 3.5). Network 
D³ is intentionally designed to facilitate the simulation of demand driven dispatch, and 
therefore the aircraft in the two complexes (one starting on the West Coast and one on the 
East Coast) all operate four flight legs a day and all arrive and depart from directional 
connecting banks at the same time. Then, it is assumed that only the leg-pairs that travel 
from the hub to the spoke and back in the middle of the day are “swappable.” Hence, the 
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fleet assignment problem in demand driven dispatch becomes to assign each aircraft to a 
leg-pair, half of the leg-pairs in the network being “swappable.” 

This assumption could be relaxed to most types of routing. So long as the aircraft 
types in question can interchangeably meet the operational constraints of each of the leg-
sets (they do not need to be pairs) and the leg-sets begin and end at the same time and 
location, the minimum-cost flow specification can be applied. Therefore the binding assump-
tions are that a predefined group of leg-sets can be operated by the aircraft eligible for 
reassignment and that these leg-sets are chronologically and spatially linked.  

An additional assumption that is more problematic is the assumption of leg-inde-
pendent demand. Because both airlines in Network D³, as well as most airlines in reality, 
rely on connecting traffic through hubs, the capacity of aircraft on connecting flights does 
affect the realizable demand of those flight peers at a connecting bank or de-banked hub. 
For example, should the capacity of the SAN-MSP flight be down-gauged from 150 seats to 
120 seats and the path class for SAN-MSP-BOS sees reduced availability, the allocated 
revenue potential for both SAN-MSP and MSP-BOS is affected while the assignment pro-
cess only considers the revenue potential for SAN-MSP. Furthermore, as shown in Abramo-
vich (2013), the demand realized by one flight leg between a city pair is not independent of 
the capacity of other flight legs between the same city pair—passengers are free to choose 
the airline, departure time, and fare class of their liking. 

In order to account for the presence of connecting traffic, the minimum-cost flow 
problem would need to be replaced with a linear program such as the one generating dis-
placement costs for DAVN that allocates seats to each path-class in the network with the 
addition of decision variables for the capacities of all flight legs. This would be considerably 
less practical to implement, although from an operations research perspective it is straight-
forward. However, it would still not account for passengers’ ability to choose between flight 
legs, for which some type of spill and recapture model would be necessary. 

For this thesis, the assumptions described above are taken to allow for the imple-
mentation of the efficient minimum-cost flow problem. It is the author’s belief that while 
the model clearly has shortcomings, it is suitable for approaching the achievements possible 
through demand driven dispatch and more than suitable for exploring the interaction of 
demand driven dispatch with revenue management in a competitive network. 
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5.2. Revenue Estimation 

A critical component of swapping aircraft dynamically in the booking process is to 
estimate the incremental revenue of a swap. This component is also the primary point of 
contact between revenue management and demand driven dispatch. In most previous re-
search and implementations, the revenue management system is the source of the forecasted 
demand to be multiplied by an average selling fare or some variation on that approach. For 
the implementation of demand driven dispatch in this thesis, the estimates of incremental 
revenue from swaps will directly use the demand and revenue output of the revenue man-
agement process rather than simply demand forecasts. The assigner effectively values ca-
pacity identically to the RM system. 

Three revenue management systems will be used in tests—a system using the 
EMSRb heuristic to determine booking limits, DAVN, and DAVN with hybrid forecasting 
and fare adjustment (HF/FA). Descriptions of these systems can be found in Sections 2.2.1 
and 2.2.2. For each RM system, demand driven dispatch will use estimates of revenue to 
come (RTC) derived directly from the output of the RM system. 

The benefits of this approach are twofold. First, by directly using the output of the 
RM system employed by the airline, the information provided by the RM system is used in 
generating the estimation or forecast of revenue to come for each leg. This includes the 
diminishing marginal revenue returns of additional capacity on a flight implicit in the use 
of revenue management. No estimates of fares at different capacities is necessary—the tech-
nique draws precisely from the booking limits or protection levels to be employed by the 
RM system and the fares that that RM system is using to value each fare class or virtual 
bucket. With DAVN, the use of displacement costs in generating a revenue to come estimate 
for demand driven dispatch is identical to its use in determining fare class mapping and 
valuation in DAVN. The second benefit of this approach to revenue to come estimation is 
a practical consideration: it uses output already generated from the RM that is therefore 
easy to obtain. 

5.2.1. Estimating Revenue with EMSRb 

 Estimating revenue to come when the RM system is calculating booking limits via 
the EMSRb heuristic uses a method called the EMSRb Hull (coined and programmed by 
C. Hopperstad). The method borrows from the calculation of EMSRc’s, or the “critical” 
EMSR (expected marginal seat revenue), on each leg when using EMSRb. The EMSRc 
represents the expected marginal seat revenue value at the capacity limit of a particular 
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leg. Thus, if you consider only the upper hull of the EMSR curves for a leg, you have a 
piecewise function of EMSRc’s as a function of remaining capacity. 

 Figure 49 illustrates the EMSR curves in a hypothetical flight in network D³, all 
markets having six fare classes. The EMSR curves represent the expected marginal seat 
revenues of each fare class, the vertical axis, associated with that number of bookings/seats 
(in remaining capacity), the horizontal axis. In this diagram, the vertical bars of 130, 150, 
and 170 indicate where the capacity limit of this hypothetical flight leg would be given the 
number of bookings that are in hand and that the flight leg has been assigned aircraft of 
those sizes—130-seats, 150-seats, or 170-seats. 

 

Figure 49: EMSR Hull for EMSRb 

The EMSR Hull method sums the values of the EMSRc’s from 0 to the remaining capacity 
limit for the forecasted bookings to come. As each EMSRc represents the expected marginal 
revenue of each seat from 0 to the remaining capacity limit, the sum of the EMSRc’s, being 
an approximation of the area under the EMSR Hull (the top curves), is an estimate of the 
total expected revenue to come. 

 This estimate of revenue to come has multiple advantages. It directly uses the output 
of the RM system being used and thus is highly practical. It also takes into account fare 
class values and protection limits exactly as the RM system does. This estimate of revenue 
to come brings revenue management and demand driven dispatch closer together. 

 In Figure 49, Area A represents the expected revenue to come should the leg be 
assigned a 130-seat aircraft. Area B represents the incremental revenue to come should it 
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instead be assigned a 150-seat aircraft. Area C, considerably smaller than its predecessors, 
represents the incremental revenue to come achieved by assigning a 170-seat aircraft instead 
of a 150-seat aircraft. The total estimate for revenue to come for the assignment of a 150-
seat aircraft would be the sum of Area A and Area B. The total estimate for revenue to 
come for the assignment of a 170-seat aircraft would be the sum of Area A, B and C. 

 In order to estimate the revenue to come for a leg-pair at each capacity, first one 
calculates the estimated revenues to come for each separate leg at each capacity. Then, the 
estimate for the revenue to come for a leg-pair at a capacity is the sum of the estimates for 
the RTC of each separate leg at that capacity. If more than two flights legs would compose 
a swappable leg-set, the same principle would hold. 

 One additional heuristic employed with EMSRb in PODS is the use of full fare values 
for connecting itineraries on each flight leg. Therefore, the fare value of a fare class used in 
the EMSRb calculation is not the local or prorated fare value but rather the weighted 
average path fare in that class. The result is that the fare values are higher than the local 
fares, reflecting the higher connecting fares in Network D³. Another result is that connecting 
revenue is then systematically double counted in revenue estimates. One solution to this 
double counting would be to use a distance proration scheme for allocating connecting rev-
enue to the legs used by connecting itineraries. Another approach would be to use displace-
ment adjusted fares, such as those used in DAVN. 

5.2.2. Estimating Revenue with DAVN and Other OD Techniques 

Estimating the revenue to come of leg-pairs when DAVN is the RM system employed 
by the airline uses many of the same principles as the revenue to come estimation with 
EMSRb. The EMSR Hull technique is applied to each leg’s EMSR curves, as DAVN em-
ploys EMSRb on each leg’s virtual buckets. Therefore, the primary difference between the 
revenue estimation techniques for EMSRb and DAVN is that the EMSR Hull technique is 
applied to the EMSR curves of DAVN’s displacement adjusted virtual buckets rather than 
to the fare classes as defined by pricing (see section 2.2.2 for details on DAVN). 

Because the displacement cost of the “other” leg is subtracted from the connecting 
itinerary’s fare before it is mapped to a virtual bucket on a leg, the systematic double 
counting of revenue from connecting itineraries is diminished considerably as compared to 
EMSRb. This use of displacement costs also brings a dimension of network revenue man-
agement to demand driven dispatch. For example, if two legs in the network share connect-
ing demand and one is capacity constrained, that constrained leg will have a higher 
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displacement cost. The connecting itineraries will be valued less on the unconstrained leg 
because the displacement costs will be deducted from the fares. Thus, the unconstrained leg 
will be less likely to be up-gauged on account of connecting traffic that is dependent on the 
constrained leg. The more constrained leg’s fares would be higher as less was deducted from 
them, causing the leg’s estimated RTC to be higher than otherwise due to connecting traffic. 
Therefore the leg would be more likely to be up-gauged. Hence, the use of subtractive 
displacement costs to adjust connecting fares reinforces the likelihood that capacity con-
strained flights be up-gauged, now with network considerations. 

The EMSR Hull technique as used by DAVN is also extendable to other OD RM 
systems. For example, the same technique is easily applicable to UDAVN, or “unbucketed” 
DAVN. This RM methodology is identical to DAVN except that rather than using virtual 
buckets, each path class gets “its own” virtual bucket. ProBP is also compatible with the 
EMSR Hull method; applying a “ProBP” Hull technique would be very similar to applying 
the EMSR Hull technique for UDAVN except that connecting fares are prorated rather 
than deducted by deterministic displacement costs. 

Therefore, the EMSR Hull technique for estimating revenue to come for a leg is not 
only practical for use with the leg-based RM system, it is also versatile and applicable to a 
range of OD RM systems. The application of OD RM systems helps to prevent systematic 
double counting of connecting itineraries and, using network displacement costs to map 
connecting itineraries to leg virtual buckets, it provides a degree of network insight from 
the RM system to demand driven dispatch. 

5.3. Cost Estimation 

As compared to estimating revenues, estimating costs is much simpler. While some 
aspects of the operating costs must still be allocated to legs that are otherwise dependent 
on the larger network design, uncertainty in future costs is not as variable as revenue, 
despite recent changes in oil prices, and some costs—such as crew flight hours and fuel 
burn, are clearly attributable by leg. As such, for this thesis, the costs of operating a flight 
leg are estimated by taking the block time of that leg and multiplying it by estimates of 
block hour costs, a function of the aircraft type deployed. 

Therefore, the key components for estimating aircraft operating costs in Network D³ 
are block times for each flight leg and block hour costs for each aircraft type scheduled. 
Block times in Network D³ are deterministic, and are constructed with a linear function. 
The intercept reflects the time required to operate a flight leg independent of distance, such 
as taxiing, take-off, and landing. Then, a coefficient (1 over the average cruise speed) is 
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multiplied by the great circle distance between the origin and destination to find the flight 
time as dependent on the flight distance. 

Block hour costs for each aircraft type have been estimated using aircraft and oper-
ating cost data (AviationWeek Intelligence Network, 2014). All block hour cost estimates 
for narrowbody mainline jets were first adjusted for average aircraft utilization to make 
ownership costs more standardized across airline fleets. The standard utilization rate used 
is 14 block hours per day. Second, all fuel costs per block hour were then adjusted to be 
65% of those of 2013 to account for recent decreases in the cost of jet fuel. Then a linear 
regression was specified so that block hour costs are the dependent variable and number of 
seats is the independent variable along with an intercept. 

These block hour cost estimates are not immediately useful in PODS, however. It is 
important for analyzing the resulting net operating profits that the aircraft operating costs 
be scaled to the same level as fares in Network D³. The fares used to calibrate Network D³ 
are meant to coincide with passenger disutilities in PODS, not match real market fare levels. 
Thus, the aircraft operating costs for each capacity in Network D³ were scaled down to 
convert the costs to “PODS” dollars. The goal is to maintain the relative cost differences 
between capacity sizes as found in industry block hour cost data while scaling the set of 
costs so that profits of the airlines in Network D³ are reasonable given the fares and demand 
in Network D³. The resulting block hour costs by aircraft capacity, scaled by 0.65, are 
shown in Table 3. 

Table 3: Block Hour Costs by Capacity 

Aircraft Capacity Block Hour Costs 
130-Seat $              2,240 
150-Seat $              2,390 
170-Seat $              2,540 

The block hour cost scaling results in the same relative differences by seat capacity 
as observed in industry data. Meanwhile, the resulting profit levels are also reasonable, 
given the fares and demands in Network D³. To calibrate the total costs for each airline, 
the base case of both airlines using EMSRb with standard leg forecasting was used. This is 
the same base case used in Section 4.2.1. The results of applying a scaling factor of 0.65 
(that used to generate the block hour costs in Table 3) result in the base case outcome 
shown in Table 4. 
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Table 4: Base Case Profit Results 

Airline System LF Total Revenue 
AC Op. 
Costs 

T. System 
Costs 

Profit Profit Margin 

Airline 1 81.22% $1,864,432 $1,038,409 $1,730,682 $133,750 7.17% 
Airline 2 80.41% $1,839,813 $1,065,245 $1,775,408 $64,405 3.50% 

Another assumption used in Table 4 is that block hour costs, or aircraft operating 
costs, are approximately 60% of total system costs. This is consistent with industry data. 
Airline 1 has a profit margin of about 7% and Airline 2 has a profit margin of about 3.5%. 
Although they have the same fare products and the same RM systems, Airline 1 has a 
geographical advantage in that its hub is more centrally located. It therefore has fewer 
ASMs and lower total block hour costs. 

Using the aircraft operating cost estimates in Table 3, the fleet assigner in the D³ 
module calculates the total aircraft operating costs of a leg-pair by combining the block 
hour costs of its separate legs. This mimics the combination of RTC estimates of the con-
stituent legs. The total block hour cost or aircraft operating cost of a leg is its block time 
(as calculated in the construction of Network D³) multiplied by the block hour cost of the 
aircraft assigned to it. Hence, the assigner described in Section 5.1.1 now has estimates of 
both incremental costs and revenues associated with each swappable leg-pair and the air-
craft that can be assigned to them. 

5.4. The Experiments 

The fleet assigner is used in a variety of experiments in all subsequent tests. As with 
bookings-based swapping, demand driven dispatch with optimized swapping is tested at 
multiple times during the booking process. D³ is also be tested at a variety of demand levels 
and in a variety of competitive scenarios. It is tested with EMSRb, DAVN, and DAVN 
with hybrid forecasting and fare adjustment. Notably, in each of these cases the assignment 
process for demand driven dispatch will estimate revenue in close coordination with the RM 
system being used—using the direct output of the RM system. 

Demand driven dispatch is also be tested with the objective of revenue maximization 
and operating profit maximization. The new assigner allows for the estimation of block hour 
costs by aircraft type such that the additional revenue benefits of an up-gauge can be 
weighed against the additional costs of flying larger aircraft. In tests of revenue maximizing 
swaps, operating costs will still be calculated and operating profit reported, but the assigner 
will ignore the cost implications of swaps. It will be illustrative of how ignoring costs in 
when implementing demand driven dispatch, as is customary in revenue management, is no 



84 
 

longer prudent when changes in capacity are possible and causal to changes in operating 
costs. The results of test demand driven dispatch with various RM systems and competitive 
network environments, as well as varying the timing of demand driven dispatch, will be 
shown in Chapter 6. 

 In Chapter 7, sensitivity testing of the results of demand driven dispatch is per-
formed. The primary points of sensitivity testing will be the varying system demand levels, 
optimization of the original static fleet assignment, and the level of demand variability. 

 In conclusion, the network optimization fleet assignment process discussed in this 
chapter meets several goals for the subsequent tests in demand driven dispatch. It estimates 
the incremental revenue gains of swaps using detailed information directly from the RM 
systems. It also estimates and utilizes incremental operating costs with the ability to per-
form swaps to maximize revenue and operating profit. The assigner is flexible enough to 
incorporate direct costs of swapping as will be used in sensitivity testing. Last but not least, 
it represents a practical and non-greedy approach to optimizing the network fleet assign-
ment in the context of demand driven dispatch. 
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Chapter 6: D³ with Optimized Swapping 

In Chapter 6, the results of a range of D³ experiments are shown and discussed. As 
opposed to the D³ implementations in Chapter 4, the aircraft scheduling component of D³ 
in these experiments use a revenue or operating profit maximizing minimum-cost flow op-
timization, as described in Chapter 5. This specification of the aircraft scheduling problem 
within D³ not only overcomes the suboptimal assignments due to the aggregation of legs, it 
allows the comparison of expected revenue to expected costs and therefore the maximization 
of operating profits—an important capability when capacity is not constant. 

The layout of Chapter 6 mimics the layout of Chapter 4, except for different areas 
of focus in the outcomes. With bookings-based swapping, the broad trends of demand driven 
dispatch have been explored. Now, with revenue and operating profit maximization, greater 
attention is paid to the subtle effects of differences in demand driven dispatch based on the 
revenue management system and its valuation of future demand, as well as a closer look at 
the effects of demand and competitive dynamics. The first set of experiments involves im-
plementing demand driven dispatch at different times during the booking period but this 
time with different RM systems. The second set of tests takes a closer look at the competi-
tive dynamics of D³. These tests give a thorough understanding of the effects of demand 
driven dispatch in a competitive network environment with revenue management, optimiz-
ing revenue or operating profit using the direct and full outputs of the RM systems them-
selves. 

6.1. Timing the Swaps 

As shown previously, the timing of the implementation of D³ is very important to 
the outcome, in light of the feedback effects in revenue management and the direct effects 
of pricing restrictions. Therefore, the first set of tests with the new fleet assignment optimi-
zation implements D³ at a full range of times throughout the booking process. Fundamen-
tally, adding capacity to a flight leg opens availability to the lower fare classes. When 
capacity is added to high demand flights, the number of bookings increases but yield de-
creases. If the additional capacity is added early in the booking process, the lowest fare 
classes are likely to be made available by the RM system and will be available given advance 
purchase restrictions. Late in the booking period, additional capacity cannot be allocated 
by the RM system to the lowest fare classes, as their advance purchase restrictions prevent 
them from being sold. Thus, prior to the setting in of advance purchase restrictions, demand 
driven dispatch results in greater bookings and simultaneously significant dilution. After 
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advance purchase (AP) restrictions begin to set in, the increases in bookings becomes 
smaller, dilution is diminished, and, in extremely late implementations, yield increases. 

Figure 50 displays when demand driven dispatch is implemented in these experi-
ments. D³ is implemented at every other time frame (TF) in the booking process ranging 
from TF2 to TF14. As the days to departure decrease (approaching TF16), time frames 
become shorter in terms of days. Near the beginning of the booking period, TF1, TFs are 
more dispersed. 

 

Figure 50: Times of the Optimized Swaps 

TF2 is 56 days prior to departure, 63 days prior being the beginning of the booking period. 
TF4 through TF14 are 42, 31, 24, 17, 10, and 5 days prior to departure, respectively. On 
average, 26% of the total bookings at departure arrive by the end of the TF2. This percent-
age increases to 96% of bookings having arrived by the end of TF14, or 5 days prior to 
departure. 

Importantly, the implementations also fall on both sides of the AP restrictions that 
come into effect 21 days prior to departure, squarely between TF8 and TF10, 24 and 17 
days prior to departure. TF14, 5 days prior to departure, is after the 7-day AP on Fare 
Class 3 (FC3) and just before the 3-day AP on FC2—thus any additional capacity assigned 
to a flight leg in TF14 is allocated to FC1 and FC2 only. 

6.1.1. Timing Swaps with Leg-Based RM 

First, demand driven dispatch is implemented with EMSRb-based RM being used at 
both airlines with standard forecasting. Only Airline 1 implements demand driven dispatch, 
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and D³ is performed only once during the booking period at a set time frame as stipulated 
previously in Section 6.1. In addition to testing D³ at each of the set time frames, the 
experiments test D³ with either the revenue optimizing objective function or the operating 
profit maximizing objective function. In both cases, it is either expected revenue to come or 
expected operating profit to come that is optimized, with the estimates for revenue to come 
being identical to what the RM system estimates. 

In the fleet optimizer, operating profit is defined as follows: revenue contribution 
minus aircraft operating costs. Note that the operating profit that is reported from here on 
is not the same as total system revenue (which included an additional 40% of non-aircraft 
operating expenses when scaling costs).There are of course many ways to define flight leg 
profitability, as discussed in Baldanza (1999) and others. None of them are perfect as both 
costs and revenues must be (arbitrarily) allocated to legs. Considerations as to whether or 
not a decision is short-term or long-term are also important as to what costs should be 
included. For the sake of simplicity, block hour costs are the only costs used. They include 
fuel costs, crew costs, allocated maintenance costs, and allocated ownership costs. Aircraft 
operating costs are the most relevant costs as they depend the most on what flight leg an 
aircraft is ultimately assigned to fly. Costs associated with airport servicing, etc. will likely 
be less dependent on D³, as all aircraft and all airports will experience the same number of 
operations with aircraft of the same type. Therefore, these costs are less relevant when the 
optimization technique is considering only incremental costs. Variable passenger service 
costs are relevant because D³ increases RPMs significantly. However, for simplicity, these 
costs are ignored, as is customary with revenue management itself. 

With leg-based RM, the fleet assignment component of D³ uses revenue-to-come 
estimates including full network contribution. Meanwhile, DAVN uses revenue-to-come es-
timates with full network contribution minus the deterministic displacement costs generated 
by the RM system. Therefore, in both cases, the revenue estimates have double-counting, 
albeit DAVN less so. This is not unusual for short-term profitability assessments of individ-
ual flight legs, but it has consequences for the resulting fleet assignments. Incremental rev-
enue gains will be of larger magnitudes than incremental cost reductions when revenue is 
double-counted. Therefore, when DAVN revenue estimates account for displacement costs, 
the cost reduction component of the optimization has more sway over the ultimate fleet 
assignment. In conclusion, all fleet optimizations use a comprehensive definition of flight leg 
revenue and cost, an important factor that alters the outcome of D³. 

Table 5 displays the first results of the D³ timing tests. Out of the swappable set of 
flight legs, between 46.36% and 23.67% were ultimately subject to swap depending on time 
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frame and the objective function. The earlier demand driven dispatch is implemented, the 
more flight legs are swapped. The later D³ is implemented, the fewer flight legs are swapped. 
This matches the results from bookings-based swapping. It is also an intuitive result: the 
later in the booking period, more of the higher-than-expected demand has already been 
rejected by the RM system and more flights are already capacity, disallowing swaps. 

Table 5: Percentage of Swappable Flights that Experienced Swaps, EMSRb 

 TF2 TF4 TF6 TF8 TF10 TF12 TF14 
Revenue-Max. 46.36% 47.17% 46.91% 43.96% 31.59% 25.78% 23.67% 
Profit-Max. 46.18% 47.00% 46.64% 43.56% 31.51% 25.58% 24.12% 

Beyond the observed trends that fewer swaps take place later in the booking period, 
it is also worth noting that the revenue-maximizing objective and operating profit-maxim-
izing objective used for D³ result in a remarkably similar number of aircraft being swapped. 
The greatest difference is when swaps take place at TF8, but here the difference is still only 
0.40% of swappable aircraft. 

 

Figure 51: Changes in Operating Profit, Optimized D³ with EMSRb 
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 Figure 51 shows the changes in operating profit for Airline 1 and Airline 2 when 
demand driven dispatch is implemented at each TF. For each TF, the first bar shows the 
results of D³ with the revenue-maximizing objective function and the second bar shows the 
results of D³ with the operating profit-maximizing objective function. Note that there is no 
clear difference between the effects of D³ on Airline 2 given the objective function. However, 
note that the operating profit-maximizing objective function uniformly produces better re-
sults for Airline 1 than the revenue-maximizing objective function. The incremental gains 
of using an operating profit-maximizing objective function over the revenue-maximizing 
objective function is small, ranging from 0.02% to 0.07%, but statistically significant. 

The operating profit of Airline 1 increases between 0.56% and 1.52% depending on 
the objective function and TF. As stated above, the operating profit-maximizing objective 
function uniformly performs better. With this objective function, the gains for Airline 1 
peak in two places: TF6 at 0.93% and TF14 at 1.52%. This distribution mimics the revenue 
results of D³ with the bookings-based swapping. The distribution is in fact largely driven 
by changes in revenue, and these changes also mimic the results of bookings-based swapping. 
Figure 52 displays the changes in revenue. 

 

Figure 52: Changes in Revenue, Optimized D³ with EMSRb 
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Airline 1’s changes in revenue are similar in magnitude to those from bookings-based 
swapping until later TFs when optimized fleet assignment begins to outpace bookings-based 
swapping significantly. In TF2, Airline 1 sees a revenue gain of 0.31% or 0.32%. Revenue-
maximization performs better. At TF14, Airline 1 sees a revenue gain of 0.65% or 0.66%, 
with operating profit-maximization performing better. The revenue gain of 0.66% in TF14 
is greater than its bookings-based swapping counterpart at 0.54%. In fact, at all TFs, the 
optimized fleet assignment with either objective function increases revenues more than 
bookings-based swapping. 

As was the case with bookings-based swapping, revenue gains and hence operating 
profit gains have a bimodal distribution peaking at TF6 and TF14. TF6 benefits from Fare 
Class 6 still being available and from being timed such that plenty of demand has not yet 
arrived and can take advantage of the lowest fare class but not so much so that dilution 
overcomes increases in bookings. Thus, as D³ is implemented approaching TF8, it is still 
possible for additional capacity to be sold in large numbers to price-sensitive passengers. 
Dilution occurs but large increases in bookings offset this dilution. After FC6 is closed by 
AP rules, the gains of D³ can no longer include the additional revenue from this large 
increase in lower fare class bookings. However, as more AP restrictions set in, revenue gains 
increase dramatically. The greatest increase in revenue is in TF14. At this point, the vast 
majority of demand has already booked or declined to book. Yet, by increasing capacity on 
high demand flights and thereby allowing just a few more bookings in the highest fare 
classes, these high yield bookings result in a greater revenue benefit than all earlier imple-
mentations of D³. 

Note another important result of these experiments when contrasting the revenue 
results of revenue-maximization and operating profit-maximization: both have very close 
results, in several cases being within 0.01%pts of each other. One might expect that the 
operating profit-maximizing objective function would compromise revenue gains in order 
lower operating costs. This is not the case, however. It is not clear as to which increases 
revenue more. As will be shown with changes in RPMs and yield, profit-maximizing swaps 
result in slightly fewer additional RPMs and slightly less of a decline in yield. In the base 
case, Airline 1 benefits from less low fare availability and therefore not allocating as much 
additional capacity to some high demand flights may prevent dilution and therefore result 
in uncompromised revenue gains. It is also the case that both types of optimization objective 
result in similar swap decisions—especially with the double counting of revenue inherent in 
giving each leg full network contribution, revenue maximization overrules cost-minimiza-
tion. 
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Finally, the results shown in Figure 51 and Figure 52, changes in operating profit 
and revenue respectively, uncover another interesting result. In later implementations, Air-
line 1 gains significantly for both revenue and operating profit. Airline 2 loses approximately 
one third as much as Airline 1 gains in percentage terms. In TF14 with operating profit-
maximizing D³, the two airlines combined see a 0.55% increase in operating profits. In early 
timeframes, however, Airline 2 loses more than Airline 1 gains. For example, in TF4 with 
operating profit-maximizing D³, the two airlines combined see a decrease in operating prof-
its of 0.14%. When D³ is implemented early and Airline 1 captures additional demand at 
the expense of yield, Airline 1 sees significant benefits but the industry actually sees losses 
due to the implementation of demand driven dispatch. 

 

Figure 53: Changes in Op. Costs and ASMs, Optimized D³ with EMSRb 

Having looked at changes in revenue, the other component to changes in operating 
profit is changes in block hour costs. Figure 53 shows changes in block hour costs as well as 
changes in ASMs for Airline 1. Airline 2 sees no changes, as its fleet assignment is static. 
Note the direct relationship between changes in ASMs and changes in block hour costs. 
When larger aircraft fly longer distances, total block hour costs and ASMs increase. This is 
what happened in all but TF14. The increases in ASMs and block hour costs are to be 
expected, especially in the early time frames—longer routes have higher fares and therefore 

-0.15%

-0.10%

-0.05%

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

TF2 TF4 TF6 TF8 TF10 TF12 TF14 TF2 TF4 TF6 TF8 TF10 TF12 TF14

Block Hour Costs ASMs

%
 C

ha
ng

e 
in

 $
 /

 S
ea

t M
ile

s

Revenue Maximization Profit Maximization

Op. Costs



92 
 

more incremental revenue potential. In later TFs, forecasted bookings to come often drop 
below capacity and therefore the incremental gains of up-gauging become zero or negative 
in the case of operating profit-optimization. Hence, in TF14 with operating profit-maximi-
zation, ASMs and block hour costs drop. 

Figure 53 also shows another important result. Comparing the changes in ASMs and 
block hour costs between revenue-maximizing D³ and operating profit-maximizing D³, op-
erating profit-maximizing D³ uniformly increases ASMs less than its counterpart by ap-
proximately 0.10%. This is because recognizing the costs of more ASMs causes the fleet 
assignment component of D³ to be more judicious when up-gauging. However, in the early 
time frames, operating profit-maximizing D³ still increases ASMs by as much as 0.25%, 
meaning that the fleet assignment model is consistently considering revenue potential from 
up-gauges to be greater than cost increases. This is the case until TF14, when forecasted 
bookings to come are low and ASMs decrease by 0.08%, block hour costs by 0.02%. 

 

Figure 54: Changes in RPMs, Optimized D³ with EMSRb 

Changes in RPMs are the counterpart to changes in ASMs. While Airline 1’s ASMs 
increased by as much as 0.35%, RPMs increased by as much as 1.91% in TF6, as shown in 
Figure 54. This implies an increase in load factor (1.28 % pts) but also a significant increase 
in captured demand. Airline 2 sees modest decreases in RPMs in the early TFs of about 
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0.5% while Airline 1’s gains in RPMs are near 2%. Therefore, most of the additional book-
ings are not taken from Airline 2 but are rather passengers who previously did not fly. The 
later the implementation of D³, the less of an increase in RPMs Airline 1 experiences and 
the less of a decrease Airline 2 experiences. In TF 14 with operating profit-maximizing D³, 
Airline 1’s ASMs decrease by 0.08% but its RPMs still increase by 0.24%. 

These changes in RPMs and ASMs result in large increases in load factor, as shown 
in Figure 55. Between TFs 2 and 8, load factor increases by about 1.2 to 1.4 percentage 
points. These increases are notably less from TF10 on as demand has already been rejected 
and AP restrictions have set in. As Airline 2’s ASMs did not change, its changes in LF are 
a scalar function of its changes in RPMs. Also note that, as operating profit-maximizing D³ 
resulted in slightly smaller increases in RPMs but significantly smaller increases in ASMs, 
load factor increases are larger with operating profit-maximizing D³. 

 

Figure 55: Changes in LF % pts, Optimized D with EMSRb 
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Figure 56 displays changes in yield for Airline 1 and Airline 2 as Airline implements 
demand driven dispatch at each time frame. With the exception of TF6, there is virtually 
no difference in changes in yield between revenue-maximizing D³ and operating profit-max-
imizing D³. Therefore, while the revenue-maximizing objective function for D³ results in a 
slightly larger increase in RPMs, it does not have a notably different effect on yield as 
compared with operating profit-maximization. 

 

Figure 56: Changes in Yield, Optimized D³ with EMSRb 
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solely to lost RPMs (or market share) while the decreases in revenue and operating profit 
in the later time frames can be attributed more so to decreased yield.  

This also suggests that while Airline 1 sees significant dilution from gaining many 
low fare bookings, what bookings Airline 1 is taking away from Airline 2 are coming from 
all fare classes in Airline 2, such that Airline 2’s yield changes very little. Thus as some high 
yield passengers from Airline 2 are purchasing low fare tickets on Airline 1 instead, this 
explains why in the earliest time frames demand driven dispatch can lower the overall 
industry revenue and operating profit while benefiting the airline implementing D³. 

 

Figure 57: Changes in Bookings by FC, Optimized D³ with EMSRb at TF6 

Figure 57 shows Airline 1’s changes in bookings by fare class depending on swap 
type when Airline 1 implements operating profit-maximizing D³ at TF 6, the pre-AP re-
striction peak 31 days prior to departure. The average up-gauged flight sees an increase of 
roughly 28.6 bookings in FC6. The average up-gauge is by 27.2 seats. How is the average 
increase in FC6 bookings greater than the average increase in seats? Just as with bookings-
based swapping (see page 56), early implementation of D³ result in spiral down. Note that 
while up-gauged flights see large increases in FC6 bookings, they also see notable decreases 
in FC4 and FC5 bookings. As the availability for FC6 is increased, passenger who would 
have otherwise sold up to FCs 4 and 5 are able to purchase the cheaper FC6 itineraries. 
Meanwhile, the higher fare classes are almost unchanged by the implementation of demand 
driven dispatch. 
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Also note in Figure 57 the continuing theme that up-gauging flights has a much 
larger impact on changes in bookings than down-gauging flights. Down-gauged flights lose 
approximately 10.5 bookings across all fare classes as compared to the base case. Compare 
this to the approximate increase of 20.2 bookings across all fare classes for up-gauged flights. 
Hence, demand driven dispatch drives large increases in load factor and it remains the case 
that the probability of causing spill by down-gauging low demand flights is by far trumped 
by the potential to decrease spill by up-gauging high demand flights. 

 

Figure 58: Changes in Bookings by FC, Optimized D³ with EMSRb at TF14 

Figure 58 also shows Airline 1’s average changes in bookings by fare class and by 
type of gauge-change when operating profit-maximizing demand driven dispatch is imple-
mented by Airline 1, although now demand driven dispatch is implemented at TF14. TF14 
is the best performing time to implement D³ and is only 5 days prior to departure. The 
same patterns emerge as with bookings-based swapping—down-gauging has little effect on 
bookings while up-gauging causes increased bookings in FC1 and FC2, the only open fare 
classes 5 days prior to departure and on. Rather than a very large increase in bookings as 
was the case in TF 6, however, the largest increase is only roughly 2.82 bookings in FC1 on 
up-gauged flights, about one tenth the increase in bookings in FC6 in TF6. Yet, the higher 
fares in FC1 and FC2 mean that even with far fewer additional bookings, the revenue 
increase and therefore operating profit increases are much greater for Airline 1 with TF14 
implementation of D³. 

In conclusion, testing demand driven dispatch with an EMSRb-based RM optimiza-
tion and standard forecasting at different time frames results in very consistent findings. 
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Both revenue-maximizing and operating profit-maximizing fleet assignment uniformly out-
perform bookings-based swapping. Profit-maximizing fleet assignment uniformly outper-
forms revenue-maximizing fleet assignment.  

The operating profit-maximizing objective function doesn’t lead to compromised rev-
enue results while it does result in lower operating costs and therefore higher operating 
profits. Across the time frames, revenue-maximization overwhelms cost reduction, however, 
as evidenced by both objective functions in the fleet assignment process leading to increases 
in ASMs and block hour costs in the earlier time frames when lots of additional demand 
can be captured by re-allocating demand. 

As was the case with bookings-based swapping, up-gauging results in much larger 
increases in bookings than down-gauging leads to decreases in bookings. In the early time 
frames, increases in bookings are almost entirely in FC6 and spiral down occurs. In the later 
time frames, AP restrictions force all increases in bookings to accrue to FC 1 and FC 2, 
resulting in fewer additional bookings but more additional revenue and operating profit.  

Operating profit increases between 0.56% and 1.52%. Revenue increases between 
0.31% and 0.66%. Block hour costs change from between -0.02% and 0.13%. Thus, even 
though Berge and Hopperstad (1993) suggested that a large proportion of the gains of D³ 
comes from cost reduction, these simulations suggest that in fact the vast majority of gains 
are revenue gains, albeit this is highly dependent on the RM system used, network structure 
and competition, and the typical system load factor. 

6.1.2. Timing Swaps with DAVN 

Section 6.1.2 follows the same format as Section 6.1.1. The same experiments are 
run, testing the implementation of revenue-maximizing and operating profit-maximizing 
demand driven dispatch at various time frames, except that rather than using EMSRb-
based optimization for RM both Airline 1 and Airline 2 use DAVN with standard path class 
forecasting for their RM systems. The fundamental difference is that both airlines now 
control their availability by OD rather than by leg. DAVN subtracts displacement costs 
from each connecting itinerary and then maps said itineraries to virtual buckets that are 
controlled by leg. Further details and references can be found in Section 2.2.2. 

Again, the base case is that neither airline engages in demand driven dispatch. In 
the alternate cases, Airline 1 alone implements demand driven dispatch at one of seven time 
frames: TF2, TF4, TF6, TF8, TF10, TF12, and TF14. These correspond to 42, 31, 24, 17, 
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10, and 5 days prior to departure, respectively. The first results from implementing demand 
driven dispatch with optimized fleet assignment and DAVN are in Table 6. 

Table 6: Percentage of Swappable Flights that Experienced Swaps, DAVN 

 TF2 TF4 TF6 TF8 TF10 TF12 TF14 
Revenue-Max. 51.83% 51.19% 48.75% 45.12% 27.56% 23.04% 26.79% 
Profit-Max. 51.18% 50.64% 48.52% 44.58% 27.27% 22.36% 24.82% 

The results are similar to those when EMSRb-base optimization was used by both airlines. 
More swaps take place in the earliest timeframes and then the number of swaps drops 
dramatically after TF8 when AP restrictions set in. At the outset, more swaps take place 
with DAVN as opposed to previously with EMSRb. Finally, the pattern holds that operating 
profit-maximizing demand driven dispatch uniformly results in slightly fewer swaps at all 
time frames. 

 

Figure 59: Changes in Operating Profit, Optimized D³ with DAVN 

Figure 59 shows the changes in operating profits for Airline 1 and Airline 2. Again, there is 
a bimodal distribution of operating profit gains for Airline 1 with peaks at TF6 and TF14. 
However, TF6 and TF14 now perform similarly rather than TF14 being far superior, as was 
the case with EMSRb. This suggests that DAVN is doing a better job of reserving seats for 
higher fare classes as compared to EMSRb or doing a poorer job of capturing high FC 
demand at the end, diminishing the gains of demand driven dispatch at the latest time 
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frame. The gains in the earliest time frame are still as high as with EMSRb, however. 
Therefore, the conclusion is more nuanced than “better RM” diminishes the gains of D³. 

 It is again the case that, specifically in the earliest time frames, demand driven 
dispatch causes Airline 2’s operating profits to decrease by as much as Airline 1’s improves 
in percentage terms. This highlights the importance of considering demand driven dispatch 
as a competitive action. 

 Interestingly, it is no longer the case that operating profit-maximizing D³ performs 
better than revenue-maximization in all cases for improving operating profits. The difference 
is that with DAVN as the underlying RM system, the revenue results are no longer as close 
as they were with EMSRb. Figure 60 shows the changes in revenue from implementing 
demand driven dispatch. Note that with EMSRb the revenue results were consistently very 
close between revenue maximization and profit maximization at all time frames. Now, rev-
enue-maximization is more effective than operating profit-maximization, with the exception 
of TF6, at increasing revenues. This is to be expected. Connecting itineraries now have their 
revenue value deducted by displacement costs—estimates of incremental revenue to come 
are systematically lower with DAVN than with EMSRb. Hence, incremental costs have a 
larger impact on the fleet assignment and operating cost-minimization ultimately does com-
promise revenue gains, as opposed to with EMSRb where it did not. 

 

Figure 60: Changes in Revenue, Optimized D³ with DAVN 

Also in Figure 60, revenue gains in TFs 2, 4, and 6 are approximately the same as with 
EMSRb. Revenue gains are lower in TF14, however. This matches the results with changes 
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in operating profits. Consistent with previous findings, Airline 2’s revenue decreases by 
about the same as Airline 1’s increases in the earliest time frames and by less in the latest 
time frames. This suggests that in the earliest time frames Airline 1 benefits significantly 
from taking demand from Airline 2 but in the latter timeframes more so from sell-up. 

 Figure 61 shows changes in block hour costs and ASMs. With EMSRb, only the last 
time frame saw decreases in block hour costs and ASMs. With DAVN, decreases begin with 
operating profit-maximization in TF10, 17 days prior to departure as opposed to only 5 
days prior to departure. The decreases are also much larger, as much as -0.09% and -027% 
for block hour costs and ASMs respectively in TF14. 

 

Figure 61: Changes in Op. Costs and ASMs, Optimized D³ with DAVN 

As was evident with changes in revenue, cost reduction now plays a larger role in the fleet 
assignment. Hence, with DAVN, the difference in changes in ASMs and block hour costs 
between revenue-maximizing and operation-profiting maximizing D³ are larger than with 
EMSRb and the total reductions of both with operating profit-maximizing D³ are larger. 
Increases in ASMs in the earlier TF with either revenue or operating profit-maximization is 
predicted—longer routes have higher fares and therefore offer more incremental revenue for 
larger capacities.  

Thus, the relationship between revenue maximization and operating cost minimiza-
tion is visible in operating-profit maximization, as is the importance of the composition of 
the revenue estimates for each leg. Of course, the base cases of either EMSRb or DAVN 
have many differences, but the effect of subtracting displacement costs from the full network 
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contribution of connecting fares on each leg is visible in differences in changes in ASMs and 
block hour costs. 

 

Figure 62: Changes in RPMs, Optimized D³ with DAVN 

Figure 62 shows changes in RPMs and Figure 63 shows changes in LF %pts, which 
are very similar given the comparatively small changes in ASMs for Airline 1 and no changes 
in ASMs for Airline 2. 

 

Figure 63: Changes in LF % pts, Optimized D³ with DAVN 
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Changes in load factor, shown in Figure 63, and changes in RPMs, shown in Figure 
62, display very similar changes for Airline 1 from D³ with EMSRb. Increases in load factor 
of about 1.3 %pts occur for Airline 1 in the earliest time frames. These increases in passen-
gers drop precipitously after TF8 when AP restrictions set in. Note, however, that Airline 
1 now sees greater increases in load factor from operating profit-maximizing D³ rather than 
with revenue-maximizing D³. This is because of the larger decreases in ASMs. 

The most notable difference of D³’s effects on RPMs and load factor with DAVN as 
compared with EMSRb is with Airline 2’s results. Airline 2 is also using DAVN rather than 
EMSRb. With EMSRb, Airline 1’s implementation of D³ caused significant decreases in 
Airline 2’s RPMs and load factor and left yield largely unchanged. Now with DAVN, Airline 
2’s RPMs and load factor are largely unchanged and instead its yield decreases, as shown 
in Figure 64. It would seem that the use of DAVN for Airline 2’s RM system changes the 
nature of how Airline 1’s D³ implementation affects Airline 2’s revenue. Again, the interac-
tion of D³ and RM is not trivial. 

 

Figure 64: Changes in Yield, Optimized D³ with DAVN 

The changes in yield for Airline 1 are on the other hand very similar to those with 
EMSRb. The earliest implementations of demand driven dispatch result in large decreases 
in yield. After TF8, when AP restrictions set in, yield does not decrease as much and finally 
increases in TF14. Generally, operating profit-maximizing D³ results in smaller decreases in 
yield as compared to its revenue-maximizing counterpart. With EMSRb, yield changes were 
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almost identical. Now, as cost reduction plays a larger role in the fleet assignment for oper-
ating profit-maximizing D³, the differences in yield changes are more pronounced between 
revenue-maximizing D³ and operating profit-maximizing D³. 

Underlying these changes in yield and RPMs are the same patterns in changes in 
bookings by swap type, as shown in Figure 65 (swaps in TF6) and Figure 66 (swaps in 
TF14). 

 

Figure 65: Changes in Bookings by FC, Optimized D³ with DAVN at TF6 

 

Figure 66: Changes in Bookings by FC, Optimized D³ with DAVN at TF14 

As was the case with EMSRb, demand driven dispatch in TF6 results in mostly additional 
bookings in FC6 when flights are up-gauged. Unlike with EMSRb, rather than spiral down 
from FC5, FC5 bookings increase as well, signaling that again DAVN is protecting availa-
bility differently. In TF14, increases in bookings are mostly in FC2 and FC1 with up-gauged 
flights, leading to higher yield. These changes, however, are only one tenth the magnitude 
of those in Time Frame 6, as was the case with EMSRb. Some additional bookings also 
occur in FC6 from feedback effects (the AP restrictions prevent them from being a direct 
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effect). The same feedback effects were present with EMSRb but there they were much 
smaller. 

How is it that FC6 sees increases in bookings, especially on up-gauged flights, when 
the up-gauging takes place 5 days prior to departure when FC6 is not available? This 
question led to an investigation of when FC6 sees increases in bookings; as necessary, the 
increases in FC6 bookings take place before 21 days prior to departure. By TF8, 24 days 
prior to departure, on average Airline 1 has taken an additional 17.23 bookings in FC6. As 
a majority of these increased bookings take place on up-gauged flights, up-gauged flights 
must have more availability prior to TF14. Figure 67 shows the changes in the average 
displacement costs for the top quartile of Airline 1’s fullest flights. Note that as capacity is 
added to the fullest flights at TF14, the average displacement cost suddenly drops. This is 
intuitive and explains additional bookings in FC1 and FC2 as full flights are given additional 
seats; it does not explain additional bookings in FC6. 

 

Figure 67: Change in DCs in Top Quartile of Fullest Flights from D³ at TF14 

 

However, the answer can be found in displacement costs in the third quartile of 
Airline 1’s fullest flights. These flights have enough forecasted bookings to come to be on 
the border of DAVN’s availability control closing the lowest virtual buckets, those most 
likely to contain FC6 itineraries. Changes in displacements costs in the third quartile of 
fullest flights from D³ at TF14 are shown in Figure 68. As can be seen, these displacement 
costs are on average lower at the outset of the booking period. While DAVN does not use 
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bid price control, the lower average displacement costs indicates that capacity is not, on 
average, as constrained, meaning the EMSRb leg-control applied within DAVN would be 
less likely to close the lowest virtual buckets. Lower displacement costs also imply that FC6 
connecting itineraries are more likely to be mapped to a higher virtual fare class, and there-
fore more likely to be available.  

 

Figure 68: Change in DCs in Third Quartile of Fullest Flights from D³ at TF14 

This slight change in displacement costs explains the increase in FC6 bookings. It 
also explains why it predominantly occurs on unchanged and up-gauged flights—unchanged 
and up-gauged flights that were on the edge of being assigned larger aircraft are precisely 
those flights that would be most likely to fall into this quartile of flights. 
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Figure 69: Changes in Forecasted BTC for FC1 with D³ at TF14 

The remaining question is why implementing demand driven dispatch would result 
in lower displacement costs at the beginning of the booking period. To answer this question, 
see forecasted bookings to come in FC1 with and without the implementation of D³ at 
TF14, shown in Figure 69. It should be expected that because overall bookings in FC1 
increased with the implementation of D³, the forecasted bookings to come for FC1 should 
increase. This is predictably the case after TF14, when up-gauging occurs. It is not the case 
beforehand, however. Instead, the forecasted bookings to come are systematically lower. 

Table 7: % Chg. in Forecasted BTC in TF1 by FC, from D³ in TF14 

FC1 FC2 FC3 FC4 FC5 FC6 
-2.18% -0.27% -1.01% -6.81% -3.17% -0.49% 

The lower forecasts, while easier to see in absolute terms in FC1 due to the lower 
absolute forecasts themselves, are present in all six fare classes, as shown in percentage 
terms in Table 7. It is likely that the additional capacity added to the highest demand 
flights, while increasing total observed bookings, is actually inadvertently lowering forecasts 
for future flights. The most plausible mechanism is via unconstraining. If additional capacity 
is added to high demand flights in the last time frames, the affected itineraries are no longer 
constrained by capacity and therefore no longer subject to unconstraining. Hence, the fore-
casts, while made larger by more observed bookings, would ultimately be lower due to no 
unconstraining. Again, this highlights the (sometimes) unexpected interactions between de-
mand driven dispatch and revenue management. 
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In summary, repeating the tests of timing demand driven dispatch with DAVN as 
the underlying RM system for both airlines confirmed the trends from tests with EMSRb. 
Operating profits increased from 0.38% to 0.93%. Revenues increased from 0.16% to 0.41%. 
Operating costs changed from between -0.09% and 0.06%. Again, revenue increases drive 
the operating profit increases, as was the case with D³ with EMSRb. 

There are subtle differences, however, highlighting the intricate interactions between 
RM and D³. For example, while revenue and operating profit changes for Airline 1 are 
similar in the first TFs, in the last TFs after AP restrictions take effect there are smaller 
gains when Airline 1 uses DAVN as the RM system. Airline 2 loses revenue and operating 
profit with almost exactly the same magnitudes has it had when EMSRb was used in the 
RM system but through losses in yield rather than losses in RPMs. Therefore, RM systems 
not only effect how an airline responds to D³ when it implements it itself, but also when a 
competitor implements it. 

With DAVN applying displacement costs to connecting itineraries and thereby re-
ducing the double counting of network contribution on leg revenue, cost reduction plays a 
larger role in fleet assignment as compared to with EMSRb. Hence, with DAVN as the RM 
system at both airlines, operating profit-maximizing D³ results in less of an increase in 
RPMs and revenue but larger decreases in ASMs and block hour costs. This highlights the 
importance of carefully considering how revenue estimates are composed for D³ (and fleet 
assignment in general), as when paired with costs the relative magnitude of incremental 
revenues and incremental costs alters the dynamic between revenue-maximization and cost-
minimization. 

6.2. Competitive Demand Driven Dispatch 

Section 6.2 contains the results of both Airline 1 and Airline 2 implementing demand 
driven dispatch in competition with one another. As was seen in bookings-based swapping, 
the fundamental results of demand driven dispatch do not change when competition is 
integrated into the experiment, but changes in the magnitudes of shifts in yield and RPMs 
can alter the revenue and profit outcomes of implementing demand driven dispatch. Thus, 
demand driven dispatch is tested with both Airline 1 and Airline 2 and also at both TF6 
and TF14, peak D³ implementation times in previous tests. 
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Figure 70: Changes in LF % pts with Competitive D³ 

Figure 70 displays changes in load factor based on the scenarios being tested: Airline 
1 implementing demand driven dispatch at TF6, Airline 2 implementing D³ at TF6, or both 
implementing D³ at TF6, the same three scenarios at TF14, and then the results when 
Airline 1 implements at TF6 and Airline 2 implements afterwards at TF14. In all tests, the 
base case is with both airlines using DAVN with standard path class forecasting and no 
demand driven dispatch. Then, in the alternate case, either one or both airlines implements 
demand driven dispatch with an operating profit-maximizing objective function at the stip-
ulated time frames. 

Patterns in load factor changes are similar for Airline 2 as they have been for Airline 
1 at different time frames. When Airline 2 implements D³ in TF6, it has a large increase in 
LF (+1.76%pts). When it implements D³ in TF14, it has a smaller increase in LF 
(+0.40%pts). Airline 1 exhibits the same results (identical to the results of Section 6.1.2 
with op. profit-maximization). Examining changes in load factor also reveals several other 
interesting patterns that introduce the competitive dynamics of demand driven dispatch. 
When Airline 1 alone implements D³, Airline 2 sees decreases in load factor but not nearly 
as large in magnitude as Airline 1’s increases. This is true in either TF6 or TF14. When 
Airline 2 alone implements demand driven dispatch, it sees even larger increases in load 
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factor and in this case Airline 1 sees a slight increase in LF in TF6 and a slight decrease in 
TF14. When both implement D³, the magnitude of LF change for both is slightly less as 
when they implemented D³ alone. As seen in the previous section, demand driven dispatch 
implemented at one airline typically hurts the revenue and hence profits of the competitor—
if LF is not highly affected, this suggests that with DAVN as the RM system what harm 
the D³-implementing airline does to its competitor is via yield reductions. 

To further explore the competitive dynamics of demand driven dispatch, one or both 
airlines implementing demand driven dispatch at TF6, at TF14, or asymmetrically at both 
TF6 and TF14 are tested. For all of these cases, changes in ASMs, RPMs, and yield are 
analyzed, providing insight into how each of the airline’s implementation of demand driven 
dispatch affects the other. Then, the resulting changes in revenue, operating costs, and 
operating profit will be shown. Finally, changes in operating profit for each airline in each 
scenario will be placed in a game theoretic framework for a brief analysis of the competitive 
implications of demand driven dispatch given that airlines have flexibility in when in the 
booking period they would implement D³, should they choose to do so. 

6.2.1. Competitive D³ at Time Frame 6 

The first set of experiments take place in TF6 (31 days prior to departure). Recall 
that in TF6 Airline 1 saw its largest increase in operating profit with D³ implemented with 
an operating profit-maximizing objective function. 31 days prior to departure, advanced 
purchase restrictions do not apply to any of the fare products and up-gauges in capacity on 
high demand flights lead to large increases in Fare Class 6 and some Fare Class 5 bookings. 
This drastically decreases yield but increases RPMs more for the implementing airline, lead-
ing to revenue increases and hence operating profit increases. The same principles hold for 
Airline 2 when it implements D³ in TF6. 
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Figure 71: Changes in ASMs, RPMs, and Yield When D³ is Implemented at TF6 

Figure 71 shows these changes in RPMs and yield, as well as ASMs. When Airline 1 
implements demand driven dispatch in TF6, it has a 0.07% increase in ASMs. When Airline 
2 implements D³, its ASMs increase by 0.43%. This is very similar to the results of compet-
itive D³ with bookings-based swapping—Airline 2’s initial fleet assignment promotes more 
up-gauging regardless of variation in demand. When both implement D³, Airline 1 has 
virtually no change in ASMs and Airline 2 has a slightly smaller increase. 

 Changes in RPMs are consistent: Airline 1’s increase by 1.84% when it implements 
D³ and Airline 2’s increase by 2.71% when it implements D³. When both implement D³, 
Airline 1’s RPMs increase by 1.68% and Airline 2’s by 2.32%, in both cases less than when 
they were alone in implementing D³ but more when summed together. It is also the product 
of the same phenomenon seen with bookings-based swapping—both airlines are increasing 
capacity on the same high demand flights and are therefore competing for the same low fare 
passengers. 

 As such, yield decreases. Almost all of the new bookings on up-gauged flights are 
made in Fare Class 6 (the lowest), increasing RPMs but decreasing yield. As shown in 
Figure 71, Airline 1’s yield decreases by 1.45% when it implements D³ and Airline 2’s by 
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2.03% when it implements D³. Also, when either airline implements D³, it not only decreases 
its yield but also the yield of its competitor, more so than it affects its competitors RPMs. 
Hence, when both airlines implement demand driven dispatch, their yields decrease by as 
much or more as when one airline does, with Airline 1’s decreasing by 1.87% and Airline 
2’s by 2.03%. Still, increases in RPMs outpace decreases in yield and revenue increases. 

 

Figure 72: Changes in Revenue, Op. Costs, and Op. Profits When D³ is Implemented at TF6 

Figure 72 shows the changes in revenue, operating costs, and operating profit when 
Airline 1, Airline 2, or both implement demand driven dispatch in TF6. The results are as 
expected given the changes in ASMs, RPMs and yield. When Airline 1 implements de-
mand driven dispatch it has a large increase in RPMs and a smaller decrease in yield, 
leading to an increase in revenue of 0.41%.  Airline 2, whose RPMs decrease and yield de-
creases more, sees a decrease in revenue of 0.35%. Airline 1 has an increase in ASMs and 
therefore a slight increase in operating costs (0.03%). The scenario is reversed when Air-
line 2 alone implements demand driven dispatch at TF6. Its revenue increases by 0.64% 
and Airline 1’s decreases by 0.52%. Airline 2’s operating costs increase more (0.13%) than 
Airline 1’s, as its ASMs increased more. In either scenario, the airline that implements de-
mand driven dispatch sees a large increase in operating profit—0.87% for Airline 1 and 
1.33% for Airline 2. 
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The story becomes more complicated when both airlines implement demand driven 
dispatch. As shown in Figure 72, when one airline implements demand driven dispatch, 
the other airline loses almost as much revenue as the implementing airline gains. Thus, 
when both airlines implement demand driven dispatch, their operating profit results are 
mixed. In fact, if one takes the operating profit gains of each airline when they alone im-
plemented D³ and subtract the losses when they did not but the competitor did, the re-
sults are roughly those of both airlines implementing demand driven dispatch: operating 
profit losses of 0.37% for Airline 1 and gains of 0.52% for Airline 2. Thus, while Airline 1 
would be better off if neither airline engaged in demand driven dispatch, the Nash Equi-
librium is again, as it was with bookings-based swapping, for both airlines to implement 
D³. 

This outcome for changes in operating profit is by definition the result of changes 
in revenue and operating costs. For both airlines, the magnitude of the increases in oper-
ating costs are slightly smaller. However, revenue does not increase for either airline as 
much as it did when they were alone in implementing D³. As both airlines offer increased 
availability to the same low-yield passengers, further dilution reduces revenues, especially 
for Airline 1. 

6.2.2. Competitive D³ at Time Frame 14 

In this section, the competitive tests of D³ are repeated except that demand driven 
dispatch is implemented in TF14 rather than TF6. TF14 was also a peak implementation 
time for Airline 1 in earlier time frame tests with DAVN and a profit-maximizing objective 
function for D³, increasing operating profits for Airline 1 by 0.86%, as compared to the 
increase of 0.87% at TF6. Although the operating profit gains of demand driven dispatch 
are very similar at TF6 and TF14, there are significant qualitative differences in how the 
implementation of D³ at these time frames increases the operating profit of the implement-
ing airline. 

At TF14, only 5 days prior to departure, advance purchase restrictions prevent the 
sale of all but Fare Classes 1 and 2, the highest fare classes. Thus, any up-gauging of flights 
primarily results in increases in bookings the highest fare classes (excluding feedback effects 
as discussed at the end of Section 6.1.2) and leads to only modest decreases in yield or even 
increases in yield, as compared to D³ in TF6 which causes large decreases in yield. Another 
important qualitative outcome of demand driven dispatch in TF14 is that the large number 
of bookings already accepted limits the ability to perform swaps (avoiding denied boardings) 
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and also limits the ability for additional seats on up-gauged flights to be sold, as very little 
time remains. 

 

Figure 73: Changes in ASMs, RPMs, and Yield When D³ is Implemented at TF14 

 Figure 73 shows the changes in ASMs, RPMs, and yield from one or both airlines 
implementing demand driven dispatch at TF14. Note that there are significant differences 
in the outcomes. Instead of minute increases in ASMs, ASMs decline for the airline imple-
menting demand driven dispatch alone, by 0.27% for Airline 1 and by 0.21% for Airline 2. 
When both airlines implement demand driven dispatch, changes in ASMs are similar: Air-
line 1’s decrease by 0.26% and Airline 2’s by 0.20%. Why do ASMs decrease so much? Only 
5 days prior to departure, there are very few forecasted bookings to come, and therefore 
incremental revenue forecasts are quite small. Meanwhile, incremental costs are of the same 
magnitude as at all time frames. Therefore, the relative magnitude of incremental cost 
savings has a larger influence on the objective function of demand driven dispatch and D³ 
pursues more down-gauges on long flights than in earlier time frames. 

 In line with previous tests of later implementations of D³, RPMs increase for the 
implementing airline by much less than when implemented at TF6. Airline 1’s RPMs only 
increase by 0.20%, as compared to 1.84% in TF6. However, rather than suffering large-scale 
dilution, yield actually increases by 0.10% when Airline 1 alone implements demand driven 
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dispatch. Thus, even with far fewer additional bookings, revenue increases by almost as 
much. The same holds for Airline 2’s RPM and yield changes. 

 Competitively, demand driven dispatch in TF14 largely harms the “other” airline’s 
yield, not RPMs. This is consistent with D³ in TF6, but more pronounced in TF14. These 
results occur because up-gauging a very constrained flight in the last days before departure 
does not drastically change the absolute number of bookings by either airline, but it does 
determine which airline sells more bookings to the few, but highest-paying, business pas-
sengers who arrive late in the booking period. When both airlines implement demand driven 
dispatch at TF14, changes in ASMs, RPMs, and yield are again moderated as compared to 
when only one airline implements D³, being roughly a combination of the results of when 
only they implemented D³ and when only their competitor implemented D³. 

 

Figure 74: Changes in Revenue, Op. Costs, and Op. Profit When D³ is Implemented at TF14 

Figure 74 displays the changes in revenue, operating costs, and operating profit when 
one or both airlines implements D³ at TF14. The results are quite symmetric between the 
two cases where only one airline implements demand driven dispatch. The results are also 
symmetric in the third case where both airlines implement D³. The implementing airlines 
see increases in revenue: 0.16% for Airline 1 and 0.18% for Airline 2. Both see decreases in 
operating costs from decreases in ASMs: 0.09% for Airline 1 and 0.07% for Airline 2. 
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Changes in Operating profit are also symmetric between airlines: 0.46% for Airline 1 and 
0.53% for Airline 2. This is in contrast to tests in TF6 where Airline 1 lost operating profits 
when both airlines implemented demand driven dispatch. Thus, again in TF14 with DAVN 
and an operating profit-maximizing objective function for D³, the Nash Equilibrium is for 
both airlines to implement demand driven dispatch. 

6.2.3. Asymmetric Competitive D³ 

The final section on the competitive dynamics of demand driven dispatch contains 
the test where Airline 1 implements demand driven dispatch at TF6 and Airline 2 imple-
ment D³ at TF14. As has been shown, demand driven dispatch at TF6 and TF14 result in 
similar results in changes in operating profit for one airline implementing but arrive at those 
profit results in significantly different ways.  

When both airlines implement, both the magnitudes of TF14 operating profit results 
and the underlying processes by which operating profit increases differ. Thus, it is worth 
investigating what happens when one airline implements D³ at TF6 and the other at TF14. 
Two competitive dynamics are at play. First, Airline 1 at TF6 is targeting low-yield demand 
with up-gauges early in the booking period while Airline 2 at TF14 is targeting high-yield 
demand. Their up-gauges do not directly affect the same potential passengers, although 
feedback effects from both airlines do. Second, Airline 1 is implementing D³ “first,” a pos-
sible advantage. 

Figure 75 shows the changes in ASMs, RPMs, and yield when demand driven dis-
patch is implemented at one or both airlines at these asymmetric time frames, TF6 and 
TF14. Note that the results of Airline 1 alone implementing D³ at TF6 and Airline 2 alone 
implementing D³ at TF14 are identical to their counterparts in the previous two sections, 
6.2.1 and 6.2.2. The third set of results, however, are new. With Airline 1 implementing D³ 
at TF6 and Airline 2 at TF14, Airline 1 sees an increase in ASMs of 0.7% while Airline 2’s 
ASMs decrease by 0.20%. These changes are consistent—Airline 1’s forecasted incremental 
revenues are larger than Airline 2’s, meaning that Airline 1’s D³ is more influenced by 
revenue-maximization and has more up-gauges on long-haul (higher fare) flights. Mean-
while, Airline 2’s D³ is more influenced by cost-minimization and therefore has more up-
gauges on short-haul (and lower fare) flights. 

These differences in ASM changes based on time frame of implementation mimic 
those of how revenue is accounted for in the assigner—with or without displacement costs. 
The exact results of fleet assignment in general and in these cases demand driven dispatch 



116 
 

are highly dependent on the precise definitions of leg-profitability used. Balancing the rela-
tive magnitudes of incremental revenue gains and incremental cost reductions makes the 
difference between increases or decreases in system ASMs as a result of demand driven 
dispatch. Furthermore, the magnitudes of incremental revenues are affects by a variety of 
highly variable parameters including demand levels, relative fare ratios between fare classes, 
time of swapping in the booking period, etc. 

 

Figure 75: Changes in ASMs, RPMs, and Yield When D³ is Implemented Asymmetrically 

Airline 1’s RPMs increase by 1.70% when it implements D³ at TF6 while Airline 2 
implements at TF14. Interestingly, Airline 2’s RPMs also increase, in this case by 0.35%. 
This is a larger increase in RPMs than when Airline 2 alone implements D³ at TF14. Why 
is Airline 2’s RPM increase assisted by Airline 1’s implementation of demand driven dis-
patch at an earlier time frame? The answer is partially given in changes to Airline 2’s yield. 
Airline 1’s yield decreases quite a bit—to be expected with early implementation of D³. 
However, Airline 2’s yield decreases, as well. When it alone implements D³ at TF14, its 
yield is virtually unchanged, but when Airline 1 implements D³ at TF6 Airline 2’s yield 
drops 0.32%.  

The answer is straightforward—when Airline 1 increases availability on high demand 
flights early in the booking period it causes spiral down for itself and, by capturing Airline 

-2.00%

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

Airline 1 Implements D³ Airline 2 Implements D³ Both Implement D³

%
 c

ha
ng

e 
in

 S
ea

t M
ile

s /
 $

Airline 1 Airline 2



117 
 

2’s previous higher class bookings in its now open FC6, causes spiral down for Airline 2 as 
well. Airline 2 enjoys more bookings in higher fare classes due to its D³ at TF14, but still 
suffers from dilution due to Airline 1’s D³ at TF6. 

Figure 76 shows the changes in revenue, operating costs, and operating profits from 
the asymmetric implementation of D³ by Airline 1 and Airline 2 at TF6 and TF14, respec-
tively. Changes in revenue, etc. are identical to previous tests for each airline implementing 
D³ alone. The airline that implements demand driven dispatch sees large increases in reve-
nue, small increases or decreases in operating costs depending on the timing of D³, and large 
increases in operating profit. 

When both airlines implement demand driven dispatch, however, the results are less 
symmetric as compared to when both airlines implemented D³ at the same time. For the 
first time, when both airlines implement D³, Airline 1 has a larger increase in operating 
profit than Airline 2 (0.41% versus 0.17%). 

 

Figure 76: Chgs in Rev., Op. Costs, and Op. Profits When D³ is Implemented Asymmetrically 

This phenomenon is the result of Airline 1 causing the dilution of Airline 2’s bookings 
with its implementation of D³ in TF6. Note that Airline 2’s revenue benefit from D³ in 
TF14 drops from 0.35% to only 0.03% when Airline 1 implements D³ at TF6. This is a 
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direct result of Airline 1’s loss of yield. What operating profit cost improvements Airline 2 
experiences are as more a result of the -0.07% decrease in operating costs through reductions 
in ASMs as the 0.03% increase in revenues. Charts of the same experiment with Airline 2 
implementing at TF6 and Airline 1 at TF14 can be found in the appendix. 

From the results in Figure 76 and also those of Airline 1 implementing D³ at TF14 
and Airline 2 at TF6 (shown in the appendix), it is the case that when both airlines imple-
ment D³, whichever airline implements at an earlier time frame benefits more from demand 
driven dispatch. This can also be seen in Figure 77. 

 

Figure 77: Game Theory Grid of Op. Profit Outcomes from D³ 

Figure 77 is a game theoretical grid showing the changes in operating profits for Airline 1 
and Airline 2 when they individually choose one of three strategies: no D³, D³ at TF6, or 
D³ at TF14. The resulting changes in operating profit are a result of both their own decisions 
and the decisions of their competitor. In the four cells in the bottom right, where both 
airlines implement D³, there is advantage to implementing D³ in an earlier time frame than 
the competitor. 

 However, this benefit does not extend evenly or linearly. In fact, the only Nash 
Equilibrium in the matrix, the highlighted grid on the right, is where Airline 1 implements 
at TF14 and Airline 2 implements at TF6. Note that when either airline is engaging in D³ 
alone, it is to its advantage to implement at TF6. Once both airlines implement, the ad-
vantage persists for Airline 2 but does not persist for Airline 1. This is likely due to the 
greater magnitudes at which Airline 2 benefits from D³ in all scenarios, and therefore ad-
versely affects Airline 1. By moving its D³ to TF14, Airline 1 is in some ways insulating 
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itself from the full adverse effects of Airline 2 implementing D³ at TF6. Rather than com-
peting with Airline 2, which swaps more aggressively given its static fleet assignment, for 
low-yield passengers at TF6, Airline 1 does better (although it is still hurt) to up-gauge 
later to capture different, high-yield passengers. 

6.3. Conclusions from Optimized Swapping 

Tests of demand driven dispatch using a network optimization technique with reve-
nue or operating profit-maximizing objective functions both reaffirmed conclusions from 
Chapter 4 and illustrated new patterns. First, timing swaps, especially in relation to the 
pricing structures in place in the affected markets, critically affects the outcome of demand 
driven dispatch as well as how that outcome is achieved. Early swaps result in substantial 
increases in RPMs and load factor with large decreases in yield—dilution. Late swaps result 
in little increase in RPMs and load factor but also increase yield. Thus, the revenue and 
operating profit outcome of demand driven dispatch is typically bimodal depending on the 
time of implementation, with the peaks in operating profit benefits being 5-10 days prior to 
the first AP restrictions and 5 days prior to departure. 

Both revenue-maximizing and operating profit-maximizing demand driven dispatch, 
using revenue estimates from the output of the RM systems (both from EMSRb and 
DAVN), outperform the simpler bookings-based swapping throughout the bookings period. 
This is to be expected, as these methods reference the estimated relative revenue value of 
additional seats given demand and, in the case of operating profit-maximization, take into 
account the additional costs of flying larger aircraft longer distances. When only one airline 
implements demand driven dispatch, revenue gains range from gains of 0.16% to 0.66%. 
Operating cost changes range from -0.09% to 0.13%. Operating profit gains range from 
0.38% to 1.52%. 

With EMSRb-based revenue management, operating profit-maximizing demand 
driven dispatch does not compromise revenue results and uniformly provides larger operat-
ing profit increases than its revenue-maximizing counterpart. With DAVN as the revenue 
management system, it is no longer clear throughout the time frames if operating profit-
maximization results in better outcomes—as displacement adjusted revenue gives cost-min-
imization more influence over the fleet assignment, revenue outcomes become compromised 
when down-gauging occurs on longer stage length, higher revenue flights, to decrease oper-
ating costs. Unlike previous studies such as Berge and Hopperstad (1993), revenue improve-
ments, not cost reductions, have driven the majority of operating profit increases with only 
a few exceptions. This is likely due to higher load factors as compared to previous studies. 
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One such exception is when both airlines implement demand driven dispatch. Dilu-
tion results in meager revenue increases, and thus cost reductions become a greater propor-
tion of the operating profit increases. The competitive dynamics of demand driven dispatch 
suggest that there are benefits from implementing demand driven dispatch at an earlier 
point than one’s competitor. It also remains the case that the Nash Equilibrium always 
involves both airlines implementing D³. In early time frames, significant dilution results in 
neutralized revenue benefits for the competing airlines. The same occurs in later time frames 
but to a lesser extent. When both airlines implement demand driven dispatch, operating 
income changes range from -0.37% to 0.92%. It is always the case, however, that an airline’s 
operating profits improve when it implements demand driven dispatch, given that it was 
not previously doing so and regardless of if its competitor is doing so. 
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7. Chapter 7: Sensitivity Analysis 

Chapter 7 focuses on the robustness of the results of Chapter 6. Several important 
variables have been assumed in previous simulations that can affect the magnitudes of 
outcomes of demand driven dispatch. First, demand levels were held constant in Chapter 
6, with the base case load factor for both Airline 1 and Airline 2 being approximately 80%. 
However, demand levels and the resulting average system load factors are important for the 
efficacy of demand driven dispatch. At very high demand levels, swaps become increasingly 
difficult as a proportion of flights are no longer eligible for down-gauging, limiting the num-
ber of flights that can be swapped in general. Furthermore, at high demand levels, revenue-
maximization dominates the objective of the fleet assignment while at low demands, where 
most flights are predicted to have low load factors, cost minimization becomes more im-
portant. 

Second, the gains of demand driven dispatch are largely dependent on the quality of 
the underlying static fleet assignment. As was seen in Chapter 4 and Chapter 6, Airline 2’s 
inferior static fleet assignment led to it consistently benefiting much more from demand 
driven dispatch, which uniformly had a more positive effect on Airline 2’s ASMs than on 
Airline 1’s. In order to test the significance of the static fleet assignment on the benefits of 
D³, again the focus is on the performance of Airline 1. The static fleet assignment for Airline 
1 is updated to be a better fleet assignment, one whose origin is in fleet assignment optimi-
zation with an operating profit-maximizing objective function. Then, demand driven dis-
patch is tested again, with the new gains being incremental above those of simply improving 
the static fleet assignment. 

Third, variability of the demand in PODS is varied. Demand driven dispatch, as 
described in the introduction, is not only highly dependent on the variability of demand 
but a direct response to it. Therefore, presumably the greater the variability of demand, the 
greater the benefits of demand driven dispatch. The lesser the variability of demand, the 
lesser the benefits of demand driven dispatch. Therefore, the last set of sensitivity tests 
include raised and lowered variabilities of demand and the resulting changes in operating 
profits, revenues, costs, etc. due to the implementation of demand driven dispatch. 

7.1. Varying Demand Levels 

This section contains tests of demand driven dispatch at various demand levels. As 
mentioned previously, demand levels and the average system load factors prior to the im-
plementation of demand driven dispatch affect both the ability of demand driven dispatch 
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to operate and the results of its operation. At higher demand levels, flights fill much faster, 
preventing down-gauging so as to prevent denied boardings. As a result, fewer swaps are 
possible. When swapping is possible, the profit-maximizing objective function of demand 
driven dispatch is more likely to favor revenue-maximization over cost-minimization as in-
creased forecasts of bookings to come will increase the relative magnitude of incremental 
revenue forecasts from swapping. 

At lower demand levels, and especially at very low demand levels, demand driven 
dispatch is easier to implement—nearly all flights are eligible for down-gauging as fewer 
bookings have been taken. However, incremental revenue forecasts from swapping may be 
very low or even zero. If none of the flights in a swappable set are projected to book up to 
the lowest available capacity, there would be no forecasted revenue benefit for any swap. 
Potential for cost reductions remain, however. Thus, at lower demand levels, swapping is 
primarily driven by the goals of operating cost-minimization. 

To illustrate these points, demand driven dispatch was tested at nine demand levels, 
the middle of which (Demand Level 5 in Figure 78) has an identical demand level to all 
tests in Chapter 6. Figure 78 shows the base case load factors for Airline 1 at each of these 
nine demand levels, ranging from a system load factor of 64.17% at the lowest demand level 
to 87.76% at the highest demand level. 

 

Figure 78: Airline 1 Base Case Load Factors for Sensitivity Analysis 

In the base cases, both Airline 1 and Airline 2 use DAVN with standard path class 
forecasting for their RM systems. Neither airline uses demand driven dispatch. Then, in all 
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of the alternate cases, Airline 1 implements demand driven dispatch at TF6 with the fleet 
assignment objective of maximizing operating profit. Thus, the results of Demand Level 5 
are identical to previous tests of demand driven dispatch at TF6 with DAVN and an oper-
ating profit-maximizing objective function in Chapter 6. 

Note that the average system load factors can be misleading—even with low system 
load factors many flights can be capacity constrained and with high system load factors 
many flights can depart with many empty seats. Figure 79 shows the load factor distribu-
tions for all flight departures at the highest and lowest demand level settings. Note the 
differences in average load factors that in both cases, full and low load factor flight departure 
occur. 

 

Figure 79: LF Distributions for Highest and Lowest Demand Levels 

As demand levels and average system load factors rise, it is apparent that finding 
feasible swaps becomes more challenging—any swap requires a down-gauge, and feasible 
down-gauges are more difficult to find when load factors are higher. Thus, it is expected 
that as base load factors climb, the percentage of flights in the swappable set that are 
actually swapped decrease. However, given the load factor distributions in Figure 79, while 
finding feasibly swaps become more difficult, it is not drastically so. Figure 80 shows this 
relationship. 
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Figure 80: % of Swappable Flights Swapped from D³, Varying Demand Levels 

Note that while the decrease in the percentage of swappable flights that are actually 
swapped is present, this decrease is not dramatic, nor even monotonic. The feasibility of 
swaps is not the only, nor the primary, determinate of whether or not the assigner changes 
the fleet assignment. With bookings-based swapping, the motivation for swapping was sim-
ple: the largest aircraft fly the flights with the largest forecasts. With a fleet assignment 
based on optimizing expected operating profits, many more factors are at play. 

In determining how many swaps take place, and which aircraft are assigned to which 
flights, revenue and cost are now the driving factors. Cost is dependent only on stage length 
and the size of the aircraft. Revenue, however, is highly dependent on demand levels. When 
most flights are at very low load factors, gauge-changes become far less relevant for revenue 
as even the smallest aircraft may be able to accommodate the demand on the busiest flight. 
Thus incremental revenue projections will be small. At very high demand levels, any up-
gauges will require down-gauges that will likely result in spilled demand, such that even 
though demand driven dispatch increases RPMs, the trade-off between flights lessens these 
increases in RPMs. At middle demand levels, incremental revenue estimates from swapping 
are likely to be highest, as flexibility remains to down-gauge low demand flights without 
spilling demand while high demand flights still benefit substantially from additional capac-
ity. 
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Figure 81: Changes in ASMs and RPMs from D³, Varying Demand Levels 

Figure 81 displays exactly these relationships. At very low base load factors, such as 
64% and 69%, RPM increases are much smaller, 0.63% and 0.74% respectively. At a base 
load factor of 64%, ASMs decrease by 0.17%. At these low demand levels, revenue benefits 
from up-gauging high demand flights are limited. System averages can be deceptive, and 
some high demand flights still benefit greatly from up-gauges, but it is worth noting that 
at a base load factor 64%, the typical flight has 96 passengers, far fewer than 130 which is 
the capacity of the smallest aircraft. Still, cost reductions are not only as effective but are 
also more feasible with low load factors. Thus, at the low base load factors of 64% and 69% 
ASM changes are between -0.17% and 0.04%, far lower than with higher demand levels. 

At middle demand levels, from about 73% to 83% in Figure 81, ASM increases range 
between 0.07% and 0.12%. RPM increases, however, are much larger, ranging from 1.75% 
to 2.08%. Why such large increases in RPMs at these middle demand levels? First, enough 
demand exists in the system for up-gauges on high demand flights to result in large increases 
in bookings and thus RPMs. Second, demand is not so high that up-gauging flights means 
causing spilled demand on the down-gauged flights. Thus, at middle demand levels up-
gauging flights reaps the benefits of additional bookings from up-gauging without the cost 
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of spill from the associated down-gauging. Third, as demand levels increase so do the fore-
casted bookings to come, and therefore the expected incremental revenues of up-gauging 
flights (such as longer stage length, higher fare flights) becomes larger and has more influ-
ence over the assigner’s fleet assignment. This is evidenced by the consistently larger in-
creases in ASMs. Fourth, swapping aircraft is still relatively easy at medium demand levels. 

At high demand levels, in Figure 81 base load factors of 86% and above, demand 
driven dispatch enters its third phase in relation to demand levels. RPM increases begin to 
decline precipitously, from 1.50% to 0.78%. Meanwhile, ASM increases become larger, from 
0.21% to 0.39%. In this phase, up-gauging the highest demand flights requires down-gauging 
flights that do result in spilled demand. Thus, total RPM increases decline. The assigner 
chooses to spill demand on shorter flights that have lower fares. Thus, shorter flights get 
down-gauged and increasingly longer flights get up-gauged, leading to ASM increases. 

 

Figure 82: Changes in LF %pts and Yield from D³, Varying Demand Levels 

Figure 82 shows changes in load factor and yield from implementing demand driven 
dispatch at TF6 with different demand levels. The changes in load factor are the outcome 
of the large increases in RPMs and the smaller changes in ASMs, ranging from a -0.17% at 
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the lowest demand level to a 0.39% increase at the highest demand level. The largest in-
creases in RPMs are at middle demand levels, and therefore middle demand levels see the 
largest increase in load factor, as well. 

Figure 82 also illustrates the trademark relationship between load factor changes and 
yield changes, specifically when demand driven dispatch is implemented at TF6. The larger 
the increase in RPMs, the greater the decrease in yield, with yield decreasing as much as 
1.63% at a base load factor of 73%. Again, at TF6, before AP restrictions apply, up-gauging 
high demand flights results in increases in bookings for the lowest fare classes only due to 
the nature of revenue management. 

 

Figure 83: Changes in Revenue, Op. Costs, and Op. Profits from D³, Varying Demand Levels 

Figure 83 shows the changes in revenue, operating costs, and operating profits as a 
result of implementing demand driven dispatch at various demand levels. As was predicted 
in previous studies, such as Cots (1999), demand driven dispatch’s benefits decrease as 
demand levels increase. This pattern is certainly confirmed by this sensitivity analysis, albeit 
the underlying reasons are more complicated than merely the ability to execute fewer pos-
sible swaps. As was seen in Figure 79, the decrease in the number of flights experiencing 
swaps is not dramatic as demand levels increase. Yet, the decline in the operating profit 
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results of demand driven dispatch are dramatic, falling from a high of 1.29% to only 0.04% 
at a base load factor of 88%. 

Changes in revenue are at their greatest in the middle demand levels, peaking at 
0.50% and reaching their minimum of 0.08% at the highest demand level. This mimics the 
increases in RPMs observed in Figure 80. It follows that when bookings increase the most, 
revenue will increase more. However, note that revenue increases more at the lowest demand 
levels than it does at the highest, despite increases in RPMs being lower at lower demand 
levels. This is due to lower yield. As mentioned previously, up-gauges at the highest demand 
levels are primarily on longer flights—longer flights have lower yield. The decline in yield 
at the highest demand levels compared to those at the lowest demand levels results in 
revenue increases being higher for the lower demand levels, despite lower increases in RPMs. 
This again emphasizes the importance of yield, in this case over load factor, in driving 
improvements in revenue. 

Changes in operating costs are simple to explain. At the lowest demand levels, when 
ASMs decrease, operating costs decrease. As demand levels climb and ASMs increase by 
more, operating costs increase more, as well. At the highest demand level, operating costs 
actually increase more, in percentage terms, than revenue. However, as revenue in absolute 
terms is greater than operating costs, the change in operating profits is still positive. 

In summary, the result of the profit-maximizing objective of demand driven dispatch 
at different system demand levels confirms previous findings that the gains of demand driven 
dispatch decline as system demand levels increase. However, they also reveal important 
nuances. These include the unique ability of profit-maximizing D³ to reduce operating costs 
at the lowest demand levels, for D³ to substantially increase revenue and bookings in middle 
demand levels, and the stagnation of revenue increases at high demand levels due to trade-
offs between capturing some spilled demand only to spill other demand. As was the case 
with bookings-based swapping, demand driven dispatch has fewer returns at higher demand 
levels, but an inability to find feasible swaps is not the dominant reason for this phenome-
non. 

7.2. Optimizing Airline 1’s Fleet Assignment 

As shown in previous tests when comparing the results of D³ for Airline 1 and Airline 
2, the underlying, static fleet assignment plays a role in determining the gains of D³. The 
better the underlying fleet assignment, the lower the gains from demand driven dispatch 
one would expect. This is primarily because, while demand driven dispatch is conceptually 
a response to the variability and uncertainty of demand, it is also capable of “fixing” a poor 
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original fleet assignment. The fleet assignment portion of demand driven dispatch operates 
in much the same was a typical fleet assignment process for a static assignment with the 
exception that it is intended to be used dynamically during the booking period of the af-
fected flights. It is a signal that the original fleet assignment is inadequate if demand driven 
dispatch is routinely performing the same swaps for particular flights on every departure 
day—it would be much more efficient for the results of these swaps to have been the original 
fleet assignment. 

What then are the gains of demand driven dispatch with an improved fleet assign-
ment? In order to answer this question, Airline 1’s static fleet assignment is updated and 
improved and demand driven dispatch is then tested again with the base case without 
demand driven dispatch but with the improved original fleet assignment. The results of 
demand driven dispatch given the improved original fleet assignment can then be considered 
the “incremental” benefits of demand driven dispatch above those attainable from a static 
fleet assignment created prior to the booking period, or, more simply, the gains of D³ that 
come only from responding to the variability of demand. 

The goal of improving the static fleet assignment of Airline 1 is not to find and 
implement the “optimal” fleet assignment, but instead implement the fleet assignment that 
would be used if the same fleet assignment process used in D³ was used for the static 
assignment. In other words, if the most common final fleet assignment as created by demand 
driven dispatch was the static fleet assignment, then the gains of implementing D³ thereafter 
would represent the realistic gains possible only from responding to the variation in demand, 
not from performing the same swaps regardless of variation in demand. Table 8 shows the 
probabilities of each aircraft being assigned to each leg-pair, where Leg 1 and Leg 2 columns 
contain the matched legs in each leg-pair. For example, Leg 85 and Leg 169 are two legs in 
a leg-pair from and back to the hub. The static fleet assignment is indicated by the grey 
highlight—the original fleet assignment has a 150-seat aircraft scheduled. With D³ in TF2, 
these leg-pairs are actually operated by a 150-seat aircraft on 63.20% of departures. 

Table 8: Most Common Aircraft Assignments, D³ in TF2 with DAVN 

Leg 1 Leg 2 130-Seats 150-Seats 170-Seats 
85 169 36.45% 63.20% 0.35% 
86 170 0.00% 0.00% 100.00% 
87 171 24.60% 71.95% 3.45% 
88 172 2.45% 82.40% 15.15% 
89 173 0.00% 16.90% 83.10% 
90 174 0.00% 0.00% 100.00% 
91 175 37.05% 61.85% 1.10% 
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92 176 0.00% 0.00% 100.00% 
93 177 99.80% 0.20% 0.00% 
94 178 2.60% 69.20% 28.20% 
95 179 0.00% 0.00% 100.00% 
96 180 18.75% 77.80% 3.45% 
97 181 0.25% 40.25% 59.50% 
98 182 8.95% 78.60% 12.45% 
99 183 39.35% 60.50% 0.15% 
100 184 100.00% 0.00% 0.00% 
101 185 100.00% 0.00% 0.00% 
102 186 72.80% 27.10% 0.10% 
103 187 99.70% 0.30% 0.00% 
104 188 0.00% 7.05% 92.95% 
105 189 57.25% 42.70% 0.05% 
127 211 0.10% 50.30% 49.60% 
128 212 0.00% 0.00% 100.00% 
129 213 0.05% 66.55% 33.40% 
130 214 100.00% 0.00% 0.00% 
131 215 2.35% 96.45% 1.20% 
132 216 84.60% 15.40% 0.00% 
133 217 94.50% 5.50% 0.00% 
134 218 100.00% 0.00% 0.00% 
135 219 0.00% 0.00% 100.00% 
136 220 0.00% 0.00% 100.00% 
137 221 8.00% 89.75% 2.25% 
138 222 0.00% 0.00% 100.00% 
139 223 24.25% 75.00% 0.75% 
140 224 0.00% 0.00% 100.00% 
141 225 71.10% 28.90% 0.00% 
142 226 0.00% 0.00% 100.00% 
143 227 1.40% 94.10% 4.50% 
144 228 5.60% 86.70% 7.70% 
145 229 99.55% 0.45% 0.00% 
146 230 100.00% 0.00% 0.00% 
147 231 8.50% 90.90% 0.60% 

Again, table 8 shows the probabilities of each leg-pair being assigned one of the three 
aircraft sizes when D³ is implemented. Airline 1 is using DAVN as its RM system and profit-
maximizing demand driven dispatch is implemented at TF2. With DAVN the assigner sub-
tracts the previous time frame’s displacement costs from OD itineraries—therefore TF2 is 
the earliest D³ can be implemented (thereby approximating the static fleet assignment 
which takes place prior to the booking period beginning). The highlighted cells in Table 8 
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display which aircraft was assigned to these legs in Airline 1’s original base case fleet as-
signment. 

As can be seen in Table 8, the original fleet assignment contains some poor matches 
between demand and capacity. For example, Legs 95 and 179 are assigned a 130-seat air-
craft, the smallest, but the assigner for demand driven dispatch assigned a 170-seat aircraft 
on every departure day in every trial. Hence, the gains have little to do with D³ responding 
to variations in demand but rather are the result of “fixing” the static fleet assignment. The 
process for improving Airline 1’s static fleet assignment is straightforward: using the above 
probabilities, Airline 1’s static fleet assignment is updated so that it matches the most likely 
fleet assignment post-D³ in TF2 with an operating profit-maximizing objective function. 
Hence, the static fleet assignment for Airline 1 is now optimized with the same techniques 
as those used in D³, and the remaining gains of D³ can be attributed principally to D³’s 
response to variations in demand. 

Table 9: Primary Base Results with Original Static Fleet Assignment 

Al 1 ASMs RPMs LF Yield Revenue Op. Costs Op. Profit 
1 24,589,596 19,597,736 79.70% $0.0964 $1,888,849 $1,038,409 $850,440 
2 25,365,524 19,710,632 77.71% $0.0936 $1,845,116 $1,065,245 $779,871 

Table 9 shows the primary base case results of the original static fleet assignment. 
Both airlines had similar system load factors, yield levels, and operating profit levels. The 
original static fleet assignments were made to create a realistic load factor distribution, an 
important factor for testing the efficacy of revenue management techniques. However, these 
original static fleet assignments were also therefore not “optimized” for expected operating 
profit. Table 10 shows the primary base case results of the new base case where Airline 1’s 
static fleet assignment is matched to the most common fleet assignment resulting from D³ 
at TF2, optimizing expected operating profit. 

Table 10: Primary Base Results with Optimized Static Fleet Assignment 

Al 1 ASMs RPMs LF Yield Revenue Op. Costs Op. Profit 
1 24,596,116 19,998,415 81.31% $0.0949 $1,897,425 $1,038,578 $858,847 
2 25,365,524 19,660,079 77.51% $0.0935 $1,837,280 $1,065,245 $772,035 

Table 11: Changes in Primary Results from Optimizing Static Fleet Assignment 

Al 1 ASMs RPMs LF Yield Revenue Op. Costs Op. Profit 
1 0.03% 2.04% 1.61 -1.56% 0.45% 0.02% 0.99% 
2 0.00% -0.26% (0.20) -0.11% -0.42% 0.00% -1.00% 
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Table 11 shows the changes in base case primary results from the original static fleet 
assignment for Airline 1 to the optimized static fleet assignment for Airline 1. Note the very 
significant improvements in primary metrics. ASMs increase slightly (0.03%) but RPMs 
increase much more (2.04%). Load factor increases by 1.61 pts, accordingly. Yield also 
decreases by 1.56%. Therefore, the results of replacing the original static fleet assignment 
are very similar to the results of D³ at TF2. RPMs increase by a significant amount but 
this increase in bookings corresponds with significant dilution. Overall, revenue increases 
by 0.45% and operating costs increase by 0.02%. Operating profit for Airline 1 increases 
0.99%, as compared to the gain of 0.69% from operating profit-maximizing D³ in TF2. Does 
this mean that demand driven dispatch is inferior to simply attaining a better static fleet 
assignment? No. 

The changes in primary metrics, over the updated, optimized static fleet assignment, 
from implementing demand driven dispatch at TF6 with an operating profit-maximizing 
objective are shown in Table 12. Demand driven dispatch increases operating profits above 
and beyond the benefits of the optimized static fleet assignment. Regardless of how well-
fitted the static fleet assignment is, the variability of demand in different markets on dif-
ferent departure days means that demand driven dispatch serves the purpose of responding 
to this variability of demand in a way that static fleet assignments cannot—dynamically. 

Table 12: Chgs in Primary Results from D³ at TF6, Given the Opt. Static Fleet Assignment 

Al 1 ASMs RPMs LF Yield Revenue Op. Costs Op. Profit 
1 -0.01% 0.03% 0.03 0.00% 0.09% 0.00% 0.20% 
2 0.00% -0.05% (0.04) -0.11% -0.06% 0.00% -0.15% 

With the optimized static fleet assignment, demand driven dispatch performs fewer 
swaps; only 15.31% of the swappable flights are actually swapped on average (7.65% of all 
flights are swapped). ASMs decrease only slightly and operating costs remain approximately 
constant. RPMs increase slightly, as does load factor. Yield remains approximately constant. 
Revenue increases by 0.09% and operating profit increases for Airline 1 by 0.20%. In sum-
mary, the gains of demand driven dispatch are not erased or reversed when the static fleet 
assignment undergoes some form of improved optimization. Rather, there is less low-hanging 
fruit and demand driven dispatch’s benefits retain the same patterns but at a smaller mag-
nitude. These benefits of demand driven dispatch reflect the magnitudes of gains to be had 
when D³ is responding principally to variation in demand. 
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7.3. D³ with Demand Variability and the New Fleet Assignment 

As demand driven dispatch is typically understood as the integration of revenue 
management and fleet assignment to address the variability of demand, the final section of 
sensitivity tests contains the results of implementing demand driven dispatch at a variety 
of levels of demand variability. The expected outcome is straightforward: as demand driven 
dispatch is meant to address the variability of demand, the higher the variability of demand 
the greater the benefits of demand driven dispatch should be. 

Demand is stochastic in PODS, as described in Chapter 3. Demand varies by depar-
ture day, with some days having higher demand than others as determined by random 
draws with a Gaussian distribution. Demand in OD markets also varies by random draws 
with a Gaussian distribution. Finally, demand varies stochastically as PODS randomly gen-
erates different numbers of business versus leisure passengers, and each of these passengers 
in turn is generated with a random set of disutilities for various fare restrictions, travel 
times, etc. For testing demand driven dispatch at different levels of demand variability, the 
variability of demand for OD markets is changed.  

A K-factor of 0.20 has been used in all previous tests for the variability of demand 
by OD market. Demand driven dispatch is also tested at all of the K-factors shown in Table 
13 for variability of demand by OD market. In empirical studies, estimates of demand K-
factors on flights have been estimated to be between 0.20 and 0.40 (Belobaba, 2006). For 
sensitivity testing, D³ is tested with the new, optimized fleet assignment for Airlie 1 and K-
factors ranging from 0.15 to 0.45 at 0.05 increments.  

K-factors of demand for flights is not the same as demand for OD Markets. The 
“demand” for flights in PODS would be a combination of all of the variability by day, OD 
markets, passenger types, and preferences. However, as described in Swan (2002), combining 
demand by OD markets in on a single flight, as is done in PODS with the use of connecting 
hubs, actual variation of demand by flight will be less than the variation of demand by OD 
market as a statistical property of combining distributions. Hence, the OD market demand 
K-factors from 0.15 to 0.45 combined with the other dimensions of demand stochasticity 
represent a reasonable range for modeling variability of demand. 

For each level of demand variability, the changes in primary metrics for Airline 1 
due to the implementation of demand driven dispatch are shown. The base case is both 
airlines using DAVN with standard path-class forecasting and no demand driven dispatch. 
The alternate cases have Airline 1 implementing demand driven dispatch at TF6 with a 
profit-maximizing objective function. 
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Figure 84: Chgs in Revenue, Op. Costs, and Op. Profit from D³ at TF6 with Diff. K-Factors 

Figure 84 shows the changes in revenue, operating costs, and operating profit at each 
of the tested K-factors for OD market demand (with the scale matched to the changes when 
D³ is implemented in TF14). Despite the intuition that the operating profit gains of demand 
driven dispatch should increase as the variability in demand increases, this is not the case. 
In fact, the linear trend is very ambiguous and at all levels of demand variability the gains 
of D³ at TF6, with the new, optimized fleet assignment, are low and inconsistent. 

Some consistency remains, however. As was the case in all previous tests at of D³ at 
TF6, the vast majority of the gains of demand driven dispatch are the result of increases in 
revenue, not reductions in operating costs. This is, again, in contrast with previous studies 
but consistent with the tests presented in this thesis. Whether or not demand driven dis-
patch causes larger increases in revenue or decreases in costs actually depends largely on 
demand levels, the timing of swaps, the relative cost structures, and the type of allocation 
of revenue to legs. 

Why do changes in operating profit (mostly driven by changes in revenue) behave 
so inconsistently across demand variability levels, and why is the trend not clearly positive?  
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Figure 85: Changes in ASMs and RPMs from D³ at TF6 with Different K-Factors 

Figure 85 shows changes in ASMs and RPMs due to the implementation of D³ at 
TF6 and at each level of demand variability. Decreases in ASMs are fairly consistent across 
demand levels, suggesting that cost minimization is not a large factor in determining fleet. 
However, RPM changes are relatively larger and much less consistent. Cost minimization 
across demand variability levels is not driving significant differences in swaps at different 
levels of demand variability, but changes in forecasted demand are. At all levels of demand 
variability, the percentage of flights swapped ranged from 7.57% to 8.05%. The percentage 
of flights swapped is relatively stable and cannot be the cause of the inconsistent and small 
gains from D³ at TF6 with the new, optimized fleet assignment. The culprit is not the 
quantity of swaps but shifting swapping decisions chasing forecasted demand. 

It is a false assumption that demand driven dispatch, because it is designed to re-
spond to the variability of demand, is immune to it. One interpretation of these results is 
that variations in demand can confuse the assignment process in demand driven dispatch. 

Multiple explanations exist for this confusion in the assigner that results in low and 
inconsistent gains from D³ at TF6. However, most importantly, demand driven dispatch 
relies on the exact same forecasts as the revenue management system. As the variability of 
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OD market demand changes, this directly impacts the forecasts that demand driven dis-
patch uses for its assigner—D³, although it is meant to address variability of demand, is 
ultimately directly affected by the variability of demand. By the end of TF6, 31 days prior 
to departure, roughly 56% of demand as arrived. The assigner, using estimated incremental 
revenue gains from expected bookings to come, is entirely dependent on forecasted bookings 
to come and remaining capacity. Despite the variability in demand, and even the variability 
in bookings in hand from one departure day to the next, the forecast will be relatively stable 
as a result of how it is constructed (as a function of past departure days), although the 
standard deviation will grow with the variability of demand. Simply put, at 31 days prior 
to departure the demand forecast is not capable of predicting the variability of demand as 
reliably as D³ requires for strong improvements in profitability. 

This interaction between the variability of demand and the forecasts has direct im-
pacts on the revenue management system employed. For example, EMSRb-based optimiza-
tion used in a leg-based RM system or at the end of DAVN uses the standard deviation of 
the forecast as an input. This alters booking limits irrespective of demand driven dispatch. 
Then, with demand driven dispatch being implemented using revenue estimates derived 
from the RM system’s EMSR curves, the interaction is further complicated. 

Demand driven dispatch cannot be made immune to the variability of demand. How-
ever, D³ can be performed in such a way that it is more resilient to the variability of 
demand. If D³ is performed at the other peak time, TF14 at 5 days prior to departure, cost-
minimization plays a larger role in fleet assignment and incremental revenue estimates are 
based more so remaining capacity than on bookings to come. In other words, the operation 
of D³ at TF14 should be much more resilient to and independent of the variability of 
demand while the gains of D³ at this time frame remain subject to the variability of demand. 
If D³ at TF14 is tested at differing levels of OD market variability it should be expected 
that the results show a much more consistent reflection of the hypothesis that increased 
variability translates into increased gains for demand driven dispatch. 

To test this hypothesis, demand driven dispatch was again implemented at each of 
the above seven levels of OD market variability with the objective function of the assigner 
being to maximize operating profits. However, in these tests demand driven dispatch is 
implemented at TF14 rather than TF6, or 5 days prior to departure instead of 31 days prior 
to departure. Figure 86 shows the changes in revenue, operating costs, and operating profits 
at each of the levels of variability of OD demand. As can be seen in Figure 87, the changes 
are very consistent, much higher, and grow as the variability of demand increases—precisely 
the prediction put forth above. 
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Figure 86: Chgs in Revenue, Op. Costs, and Op. Profit from D³ at TF14 with Diff. K-Factors 

Operating profits increase from as much as 1.08% to 2.03%, even with the base case 
having an improved, optimized static fleet assignment. Revenues increase from as much as 
0.45% to 0.88% and operating costs decrease from as much as 0.07% to 0.08%. The gains 
from demand driven dispatch are higher and increase (albeit with a step function likely 
from the capacity “ledges”) with increased variability of demand. The increases in operating 
profit are also consistent with previous tests in Chapter 6, being the sum of large increases 
in revenue with smaller but significant decreases in operating costs. At TF14, additional 
capacity on up-gauged flights can only be booked by the two highest fare classes. Thus, 
increases in RPMs are combined with increases in yield rather than dilution. Demand driven 
dispatch is also better able to allocate demand with reduced uncertainty, a function of the 
factors discussed previously. Finally, it is promising that demand driven dispatch has such 
positive results even on top of an optimized static fleet assignment—revenues increase, costs 
decrease, and profits increase due to demand driven dispatch’s unique ability to respond to 
the variability of demand as neither RM nor static fleet assignments can. 

Meanwhile, as shown in Figure 87, both yield and load factor increase. Not many 
strategies increase both yield and load factor, but demand driven dispatch implemented late 
in the booking period accomplishes this. Again, in changes in LF percentage points and 
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yield, the step function is visible as is the increased effects of demand driven dispatch at 
higher levels of variability of OD market demand. 

 

Figure 87: Changes in LF %pts and Yield from D³ at TF14 with Different K-Factors 

 

Figure 88: Changes in ASMs and RPMs from D³ at TF14 with Different K-Factors 

Figure 88 shows changes in ASMs and RPMs. Increases in RPMs are smaller but 
significant. As bookings to come are very small 5 days prior to departure, the assigner is 
more focused on cost-minimization than it would be at TF6. Still, up-gauged flights see 
increased bookings, and these bookings are high-yield. Meanwhile, cost reduction takes place 
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through the reduction of ASMs by strategically up-gauging shorter stage-length flights. 
Thus, ASMs decrease by as much as 0.24%. 

Several important conclusions come from testing demand driven dispatch at various 
demand levels. Variability of demand is a very important factor for the efficacy of demand 
driven dispatch. Not only is demand driven dispatch designed as a response to the variabil-
ity in demand, its effectiveness is also highly affected by the variability of demand, specifi-
cally when D³ is implemented with swaps early in the booking period. Uncertainty and 
fluctuations in demand directly impact the demand forecasts (which are by comparison 
stable) used by both the RM systems and by demand driven dispatch through the RM 
systems’ output. It is incorrect to assume that D³ is naturally impervious to disruptions 
from the variability of demand, and therefore incorrect to assume that D³ necessarily per-
forms better in early time frames when the variability of demand is increased. 

If D³ is implemented at a later time frame, however, such as TF14, the results are 
very promising and consistent. As the variability of demand increases, because this imple-
mentation of D³ is more resilient to the variability of demand by relying less on expected 
bookings to come and more on remaining capacity and the observed variability of bookings 
in hand, the gains of D³ increase as well. Even with the use of an optimized static fleet 
assignment in the base cases, demand driven dispatch increase operating profits by as much 
as 2.03%, revenues by as much as 0.88%, and reduces costs by as much as 0.08%. Demand 
driven dispatch, therefore, is capable of significantly improving operating profits and reve-
nues even while trimming ASMs (and the associated costs) and increasing both yield and 
load factor.  
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8. Chapter 8: Conclusions 

The final chapter of the thesis summarizes the concepts of demand driven dispatch 
and this research. Then, the experiments conducted for this thesis and the findings of the 
various experiments and sensitivity tests of demand driven dispatch are reviewed. The find-
ings in this thesis represent the first tests of D³ in a competitive network environment with 
fully simulated revenue management systems. The conclusions of these tests and their rele-
vance to the practice of both revenue management and demand driven dispatch are out-
lined. Finally, suggestions for future research are suggested. 

8.1. Demand Driven Dispatch 

 Demand driven dispatch (D³) is an attempt at integrating airline fleet assignment 
and revenue management. Its objective is to improve airline operational efficiency and prof-
itability by better matching capacity in an airline network to demand by using demand 
information from the revenue management system to perform dynamic fleet assignment. 
Whereas static fleet assignments may be made months prior to the departure date of the 
flights being assigned aircraft, demand driven dispatch allows these aircraft assignments to 
be adjusted only days prior to departure. 

 High demand flights can be up-gauged to capture more revenue. Low demand flights 
(specifically on longer stage lengths) can be down-gauged to reduce fuel burn and save on 
operating costs. Demand driven dispatch, also often called dynamic re-fleeting or close-in 
refleeting, increases the flexibility of the airline planning process to account for the very 
stochastic nature of demand for air transportation. 

 However, to date the research in demand driven dispatch has focused almost entirely 
on improving the optimization methods used in the fleet assignment process for demand 
driven dispatch. Some research has addressed how revenue management might be adjusted 
to account for D³, but this has not been the norm. Also to date, research has not been 
conducted with demand driven dispatch in a competitive network environment with fully 
simulated revenue management systems. Thus, the competitive dynamics, network dynam-
ics, and pricing and RM dynamics of D³ have not been well understood. 

 In this thesis, demand driven dispatch, using the PODS simulator, is tested with 
fully simulated revenue management systems and stochastic demand that chooses between 
two competing airlines, competing paths, and available fare classes. It is tested with com-
petition—PODS Network D³ has two airlines serving all markets. First, D³ is tested with a 
simple bookings-based methodology that assigns the largest aircraft to the flights with the 
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highest forecasted demands. Then, D³ is tested with either a revenue-maximizing or a profit-
maximizing fleet assignment optimizer using the bookings and fare output of the airline’s 
RM system and a minimum-cost flow specification. 

 Demand driven dispatch is then simulated with swapping implemented throughout 
the booking period to test the efficacy of swaps given the quality of the forecasts, the pricing 
structures in the affected markets, and the simultaneous operation of the revenue manage-
ment system. D³ also simulated in different competitive scenarios, where one or both airlines 
implement demand driven dispatch at different times. For sensitivity testing, D³ with opti-
mized swapping is simulated at different demand levels, with an optimized static fleet as-
signment, and at different levels of demand variability. 

8.2. Insights from Bookings-Based Swapping 

The first set of tests in Chapter 4 with bookings-based swapping at different time 
frames showed that early swapping leads to greater increases in RPMs and greater decreases 
in yield, while late swapping leads to small increases in RPMs and small decreases to small 
increases in yield, depending on advance purchase restrictions and fares. The timing of 
swaps in relation to fare restrictions in the market is critical to the outcome of demand 
driven dispatch. At all time frames, demand driven dispatch improves the implementing 
airline’s revenues. Table 13 shows revenue changes by TF with bookings-based swapping 
and a leg-based EMSR revenue management system. 

Table 13: Changes in AL1 Revenue, TF Summary, Bookings-Based Swapping 

Changes in Airline 1's Revenue from D³ at Different TFs 
 TF4 TF6 TF8 TF10 TF12 TF14 

Leg RM 0.38% 0.45% 0.44% 0.34% 0.44% 0.54% 

The second set of tests, altering the airlines’ RM systems and the competitive D³ 
environment, showed that the effects demand driven dispatch remain consistent throughout 
the various scenarios, while the details of the RM system do affect the magnitudes of the 
changes. When one airline engages in demand driven dispatch, the competitor airline loses 
revenue. When both airlines engage in demand driven dispatch, revenue changes are very 
small while both airlines gain RPMs and see decreases in yield. Network RM systems appear 
to leave fewer gains for D³ to achieve (with revenue gains of 0.20% to 0.30% rather than 
0.44% with leg-based RM). Willingness-to-pay forecasting and fare adjustment successfully 
prevent some of the dilution from demand driven dispatch and reduce the increase in RPMs 
(with revenue gains of 0.23% rather than 0.20% without willingness-to-pay forecasting, etc.). 
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However, willingness-to-pay forecasting fundamentally does not address the reason for di-
lution in early swaps with D³—the airline implementing D³ necessarily opens availability 
to the lower classes when capacity is increased on high demand flights. When both airlines 
implement D³, both airlines increase capacity on high demand flights in pursuit of the same 
low-yield demand, worsening the dilution. 

 In all cases where one airline implemented D³, demand driven dispatch improved 
revenue with increases of as much as 0.10% to 0.63% depending on the RM system and the 
quality of the initial fleet assignment. When both airlines implement D³, up-gauging the 
same high demand flights in competition for the same low fare class demand, yield decreases 
as much as or more than RPMs increase, leading to neutral revenue results. In all cases, an 
airline has better revenue performance when it engages in D³ regardless of its competitor’s 
actions. Thus, both airlines implementing D³ is the Nash Equilibrium in this competitive 
game. It is important to understand the D³ is a competitive action, and that increasing 
one’s capacity and therefore one’s availability has impacts both on one’s own bookings and 
revenue and also on one’s competitor’s. 

The third set of tests in Chapter 4 alters base case demand levels and showed the 
expected decline in revenue gains from demand driven dispatch at higher demand levels. 
Changes in revenue are shown in Table 14. However, the results suggest that the primary 
cause of this decline with bookings-based swapping is greater dilution, not the infeasibility 
of swapping. Furthermore, the magnitudes of changes in revenue, RPMs, yield, etc. are 
affected by the number of swaps that occur, which are in turn affected by the relationship 
between initial capacity assignments and their associated forecasted bookings at departure. 
This relationship is unique to bookings-based swapping, which relies on estimates of ex-
pected bookings at departure rather than revenue and cost estimates. 

Table 14: Changes in AL1 Revenue, Demand Level Summary, Bookings-Based Swapping 

Changes in Airline 1's Revenue from D³ at Different Demand Levels 
 69% LF 73% LF 76% LF 80% LF 82% LF 84% LF 86% LF 

Network RM 0.35% 0.38% 0.22% 0.20% 0.32% 0.18% 0.05% 

Bookings-based swapping, which represents a very rudimentary method of engaging 
in demand driven dispatch, nevertheless illustrates substantial improvements in revenue 
while also providing important insights in the competitive nature of demand driven dispatch 
and how it broadly interacts with revenue management and pricing. The timing of demand 
driven dispatch to correspond with advance restrictions in pricing structures is critical. The 
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implementation of D³ is a competitive action, in some cases affecting the competitor more 
than the implementer. 

8.3. Insights from Optimized Swapping 

Tests of demand driven dispatch using optimized swapping with revenue- or profit-
maximizing objective functions further support conclusions from Chapter 4 and showed new 
patterns and conclusions. Timing swaps in relation to the pricing structures in place criti-
cally affects the outcome of demand driven dispatch as well as how that outcome is achieved. 
Early swaps result in substantial increases in RPMs and load factor with large decreases in 
yield. In other words, while early swaps improve profitability in these tests, they also result 
in substantial dilution. In contrast to early swaps, late swaps result in little increase in 
RPMs and load factor but increase yield, improving revenue and operating profit as much 
or more than early swaps with far fewer swaps in total. Thus, late swaps pose an operational 
challenge by swapping so close to departure but also an operational advantage in that 
relatively few total swaps achieve a significant improvement in profitability. Finally, the 
outcome of demand driven dispatch is bimodal by time frames, with the peaks in operating 
profit benefits being 5-10 days prior to the first advance purchase restrictions and 5 days 
prior to departure. 

Both revenue-maximizing and operating profit-maximizing demand driven dispatch, 
which value the revenue potential of flight legs with estimates from the utilized RM systems, 
perform better than the simpler bookings-based swapping throughout the booking period 
but especially in the later time frames when incremental benefits of optimizing the swaps 
approach 0.15% in magnitude. These methods reference the estimated relative revenue value 
of additional seats given demand and, in the case of operating profit-maximization, take 
into account the additional costs of flying larger aircraft longer distances. This is a theoret-
ical and pragmatic improvement over bookings-based swapping. When only one airline im-
plements demand driven dispatch, revenue gains range from gains of 0.16% to 0.66%. 
Operating cost changes range from -0.09% to 0.13%. Operating profit gains range from 
0.38% to 1.52%. Improvement in revenue are the primary driver of improvements in prof-
itability. Changes in operating profit across time frames and with different RM systems and 
D³ objectives are shown in Table 15. 

  



144 
 

Table 15: Changes in AL1 Profit, TF Summary, Optimized Swapping 

Changes in Airline 1's Op. Profit from D³ at Different TFs 
 TF2 TF4 TF6 TF8 TF10 TF12 TF14 

Leg RM Rev-Max 0.56% 0.75% 0.87% 0.81% 0.82% 1.10% 1.47% 
Leg RM Prof-Max 0.59% 0.79% 0.93% 0.88% 0.84% 1.13% 1.52% 
Network RM Rev-Max 0.80% 0.75% 0.70% 0.49% 0.44% 0.56% 0.93% 
Network RM Prof-Max 0.69% 0.74% 0.87% 0.43% 0.38% 0.58% 0.86% 

With leg-based revenue management, operating profit-maximizing demand driven 
dispatch does not compromise revenue results and provides larger operating profit increases 
than its revenue-maximizing counterpart at all time frames. With network RM (DAVN) as 
the revenue management system, the distinction between the benefits of revenue-maximiz-
ing D³ and profit-maximizing D³ is no longer clear. However, it is clear that with network 
RM and profit-maximizing swaps, demand driven dispatch keeps ASMs lower and therefore 
places more emphasis on minimizing costs. This is due to the deduction of displacement 
costs from incremental revenue, increasing the relative important of incremental cost sav-
ings. It also appears to be the case that as cost-minimization takes on greater importance, 
improvements in revenue do begin to be compromised as compared to only maximizing 
revenue with D³. 

The gains of D³ with network RM (DAVN) are smaller than with leg-based RM. 
This is persistent across time frames, including in the latest time frames when D³ is not 
causing dilution. Therefore, this supports the conclusion that the gains of D³ are smaller 
when an airline is using more sophisticated network RM. 

In contrast to previous research, revenue improvements, not cost reductions, drive 
the majority of operating profit increases in almost all of the tests. This is likely due to 
higher load factors as compared to previous studies, along with a host of other factors 
including the cost structure employed. Rather than generalizing these findings, one should 
recognize that the exact results of D³ rely heavily on the particular environment in which 
it is used, as is the case with both revenue management and fleet assignment. 

When both airlines implement demand driven dispatch, dilution results in only slight 
revenue increases as both airlines add capacity to high demand flights in the hopes of cap-
turing the same low-yield demand. Cost reductions become a greater proportion of the 
operating profit increases in these competitive cases. The competitive dynamics of demand 
driven dispatch also suggest that there are benefits from implementing demand driven dis-
patch at an earlier point than one’s competitor while simply implementing D³ at a different 
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time frame may insulate (to some degree) competitors from each other’s D³. Demand driven 
dispatch can harm competitor airlines more than it aids the airline implementing D³, spe-
cifically in early time frames. Still, in all cases the Nash Equilibrium of the competitive 
game of D³ always involves both airlines implementing D³. In early time frames, significant 
dilution results in neutralized revenue benefits for the competing airlines. The same occurs 
in later time frames but to a lesser extent. When both airlines implement demand driven 
dispatch, operating income changes range from -0.37% to 0.92%. However, it is always the 
case that an airline’s operating profits improve when it implements demand driven dispatch 
regardless of its competitor’s actions. 

8.4. Insights from Sensitivity Testing 

The sensitivity testing of D³ with optimized swapping also displayed several im-
portant conclusions. Testing optimized swapping at various demand levels again resulted in 
the predicted decreases in the benefits of D³ at higher demands (shown in Table 16). How-
ever, it again was not primarily due to fewer swaps. Rather than the infeasibility of swaps 
driving changes in the benefits of D³, the interplay of incremental cost and revenue benefits 
did. The results of demand driven dispatch can be summarized in three general demand 
groups. At very low demand levels, cost-minimization plays a key role. As most flights have 
low load factors, the largest aircraft can be placed on the shortest flights without compro-
mising revenue. Some RPM increases and revenue increases from swapping are realized, as 
even at low system demand levels some flight departure are still capacity constrained. 

Table 16: Changes in AL1 Profit, TF Summary, Optimized Swapping 

Changes in Airline 1's Metrics from D³ at Different Demand Levels 
 64% 

LF 
69% 
LF 

73% 
LF 

76% 
LF 

80% 
LF 

83% 
LF 

86% 
LF 

87% 
LF 

88% 
LF 

Op. Prof. 1.28% 1.02% 1.29% 0.90% 0.87% 0.71% 0.52% 0.15% 0.04% 
Revenue 0.30% 0.35% 0.50% 0.39% 0.41% 0.38% 0.31% 0.13% 0.08% 
Op. Costs -0.05% 0.03% 0.04% 0.03% 0.03% 0.05% 0.08% 0.10% 0.13% 

At medium demand levels, cost-minimization no longer significantly contributes to 
the gains of D³. Instead, demand levels are at a point where there exists enough demand 
for very large increases in bookings from swaps. High demand flights can be up-gauged to 
capture significantly more demand while low demand flights still have little enough demand 
that being down-gauged does not result in spill. At high demand levels, this is no longer the 
case—swaps necessarily involve trade-offs as to what demand should be spilled. If incre-
mental revenues are greater than incremental cost savings (as they are in these tests), ASMs 
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increase substantially as the assigner chooses to capture additional long-distance/high fare 
demand and spill short-distance/low fare demand. 

Finally, D³ is meant primarily to address the variability of demand, not “fix” static 
fleet assignments. When the static fleet assignment of Airline 1 is optimized using the same 
assigner as in D³, the benefits of D³ are no longer the results of fixing the static fleet 
assignment but are instead only the results of responding the variability of demand. D³ 
remains capable of improving profitability. However, early swaps result in low and incon-
sistent benefits (with changes in operating profits of between 0.05% and 0.20%). This is 
because D³ is relying on the same forecasts as RM and, in the earliest time frames such as 
31 days prior to departure, these forecasts are not much better than those used for the 
static fleet assignment. Early swapping is just as susceptible to error due to the variability 
of demand as other facets of airline planning. The gains of D³ with early swapping are low 
if the static fleet assignment is of high quality. 

By comparison, demand driven dispatch with late swapping, even when applied to 
the optimized static fleet assignment, retains large and consistent benefits. As the variability 
of demand increases, the gains of D³ increase as well. Even with the use of an optimized 
static fleet assignment in the base cases, demand driven dispatch increases operating profits 
by as much as 2.03%, revenues by as much as 0.88%, and reduces costs by as much as 
0.08%. Demand driven dispatch is capable of significantly improving operating profits and 
revenues even while trimming operating costs. It increases both yield and load factor. De-
mand driven dispatch, functionally a combination of fleet assignment and revenue manage-
ment, captures demand and revenues and decreases costs in ways that neither of its 
components can do alone. Ultimately, demand driven dispatch is a practical way to respond 
to uncertainty that improves profitability by maintaining aircraft assignment flexibility. 

8.5. Suggestions for Future Research 

Many avenues exist for continuing research on demand driven dispatch and revenue 
management. Of course, the tests in this thesis did not complete all the combinatorial 
options of even the aspects of demand driven dispatch tested. Demand driven dispatch can 
be tested at different points in the bookings process and at multiple points in the bookings 
process rather than only swapping at one point. The results of swapping more than once 
could include incremental benefits from remaining more flexible throughout the bookings 
process.  
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For example, a set of early swaps and a set of late swaps could take advantage of 
the two primary strategies by which demand driven dispatch improves profitability. How-
ever, with the sensitivity testing showing mediocre results for early swaps, it may also be 
the case that only late swaps reliably provide large benefits from D³ when the static fleet 
assignment is of a high quality. In this case, swapping more than once in the booking period 
may not be practical given that early swaps may or may not be helpful. Additionally, 
capacity changes disrupt the RM system. Swapping numerous times throughout the book-
ings period may underperform simply swapping once as the incremental benefits of swapping 
multiple times are undermined by damage to the RM process. 

Testing D³ with a wider variety of revenue management systems is also an avenue 
for future research. While bookings-based swapping was testing with hybrid forecasting and 
fare adjustment, optimized D³ can also be tested with HF/FA. The results are likely highly 
predictable: as HF/FA significantly decreases the valuation of future bookings in low fare 
classes and therefore the revenue value of additional capacity on high demand flights, cost-
minimization ought to play a much larger role in D³ with HF/FA. Continuing further down 
the road of integrating revenue management and fleet assignment, testing D³ where the 
fleet assignment process and the network availability optimization process are fully inte-
grated could result in incrementally better results. For example, capacity decisions on each 
leg can be added directly to the optimization by which DAVN finds network displacement 
costs. 

It is also the case, however, that while these methods are theoretically better, they 
represent a step that makes implementation of such a D³ scheme exponentially more diffi-
cult. As bookings-based swapping did not perform drastically less well than optimized swap-
ping, the incremental gains of such integrated methods might not be substantial while the 
difficulty of implementing them could be. Another heuristic that may approach the same 
incremental gains while maintaining the practicality of implementation would be to continue 
research into adapting capacity inputs to the revenue management system given D³. 

Further research can also be conducted into the competitive and network natures of 
D³. An assigner that takes into account network flows rather than assuming independent 
leg demand could improve the benefits of D³. The design of networks and fleets can also 
drastically change the results of implementing D³. This represents a very expansive frontier 
for continuing research into demand driven dispatch, as does increasing the number of 
competitors and their interactions. With more competitors in a network, the competitive 
impacts of D³ may not be as large, for example, when only one airline implements D³. 
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In conclusion, the research of demand driven dispatch in a competitive network en-
vironment, coupled with full RM systems, resulted in new and important conclusions for 
the practice of D³. The benefits of implementing practical demand driven dispatch are 
substantial, as are the avenues for continuing research on the topic. 
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Appendix 

 

Figure 89: ProBP w/ HF/FA, Airline 1 Uses Bookings-Based D³ 

 

 

Figure 90: ProBP w/ HF/FA, Airline 2 Uses Bookings-Based D³ 

 

 

Figure 91: ProBP w/ HF/FA, Both Airlines Use Bookings-Based D³ 
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Figure 92: Changes in ASMs, RPMs and Yield, AL1 w/ D³ at TF14, AL2 at TF6 

 

Figure 93: Changes in Rev. Op. Costs, and Op. Profit, AL1 w/ D³ at TF14, AL2 at TF6 
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