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Abstract

The great challenge for MEMS designers is to create low-order dynamic device models
(macromodels) that accurately capture the complex behavior that is often discovered only
by experiment or by full three-dimensional simulation. In this thesis, we report the
successful implementation of a methodology for automatically generating analytical
macromodels of non-linear, electrostatically actuated microstructures from meshed
simulations and inserting them into system-level simulators. This approach is based upon
representing the positional state of a device with a set of generalized coordinates that
represent contributions of a set of basis shapes that we derive from the linear elastic
modes of the system. Reduction of the state of the system to these generalized
coordinates permits us to construct analytical models for the elastostatic energy and the
electrostatic co-energy of the system, whose gradients provide us with the actuation
forces expressed directly in modal coordinates. We then encapsulate the generalized
equations of motion in a circuit element that can be inserted into an analog circuit
simulator for dynamics simulation.
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Chapter 1 Introduction

Computer aided design (CAD) tools enable the simulation and computational prototyping of devices
that may not have been constructed yct. However, because the development of CAD tools is expensive, it
requires strong driving forces to develop these tools, and even then CAD capabilities often lag behind the
most advanced device technologies. This is the case for the field of microelectromechanical systems
(MEMS). MEMS structures are machined on semiconductor wafers using existing VLSI technologies
supplemented with specialized processing called “micromachining” [1]. The types of structures can range
from gears and motors to deformable thin membranes.

An important class of MEMS devices involves electrostatic actuation of microstructures with
moveable or deformable parts. Simulation of electrostatically actuated MEMS structures involves the tight
coupling of clectrostatic and mechanical forces. In the quasistatic limit, the distribution of charges and the
effect of the electrostatic forces upon the deformation of the structure must be determined simultaneously
and self-consistently with the deformation itself. This problem can be highly nonlinear because of the
inherent nonlinearity of electrostatic actuation forces, and geometric nonlinearities caused by large
deformation.

There have been several approaches for developing CAD tools for MEMS devices [2]-[19]. Many of
these approaches share an architecture in which fast numerical algorithms are used to optimize simulation
in 'each energy domain separately. Then, the coupled domain problem must be solved self-consistently by
suitable iteration to determine the behavior of the system [5]. This technique has the advantage of accuracy,
but at the cost of computation time. Commercial packages, such as MEMCAD [4], SOLIDIS (7], and
IntelliCAD [9] implement full, self-consistent, three-dimensional simulation of coupled electrostatic-
elastostatic devices, and can solve quasistatic or frequency domain behavior. However, it is time
consuming and computationally costly to simulate the small-amplitude general dynamical behavior for
these coupled non-linear systems. An effective design tool must be capable of handling system dynamics in
a timely fashion.

In order Lo solve this problem, the MEMS design community has been converging upon the technique
of solving dynamical behavior by constructing low-order analytical models to agree with fuli three-
dimensional analysis [20). Thesec models, called macromodels or reduced-order models, can then be used in
lieu of computationally expensive full three-dimensional analysis. It is thus possible to solve system-level
dynamics by constructing reduced-order macromodels to represent cach energy domain, and then inserting

these models into a system-level simulator. Because macromodels are analytical, simulation can be
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performed without any significant computational overhead; and because they agree with full three-
dimensional simulation, they can provide accuracy sufficient for design purposes. It is the purpose of this
research to further develop this technique for MEMS simulation.

In order 1o reduce the complexity of the system, the state of the system can be constrained to be the
linear superposition of a set of basis shapes [21]-[24]. These basis shapes can be generated in a variety of
ways, such as singular value decomposition [21], Fourier decomposition [22], or Karhunen-Logve
decomposition [23]-[24]. One commonly used technique is the normal mode summation method [25]. For
example, Lees [26] presented an approximation of a Timoshenko beam that uses the mode shapes to
represent some of the degrees of freedom of the structure. Furthermore, this technique has been applied to
MEMS simulation specifically. Ananthasuresh [27] presented a technique for reducing the degrees of
freedom of a MEMS device by representing the deformaticn of the structure as a linear superposition of the
first few mechanical mode shapes. In this implementation, the electrostatic forces were calculated by
approximating the capacitance as a chain of lumped parallel plate capacitors. Cojocaru [28] improved upon
this research by executing full 3D simulation at each integration time-step in order to compute electrostatic
forces accurately. In both these cases, linearized representations of the mechanical energy domain are used,
which neglects any possibility of stress stiffening. The logical progression of this research would be to
execute full three-dimensional simulation for every energy domain at each time-step, but this would
become computationally cumbersome. Ideally, the 3D simulation should be replaced with accurate, fast-to-
compute macromodels.

Macromodels that substitute 3D simulation can be constructed automatically by computer. Milzner
[29] presented a good overview of the art of computer aided macromodel construction as applied to circuit
simulation. Regidor [30]-[31] presented an algorithm to generate macromodels for thyristors, allowing any
computationally expensive tasks to be executed and managed automatically by CAD tools rather than
manually by device designers. Gabbay [32] implemented a technique for automatically constructing
accurate macromodels for the electrostatic component of a particular class of MEMS devices by
automating the calculation of system capacitance over a reduced set of degrees of freedom. In this case,
lumped-clement beam approximations were used to represent the mechanical forces. The arbitrary choice
of generalized coordinates in this work, however, induced inertial inconsistencies. Divekar {33] presented a
means and implementation to take n-port parameter data as a function of frequency and generate
macromodels in the form of rational polynomials that can be inserted as circuit elements into the SPICE

circuit simulator.
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In this thesis, we report the successful implementation of a mecthodology for automatically gencerating
analytical macromodels for two conductor, conservatjve clectrostatic-clastostatic microstructures. These
macromodels are cxported as analog simulator circuit clements that can be repeatedly used within a circuit
simulator to determine dynamical behavior. Above all, these macromodels arc fast lo compule, requiring
only the initial investment of computation time to construct them. This document is organized as follows.
Chapter 2 discusscs the theory behind the process by which we construct these macromodels. Chapter 3
cxplains the means by which we implemented this process. Chapter 4 presents analysis of our
implementation of this process, in particular the computation time and the comparison of results to full
three-dimensional simulation, Chapter 5 provides some examples of this process being cxccuted on a

varicty of complex devices.
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Chapter 2 Theory

In this chapter, we present a theoretical explanation of what we shall refer to as The Churn Process.
This is a means by which a full three-dimensional meshed numerical model of a two conductor
electromechanical dcvice without dissipation can be converted into a reduced-order analytical macromodel
that can readily be inserted as a black-box circuit element into an analog circuit simulator. This process is
based upon the energy method approach [34], in that we shall construct analytical models for each of the
energy domains of the system and determine all forces as gradients of the energy. The energy method
approach has the advantage of making this process modular, enabling us to incorporaic other energy
domains into our models in the futurc. Another beneficial side effect of energy methods is that the models
we shall construct are guaranteed to be energy conserving, because each stored energy shall each be
constructed as an analytical function, and all forces shall be computed directly from analytically computed
gradients. The Churn process also has the advantage of being able to be performed almost entirely
automatically, requiring the designer only to construct the model, run a few full three-dimensional
numerical computations, and se! a few preferences a priori. Above all, this process has the ultimate benefit
of constructing models that are computationally efficient, allowing their use in a dynamical simulator.

A high level description of our approach is depicted in Figure 1. Our first task is to reduce the degrees
of freedom of the system. Rather than allow each node in a finite element model to be free to move in any
direction, we constrain the motion of the system to a linear superposition of a select set of deformation
shapes. This set will act as our basis set of motion. The positional state of the system will hence be reduced
to a set of generalized coordinates, each coordinate being the scaling factor by which its corresponding
basis shape will contribute. Next, we must construct analytical macromodels of each of the energy domains
of the system. In t'he case of conservative capacitive electromechanical systems, these consist of the
electrostatic, elastostatic, and kinetic energy domains. These macromodels will be analytical functions of
the generalized coordinates. (As we will see in Section 2.1.1, some of these energy domains will be
determined as a byproduct of modal analysis, avoiding the need for explicit calculation.) We can then use
Lagrangian mechanics in order to construct the equations of motion of the system in terms of its
generalized coordinates. Finally, we can translate these equations of motion inio an analog hardware
description language, thereby constructing a black-box model of the clectromechanical system that can be
inseried inlo an analog circuit simulator.

We shall present this process in three parts. In Section 2.1, we present the means by which we reduce

the degrees of freedom of the full system. In Section 2.2, we discuss the algorithm by which we can
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Figure 1: Overview of The Churn Process

construct a macromodel for an arbitrary encrgy domain, in particular, how we apply this 1o the encrgy
domairs of a conservative electromechanical system. Finally, in Section 2.3, we demonstrate how we apply

Lagrangian mechanics to this problem, thereby constructing the equations of motion of the system.

2.1 Choosing the Generalized Coordinates

Before the system we wish to analyze is macromodeled, it is represented as a finite element model
with N free nodes. Neglecting node rotations, this system has 3N degrees of freedom. To represent the
dynamical state of the system, 6N tcrms arc necessary; 3N terms record the node positions, and an
additional 3N terms record the node velocities. Furthermore, for 6N state terms, 6N first order differential
equations arc needed to represent the cquations of motion of the system. If N is large, it will be
computationally expensive to integrate these equations in time to simulate dynamic behavior.

To solve this problem, we restrict the motion of the system. Let us define y to be a 3N clement vector
representing the positional state of the sysiem. We constrain the degrees of freedom of the system by
declaring that y is a lincar superposition of m: lincarly independent basis shapes @; offset from an
cquilibrium statc ¥ eqm- Note that this equilibrium state is the shape of the structure affer any initial stress

rclaxations take place; naturally, if there are no initial stresses, or if the system is clamped so as to prevent
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any relaxation, the basic shape is already at its equilibrium position. Thus, we rewrite our representation of
the state of the system as

m

YV =Yoqm+ D, 4P (1)

i=1
where g; are the coefficicnts of the basis shapes of the linear superposition. Henceforth, we refer to the g;
as the generalized coordinates of the system. In effect, this constrains the description of the system from 3N
to m spatial degrees of freedom. Correspondingly, this reduces the number of terms needed to represent the
dynamical state of the system, and thus the number of first order differential equations in the equations of
motion, to 2Zm. When m << N , this constitutes a significant computational advantage over the full 6N state
represeniation. (In this research, we have found that representing state as a linear superposition of
displacements can create problems in situations where there is a sensitive dependence upon node position.
We discuss this in Section 4.2.)

When choosing the basis shapes, the designer is faced with two questions. The first is how to find a
good sct of basis shapes @;. And, because any complete basis set of a 3N element vector can have 3N
linearly independent basis shapes, the second question is wiiich shapes from the complete set should be
used? There are numerous ways to construct the shapes among which we will choose. For example, in [26],
Ananthasuresh demonstrated the use of mechanical harmonic mode shapes for use with MEMS device-
model coniplexity reduction. In [21], Hung presents a technique for using actual system motion to construct
a set of representative basis shapes. Any or all of these methods are valid. For this research, we use
mechanical harmonic mode shapes for our basis shapes, which we discuss in detail in Section 2.1.1.

Once a set of M basis shapes is chosen, we must choose the minimum number m of those shapes
necessary to characterize typical motion behavior of the structure. Our approach begins with a single full
three-dimensional quasistatic simulation for the system under a typical example of actuation. Let us define
Wex lo be the positional state calculated by our example quasistatic simulation. In Section 2.1.2, we shall
discuss how we can determine the coefficients c; such that

M
Vex = Veqm +Zci¢i
=]
Let us define the relative significance y; of a basis shape @; to be the maximum absolute displacement
caused by that shape in the linear superposition for ¥, . In other words,
vi =leil-Jeill.. 2)
where ||¢,v||w is the L, norm of @;, equivaleni to the absolute magnitude of the maximum element in the

@; vector. By sorting the ¥; values in decreasing order, we construct a prioritized list of which basis shapes
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have the greatest significance on our example motion. The designer can now decide which and how many
shapes to use in the reduced model of the system.

One final note is that when we construct analytical models for the various encrgy domains in our
system, we will need to know a valid operating range for our system; that is, typical values for our
generalized coordinates. Conveniently, the coefficients ¢; we obtained for our example of typical motion
can be used to understand the relative expected magnitudes of the generalized coordinates during dynamic
simulation. By providing c;, we cnable the designers to make an educated sclection for the system

opecrating range.

2.1.1 Using Mode Shapes as a Basis Set

In [26], Ananthasuresh demonstrated that only a few mechanical mode shapes arc necessary (o
accurately capturc thc motion of simple MEMS devices. For this rescarch, we also choose to use mode
shapes to populate our set of basis shapes. Numerical modal analysis solvers determine the cigenvalues of
the cquation

(oM +K)p; =0
where @; is the eigenvector describing the shape of the modz of vibration, @; is the angular frequency of
that mode, and M and K are the mass and stiffness matrices, defined from the finitc element model and its
material properties. For each mode, we can also compute a generalized mass, given by

m; = ¢; Mg,

There are several advantages to using the shapes derived from modal analysis. The first and most
evident is that the mode shapes constitute a linearly independent set of basis shapes; thus it is not necessary
to perform a back orthoggonalization to confirm the independence of each additional mode shape. Second,

the modal formulation readily provides a representation for the kinetic energy of the system T(q), given by
i - 1 D)
7(q)= Y S mid; @)
i

Third, the moda! formulation also readily provides a linear representation for the elastostatic strain cnergy

of the system Ulincar sirain (9) 8iven by
1
Ulinear strain (q) = 2 5 m'iw?ql‘z C))
i

We shall usc the energy representations in both equations (3) and (4) in Sccticn 2.3, where we discuss the

assembly of the equations of motion of the system.
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2.1.2 Determination of Mode Relevance

Now that the first few mechanical modes of the moving par of the device have been calculated, and
an example of how the structure might bend due to electrostatic actuation has been computed, we can
determine the relative significance of each of the mode shapes with respect to actuation. We accomplish
this by projecting the deformation of our example quasistatic solution onto the space spanned by the
deformations of the calculated mode shapes. This is done as follows. Let us define ., to be the vector
representing the deformation of the sample quasisiatic equilibrium solution, and let us define ¢; to be the
vector representing the deformation calculated for the #* mode. Our goal is to calculate the cocfficients C;

such that:
Vex = Veqm + Zci¢i
[

We can rewrite this in a matrix form as:
!
P Pm| f = Vex = ¥eqm
cm
Because this is an overdetermined system when m < N, we use the QR factorization algorithm, which uses

a least squares approach to solve for the coefficients ¢; [35]. Using this technique, we create a non-square,

m x N matrix that is effectively the inverse of the N x m matrix of the ¢; basis vectors.

2.2 Energy Domain Macromodeling

The second step in the churn process is to construct macromodels that will replace full threz-
dimensional simulation to evaluate each of the energy domains of the system. Some of the energy domains
can already be represented in a simple manner, such as the kinetic energy and a linearized approximation of
the elastostatic energy domain as discussed in Section 2.1.1. Here, we shall present how we construct
macromodels for any function that would normally require full three-dimensional simulation and then
apply this technique to create macromodels for the electrostatic and geometrically non-lincar elastosiatic
energy domains.

The requirements for the macromodel we wish to construct are as follows.

¢  The macromodel must be an analytical function.
e  The macromodel must compare accurately to full three-dimensional simulation.
# The macromodel must be a function of the generalized coordinates only.

The process by which we create such a macromedel is depicted in Figure 2. The overall concept is that the

full threc-dimensional simulation in the single energy domair of interest is run several times for values of
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the generalized coordinates that adequately span the pre-chosen operating range for the system. (Because
thesc are single energy-domain simulations, they are much faster than the single coupled-simulation used to
find the example deformation.) Then, we select a generalized functional form, on which we then use a non-
lincar function fitting scheme in order to determine the parameters that fit this gencralized form to the data.

In Section 2.2.1, we discuss the process by which we choose the values of the generalized coordinales
(or sampling poinis) in order to adequately span the operating range. In Section 2.2.2, we discuss the
algorithm by which we fit a generalized functional form to the accumulated data. Finally, in scctions 2.2.3
and 2.2.4, we present the full three-dimensional functions we must calculate for the electrostatic and noa-

linear elastostatic energy domains and the generalized functional forms we use to represent them.

2.2.1 Randomizing Sample Points of the Operating Range

We need to compute the data to which we shall fit our macromodel so that we minimize the number
of computations while spanning the operating range sufficiently 1o accurately capture the physics with the
data. There are numerous algorithms with which we could choose the sample points within this operating
range. For example, one might be to break the range into a grid and sample at each point on the grid.
Although this would sufficiently span the space, it might result in redundant information, hence needless
computations. Another might be to choose the sample points completely randomly. Although this might
avoid redundant information, it might also miss regions of the operating range entirely. For this rescarch,
we use a combination of these two approaches, based in part upon the Latin Hypercube method [36).

Suppose our generalized coordinates g; for i € 1..m are constrained to the operating range defined by
q, € [min,-,max,-]. In R™ space, this defines an m-dimensional volume. Our first step is to divide this
volume into a grid of subvolumes. For each dimension 1, the designer can choose the number n; of cqual
divisions to be made on that dimension of the volume. This divides the volume into

m
I~
i=1
subvolumes. For nomenclature, we shall refer to a volume divided in this manncr as a [nl ny - nm]
sampling volume, and we shall usc [kl ky - k,n] to refer to the individual subvolume within the k;"
division of the i™ dimension of the volume for all i € 1..m.

In order to choose a sampling point, we first choosc a subvolume and then pick a sampling point
purely randomly from within that subvolume. In order to choosc subvolumes scparated enough to avoid
clustering sample points, we shall associate three different variables to each subvolume. These variables

will acl as counters, and all will be initialized to zero. The first counter, which we shall call chogen, will
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keep track of how many sample points have been selected out of thai subvolume. The second counter,
which we shall call nearest neighbors, wili count the number of times a sample point was selected
from within a nearest neighbor subvolume. The third, which we shall call co-linear meighbors, will
count the number of times a sample point was selected from within a subvolume that is co-lincar with it in

the overall volume. To express this mathematically, we define the counting algorithm as follows:

e when we choose a sample point within subvolume [kl k - km]:
e the chosen variable for subvolume [kl kp - km] is incremented by one
o the nearest neighbors variable for all subvolumes [l Iy - 1I,] such that
. li=k;j j=#i .
Jiel.m . .t are incremented by one
lj=kjt1 j=i
o the co-linear neighbors variable for all subvolumes [I; I - I, ] such that
. li=k; j#i .
Jiel.m . .p are incremented by one
l g 2k j J=1

Thus, in order to choose the next sample point, we pick a subvolume that has the lowest values for the

chosen, nearest neighbors, ard co-linear neighbors variables. We define the selection_algorithm

# data points (n)
to generate

for each =1..n
o >

Sample Point ' " o
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g()]

Figure 2: Energy Domain Macromodeling
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as the method we use 10 choose each successive subvolume, and it is describes as follows. (Noic that this

algorithm is repeated for each selection of 2 sample point)

1.
2.

Initialize a set of subvolumes that contains all of the subvolumes in the volume.

Among all subvolumes in the set, determine the minimum value contained in the chosen
variables.

Remove all subvolumes from the sct whose chosen variables are greater than the minimum just
calculated. This is equivalent to only keeping the subvolumes that have the minimum chosen
value.

Among all subvolumes in the set, determine the minimum value contained in the nearest
neighbors variables.

Remove all subvolumes from the set whose nearest neighbors variables arc greater than the
minimum just calculated. This is equivalent to only keeping the subvolumes that have the
minimum nearest neighbors value.

Among all subvolumes in the set, determine the minimum value contained in the co-linear
neighbors variables.

Remove all subvolumes from the set whose co-linear neighbors variables are greater than the
minimum just calculated. This is equivalent to only keeping the subvolumes that have the
minimum co-linear neighbors value.

A noteworthy byproduct of this algorithm is that if we request as many sample points as there arc

subvolumes, one sample point will have been chosen from eah and every subvolume.

Let us recap and summarize the sample point selection algorithm:

1.
2.

6.

Construct the operating volume and divide it into its subvolumes.

Create the chosen, nearest neighbors, and co-linear neighbors variables for all
subvolumes, and initialize all of them to zero. .

Pick a subvolume from which to choose a sample point using the selection algorithm defined
above.

Choose a random point within that subvolume, use this as a sampling point.

Increment the appropriate variables according to the counting algorithin defined above.

Return to step 3.

2.2.2 Levenberg-Marquardt Non-Linear Function Fitting

After the set of simulations is complete, we will fit an analytical model to the acquired data by using a

non-linear function fitting scheme. We implement the Levenberg-Marquardt method, which determines the

best-fit parameters that minimize the i merit function [37]. Let us define that the model to be fitted is

y = y(x;a)

where the parameters @ arc what we must alter to minimize the * merit function, given by

- § s

i=1 g
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where g; is the standard deviation associated with the data point x;. Near the minimum of 2. we expect

the function to be well approximated by a quadratic form, which we can writc as
(a) = y—dTa+%aTDa (5)

where d and D are determined simply from the first and second derivatives of 7, respectively. If this is a
good approximation, we can use the inverse Hessian method to jump directly from the current trial

parameters &cyr to the minimizing ones &win in a single step, namely

@min = Acyr t D! '[‘Vl)(acur)] (6)
On the other hand, if this is a poor approximation, we can take a step down the gradient, as in the steepest
descent method. In other words,

Apext = Acyr - constant X V22 (@ ey, ) @)
The advantage of the Levenberg-Marquardt method is that it varies smoothiy between both of the inverse
Hessian method and the steepest descent method. Both require the computation of the gradient of * with

respect 1o the parameters &, which will be zero at the 2* minimum. This has the components

812 Z [y, xl 'a)] ay(x! ’a) k=1.M

aak

Taking an additional partial derivative yields

322 _2202 dy(x;;a) dy(x;;a) [Jz y(x”a)]a 2y(x;;a)

aak aa aakaal

We make the following substitutions

1 9?
a=[ak1]where ay EEaakgi,

1972
B=[ﬂk] where [ E—E;Tk

making a=%D and B='%d from equation (5). Frequenily, it can be beneficial to neglect the second

derivative term within a, thus from this point on, we will always use as the definition of a the formula
_ Z oy(x;;a) ay(x;;a)
aak aa,

With these substitutions, we can rewrite equations (6) and (7), that is the inverse Hessian and steepest

descent methods, as
ada=f 8)

and
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da = constant x B 9
The Levenberg-Marquardt method combines these methods by constructing a new matrix o such that
o’ =)y ] where ajy = a1+ A8y)
where 8y, is the Kronecker delta. We can now combine both cquations (8) and (9) into onc equation
a’'da=p
The magnitude of the non-dimensional parameter A allows us to smoothly traverse from using inverse
Hessian to steepest descent, and vice versa.
The Levenberg-Marquarut method is summarized as follows:
1. Pick a modest value for 4, say 4=0.001.
2. Compute lz(a).
3. Compute o,
4, Compute o’

5. Solve a’da =B for da.
6. Compute 7*(a +8a).

7. 1f [;{2(& +8a) - Zz(a)]/zz(a) < some cutoff value, terminate.

8. If z2(a +8a) 2 ;{2(a), increase A by 10 (or any other substantial factor) and return to step 4.

9. Leta<a+da
10. Decrease 4 by 10 (or any other substantial factor)
11. Go to step 3.

The continued reduction of 4 in step 10 tends toward inverse Hessian as we approach the 2 minimum.

2.2.3 Electrostatic Energy Domain
Electrostatic forces are produced by the charges that accumulate on the conductor surfaces of the
MEMS device under an applied voltage. The force F, that stores eneigy into the clectrostatic domain of

the system is given by the gradient of the clectrostatic energy U, :

F.=VU, (10)
Recall thai the electrostatic energy U,, is given by
v, =19
¢ 2cC

where Q is the charge on the conductors, and C is the capacitance between the conductors. When
actuating a MEME device, however, we prefer to work in terms of voltage rather than charge. Thus, it is

gencrally advantageous for us to consider the electrostatic co-energy U, given by
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us=Lev?
2

where V is the applied voltage. In this case, the gradient of the electrostatic co-energy U, & is the force that
draws energy out of the electrostatic domain. Thus, the force F, that puis energy into the electrostatic
domain is given by
F, =-VU, (11)

When comparing Equations (10) and (11), we note an often overlooked sign change issue in MEMS.
Because we choose to determine our electrostatic forces from the electrostatic co-energy rather than energy,
a sign change must be taken into account.

Let us return to determining the electrostatic forces. Because the applied voltage is independent of

motion, the gradient need only be applied to the capacitance, thus:

1.2
F,=-=V C
€ {2 )V

In order to construct a macromodel of the electrostatic domain, we must consiruct an analytical model
of the capacitance of the system. We shall use an arbitrary multivariate form to represent the capacitance,
but it should be designed such that it can capture the geometric non-linearities that can be expected from a
capacitance f{unction. Recall that the capacitance of a large parallel plate capacitor neglecting fringe field
effects is given by

£0A
d
where A is the area of the plate, and d is the distance between the plates. OQur generalized coordinates

C=

would most correspond to the gap d. Thus, it makes sense that our analytical form should have
denominator terms. In this research, we use the form of a rational fraction of multivariate Taylor

polynomials to represent the capacitance function. This form is given by:
R R

Ry . .
SN Y ai,.i,a93-an

il =0i2 =0 im =0

S S Sp o .
Z z Zbi,iz--.i,,ﬂi'q;f"'q:h"

i,=0i,=0 i,=0

Henceforth, we shall refer to this as a [Rl Ry, -+ R[S Sy - S,n] model.

2.2.4 Elastostatic Energy Domain
Elastostatic forces result from the strain energy stored in the body of the system. The strain energy is

given by:
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Un=| Loedv (12)
vol

where o is the stress and £ is the strain in the system. The force F,, that stores energy into the elastostatic
domain of the system is given by the gradient of the elastostatic energy U, :
F,=VU,
Because the strain energy can be computed directly from full three-dimensional simulation, we
macromodel the elastostatic energy domain by constructing an analytical function to fit the strain energy
directly.
In this research, we use the form of a multivariate Taylor polynomial to represent the strain energy

function. This form is given by:

Rl R2 Rm . R .
2 Y Y i, a9 g
i,=0i,=0 i,=0
Henceforth, we shall refer to this as a [Rl Ry .- Rm] model.

2.3 Assembling the Equations ¢f Motion

Given representations for the kinetic and potential energy domains of a system, we can use
Lagrangian mechanics to construct the equations of motion [38]. Recall that the Lagrangian L(q,q,t) is a
function of the general coordinates g, their first time derivatives g, and time t. L(q,g,t) is defined by

L(g,4,t) = T(q,4,t) - U(g,4,t)
where T(q,q,t) is the kinetic energy and U(q,4,t) is the potential energy of the system. The equations of

motion come directly from Lagrange’s equations, given by

d(aL) oL
— | —=|-—==0 13
dt(aqu )

representing a set of m equations, one for each generalized coordinate g;. Recall that in equation (3), we
formulated the kinetic energy from the modal analysis, yielding
m 1 5
T(qs q’t) = 2 E 'ntql
i=1
Combining this with Lagrange’s equations of (13) yields
4 - dfau)_au
T 34 ) o
In general, potential energy U(qg, g, t) is the sum of the energy domains of the system, which we express by

Ulg,at)= D U4(a.4.1)
each en
domain
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For our systems, the only energy domains we consider are the electrostatic and elaslostatic domains, boih
of which are conservative and do not depend upon g. Thus, the partial derivative with respect to q; drops
out, yielding

aUelcamstmic _ aUclastosunic

dg; aq;

Recall that for our formulation of the electrostatic energy domain, as discussed in Section 2.2.1, we choose

m;q; =—

to represent that energy in terms of the co-enesgy, given by

1 2
U dlectrosiatic (a,t)= Ev(t) C(q)
As we noted, we must take into account a sign change due to the use of the co-energy in place of the

energy. Thus, for energy domains using co-energy, we shall make the substitution:

LU U
og; aq;
With this substitution, we can now insert the electrostatic co-energy into Lagrange’s equations, yielding:
2 BC(q) U epasiostaic.
ag; og;

All that remains is to include the elastostatic energy domain in the system. Recall that we have two

m;g; = V(t) (14)

alternatives for representing the elastostatic energy domain. The first is to use an analytical fit of the full
three-dimensionally simulated non-linear strain energy, as discussed in Section 2.2.4. This leaves
Lagrange’s equations relatively unchanged, yielding

29C(q) _ Vanin(9)

(15
0, da )

- 1
mq; = +§V(t)
The second is to use the linearized representation of the strain energy that can be extracted from modal

analysis, as discussed in Sectior: 2.1.1. Recall that the linearized elastostatic energy is represented by

Ulinearized strain () = Z "'-z“’
l

Incorporating this into equation (14) yields

m;g; = V(t) ;q) m;w?q; (16)

The sets of equations represented by either (15) or (16), depeading upon which strain energy
representation we choose, become our equations of motion. Because our representations of the capacitance

and the non-linear strain energy are analytical functions, we can compute the gradients of these functions
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analytically rather than numerically. This averts the possibility of numerical error creating hidden energy

sources or sinks, thereby creating or destroying encrgy arbitrarily within our equations of motion.

24 Summary

In this chapizr, we have proposed an algorithm by which a full three-dimensional model of a
conservative electromechanical device can be reduced to a black-box macromodel that can be inserted
easily into an analog circuit simulator. In Chapter 3, we shall present an implementation of this algorithm
and apply it tc a simple electromechanical structure.

Before closing, we present a more detailed flowchart describing the Churn process. As discussed in
sections 2.1.1 and 2.2.4, we have two ways to macronodel the elastostatic energy domain. The first is to
use the lirearized elastostatic energy domain determined from modal analysis; this case is depicted in detail
in Figere 3. The other is to use a non-linear elastostatic energy domain determined from fuli three-

dimensional simulation, as depicted in detail in Figure 4.
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Kinetic Macromodel

Figure 4: Automatic MEMS macromodeling process with non-linear mechanics
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Chapter 3 Implementation

In this chapter, we shall present the means by which we have implemented the Churn process, as
depicted in Chapter 2. In Section 3.1, we discuss what software utilitics we shall use and how these tools
can be used in conjunction with each other. In Section 3.2, we present an overview of the implementation
of the Churn process, including a brief introduction to the software utilities that were developed for the
purposes of this research. In Section 3.3, we conclude with a walkthrough of the Churn process as we have
implemented it using the example of a simple electrostatically actuated fixed-fixed beam device. In Chapter

5, we present the results of three additional devices that exhibit more complex behavior.

3.1 Tools

The Churn process exploits the inherent programmability of the MEMCAD suite [3]. MEMCAD is a
software package that was originally developed at MIT and is now licensed by Microcosm Technologies,
Inc. [6] for commercial development and distribution. It provides many useful features for MEMS
designers that enable them to perform computationai analysis of MEMS devices. Its MemBuilder utility [4]
allows the designer to generate a solid model of a MEMS device automatically by merely specifying a
process flow and mask set. MEMCAD includes the ability to construct finitc element models of MEMS
devices and set their material properties and boundary conditions. It can perform modal analysis of a
MEMS device, thus calculating the shapes, generalized masses and frequencies for any number of modes.
Most notably, MEMCAD provides CoSolve-EM [5], a utility to solve the coupied, non-linear quasistatic
electrostatic-elastostatic equilibrium problem.

MEMCAD itself is a software layer that lies on top of existing modeling utilities and numerical
solvers for various energy domains. MEMCAD uses I-DEAS [39] to construct solid and finite element
models. It uses a hybrid of FastCap [40] to determine the capacitance matrix for a set of finite element
modeled conductors. It uses ABAQUS [41] to solve a variety of mechanical analysis problems. Each of
these individua! packages uses a different format of input and output for its specification of the problem.
MEMCAD introduces MEMBase and the MBIF standard, an application programming interface (API) and
file format, respectively, that enable the interchange of MEMS models and problems between the various
external utilities used within the MEMCAD suite.

The underlying control of MEMCAD lies in a hybrid of a publicly available scripting language called
Glish [42]. This language was designed to cnable communication between concurrently running processes.

These processes are binary executables that have been specifically compiled to be Glish clients. MEMCAD
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provides a Glish client for each numerical solvcr, cnabling developers to write thcir own MEMCAD
routines. The primary component of the Churn process is written as a Glish script, automating computation
according o a minor amount of user input quericd a priori. Many of the utilities necessary 1o cnable the
Chum process are written and compiled as Glish clienis.

This rescarch is highly dependent upon numerical analysis, thus it is necessary to have an optimized
mathematical routine library. For this implementation, we have chosen 1o use MATLAB [43). MATLAB
provides a C library that can be included into source code and linked inte excecutables. Most of the Glish

clicnts developed for the Churn process link to the MATLAB library.

3.2 Implementation Architecture Overview

In this research, we have implemented the Churn process as a two stage process; this is depicted in

Figure 5. The first stage is to preparc thc model for Churn analysis by using the MEMCAD interface 10

Construct
Device
Modei

St mty

»
} Mm' Full soﬁc
g
&

MEMCAD Interface

\nalysis Simulation

—

Choose Reduced
Basis Set and
Valid Operaticn :

Range i

Strain Energy
Extraction

Glish Script
-
é -

Kiastostatic Macramodel
'—

i

]

i

i
L
-

{

)

.

!
L+
i
|

E

{ Electrostatic Macromedel
e

854:

Equations of

Simulator
Insertion

Figure 5: Two Siage Churn Implementation (for the non-linearized strain
energy case)



33

construct the model, perform the modal analysis, and compute an example full three-dimensional
simulation. The second stage is an automated Glish script that interrogates the designer up front for various
prefercnces and scttings, and then foliows through the entirc remainder of the Churn process, thus
constructing the circuit simulator input file.

While discussing the architecture of this implementation, it is impractical to delve into the details of
the code; for this kind of information, the actual code itself is far more useful and shall be publicly
available at the MIT MEMCAD websitc [44]. Instead, we shall present 7 depiction of the information flow
through each step of the implementation. In this chapter, we separate the flowing information into scveral
categories of information type. The vvér information type constitutes nny kind of information that is being
stored in memory. Examples would inciude numbers and character sarings, as well as arrays or records of
these. The We infortnation type constitutes any information that is stored persistently, such as on a hard
disk. This includes FEMs stored in MBIF files, data storage files, and the like. The |use1: information type
constitutes any information that comes drectly from the designer. This includes the manual construction of
a model as well as preference settings that the designer might have set earlier in the process. The mhd
informaticn type constitutes any information that was set within the implementation of the process. Of

course, this type could be interchanged with the ruE_r; type in other implementations.

3.2.1 Preparation via MEMCAD

From Figure 5, we note that there are three primary tasks to perform within MEMCAD. The first task
is to construct the MBIF file containing the finite element model of the siructure and the associated malterial
properties, initial conditions, and boundary conditions. The ne:t is to perform modal analysis on the
structure, thereby extracting the first few mode shapes and their generalized masses and frequencies. The
last is to perform a single coupled electrostatic-elastostatic simulation. All three of thesc steps can be
performed from directly within the MEMCAD interface. In this section, we present a high-level
information flow description of each step performed within MEMCAD.

3.2.1.1 Model Construction

Inputs:
iuser device concept

Outputs:
[file MBIF file containing FEM, initial conditions, and boundary conditions

The designer first constructs a solid model of the device, either by using MemBuilder 10 automatically
create the solid model from a mask set and a process flow, or by explicitly constructing the solid model

within I-DEAS. The designer then manually meshes the solid model, thereby consiructing an FEM of the
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device. The positions of the nodes of the constructed FEM cerrespond to the elements of a shape vector i
as described in Section 2.1. The designer then scts the material properties, initial conditions (such as initia!
stress), and mechanical boundary conditions within MEMCAD. All of this information is then written 1o a

singlc MBIF file.

3.2.1.2 Modal Analysis

Inputs:
Jile MBIF filc containing FEM, material properties, initial conditions, and boundary
conditions
user number of modes to calculaic

Outputs:
array of |
file MBIF file containing mode shape,
var gencralized mass,
var generalized frequencies

}

MEMCAD exccutes ABAQUS to perform mechanical modal analysis, resulting in the creation of several
MBIF files, each containing a displacement vector that depicts the shape of a mode. A side effect of this
analysis is that it relaxes any initial stress conditions to the extent permissible by the boundary conditions,
allowing the base structure to deform. (This is important for released micromechanical structures with

residual stress.) The new shape after this deformation acts as ¥ eqm as described in Section 2.1.

3.2.1.3 Coupled Electrostatic-Elastostatic Analysis

lnpu['si ‘
file MBIF file containing FEM, material properties, initial conditions, and boundary
conditions
user typical actuation settings (such as applied voltage)

Outputs:
file MBIF file containing solution to coupled domain analysis

MEMCAD performs a single quasistatic coupled electrostatic elastostatic simulation, storing the
resulting equilibrium position in an MBIF file. This new shape acts as {,, as described in Scction 2.1. For
cach mode shape calculated, the vector is scaled such that each vector’s largest absolute displacement
magnitude ||¢,- lL_u =1. According to Equation (2) in Section 2.1, prioritizing the mode shapes can be done
by sorting the absolute magnitude of the projection coefficients |c;|. Also, note that becauss MEMCAD
works in units of microns, for any linear composition of these shapes, the contribution of each shape is

cquivalent to the maximum displacement of that shape in microns.
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3.2.2 Automation via Glish

The remainder of the Churn process is implemented as a Glish script that runs entircly automatically,
with the exception of querying the user for a handful of settings at the start before any time consuming
compulation takes place. Due 1o the nature of Glish, most of the numerical processing must take place
within compiled Glish clients, which can be spawned, communicated with, and terminated from a Glish
script. Figure 6 depicts the 1asks that must be performed in this stage of the Churn process, and it illustrates
the applicability of each of the Glish client modules as it will be used in each step.

Although the MEMCAD suite provides Glish client modules te access full three-dimensional domain
solvers like FastCap or ABAQUS, we found it necessary to develop additional modules that are specialized
to perform the numerical tasks discussed in Chapter 2. In this section, we present high-level information
flow descriptions of the modules both implemented for this research and those provided by Microcosm.
The source code of the modules implemented for this research shall be made available at the MIT
MEMCAD web site.

3.2.2.1 Shape Manager (“modeManager”)

The Shape Manager module serves several purposes related to reading, constructing, and writing legal
MBIF files as a function of the new generalized coordinates. This module was written for the purposes of
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Figure 6: Breakdown of Glish Client Modules and Their Use in
the Churn Process Implementation
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this rescarch.

INMALIZE
Inputs:
file MBIF containing the device structure (after relaxation due to initial stress)

Load the shape stored in the given MBIF file into memory. This shali serve as ¥eqm as described
in Section 2.1.

LoAD NeEw SHAPE(S)
Inputs:
array of {
[ile MBIF containing a shape,
var shape name

}

For each modcl file/shape namc pair, load the shape stored in the mode! inte memory, and
associate the shape name with the shape. Future calls must refer to loaded shapes by using their
associated names.

After all new shapes are loaded into memory, QR factorization is used to create an inverse to the
matrix of the basis shapes, as discussed in Section 2.1.2. If additional shapes are loaded later, the
inverse is recomputed.

ConsTRuUCT MBIF FOR CAPACITANCE EXTRACTION
Inputs:
array of
wvar shape name
‘var superposition coefficient value

}
Outputs:

Construct an MBIF file of the original structure, displaced by the linear superposition of the given
shapes with the associated magnitudes. This MBIF is designed for usc with the MEMCAD
FastCap wrapper client, MemcapWrapper.

CONSTRUCT MBIF FOR STRAIN ENERGY EXTRACTION
Inputs:
array of |
war shape name
}

l@' node-set to fix

Outputs:
file new MBIF

Construct an MBIF file of the original structure. with mechanical boundary conditions set such
that nodes within the given node-set arc displaced by the lincar superposition of the given shapes
with the associated magnitudes. Valid node-sets are all nodes, all surface nodes, or all nodes on
selected faces. This MBIF is designed for use with the MEMCAD ABAQUS wrapper client,
AbaMechWrapper.
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COMPUTE SHAPE PROJECTION
Inputs: _
file MBIF

Outputs:
array of {
‘var shape name
‘var superposition coefficient value

}

Load the given MBIF and compule the superposition coefficients necessary to best construct this
shape using the known basis shapes.

3.22.2 Sample Point Cheoser (“sampleChooser”)

The Sample Point Chooser module implements the sampling point sclection strategy described in
Section 2.2.1. This module was written for the purposes of this research.

INTALIZE
Inputs:
array([ 7] of {
:var shape name
ivar #gradations
}

Construct the m-dimensional volume in R™ space that spans the given operating range, and
subdivide that velume according to the given number of gradations for each dimension. Initialize
the counters for all of the subvolumes to zero.

GET NEXT SAMPLING POINT
Outputs:
array[m] of {
t_l&r shape name
war superposition coefficient value
}

Generate a sampling point by iterating one step of the algorithm in Section 2.2.1.

3.2.2.3 ABAQUS Wrapper (“AbaMechWrapper”)

The ABAQUS Wrapper module is a Glish client that spawns ABAQUS to perform a variety of
mechanical analysis tasks upon the model represented within a given MBIF file. This module is a
distributed part of Microcosm’s MEMCAD suite.

INTIALIZE
Inputs:
file MBIF of original structure

Loads the finite element model, initial stresses, material properties, and boundary conditions
stored within the givern MBIF file into memory.
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PERFORM MECHANICAL ANALYSIS
Prerequisites:
Initialize
Outputs:
file MBIF containing the mechanical analysis results

Writes out a legal ABAQUS input file depicting the loaded model, material properties, and
boundary conditions, then spawns ABAQUS 10 execute the mechanical analysis with the given
conditions. The results, such as the model’s deformations, stresses and strains, are then written loa
new MBIF file.

DETERMINE ELASTOSTATIC STRAIN ENERGY
Prerequisites:
Perform Mechanical Analysis

Outputs:
var strain encrgy

Determine the clastostatic strain cnergy of the given model under the given conditions. This
requires that mechanical analysis has already becn performed.

3.2.24 FastCap Wrapper (“MemcapWrapper”)

The FastCap Wrapper module is a Microcosm version of FastCap that has been modified to work as a
Glish client. This module is a distributed part of Microcosm’s MEMCAD suite.

INTIALIZE
Inputs:
file MBIF of original structure

Loads the finite element model stored within the given MBIF file into memory. Only the surface
nodes and faces of the model are used; all mechanical properties and boundary conditions are
irrelevant.

PERFORM CAPACITANCE EXTRACTION
Prerequisites:
Initialize
Outputs:
‘var clectrostatic capacitance matrix

Perform the FastCap algorithm on the finite clement model 10 determinc the clectrostatic
capacitance matrix of the conductors depicted in the loaded finite element model.

3.2.2.5 Macromodel Generator (“macroModeler”)

The Macromodel Generator module loads a data storage file containing full three-dimensional
simulation results such as capacilance or strain cnergy, and to this data it fits one of several built-in
analytical functional forms, as according to the algorithm discussed in Section 2.2.2. This module was

written for the purposes of this research.
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IMPORT DATA
Inputs:
file daia storage

Load the data stored in the given file. This data must contain the domain and range of the function
we shall fit, and may optionally contain a standard deviation field to individually weight each of
the data points.

EXPORT DATA
Outputs:
[ile daa storage

Write the data stored in memory to a compatible data storage file.
CREATE MACROMODEL FUNCTION
inputs:

user functional form

imp initial 4 (0.001 by default)

imp A increasing scaling factor (10 by default)
imp A decreasing scaiing factor (10 by default)
imp improvement cutoff factor (0.2 by default)

Outputs:
‘file analytical macromodel

Using the Levenberg-Marquardt algorithm with the given settings, fit a function of the given
functional form to the data lcaded in memory. The resulting function and its derivatives are
subsequently written to an expression file.

3.2.2.6 Analog Circuit Element Generator (“laGrange’’)

The Analog Circuit Element Generator module loads the analytical macromodels of the energy
domains, created by the Macromodel Generator, and generates legal SABER input files that express the
equations of motion, as described in Section 2.3. This module was written for the purposes of this research.

GENERATE ELECTROSTATIC, LINEAR-ELASTOSTATIC ELEMENT

Inputs:
array of {
var shape name
‘var, generalized modal mass

wvar generalized modal frequency
)

ﬁTg capacitance macromodel

file SABER input file
With the given values for the modal masses and frequencies for each of the generalized
coordinates, along with the expression filc for the clectrostatic capacitance, construct a SABER
input file that expresses the physics of the macromodeled device with a non-linear electrostatic
energy domain and a linear elastostatic energy domain, as expressed by the equations of motion in
Equation (16).
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Figure 7: Simple Fixed-Fixed Beam Suspended Over a Ground Electrode (units are in microns)

GENERATE ELECTROSTATIC, NON-LINEAR-ELASTOSTATIC ELEMENT
Inputs:
array of {
‘var shape name
wvar gencralized modal mass
)
[file capacitance macromodel,
file strain energy macromodel

Outputs:
file SABER input file

With the given values for the modal masses for each of the generalized coordinates, along with the
expression files for both the electrostatic capacitance and the elastostatic strain energy, construct a
SABER input file that expresses the physics of the macromodeled device with non-linear
electrostatic and elastostatic energy domains, as expressed by the equations of motion in Equation
(15).

3.3 The Churn Process Walkthrough

In this section, we shall step through the Churn process as we have implemented it for the case of a

simple fixed-fixed beam suspended above a fixed electrode strip, as depicted in Figure 7. Both the bearn

and the electrode are assumed to be unstressed polysilicon conductors that are 100x20x0.5um in size,

separated by a 2um gap.

3.3.1 Preparation via MEMCAD

As we cxplained in Section 3.2, the first stage of the Churn process requires the designer to work

within the MEMCAD framework. It is inappropriate for us to delve into detail about using MEMCAD here;

for information about using the MEMCAD interface, we refer the reader to the MEMCAD User’s Manual

{45].
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3.3.1.1 Model Construction
The first step of this process is to consiruct the MBIF
file that specifies the problem. To do this, the designer first

constructs a solid model of the device and creates a finile

element model from the solid model. Within MEMCAD,

there are two possible ways to construct a solid model of a
device. The first is to specify a mask set and process flow.

MemBuilder can use this information to implement the

fabrication process virtually, thereby crcating a solid model
in - DEAS. The second way is to manually use the solid Figure 8: 20x z-axis Zoom of Simpie
Fixed-Fixed Beam Structure
modeling tools built into I-DEAS to construct the solid
model from scratch. Either way will create the solid mode! of the device within I-DEAS. We censtructed
our example manually from within I-DEAS. This model is shown in Figure 7. Ofien, we shall find it easier
1o visualize a device if we exaggerate the scale of the some of the axes. Henceforth fer this example, we
shall scale the z-axis of this device by a factor of 20, as shown in Figure 8.

Once the solid model exists within I-DEAS, the
designer uses I-DEAS to manually mesh the solid model,
thereby constructing the finite element model for the device.
MEMCAD prefers the use of 20-node parabolic brick
elements, and so we use that here. Figure 9 shows the finite
element model we generated for our simple fixed-fixed beam

example. Each conductor is 10x2x1 elements, totaling 20

volume elements and 267 nodes per conductor. Note that the

mesh depicts the faces of the bricks as having been cracked

Figure 9: FEM of Simple Fixed-Fixed
into eight triangles. This is a feature of MEMCAD that Beam

enhances the precision of the capacitance extraction process.
These cracked faces are used solely during capacitance extraction, and thus will not be used during any
kind of mechanical analysis.

Finally, the designer returns to the MEMCAD interface to assign the device’s material propertics,
initial stresscs, and mechanical boundary conditions. Via the MEMCAD interface, we manually set the
material properties for our example to be that of polysilicon according to MEMCAD’s material property

database, that is (o say a Young’s modulus of 165 GPa and a Poisson ratio of 0.23. The designer must also
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set boundary conditions within MEMCAD. For our example, we fix all the nodes on cach of the ends of the
deformable beam. The designer also has the option to specify initial stresses for the structure. We do not set
any initial stresses in this example. Once all settings have been made, the MBIF file is written, containing
the device’s finite element model, the material properties, the boundary conditicns, and any initial stress

conditions that may have been set.

3.3.1.2 Modal Analysis

MEMCAD pravides a simple methed to perform mechanical modal analysis. The designer uses the
MemMech component within MEMCAD to call ABAQUS to computec any user-chosen number of
mechanical modes. For each mode that gets computed, MemMech creates a new MBIF file that contains
that mode’s shape in the form of nodal displacements; it also determires each mede’s generalized mass and
frequency. In Figure 10, we present the first three mechanical mode shapes for our example. In Table 1, we
present the calculated values for the gener:.ized mass and frequency for each of the modes.

The mode shape vectors that it creaics are scaled such that each vector’s largest absolute displacement
magnitude equals 1. This brings up two points. First, recall Equation (2) from within the discussion of
prioritizing basis shapes as discussed in Section 2.1. If the largest absolute displacement "{p,-IL =1 for all
shape vectors, then prioritizing the mode shapes is as simple as sorting the absolute magnitude of the
projection coefficients |c,-|. Second, because MEMCAD works in units of microns, for any linear
composition of these shapes, the contribution of each shape is equivalent to the maximum displacement of

that shape in microns. This allows the designer to have a tangible understanding of the modal coordinates

Table 1: Generalized Mass and Frequency Values for Example Fixed-Fixed Beam Structure

Generalized Mass (kg) | Generslized Frequency (Hz)
Mode? | 8.55146x10" 459253
Mode2 |9.13315x10" 1.2983x10°
Mode3 | 3.33213x10"° 1.5555x10°

Figure 10: First Three Mode Shapes for Example Fixed-Fixed Beam Structure
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and their effect on overall motion.
One additional point 10 note is that the modal analysis updates the existing MBIF file to exhibit any
mechanical relaxation that would occur due to any preset initial stress conditions; thus, it allows the base
structure to deform. This new relaxed, deformed shape acts
as Weqm as described in Section 2.1.
3.3.1.3 Ceupled Electrostatic-Elastestatic
Analysis
In order to perform the single typical full three-
dimensional coupled solution, the designer uses CoSolve-
EM from within MEMCAD 1o determine the quasistatic

equilibrium of the system at any given applied voliage. For

our example, we apply a voltage of 80 volts; the equilibrium

. ) - Figure 11: Equilibrium at an Applied
deformation for this ac*uation is shown in Figure 11. Voltage of 80 Volts

3.3.2 Automation via Glish

We shall discuss the remaining part of the Churn process according to the steps outlined in Section
3.2.2 while simultaneously discussing the use of each of the implemented modules at each step. To best
foliow this, we suggest referencing Figure 6 once again.

The Glish script begins by querying the designer for all settings in advance, thus allowing the script to
extract all data, fit the macromodel functions, and export the macromodels to an analog circuit simulator
input file. The designer answers such questiens as:

° How many generalized coordinates should be used to represent the state of the system (m)?

®  Given the projections of the sample coupled solution onto the mode shape basis set, what should be the
valid operating range of the device; that is, what are the limits for values of the generalized
coordinates?

¢ Should a linear or non-linear representation of the strain cnergy be used?
e  For capacitance, or for strain energy if a non-linear representation is requestcd:
®  How many data points should be extracted?
o How finely should the operating range be subdivided when choosing where to sample?
® How many terms should be used in the macromodel function series expansions?
To start, the Glish script creates a modeManager process that is then instructed 1o load the mode
shapes into memory. For our example, these are the three mode shapes as depicted in Figure 10. Notc that

this modeManager remains in memory throughout capacitance and strain energy extraction in order to

create the input files for MemcapWrapper and AbaMechWrapper, respectively.



The modeManager process is then instructed to load the  Tabie 2: Contribution of Mede

Shapes to Overall Motion
results of the full three-dimensional coupled solution and determine
the contributions of each of the mode shapes towards overall motion. Contribution
For our example, the solution shown in Figure 11 is loaded, and the Mode1 | -0.809704
resulting calculated mode shape projections are shown in sorted Mode3 | -0.0122652
order in Table 2. We choose to use only one mode shape for this Mode 2 | 4.32353x10°

example, and by default, the script understands that it is to be mode

1, because of its dominance over the other modes’ contributions. In this implementation, the designer
chooses the valid operating range by giving a minimum and maximum scaling factor that when multiplied
by the contribution of each of the modes yields the bounds to the valid operating range for that mede. For
our example, we chose a minimum scaling factor of -2 and a maximum scaling factor of 2, resulting in the
valid operating range for mode 1 to be [-1.6194,+1.6194).

At this point, the designer is asked the aforementioned remaining questions so that the script can run
automatically without pausing for user input. For the data extraction for capacitance, we chose to obtain 20
data points with a sampling grid resolution of [ 5 ]. For our example, we chose to use the non-linear strain
energy representation, so for the strain energy extraction, we also chose to obtain 20 data points but wiih a
sampling grid resolution of [ 4 ]. We selected the capacitance macromodel to be a [ 4 / 4 ] multivariate
polynomial rational fraction and the strain energy macromodel to be a [ 4 ] multivariate polynomial.

Comparison of Capacitance Data with Macromodel
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Figure 12: Comparison of Capacitance Extraction Data with Function Fit
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The Glish script handles data extraction and function fitting the same way, regardless ol whether it is
for capacitance or for strain energy, so we shall discuss both simultaneously. Data extraction begins by
constructing a sampleChooser process and initializing it to span the valid operating range of the device.
A loop over the number of data points to extract begins. The sampleChooser process is instructed to
provide a new data point at which to sample. This poini is then passed to the resident modeManager
process to write out an MBIF file that depicts the device at that state. The appropriatc domain solver
(MemcapWrapper or AbaMechWrapper) is then called to perform the ful! three-dimensional analysis
at the chosen data point. The results are then stored in a data file.

When all data has been calculated, a macroModeler process is created and instructed to load the
data stored in the log filc. It is then told what functioﬁ type to use, whether it be a multivariate polynomial
or a muitivariate polynomial rational fraction, and how many terms to include in the polynomials. The
macroModeler process is then instructed to fit the function to the data, and upon completion writes the
function to a file as an analytical expression in a binary, platform independent format that we developed for
the purposes of this research. Each expression file contains nct only the expression in question, such as the
capacitance or the strain energy, but also the gradient of the expression with respect to each of the
generalized coordinates.

The results of the capacitance data extraction and macromodeling are shown in Figure 12, and those

for the strain energy are shown in Figure 13. With only one dependent variable, it is trivial to graphically

Comparison of Strain Energy Dats with Macromode!
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show how well a function can bc fit to data. However, although we have only one gencralized coordinate in
this example, other models may have more than one, and it will become increasingly difficult to graphically
depict the quality of a function fit. One way to quantify this is to note the % of the function fit to the data.
For our capacitance model the % is 3.5857x102, and for our strain cnergy model it is 1.09011x10™".
Although these numbers give a good cstimate of close the data is to the function, it is lacking in many
respects. For example, it does not give a good measure of whether cnough data has been taken to fully
capture all the interesting physics in the operating range. Also, its order of magnitude is directly related to
that of the data itself, which can change among varied devices. Moreover, it does not insure how accurate
the gradient of the function will be, because it is the gradicnt of the function that will enter the equations of
motion. Nevertheless, it has been our experience that capacitance and strain encrgy are relatively smooth
functions and that if the x* is small, the macromodels shall be good fits.

The Glish script then creates a laGrange process to assemble the equations of motion. It is provided
the generalized masses and loads the capacitance expression file, and depending upon whether the designer
chose 10 usc a linear or non-linear strain energy representation, it is provided the generalized frequencies or

loads the non-linear strain encrgy cxpression file. The laGrange process then assembles the equations of
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Figure 14: Example Structure Incorporated into SABER as a Circuit
Element
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motion and writes them to file in the form of a legal SABER input file. This input file can then be loaded as
a circuit element in SABER and incorporaied into any circuit. This concludes the Churn process. The
designer is now frec to use the SABER model of the device in place of ful) three-dimensional simulation.
Figure 14 shows the SABER model for our example as it appears when loaded into a SABER circuit

schematic.

3.3.3 Sample Results

We conclude this chapter with some examples of the model we have constructed being driven by a
variety of voltage waveforms. Figure 15 depicts the response of our example device when actuated by an
80 volt square wave with a hold time of 10us and a total period of 40us. Figure 16 depicts the response of
our example device when actuated by a 100 volt saw wave with a rise time of 15us, a hold time of 10yus,
and a total period of 40us. Figure 17 depicts the response of our example device when actuated by an 80
volt saw wave with a rise time of 5is, a hold time of 10us, a fall time of 10ys, and a total period of 40ys.

0.0

- Mww

time (s)

Figure 15: Response of Example Structure to an 80v Square Wave with 10us
Hold and 40ys Period
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One of the motivations for simulating system dynamics is to determine how a system will be affected

by feedback. Thus, let us demonstrate the value of the circuit element macromodel we have creaied by

. PID
= =target capacitance cen=P contrelier

macromodeled
device

L

actual capacitance = s » = = =

Figure 18: Macremodeled Device Controlled in & Feedback Loop

closing a feedback loop around it and attempting to control its motion. Before we can begin, we must
decide upon what property of the macromodel will be used for the feedback signal. Recall that the
macromodel circuit element stores information about the modal coordinates of the device. It is
unreasonabie to use modal coordinates for feedback conirol because these quantities are generally not
measurable. A more plausible quantity would be the capacitance of the device, as it is an experimentally
measurable quantity. Furthermore, due to the nature of the macromodel we construct, the capacitance of the
device is a readily available quantity that can be easily exiracted from the circuit element.

We implement a PID controiler and construct a feedback loop circuit as depicted in Figure 18. The
PID controller has a transfer function of K + as + b/s. For this example, we set K = -5, a = 107, and
b =107 . The results for a 16fF targel capacitance are presented in Figure 19. The constructed macromodel
for this device uses a non-linear strain energy representation and exhibits pull-in at a 1.3pm maximum
displacement (with 0.7um gap remaining) with an applied voltage of 200V. (These values are higher than
full coupled simulation results for reasons discussed in Section 4.2.) Note that this results in a maximum
structure deformation very close to pull-in, and that the only damping in this system is implemented by the

PID controller.
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Chapter 4 Analysis

4.1 Computation Time

In this section, we discuss the relative time scale for each stage of the Churn process and provide a
measure of O(n) growth with various model complexity parameters. Although it would be desirable to be
able to present accurate CPU-time measurements and theoretical O(n) bounds for each of the software
modules involved, there are several factors that make this impossible. One reason is that the architecture of
Glish and the MEMCAD suite do not permit precisely extracting the CPU-time consumed by the processes
they spawn. Thus, any real-time measurements include the CPU-time of all oiher concurrently running
processes as well as kernel and operating system activities. Another obstacle is that the computation time
for any model will not only vary with the number of nodes N and basis shapes m, but also will vary based
upon the nature of the model. in fact, neither ABAQUS, MATLAB, nor MEMCAD publish O(n)
information for their algorithms for this very reason. Thus, the results we present in this section provide
merely a qualitative measure of the computation time and its growth, and should by no means be used as a
precise predictive measure. We shall present qualitative measures of computation time that are based upon
our observations from several examples we have computed, which we present in Chapter 5. These
examples were computed upon a Sun Ultra-1 Model 170 with 196Mb RAM running SunOS 5.5.

Let us begin by discussing the steps in the Churn process that could require non-trivial computation
time. These are:

e  Perform medal analysis

e  Perform single quasistatic coupled simulation

e Determine basis set by determining the contribution of the known shapes to the coupled solution
e Exiract domain data, such as capacitance or strain energy

e  Construct domain analytical macromodels, such as for capacitance or sirain encrgy

Many of these steps reuse common pieces of the MEMCAD suite, so it will be to our advantage to
report the timing statistics for these pieces individually, then report how they contribute to the timing of the

steps in the Churn process.

4.1.1 MEMCAD Procedures

Because several of the steps in the Churn process rely on MEMCAD to perform a small set of tasks, it
is best if we begin by presenting the computation time of the various MEMCAD compornents. These are:

e doMech(), which performs mechanical analysis through ABAQUS
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Figure 20: Computation Time for doMech()

e doMode(), which performs modal analysis through ABAQUS
¢ doElectro(), which performs electrostatic analysis through FastCap
Note that with all MEMCAD procedures, it is not possible to extract the consumed CPU time for the

process directly. Therefore, the presented results erroneously include the CPU time for all concurrent
processes, which we have attempted to minimize. In order to bound the computational growth of these
procedures, we shall fit results to power functions of the form a N2, where the power term b will reveal

whether the procedure is linear, quadratic, cubic, etc. with N.

4.1.1.1 doMech(

The MEMCAD doMech() procedure translates an MBIF file into a legal ABAQUS input file that
contains the structural finite element model, the mechanical boundary conditions, initial stresses, and any
imposed loads, and then instructs ABAQUS to solve the posed problem. This procedure typically behaves
in two ways, one upon initial calls, and one for subsequent calls. During initial calls, ABAQUS generates a
“restart file", in which the results of common preprocessing steps are stored. For subsequent calls, this
restart file circumvents the preprocessing. The difference in computation time between the two is generally
negligible compared to the variation with imposed actuation conditions. However, it worth noting that the
restart file accounts for any initial stress conditions, in which case there is a noticeable time savings.

Figure 20 presents the measured computation time for doMech() for a variety of models with varied
numbers of nodes N. In fitting these resulis 1o a power function, we note that growth with N is roughly
linear. In general for finite element solutions, computation growth is highly depeiident upon ihe nature of
the structure [46]. For example, for beam structures, where N rodes are spread along the length of the
structure, computation time tends to grow as O(N). On the other hand, for plate structures, where s/ﬁ

nodes line each side of the plate, the computation time tends to grow as O(N). Finally, for structures
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where the nodes are spread evenly through a block, the computation time can grow as O(N?). Thus for the
purposes of this discussion, we declare that doMech() is the worst case order O(N?). For the examples we

have computed, this step typically takes one minute of computation time.
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Figure 21: Computation Time for doMMode()

4.1.1.2 doMode()

The MEMCAD doMode() procedurc uses the restart file from an initial doMech() call and instructs
ABAQUS to calculate the first M mechanical modes, their shapes, generalized masses and frequencies.
Figure 21 presents the nieasured computation time for doMode() for several values of M for a variety of
modeis with constant N. In fitting these results to a power function, we note that the computation time is
roughly linear with both M and N. As we stated for doMech(), dependence on N can grow as high as N,
thus for the purposes of this discussion, we declare that doMode() is order O(N* M). For the examples we

have computed, this step typically takes a few minutes of computation time.

4.1.1.3 doElectro()

The MEMCAD doElectro() procedure submits an MBIF file to MemCap, the MEMCAD hybrid of
FastCap, which reads an MBIF file and deteimines the capacitance matrix for the system and the magnitude
of charges on the surface panels to satisfy LaPlace’s equation. Figure 22 presents the measured computation
time for doElectro() for several models with different numbers of nodes N. In fitting these results to a
power function, we note that the growth in computation time is roughly linear with N. This agrees with the
published computation growth for FastCap [40], thus we too declare that this step is O(N). For the

examples we have computed, this step typically takes one minute of computation time.
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Figure 22: Computation Time for doElectro()

4.1.2 Perform Modal Analysis
Modal analysis is comprised of one initial doMech() step and one doMode() step, therefore the total
time necessary to perform this step is
doMech + doMode
and computation growth, which goes as the worst case scenario, is order O(W* M). For the examples we

have computed, this step typically takes a few minutes of computation time.

4.1.3 Perform Singie Quasistatic Coupled Simulation
MEMCAD CoSolve performs our coupled simulation first by performing one initial doMech() call

to create the restart file. It then alternates between doMech() and doElectro(), starting and ending with
doMech(), until quasistatic equilibrinm is reached. Supposing that i iterations are necessary to reach
equilibrium, the total time necessary to perform this step is

2 x dcMech+ i x (doMech+ doElectro)
and computation growth is order O(i N°). Regardless of the model, typical values for { ..age from 2 to 15,
based upon how close to pull-in the applied voltage is. For the examples we have computed, the

computation time for this step is on the order of a half hour.

4.1.4 Basis Set Determination

As discussed in Section 2.1, the choice of modes to be adopted as generalized coordinates depends
upon the projection of the quasistatic coupled solution onto the known mode shapes. Recall that this is
accomplished by using QR factorization to create an inverse to the matrix of the basis shapes, as discussed

in Section 2.1.2, and then by using that inverse to project the solution. We found that via MATLAB it was
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possible to determine the exact c. ' .umed CPU time to perform the matrix manipulation portion of these
tasks. We determined that on average the time to execute the QR factorization on a set of M known basis
vectors of length Nis

3x10 0 M13N10 seconds
and that the time to compute the projection of a shape onto the known basis set is

5x107 1! M3 N8 seconds.
For the examples we performed, these results were three orders of magnitude less than the actual time
consumed by other process overheads. Thus, although technically this step is order O(N'® M'?), we find
that unless M or N are significantly large, the computation time is overwhelmed by order O(1) overhead
costs. Typically, the actual time for the matrix computations is on the order of milliseconds, yet the aciual

time for the step takes a few seconds.

4.1.5 Domain Data Extraction

The Churn process uses MEMCAD to determine capacitance and strain energy, thus the computation
time for n capacitance calculations is

n x doElectro
and the time for n strain erergy calculations is

n x doMech

Note that as the number of generalized coordinates m increases, the size of the sample space increases
exponentially. In order to maintain a constant fractional coverage of the sample space, the number n should
also grow exponentiaily, as order O(e™). Thus, the overall computation time for domain data extraction is
order O(N e™) for capacitance and erder O(N* em) for strain energy. In general, the computation time for
complete data extraction could take hours or even days, depending upon how much coverage of the sample
space the designer desired. However, as with most of these steps, remember that this computation time is a
one-time investment, because once the data is extracted, it can be reused repeatedly to generatc varying

complexities of domain macromodels.

4.1.6 Macromodel Construction

The primary computation component of macromadel construction is the execution of the Levenberg-
Marquardt process as described in Section 2.2.2. The computation time for this algorithm depends upon the
number of iterations necessary to satisfy whatever convergence conditions were specified. Therefore, let us
discuss the computation time necessary for a single iteration. All iterations require solving o’8a = for

8a, then computing xz(a +8a). However, note that an iteration that succeeds in lowering the ¥ merit
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function must additionally compute the derivative matrices & and B. Therefore progressive and regressive
iterations must be measured separately.

Two factors can affect the computation time of the progressive and regressive iteration steps. One is
the number of data points n to be used for fitting the function, and the other is the number of fitting
parameters f for which the algorithm must solve. In Figure 23, we present the computation lime for
progressive and regressive steps as functions of fwith n held constant. We find that the results for both fit
best to third order polynomials, implying that computation time is cubic order in f for both these steps. In
Figure 24, we present the computation time for progressive and regressive ste; 5 as functions n with f held
constant. For progressive steps, after an initial overhead, computation time grows linearly with n.
Interestingly, regressive steps seem to exhibit constant time behaviur, completely independent of n. This is
odd because regressive steps must compute ;(2(3 + 8a), which should be of order O(n). Upon closer
inspecticn we find that the time consumed by solving a’8a = B, which is independent of n, is orders of
magnitude above the time to compute f(a + 8a). Thus, the linear dependence upon n is unnoticeable.

Combining these results, we find that macromodel generation is order O(i n f %), where i is the
number of iterations necessary to converge. Recall from Section 4.1.5 that the number of calcu'ated data
points n should increase exponentially with the number of generalized coordinates m. In this case,
macromodel generation computation time is order O(i f° e™). Typical values for i range from 30 to 50, with
about half of these being progressive steps, half being regressive. Variation in i depends primarily upon
what convergence conditions must be satisfied. Typical computation times overall for the macrornodel
process is sensitive to fand m, and can vary anywhere from seconds to an hour or more, but for our

examples, this was typically a few minutes.
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4.1.7 Summary

We present a summary of timing results in Table 3. It is crucial to note that the computation time
consumed by the Churn process needs to be performed only once, after which the SABER input file can be
reused limitlessly in any circuit simulation. From our experiments, dvnamics simulations take on the order
of minutes, depending upon the circuit. In comparison, we note that the Churn process offers the designer a

fast-to-compute dynamical circuit element for the trade-off of an initial, one-time, computational overhead.

Step O(n) Growth Typical Unit of Time
Modal Analysis O(M M) Seconds
Coupled Simulation O(N) Hours
Basis Set Determination O(N'® M) Scconds
Capacitance Extraction O(Nem) Hours
Strain Energy Extraction O(N em) Hours
Macromodel Construction oy 3 em) Minutes

Table 3: Summery of Timing Results

4.2 Comparison to Quasistatic Analysis

In this section, we attempt to measure the accuracy of the dynamical macromodels generated by the
Churn process by comparing them with full three-dimensional coupled simulation. Because MEMCAD
does not support dynamic simulation at this time, we must compare quasistatic simulations. We de this by
actuating the system with a constant applied voltage and then comparing the resulting generalized

coordinates for the dynamical macromodel with those for the full three-dimensional coupled simulation. In
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order to obtain the equilibrium generalized coordinates from dynamical simulation, we must artificially
damp the device macromodel to eliminate oscillatory motion. We do this by manually adding damping
terms to the equations of motion embedded in the generated SABER input file. When the damped model is
subjected to an applied voltage, it will converge upon its equilibrium, as demonstrated in Figure 25. In
order to obtain the equilibrium generalized coordinate values from full three-dimensional coupled
simulation, we project the calculated displacement vector onto the generalized coordinate basis sct, as
described in Section 2.1.2.

We shall simulate the models over a range of applied voltages. The behavior we expect is that as the
applied voltage is increased, the device shall bend, resulting in more (albeit negative) contribution from
mode_1. Ultimately, a critical voitage will be reached that causcs the attracting electrostatic force to
supercede the restoring elastostatic force, such that the device will collapse. This behavior is known as
“pull-in”, and the critical voltage at which it occurs is referred to as the "pull-in voltage”. Figure 27 presents
the quasistatic simulations of a variety of simulation models for the simple fixed-fixed beam example
presented in Section 3.3. The first point to ncie is that at small deformations, all the simulation models
agree with the full three-dimensional solution from CoSolve-EM. However, beyond a certain point, the
macromodels diverge from the coupled solution.

First, let us discuss the discrepancy for the linearized sirain energy macromodel. As applied voltage
increases, this model begins to pull in at too low a voltage. Recall that this device is a 0.5um thick bcam,
and that for generalized coordinates, a value of 1 corresponds to 1pm of maximum displacement. The
device begins to deviate from three-dimensional simulation when it has displaced roughly half its thickness,
at which point the structure becomes stress dominated, :hus we would expect to see non-lincar stress

stiffening effects starting to take place. Thus, we believe that this lower voltage pull-in is due to the usc of a
6o
L

400 1

applied vokage (V)

(50u. -05138)

mode_1(-)

tme (s)

Figure 25: Response of Damped Simple Fixed-Fixed Beam
to & 10us Ramp to 50 Volts



linearized strain energy, which inherently neglects the non-linear stress stiffening effects we expect.
However, when we simulate the model thai incorporated the non-linear strain energy representation
(labeled “Non-Linear S.E.” in Figure 27), we note that the solution has significantly erred in the other
direction. Effectively, this model portrays the device as being excessively stiff. We believe that this comes
from the method by which we calculate the strain energy before generating the analytical function that

represents it. Recall from Equation (12) that strain energy is given by:

U,={| Locdv
m v012

where o is the stress and € is the strain in the system. When perfermed in finite element code, the
integration over volume equates to summing the individual strain energies stored in ezch of the elements.
Thus, if there is an error in the element strain energies, then that error will be magnified across the overall
strain energy.

Now, recall that we map generalized coordinates to the system state vector by:

m

V= Ve + 3,90

=1
The position of each node in the finite element model is explicitly calculated given the generalized
coordinates. When all the coordinates are zero, the system staie reverts to the equilibrium state, which we
know to be the relaxed, minimum energy state for the structure with no applied load. When a load is
applied, the structure deforms as the nodes relax to find their minimum energy state. However, in our
method to calculate strain energy, we fix each node in the finite element model o be the explicitly
calculated position determined from the above linear superposition. Now recall that by definition, the strain
for each element is related to the ratio of the change in length of the element to its original length. If the
fixed node positions we generate are slightly off from the relaxed equilibrium, as demonstrated in Figure 26
with two similarly shaped beams, the strain, and thus the strain energy, will be calculated higher than
necessary. This is because the positions of all the nodes are fixed, and the struciure will not be allowed to
relax to the minimum energy state of the structure given the deformation we expect.

To confirm that this is indeed the case, we generate two new strain cnergy macromodels with
restrictions on fewer nodes. First, we create a strain energy macromodel for when only the nodes on the
surface of the deformable beam are fixed al each strain energy calculation (marked “surface nodes” in
Figure 27). Second, we create one for when only the nodes on the bottom surface of the deformable beamn
arc fixed (marked “bottom face nodes” in Figure 27). As we can see, as we reduce the number of

constrained nodes, the macromodels start to approach the results of full three-dimensional simulation.



Figure 26: Example of Node Positioning Error

Although this shows us a dircction to follow to approach large displacement accuracy, we have not solved
this problem.

One approach to rectify this situation might be to change the way we represent system statc
altogether. As we have just shown, using displacements to represent system state inherently can result in
non-relaxed states that would most likely net occur under system actuation. Supposc however that we
choose to represcnt stale by a basis set of mechanical loads. Any combination of these loads would result in
a unique equilibrium state for the structure, thus we can map loads to displacements uniquely. This
approach has the advantage of generating displacements that are guarantecd to be at the minimum energy
state of the system. The disadvantage, however, is that we lose the clean representation of the kinetic
cnergy that comes out of the mode shape displacement basis set approach.

In conclusion, we notc that the operating range of the macromodels we can generate through the
Churn process are limited to small displacements. In this case, it is worth noting that using the lincarized
version of the strain energy now becomes a valid (and faster) means (o creating a device macromodel.
However, a fully macromodeled non-linear strain energy representation alongside the lincarized version
can offer a good measure of bounds upon system behavior. For the short term, we believe that this
exaggerated strain energy problem can be alleviated by constraining the nodes to a surface rather than
constraining each node’s position. In the long term, we believe a new paradigm for staic representation may
be needed to solve the issuc entirely.

One final note worth mentioning is that even though we expect a lower strain energy, the high
calculated value is actually correct for the problem that is posed. Given the fixing of nodes, the strain

encrgy truly is as high as we calculate. The discrepancy lies in that when we reduced our degrees of
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Figure 27: Comparison of Quasistatic Simulations for Simple Fixed-Fixed Beam Device
freedom to the first few mode shapes, we eliminated some crucial motion that allows the nodes to move to
significantly lower strain energy states. Reducing the amount of nodes we fix does approach the strain
energy we intended, but it also has the effect of asking a different problem, in that we are no longer
constrained to the generalized coordinates we have chosen. Thus, there is a trade off between adherence 10

the generalized coordinates and accuracy with cur approximation.
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Chapter S Examples

In this chapter, we present the results for a varicty of more complex structures than the one presented
in Section 3.3. In Sections 5.1, 5.2, and 5.3, we present three diffcrent structures and discuss their
computation time relative to what we would expect given the analysis presented in Scction 4.1. In Section
5.4, we conclude with a brief comparison of liming statistics for these models ard present a detailed table

of information about all four structures presented in this thesis.

5.1 Fixed-Fixed Beam with Compressive Stress

5.1.1 Structure Description

This device, depicted in Figure 28, is a 600pum long, 40um wide, and 2um thick fixed-fixed beam
with compliant supports that is suspended 2pum above a ground electrode. This device is made out of
polysilicon with a Young’s modulus of 165GPa and a Poisson ratio of 0.23, and has 4MPa of initial

compressive stress along the axis of the beam.

Figure 28: Schematic of Pre-Stressed Fixed-Fixed Beam
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5.1.2 Solid Model

Figure 29: Solid Medel of Pre-Stressed Fixed-Fixed Beam

Figure 30: Solid Model of Pre-Stressed Fixed-Fixed Beam (20x Zoom)

5.1.3 Finite Element Mode!

The constructed finite element model, depicted in Figure 31, is comprised of 244 20-node brick

elements, with a total of 2664 nodes.
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Figure 31: Finite Element Model for Pre-Stressed Fixed-Fixed Beam

5.1.4 Single Quasistatic Simulation

For the quasistatic coupled simulation, we actuate the device with 8 volts, which is 99% of the pull-in
voltage for this structure. This required 13 CoSolve iteratinns to converge, requiring 25.5 minutes to
compute. The resulting deformation is depicted in Figure 32. Table 4 presents the contribution of each of

the calculated modes for this deformation,

Figure 32: Quasistatic Response of Pre-Stressed Fixed-Fixed Beam to 8V Actuation



mode # contribution

[ 1 -1.175520000000

i 3 ! -0.011371800000

6 ! -0.002919480000
10 i -0.0010895500060
14 -0.000344592000
13 ! -0.000064906100
2 | -0.000058467200
9 ! -0.000040157300
11 0.000029622700
4 0.000025428600|
8 -0.000024580000]
16 -0.000023693400]
15 0.000003141490|
12 0.000002898520|
5 -0.000002151450
7 -0.000001673510}

Table 4: Projection of Quasistatic Response onto Mode Shapes

5.1.5 Modal Analysis

65

We calculated 16 mode shapes for this device. Figure 33 shows the three mode shapes that will

ultimately be used for the generalized coordinates. Table 5 presents the calculated information about each

of these modes. This required 4.6 minutes to compute.

Figure 33: Mode Shapes Used to Comprise Basis Set
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generalized generalized . ‘
‘ . generalized .
mode # mass frequency . ‘period  (us)
stiffness
{kq) ‘ (Hz)

1 © 4.3011E-11 29971.5 183" 3337
3 4.7923E-11 235609.0 105.02 4.25
6 . 4.8310E-11 625115.0 745,28 1.60}

Table 5: Calculated Mede Information

5.1.6 Capacitance Macromodel

We extract 100 capacitance data poinis and fit a [544/4 33| multivariate polynomial fraction,
which has 229 fitting parameters. The resulting 2’2 =422x107* . This required 1.5 hours to compute

the capacilance data and 13.3 seconds to compute the macromodel.

5.1.7 Strain Energy Macromodel

We cxiract 96 strain energy data points and fit a [ 6 4 4 | multivariate polynomial, which has 175
fitting parameters. The resulting 12 =268 x10728 This required 2.4 hours to compute the strain encrgy

data and 9.2 seconds to compute the macromodel.

5.1.8 Dynamics Simulation

In Figure 34 and Figure 35, we present a couple of simulations of our macromodel for this structure.

These took 50 scconds 1o compute on average.
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5.2 Fixed-Fixed Beam with Asymmetric Actuation Electrode

5.2.1 Structure Description
This device, depicted in Figure 36, is similar to before, a 600um long, 48um wide, and 2um thick
fixed-fixed beam that is suspended 2um above an eccentrically placed electrode. The electrode is placed

80um away from one of the supports. This device is made out of polysilicon with a Young's modulus of

165GPa and a Poisson ratio of 0.23.

Figure 36: Schematic of Asymmetric Fixed-Fixed Beam

5.2.2 Solid Model

Figure 37: Solid Model of Asymmetric Fixed-Fixed Beam
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Figure 38: Solid Model of Asymmetric Fixed-Fixed Beam (20x Zoom)

5.2.3 Finite Element Model

The constructed finite clement model, depicted in Figure 39, is comprised of 270 20-node brick
clements, with a total of 2863 nodes.

Figure 39: Finite Element Model for Asymmetric Fixed-Fixed Beam

5.2.4 Singie Quasistatic Simulation

For the quasistatic coupled simulation, we actuate the device with 30 volts, which is 97% of the puli-
in voltage for this structure. This required 13 CoSolve iterations to converge, requiring 27.8 minutes to
compute. The resulting deformation is depicted in Figure 40. Tabic 6 presents the contribution of each of

the calculated modes for this deformation.



70

Figure 40: Quasistatic Response of Asymmetric Fixed-Fixed Beam to 30V Actuation

mode #' contribution <mode#  contribution
1 -0.973969000000! 21 ' 0.00003234570C

| 0.207666000000, 30 ' 0.000031309500
~-0.059565500000' 18 ' 0.000026917100
0.010083000000° 27 ' 0.000023499000

. 0.002301600000 11 0.000021445700

_ -0.000987739000 9 _ -0.000016901600]
|14 1-0.000558761000; 5 .| 0.000015256500

10 ' 0.000388974000 16 0.000014344500
19 |-0.000380441000) 22  0.000012232600
12 0.000377216000 25 | -0.000007568970
23 -0.000191354000 24  -0.000006266890

17 -0.000136831000, 26  -0.000005788590

28 | 0.000092457600. 13 . -0.000003843730

OO PAWN =

20 0.000042833100 7  -0.000001377670

29 -0.000002151450: 15 - -0.000001221280

Table 6: Projection of Quasistatic Response onto Mode Shapes

5.2.5 Modal Analysis

We calculated 30 mode shapes for this device. Figure 41 shows the three mode shapes thar will
ultimately be used for the generalized coordinates. Table 7 presents the calculated information about cach

of these modes. This required 8.1 minutes to compute.



71

Figure 41: Mode Shapes Used io Comprise Basis Set

- generalized : generalized eneralized ;
mode # mass - frequency gen period  (us)
: ‘ gtifiness
(kq) (Hz)
1 4.3201E-11 48500.0 4.01 20.62
2 © 4.7679E-11! 133649.0 33.62 7.48
3  4.7229E-11 264117.0 130.06 3.79

Table 7: Calculated Mode Information

5.2.6 Capacitance Macromedel

We extract 200 capacitance data points and fit a [6 55/54 4] multivariate polynomia! fraction,
which has 401 fitting parameters. The resulting ;(2 =274 x10" >, This required 2.8 hours to compute

the capacitance data and 2.3 minutes to compuie the macromodel.

5.2.7 Strain Energy Macromodel
We extract 150 strain energy data points and fit a [ 6 6 4 ] multivariate polynomial, which has 245

0—28

fitting parameters. The resulting 12 =539 x1 . This required 3.5 hours to compute the strain energy

data and 27.1 seconds 1o compute the macromodel.

5.2.8 Dynamics Simulation

In Figure 42 and Figure 43, we present a couple of simulations of our macromodel for this structure.

These took 1.5 minutes to compute on average.
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5.3 Suspended Plate with Unequal Support Beams

5.3.1 Structure Description

This device, depicted in Figure 44, is a 125x155x3um plate suspended by four 85x15um beams. Two
of the beams are 3pum thick, one is 2pum thick, and one is 1um thick. At the comer with the weakest support
beam, a 62.5x70um electrode is placed undemeath, separated from the plate by a 4um gap. This device is

made out of polysilicon with a Young’s medulus of 165GPa and a Poisson ratio of 0.23.

15,0

Figure 44: Schematic of Asymmetric Supported Plate
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5.3.2 Solid Model

Figure 45: Solid Model of Asymmetric Supported Plate

Figure 46: Solid Model of Asymmetric Supported Plate (20x Zoom)

5.3.3 Finite Element Model

The constructed finite element model, depicted in Figure 47, is comprised of 318 20-nodc brick

clements, with a total of 2814 nodes.
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Figure 47: Finite Element Model for Asymmetric Supported Plate

5.3.4 Single Quasistatic Simulation

For the quasistatic coupled simulation, we actuate the device with 100 volts, which is 61% of the pull-
in vollage for this structure. This rcquired 4 CoSolve ilcrations 10 converge, requiring 7.5 minutes to
compute. The resulting deformation is depicted in Figure 48. Table 6 presents the contribution of each of

the calculated modes for this deformation.

Figure 48: Quasistatic Response of Asymmetric Fixed-Fixed Beam to 100V Actuation
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mode #  contribution _ mode # _ contribution
T 0457815000000 19 0.000215527000

2 0.042302700000 18  -0.000155325000

_0.024837900000 20 -0.060142372000
0.005658330000 17 0.000135101000
-0.005222780000 23 0.00008997410C
-0.001209240000 28  0.000077837800

3
7

4

8

6 0.000901406000 9 0.000073742200
10 -0.000700110600 30  0.000034852500

14 0.060504038000 24  -0.000032702100

15 -0.000486705000 26 -0.000032052700

27 -0.000380917000 12 0.000030375000

11 -0.000371473000 16 0.000020321100

13 0.000322518000 25 0.000018090900

5 0.000272911000 22 -0.000015363300
21 0.000237352000 29 -0.000002917070

Tabie 8: Projection of Quasisiatic Response onto Mode Shapes

5.3.5 Modal Analysis
We calculated 30 mode shapes for this device. Figure 49 shows the three modc shapes that will
ultimately be used for the generalized coordinates. Tablc 9 presents the calculated information about each

of these modes. This required 11.6 minutes to compute.

Figure 49: Mode Shapes Used to Comprise Basis Set
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generalized generalized . .
generalized period
mode # mass frequency stiffness (us)
(kg) (Hz) '
1 4.3397E-11 121063 25.11 '8.26)
2 3.5400E-11 272995 104.15 3.6_@
3 3.1356E-11 424306 222.86 2.36
7 1.5351E-12 1267430 97.35 0.79]
4 1.1905E-11 930945 407.32 1.07

Table 9: Calculated Mode Information

5.3.6 Capacitance Macromodel

We extract 250 capacitance data points and fit a [43322/32211] multivariate polynomial
fraction, which has 863 fitting parameters. The resulting 12 =430x10" °. This required 1.9 hours to

compute the capacitance data and 30.7 minutes to compute the macromodel.

5.3.7 Strain Energy Macremodel

We extract 247 strain energy data points and fita [ 4 2 2 2 2 | multivariate polynomial, which has 405
fitting parameters. The resulting [2 =139 x107%* This required 7.5 hours to compute the strain energy

data and 4.0 minutes to compute the macromodel.

5.3.8 Dynamics Simulation

In Figure 50 and Figure 51, we present a couple of simulations of our macromcdel for this structure.

These took 2.0 minutes to compute on average.
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Figure 50: Response to a 100V Sawtooth Wave with 20us Rise, Sus Hold, and 50us Period
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Figure 51: Response to a 100V Square Wave with 1us Hold and 20us Peried

54 Summary

In this thesis, we have presented four different structures for which we have constructed macromodels
using the Churn process. A detailed summary of these examples is presented in Table 10. Although
computation time generally agrees with the analysis we presented in Section 4.1, we note a few exceptions.
First, note that the doElectro() time for the asymmetric suspended plate is half that for the complex fixed-
fixed beam cases. This is because FastCap takes advantagc of co-located surface panels, and that the
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suspended platc model is very regional, dedicating many nodes to the off-center clectrode area. Also, note
that the number of iterations required for CoSolve Lo converge varies between 2 and 13. This depends upon
the proximity of the acluating voltage to the pull-in voliage of the device, being that the closer the structure
is driven to pull-in, the more difficuit it is for CoSolve to converge. Finally, the dynamics simulation
computation time prescnted in Table 10 were generated for “similar” circuits, and thus computation time
will vary based upon the nature of the circuit in which the macromodel is embedded.

In order to better visualize the dependence of model complexity upon computation time, we present
an abridged summary of the information presented in Table 10. Table 11 presents a list of the key
parameters of a model that can affect computation time. First, there is the number of nodes N in the finite
clement model of the structure. This affects the computation time for all full threc-dimensional mechanical
and clectrostatic analysis. Next, there is the number of calculated modes M. This mainly affects the modal
analysis step. Then there is the number of basis shapes m, which is equivalent to the number of generalized
coordinates to which the system is to be reduced. This has a tremendous (exponeniial) impact upon the
number of data points and fitting parameters that are necessary to construct accurate macromodels for the
different cnergy domains. Then, there is the proximity of the applied voltage to the quasistatic pull-in
voltage of the structure. This will increase the number of ilcrations necessary during the coupled solution.
Finally, thc number of data points and fitting parameters necessary to construct the macromodels, which
depend upon the desired macromodel accuracy of the designer, affect the data extraction and macromodel
construction computation time, which comprise the bulk of the compuiation time for the Churn process. We
conclude with Figure 52, which depicts a graphical representation of the itemized computation times for the

four structures presented in this thesis.



Modei Information

# noces “N° 2664 2883
# basis shapes "'m” l 3 3
Young's moduius (MPa) 165000 165000 165000
Poisson ratio 03 023 023
in:nal stress (24Pa) 0 4 0
MEMCAD Function Cails

doMechy) inttial step (sec) 10 e 53
dalach() subsequent siep (sec) 10 54 -]
daMode() step (sec) 1 2@ 437
doEleciro() siep (sec) [ 54 51
petStrainEnergy() step (gec) 2 7 7
tSodal Analysis

# calcuizied modes “M 3 16 0
aoddechy) intisd etep (sec) 11 2 50
dolode() (sec) 1 2 437
total time (aec) 2 274 487
Coupied Solution

pull-in voltage 984 81 31
apphed voitage 80 8 20
appied voitage as % pus-in 81% 9% 7%
doMech() mital step (sec) 8 74 55
dohdeciy) subsequent step (sec) 10 54 68
doElectrol) step (sec) 6 54 51
totsl time for 5 ierstions (sec) 9 (-] Fal ]
total time for 10 ilecetions (sec) 178 1208 1313
totsl time for 15 ierations (esc) 253 1748 1808
actual coupied soha § ders 7 13 13
totad cnupled sotvo time (s) 120 1532 1810
Mode Shape Reisvance Determination

load mode shapes (sec) 1 12 23
construct contravaran basis set (sec) [ k] 11
load and project shape onto basis get (sec) 1 1 1
totsl time (sec) 2 16 »
Capecitancy Extraction

# capacilence data points 2 100 200
coElectro() siep (sec) 8 54 51
total tims (38c) 120 5400 10200
Strein Energy Extraction

# strain energy data ponts 20 86 150
doMech() step (sec) 12 -] 7
getStranEnergy() step (sec) 2 7 7
total tme (sec) 20 544 12780
Capaci Blacr [ fon

model type [4/4] [544/433] [655/544)
# fitting parameters 0 229 401
Chi equared emmor 359€E-24 4.22E44 2.74E45
# total sieps 20 41 M
# progressive cleps 18 18 18
£ mgressive sieps 2 23 18
BmMe per progressive siep (sec) 0.001081872 0.501333 €.68515
time per regressive siep (sec) 0.000526316 0.186 101515
total ims (sec) 005 132¢ 135685
Strein Energy Kocromodei Construction

modet type (6] [644) (684}
# fiing parameters 7 175 245
Cri squared enor 4.08E-13 2.68E-28 5.39€-28
# 102l sleps 27 41 59
# pmgressve seps 12 18 xn
# regressive steps 15 2 r
tma per prograsave step (sec) 0.001217848 02600302 0.729323
time per regressive alep (sec) 0.000384615 0.0926302 0234138
total time (sec) [J <] i 71
totsl time of Chumn process (hours) 02 44 7.1
Gynarnics Simulstion

lingar S.E. compuistion time (sec) 1.97 48.42 86.40
nor-linear S.E. compuiation time (sec) 1.63 51.88 90.968

Table 10: Summary of Model Information
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Figure 52: Summary of Computatior Time
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fixed-fixed

@ strain energy
macremodeling

B strain energy
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Bcapacitance
macromodeling

Dcapacitance
extraction

W coupled solution

Bmodal analysis

(Mode Relevance Determination is small and has been omitted.)

simple fixed- pre-strossed | esymmstric fi ssymmetric

fixad beam fixed-fixed beam fixed beam suspended plate
Modsl information )
# nodes "N" 534 2664 2863 2814
# calculated modes "M" 3 16 30 30
# basis shapes "m" 1 3 3 5
applied voitage as % pull-in 81% 99% 97% 61%
# capacitance data points 20 100 200 250
# capacitance fitting parameters 9 229 401 863
# strain energy data points 20 96 150 247
# strain onergy litting parameters 7 175 245 405
Computation Time (suc)
modal analysis 22 274 487 696
coupied solution: 130 1532 1670 447
mode relevance determination 2 16 35 37
capacitance extraction 120 5400 10200 7000
capacitance macromodel construction 0.05 13.26 13585 1844.01
strain energy extraction 280 8544 12750 27170
strain energy macromodel construction 0.03 9.21 271 239.77
total time of Chum process (hours) 0.2 4.4 71 108

Table 11: Abbreviated Summary of Example Results



Chapter 6 Conclusion

In this thesis, we have reported the successful implementation of a methodology for automatically
generating analytical macromodels for two conductor, conservative electrostatic-elastostatic
microstructures, and for exporting these macromodels as analog simulator circuit elements that can be
repeatedly used within a circuit simulator to determine dynamical behavior. These macromodels are fast to
compute, requiring only the initial investment of computation time to construct them. Unfortunately, we
have found that this methodology is limited to small displacements due to the sensitivity of full three-
dimensional mechanical solvers to the representation of system node position by a linear superposition of
basis vectors. Regardless, we have demonstrated that this methodology remains accurate for MEMS
devices in their small-displacement, linear regime.

The concepts of macromodeling and auiomatic macromodel generation were well known and have
been investigated in the past, but this research makes several advances. First, this thesis introduces the
concept of fitting large multivariaie polynomials and polynomial fractions in order to accurately replace
computationally cumbersome full three-dimensional simulation. Next, this research introduced and
implemented the automation of the Churn process from device concept to circuit simulation, enabling
automated MEMS macromodel generation requiring only minimal interaction with a designer. Above all,
this process enabled macromodel construction for a wide variety of complex MEMS devices that would
otherwise be too difficult for designers to macromodel.

There are some clear directions for continued work on this research. First and foremost, a method
must be devised to rectify the high strain energy calculations as discussed in Section 4.2. This might
include allowing the structure to relax by reducing the number of fixed node constraints, increasing the
number of generalized coordinates, choosing different basis shapes, or changing the state representation
paradigm to usc a basis set of mechanical loads to generate displacement states. For other work, the energy
domain macromodeling approach should be extended to other conservative energy domains, such as
magnetics. Finally, research must begin to macromodel dissipative energy domains and incorporate them
into the equations of motion.

The prospect for computer aided macromodeling for MEMS will have tremendous impact on the field
of MEMS design. Once it is possible to incorporate these models into existing simulators, designers will be
able to explore the wide variety of uses these devices may have. It may be possible to close feedback loops
around these devices and control their motion, enabling everything from voltage controlled flow-rates

through microvalves to spectral analysis of gaseous materials. To date, the MEMS design process is still

JESEIEES
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slow, but this research shows promisc to acceleraie the development and implementation of MEMS devices

for real-world aprlications.
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