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Abstract

High-frequency transit systems are essential for the socioeconomic and envi-
ronmental well-being of large and dense cities. The planning and control of
their operations are important determinants of service quality. Transit oper-
ators are increasingly adopting data collection devices that enable real-time
monitoring of vehicle locations and demand, but existing models and cur-
rent practice limit the utility of this information. This research develops new
concepts, frameworks, and models for real-time optimization of operations,
utilizing both historical and real-time information originating from connected
data collection devices, including automated vehicle location, automated fare
collection, and automatic passenger counting systems.

Previous control strategies either do not forecast system states or rely on
forecasts based on running times and demand assumed to be static. This
research develops an optimization model for holding-based control that incor-
porates dynamics, producing a holding policy that accounts not only for the
current state of the system, but also for expected changes in running times
and demand, due to both exogenous and endogenous dynamics. This infor-
mation advantage can lead to improved performance when a transit service
faces typical changes in running times and demand over time, as well as po-
tentially disruptive events such as signal failures, disabled rolling stock, and
demand surges. Anticipatory control policies allow the transit service to re-
act before disruptions develop. It is shown that information about dynamics
is particularly valuable when it leads to better predictions of capacity being
reached.

Although headway and optimization-based control strategies generally out-
perform schedule-adherence strategies, high-frequency operations are mostly
planned with schedules, in part because operators must observe resource con-
straints (neglected by most control strategies) while planning and delivering
service. This research develops a schedule-free paradigm for high-frequency
transit operations, in which trip sequences and departure times are optimized
in real-time, employing stop-skipping strategies and utilizing real-time infor-
mation to maximize service quality while satisfying operator resource con-
straints. Following a discussion of possible methodological approaches, a



simple methodology is applied to operate a simulated transit service with-
out schedules. Results demonstrate the feasibility of the new paradigm and
suggest possible methodology improvements.
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Chapter 1

Introduction

High-frequency public transportation systems, those with high enough service
frequencies to allow passengers to turn up at their origin stop expecting a short
wait rather than having planned to take a specific vehicle trip, are essential for
the well-being of large and dense cities. They include bus and rail lines, and
serve millions of trips daily (Transport for London|, 2014/ and MTA New York
City Transit, 2014)). The planning and control of their operations are impor-
tant determinants of service quality and of how successfully they accomplish
their objectives. This research sets out to develop new concepts, frameworks,
and models to improve the effectiveness of operations planning and control
by utilizing real-time information originating from connected automated data
collection systems.

1.1 Cities and High-Frequency Public Transit

The world’s population reached 7.2 billion in 2014 and is expected to increase
by a further 2 billion by 2050. More than half of the world’s population lives in
urban areas, and with rural population expected to decline slightly, the urban
population is expected to rise from about 3.9 billion in 2014 to 6.3 billion by
2050. Large cities are growing in number and size. (United Nations| 2014)
High densities can increase people’s access to diverse job markets, education,
and services, but can only be sustained by efficient transportation networks.
Congested networks lead to longer and more uncertain trip times, in turn
leading to decreased productivity and accessibility. This dampens further
growth and encourages people and businesses to relocate to lower density areas,
decreasing potential agglomeration benefits. (Graham,2007b, Graham) 2007a,
and Hymel, 2009)

Dense urban areas give rise to spatio-temporally concentrated transporta-
tion demand, between specific origins and destinations and along linear corri-
dors. Public transportation systems are most efficient at meeting this demand
in terms of cost, space, and energy. Private vehicles require much more space
per capita than public transit vehicles, not only while in motion, but also at
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the destination of trips, where they are often parked for the duration of the
trip-generating activity without any direct productivity. The space efficiency
of public transport frees up valuable real estate for non-transportation utiliza-
tion, and frees up road space for trips that cannot be adequately served by
public transportation, e.g. freight, which are of great economic importance.
It is estimated that over 4 billion gallons of gasoline (or equivalent) are saved
and 37 million metric tons of carbon dioxide emissions are avoided annually in
the United States due to public transportation, accounting for reduced private
passenger vehicle miles, reduced congestion, and reduced travel distances (Neff
and Dickens, 2013).

People and businesses make long-term location decisions based on accessi-
bility. While high densities create demand for, and encourage investment in,
high-frequency transit, the supply of high-frequency transit foments further
densification, thus creating a positive feedback cycle. Dense cities depend on
the supply of high-frequency public transit for their socioeconomic and envi-
ronmental sustainability. For instance, cities like New York and London could
not sustain their current densities without their transit networks.

Given the benefits of, and dependence on, high-frequency public trans-
portation systems, the quality of transit operations has significant impact
on the functioning of cities. Unreliable operations result in delays and high
crowding, diminishing for people and businesses the benefits of being located
in a dense city. Many factors affect service quality, including external ones
such as traffic (for transit services in shared rights of way) and weather, and
internal ones such as unreliability of infrastructure and rolling stock, inade-
quate resource allocation, and the quality of planning and controlling opera-
tions (Sanchez-Martinez, [2012)). Large and dense cities such as New York and
London are the ones with the longest history of high-frequency public trans-
portation, and therefore the ones with the highest dependence on transit and
susceptibility to disruptions due to aging infrastructure.

1.2 Real-Time Data and Information

In parallel with the trend of growing cities, which will make high-frequency
transit even more important, information and communications technologies
are advancing rapidly and are being increasingly adopted by many sectors, in-
cluding public transportation. Of particular relevance is the so-called Internet
of things, describing the growing number of embedded devices connected to
the Internet, enabling them to interact with each other, as well as with services
and people (Mukhopadhyay and Suryadevara, [2014).

Automated data collection systems have for many years helped transit
service providers measure the performance of their services, but connecting
their sensors to servers (via the Internet or private networks) enables new real-
time applications. Automated vehicle location (AVL) systems, which monitor
the locations of vehicles, were originally adopted to improve safety and incident
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response capability, but are increasingly used for real-time monitoring, control,
and passenger information provision. Automated fare collection (AFC) and
automatic passenger counting (APC) systems were developed to relieve drivers
from the duty of collecting fares and for offline ridership analysis, but also have
the potential to provide real-time data useful for load and demand monitoring.

As data is generated, it can be processed to generate useful information.
Information can be archived for analysis of trends over time. For example,
systematic changes in running times and demand over days of the week and
seasons can be quantified along with their stochasticity. Models can combine
historical and real-time information, both to estimate the current state of
the system and to predict future states. The kinds of data available vary by
system.

Vehicle locations can be obtained directly from a real-time stream of AVL
data. AVL technology varies by mode and system. Bus AVL systems tend
to be based on GPS and odometer readings. Train AVL systems are often
based on track circuit occupancy or radio-frequency identification (RFID).
Regardless of sensor technology, vehicle positions are now often available in
real-time. Depending on the update frequency, and the time elapsed since the
latest data for a given vehicle, the current position can be inferred using a
vehicle movement model.

Vehicle loads can be estimated with APC data. Vehicle-mounted APC
systems count boardings and alightings, from which loads are determined.
Rail services often lack in-vehicle APC, but train weighing systems, which are
used for braking control, can be used to estimate the load of a train. This can
be combined with station passenger counters, such as gateline counts, although
this can be an involved process due to the variability of walking time from the
gate to the platform and the multiplicity of platforms that can be reached
after entering some stations.

Station or stop crowding can be estimated from historical or real-time AFC
and APC data. For bus service, where there is no sensing of passengers arriving
at stops, historical data can be used to obtain a typical arrival rate (for the
season, day of week, and time of day), and a passenger arrival model can be
used to estimate the number of passengers waiting to board. The passenger
arrival process might simply be assumed to be Poisson, but if the stop is also a
transfer station, the model may also use real-time vehicle location data of other
routes and historical transfer data to infer arrivals of groups of transferring
passengers. For rail stations where passengers interact with gates at entry,
station crowding can be estimated by adding a walking time from the gate
to the platform. It is necessary to consider vehicle capacity constraints to
estimate the number of passengers left at a stop (or platform), because the
assumption that the stop or train platform is emptied with each vehicle arrival
does not hold when vehicle capacities are binding. If the operator closes gates
as part of a metering strategy, it may be useful to have passenger counting
before the gateline, perhaps using a video feed.

Passenger destinations can be estimated from historical origin-destination

13



matrices A(t) with elements \;;(¢) denoting arrival rates at time ¢ of passengers
at origin ¢ on their way to destination j. A more sophisticated method involves
checking the habitual travel patterns of each passenger observed boarding a
vehicle or entering a station. If such a pattern is found, then it may be assumed
(with some uncertainty) that the passenger is on his usual trip from 7 to j.
Disaggregate inference methods can be used to generate an origin-destination
matrix, or model travel patterns of individuals, if historical fare transaction
records are available (Gordon et al., [2013]).

If avoiding driver lateness is part of the control objective, duty lateness can
be calculated from the current time and the scheduled duty end time, giving
how much time is left in the duty. Optionally, spare drivers can be included
in the model.

Future arrivals of passengers at a station platform or bus stop, and the des-
tinations of those passengers, can be estimated from historical AFC and APC
data, as described previously. Information on future boardings, alightings, and
vehicle loads proceeds from this. Future demand could also be inferred from
the use of journey planners and mobile phone applications, since the usage of
these services implies (with some uncertainty) that a journey is being (or will
be) made. For example, if a person uses a mobile phone to check the estimated
arrival time of the next vehicle at a stop, the person might be walking toward
or already waiting at the stop; the uncertainty of this inference decreases if
the location of the mobile device is known. Service alerts can alter typical
demand, for example by encouraging passengers to find other modes, routes,
or times to make their trip when disruptions lead to overcrowding and longer
than usual waiting and trip times. Demand models capturing how people react
to service alerts and other types of information could be useful. Future dwell
times can be obtained from estimates of current load, future boardings, and
future alightings, combined with a dwell time model calibrated with historical
data.

Future running times can be obtained from historical AVL data. If over-
taking is not possible in all or part of the route (e.g. track, busway, or road),
blocking constraints can be considered. Future vehicle locations can be pre-
dicted based on the sum of running times, time lost in stopping (especially
important in bus service), and dwell times, but also considering blocking con-
straints and control actions. To calculate the expected location, the expected
values of these elements can be added deterministically. If the distribution of
locations is desired, then simulation or numerical convolution of the distribu-
tions of each factor are necessary.

1.3 Model-Based Operations Control

All these types of information can be leveraged by operators to measure and
predict performance and intervene in real time with supply-side and demand-
side actions. Performance can be measured in terms of passenger waiting
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times, in-vehicle times, and crowding, and can include operator-focused mea-
sures such as driver lateness. Supply-side interventions include control ac-
tions such as holding, short-turning, deadheading, and expressing, as well as
use of spare vehicles and drivers, rerouting, and introduction of temporary
services during severe disruptions. Demand-side interventions include genera-
tion of service alerts and dissemination of real-time information to passengers
through web-based journey planners, social media, and Internet-enabled mo-
bile devices. These measures can curtail demand, especially when a transit
system faces significant disruptions, and can help reduce the number of peo-
ple affected as well as shorten recovery time. Figure illustrates the flow
of data, information, and real-time operations planning and control decisions,
much of which can be automated with machine to machine communications.
This research focuses on supply-side interventions.

Service quality depends, in the first place, on an appropriate allocation
of resources and careful operations planning. It is difficult to provide good
service if the active fleet is too small for the running time distributions, or
if the duty schedule is unrealistic. Second, reliable infrastructure and rolling
stock are required. Only when these, and other, factors have been considered
can high quality be delivered. While these a-priori considerations make it
possible to offer high-quality service, performance deteriorates in the absence
of supervision and control through the bunching mechanism in which a vehicle
with a long leading headway experiences longer dwell times and the trailing
vehicle catches up. The results are greater mean waiting times, increased
perceived crowding, and less predictable trip times, all of which degrade service
quality. Real-time control is especially important in systems operating at, or
near, capacity, as they can help provide the best service possible until a long-
term capacity upgrade can take place.

Effective real-time control regulates headways though control actions such
as holding, enforcing boarding limits, short-turning, deadheading, and express-
ing. Holding is the most commonly employed of the strategies, and has been
found to be the single most effective strategy in terms of total passenger wait-
ing time reductions (Eberlein et al. [2001)). It consists of extending the normal
dwell time of a vehicle at a stop (or station) when its leading headway is
shorter than it should be. This increases the number of passengers boarding
the vehicle downstream of the holding location by waiting for more passengers
to arrive at downstream stops or stations, thus preventing the vehicle’s dwell
times from being shorter than usual, which eventually leads to bunching. The
goal is usually to hold vehicles such that they are evenly spaced (in time)
across stops. Depending on the system, this may be done exclusively at ter-
minals (dispatch headway regulation), at terminals and key stops or stations,
or at any stop. Holding (empty) vehicles at terminals is not as onerous for
passengers, and is critical for obtaining high service quality (Eberlein et al.
2001).

Boarding limits have the opposite effect of holding. By limiting the number
of passengers that would board in an uncontrolled scenario, the dwell time of a
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vehicle at a station or stop is shortened, and in-vehicle crowding is controlled.
This allows the vehicle to move faster when it has fallen behind. (Delgado
et al.,[2012) Boarding limits are more common in train service than bus service,
as train doors are perceived as automatic (in some cases they are), and no
explanation is sought by passengers who cannot board.

Short-turning, deadheading, and expressing are more drastic strategies that
change the sequence of vehicles through stop-skipping. These strategies can
greatly affect service quality, but they require coordination and awareness of
not just the leading headway, but the overall distribution of vehicles on the
route and the number of passengers on buses and stops or stations. Hence,
these strategies are best evaluated from a control center with a complete view
of the system. Short-turning consists of ending a trip before reaching the down-
stream terminal, forcing any passengers in the vehicle to alight, and turning
the vehicle to begin service in the opposite direction. It can be effective when
there is a bunch in one direction and a large gap in the other, especially if
one of the bunched vehicles is not highly loaded and the passengers in it are
allowed to transfer to the other vehicle in the bunch (so that they do not have
to wait at the stop). Short-turning can be more benign when it is decided
(and announced) before beginning a trip, with no passengers in the vehicle.
Deadheading consists of moving an empty vehicle not in revenue service from
one location to another. For example, a bus at a terminal can be deadheaded
to the middle of the route to begin revenue service there. In rail services,
deadheading options are more limited, but sometimes it is possible to skip
a few stations after departing the terminal, and then begin revenue service.
Expressing consists of skipping stops or stations while in revenue service, forc-
ing passengers whose destinations will be skipped to alight and continue their
journey on the next vehicle (or on foot).

At least six factors influence the degree to which information improves
performance: the availability and quality of data, the accuracy of information,
the ability of operations planning and control models to utilize information,
the sensitivity of optimal policies to information, the types of interventions
available, and the operating environment.

Data The effectiveness of control decisions depends, in the first place, on
the availability and quality of data. Historical and real-time data on vehicle
locations and demand enable the use of models and control strategies designed
for data-rich operations. The frequency and delay with which real-time data
is received from connected sensors, and measurement errors at the source play
a role. Sophisticated models may not provide value if vehicle locations are not
received in a reliable and timely manner.

Information Modeling Information models process and combine data to
obtain useful information. A stream of vehicle positions may be processed to
remove outliers and determine running times. Automated passenger counting
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data may be processed to obtain vehicle loads. The effectiveness of control de-
cisions depends, in part, on the amount and types of information used to model
system states and optimize operations. Characterizing a transit service with
more types of information can potentially improve the effectiveness of control
actions by painting a more complete picture and being able to measure service
quality more directly in the control objective. For example, moving from a
characterization based only on vehicle locations to one combining vehicle loca-
tions and loads might enable a control framework to avoid holding full vehicles.
The accuracy of the models used to extract information from data play a role.
Modeling errors can lead to information errors, and possibly suboptimal or
even counterproductive control actions.

Operations Planning and Control Models Model capabilities determine
whether different types of information can be used and how much they can
contribute to improving operations. For example, a simple even headway
policy is insensitive to loads, so it would hold a full vehicle even if there is load
information showing that the vehicle is full. In research, model capabilities
limit the ability to quantify the value of certain types of information. For
instance, the optimization models developed in this research all model running
times and demand dynamically, allowing dynamics to affect service. Without
the ability to model running times and demand dynamically, transit services
could not benefit in real-time from information about dynamics, and it would
not be possible to measure, through experiments, its potential value.

Sensitivity of Optimal Policies to Information The effectiveness of con-
trol decisions also depends on the extent to which better information leads to
different (better) decisions, and thereby improved service quality. For exam-
ple, capturing stochasticity of demand might not lead to a change in control
policies if total arrival rates are not highly variable, or if variability in demand
does not affect which control decisions are optimal, although in these cases
better information could lead to a higher certainty that good decisions are
being made.

Available Interventions The extent to which information improves per-
formance depends on a transit service’s operational strategy, including dis-
patch strategy (e.g. schedule-based vs. headway-based) and available control
strategies (e.g. holding alone, short-turning alone, holding and short-turning
combined). For example, some types of information might be significantly
more useful to make good short-turning decisions, but not generally influence
holding decisions.

Operating Environment The extent to which information changes the
decisions being made might depend on system characteristics such as running
times, demand patterns, and allocated resources (which govern effective cycle
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time reliability). For example, some kinds of information, richer models, and
intervention strategies might be especially useful in near-capacity operations,
but less so when vehicles do not fill up.

1.4 Research Objectives

This research aims to advance, through new frameworks and methodologies,
the utilization of historical and real-time information to improve high-frequency
public transit operations. It takes advantage of the trend of increasing con-
nectivity of sensors and devices, and the ability it creates to observe the state
of a transit line in real-time, to address the problem of disruptions in high-
frequency public transportation services. This research focuses on supply-side
interventions, and specifically in the following objectives.

1. Develop the framework and models required to capture information about
dynamics of running times and demand when optimizing operations
control decisions, focusing on holding control and dynamics generated
by typical exogenous changes in a transit line’s operating environment
throughout the day. Determine to what extent, in what manner, and un-
der which circumstances information about dynamics can improve the
effectiveness of control. This objective is addressed in Chapter [2]

2. Develop the framework for controlling a transit service with informa-
tion about events, building upon the model developed in Chapter [2| to
optimize holding control reflecting anticipated event-driven dynamics.
Investigate both foreseen and unforeseen events. Determine if control-
ling with information about events can improve the performance of a
transit line, and whether any benefit is robust to errors of information.
This objective is addressed in Chapter [3]

3. Develop the concept of, and framework for, schedule-free real-time oper-
ations planning of high-frequency transit, which would allow operations
plans to benefit from real-time information. Discuss potential method-
ological approaches, and experimentally determine if such an approach is
feasible and potentially beneficial. This objective is addressed in Chap-
ter Ml

1.5 Dissertation Structure

The following three chapters of this dissertation present separate but related
research. Chapter [2] investigates how information about dynamics in running
times and demand can improve the effectiveness of holding control in high-
frequency transit. Previous holding control strategies either do not forecast
system states to optimize holding times or they rely on forecasts based on
running times and demand assumed to be static. The chapter presents a
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holding optimization model that reflects dynamics, thus producing a holding
policy that accounts not only for the current state of the system, but also for
expected changes in running times and demand. Its effectiveness is evaluated
within a simulation environment. The results show that control based on
dynamic inputs outperforms its static equivalent in high demand cases where
passengers may be left behind at stops and, to a lesser extent, in low to
moderate demand cases with time-varying running times.

Chapter |3|explores how information about potentially disruptive events can
improve the effectiveness of holding control in high-frequency transit. Some
events, such as signal failures in rail transit and traffic accidents along a bus
route operating in mixed traffic, cause disruptions that are unpredictable.
Others, such as concerts or sport contests, cause disruptions that can be fore-
seen. In some cases, information can be used to predict disruptions, which
can then be modeled using dynamic functions of running times and demand,
using the model developed in Chapter |2, Past research has explored the use
of operations control to respond to disruptions once service deteriorates. By
dynamically modeling expected changes in running times and demand dur-
ing events, the framework presented in Chapter (3| enables anticipatory control
strategies. A holding optimization model capturing event-driven dynamics is
applied to a simulated transit service experiencing disruptions induced by an
unforeseen and a foreseen event. Controlling operations with awareness of
events improves performance in both cases. However, erroneous estimates of
the time an event will occur can lead to counterproductive control policies.

Chapter {4 introduces a schedule-free paradigm for high-frequency tran-
sit operations, in which operations are not only controlled but also planned
in real-time, taking advantage of real-time information for optimizing vehicle
trip sequences in a way that maximizes service quality while satisfying oper-
ator resource constraints. Previous research in operations control, including
the control strategies presented in chapters [2] and [3| neglects planned driver
duty end times and changes in number of active vehicles. (Strategies are usu-
ally evaluated through simulations with a constant number of active vehicles.)
When these control strategies are applied to a real transit service, they opti-
mize control actions counting on a vehicle that will be taken out of service to
continue serving trips, or not reflecting the imminent entry of vehicles. They
may also delay a vehicle that is late with respect to the schedule, putting
desirable control outcomes at odds with schedule constraints. By reconciling
the service quality improvement and operator constraint satisfaction goals, the
schedule-free paradigm increases the utility of information for high-frequency
transit operations. Transit services running under the schedule-free paradigm
adapt to current and expected future conditions. After introducing the new
paradigm conceptually, Chapter 4| develops a framework and methodology for
schedule-free operations and discusses some implications. An example appli-
cation demonstrates the feasibility and potential of the new paradigm.

Chapter [5| summarizes the research methodology, findings, and contribu-
tions, and discusses potential future research.
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The optimization problems in this research are complex, and their objective
functions are, generally, not globally convex, so there may be multiple local
optima. Throughout the dissertation, the term optimal refers to the lowest
cost solution found by the optimization algorithm.
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Chapter 2

Holding Control with Dynamics

Operations control is an important means of improving service quality in high-
frequency public transport systems. It is based on continuous monitoring of
the system and supply-side interventions with the aim of providing the best
possible service to passengers with the available resources. Holding, the most
commonly employed intervention, consists of intentionally delaying a vehicle,
possibly at the expense of extending trip times for passengers on board, in
order to reduce the waiting time of passengers who will board downstream.
Previous research has established that holding is generally the single most
effective type of intervention, and a number of methods to determine holding
policies have been proposed and evaluated, ranging from simple heuristics to
sophisticated model-based optimization. (Eberlein et al., 2001)

Past research has focused on evaluating the effectiveness of different control
strategies, largely based on static assumptions with respect to both running
time and demand. Within the family of real-time control strategies based on
future system state prediction models, none to date have modeled running
times and demand dynamically. Holding strategies based on static running
times and demand respond to disruptions in the initial system state. For ex-
ample, if a vehicle has been delayed, holding can help prevent bunching from
occurring. However, these strategies cannot anticipate systematic changes in
the operating environment and preemptively consider those changes in the
production of a control plan. A strategy that models running times and de-
mand dynamically can do this. For example, such a strategy may be able
to anticipate how additional demand leading into the rush hour may cause
disruptions, and therefore produce a control plan that recognizes that such
disruptions may develop.

This has significant implications in the realm of real-time information and
operations control. By being able to react not only to what is already known in
the initial system state but also to what can be anticipated based on historical
experience, the model proposed in this research could potentially improve per-
formance beyond that achieved with previously developed control strategies.
Future running times and demand could be predicted based on real-time in-
formation of current conditions in addition to historical or typical conditions.
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For instance, an unusually high demand observed in some part of the network
might be used to infer additional demand in another part of the network due
to transfers. Or an accident might be reported at some intersection, allowing
an operator to anticipate traffic delays along a corridor before the congestion
develops. The aim of this research is to develop and test a model that can be
used in these dynamic contexts, focusing on cases where future running times
and demand are known in advance.

The remainder of this chapter is organized as follows: Section [2.1] reviews
the literature, Section presents the framework and mathematical model,
Section discusses the implementation of this model within a simulation
model for evaluation purposes, Section presents and discusses the results
from the application of the control model, and Section draws conclusions.

2.1 Literature Review

Early research on the holding problem did not consider the availability of real-
time information (see |Osuna and Newell, 1972, |Barnett, 1974 Newell, 1974,
Turnquist and Blume, (1980, and |Abkowitz and Lepofsky, [1990)). Since then
researchers have proposed a number of control strategies with control actions
based on both typical system characteristics (e.g. running times and demand)
and real-time information (e.g. vehicle locations). Holding strategies differ
in objectives, underlying models and solution methods, and information uti-
lized. Common objectives include schedule adherence (Adamski and Turnau,
1998)), headway adherence (Rossetti and Turitto, (1998)), headway regularity
(Daganzo, 2009 and Bartholdi and Eisenstein), 2012), and cost minimization
(Eberlein et al., 2001, Delgado et al. 2009 |Delgado et al., 2012, and Séez
et al., 2012)). Schedule adherence is a suitable objective for long headway ser-
vice, while headway regularity is a suitable objective for short headway service.
Strategies based on cost minimization employ mathematical programming or
other optimization methods and a variety of information including vehicle
locations, loads, and passenger arrival rates, sometimes in a rolling horizon
formulation. In some cases holding is combined with other control strategies
such as short-turning (Shen and Wilson, |2001)), boarding limits (Delgado et al.,
2009 and Delgado et al.,|[2012)), and signal priority (Chandrasekar et al., [2002)).

Control strategies are typically evaluated through simulation. Performance
is measured in terms of passenger waiting times and trip times (expected val-
ues and variability), often complemented with measures of headway regularity,
loads, etc. Researchers have been effective at using this evaluation framework
to demonstrate how the performance of transit services can improve with en-
hanced availability and utilization of information, as well as innovative predic-
tion and control models.

Previous research has not addressed the value of modeling system charac-
teristics dynamically. While many of the recently proposed strategies utilize
real-time information, very few are able to consider predictions of future sys-
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tem states involving dynamic running times and demand. The few with that
(limited) ability have been tested in simulation environments having time-
independent running times and demand. For example, see Dessouky et al.
(2003), Daganzo (2009), and Saez et al| (2012). In other cases, the simu-
lation environment features time-dependent running times and demand, but
the strategies used cannot model the dynamics and instead assume typical
period-level constants.

Adamski and Turnau (1998) develop a set of holding control strategies
based on control theory. The aim is primarily punctuality, but the authors
suggest a variation that adapts the punctuality control procedure to achieve
headway regularity.

Rossetti and Turitto (1998) develop a holding strategy based on a dynamic
threshold. The threshold used to determine the desired preceding headway,
and therefore holding time, of a vehicle is chosen from a range of thresh-
olds including the scheduled headway, with the aim of reducing holding time,
and hence in-vehicle time added by holding. The term dynamic refers to the
threshold and not to the running time and demand information.

Eberlein et al.| (2001) formulate the holding problem as a deterministic
quadratic program in a rolling horizon scheme, allowing real-time information
to be taken into account. Their model includes the effect of dwell time on
vehicle delay and headways, and the optimization objective is to minimize
total passenger waiting times. Running times between stations and passenger
arrival rates are assumed constant over the rolling horizon. The formulation
includes a constraint that prevents late vehicles from being held. The resulting
program is non-convex quadratic. The researchers find that holding policies
are mainly sensitive to vehicle headway patterns and much less sensitive to
passenger demand patterns, and that the impact of holding a vehicle on the
trajectories of vehicles upstream diminishes quickly.

Shen and Wilson| (2001)) formulate a mixed integer program for holding,
short-turning, and expressing trains on an urban rail line in the case of minor
disruptions. Passenger demand and running times between stations are treated
as constants.

Chandrasekar et al. (2002) test the strategy of regulating bus spacing by
simultaneously providing signal priority to the leading vehicle and holding the
trailing vehicle when the space between the vehicles shortens. Since the control
strategy is reacting to deviations from the target vehicle spacing, it is not able
to produce control policies based on dynamic running times and demand.

Zhao et al|(2003) present a distributed control approach in which vehicles
and stops act as agents that communicate in real-time to coordinate departure
times of vehicles from stops. They analyze the performance of their strategy,
and other strategies, using simulation under a variety of conditions (includ-
ing long headway scheduled service), including random bursts of passenger
arrivals. Although they assess the performance of the model under dynamic
conditions, their strategy does not consider expected dynamics.

Dessouky et al. (2003) compare control strategies that depend on commu-
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nication, tracking, and passenger counting technologies and those using only
local information. The application of interest is schedule coordination at a
terminal. Among the strategies considered, some make use of predicted ar-
rival times at the terminal and loads, which makes it possible to account for
dynamic running times and demand. However, the researchers do not focus on
the value of capturing predicted dynamics from the operations control perspec-
tive. Their simulation model uses time-independent running time distributions
and mean passenger arrival rates.

Sun and Hickman| (2008) formulate a convex quadratic program with lin-
ear constraints for optimizing holding times of vehicles at multiple stations.
They assume a constant passenger arrival rate and vehicle travel time between
adjacent stops.

Puong and Wilson| (2008) develop a real-time disruption response model
for rail transit focusing on holding. The model is a non-linear mixed integer
program and captures passengers left behind at stations. The researchers
assume constant passenger arrival rates and dwell times.

Delgado et al.| (2009) formulate a non-convex quadratic program with lin-
ear constraints for holding and boarding limits. The model captures vehicle
capacity constraints, and can be used in a rolling horizon optimization appli-
cation. Passenger arrival rates per stop and travel times between stops are
assumed deterministic, known, and constant over the optimization horizon.

Daganzo| (2009) develops a holding strategy in which vehicles are analyzed
in pairs. The trailing vehicle of a vehicle pair is delayed by holding when the
headway shortens, and instructed to speed up (perhaps through denied board-
ings) when the headway lengthens. The authors state that the model can be
extended to time-dependent demand and running times by using run-specific
parameters and making adjustments to average inter-stop running times. How-
ever, they do not test this, and the method, which looks only at vehicle pairs,
is not able to capture dynamics of demand or running times happening farther
in the future.

Yu and Yang| (2009) propose a two-step holding strategy. In the first step,
a support vector machine is used to predict whether or not a vehicle will
depart early from the next stop if it is held at the current stop, possibly
considering running time dynamics. Holding is only considered if a vehicle is
early now and is also predicted to be early at its next stop. In the second
step, a genetic algorithm is used to minimize a combination of waiting cost
and in-vehicle cost. Passenger arrival rates are modeled as time-independent,
and the dynamics of running time predictions are limited to the next stop.
The simulation experiment shows that running times predicted by the support
vector machine are more accurate than mean running times, and that their
optimization-based strategy reduces passenger cost more than a schedule-based
strategy.

Xuan et al. (2011) develop a holding control strategy based on a virtual
schedule. A one parameter version of the method can be optimized in closed
form and is shown to be near-optimal and to outperform other holding strate-
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gies. Mean running times between stations are modeled as time-independent
constants and the passenger arrival process is assumed stationary.

Daganzo and Pilachowski| (2011)) develop a holding control model based on
control theory. Headways are adjusted through holding considering the pre-
ceding and following headways. In their continuum idealization, the passenger
arrival process is spatially homogeneous and time-independent. Vehicles are
assumed to run at a fixed average speed between stops.

Cats et al.| (2011) compare the effectiveness of holding based on schedule
adherence, target headway, and even headway strategies. They find that the
even headway strategy leads to the best performance in terms of headway
regularity, trip time savings, and schedule adherence at a relief point. The
strategies they consider are local and myopic (i.e. they do not involve prediction
or optimization). Hence, they do not yield policies sensitive to time-dependent
running times or demand.

Bartholdi and Eisenstein (2012) develop a strategy that holds vehicles
based on their following headway, and show that it leads to even headways.
The strategy can react to perturbations but does not take into account pre-
dicted future changes in running times or demand.

Delgado et al| (2012) formulate a non-linear model for optimization of
holding times and metering of boardings of all vehicles of a transit line at
all stops, taking into account vehicle capacity constraints. The model, which
this research builds upon, can be used in a rolling horizon framework. The
authors show its effectiveness in simulation experiments. The model assumes
time-independent passenger arrival rates and running times between stops.

Saez et al.| (2012) propose a control strategy that models demand stochasti-
cally and involves a discrete-time event-based predictive model. The strategy
is applied in a rolling horizon framework and can suggest holding and express-
ing control actions. A genetic algorithm is used to identify control actions in
reasonable computation times. The authors test the strategy in simulations
with constant vehicle speed and Poisson demand having constant arrival rates
by origin-destination pair. Munoz et al|(2013) compare the holding strategy
of this paper to that of Delgado et al.| (2012]).

Chen et al.|(2013) investigate the strategy of holding a group of buses at one
or more control points, considering boardings while holding. Their formulation
uses constant deterministic running times between stops and passenger arrival
rates.

This research extends the literature of real-time control for high-frequency
transit services by presenting a model that explicitly incorporates the dynamic
nature of running times and demand. The following sections present the pro-
posed model framework and evaluate its performance.
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2.2 Framework and Formulation

In this section we present the framework and formulation of a deterministic
rolling-horizon performance model of a high-frequency transit service. This
model extends the work of |Delgado et al.| (2012). It takes as inputs dynamic
running time and demand functions, current system state (e.g. vehicle posi-
tions, load estimates, and estimated number of passengers currently waiting
at stops), and a set of planned holding times for each vehicle at each stop.
It outputs predicted future states (e.g. departure times and loads) through
the next cycle. Demand is modeled with time-varying arrival rates at the
origin-destination pair level. Vehicle movement is modeled with time-varying
running times.

The model is used to optimize holding times at any stop where control can
be applied. Figure[2-1]illustrates how the different model components interact.
The framework consists of an optimization model with two main components:
a performance model and a cost model. The optimization model feeds the
performance model with dynamic running time and demand functions, the
current system state, and candidate holding times. The performance model
uses these inputs to predict how the system will evolve, including vehicle arrival
and departure times, boardings and alightings, passengers left behind, and
loads for all vehicles at all stops. The prediction is passed to the cost model,
which gives a scalar mean cost per passenger reflecting waiting times and
in-vehicle delay due to holding. The optimization model considers the costs
of previously evaluated candidate solutions to select new candidate holding
times, until a (local) minimum cost is found. The optimization, performance,
and cost models are described in Sections [2.2.2] 2.2.3] and [2.2.4] respectively.

All of this takes place in the context of a rolling prediction horizon, which
is defined (as in Delgado et all [2012)) to cover the departure of each vehicle
from every stop once, starting with the next stop to be visited and finishing
with the previously visited stop, to complete a cycle. This is illustrated in
Figure for two vehicles. Since the horizon boundary is defined spatially
(i.e. a fixed number of stops), each vehicle’s last stop visit in the horizon may
happen at a different time.

The performance model can be used to make a prediction of how the system
will evolve outside the optimization context. This is useful to estimate future
arrival and departure times at stops considering time-dependent running times
and demand.

2.2.1 Assumptions

The following assumptions are made:

1. The model is deterministic. Stochasticity, which is the very phenomenon
that leads to the need for operations control, is neglected. This is done
in the interest of tractability. We hypothesize that the consequences
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of ignoring stochasticity should not greatly affect the early parts of the
model horizon, which are the most relevant for control decisions.

2. Passenger demand is modeled with continuous variables. This allows a
simplified model of dwell times and avoids modeling discrete events such
as the boarding of an individual passenger.

3. Vehicles stop at every stop. This assumption avoids decision variables
concerning the conditions under which a vehicle would skip a stop. This
assumption is accurate for rail services, but may have an effect in bus
services if many stops are skipped and a significant portion of running
times is deceleration and acceleration times at stops.

4. Vehicle order is preserved over the prediction horizon. This assumption
can be relaxed with additional bookkeeping not presented in this chapter
in the interest of clarity. A relaxed version of the formulation could be
used for bus services in which overtaking happens frequently or when the
insertion and removal of vehicles throughout the day is to be modeled.
(The event-based model presented in Chapter [4| captures vehicle entries,
exits, and reordering.)

These assumptions concern the model, and do not necessarily apply to the
simulation used to evaluate the effectiveness of the proposed control strategy.

2.2.2 Holding Time Optimization

The performance and cost models can be used to predict vehicle trajectories
and passenger costs given a particular set of holding times for each vehicle
and stop in a service with ny vehicles and ng stops. Treating them as a
mathematical function f : R™"$ — R mapping a set of holding times h, s to a
scalar cost, they can also be used to obtain a set of optimal holding times in an
optimization context. The objective is to minimize mean cost per passenger
over the prediction horizon, which combines waiting time and in-vehicle delay,
subject to constraints on holding times at stops:

o Wy + 0sWs
minimize =~ ———— (2.1)
ho,s YOEV Vs€S P
subject to vehicle movement constraints (2.2)
passenger activity constraints (2.3)
0<hys <hy™ YveV VselS (2.4)

where Wy and Wy are the total in-vehicle delay and waiting time for all
passengers in the prediction horizon, P is the total number of passengers, and
fs determines the relative disutility of waiting at a bus stop with respect to
delay inside a vehicle.
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Constraints and are handled by the performance model pre-
sented in Section . Constraint states that holding times must be
non-negative and may not exceed the maximum allowed by policy. For ex-
ample, a maximum holding time of two minutes might be set at stops where
holding is allowed, while longer maximums can be set at terminals having
designated space for vehicles to hold without interfering with other vehicles.
The upper bound can be made very large, effectively removing this constraint,
and it can also be set to zero, effectively preventing holding at a particular
location.

Section presents the mathematical formulation of the cost model.
The objective function is not globally convex, so there may be multiple local
optima. In this research, the term optimal refers to the lowest cost solution
found by the optimization algorithm.

2.2.3 Performance Model

The performance model predicts how the system will evolve over the rolling
prediction horizon. The prediction includes vehicle arrival and departure
times, running times between stops, boardings and alightings, dwell times,
and number of passengers left behind due to capacity constraints. The predic-
tion of the future states of the system is used by the cost model to calculate
the cost associated with a candidate set of holding times.

Stops are labeled in order from 1 to ng and vehicles from 1 to ny, with stop
ng and vehicle 1 being the furthest downstream stop and vehicle, respectively.
The formulation uses rolling addition and subtraction for vehicle and stop
indexes. For example, if v = 1, v — 1 = ny, and if s = ng, s+ 1 = 1.
Greek letters are used to represent passenger activity. Primed variables (e.g.
d') represent known quantities observable before the current time ¢,. Barred

variables (e.g. d) represent constrained quantities.

The arrival time a, s of a vehicle v at its first stop in the rolling horizon
(stop s = e, + 1) is obtained by adding its running time to the departure
time from the previously visited stop. This departure time d;, . is a constant
that was observed before ;. The unconstrained running time is determined
by evaluating the dynamic running time function r., (¢) of the vehicle’s initial
stop (stop e,) at the vehicle’s departure time.

!/

s =dyo +7e, (d,,) YoEV s=e,+1 (2.5)

The model requires preservation of vehicle order throughout the optimization
horizon. Extra running time 7, can be added to prevent a vehicle from arriving
at a stop before the preceding vehicle. The preceding vehicle’s arrival time is
known because it occurs before t;.

7 = max (0, a;_l’s - aw) YoeV s=e¢,+1 (2.6)

31



The (possibly) constrained arrival time a,s at a vehicle’s first stop is the
unconstrained arrival time plus any extra running time required to prevent
overtaking.

Uyps=ays+T, YweV s=e,+1 (2.7)

These terms collectively represent an estimate of a vehicle’s arrival time at its
first stop in the optimization horizon. Unconstrained arrival times at subse-
quent stops are obtained from the addition of running time to the departure
time from the previous stop, d, s_;. Running times r, (¢) are dynamic func-
tions.

Aps =dys1+7s-1(dps—1) YvEV Vs€le,+2,¢e) (2.8)

Extra running time may have to be added to prevent overtaking. This applies
starting at the first stop that a vehicle visits following a visit by the preceding
vehicle at the same stop in the optimization horizon. An exception is made for
the first vehicle (i.e. the one furthest downstream) in the special case that all
vehicles are between the same two stops at the beginning of the optimization
horizon; otherwise the model could be infeasible.

max (0,ay—15 — ays) Yo EV Vs€le,o1+ 1,6
Tps—1 = unless v =1 and e; = e,,, (2.9)

0 otherwise

The (possibly) constrained arrival time is the unconstrained arrival time plus
any extra running time required to prevent overtaking.

Aps = Aus +Tps—1 YUV EV Vs€le,+ 2 ¢) (2.10)

Unconstrained departure times d, s are obtained by adding dwell time 4, s and
holding time 7, s to arrival times.

dv,s = av,s + (51;73 + h%s YoeV Vse S (211)

In order to prevent overtaking, it is necessary to delay a vehicle’s departure by
h,.s when the preceding vehicle has not yet departed the same stop. As with
arrival times, the overtaking constraint starts to apply at the first stop that
a vehicle visits following a previous visit in the optimization horizon, and an
exception is made for the first vehicle in the special case that all vehicles are
between the same two stops at the beginning of the optimization horizon.

max (O, dp_1.s — dv,s) YoeV Vsé€le,1+ 1,6

v.s unless v = 1 and e; = ey, (2.12)

>
I

0 otherwise

The (possibly) constrained departure time is the unconstrained departure time
plus any extra non-control holding time (i.e. blocked time) required to prevent
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overtaking.

dps=dps+hys YEV VseS (2.13)

A vehicle’s dwell time is the greater of the boarding and alighting times.
Boarding and alighting times are modeled as linear functions of the number of
boarding f3, , and alighting «,, , passengers, respectively. Constant boarding
and alighting times per passenger, 7, and 7,, are assumed.

dys = max (Tbﬁw, Taaw) YvoeV VseS (2.14)

Demand is modeled at the origin-destination pair level (s, to s,). For the first
visit to each stop, it includes passengers who are already at the stop at the
beginning of the optimization horizon, «{, . . For subsequent visits, it includes
passengers who were unable to board the preceding vehicle because it was
full, m,_14,.5,- The number of arriving passengers is determined by integrat-
ing time-dependent passenger arrival rate functions A, s, (¢). The number of
passengers waiting to board per origin-destination pair is given by

(

d'u,s
! —i—/ ' Asy.s, (1) dt v=ygs Vs €S Vs, €S8

SbrSa
to

— dv,sb
Bustsa = 9 To—1,55.50 +/ Aspsa(t)dt Yo eV Vs, € [e,m1 + 1,6,

dvfl,sb

Vs, € S

\

(2.15)
where vehicle g, is the first to visit stop s, in the horizon. The total number
of waiting passengers is

Bus =3 Buss. WEV VseS (2.16)

S, ES

The actual number of boardings cannot exceed the remaining capacity, which
is determined by subtracting load [, s and adding alightings to capacity k.

Bos =min (B k —lys + ) YweV VseS (2.17)

When the number of passengers who want to board exceeds the remaining
capacity, it is assumed that all passengers, regardless of destination, are equally
likely to board.

/B’U,Sb

V,5p

Bv,sb,sa = ﬁv,sb,sa YoeV VS(, es Vsa es (218)

The number of passengers m, s, s, prevented from boarding (by origin-destina-
tion pair) is the difference between passengers waiting and those who board.

7T’U7Sb,5a == Bv,sb,sa - Bv,sb“sa V'U G V VSb E S Vsa E S (219)
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The number of passengers prevented from boarding vehicle v at stop s is

Ty,s = 61),5 - Bv,s = Z Tw,s,84 YoeV VselS (220)

Sa €S

Alightings come not only from passengers who board during the optimization
horizon but also from passengers who are already in the vehicle at the begin-
ning of the optimization horizon. We assume that all passengers in a vehicle
at the last stop alight. Thus, the number of alighting passengers includes pas-
sengers initially in the vehicle starting at the first stop the vehicle visits and
up to the last stop. We assume that there is no demand for travel from a stop
to the same stop, i.e. 8,55 = 0 for every vehicle and stop.

Sa
l;),sa + Z Bv,sb,sa YveV Vsa € [Gv + 1,715]

sp=ey+1

> By VoeV Vs, €[l,e)

sp=eyp+1

A (2.21)

Vehicle loads [, ; upon arrival at the first stop are known as part of the initial
state. Vehicle loads upon arrival at subsequent stops are obtained recursively.

Zl;,% YoeV s=e,+1
Ly = { e (2.22)

lv,sfl + Bv,sfl — Oy s—1 YoeV Vse [61, + 2, ev]

The set of equations in this section can be evaluated recursively to obtain
a deterministic forecast of how the system will evolve over the next cycle.
Specifically, the arrival time, arrival load, and departure time of each vehicle
are estimated for each vehicle-stop combination.

The number of passengers inside vehicles and at stops (by origin-destination
pair) at the beginning of the prediction horizon (denoted by [; . and ¢ , ,
respectively) are estimated from vehicle passage times before ¢, and dynamic
demand functions. Whenever a vehicle visits a stop, the estimated number of
passengers originating at the current stop and destined for downstream stops
is determined using the dynamic passenger arrival rate and the time since the
previous vehicle departure, while the estimated number of passengers destined
for the current stop is set to zero (because they have alighted). The initial
number of passengers at stops includes the estimated number of passengers
previously left behind by full vehicles.

2.2.4 Cost Model

The cost model determines mean cost per passenger using the prediction in-
formation from the performance model. Cost is based on waiting time and
in-vehicle delay due to holding.
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In-vehicle delay due to holding is the product of the number of through-
passengers in the vehicle and the holding time. The total in-vehicle delay over
the horizon is given by

Wy = Z Z (lv,s - Oév,s) hv,s (223)

veEV s€S

Waiting time has four components corresponding to whom is affected: pas-
sengers who arrive before the start of the prediction horizon, passengers who
arrive after the start of the prediction horizon and are served by the first ve-
hicle to arrive at the stop in the prediction horizon, passengers who arrive
between successive vehicle visits within the prediction horizon, and passengers
who cannot board the first vehicle to visit their origin stop after their arrival
because it was full.

Weg = WSO + W51 + W52 —+ WSg (2.24)

For passengers who arrived before the start of the prediction horizon, we con-
sider only their waiting time within the prediction horizon, given by

We = [(Z L;bysa> (dguy sy — to)] (2.25)

spES SaES

where dg,, s, is the time of the first departure from stop s, in the prediction
horizon. For passengers arriving between ¢y and the first departure, waiting
time depends on the arrival rate of passengers.

dgg, ,sp
Ws =35 [ @ -y @t 220)
SpES 84 €S to

The waiting time of passengers who arrive in headways contained in the pre-
diction horizon depends on both passenger arrival rates and the departure
times that determine the headway.

€v dv,sb
W52 - Z Z Z / )\Sznsa (t) (dv,sb - t) dt (227)
vEV sp=ep_1+1 5468 ¥ v—1,5,

Some passengers find that the first vehicle to arrive at their stop is full. They
are unable to board that vehicle and must wait for the next vehicle with
available space. Their additional waiting time is given by

WSS - Z Z Ty—1,s (dU,Sb - dv—l,sb) (228)

VEV sp=ey_1+1

The total number of passengers who board over the entire prediction horizon
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is given by

P=>Y"> B (2.29)

veV seSs

2.2.5 Control Strategy

Every time a vehicle arrives at a control point (i.e. a terminal or stop at which
holding is allowed), the model presented in this section is used to optimize
holding times for all vehicles at all stops over the rolling prediction horizon.
(An alternative approach not used in this research is to optimize holding times
periodically, e.g. every 5 minutes, and use the most recently optimized holding
times for all vehicles.) A general purpose non-linear optimizer (the Apache
Commons Math implementation of the BOBYQA algorithm by Powell, [2009)
is used. The optimizer calls the performance and cost models to evaluate
the objective function. The holding time suggested by the optimizer for the
vehicle that triggered the modeling-optimization event at its current stop is
implemented.

2.2.6 Dimensionality Reduction

The complexity of the optimization problem is a function of the product of
the number of control points and the number of controlled vehicles. Since
the optimization model is called frequently, it is important to control the
problem size. Optimization times may become prohibitive for instances with
many control points and a large fleet. We have had success implementing
optimization-based control in such cases by reducing the number of stops that
are control points (e.g. control points every 5 stops) and also optimizing the
holding times of a control set Vo C V' of 5 vehicles, consisting of the vehicle
that triggered the optimization event, the two preceding vehicles, and the two
following vehicles.

When a reduced vehicle control set is used, optimization policy must be
approximated for vehicles not in the control set; otherwise optimization will
produce plans assuming that other vehicles are not controlled, which could be
inconsistent with what would happen at a future optimization event that does
hold those vehicles. Past research (e.g. see [Eberlein et al.| 2001), as well as
our own experiments, show that optimization-based strategies usually lead to
even headways. We have had good results using the even headway strategy
(presented in Section to approximate the optimization policy for vehicles
not in the control set. It is also possible to use previously optimized holding
times if they are available.

In the case study presented in Section [2.3] there are 8 control points and 10
vehicles, which makes 80 decision variables. This problem is realistic in size.
Allowing holding at a reduced set of stops (8 out of 40) reduces the problem size
sufficiently that there is no need to also reduce the set of controlled vehicles.
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2.3 Application

The proposed framework is evaluated in a simulation of high-frequency bus
service. This allows the comparison of different strategies in a controlled man-
ner, where differences in performance between cases having a particular set
of demand and running time dynamics are mostly due to differences in con-
trol strategies. The simulation model is event-based. Within each replication,
events such as passenger and vehicle arrivals at stops and boarding and alight-
ing activity are processed chronologically. (Sanchez-Martinez, |2012)

The simulated transit service is a simple route with 20 stops in each direc-
tion. Vehicles have capacity for 60 passengers. Boarding and alighting times
per passenger are deterministic with 7, = 7, = 2 seconds, and the boarding
and alighting processes happen in parallel. Service operates with 10 vehicles.
Stochastic running times between stops are drawn from a log-normal distri-
bution with a mean of 60 seconds and a coefficient of variation of 0.4, though
the distribution is shifted by dynamics as described later.

The passenger arrival process is Poisson, with the same mean arrival rate
for all origin-destination pairs in each direction. This demand specification
results in (for each direction) the first stop having the highest number of
passengers boarding, the last stop having the highest number of passengers
alighting, and the middle stop having the highest vehicle loads. Two demand
levels are considered: low crowding and high crowding. The base mean arrival
rate in the first direction is set such that (if vehicles arrive every 5 minutes)
peak loads reach 75% of capacity in high crowding cases and 25% of capacity
in low crowding cases. The passenger arrival rates in the second direction are
half those in the first direction.

The analysis period begins two hours into the simulation and lasts two
hours. All passengers who arrive at their origin stop during the analysis period
are included when calculating performance measures, even if their trips end
after the analysis period.

We test the effectiveness of the dynamic control strategy in six different
cases involving different dynamics and crowding levels, as shown in Table [2.1]
There are low and high crowding variations of dynamic running times and
demand, dynamic running times but static demand, and static running times
but dynamic demand.

Table 2.1: Cases

Running Times Demand Crowding Optimal Target Headway (min)

dynamic dynamic high 4.5
dynamic dynamic low 4.6
dynamic static high 4.7
dynamic static low 4.6
static dynamic high 4.5
static dynamic low 4.1
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Dynamics in running times and demand are introduced by a dynamic factor
¢(s,t) used to transform base running times and mean passenger arrival rates
in the first direction. The factor is defined as follows:

1.0+ 2.0<t (s —1) — 2.0) for 2.0 <t — (s — 1) < 2.5

3(5,1) = § 2.0 - 2.0<t — (s —1) — 2.5) for 25 <t —r*(s — 1) < 3.0

1.0 otherwise

(2.30)
where ¢, time, and r*, running time between stops, are expressed in hours.
The 7*(s — 1) term introduces a lag for stops after the first. The dynamic
transformation shifts running time distributions without affecting their vari-
ance. In cases having dynamic demand, the dynamic transformation affects
the mean arrival rates A, 4(t) governing the Poisson process. In the two cases
having dynamic demand with high crowding, vehicles reach capacity and some
passengers are unable to board the first vehicle.

Using this setup, we independently simulate service with the static and
dynamic control using the optimization model formulated in Section In
addition to the static and dynamic optimization-based strategies, we also eval-
uate service with two heuristic control strategies in order to have a reference
for the performance of the optimization-based strategies.

The following is a list of the strategies considered:

TH (Target Headway) Hold vehicle v at control point s to ensure preced-
ing headways are never less than a prescribed target headway H.

hy.s = max (o, H- (dw - dv_LS)) (2.31)

where d,, s is the departure time of the vehicle being controlled if no holding is
applied, and d,,_; s is the time of the previous departure from the control point.
Optimal target headways for each case are found by simulating service with a
range of target headways and selecting the ones yielding lowest mean passenger
cost for the analysis period. Table shows optimal target headways for
each case. This control strategy gives an upper bound on the performance
(lower bound on the cost) that can be attained with a constant target headway
strategy, though it might be possible to improve performance further with
time-varying target headways. Since the other strategies are evaluated by
comparison to this strategy, the optimization of target headways reduces the
reported effectiveness of the other strategies. This approach differs from the
one more commonly followed in the literature (e.g. |[Delgado et al., 2012), in
which a non-optimized schedule headway (or in some cases no control at all)
is used as a base case that favors proposed control strategies.
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EH (Even Headway) Hold with the aim of equalizing the preceding and
following headways. When a vehicle is ready to depart, its preceding and
following headways are estimated. If the following headway is longer, the
vehicle is held by half the difference between the two headways, with the intent
of making the vehicle depart when the preceding and following headways are
equal. Strategies like this one have been implemented before using information
about past departure times to obtain headway estimates. Our implementation
uses the performance model to predict headways with dynamic information.
Specifically, the model forecasts departure times of the following vehicle from
the control vehicle’s current stop d,41.s (to obtain following headway), and of
the control vehicle from the preceding vehicle’s most recently departed stop
dye, , (to obtain preceding headway), as given by

(2.32)

hv,s — Imax (O, dv+1’8 B dfu—i—l,eu;l - due,,,l + to)

OS (Optimization with Static inputs) Hold at selected control points
according to the results of the rolling horizon optimization model, with run-
ning times and demand inputs defined as period-specific time-independent
constants, similar to |Delgado et al. (2012). Three periods are defined: one
covering the time during which dynamics are in effect and two covering times
before and after, when no dynamics are in effect.

OD (Optimization with Dynamic inputs) Hold at selected control points
according to the results of the rolling horizon optimization model, with running
times and demand inputs defined as time-dependent functions.

2.4 Results and Discussion

The detailed output of the simulation model includes vehicle trajectories and
arrival time at the origin, boarding time, and arrival time at the destination
for each passenger. From this we can derive performance measures such as
waiting time, in-vehicle time, trip time, vehicle loads, holding times, head-
ways, and number of passengers at stops. A probability density function is
obtained for each of these performance measures, from which statistics such
as mean, standard deviation, and percentiles can be calculated. The principal
performance measure of the following analysis is passenger cost.

The trips of passengers who arrive at their origin stop in the analysis pe-
riod are used to calculate performance measures. Passenger cost and excess
waiting time (waiting time in excess of half the scheduled headway) are cal-
culated for each passenger, and the mean cost and excess waiting time across
passengers are obtained for each replication. 60 replications were run for each
experiment. These results are discussed in Section[2.4.1] Analysis of headways
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is presented in Section [2.4.2] and analysis of stop crowding in Section [2.4.3]
Section presents an analysis of the sensitivity of performance improve-
ments to stochasticity. Section [2.4.5| explores the value of modeling dynamics
when the current state is known perfectly. Section [2.4.6|presents a comparison
of computation times for the static and dynamic optimization-based control
strategies.

2.4.1 Passenger Cost

Figure [2-3| shows a box-and-whisker plot of mean passenger cost. On the basis
of mean passenger cost across replications, EH is consistently better than TH,
OS is either better than or similar to EH, and OD is consistently better than
or similar to OS.

In the case of dynamic running times and demand and low crowding, small
decreases in mean passenger cost are observed going from EH to OS and from
OS to OD, though the 90" percentile cost decreases by 0.43 weighted minutes
going from EH to OS. In case of dynamic running times and demand and
high crowding, passenger cost distributions are similar for the EH and OS
strategies, but a significant cost decrease (1.71 weighted minutes or 6.4%) is
observed going from OS to OD.

In the case of dynamic running times, static demand, and low crowding,
mean passenger costs are similar for the EH and OS strategies, and a very
small cost decrease (0.21 weighted minutes or 1.4%) is seen going from OS
to OD. Although the maximum cost is greater with OD than OS, the 90"
percentile cost is 0.34 weighted minutes less with OD than OS. In the case of
dynamic running times, static demand, and high crowding, mean passenger
cost decreases by 1.12 weighted minutes (6.3%) going from EH to OS, and
by 0.51 weighted minutes (3.1%) going from OS to OD. The 90" percentile
cost decreases by 0.46 minutes going from OS to OD. These results suggest
that modest performance improvements are achieved by the OD strategy when
running times are dynamic, even if passengers are not being left behind due
to overcrowding.

In the case of static running times, dynamic demand, and low crowding, a
small decrease in mean passenger cost is observed going from EH to OS, and
there is no significant difference between the OS and OD cost distributions.
This suggests that when dynamics are present only in demand and in the
absence of overcrowding, there is no significant benefit to optimizing holding
times with dynamic running times and demand. This result is consistent
with the finding of |[Eberlein et al.| (2001) that holding policies are not highly
sensitive to demand patterns; our results suggest that they are also insensitive
to changes in demand over time, unless vehicle capacity is exceeded.

In the case of static running times, dynamic demand, and high crowding,
the EH and OS cost distributions are similar, but mean cost decreases by 1.34
weighted minutes (7.2%) and the 90" percentile cost decreases by 1.51 minutes
going from OS to OD.
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Figure 2-3: Distributions of Mean Passenger Cost

41



Large performance improvements are seen only in the cases involving dy-
namic demand and high crowding, which are the two cases having the highest
number of passengers left behind. These cases have 6.4% and 7.2% decreases
in mean passenger cost going from OS to OD. This suggests that the great-
est benefits of optimizing with dynamic running times and demand can be
expected when, due to dynamics in running time or demand, a significant
fraction of passengers have to wait for more than one vehicle. This is due
to the dynamic model’s ability to predict when vehicles will be loaded to ca-
pacity, a critical factor in determining optimal holding policies, since it is not
effective to hold vehicles that will fill up. The OS strategy is equally able to
predict when capacities are reached if running times or demand do not vary
significantly over the rolling optimization horizon.

Observed differences in excess waiting time closely parallel those in mean
passenger cost. Decreases in excess waiting time of 15.8% and 25.0% going
from OS to OD are observed for the cases involving dynamic demand and high
crowding.

2.4.2 Headways

Table shows the mean and standard deviation of headways at the first
inbound stop. In all cases, the TH strategy yields the greatest mean headways.
Noting that this strategy also yields the greatest mean passenger cost, we
observe that performance improvements are possible with more sophisticated
holding strategies. The time vehicles spend holding is not productive, and
greater overall holding times lead to less frequent service and greater passenger
waiting times. However, not holding enough may lead to bunching that is
difficult to recover from, which is another way in which productivity can suffer.
While the performance advantage of EH over TH stems at least in part from
running more frequent service, mean headways increase or remain similar when
going from EH to OS and OS to OD in all cases. This suggests that the
advantage of OD over OS and OS over EH is not due to running more frequent
service.

One might expect that holding optimization necessarily involves a trade-
off between frequency of service and headway regularity, since more holding
allows decreasing headway variability. The results in Table [2.2| show this is
not always the case. For instance, in the case of dynamic running times and
demand and low crowding, the OD strategy reduces both the mean and the
standard deviation of headways with respect to the TH strategy. This indicates
that some strategies choose holding times more effectively.

One might also expect that for a given mean headway, lower headway vari-
abilities lead to better performance. This notion, captured formally in the
commonly used equation expressing expected waiting time in terms of head-
way mean and standard deviation, assumes that passengers are not left behind
by (full) vehicles and that headway variability is entirely random (rather than
systematically time-dependent). In the two cases with the greatest decreases
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Table 2.2: Headways at First Stop

Running Times Demand Crowding Strategy Mean Standard Deviation

Dynamic Dynamic Low TH 5.16 2.52
EH 4.79 2.46
OS 5.04 1.96
OD 4.93 2.07
Dynamic Dynamic High TH 5.73 2.78
EH 5.46 2.67
0OS 5.47 2.74
OD 5.43 2.97
Dynamic Static Low TH 5.11 2.30
EH 4.76 2.31
0S 4.95 1.98
OD 4.90 1.94
Dynamic Static High TH 5.78 2.45
EH 5.44 2.58
OS 5.69 1.68
OD 5.54 1.51
Static Dynamic Low TH 4.52 1.71
EH 4.28 2.04
(01} 4.42 1.59
OD 4.40 1.71
Static Dynamic High TH 5.13 1.43
EH 4.83 1.91
0OS 5.02 1.55
OD 4.97 2.11
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in mean passenger cost going from OS to OD, which are also the two cases with
dynamic demand and high crowding, mean headways are similar but headway
variability increases going from OS to OD. In these cases a significant number
of passengers are left behind, so the best holding policies are not necessar-
ily those that balance headways. Indeed, there may be situations in which
strategic bunching is desirable for a period of time to manage overcrowding.

2.4.3 Crowding at Stops

The number of passengers waiting at the maximum load point (stop 10 in the
first direction) was analyzed in the case of dynamic running times and demand
and high crowding. Figure [2-4] shows mean loads over time for the different
control strategies.

The OD strategy leads to the lowest stop crowding throughout most of the
analysis period, ending at about 13 passengers compared to about 20 passen-
gers for the EH and OS strategies. The difference in number of passengers
at this time is as large between OS and OD as between TH and EH. This
suggests that the OD strategy is more effective in controlling overcrowding at
stops in services running at capacity with significant running time and demand
dynamics.

2.4.4 Sensitivity to Stochasticity

The earlier discussion shows that the OD strategy can lead to improved per-
formance in some cases. There are at least two possible reasons for this. First,
since the OD strategy can predict future system states more accurately, it may
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be able to generate preemptive control policies that prepare the system for de-
lays or surges in demand before these reach a critical level. Second, although
the forecasting model underlying the OS and OD strategies is deterministic,
the OD strategy may be able to react to disruptions caused by stochastic run-
ning times and demand more effectively than the OS strategy, by considering
dynamics of running times and demand. In order to understand which of these
plays the greater role, we conduct a sensitivity analysis of performance using
the OS and OD holding strategies under low and high running time variabil-
ity. The analysis focuses on the two cases having dynamic running times and
demand (with low and high crowding).

In all previous cases, running times between consecutive stops are drawn
from a log-normal distribution with a mean of 60 seconds and a coefficient of
variation of 0.4 (shifted for dynamics). We introduce low and high variability
scenarios that instead have coefficients of variation of 0.2 and 0.6, respectively.
In all cases, demand follows the same Poisson process as before. Figure [2-5
shows mean passenger cost distributions in a box and whisker plot.

Both mean passenger costs and variability in these means across replica-
tions increase with running time variability. As before, the OD strategy yields
lower mean passenger costs than the OS strategy, and the improvement is
small in cases with low crowding and significant in cases with high crowding.
Going from OS to OD, mean passenger costs decrease by 0.28 weighted min-
utes in the low crowding, low variability case, 0.33 weighted minutes in the low
crowding, high variability case, 1.31 weighted minutes in the high crowding,
low variability case, and 1.20 minutes in the high crowding, high variability
case. For low crowding, the improvement is 0.05 weighted minutes greater
in the high variability case than the low variability case. For high crowding,
the improvement is 0.11 weighted minutes less in the high variability case than
the low variability case. The small magnitude of these two differences suggests
that performance improvements going from OS to OD are robust to changes
in system stochasticity, and that most of the improvements come not from the
OD strategy reacting with greater aptitude to unpredictable stochasticity, but
from its ability to generate preemptive policies in light of forecast dynamics
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in running times and demand.

2.4.5 Sensitivity to Current State Information Accu-
racy

Since the OD strategy incorporates time-varying running times and demand,
it is better able to estimate the current system state as well as predict future
states under a variety of control policy scenarios. The model used for holding
time optimization takes inputs that specify both the current system state
and the running time and demand functions that govern how the system is
expected to evolve. For instance, the number of passengers initially waiting at
stops (1}, s,) or inside vehicles (I, . ), by origin-destination pair, are given to
the optimization model. The OD strategy can estimate these quantities better
because it has more accurate descriptions of passenger arrival rates over time.

We have seen that the OD strategy improves performance in some cases,
but the question remains: to what extent do performance benefits stem from
the ability to estimate current system state more accurately rather than from
the ability to predict future system states with dynamic running times and
demand? If the benefit came mostly from the former, then performance under
the OS strategy could be improved with the use of passenger counting tech-
nologies. To investigate, we evaluate operations in the case of dynamic running
times and demand and high crowding using the OS and OD strategies, but
replacing the estimation of number of passengers at stops and in vehicles by
the true values known to the simulation model. In reality it would be diffi-
cult to obtain this information, but the result of this experiment allows us to
understand the relative importance of accuracy of current vs. future system
states.

Figure [2-6|shows mean passenger cost distributions for the case of dynamic
running times and demand and high crowding in three different scenarios hav-
ing different information about the current state. In the first case, the number
of passengers is estimated both in vehicles and at stops. This is the base case
presented in Section repeated here for ease of comparison. In the second
case, the number of passengers in vehicles (by destination) is known perfectly
but the number of passengers at stops (by destination) is estimated. In the
third case, the number of passengers, both in vehicles and at stops, is known
perfectly.

The improvement going from the OS strategy to the OD strategy is 1.71
weighted minutes in the base case, 1.31 weighted minutes in the case of known
vehicle loads but estimated number of passengers at stops, and 0.74 weighted
minutes in the case of known vehicle loads and number of passengers at stops.
As expected, the improvement decreases as more current state information is
known rather than estimated, because the information accuracy gap closes.
The 0.40 weighted minutes of improvement gained by knowing the number of
passengers initially in vehicles is 24% of the 1.71 weighted minutes improve-
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Information

ment in the base case. The 0.97 weighted minutes improvement gained by
knowing the number of passengers initially in vehicles and at stops is 57% of
the 1.71 weighted minutes improvement in the base case. In other words, more
than half of the OD strategy’s advantage appears to come from estimating the
current state, rather than future states, more accurately.

Focusing on the scenarios with the OD control strategy, there is negligible
performance difference between the base case and the case of known vehicle
loads but estimated number of passengers at stops, and a very small improve-
ment of 0.13 weighted minutes going from that to the case of known number
of passengers in vehicles and at stops. This indicates that the OD strategy’s
current state demand estimates are sufficiently accurate for this application.

2.4.6 Computation Time

In the context of real-time control, it is important to consider not only the
effectiveness of control but also the computational effort required to generate
control policies. This is because in real applications decisions must be made
quickly and provided to vehicles soon after their arrival at control points.
Simulations were run on a computer having an Intel Core i7-3930K processor
running at 3.20GHz. Mean computation times were 0.77 seconds with OS
and 1.08 seconds with OD. The 90" percentile computation time for the OD
strategy was 1.83 seconds, and the maximum was 3.42 seconds. Therefore, it
is feasible to employ the OD strategy in real-time applications.

2.5 Concluding Remarks

The mathematical model formulated in this research captures dynamic run-
ning times and demand. A holding strategy based on this model (OD) was
tested in a simulation environment under a variety of cases having different
dynamics and its performance was compared to that of three other control
strategies, including a similar optimization-based strategy that assumes the
equivalent static running times and demand (OS). The principal performance
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measure used for evaluating strategies was mean passenger cost, which reflects
passenger trip durations, weighting time spent waiting at stops twice as much
as time spent in the vehicle. Excess waiting time, headways, vehicle loads,
and crowding at stops were also considered. The key findings are:

1.

The proposed control strategy based on optimization with dynamic in-
puts (OD) outperforms the OS strategy in cases where, due to running
time or demand dynamics, the system becomes overcrowded and passen-
gers are left behind by (full) vehicles. In cases having dynamic running
times but not significant overcrowding, the proposed dynamic strategy
OD modestly outperforms the OS strategy. Dynamics in demand do not
provide an opportunity for the OD strategy to improve performance over
the OS strategy, unless the dynamics lead to significant overcrowding.

. Optimization-based control strategies lead to similar, or better, perfor-

mance than the even headway strategy (EH), and the EH strategy out-
performs the (fixed) target headway strategy (TH).

Holding strategies improve performance through a combination of run-
ning more frequent service due to more efficient use of the fleet and
regulating headways. The performance improvement going from TH to
EH is at least in part due to running more frequent service. However,
headway regulation is the principal mechanism by which performance
improves going from EH to OS and from OS to OD.

. When dynamics are present, it is possible for a holding strategy to im-

prove performance even if its holding policies lead to increased headway
variability (and similar mean headways), especially if the increase in
headway variability is a byproduct of more efficient use of resources and
the optimal holding policy is different from merely balancing headways.
This is relevant in cases of overcrowded operations.

The degree to which the OD strategy outperforms the OS strategy is not
sensitive to running time variability. Most of the benefit comes from the
OD strategy’s ability to generate preemptive holding policies in light of
forecast dynamics.

A large part of the performance improvement going from OS to OD is
due to more accurate estimates of the current state, while the remain-
der comes from modeling running times and demand dynamically when
forecasting future system states under varying holding policy scenarios.

. Computation times with the OD strategy are suitable for real-time ap-

plication.

The findings presented in this chapter are specific to the hypothetical simulated
transit service, although they might also hold for many real high-frequency
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transit services. Future research could explore the effectiveness of the pro-
posed dynamic holding strategy in a real transit service. In real applications
it may be undesirable to delay vehicles whose drivers are expected to arrive
late at their scheduled relief point. The incorporation of crew constraints and
their effect on control effectiveness could be explored. The effect of intentional
or benign disregard of holding instructions by drivers, and of errors on the in-
formation assumed on vehicle locations, running times, and passenger arrival
rates could be investigated. Control strategies that capture the stochastic
aspects of transit performance could be developed and tested, and the rel-
ative importance of capturing stochasticity vs. capturing dynamics could be
investigated.
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Chapter 3

Holding Control Under Event
Driven Dynamics

Operating high-frequency transit without controlling departure times from
terminals and stops can lead to disrupted service, often in the form of headway
variability and bunching, which in turn leads to passengers experiencing long
waiting times, crowded vehicles, and unreliable trip times (Delgado et al.,
2012)). A number of factors can disrupt service, including variability in running
times and demand, inadequate operations planning or execution, and atypical
events that alter operating conditions. Control is exercised in response to
disrupted service, typically by observing current operating conditions through
automated data collection systems and generating a control response based on
heuristics or optimization models.

This chapter focuses on holding control responses to disruptions triggered
by events. Events such as road congestion caused by traffic accidents, rail sig-
nal failures, and medical emergencies in vehicles or stations are unpredictable.
Other events such as concerts and sport contests may cause predictable surges
in demand, resulting in short-term local congestion. Regardless, information
about the event can be considered in the generation of a control response.
Although events such as traffic accidents cannot be predicted, the detection of
the event along with an estimate of its duration based on past experience and
real-time updates on the progress towards resolution can be used to predict
congestion and how it might affect transit service. The end of a concert or
sports event is associated with an increase in traffic and demand for transit ser-
vice. The time at which the event ends, associated traffic delays, and number
of people who will take transit can be estimated with information about event
attendance, real-time updates on the progress of the event, and observations
of operations during similar events in the past.

These predictions can be used to apply control preemptively instead of
waiting until service is disrupted enough that a problem is apparent. Advances
in sensing and telecommunications technology have fostered an increasingly
data-rich environment in which data about many aspects of a transit sys-
tem can be collected in real time from multiple sources such as infrastructure
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health monitoring systems, traffic sensors, live camera feeds, automated ve-
hicle location, automated fare collection, automated passenger counting, and
crowd-sourcing through social media platforms. However, the potential value
of information derivable from these data sources to improving the effectiveness
of real-time control responses to events has not been explored.

An additional factor enabling control with information about events is the
holding control optimization model presented in Chapter [2, which captures
expected dynamics in running times and demand. This research applies that
model in the context of dynamics driven by unforeseen and foreseen events,
with the objective of evaluating the potential value of information about event
dynamics on real-time control effectiveness.

It is not possible to respond to unforeseen events through traditional oper-
ations planning, because it happens before service delivery. For large foreseen
events, transit operators may change the operations plan so that, for example,
extra vehicles are operating during a large event. Dealing with these events
through real-time control is no substitute for good operations planning. How-
ever, once extra resources are deployed, it is necessary to control them to
ensure that they are used most effectively. Some predictable events are not
large enough to warrant a special operations plan, but can still affect service
in the absence of real-time control. This research aims to show to what ex-
tent and in what manner real-time information about events can improve the
effectiveness of real-time control in both these contexts.

This chapter is organized as follows: Section reviews the literature,
Section presents the framework, Section presents the holding time op-
timization model, Section discusses the application of this model to a
simulated transit service subjected to both unforeseen and foreseen events,
and Section 3.5 draws conclusions.

3.1 Literature Review

The majority of control strategies in the literature do not utilize information
about events. Strategies that do not consider the availability of real-time in-
formation (Osuna and Newell, 1972, |Barnett|, 1974, [Newell, 1974 Turnquist
and Blume| 1980, and /Abkowitz and Lepofskyl |1990) do not capture event-
driven dynamics. Strategies aimed at schedule adherence (Adamski and Tur-
nau, [1998) are only suitable for long headway services in which passengers are
aware of schedules and time their arrival at stops to take specific vehicle trips.
Strategies aimed at headway adherence (Rossetti and Turitto, 1998) or head-
way regularity (Daganzo| |2009, Daganzo and Pilachowski, 2011, |Cats et al.,
2011}, and Bartholdi and Eisenstein, 2012) are sensitive only to local current
conditions such as the preceding and following headways of a vehicle, so they
do not reflect event-driven dynamics.

Strategies based on cost minimization (O’Dell and Wilson, |1999, |[Eberlein
et al., 2001, Shen and Wilsonl, 2001}, Zhao et al. 2003, Sun and Hickman),|2008|,
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Puong and Wilson, 2008, Delgado et al., 2009, Delgado et al., 2012, Saez et al.,
2012, and Chapter [2) employ mathematical programming or other optimiza-
tion methods and a variety of information including vehicle locations, loads,
and passenger arrival rates, sometimes in a rolling horizon formulation. They
respond to both the current state and predicted future states under varying
control scenarios. Most assume static running times and demand, making it
cumbersome, if not impossible, to capture event-driven dynamics and preemp-
tively consider them in the production of a control plan. Others (O’Dell and
Wilson, 1999, [Shen and Wilson, 2001}, and [Puong and Wilsonl, [2008) formulate
holding and short-turning optimization models and apply them to temporary
blockages in rail lines with static running times and demand.

Within the family of real-time control strategies based on future system
state prediction models, the strategy presented in Chapter [2] models running
times and demand dynamically. The effectiveness of the model is evaluated by
controlling a simulated transit service exhibiting time-dependent running times
and demand. The results show that the dynamic control strategy outperforms
its static equivalent in high-demand cases where passengers may be left behind
at stops, and also when running times change significantly over time. However,
the model is only evaluated in scenarios having dynamics that are known well
in advance, such as those caused by the typical rush hour: running times and
demand rising and falling gradually.

This chapter applies the model developed in Chapter |2 to scenarios in
which dynamics are driven by events including both unexpected incidents and
anticipated surges in demand. The following sections present the dynamic
model framework and an evaluation of its performance under event-driven
dynamics.

3.2 Framework

Controlling transit operations considering event-driven dynamics can poten-
tially improve the effectiveness of control, reducing waiting times and trip
times for passengers during an event. The performance benefit of a strategy
that captures event-driven dynamics, i.e. an informed strategy, is derived from
its information advantage over a strategy that neglects event-driven dynamics,
i.e. a naive strategy. Having more realistic predictions of running times and
demand can lead to better predictions of future system states (and their cost
to passengers) under different control scenarios, ultimately leading to more ef-
fective control policies. In order to apply holding control considering the effect
of events, transit operators must (1) be aware of events, (2) gather relevant
data, (3) model future operating conditions, and (4) optimize holding times
capturing event-driven dynamics.

Handling unforeseen events requires detecting the event in real-time. Since
there is little time to act, operators must rely on data that can be obtained
quickly; it may be difficult to obtain details. For example, an operations
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control center might detect a signal failure on a rail transit link, but know only
the time and location of the event. Handling planned events requires knowing
when the event is scheduled to occur and identifying potential sources of data
that help inform how the event might affect operations. The data, which may
be specific to the event, can be gathered in advance. For example, relevant
data for a concert might include date and time, estimated attendance, and
estimated duration.

Once relevant data is available, the operator must estimate and model fu-
ture operations in light of the event. Previous experience with similar kinds of
events can help. Historical data on running times and demand during events
can be combined with event-specific data to prepare predictive models. Care
should be taken to separate exogenous factors from those triggered by control
responses. For example, running time models should be based on running time
observations excluding holding times. Later, when a new event of the same
kind occurs, these models can be used to estimate new conditions. For exam-
ple, a simple model might predict delays caused by a traffic accident according
to its reported severity, basing its predictions on running times observed dur-
ing similar events in the past. A different model could be used to predict
the demand surge at the end of a concert based on estimated attendance and
historical data pairing attendance with observed demand surges.

Unforeseen events must be handled quickly, because the information advan-
tage of an informed control strategy can be ephemeral. Naive control strategies
can respond effectively to disruptions already visible in the current state of a
transit line. The advantage of informed control is predicting disruption effects
before they materialize, which can happen quickly after an event is detected.
Since the information advantage is determined not only by more realistic pre-
dictions of future system states but also by how far in advance this knowledge
is utilized, the advantage of informed control for unforeseen events can be sig-
nificantly less than for foreseen events. In order to maximize the information
advantage, it would be advantageous to automate the process of detecting un-
foreseen events, estimating changes in operating conditions, and updating the
control optimization model.

Events cause transients in running times and demand, which is why it is
important to model these changes dynamically. Running times and demand
are specified as functions of time, allowing the optimization model to assign
numbers of boarding passengers and running times between stops to vehicles
according to their departure times from stops. General piecewise functions
can be used, making the framework flexible enough to handle a wide variety
of events, including traffic, blocked links, demand surges, etc. The functions
can be updated as new information becomes available. For example, at the
beginning of a signal failure the transit operator might only know its location,
so the running time function for the affected link can be changed to reflect a
blockage lasting some estimated amount of time. Once the operator identifies
the cause of the signal failure and the availability of crew required to fix the
signal, the duration estimate can be refined and the running time function
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updated accordingly. This allows control optimization to utilize information
as it becomes available.

3.3 Control Model

The dynamic model presented in Chapter [2]is well-suited to capture transients
in running times and demand caused by events, in contrast to static models
that assume constant running times and demand throughout the prediction
horizon. The objective is to minimize passenger cost over the prediction hori-
zon, which combines waiting time and in-vehicle delay, subject to constraints
on holding times at stops. For this research, the objective function is modified
to minimize total, rather than mean, passenger cost, by not dividing the sum
of waiting and in-vehicle time by the number of passengers boarding during
the prediction horizon. Minimizing mean cost is necessary in rolling horizons
defined temporally in order to discourage holding policies that slow vehicles
down to reduce total cost by serving fewer passengers. Since in this research
the rolling horizon is defined spatially, the horizon includes a full cycle for
each vehicle regardless of how long it takes. Therefore, minimizing total cost
encourages running fast, instead of slow, to serve fewer passengers. Minimiz-
ing mean cost instead can encourage excessive holding when vehicles do not
run full, because by slowing down service, more passengers are served in the
prediction horizon. This is not the case in overcrowded lines. As before, the
control model is used to optimize holding times, for all vehicles at all stops over
the rolling prediction horizon, every time a vehicle arrives at a control point.
The holding time suggested by the optimizer for the vehicle that triggered the
modeling-optimization event at its current stop is implemented.

3.4 Applications

This section presents the application of the framework and control model to
a simulated high-frequency transit service subject to changes in the operating
environment caused by events. Two cases are explored: one in which the event
is unforeseen and information about it becomes available only at the time of
the event, and another in which the event is foreseen and information about
it is known well in advance. For each case, two control strategies are applied:
a naiwe strategy that ignores information about the event and an informed
strategy that utilizes it. The naive strategy can detect and respond to disrup-
tions as they develop, but without awareness of the event, it assumes typical
running times and demand to forecast future system states. The informed
model anticipates changes in the operating environment and controls preemp-
tively. The value of information about events is assessed by comparing transit
service performance under the naive and informed control strategies.

The transit line used in both applications is a simple bus route having 20
stops per direction. Running times between stops are log-normally distributed
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with a mean of 1 minute and a coefficient of variation of 0.3. Demand is mod-
eled using a non-stationary Poisson process, with all origin-destination pairs in
each direction having the same arrival rate. Vehicles can carry up to 60 passen-
gers. Holding is allowed at stops 5, 10, 15, and 20 in each direction. Holding
at the first three control points in each direction is limited to 2 minutes. 100
replications are used for each simulation.

The simulation model outputs vehicle trajectories and arrival time at the
origin, boarding time, and arrival time at the destination for each passenger.
From this we can derive performance measures such as waiting time, in-vehicle
time, trip time, vehicle loads, headways, and number of passengers at stops
over time. A probability density function is obtained for each of these per-
formance measures, from which statistics such as mean, standard deviation,
and percentiles can be calculated. Performance is evaluated based mainly on
passenger cost (twice the waiting time plus in-vehicle time).

3.4.1 Unforeseen Event

The first application deals with an unforeseen event causing a link to be blocked
for a short time during rush hour. This might be due to a traffic accident.
Traffic quickly builds up, causing delays on upstream links. Passengers con-
tinue to arrive as usual, but they have longer waiting times due to the long
headway caused by the event. Since the event cannot be anticipated, no in-
formation about the incident is known before it occurs. However, once the
incident occurs, it is reported and information about it becomes available. For
this application the information of interest is the duration of the incident. We
optimistically assume that the informed model becomes aware about the inci-
dent and the duration of the blockage at the time the incident occurs. In real
applications there might be a delay before awareness and an error in the esti-
mated duration of the blockage, though the estimate could be updated based
on incident monitoring.

The case, illustrated in Figure [3-1| is modeled by adding a deterministic
dynamic running time delay. The delay first occurs on the link connecting stops
4 and 5 in the first direction, but then it propagates to the three links upstream
at 1 minute offsets to simulate traffic congestion building up. The delay is

upstream traffic rush direction, high demand
<« »

y

- JI/. - =

10-minute blockage at 3:00

10 vehicles with capacity for 60 passengers
Mean headway of 4.7 minutes before the event

Figure 3-1: Unforeseen Event Case
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Figure 3-2: Mean Passenger Cost for the Unforeseen Event

initially 10 minutes but tapers down to 0 over a period of 10 minutes, such that
a vehicle entering the link 5 minutes after the blockage begins is delayed for
only the 5 remaining minutes. Demand is higher in the first (rush) direction
than the second, with vehicles reaching about 85% of capacity on average
before the event. Demand in the first direction begins decreasing shortly after
the event, simulating the transition from peak to mid-day operations. The line
operates with 10 vehicles. The mean headway before the event is 4.7 minutes.

Neither of the control models is aware of the event before 3:00. When
the blockage begins (at 3:00), the informed model becomes aware of the event-
driven delays in running times, but the naive model continues using the typical
running times. Hence, the informed model has the advantage of being able
to predict the disruptions caused by the link blockage before the disruptions
can be detected in the current state. The advantage lasts only for a few
minutes, because once vehicles are delayed, the naive model sees the effect of
the blockage.

Mean cost for all passengers drops from 14.6 to 14.5 weighted minutes (less
than a 1% reduction) going from the naive strategy to the informed strategy.
This difference is small but statistically significant at a significance level of
0.01. Since the system is stochastic, outcomes vary across replications. Fig-
ure shows the mean, 10" percentile, and 90" percentile of the probability
distribution of mean passenger cost over time for the naive and informed con-
trol models, considering passengers boarding at all stops. Thick lines show the
across-replications rolling mean, while thin lines show the across-replications
10" and 90 rolling percentiles. The plotted statistics are computed by divid-
ing the analysis period beginning at 2:00 and ending at 5:00 into 36 5-minute
intervals, then calculating the mean cost across passengers arriving at their ori-
gin stop in each interval for each replication, and finally computing the mean,
10" percentile, and 90*" percentile of that across replications. The differences
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in cost achieved by the two control models are small at all times.

Since Figure [3-2| groups passengers by the time they arrive at their origin
stop, it mixes passengers affected by the blockage with others who are not. The
timing of affected passengers is later the farther downstream from the blockage
their origin stop is. Accounting for the required timing offsets, passengers
directly affected by the blockage enjoy 0.3 minutes of waiting time savings
under the informed strategy (a 4% reduction).

3.4.2 Foreseen Event

The second application deals with a planned event that induces running time
delays and a surge in demand with predictable timing and magnitude. The
event might be, for instance, the end of a concert or sport contest, when those
attending the event leave the venue and crowd the surroundings. Traffic slows
near the venue due to automobiles leaving and the great number of people
crossing streets. A portion of the attendees take the transit service analyzed
here. Some have to wait for more than one vehicle because vehicles reach
capacity.

The case, illustrated in Figure[3-3], is modeled by adding a surge of demand
at the midpoint of the route in both directions, in addition to a running time
delay in the adjacent links. The demand surge is modeled by temporarily
increasing the arrival rate governing the Poisson process for passengers origi-
nating at stop 10 in each direction. The surge accounts for two full buses per
direction over 15 minutes, starting suddenly at 3:00 and tapering off linearly
back to the base arrival rate. A deterministic running time delay of 3 minutes
over the same period is added to the two links arriving at and departing from
stop 10 in each direction. The service operates with 5 vehicles. The mean
headway before the event is 7.8 minutes.

The informed model is aware of the demand surge and running time delays
even before the event. The information enters the model gradually as the
prediction horizon end rolls past the event time. In contrast, the naive model
assumes typical operating conditions and only responds after disruptions are
evident in the current state.

Space-time diagrams of naive and informed control showing vehicle move-
ment and loads (by line thickness) for a single replication are shown in Fig-
ure 3-4] Stops in both directions are shown on the vertical axis and time

15-minute demand surge at 3:00
2 full buses extra at each stop

3 minute running time delay
on the 4 adjacent links

5 vehicles with capacity for 60 passengers
Mean headway of 7.8 minutes before the event

Figure 3-3: Foreseen Event Case
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Figure 3-5: Mean Passenger Cost for the Foreseen Event

is shown on the horizontal axis. The naive model does not react until after
vehicles are noticeably delayed, so a long headway results between the first
delayed vehicle and the preceding one. Holding is applied after the event to
regulate headways. The informed model begins responding preemptively, so
that by sacrificing some headway regularity before the event, vehicles arrive
shortly after the event, reducing waiting time. In the illustrated example (one
of the 100 replications), the vehicle that departs stop 10 in the second direc-
tion right after 3:00 is held more than what is required to regulate headways
almost a full cycle before, at stop 20 in the second direction, and the following
vehicle is not held at all, although some holding would have been necessary to
achieve regular headways in the first direction. Consequently, vehicles arrive
soon after the demand surge begins with shorter headways to serve passengers
from the event in both directions, and headways are regular after the event.

Figure shows the mean, 10*" percentile, and 90" percentile of the
probability distribution of mean passenger cost over time for the naive and
informed control models, considering passengers boarding at all stops. Thick
lines show the across-replications rolling mean, while thin lines show the across-
replications rolling 10" and 90'® percentiles. Informed control leads to higher
mean cost shortly before the event (when there are few passengers in the ve-
hicles held) because of preemptive holding, but lower mean cost over the half
hour following the event, when many more passengers are affected. Costs are
very similar both well in advance of the event and starting a half hour follow-
ing the event. Mean cost for passengers boarding at the two stops affected
by the event during the event-induced demand surge drop from 30.2 to 24.8
weighted minutes going from naive to informed control (an 18% reduction).
Mean cost for all passengers boarding anywhere (including passengers affected
by holding before the event) drops from 19.8 to 19.0 weighted minutes going
from naive to informed control (a 4% reduction).

Figure shows the mean, 10*" percentile, and 90" percentile of the prob-
ability distribution of number of passengers waiting, over time, at stop 10 in
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Figure 3-6: Passengers Waiting at Stop 10 for the Foreseen Event

the first direction, for the naive and informed control models. Thick lines
show the across-replications mean number of passengers and thin lines show
the across-replications 10" and 90* percentiles. The informed control model
achieves a lower number of passengers waiting during almost all the demand
surge. The mean peak number of passengers is reduced from 91.5 to 71.8 (a
22% reduction). In fact, the mean peak number of passengers with informed
control is only 5 passengers more than the 10*" percentile number of passen-
gers with naive control. Few passengers are waiting at any given time before
the event or after the demand surge dissipates.

Figure shows the mean holding intensity over time for the naive and
informed control models, considering all passengers. Holding intensity, mea-
sured in passenger-minutes per minute, indicates how much passengers are
held and increases with both holding duration and number of passengers held.
Informed control leads to more holding during the period leading to the de-
mand surge but less holding during the demand surge, when it is desirable
to hold less in order to increase supplied capacity. Holding intensity is the
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Figure 3-7: Holding Intensity for the Foreseen Event
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same under both strategies far before the event as well as after the demand
surge dissipates. Mean holding intensity over the entire analysis period is 0.4
passenger-minutes per minute for both strategies, suggesting that the benefits
of informed control do not require additional holding.

3.4.3 Effect of Erroneous Information

In the cases presented so far, the informed strategy is based on perfect infor-
mation about the event. There are no errors in the estimated timing, form,
and magnitude of disruptions caused by the event. The results presented so far
can be interpreted as upper bounds on the value of information for real-time
holding control during events, because errors in the provided information can
harm the performance of the informed strategy. In real cases, the effects of an
event on running times and demand are uncertain a priori. Focusing on the
foreseen event case, this section explores the effect of erroneous information
on the effectiveness of the informed control strategy. Two types of errors are
considered: errors in the magnitude of the demand surge and errors in its
timing. While the information used by the informed control strategy changes,
the actual magnitude and timing of the demand surge and associated running
time delays remain as before.

To investigate the effect of errors in the estimated magnitude of the demand
surge, the optimization model is given dynamic demand functions accounting
for either 1 full bus or 3 full buses of additional passengers in the stops affected
by the demand surge, instead of the actual 2 full buses of additional passen-
gers used by the simulation model. To investigate the effect of errors in the
estimated time of the demand surge, the optimization model is given dynamic
demand and running time functions for the event occurring either 10 minutes
early or 10 minutes late. With errors in estimated time there is opportunity
to correct the information. When the model operates assuming the event will
happen 10 minutes early, the information is corrected 10 minutes prior to the
actual event. When the model optimizes assuming the event will happen 10
minutes late, the information is corrected at the time of the actual event.

Table |3.1| shows the percentage improvements in mean passenger cost with
respect to the cost achieved by the naive strategy, for all passengers as well
as for only surge passengers, i.e. those arriving at the two stops affected by
the demand surge during the surge. FErrors in the magnitude estimate are
less onerous than errors in timing. The informed strategy achieves lower cost
relative to the naive strategy with under- or overestimated surge magnitude,
but the errors in timing increase the cost relative to the naive strategy. This
suggests that when there is significant uncertainty in the timing of an event,
it is better to ignore the information until there is higher certainty.

62



Table 3.1: Effect of Erroneous Information for the Foreseen Event

Information Error % Improvement % Improvement
All Passengers  Surge Passengers

None (Perfect Information) 4 18
Lower Demand Surge Magnitude 4 13
Higher Demand Surge Magnitude 1 10
Earlier Demand Surge —4 —2
Later Demand Surge -3 -1

3.5 Concluding Remarks

The holding control model presented in Chapter [2] based on rolling-horizon
optimization capturing dynamics of running times and demand, can be ap-
plied to control a high-frequency transit service subject to dynamics caused
by events. Two types of events are considered: unforeseen events such as a
link blockage due to a traffic accident, for which dynamics can be predicted
only after the event has been detected, and foreseen events such as the end of
a concert or sport contest, for which demand and running time dynamics can
be predicted in advance.

This research compares the performance of a simulated transit service sub-
ject to foreseen and unforeseen events under two control scenarios: naive and
informed control. Naive control generates holding policies based on rolling
horizon predictions assuming typical conditions, without the dynamics of the
event coming into play. Informed control generates holding policies based on
rolling horizon predictions capturing predicted event dynamics. Therefore, it
can begin responding to events before disruptions develop. The performance
improvements achieved by the informed control model can be interpreted as
the value of information about event dynamics for real-time control.

Information about events can improve the effectiveness of real-time holding
control in response to events. The magnitude of the performance improvement
depends on the information advantage of informed control over naive control.
Since the advantage grows as information is known farther in advance, perfor-
mance improves more with foreseen events than with unforeseen events. Pre-
emptive holding suggested by the informed control model increases passenger
cost shortly before a foreseen event affects service, but decreases passenger
cost thereafter, for an overall net benefit.

Information about an unforeseen link blockage does not significantly im-
prove the effectiveness of control. In the specific case presented, a cost re-
duction of less than 1% was observed. Information about a foreseen localized
demand surge can improve the effectiveness of control by decreasing waiting
time of passengers from the event and number of passengers waiting at the
affected stops. In the specific case presented, an 18% cost reduction was ob-
served for passengers arriving at the two event stops during the demand surge,
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and the peak number of passengers waiting at the affected stops decreased by
22%. These improvements were observed across the distribution of outcomes,
including low and high percentiles of passenger cost and number of passengers
waiting at the stops affected by the demand surge. These results reflect the
performance of an informed control strategy given error-free information.

Erroneous information decreases the effectiveness of the informed control
strategy. In the case of a foreseen demand surge, errors in the surge time
estimate are more onerous than errors in the surge magnitude estimate. Con-
trolling assuming incorrect event timing can be counterproductive. It is better
not to use information about an event, i.e. to use the naive strategy, until its
timing is certain.

Future research might explore how delays in receiving information about
an event affect the control policies and effectiveness of the informed control
strategy. Stochastic optimization could be used to capture the uncertainty
in the timing, duration, and magnitude of events. The performance benefits
observed in this chapter achieved with information about events are specific
to holding control. The information might be more useful when other con-
trol strategies such as short-turning, dynamic deployment of reserve vehicles,
and dynamic re-routing are available. For example, a greater performance
improvement might be possible in the unforeseen link blockage case if vehi-
cles were allowed to short-turn from the reverse peak direction to the peak
direction downstream of the blockage. The applications presented in this re-
search have a fixed dynamic demand that is independent of operator control
actions and system performance. The framework could be applied to cases in
which passengers can choose alternate services or modes in response to service
alerts. In these cases demand models would play the critical role of forecast-
ing the effect of events and service alerts on demand. The extraction, fusion,
and interpretation of both historical and real-time data from multiple sources
in the context of real-time transit control is a non-trivial problem with great
potential for research.
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Chapter 4

Schedule-Free Operations

High-frequency transit operations are subject to stochastic running times and
demand that lead to differences between planned and delivered service. Re-
searchers have proposed a number of real-time control strategies to maintain
service quality and mitigate disruptions, most of which disregard schedules
and aim for headway regularity. However, operations planning remains heav-
ily focused on schedules, which are deterministic and constrain the availability
of vehicles and crew. This dichotomy can sometimes put desirable control
outcomes at odds with schedule constraints. The research presented in this
chapter develops a schedule-free operations planning paradigm in which oper-
ations planning is driven by real-time optimization. Under the new paradigm,
transit systems adapt to current and expected future conditions to maintain
service quality while satisfying resource constraints.

The process of planning and delivering high-frequency public transporta-
tion service can be divided into three phases: service planning, operations
planning, and service delivery. Service planning defines the service charac-
teristics of importance to passengers, including network design and span and
frequency of service. Operations planning determines how service will be de-
livered, generally as formalized in vehicle and crew schedules. Service delivery
is the movement of vehicles and crew according to the operations plan, sup-
plemented by control interventions to prevent and manage disruptions.

The planning and delivery process typically follows a schedule-based para-
digm, under which the operations plan takes the form of a schedule and the
principal aim of control in service delivery is schedule adherence. A drawback
of this well-established paradigm is the dichotomy between a deterministic plan
and a stochastic operating environment. Schedules specify planned stop times
assuming particular running times, which may turn out to be shorter or longer
once realized. This uncertainty is usually recognized and addressed through
recovery time between trips, which provides a buffer that decreases the chance
of lateness propagating between successive trips of a vehicle. Longer recovery
times make schedules more robust to disruptions, but decrease fleet utilization
and system capacity. Operators of high-demand systems often adopt aggres-
sive schedules with less recovery time in order to increase capacity, making
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operations more susceptible to bunching and disruptions that are difficult to
recover from.

Researchers have proposed a number of control strategies for high-frequency
transit, and have shown that the most effective strategies do not adhere to the
schedule, but instead aim for headway regularity or passenger cost minimiza-
tion. These control strategies can generate policies that conflict with resource
constraints. For example, holding a vehicle that is late with respect to the
schedule might be desirable from a passenger cost perspective, but undesir-
able or impractical in a system with strict constraints on crew working hours.
Existing control strategies neglect planned vehicle entries and exits, requir-
ing operators to remain focused on the schedule, and perhaps discouraging
them from embracing strategies that could help them improve service with
the resources available.

This research proposes a schedule-free paradigm for high-frequency tran-
sit operations, in which operations planning is driven by optimization based
on real-time information. In this paradigm, resources would be allocated be-
fore service delivery to a given service (or set of services), prespecifying only
planned entry and exit times and locations for vehicles and crews. Unlike
in the schedule-based paradigm, specific trips are not assigned to vehicles and
crew beforehand. Instead, most operations planning decisions take place while
service is being delivered, reflecting current and expected future conditions,
and aiming for service quality while satisfying resource constraints.

The schedule-free paradigm enables a transit system to adapt recovery
times, headways, and number of trips served to operating conditions as they
exist. Flexibility is further increased when vehicles are shared among multiple
lines, branches, or variations of a line. For example, short-turning can be
used to increase frequency in the most heavily used portion of a line when
overcrowding is detected (or expected). The sequence of trips served by each
vehicle must allow the vehicle to meet exit constraints. A vehicle that does
not have enough time to serve an additional round trip between terminals may
be able to serve a short variation.

Apart from the supporting framework and models developed in this re-
search, operating high-frequency transit without schedules is enabled by pas-
sengers’ unawareness of schedules and recent advances in information technol-
ogy. Passengers on high-frequency transit do not plan to take specific sched-
uled vehicle trips. Instead, they expect to wait a short time after their arrival
at a stop (or station). Even when a vehicle schedule exists, passengers are
typically not aware of it, since it is atypical for the operator to publish it.
As long as their expectations of a short wait are met, passengers could enjoy
improved service under the schedule-free paradigm without having to change
their approach to using the service. Recent advances in information technol-
ogy are another key enabling factor. Schedule-free operations planning relies
on real-time sensing technologies to capture the current state of the system,
powerful computing for plan optimization, and fast communications between
vehicles and computers to transfer sensor data and update plans for near-term
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operations.

This research develops the framework and models that could be used to
operate high-frequency transit without schedules, and evaluates the potential
of the schedule-free paradigm for high-frequency transit. Section [4.1| motivates
the research, Section 4.2| reviews the literature, Section presents the frame-
work, Section discusses implications, Section formulates the real-time
trip planning problem and discusses its complexity and possible approaches,
Section[4.6]presents a simple initial methodology, Section [4.7]applies the frame-
work and methodology to a simulated transit service, and Section draws
conclusions.

4.1 Motivation

Under the schedule-based paradigm, schedules are generated with specific
utility-generating service objectives in mind, considering waiting times, relia-
bility, and crowding, among others. However, given a particular system state,
the schedule may no longer be the best way of achieving those objectives going
forward. Schedule adherence is an intermediate objective, since no utility is
directly derived from following a schedule. The schedule-free paradigm pur-
sues utility-generating objectives directly. Trip planning is driven by real-time
optimization, with the goal of maximizing utility. Utility functions can reflect
passenger cost components such as waiting time and in-vehicle time, as well as
operator costs such as driver exit lateness. The function specification depends
on the goals of the operator, as discussed in Section 4.3|

Transit operations are stochastic. Running times and demand change from
day to day. Aside from the variability of running times due to traffic, signals,
and driver behavior, and of dwell times due to different boarding speeds and
fare media, there are low-probability events such as temporary lane blockages,
wheelchair lift deployments, signal failures, and incidents that cause more
significant delays. Under the schedule-based paradigm, operations are fully
planned before service delivery, so even if the stochasticity of the system is
measured and taken into account, the operations plan is rigid and determin-
istic. Aggressive schedules (with low recovery time) make more efficient use
of vehicles when there are no delays, but even minor events can cause delays
that are difficult to recover from without aggressive control actions such as
short-turning and trip cancellations. Since late vehicles are not held longer
than required for drivers to rest between trips, bunching ensues. As schedules
are made more risk-averse by increasing recovery time, the tolerance for de-
lays increases but fewer trips and lower line capacity are offered by the same
fleet. Schedules are not adjusted during service delivery to reflect current and
expected operating conditions. Conversely, the schedule-free paradigm defers
planning the details of how vehicles will be used until service is being deliv-
ered, when the stochastic realizations leading to the present state have been
observed and predictions of the short-term future are more certain because
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probability distributions of running times and demand can be conditioned on
the observed current state and additional sources of information. Even when
deterministic optimization methods drive schedule-free operations planning,
short-term forecasts reflect the current state. Thus, schedule-free operations
plans are generated with an information advantage over fixed schedules, and
this advantage may lead to better performance. For example, higher frequency
may be offered in the absence of delays, while holding time between trips can
be increased to prevent bunching when facing delays. Some aspects of vari-
ability in a transit system can be predicted in the short-term. For example,
weather may affect running times and demand, but it cannot be predicted
far in advance. Where it might be impractical to adjust schedules based on
weather forecasts, the operations plans generated under the new paradigm
could consider the weather.

In addition to operating with reduced uncertainty, the schedule-free para-
digm has the advantage of being able to explore many potential operations
plans at any given moment. A schedule may, under particular conditions,
be the optimal operations plan for a day. Even when this is the case, the
same operations plan can be constructed through plan optimization under the
schedule-free paradigm. The schedule-free paradigm has access to a poten-
tially large set of feasible operations plans, one of which could be the tra-
ditional schedule (if one exists). Better plans can be generated and followed
when the schedule is suboptimal. In principle, a transit service should perform
at least as well under the schedule-free paradigm as under the schedule-based
paradigm.

Some transit operators already temporarily abandon the schedule when fac-
ing large disruptions. For example, operators of London Buses may short-turn
trips to absorb lateness. London Underground cancels trips during a disruption
to ensure that crew exit constraints are met when recovery plans are generated.
The operators of Santiago’s metro short-turn trains to alleviate station con-
gestion. These practices are typically employed based on experience, without
supporting models, and with the intention of returning the system to schedule
as quickly as possible. These examples suggest that operators, who already
recognize the need to make exceptions to the schedule adherence objective in
some circumstances, could find value in the schedule-free paradigm.

4.2 Literature Review

State-of-the-art operations control for high-frequency transit has advanced
steadily over the past few decades, both methodologically and in terms of
objectives. Control strategies such as holding, expressing, deadheading, and
short-turning have been investigated, and increasingly rich decision support
models have been proposed. The earliest models predate the availability of
real-time vehicle location data (Osuna and Newell, 1972 and Barnett, |1974)).
More recent models utilize real-time data to capture the current state of the
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system and generate control policies accordingly (Eberlein et all 2001, Da-
ganzo and Pilachowski, 2011, and Bartholdi and Eisenstein, 2012). The most
advanced models are based on rolling horizon optimization, which generate
policies based on forecasts of system performance under potential control ac-
tions (Delgado et al 2012 Saez et al., [2012, and Chapter [2)).

Throughout these advances there has been a move away from schedule
adherence and toward headway adherence (Abkowitz and Lepofsky, 1990),
headway regularity (Daganzo and Pilachowski, 2011, (Cats et al.l 2011, and
Bartholdi and Eisenstein, 2012), and passenger cost minimization (Delgado
et all 2012, Saez et all 2012, and Chapter . The simplest control objec-
tive is schedule adherence, which aims to minimize deviations from the vehicle
schedule. While this is a suitable aim for low frequency service in which pas-
sengers plan to take specific trips from the timetable and time their arrival at
origin stops accordingly, researchers have long recognized that other strategies
can improve performance in high-frequency transit when passenger arrivals are
independent of the (often unpublished) timetable (Barnett|, 1974).

In contrast to operations control, operations planning remains largely sched-
ule-based. The schedule-based process of generating a timetable and vehicle
and crew schedules is applied in the same manner to low-frequency and high-
frequency transit, despite the differences in control objectives. Viewing oper-
ations planning and control for high-frequency transit together, current best
practice is to produce schedules in the planning phase and subsequently ig-
nore or abandon them in the service delivery phase to deal with disruptions.
Operations planning for high-frequency transit has not yet evolved to become
schedule-free.

Much of the work on real-time operations planning in transit has focused
on disruptions management. A common and challenging problem is the re-
covery of a transit service after incidents cause delays and render the schedule
infeasible. Among the works surveyed, the goal is invariably returning the
system to the schedule as quickly as possible. |Adenso-Diaz et al| (1999) and
Sahin| (1999) focus on minimizing changes to the original schedule. [Walker
et al.| (2005) use integer programming to recover a train timetable and crew
roster, minimizing deviations from the existing schedule and cost increase from
adjusted crew shifts. Huisman and Wagelmans| (2006) focus on real-time ve-
hicle and crew scheduling given a timetable. |Mazzarello and Ottaviani| (2007))
use heuristics to minimize delays of trains through a network of links, control-
ling speeds and considering re-routing. [I'ornquist and Persson| (2007) address
a similar problem with mixed integer linear programming, as do D’Ariano
et al| (2007) using a discrete event model and a truncated branch and bound
algorithm. [Rodriguez (2007) uses constraint programming and a simulation
model for real-time routing and scheduling of trains running through a junc-
tion. |D’Ariano et al.| (2008)) test the concept of flexible timetables for railways,
in which a timetable is generated in real-time to resolve conflicts, with the goal
of minimizing delays with respect to the original (offline) timetable. Rezanova,
and Ryan| (2010) focus on recovering the train driver schedule as soon as pos-

69



sible through the use of recovery time, re-routing, and trip cancellations. |Cor-
man et al. (2010) employ a tabu search algorithm for rerouting trains during
disruptions with the goal of minimizing delays subject to resource constraints.
Corman et al.| (2012)) minimize both train delays and missed connections (for
passengers whose trips involve transfers). [Krasemann (2012)) combines a trun-
cated branch and bound algorithm with guiding heuristics to obtain a quick
response to incidents under scheduled service. [Veelenturf et al. (2012) allow
small delays in the timetable in exchange for greater flexibility in the real-time
crew rescheduling problem, which results in fewer cancellations.

There has also been much work on service and operations planning before
service delivery. The traditional process, which breaks the problem into a se-
quence of subproblems (frequency determination, timetable development, vehi-
cle scheduling, and crew scheduling), is well established (Vuchic, 2005, Ceder,
2007, and |Boyle, |2009). Desaulniers and Hickman| (2007)) survey operations
research applications to service and operations planning. Recent developments
have focused on increasing flexibility or integrating across the multi-step ap-
proach. Site and Filippi (1998) address the problem of service planning with
short-turning and variable vehicle size. Leiva et al.| (2010)) optimize a combi-
nation of full and limited-stop services for an urban bus corridor with capacity
constraints. (Cortés et al. (2011 combine short-turning and deadheading for
setting frequencies and vehicle capacities in a simple transit corridor. [Val-
ouxis and Housos| (2002) combine bus and driver scheduling using heuristics
and linear programming, focusing on scheduling bus service for the following
day. Huisman| (2007) develops a crew rescheduling model with the objec-
tive of minimizing cost subject to crew availability constraints, for situations
in which changes to the timetable or vehicle schedule have made the origi-
nal crew schedule infeasible, e.g. during infrastructure construction and repair
works. Mesquita and Paias (2008)) integrate vehicle and crew scheduling given
a timetable combining a multicommodity network flow model with a set par-
titioning/covering model.

4.3 Framework

Transit service is planned in two stages: service planning and operations plan-
ning. Service plans define the transit network and service characteristics such
as span of service and frequency, which influence both the kind of service pas-
sengers expect and the resources (for example, vehicles and drivers) required
for operations. Operations plans define how an operator expects to deploy
resources to deliver transit service to meet the service plan. In this stage oper-
ators analyze stochastic factors such as running time and demand variability
and decide how many vehicles and drivers will be used for operations, trading
off operational cost with risk of not being able to deliver the service character-
istics defined in the service plan (for example, due to unexpected traffic delays
in a bus corridor).
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While service planning happens the same way under both schedule-based
and schedule-free operations, there are significant differences in the way opera-
tions planning takes place. Under the schedule-based paradigm the operations
plan is fully defined, and therefore fixed, before service delivery. Under the
schedule-free paradigm operations planning begins before service delivery but
mostly occurs in real-time reflecting the current system state and expected
running times and demand. Figures and illustrate the two paradigms.

Service planning involves network design and service characterization under
both paradigms.

Network Design The alignment of each line or route is defined. The ob-
jective is to connect different parts of the urban area to meet mobility and
accessibility objectives. The locations of stations or stops are decided at this
stage. Network design decisions have long-term implications that can influence
demand and (over long periods) the urban landscape. For transit systems with
dedicated ways and stations, the decisions result in infrastructure investments
which are fixed. For bus lines without dedicated rights of way, the locations of
stops can be changed more readily but it is still quite difficult. Politics, policy,
and public involvement have significant influence at this stage.

Service Characterization The service characteristics of each line or route
are defined. Span of service and frequency are set at this stage, responding
to policy and expected demand. Service frequency typically varies by time
of day. These decisions affect resource requirements and service standards.
Higher frequencies increase the number of vehicles and crew required for op-
erations, while decreasing waiting times and crowding for passengers. Service
characteristics can influence demand because they affect accessibility and the
relative convenience of a service with respect to alternative modes.

Under the schedule-based paradigm, operations planning involves timetable
development and vehicle and crew scheduling.

Timetable Development Timetables specify vehicle departure times from
stops or stations, reflecting the service frequencies set earlier as well as ex-
pected running times. At this stage trips are not yet assigned to vehicles.
Although the schedule is usually published for low frequency service and pas-
sengers consult it to time their arrivals at stops, this is seldom the case for
high-frequency transit. Therefore, the timetable is mostly an intermediate
step in the planning process.

Vehicle Scheduling Vehicle scheduling assigns sequences of trips from the
timetable to specific vehicles, resulting in the sets of trips to be served by each
vehicle. The required fleet size is determined based on the timetable, rules
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governing minimum layover times at terminals, and running times. Recov-
ery time is added to expected end-to-end running times so that longer than
expected running times do not cause lateness to propagate across trips. Re-
covery time increases the robustness of schedules but also the required fleet
size. The number of active vehicles typically varies by time of day. Minor
adjustments to the timetable are often made in order to decrease the number
of required vehicles. The primary objective is minimizing fleet size in order to
reduce operating cost.

Crew Scheduling Crew scheduling assigns sets of vehicle trips to drivers
in accordance with work rules governing shift durations, breaks, and pay pro-
visions. Typically, multiple drivers are required to cover the trips served by
each vehicle. Minor adjustments to the timetable and the vehicle schedule may
be made in order to decrease the number of required drivers while satisfying
all work rules. The primary objective is minimizing operating cost. Crew
scheduling is not required for autonomous vehicle fleets.

Under the schedule-based paradigm, all planning decisions take place be-
fore service delivery. During service delivery, operations control focuses on
schedule adherence, which is meant to result in service that meets service
planning objectives. Vehicles are held at terminals and other control locations
to prevent early departures, and depart as soon as possible after late arrivals.
Stochastic factors affect operations, sometimes causing delays and overcrowd-
ing, but there is no provision to adjust the plan to reflect current and expected
operating conditions.

The schedule-free paradigm defers some operations planning decisions until
service delivery. Instead of planning the deployment of vehicles and crew at the
trip and stop level, only their entry and exit times are planned before service
delivery. Trip and stop level activities are planned during service delivery,
which allows planned service to adapt to current and expected conditions,
utilizing observations of stochastic running time and demand realizations that
are not available before service delivery.

Vehicle and Crew Entry and Exit Planning FEntry and exit plans spec-
ify when and where vehicles and crew enter and exit service, but not the specific
set of trips each vehicle and driver serves. Entry times define the earliest al-
lowed planned dispatch, while exit times define the latest allowed planned end
of a trip. The number of active vehicles and crew, which can vary by time of
day, should reflect the frequencies of the service plan as well as running times
and demand. Vehicle and crew availability must be decided before service
delivery because drivers need to know their check-in and check-out times and
agencies need to allocate resources to routes and budget operations. Operators
may assign vehicles and drivers to a single line, or they may allow them to be
used across multiple lines (for example, a set of lines sharing a terminal).
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Real-Time Trip Planning The specific trips each vehicle and driver serve
are planned in real-time during service delivery, and adjusted based on oper-
ating conditions, aiming to minimize a combination of passenger and opera-
tor costs while satisfying the constraints defined in the entry and exit plan.
Real-time planning must consider the time remaining until each vehicle’s and
driver’s latest allowed planned exit and the feasibility and cost of completing
each vehicle’s planned sequence of trips. The output of the optimization-driven
process specifies target departure times for all planned stop visits. These plans,
which can be updated every few minutes, are communicated to vehicles in
real-time and treated like a schedule for control purposes. The availability of
a vehicle according to the entry and exit plan does not require the real-time
plan to use it. For example, some vehicles may be reserved to respond to
disruptions, the decision for the vehicle to enter being part of the real-time
planning process.

Since the operations plan can be adjusted in real-time, it reflects oper-
ating conditions influenced by stochastic factors such as running time and
demand. Consequently, the operations plan remains realistic with respect to
the current and expected system states, and reflects objectives of minimizing
passenger and operator costs and satisfying constraints. As a result, there is
no longer a contradiction between control policies that improve adherence to
the operations plan and those that improve service for passengers.

Real-time trip planning involves complex decisions to coordinate vehicle
and driver movement in a way that leads to good service for passengers but
avoids excessive operator costs or constraint violations. For example, a par-
ticular vehicle may not have enough time left before its planned exit to serve
an additional two round trips between terminals due to previous delays. One
option is to serve both trips and incur an exit lateness cost, if the work rules
allow it. Another option is to serve a single trip, either exiting earlier than
planned or holding at the terminal longer than normal before starting the last
trip. Yet another option is to serve one round trip between terminals and a
second short trip. Either the first or second round trip could be short-turned.
Each of these options may have different implications for passenger and op-
erator costs, as well as on the optimal trip sequences of other vehicles. For
example, if a pair of vehicles is bunched and both must be short-turned in
order to satisfy exit constraints, it may be advantageous to short-turn them
on different trips, so that a long headway does not result from two consecutive
vehicles being short-turned. Departure times from terminals and stops must
be optimized in addition to trip sequences, and these are interconnected. Trip
plans with little or no slack before the latest allowed exit time do not allow for
additional holding time to be added later, thus limiting the ability to respond
to future disruptions. The optimization problem becomes large and complex
when the trip sequences of an entire line’s fleet are being considered.

Strategies employed to meet the operations objective may include holding,
short-turning, dead-heading, expressing, and injecting reserve vehicles. Hold-
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ing delays vehicles while short-turning, dead-heading, and expressing advance
vehicles. Expressing and short-turning trips may force some passengers to
alight and board a different vehicle to complete their trips. Some passengers
may choose to complete their journey on foot. These strategies impose ad-
ditional costs on passengers in terms of waiting time, trip time, reliability,
and convenience, leading to degraded overall service quality, but they can be
employed during incidents and severe disruptions to restore service when the
alternatives are worse. Dead-heading and short-turning decided at the termi-
nal are applied only to empty vehicles, sparing passengers the frustration of
having to change vehicles.

The schedule-free paradigm allows real-time interlining between high-fre-
quency lines sharing a terminal. Vehicles and crew can be assigned to serve
more than one transit line in the vehicle and crew entry and exit plan. Re-
sources are then assigned to lines on a trip by trip basis through the real-time
trip planning optimization process. When a vehicle arrives at the shared ter-
minal, it can be dispatched to the line that best serves the cost minimization
objective. When cycle times differ, interlining can be used like short-turning
to increase vehicle utilization while complying with exit constraints. For ex-
ample, a delayed vehicle may arrive at a terminal without enough time to
serve an additional cycle on its usual route, but with enough time to serve a
cycle on a shorter route; this option is better than taking the vehicle out of
service much earlier than its latest allowed exit time. In schedule-based oper-
ations, the same vehicle would continue serving its next (delayed) scheduled
trip, possibly leading to a late exit.

Interlining under the schedule-free paradigm serves the purpose of improv-
ing service for passengers and increasing vehicle utilization, rather than re-
ducing fleet size, which is the usual aim of interlining low-frequency transit
services. Interlining to reduce fleet size is less attractive for high-frequency
transit (under both paradigms) because high-frequency lines are more prone
to headway imbalances, and because potential vehicle savings are equivalent
to shorter extra recovery times (without interlining), making it more likely for
delays to propagate between lines. Table[4.I]shows an example of the effects of
interlining two lines, with cycle times of 70 and 50 minutes, for low-frequency
and high-frequency service. Interlining saves 1 vehicle in both cases, but the
extra cycle time without interlining, which is the waste of resources that inter-
lining can prevent, is 10 minutes for the low-frequency service and 2 minutes
for the high-frequency service. Assuming that the cycle times in this example
are normally distributed and that target cycle times correspond to 90" per-
centile cycle times, the percentiles corresponding to the cycle times without
interlining are 99 in in the low-frequency case and 94 in the high-frequency
case. The operator is more likely to find the former excessive.

Entry and exit plans can reflect different cost structures and objectives,
from tight exit constraints under strict work rules to fixed unit operational
cost without hard exit constraints for driverless fleets. Exit constraints can
be a combination of strict and flexible. Strict entry times might reflect the
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Table 4.1: Interlining Low-Frequency and High-Frequency Transit

low frequency

high frequency

headway

typical cycle time
target recovery time

target cycle time

fleet size w/o interlining
combined fleet size w/o interlining
combined cycle time

combined fleet size w/ interlining

fleet savings

cycle time w/o interlining

20 min
60 min 40 min
10 min 10 min
70 min 50 min
4veh 3 wveh
7 veh
120 min
6 veh
1 veh
80 min 60 min
20 min 20 min

4 min
60 min 40 min
10 min 10 min
70 min 50 min
18 veh 13 veh
31 veh
120 min
30 veh
1 veh
72 min 52 min
12 min 12 min

recovery time w/o interlining

check-in times of drivers, which may not be altered in real-time. Flexible exit
times might reflect the desire for a driver to exit by a certain time with a
possibility for overtime payment for the time served after the planned exit
time, in cases where some exit lateness can be traded off with better service
quality for passengers. Both types of constraints may be used simultaneously;
for example, driver lateness of up to 30 minutes might be allowed at a cost,
and a strict exit constraint can reflect the infeasibility of trip plans leading to
exit lateness greater than 30 minutes. Costs associated with flexible resource
constraints can increase nonlinearly with lateness; for example, lateness of
20 minutes might be considered more than 4 times as costly as lateness of 5
minutes.

A transit system’s performance under the schedule-free paradigm feeds
back into entry and exit planning. For instance, if overcrowding or exces-
sive waiting is observed, an operator can allocate additional vehicles when
required. Simulation can be used to predict performance with a given entry
and exit plan when no observations of real service exist or when systematic
changes in the operating environment are expected, for example due to change
of season, change of the transit network, or events. The traditional schedule-
based approach can be used to make a first entry and exit plan if one does
not exist, keeping the times at which vehicles and crews enter and exit ser-
vice without defining trip-level detail. Entry and exit plans limit what can be
achieved in real-time, so it can be beneficial to optimize them. Simulations of
different entry and exit plans can drive their optimization.

Overly tight constraints on entries and exits can significantly limit the
flexibility and performance of schedule-free operations. For example, in a
schedule-based service with long cycle times, there may only be enough time
for a vehicle to serve a single round trip, without much time for holding. In this
case the constraints only allow the vehicle to be dispatched when it enters the
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system and to run as fast as possible to its exit. The same outcome is expected
under the schedule-free paradigm. Adding buffer time before scheduled exit
times gives the real-time planner under the schedule-free paradigm the flex-
ibility it needs to optimize dispatch times and trip sequences. While in the
schedule-based paradigm specific amounts of buffer time are added between
(scheduled) trips, in the schedule-free paradigm buffer time is not planned for
specific times, but rather generally available for optimized usage.

Schedule-free operations may not always result in more trips offered with a
given fleet than schedule-based operations. Given enough buffer time, the
schedule-free paradigm can increase headways when facing longer running
times in order to prevent bunching. The required holding might happen dur-
ing delays, or later if there is a capacity problem and it is better to postpone
holding. This can increase vehicle utilization, i.e. the total passenger benefit
obtained from vehicles, with similar usage, i.e. number of trips offered, or total
duration (or distance) of runs. However, it may be difficult to improve effi-
ciency (with respect to schedule-based operations) when scheduled cycle times
are higher than realized cycle times, because the total excess recovery time in
the schedule may not be sufficient to offer additional trips.

For example, consider a schedule having 5 more minutes of recovery time
after every (one-way) trip than what is required to regulate headways, such
that actual cycles can be completed in 70 minutes, while the scheduled cycle
time is 80 minutes. If the entry and exit constraints give enough time for
only 3 (80 minute) round trips (i.e. 6 one-way trips), then the total extra
recovery time is 30 minutes. This is insufficient to serve another full cycle,
and possibly a short cycle. In this case the schedule-free plan should be to
run 3 cycles, but the timing of trips must be decided. If vehicles are not
held more than necessary to regulate headways, there will at first be higher
frequency, but then vehicles will be taken out of service 30 minutes early,
leading to lower frequency and possibly disrupted service. It is possible, and
perhaps (depending on demand) likely, that the best plan in this case is to
hold vehicles to run cycles of 80 minutes, as in the schedule, in which case the
30 minutes of extra time are wasted under both paradigms.

Driverless systems might not limit how long vehicles can operate for, or
their entry and exit times, but only the maximum number of vehicles dedicated
to a service or set of services. In this case the operator assumes a fixed unit
cost. Real-time planning might consider the trade-off between this cost and
passenger cost, dispatching a vehicle if passenger benefits exceed operating
costs. Policies and service standards can also drive trip planning. For example,
a policy headway of 15 minutes might trigger a dispatch late at night even if
marginal operating costs exceed expected marginal passenger benefits.

There are cases in which transit services are partly high-frequency and
partly low-frequency. Many high-frequency services operate at low-frequency
early in the morning and late at night, periods during which passengers may
follow a schedule. The schedule-based and schedule-free paradigms may be
combined, such that a schedule is followed during low frequency operations and
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the service switches to schedule-free during high-frequency operations. The
transition from schedule-based to schedule-free is simple because schedule-free
real-time planning can take place regardless of the current state. The tran-
sition from schedule-free to schedule-based is more complex because vehicles
must be available at particular times to serve scheduled trips. A smooth tran-
sition can be facilitated by an entry and exit plan that specifies the times
and locations at which vehicles begin operating schedule-based, in the same
way exit times and locations are specified. This encourages real-time plans
that make vehicles available to the schedule-based paradigm in time for each
vehicle’s first scheduled trip.

Some branched transit systems operate with high frequency on the trunk
portion but with low frequency on the branches. Passengers originating in the
trunk portion and destined for a branch stop usually wait for the first vehicle
serving their branch. The schedule-based operation in the branches constrains
what can be achieved with real-time operations planning in the trunk, mak-
ing it difficult to avoid schedules entirely. However, if a subset of vehicles
is dedicated to high-frequency operation on the trunk portion or perhaps on
branches operating in high-frequency, then schedule-free real-time trip plan-
ning could improve service with optimization that reflects the trajectories of
vehicles following a schedule.

Real-time trip planning can be made robust to temporary interruptions
in communication between the planning computer server and vehicles. Trip
plans include instructions for operating during a sufficiently long period after
the plan is generated, so drivers can follow the plan most recently received. If
communication with a vehicle is interrupted, the planning computer can gen-
erate plans taking into account that the disconnected vehicle will be following
an older trip plan.

4.4 Implications

Adopting the schedule-free paradigm has implications on many aspects of tran-
sit service provision. In current practice, schedules play a role that extends
beyond operations planning, to performance measurement, incident response,
and passenger information provision.

4.4.1 Reliance on Information Technologies

Transit operators have increased the use of information technologies to plan,
control, and measure the performance of service over the past decade. Auto-
mated data collection systems allow operators to measure demand and running
times to make better schedules. While these technologies are already impor-
tant, they are not essential, because schedule-based service can be delivered
without them.
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The new paradigm requires reliable and robust communications and infor-
mation technologies, much more so than for schedule-based operations. While
scheduled service can be delivered with only printed schedules for drivers to fol-
low, schedule-free operations require frequent communication between vehicles
and the computer optimizing plans in real-time. Vehicles must be equipped
with automated vehicle location systems that transmit their location to the
server handling real-time planning and control. It is useful, but not necessary,
for them to have automated fare collection and automatic passenger counting
in order to collect data that can be used to model running times and demand
from historical data. It is also useful, but not necessary, for fare collection
and passenger counting data to be transmitted to the agency in real-time so
that the current state can be estimated more accurately than with historical
data alone. In schedule-free operations, plans governing when a vehicle should
hold, dead-head, or short-turn, and what its destination sign should display,
can be updated every few minutes to reflect new information about current
and expected conditions, so it is imperative that vehicles can receive updated
plans on the go and display them to the driver.

Successful real-time planning may require sophisticated forecasting capabil-
ities that utilize automatically collected vehicle location, fare collection, and
passenger counting data to model running times and demand dynamically.
Significant computing resources may have to be dedicated to optimization in
order to operate many high-frequency services in real-time.

4.4.2 Methods and Practices

The schedule-free paradigm changes how an operator plans operations, re-
sponds to incidents and disruptions, measures performance, and provides in-
formation to passengers. Fundamentally, operations planning changes from
something that happens entirely before service delivery to something that
happens mostly during service delivery. Only entries and exits are planned
a-priori, while trip and stop level details are planned in real-time and can
change from day to day. However, there are other implications on methods
and practices.

The schedule-free paradigm changes how transit service providers respond
to incidents. Incidents such as signal failures or medical emergencies delay
vehicles and result in disrupted service: imbalanced headways, crowding, and
long waiting and trip times, which can last far longer than the incident it-
self. In scheduled operations, it is often necessary to abandon the schedule at
least temporarily and use holding, short-turning, dead-heading, and injection
of reserve vehicles to restore normal service. The objectives motivating these
aggressive control actions are principally to reduce overcrowding and to mini-
mize driver lateness at the end of duties. When faced with severe disruptions,
controllers may cancel trips and reassign scheduled trips to different vehicles.
This type of real-time adjustment of an operations plan is often conducted
manually based on experience and heuristics, although increasingly with the
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aid of decision support systems. This creates an artificial divide between nor-
mal operations and disrupted operations, with the vehicle schedule serving as
a measuring stick for disruption magnitude. Responding to incidents can oc-
cupy controllers, leaving no one to supervise and control the rest of the system.
This lack of attention due to lack of human resources and support technology
can negatively affect services not directly affected by an incident.

In schedule-free operations, there is no hard line separating normal oper-
ations from disrupted operations. Current and expected conditions together
lead to different operations plans. When an incident occurs, information about
it can (optionally) be supplied to the optimization model to improve the accu-
racy of its forecasts. The same methods used to optimize plans during normal
operations generate policies reflecting the incident. Incidents requiring move-
ment of crew with shuttles or emergency bus services still require manual
coordination. Computer optimized real-time operations planning replaces the
manual process for routine disruptions, leaving staff more time to focus on re-
solving the incident causing the disruption and on major disruptions requiring
more complex responses. Since human resources are not involved in routine
control tasks, services not directly affected by an incident continue to receive
the same amount of planning and control attention.

The schedule-free paradigm makes it more important for transit agencies to
use passenger-centric performance measures for high-frequency transit. With-
out a schedule, there is no notion of punctuality. Excess waiting times can
be determined based on headways from the service plan. Estimated waiting
times, trip times, and loads can be compared with service standards.

The schedule-free paradigm offers a unified approach in which real-time
operations planning, performance measurement, and passenger information
provision happen simultaneously based on the same information. The same
model used to generate plans in real-time can be used to measure performance
and provide information to passengers. Detailed vehicle location and demand
data, including fare collection and passenger counting data, if available, feed
into the model. The model estimates current and future system states, in-
cluding arrival times, loads, waiting times, and in-vehicle times. The different
elements can be combined into a generalized passenger cost performance mea-
sure. Waiting time statistics provided by the model would be more accurate
than their simpler headway-based counterparts. Performance measures based
on current system state can be stored for ex-post analysis, while estimates of
future performance can be shared with supervisors, controllers, and managers
in real-time. Information can also be shared with passengers through a va-
riety of channels including displays, announcements, web pages, and mobile
phone applications. Estimates of arrival times for each vehicle can be used to
provide users with the next arrival time at each stop. In addition, passengers
can be shown estimated loads and estimated arrival time at destination (e.g. if
they state their destination in a web page or mobile phone application). This
information is a fully automated product of the model.
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4.4.3 Human Factors

Since passengers of high-frequency transit do not follow a schedule, they can
continue using the service without changing their approach or even being aware
of the new paradigm. The change to real-time planning directly based on max-
imizing passenger benefit can result in lower waiting times and improved reli-
ability. Depending on current practice, stop-skipping strategies such as short-
turning, deadheading, and expressing might be employed more frequently. Al-
though in their benign forms they do not force passengers to alight before
reaching their destination, passengers may experience a greater number of ve-
hicles passing their origin stop but not serving their destination, in particular
with deadheading and expressing.

The experience of drivers may change more significantly. If a high exit
lateness cost is assumed for operations planning optimization, drivers might
be able to expect to finish their duties by their target end time more reliably
during severe delays, as long as real-time plans reflect delays. Differences
between planned and real running times, which could be due to modeling errors
or unexpected delays, could cause late exits regardless. For example, drivers
delayed in their last cycle might exit late if the plan when the cycle begins
does not reflect (future) delays and has insufficient buffer time between the
planned and latest allowed exit times. In fact, exit lateness could increase (with
respect to schedule-based operations) when a service experiences unexpected
delays for a prolonged period, because holding, which may be used to regulate
headways after delays are first seen, may lead to real-time plans having vehicles
exit closer to the latest allowed exits. Additional (unexpected) delays can
later render these plans infeasible, and for some vehicles (particularly those
in their last cycle), there may not be feasible alternatives. This is less likely
under schedule-based operations because delayed vehicles are not held (beyond
required layover times for driver rest) when delayed. Drivers may experience
less certainty about the sequence of trips they will carry out, because the plan
may change throughout the day in response to changing demand and running
times.

When current operations are based on an unrealistic schedule, drivers can
often be late with respect to the schedule. This can cause frustration and
stress, and eventually result in disregard and dismissal of the operations plan.
Under the schedule-free paradigm, the plan adjusts to current and expected
conditions, remaining realistic, and making it easier for drivers to follow the
operations plan. Schedules make it possible for perverse and hidden incen-
tives to develop. For example, labor union agreements often constrain shift
lengths which may encourage the operator to hire more drivers rather than
planning longer shifts, but individual drivers may want overtime compensa-
tion. This can motivate operators to generate unrealistic schedules that meet
the constraints of the labor agreement on paper while giving drivers overtime.
Overtime can be expected in the schedule-free paradigm only when drivers in-
cur unexpected delays towards the end of their shift, or if the allowed duration
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of shifts explicitly set in the entry and exit plan is long enough to allow over-
time. The schedule-free paradigm can also lead to perverse incentives, because
knowing that plans will adapt, drivers and managers may put less effort into
following the operations plan.

The performance of a transit line depends on driver compliance under
both paradigms, but service may be more robust to a limited amount of non-
compliance under the schedule-free paradigm. A system that sends control
instructions automatically can log instructions and maintain a record of com-
pliance for each driver, which facilitates enforcement and encourages higher
compliance rates. Although this bookkeeping is possible under both para-
digms, it is more likely to be implemented in a schedule-free system because
the technology to send updated dispatch times to drivers and actively monitor
vehicle locations is necessary.

The experience of controllers responsible for managing disruptions may
also change. Since the schedule-free paradigm adapts to current and ex-
pected conditions, routine minor disruptions might be automatically handled
by computer-based real-time planning. This can be accomplished, to some
extent, under schedule-based operations using control models, but controllers
may have to adjust the strategies to satisfy resource constraints, so their at-
tention may still be required. The schedule-free planning algorithm could
be better able to maintain high service quality while satisfying constraints,
potentially decreasing required human involvement. The planning algorithm
may lead to more frequent stop-skipping instructions, potentially making it
difficult for controllers to keep track of the plans being considered. Imple-
menting schedule-free operations may be difficult without automatic ways of
communicating plan changes to drivers (as assumed in this research), because
controllers might be overwhelmed with instructions to communicate. How-
ever, implemented with automatic handling of routine disruptions and plan
updates, the schedule-free paradigm could allow controllers to focus on sit-
uations requiring creative or complex response strategies, such as disabled
vehicles, signals malfunctioning, or incidents that require dispatching reserve
vehicles and drivers, re-routing, introducing temporary replacement service,
etc. A schedule-free planning model could interactively support these tasks
by predicting performance under the various response options being consid-
ered, and by automatically generating the remainder of the operations plan in
light of manual decisions. For example, a (human) controller might respond
to a major disruption by short-turning some vehicles, and the schedule-free
plan optimization algorithm might assist by optimizing the remainder of the
plan. Operating on its own, the planning algorithm could alert controllers
when service quality decreases (or is predicted to decrease) below established

thresholds.
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4.4.4 Operations with Uncertain Resources

The schedule-free paradigm could be attractive to local governments seeking
to organize informal public transport systems, in which fleets or even single ve-
hicles are independently owned by drivers. Minimum technical requirements
for vehicle hardware could be fulfilled with Internet-enabled mobile phones,
and cloud computing services could be used for server-side planning and op-
timization. These options are available in most parts of the world, making
implementation technically possible in developing countries. While it may be
difficult to know far in advance how many vehicles will be available for oper-
ation of a transit corridor, the new paradigm would allow drivers to check in
with their phones and begin offering service with little lead time. The system
would generate real-time plans that coordinate the movement of independent
vehicles to serve the corridor efficiently. Drivers could also specify their target
time for finishing work, so that the system could capture planned exits as plans
are generated. Drivers could be compensated based on time worked, number
of trips, and compliance with the operations plan. Economic incentives could
be used to allocate drivers (voluntarily) to transit corridors needing more ve-
hicles. Challenges include obtaining commitment from drivers to serve trips
as planned and ensuring that vehicles are actually serving passengers, rather
than driving in the corridor without stopping to allow passengers to board.

4.4.5 Operations with Autonomous Fleets

Autonomous vehicles are the future of high-frequency transit, because they can
operate at higher frequency, lower costs, and with fewer constraints. Technolo-
gies for autonomous driving have been advancing rapidly. In 2013 there were
48 automated metro lines (without staff on board) in operation in 32 cities
(UITP, 2013)). The schedule-based paradigm places unnecessary constraints
on a transit line with a driverless fleet, reducing its potential by restricting
flexibility. The schedule-free paradigm can take advantage of the added flex-
ibility, and can also accommodate a mixed fleet having some vehicles driven
by human drivers and others operating autonomously.

Schedule-free operations with autonomous vehicles are less constrained
than those with drivers, because there are no specific times by which vehi-
cles must exit. Although humans may be supervising operations from a con-
trol center, there are usually fewer supervisors than drivers, often having less
strict work rules, making it less costly to provide for the possibility of oper-
ations ending later some days. Without human drivers, only fleet size must
be decided before service delivery. Although there are no driver constraints,
it may be undesirable to have all vehicles working all the time, because there
are operating expenses such as energy and maintenance costs that are propor-
tional to time operated and distance run. Real-time planning can be based on
the headways defined in the service plan, so that vehicles are brought into the
system as frequency increases and are taken out of service as frequency de-
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creases, including taking the whole fleet out of service after the planned service
end time. Service standards can also contribute to these real-time decisions
to pull vehicles in and out of service. For example, estimated future loads can
be compared with the maximum loads in the service standard, and additional
vehicles can be brought into service to manage overcrowding.

4.5 General Methodology

Schedule-free transit is driven by real-time operations plan optimization. Plans
define the future trajectory of each vehicle from its current or future entry
location to its exit, specifying the sequence of stop visits with target arrival
and departure times.

Figure [4-3 illustrates the schedule-free operations architecture. The con-
troller uses the dynamically modeled running times and demand to maintain
an estimate of the current state. Every time a vehicle visits a stop, the esti-
mated number of passengers inside and number of passengers left behind at
the stop (by origin-destination pair) are updated. The operations plan is con-
sulted to determine planned departure times; vehicles hold if they are ahead of
the planned trajectory and holding is allowed at the current location. Vehicles
may skip stops through strategies such as short-turning and deadheading as
dictated by the plan. The plan is updated at regular intervals, e.g. every 5
minutes.

The first step in the process to update the operations plan is modeling the
current state of the system, which sets boundary conditions for the subsequent
plan optimization step. The current state includes locations of vehicles in
the system, each vehicle’s variation, the number of passengers in vehicles (by
destination), the number of passengers waiting at each stop (by destination),
the previous vehicle departure time from each stop, the current vehicle or
location of drivers in the system, and the (planned) entry times and locations
of vehicles and drivers not yet in the system. These are inputs to the plan
optimizer, along with minimum and maximum holding times by stop, dynamic
running time and demand functions, unit boarding and alighting times per
passenger, weights for passenger waiting time, in-vehicle time, and driver exit
lateness, and scheduled exit times and locations for vehicles and drivers.

Real-time operations plans are generated based on these inputs by opti-
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Figure 4-3: Schedule-Free Operations Architecture
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mizing trip sequences (the spatial dimension) and departure times (the tem-
poral dimension), which together define vehicle trajectories. The collection of
planned trajectories (for all vehicles) defines a plan, with corresponding head-
ways, loads, passenger waiting and in-vehicle times, and vehicle exit times.
Departure times are driven by holding, running times, dwell times, etc. The
objective is to minimize a combination of passenger and operator costs while
meeting resource constraints. For simplicity, vehicles and drivers are consid-
ered a single entity; drivers are not explicitly modeled, but their entry and
exit constraints are assigned to the vehicle they operate. This assumption
holds for transit lines in which drivers take the vehicles in and out of service,
and there are sufficient vehicles for each driver. Due to this simplification, the
methodology developed in this section cannot directly capture en-route driver
reliefs or constraints relating multiple pieces of work by the same driver, e.g.
minimum meal break durations. Constraints modeling real-time assignment
of drivers to vehicles (or vice versa) would be required to accomplish this. The
trip plan optimization problem can be formulated as

mirxlier)r(lize C(z;p) (4.1)
subject to  w, <wu, Yv eV (4.2)
=2z, YWeV (4.3)
vehicle movement constraints (4.4)
passenger activity constraints (4.5)
Mt < by < B Ve € E (4.6)

where x is a candidate plan, X is the set of feasible plans, p is a set of exogenous
parameters and initial conditions, u, and u/ are the planned and latest allowed
exit times of vehicle v, z, and 2, are the planned and required exit locations of
vehicle v, h, is the holding time corresponding to a planned stop visit e, A"
and h®* are lower and upper bounds on holding times at the same planned
stop visit, V' is the set of vehicles, F is the set of planned vehicle stop visits, and
C(x;p) is a general non-convex cost function covering the modeling horizon,
subject to general constraints that, in addition to those explicitly listed, define
initial conditions, and vehicle and passenger movement. The variables defining
a plan z are both continuous (departure times) and discrete (trip and stop
sequences). Constraints and ensure that plans deliver vehicles to
their exit locations by the required times, while constraint limits holding
times at terminals, turning points, and stops. Terminals and en-route turning
points are modeled as stops without demand.

The cost measure C' combines mean passenger cost Cp, exit lateness cost
C', and plan complexity cost Ce:

C = Cp+0.Cp, + 0cCe (4.7)

where 6, and 6 are the relative weights of exit lateness and complexity, re-
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spectively.

Passenger cost captures waiting time at stops and in-vehicle time, over a
horizon extending from the current time ¢y to s, for a given horizon length
ty — to. It includes the in-horizon portion of waiting time W}, for passen-
gers who are still waiting at the end of the horizon. A discount factor can
be applied to weight costs incurred sooner more heavily than costs incurred
later. This reflects growing uncertainty of predicted future states over time.
While deterministic predictions are fairly accurate for states in the near future,
stochasticity and model inaccuracies may lead to prediction errors that accu-
mulate over time, potentially leading to significant differences between actual
and predicted costs. The discount factor is of the form e#(~*) € [0,1] ;3 < 0.
Mean passenger cost is given by

¢ 2 @ (Vid W) + G
P

(4.8)

where n is the number of planned stop visits, t;, V; and W, denote the de-
parture time, in-vehicle cost, and waiting cost of the i*" planned stop visit,
respectively, ¢y and W, denote the time and waiting cost at the end of the
horizon, respectively, 6y, is the relative disutility of passenger waiting time,
and P is the total number of boardings.

Exit lateness cost can be a general function. We use the following piecewise-
polynomial specification:

Cr = Z max(O, (ty — u;)a> (4.9)

veV

where u, and u] are the planned and target exit times of vehicle v, and «
is a constant parameter. Planned exits are those resulting from a candidate
operations plan z. Target exit times come from vehicle and crew entry and
exit plans, determined before service delivery. Real-time operations plans can
use vehicles and drivers up to their target exit times without lateness cost.
Some lateness may be allowed at a cost, but exits later than u” may not be
planned. By construction, target exit times v’ must not be later than latest
allowed exit times u”. Values a > 1 can be adopted as a disincentive for very
late exits. With discounting it becomes

CL = Z maX(O, Pluv=to) (3, — u;)a> (4.10)

veV

Plan complexity cost C can be added as a disincentive for plans requir-
ing a lot of stop-skipping (e.g. short-turning) or holding at many stops for
only marginal performance improvements. For example, complexity may be a
function of the number of planned short-turns.

The planning problem can be decomposed, without loss of generality, into
a trip sequences problem and a departure times subproblem. This decompo-

86



sition is natural because trip sequences are discrete while departure times are
continuous. Mathematically, the trip sequence problem is

minimize C(s;d}, p) (4.11)
seS
where s is a candidate combination of trip sequences for all vehicles, S is the
set of all feasible trip sequence combinations, and d} are optimal departure
times for each given trip sequence combination s, provided by the departure
time subproblem:

inimi C(d; 4.12

minimize  C(d; s, p) (4.12)

where d is a set of departure times for all vehicles, D denotes the feasible space
of departure times, and s is a candidate combination of trip sequences for all
vehicles, given by the master problem. Constraints (4.2 through (4.6)) apply,

as before, in both the master problem and the subproblem.

4.5.1 Problem Complexity

The schedule-free real-time planning problem is large, complex, and difficult
to solve. Changes to a planned stop visit, in terms of either location or timing,
affect following planned stop visits for the same vehicle, including the number
of passengers waiting at the stop, dwell time, feasible departure times, and
possible next stops. Departure times, in turn, affect running times, and there-
fore future stop visits, and exit times, which determine whether a trip sequence
is feasible. Trip sequences of one vehicle affect those of nearby upstream ve-
hicles through the number of passengers waiting, the order in which vehicles
visit stops, etc. Trip sequences are inherently discrete, making it difficult to
model mathematically the relationship between alternative trip sequences for
a particular vehicle in terms of expected cost differences. In addition, the costs
of candidate trip sequences are highly dependent on departure times, because
they determine headways, waiting times, and exit lateness. This makes it diffi-
cult to estimate the benefits of different trip sequences without first optimizing
departure times.

Ideally, all trip sequences and departure times would be optimized together.
Unfortunately, this problem grows combinatorially, making it impractical to
solve in real-time. Its complexity is

H'UEV ‘Svl

of Y K (4.13)

where v is a vehicle, V' is the set of all vehicles, S, is the set of candidate trip
sequences for vehicle v, |5, is the set’s cardinality, i.e. the number of candidate
trip sequences, and k; is the complexity of optimizing departure times for a
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set of trip sequences i. Assuming a constant complexity k& for departure time
optimization, the complexity of the plan optimization problem simplifies to

[Toev ISl
O Z k :O(k;H|SU|> (4.14)

veV

Assuming a constant number of candidate trip sequences n for each vehicle,
complexity further simplifies to

(k: 11 > O (kn'"1) (4.15)

veV

where |V is the number of vehicles. These simplifications are only for illustra-
tive purposes, as it is likely that the complexity of departure time optimization
is a function of the number of vehicles, and the number of candidate trip se-
quences for a vehicle depends on its time left in operation and the number
of trip variations (i.e. ordered set of stops defining a trip, e.g. long and short
variations in each direction) available. For example, with 20 vehicles and 5
candidate trip sequences per vehicle, there are 5?° candidate combinations of
trip sequences to evaluate, for each of which departure times must be opti-
mized. The complexity of operations planning problems has led researchers to
develop heuristics to optimize transit plans offline, as described in Section [4.2]
In real-time applications it is critical to optimize quickly. The complex in-
terdependence between vehicle trajectories and the nonlinearities in the cost
function, running times, and demand make plan evaluation and optimization
computationally expensive.

Given that the full problem is not tractable, a simplified approach must be
adopted. It would be challenging to make progress without first reducing the
dimensionality of the problem to attain non-combinatorial complexity. Do-
ing so drastically reduces the solution search space, which makes the problem
tractable but sacrifices potentially good solutions. This is a critical aspect
of schedule-free operations: potential performance benefits derived from in-
creased flexibility and utilization of real-time information may not be realized
without a successful optimization approach, and this success largely depends
on how dimensionality is reduced. Good approaches should sufficiently reduce
dimensionality while leaving a search space containing good solutions.

A natural approach toward reducing dimensionality is decomposing the full
problem into subproblems, one per vehicle, solved sequentially, given sequences
for all other vehicles. The complexity of this approach is

|:Sw]

> ks (4.16)

veV i=1
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which, assuming a constant n number of candidate trip sequences per vehicle
and a constant complexity k& for departure time optimization (again, only for
illustrative purposes), simplifies to

O (Zik) =0 (Z zm> = O (|V|kn) (4.17)

veV i=1 veV

For example, with 20 vehicles and 5 candidate trip sequences per vehicle, the
number of combinations of trip sequences decreases from 5% to 5 - 20.

This decomposition approach makes the problem tractable, but drastically
reduces the solution search space. Since trip sequences are optimized one
vehicle at a time, assumed sequences for the rest of the vehicles affect the costs
(and optimality) of each candidate sequence for vehicle v. This makes the order
in which subproblems are solved matter. For instance, consider two vehicles,
v, and vy, each with three possible trip sequences: A, B, and C for vy, and D,
E, and F for vy. There are 32 = 9 trip sequence combinations. Suppose that
the (unknown) optimal solution selects sequences C' and F'. Since sequences
are optimized separately for each vehicle, a sequence must be assumed for vy
when optimizing for v;. Suppose that sequence D is assumed for v5. Based on
this assumption, sequence A might be optimal for v;. Then, given that choice,
sequence D might be optimal for vy. The selected sequences A and D are
suboptimal. The global optimum was not found because the decomposition
approach pruned the combination C, F' from the search space.

While and assume a single pass through vehicles (in some
order), it might be desirable to do multiple passes to widen the search space
(i.e. not reduce it as much) and increase the potential of finding good solutions.
In general, if g passes are performed, the complexity is

|So]

Ofgd > ki (4.18)

veV =1

which, assuming a constant n number of candidate trip sequences per vehicle
and a constant complexity k& for departure time optimization, simplifies to

O (g|V|kn) (4.19)

Multiple passes could be done in sequence and in parallel. For example, mul-
tiple sequential passes through the single-vehicle subproblems (in some order)
would allow revisiting a trip sequence given trip sequences optimized in the
previous pass. This could be repeated until there are no further changes in
trip sequences, optionally up to a predetermined number of times. Following
the previous example of two vehicles, each with three candidate sequences,
suppose that when optimizing sequences for v, given sequence A for vy, se-
quence [ is selected (rather than D) for v,. Since the assumed sequence for
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vo changed, it is possible that a local optimum has not yet been found, so the
sequence for v could be revisited in a second pass. Sequences C' and I’ would
be selected for v; and vy, respectively, in this second pass. A third pass would
lead to no changes because a locally optimal solution (in this case also globally
optimal) has been found. Passes in different orders or with different initially
assumed sequences could be processed in parallel, optionally performing mul-
tiple sequential passes for each order. For example, three parallel instances of
the problem could be solved, each assuming a different sequence for vy when
optimizing sequences for v;. After each instance optimizes sequences for wvs,
the solution with least cost would be selected. Although the multiple-passes
approach improves the probability of finding good solutions, it may not be
feasible to guarantee global optimality in problems of real size.

The number of feasible trip sequences increases with time remaining in
operation, u,, — to, and number of trip variations. Vehicles exiting sooner can
serve fewer additional trips. For instance, when ] — to = 15 minutes, vehicle
v may only have time to finish the current trip, so there is a single feasible
sequence. In contrast, a vehicle with 4 hours remaining in operation may have
time for, say, 4 trips between terminals. Short variations can greatly increase
the number of feasible trip sequences. The availability of a single short-turning
point per direction can lead to thousands of feasible trip combinations for
vehicles having more than 4 hours remaining in operation.

The complexity of departure time optimization must be considered, be-
cause a computationally expensive approach could make it infeasible to con-
sider even a single combination of trip sequences. There are several ways to
simplify this problem. One is using simple models that can be solved quickly
but do not capture all the complexities. For example, the effect of dwell times
on running times, the interdependence of vehicle trajectories, and the time-
dependence of running times and demand could be neglected, and a linear or
convex quadratic formulation could be used. Solving the departure time prob-
lem fast allows testing a larger number of feasible sequences, but the stronger
assumptions may lead to unrealistic cost estimates, and thus poor choices.
A different approach is using richer models with optimization algorithms re-
quiring few objective function evaluations, trading the ability to find globally
optimal solutions (of a possibly unrealistic model) for the ability to capture
information such as dynamic running times and demand.

It is also possible to combine simple and complex models with hopes of
reaping benefits from each. This can be done in stages when the whole problem
is decomposed into smaller problems, or at once by employing meta-models
mapping values of one model to the other (Osorio and Bierlaire, 2013). A
policy approximation approach can be used instead of, or in combination with,
departure time optimization. For example, Chapter [2| shows that the even
headway heuristic performs well in most cases. This heuristic could be applied
within the model to set departure times, subject to constraints on holding
and exit times. The result could be used directly to compute the cost of a
combination of trip sequences, or as an initial point given to an optimization
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algorithm for further improvement. Chapter [2 shows that optimization adds
value principally when capacities are reached and passengers are left behind, so
optimization could be used only when overcrowding is detected in the current
or future system states.

Depending on how quickly departure times can be optimized for each trip
combination, it may be necessary to discard some sequences without evalua-
tion. For example, sequences in which a vehicle exits with plenty of time to
serve more trips may be disregarded. Sequence elimination heuristics of this
nature can help reduce the number of required departure time optimizations
from thousands to hundreds or tens. Alternative sequences for a given vehicle
can be evaluated in parallel.

In the context of this research it is desirable to capture the dynamics of
running times and demand, because neglecting them can lead to significant
differences between modeled and real costs. For instance, neglecting an in-
crease of running times during peak operations on a transit corridor might
cause a simple model to suggest a plan in which drivers are expected to exit
on time, but in reality there will be significant exit lateness.

It might be possible to implement schedule-free operations without opti-
mization using heuristics for all the decisions. For example, holding times
could be based on target headways from the service plan, and short-turning
could be employed when the number of trips between terminals that a vehicle
is predicted to serve decreases as a result of delays. In this case, short-turning
would be used to correct for the delay and allow the vehicle to serve the origi-
nal number of trips. With more sophisticated heuristics it might be possible to
short-turn in response to overcrowding in addition to delays. A potential draw-
back of an all-heuristic approach is poor management of consecutive vehicles
being delayed. For example, three consecutive vehicles may be delayed enough
to qualify for short-turning according to the heuristic, but short-turning them
all could lead to very long headways on a portion of the line, and capacity
problems could ensue.

4.6 Simplified Methodology

This section presents a specific methodology developed based on the preceding
discussion, with the aim of making the schedule-free paradigm operational in
a simulated transit line, as presented in Section [1.7] Several simplifications
are made in the interest of tractability. Application results presented in Sec-
tion [4.7.2 suggest that this methodology does not perform well enough and
that refinement is needed. Nevertheless, it lays the groundwork for further
exploratory work.

Figure 4-4] shows an activity diagram of the optimization process. The
process begins by generating a basic trip sequence for each vehicle, which be-
comes the initially assumed trip sequence. Basic trip sequences have vehicles
serve complete trips (without stop-skipping) and return to the exit location.
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A basic trip sequence is feasible if the vehicle exits on, or before, the latest
allowed exit time. Trajectories for each vehicle are then optimized, one vehicle
at a time, following a specific order (discussed later in this section). Optimized
trajectories replace initially assumed ones, such that trajectory optimizations
for subsequent vehicles incrementally reflect these updates. Each vehicle’s tra-
jectory is optimized by enumerating feasible trip sequences and selecting the
one with lower cost. Departure times are optimized as part of each sequence’s
evaluation. (Following the Unified Modeling Language specification, the key-
words parallel and iterative characterize each expansion region denoted by a
dashed rounded box. Parallel indicates independent activities that can be
processed either in parallel or sequentially, with order not mattering, while
iterative indicates activities that must be processed in sequence, following a
certain order if one is established. In this case, the vehicles expansion region
processes vehicles in order of ranking, as described later.) The remainder of
this section discusses each of these steps in greater detail.

Following the discussion in Section [4.5.1] the trip sequence problem (4.11)
is decomposed into sequential trip sequence subproblems for each vehicle, as

follows:
minimize C(sy; S5, d5, p) (4.20)

SvGS’u

where s, and S, denote a candidate trip sequence and the set of feasible trip
sequences for vehicle v, respectively, s; denotes the trip sequences assumed
for all other vehicles, and d} denotes optimal departure times for each trip
sequence combination (provided by the departure time subproblem). Each
instance of problem optimizes the trip sequence of a vehicle v and de-
parture times for all vehicles (through the departure time subproblem ([4.12))),
under assumed exogenous trip sequences s; for other vehicles. Starting with
an initial assumption about the trip sequences for all vehicles, the subprob-
lems are solved sequentially, once per vehicle, each time capturing previously
optimized trip sequences. Thus, when the subproblem is solved for the last
vehicle, all trip sequences and departure times have been optimized.

Currently planned trip sequences (from the previous plan update, before
to) may be assumed for all vehicles to start. Otherwise, a basic trip sequence
s¥ may be assumed. Basic trip sequences finish the current trip (if one is being
served) as originally planned and have no stop-skipping after the start of the
next planned trip. They can be based on one of two approaches.

The first approach generates the longest feasible basic sequence, composed
of trips between terminals until the latest possible on-time exit, by solving the
following problem:

S, = argmax U, (4.21)

SvES]
subject to  wu, < u, (4.22)
he = h™ Ve € E, (4.23)
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where S is the set of all basic trip sequences for vehicle v, u, and u, are
the planned and target exit times of vehicle v, respectively, and h, and h™"
are the planned and minimum allowed holding times for planned stop visits
E,, respectively. Minimum holding times typically imply holding only for the
minimum required driver rest time between trips at terminals and turning
points. Problem is easily solved by adding trips between terminals until
the first late exit (after the target exit time u)), and then removing the last
cycle.

The second approach generates the closest basic sequence, composed of trips
between terminals until the exit closest to the target exit time, by solving the
following problem:

s; =argmin |u, — ul| (4.24)
SvESY
subject to  h, = h™ Ve € E, (4.25)

If the closest basic sequence exits early, it is feasible and equal to the longest
feasible basic sequence. Infeasible basic sequences must be replaced during the
optimization process with sequences that, by serving fewer or shorter trips,
satisfy exit constraints. While leads to initial assumptions having no
exit lateness cost, assumes more aggressive usage of vehicles, and may
more closely match the (later) optimized trip sequence, which may skip stops
to prevent exit lateness. The latter approach is used for the application in
Section and is assumed in the remainder of this section. Problem is
easily solved by adding trips between terminals until the first late exit (after
the target exit time ) ), and then removing the last cycle if the previous time
at the exit location is closer to the target exit time. The constraint u, < u!
can be added as a way of allowing closest basic sequences exiting late only if
exit lateness does not exceed the hard constraint.

Once each vehicle has an initial trip sequence, departure times can be
optimized by solving (4.12)) to finish defining an initial solution. Departure
time optimization is discussed in Section [4.6.4]

Since trip sequences of each vehicle are optimized separately (though not
independently), the order in which vehicles are processed can affect the out-
come. Vehicles for which optimal trip sequences significantly differ from ini-
tially assumed trip sequences should be processed first. It is useful to consider
both the importance and urgency of (potentially) changing each vehicle’s ba-
sic trip sequence. It is more important for vehicles with exit lateness in their
closest basic trip sequence, because alternative trip sequences are required to
achieve a feasible plan. For example, a vehicle may need 10 more minutes
to complete the last full round trip without exiting late. A single short-turn
may allow the vehicle to serve an additional (short) round trip without exiting
late, and this could benefit passengers. Replacing initially assumed infeasible
sequences with feasible sequences first allows later optimization decisions to
reflect these changes. It is more urgent for vehicles exiting sooner, because
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there may be fewer trip sequences that work well. For example, there may be
only one sequence that prevents a vehicle with 50 minutes left before its target
exit time from exiting late. By updating trip sequences for the most critical
vehicles first, trip sequences for vehicles with greater flexibility can be opti-
mized to work well with those of vehicles having fewer options. Importance
and urgency criteria can be combined to rank vehicles as follows:

py = —max (0, u; — ul) + Or (u, — to) (4.26)

where v denotes the planned exit time of vehicle v with the basic trip sequence
sy, exiting closest to target, and 0r is a weight establishing the trade-off between
importance and urgency.

The first term in gives the negative exit lateness, zero if the vehicle
does not exit late. The second term gives the time remaining before the target
exit. A lower rank p, is given to vehicles with higher potential benefit and
urgency. Trip sequences are optimized in increasing order. It is possible to
consider more than one ranking function, solving the problem for different
vehicle orders in parallel, and selecting the minimum cost plan at the end.

The relationship between candidate sequences is difficult to model because
of changes in vehicle order, optimal departure times, interaction between ve-
hicles, and lateness. This makes it challenging, for example, to develop tight
bounding rules for a branch and bound algorithm. Instead of attempting this,
the best sequence is picked through enumeration. The value of a trip sequence
is highly dependent on departure times (of all vehicles from all terminals, turn-
ing points, and stops), which affect headways, waiting times, and exit lateness.
For each sequence s, being considered, the departure time optimization sub-
problem is solved. Feasibility is determined by exit lateness constraints
and minimum and maximum allowed holding times. Departure times are ma-
nipulated through holding at stops and terminals. Although the optimization
problem is equivalent to the holding control problem, it is departure times
rather than holding times that define a plan (along with trip sequences). Exit
lateness cost is incurred when u!, < w, < ul. Lateness cost of vehicles with
infeasible basic sequences can be neglected until their sequences are replaced
with feasible ones.

Computation times for plan optimization depend on the complexity of the
departure time optimization algorithm. There is a trade-off between sophisti-
cation and speed. A general purpose nonlinear optimization algorithm can be
used to minimize cost, but if this takes too long then it may not be possible
to evaluate all candidate trip sequences in the required time. Chapter [2| shows
that (except in cases of overcrowding) holding optimization generally results
in even headways. It is therefore reasonable to approximate the departure
time optimization policy with an even headway algorithm requiring far fewer
performance model evaluations, in exchange for the ability to evaluate more
candidate trip sequences. Since candidate plans for a vehicle are mutually in-
dependent, they may be evaluated in parallel. The departure time subproblem
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could be solved fully for all feasible trip sequences with distributed computing.

The methods employed are deterministic. Aside from the implications of
neglecting stochasticity on the optimality of operations plans generated by this
approach, this can lead to unplanned late exits because trips can take longer
than expected. In effect, the exit lateness policy prevents (or discourages)
trip plans with expected late exits (at the time of trip plan optimization),
rather than late exits per se. While some operators might accept this, other
may require a stricter policy. It is possible to establish upper bounds on
exit times based on high-percentile running times to obtain lateness estimates
under pessimistic (i.e. slow run) scenarios.

Key components of the real-time planning optimization process include
(1) a discrete event performance model that captures dynamic running times
and demand, the interdependence of demand and running times through dwell
times, mean passenger cost including waiting time at stops and in-vehicle time,
and driver lateness, (2) a simple running time model that captures the time-
dependence of running times but neglects the endogenous contribution of dwell
times, (3) a trip sequence optimization algorithm, and (4) a departure time
optimization algorithm. These are discussed in the following sections.

4.6.1 Event-Based Performance Model

The performance model makes deterministic predictions of system evolution
over a fixed duration time horizon. Inputs defining the initial state include ve-
hicle arrival times and locations, most recent departure times from each stop,
and number of passengers in vehicles and at stops. Demand is modeled by
origin-destination pair, using continuous variables as in Chapter 2 Running
times and demand are modeled as functions of time. It is assumed that vehi-
cles stop at all stops. Inputs defining planning and control decisions include
the planned sequence of stops to be visited by each vehicle and planned depar-
ture times by vehicle and stop. Other inputs include boarding and alighting
time per passenger, horizon length, minimum departure headways, vehicle ca-
pacities, minimum and maximum holding times at terminals, turning points,
and stops, and weights for waiting time, in-vehicle time, and driver lateness.
Outputs include vehicle arrival and departure times, number of boardings and
alightings at each stop, loads, and cost.

The performance model is based on events representing vehicle arrivals at
stops. Events are processed chronologically, allowing vehicle order to change
over the prediction horizon. Changes in vehicle order may be caused by vehi-
cles entering or exiting service, short-turns, and overtaking. An event heap is
initialized to contain events representing the first stop visit of each vehicle, in-
cluding vehicles that have not yet entered service. Each stop visit is processed
as follows:

1. The number of alightings, total alighting time, and remaining vehicle
capacity are determined.
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2. If the vehicle is at its last planned stop, the vehicle is taken out of service.
No new events are generated.

3. The number of boardings, total boarding time, and number of passengers
left behind (when vehicles reach capacity) are determined. The number
of passengers who wish to board includes passengers waiting in the initial
state, passengers left behind by previous vehicles, and passengers arriv-
ing during the prediction horizon. Passenger arrivals are determined by
integrating demand functions, which give arrival rates over time. We
assume that passengers only board vehicles serving their destination in
the current trip.

4. The departure time is determined, considering total alighting and board-
ing times, planned departure time, holding time constraints, and mini-
mum departure headway. Before considering constraints, a vehicle holds
until its planned departure time, or departs immediately if it is late.
Holding constraints may require a vehicle to hold for a minimum dura-
tion (e.g. at a terminal) even if it is late, or may limit how long a vehicle
can hold, forcing it to depart before the planned time. Minimum depar-
ture headways may extend a vehicle’s holding time, even if the planned
departure time has passed.

5. The running time to the next stop is determined by evaluating the run-
ning time function for the link connecting the current stop and the next
stop. The arrival time at the next stop is determined by adding this
running time to the departure time from the current stop. A new event
is created representing the next stop visit, and added to the heap.

4.6.2 Exogenous Trip Running Time Model

Estimating the time it takes a vehicle to complete a trip is a critical part of
the schedule-free plan optimization framework. A vehicle might exit early or
late depending on its planned trip sequence and the duration of each trip. The
discrete event performance model provides the space-time trajectories of each
vehicle, from which exit time and exit lateness are derived, but it requires a
plan (stop sequences and departure times) as input and is computationally
expensive to evaluate. In order to generate candidate trip sequences and eval-
uate their feasibility with respect to exit lateness, many trip durations must
be estimated; vehicle movement at the stop level, loads, and passenger cost are
not necessary at first. The role of the exogenous trip running time model is
to provide these running time estimates efficiently. The model consists simply
of linear piecewise functions, one per variation, mapping time of day to trip
running time. If not supplied as an input, trip times may be obtained from the
output of the discrete event performance model. The resulting univariate trip
running time model neglects the effect of demand and the interdependence of
vehicle trajectories, treating them as exogenous factors related to time, but it
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is precise enough to estimate the exit lateness resulting from candidate trip
sequences.

4.6.3 Trip Sequence Optimization

The schedule-free optimization process determines which trip sequence each
vehicle should serve in order to minimize cost while satisfying exit constraints.
The availability of multiple trip sequences enables efficient utilization of vehi-
cles and crew while satisfying exit time and location constraints. If restricted
to serving trips between terminals of a single line, vehicles may reach their
exit location having enough time to serve shorter trips, but not enough to run
another full cycle, and must therefore exit early to satisfy exit constraints,
wasting the time left between the end of the last trip and the target exit
time. Stop-skipping strategies such as short-turning, dead-heading, express-
ing, and limited stop service offer the possibility of serving shorter trips and
reducing waste. In addition, there may be the possibility of serving trips on
a set of lines sharing a terminal. If the different lines have cycles of different
durations, interlining could help increase the efficiency of deployed resources.
Besides preventing waste of resources, trip sequence optimization may help
manage overcrowding with targeted capacity increases.

The trip sequence optimization model chooses trips from a set of variations.
A wvariation is a unique ordered set of stops beginning and ending at a turning
point. In this context, a turning point is a stop (with or without demand)
where trips can begin or end. We assume that vehicles begin all trips empty
and that passengers only board vehicles that will serve their destination in
their current trip. Figure depicts a transit line with four turning points: A
and D at the terminals and B and C en-route. In this case turning points B
and C' are, like terminals, (dummy) stops without demand where a vehicle can
hold between trips. Variations AD and DA run from terminal to terminal,
while variations AC, CA, DB, BD, BC', and C'B are short trips. Short-turns
are enabled by specifying variations beginning or ending at en-route turning
points. A vehicle at a turning point can be taken out of service (if the turning
point is the designated exit location and there is no time left to serve more
trips) or continue to serve trips on any of the variations starting at that turning
point. For example, a vehicle at A might offer the next trip on variations AC'
(short) or AD (long). Dead-heading is enabled by specifying dead variations,
which begin and end at turning points but have no stops in between. For
instance, a dead variation starting at A and ending at B enables a vehicle
currently at A to deadhead to B and begin revenue service on variation BD.
Limited stop services are enabled by specifying variations that skip stops. The
problem’s complexity increases exponentially with the number of variations.

Expressing and short-turning trips can force passengers to alight. A be-
nign form of these strategies is considered in this research: short-turning and
expressing must be decided (and announced) at terminals or turning points
between trips, so that passengers are not forced to alight as a result of stop-
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Figure 4-5: Schematic of Transit Line with Turning Points

skipping before completing their trips. The unrestricted versions of these
strategies, not considered here, are of interest for responding to major in-
cidents. These strategies could be enabled by capturing the inconvenience
imposed on passengers in the objective function. The following discussion as-
sumes that vehicles must finish their current trip. For example, if a vehicle
is currently running a trip on variation AD, the real-time trip sequence op-
timization algorithm may not change the current trip to AC, because that
would force passengers whose destinations are downstream of C' to alight to
complete their trip. However, the algorithm can choose the sequence of trips to
be offered once the vehicle arrives at D. Assuming that passengers only board
vehicles that will serve their destination during their current trip, the algo-
rithm does not force alightings, and capturing the corresponding cost becomes
unnecessary.

Trip sequence optimization begins by generating a basic trip sequence for
each vehicle, given by , or obtained from the previous real-time plan (to
be replaced by the one being created). Minimum holding times are assumed,
as described earlier. This means that stop visit times are based on running
times between stops, without holding to regulate headways except where re-
quired. For example, vehicles may be required to hold at least 2 minutes
between trips. A set of candidate feasible trip sequences is generated for each
vehicle, as shown in Figure[4-6| Time is shown on the vertical axis for a vehicle
currently on its way to A, having a target exit at terminal A at time u’, with
a hard exit constraint at time u”. Feasible trip sequences finish the current
trip, do not have trips beginning after v/, and exit before u”. The exogenous
trip running time model is used. Hence, the set of feasible trip sequences is
{A}, {A, D, A}, {A,C, A}, and {A,C, B,C, A}. The latter has some exit late-
ness cost. Sequences {A, D, B,C, A}, {A,C,A,C, A}, and {A,C, B, D, A} are
infeasible because they exit after u”. Sequence {A} finishes with the current
trip after which the vehicle is taken out of service.

If there are no feasible trip sequences, the trip sequence that returns the
vehicle to its exit location soonest is selected. If there is a single feasible
trip sequence, it is selected. If there are multiple feasible trip sequences, each
one is evaluated by solving the departure time subproblem , and the
one resulting in the least cost is selected, thus solving . Trip sequences
ending after the target exit time u’ incur exit lateness cost.

A number of measures are taken in the interest of tractability. When
a vehicle has time to serve several more trips before exiting, there can be
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Figure 4-6: Trip Sequence Optimization for a Single Vehicle
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thousands of feasible sequences. The following heuristics can be applied to
speed up trip sequence optimization:

1. Optimization can be skipped for vehicles scheduled to enter the system
after the end of the optimization horizon, since their trajectories should
have little or no effect on the optimal plan for vehicles in the horizon.

2. Trip sequences having excessively early exits, with time to serve more
trips and not exit late, can be excluded. In particular, parents of feasible
trip sequences, such as sequence {A} in Figure , can be excluded.
Consider a set of feasible trip sequences T, for vehicle v. A sequence
p € T, is a parent if and only if there is another sequence ¢ € T, such
that p C ¢ and |p| < |q|.

3. If the basic sequence s given by is feasible, it can be selected
without optimization, especially when the intent is for vehicles to serve
full trips and the operator prefers not to employ stop-skipping strategies
unnecessarily. From the three feasible sequences of the previous example,
{A, D, A} would be selected based on this criterion.

4. If s} is infeasible, then either one less full trip can be served or stop-
skipping strategies must be employed, but the operator might prefer not
to consider trip sequences having more stop-skipping than necessary. If
so, trip sequences skipping stops after lateness u) —u! has been absorbed
through stop-skipping strategies can be excluded. For example, for a
vehicle with 5 minutes of exit lateness in its basic sequence, feasible
sequences with a single short-turn that saves at least 5 minutes would be
retained, but those having additional short-turning would be excluded.

Excessive elimination of candidate sequences reduces the possibility of finding
an optimal plan. On the other hand, eliminating sequences that are unlikely
to be optimal speeds up real-time planning and can even improve the solution
to the general (all vehicles) problem. Since the planning problem is broken
into separate problems for each vehicle, the optimal sequence for a vehicle’s
subproblem, given sequences assumed or previously optimized for other ve-
hicles, may not be the optimal sequence for the general problem. Retaining
sequences that are good globally can improve the solution. These set reduction
heuristics are investigated in Section [£.7.3]

4.6.4 Departure Time Optimization

The departure time optimization problem (4.12]) seeks a combination of de-
parture times that minimizes cost. While trip sequence optimization relates to
the spatial dimension of the operations plan (although minimum holding times
are assumed to determine feasibility with respect to exit time constraints), the
departure time optimization defines the temporal dimension. Departure times
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heavily influence headways, waiting times, crowding, and exit lateness. Can-
didate plans are not fully formed until both spatial and temporal variables are
defined, so their cost cannot be quantified before optimizing departure times.
Since the discrete event performance model is used to evaluate the objective
function, departure time policies capture planned trip sequences. The horizon
should cover the latest exit of all vehicles for which plans are being optimized.

The starting point for departure time optimization is the set of stop visits
planned by the trip sequence optimizer, with minimum holding times. Depar-
ture time optimization can add holding time beyond the required minimum,
potentially decreasing cost to passengers but also increasing exit lateness. Exit
lateness is discouraged through the exit lateness component C7, in objective
function , which allows trading off acceptable amounts of lateness for im-
proved service quality, while the hard constraint on exit lateness can prevent
additional holding regardless of its benefit to passengers.

The departure time problem is related to holding time optimization and
headway optimization, since holding times influence departure times, which
in turn influence headways. Manipulating headways would be the most direct
way to affect cost, but it would require calculating departure times for all ve-
hicles simultaneously, since the departure time of the first vehicle affects the
departure time of all following vehicles given headways. In addition, it is possi-
ble that the holding times required to achieve specific headways violate holding
time constraints. For example, 3 minutes of holding at a stop may be needed
to achieve a 5 minute headway, but this would be infeasible if vehicles can hold
at most 1 minute at that stop. Manipulating holding times is the most indirect
way of affecting cost, because it requires calculating departure times and then
headways. Since vehicle trajectories affect trajectories of upstream vehicles,
changing the holding time of a vehicle can affect the departure time, and opti-
mal holding time, of a nearby upstream vehicle. Manipulating departure times
requires verifying that the holding times required to achieve specific departure
times satisfy lower and upper bounds, but planned departure times can be set,
and the corresponding holding times verified, independently for each vehicle,
which can improve the performance of some optimization algorithms. When
a vehicle arrives at a stop after the planned departure time, it leaves as soon
as possible. When the holding time required to depart as planned exceeds the
allowed maximum, the vehicle holds for the maximum allowed time and leaves
before the planned departure time.

The departure time problem is nonlinear and (in general) non-convex, so
there may be multiple local minima. The feasible solution space can be very
large for problems of typical size, and grows super-linearly with the number
of planned events at control points in the horizon. Dimensionality can be re-
duced by optimizing departure times at stops only before the next arrival at
a turning point, and thereafter only at turning points. Departure times from
stops not being optimized are determined based on forward propagation using
minimum holding times, dwell times, and running times. Non-convexity makes
the quality of solutions found by local optimization algorithms dependent on
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the initial point. A good initial point can also speed up convergence. A con-
strained even headway policy is applied iteratively to transform the minimum
holding solution from the trip sequence optimizer into an initial point with
lower cost, ensuring that holding time constraints are satisfied and vehicles
do not exit late. Since the even headway policy is insensitive to cost, it can
escape local valleys in the objective function. The policy approximation ap-
proach may be sufficient to obtain good solutions, but a nonlinear optimizer
can be used to further reduce cost by fine-tuning planned departure times
within a trust region. This can be of value in situations when even headways
are thought to be suboptimal, e.g. when vehicles fill and passengers are left
behind. Given that the problem is non-convex, this approach does not guar-
antee global optimality, and metaheuristics such as simulated annealing could
be used to improve the solutions found.

An activity diagram of the constrained even headway algorithm is shown
in Figure [4-7] The algorithm combines evaluations of the performance model
with a value approximation approach for vehicle trajectories. Planned events
where holding is allowed are processed in order of departure time. Preced-
ing and following headways are calculated at a reference stop, which can be
different from where the vehicle holds. For example, when adjusting the de-
parture time from an en-route turning point, the first downstream stop can
be the reference, in order to capture headways as experienced by passengers.
After calculating the change in departure time leading to equal preceding and
following headways subject to constraints on holding and exit lateness, the
trajectory of the vehicle for which departure time is being adjusted is approx-
imated, shifting the downstream trajectory by the change and neglecting ef-
fects on other vehicles. Adjusted trajectories represent target departure times.
The performance model is evaluated after approximating all planned events
in order to calculate cost and capture the interaction between vehicles. The
approximation-evaluation process can be repeated several times to increase
headway regularity.

4.7 Application

One of the objectives of this research is to assess the potential of the schedule-
free paradigm. While the previous sections have discussed the conceptual
arguments for planning trips in real-time, it is also important to demonstrate
the paradigm’s feasibility and performance. To that end, this section discusses
the application of the schedule-free paradigm to a simulated high-frequency
transit line, described in Section [£.7.1] Feasibility is evaluated in terms of
computational cost and, in particular, optimization times. A formulation that
takes hours to solve could be interesting for off-line applications but is of little
value in a real-time context. Section [1.7.2] compares the performance of the
transit line under the schedule-based and schedule-free paradigms in cases of no
delays, moderate delays, and severe delays, using the simplified methodology
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Figure 4-8: Simulated Transit Line

presented in Section 4.6| Performance is evaluated in terms of passenger cost,
i.e. waiting times and in-vehicle time, and driver exit lateness. Section [4.7.3
explores the use of heuristics to meet the tractability requirement.

4.7.1 Transit Line

The transit line is a simple (non-branching) transit line with 20 stops per di-
rection and a terminal at each end, as shown in Figure [4-8 Short-turning is
allowed at the 15 stop in each direction (to the 5" stop in the opposite direc-
tion), but must be decided by the time vehicles start their trips. Vehicles stop
at a turning point when short-turning, where they may hold before beginning
the next trip. This allows trips running between stops 1 and 20, 1 and 15,
5 and 20, and 5 and 15 in each direction. Deadheading and expressing are
not allowed. Terminals and en-route turning points are modeled as (dummy)
stops without demand.

There are 25 vehicles (not all operating simultaneously), each with capacity
for 60 passengers. Figure shows scheduled trips for each vehicle by time;
each horizontal line segment indicates a trip. All scheduled trips run between
terminals. The schedule was generated using a greedy algorithm that captures
running times, demand, and target headways. New trips are dispatched over
a period of 8 hours, 95 in each direction.

The running time between stops is (deterministically) 1 minute, except in
direction 2 during the peak period between 3:00 and 6:00, when running times
increase to 2 minutes per link, to model the typical effect of peak traffic in
a shared right of way. We also consider cases in which there are delays in
direction 2 during the peak period. Moderate and severe delays cause running
times to peak at 3 and 4 minutes per link, respectively, rather than the typical
2 minutes per link. Link running times by direction and time are shown in
Figure4-10, The three running time cases can be considered as different states
of the operating environment, reflecting running time variability across days.
One can imagine that the line most commonly operates without delays, while
moderate delays are encountered occasionally and severe delays rarely, e.g. due
to bad weather. The schedule assumes no delays.

Since running times are deterministic (within each case), the ability of the
schedule-free paradigm to deal with within-day stochasticity is not observed.
The decision to use deterministic running times was made for the sake of sim-
plicity in this first implementation of the new paradigm. With deterministic
running times and the same demand across cases (derived from a Poisson pro-
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cess but with a fixed, common seed for the pseudorandom number generator),
the differences in outcomes between cases of the same delay are entirely due
to the paradigm difference. (This approach differs from the one followed in
Chapter [2 where running time variability was used to generate disruptions
and performance measures were calculated across simulation replications for
each case.)

The target headway used to generate the schedule is 8 minutes in the off-
peak and 3 minutes in the peak, as shown in Figure [f-11} Demand is modeled
as a Poisson process. All origin-destination pairs (in each direction) have the
same arrival rate function. This form of demand has most boardings at the first
stop, most alightings at the last stop, and maximum load in the middle. This
pattern may make short-turning less favorable than in transit services having
less demand for travel to and from stops close to the ends of the line, because
short-turns make vehicles skip the stops with highest arrival rates. The arrival
rate A1 in direction 1 is such that vehicle loads reach half the capacity when
headways are 8 minutes. The arrival rate A\, in direction 2 is the same off-
peak, but increases such that vehicles are 90% full at the maximum load point
when headways are 3 minutes in the peak. A separate pseudorandom number
generator is used to generate demand, with common random numbers across
all cases.

The target exit time u' is 15 minutes after the end of each vehicle’s last
scheduled trip, i.e. in Figure[£-9] 15 minutes after each vehicle’s rightmost dot.
This is also the latest allowed exit time, u”. Since u, = u!! Vv € V, there is
only a hard exit lateness constraint, and it is not relevant to set an exit lateness
cost weight (6 in (4.7)) or an exponent « in the lateness cost function (4.9)).
Solution complexity cost is neglected, with 8- = 0 in (4.7). When evaluating
passenger cost, waiting time at the stop is considered twice as onerous as in-
vehicle time, with waiting time weight 0y, = 2. The cost discount factor is set
so as to halve costs every hour. (These optimization parameters are described
in Section[d.5]) Vehicles must hold at least 2 minutes at terminals and en-route
turning points (which, like terminals, are modeled as stops without demand),
and can hold at most 2 minutes at stops 5, 10, and 15 in each direction.
Figure shows terminals, en-route turning points, and stops where holding
is allowed in darker gray.

Under the schedule-based paradigm, vehicles are held at terminals until
their scheduled departure time. Vehicles are dispatched to run short only when
current lateness exceeds the time savings expected by short-turning, regardless
of exit time. Time savings are calculated based on scheduled running times on
skipped portions of the route, assuming minimum required holding between
trips. For example, a vehicle departing 10 minutes late from a terminal would
short-turn only if it is expected to start the next (return) trip on time or
late, in spite of the time saved through short-turning. If instead the vehicle is
expected to arrive at the turning point early, and have to hold for more than
the required minimum holding time to begin the next trip on time, it would
be dispatched to serve a complete trip. This policy applies short-turning only
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when vehicles are significantly delayed.

Under the schedule-free paradigm, trip sequences and departure times
are optimized every 5 minutes to update the operations plan, following the
methodology presented in Section [4.6], and employing the sequence elimina-
tion heuristics listed in Section4.6.3l Vehicles are held at terminals or en-route
turning points until their planned departure time, and they are dispatched to
run short when the plan specifies. The real-time plan optimizer assumes no-
delay running times when predicting vehicle trajectories in the three cases.

4.7.2 Results

The results presented in this section demonstrate the feasibility of the schedule-
free paradigm, and its performance under the simplified methodology pre-
sented in Section 4.6l

Table compares performance measures for schedule-based (SB) and
schedule-free (SF') operations, across the three cases with different delays, with
and without short-turning allowed. The reported waiting, excess waiting, and
in-vehicle times are means over all passengers at all times. Exit lateness is
the time spent in operation after v’ = «”, i.e. more than 15 minutes after last
scheduled stop visit. Distributions of exit lateness are shown in Table |4.3| For
example, in the case of schedule-free operations, with short-turning, when the
line experiences a moderate delay, 19 vehicles exit on time (or early), 5 vehicles
exit no more than 2 minutes late, and 1 vehicle exits more than 4 minutes late.

There is no significant difference in mean waiting times, excess waiting
times, in-vehicle times, or lateness between the two paradigms in the base
case. This is not a trivial outcome because the real-time planner does not
have the schedule as a reference. Short-turning occurs three times in schedule-
free operations (in the case it is allowed), all with the same vehicle. It is not
required to prevent a late exit, but it is nonetheless planned by the optimizer,
which implies it is driven by a lower predicted passenger cost.

Figure illustrates the trajectory of this vehicle under schedule-based
and schedule-free operations, compared to the scheduled trajectory. Time is
shown on the horizontal axis, and space on the vertical axis, with the top
and bottom being opposite terminals. A dot indicates the latest allowed exit
time, u”, which is 15 minutes after the last scheduled stop time. As expected,
the schedule-based observed trajectory closely matches the schedule. By short-
turning three times and using the extra 15 minutes, the schedule-free real-time
planner manages to serve another cycle.

This aggressive plan, with no recovery time left at the end of the vehicle’s
run, works in this case because there are no delays, but must be revisited in
the other two cases once the vehicle is delayed. Figures and show the
trajectories of the same vehicle in the cases of moderate and severe delays, with
short-turning allowed. The first short-turn is planned as before, but a pair of
complete trips (i.e. between terminals) is served rather than a second pair of
short trips. There is no further short-turning under schedule-free operations in
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Table 4.2: Performance Comparison

Short-Turning | No Short-Turning

Delay Performance Measure SB SF | SB SF
None Waiting Time (min) 2.6 26 | 2.6 2.6
Excess Waiting Time (min) | 0.0 0.0 0.0 0.0

In-Vehicle Time (min) 9.6 95| 9.5 9.5

Late Exits 0 0 0 0

Max Exit Lateness (min) 0.0 0.0 0.0 0.0

Trips 190 192 | 190 190

Short Turns 0 3 — —

Moderate Waiting Time (min) 3.3 27| 34 2.7
Excess Waiting Time (min) | 0.7 0.1] 0.8 0.2

In-Vehicle Time (min) 10.8 10.7 | 10.7 10.7

Late Exits 0 6 1 )

Max Exit Lateness (min) 0.0 41| 0.6 1.0

Trips 190 190 | 190 186

Short Turns 2 2 — —

Severe Waiting Time (min) 6.3 41| 3.6 3.7
Excess Waiting Time (min) | 3.7 15| 1.0 1.1

In-Vehicle Time (min) 11.7 11.8 | 12.0 11.9

Late Exits 7 12 15 9

Max Exit Lateness (min) 9.6 11.3 | 10.6 10.8

Trips 190 186 | 190 162

Short Turns 16 21 — —

Table 4.3: Exit Lateness Distributions

Exit Lateness (minutes)

Delay Planning 0 2 4 6 8 10 12
o0 None SB 25 - - - - - -
5 SF 25 - - - - - -
E Moderate SB 25 - - - - - =
- SF 19 5 — 1 -
S Severe SB 18 1 - 2 2 2 -
” SF 136 1 1 2 1 1
&%  None SB 25 - - - - - -
§ SF 2% - - - - - -
= Moderate SB 24 1 - - - - -
£ SF 20 5 -~ T
%  Severe SB 10 1 1 3 5 4 1
= SF 6 - 2 2 2 2 1
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Figure 4-12: Trajectory of Vehicle with Short-Turning, No Delay
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Figure 4-13: Trajectory of Vehicle with Short-Turning, Moderate Delay
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Figure 4-14: Trajectory of Vehicle with Short-Turning, Severe Delay
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either of the cases with delays. Despite some recovery time at terminals, this
vehicle does not fully recover the schedule (under schedule-based operations),
although it does not exit late because of the 15 minutes of recovery time at
the end of the run and, in the case of severe delays, one short-turn.

With moderate delays and short-turning allowed, mean waiting time de-
creases by 0.6 minutes (19%) going from schedule-based (SB) to schedule-free
(SF) operations, and mean in-vehicle times differ by less than 0.1 minutes. Ex-
cess waiting time decreases by 87%. There are no late exits with schedule-based
operations because, aside from two short-turns, lateness is mostly absorbed by
the 15 minute grace period after the last scheduled stop visit; although the
delay makes some vehicles exit after their last stop’s scheduled time, none are
delayed by more than 15 minutes, which is when we begin counting exits as
late. These results show that at most two short-turns are necessary to prevent
exit lateness. Although the schedule-free plan optimizer attempts to prevent
vehicles from exiting late (i.e. more than 15 minutes after each vehicle’s last
stop’s scheduled time), 6 vehicles exit late with schedule-free operations, 5
with exit lateness not exceeding 2 minutes, and one 4.1 minutes late. The
same number of trips is served with both paradigms, and short-turning is
employed twice in both cases.

Vehicles exit late under the schedule-free paradigm because the real-time
planner assumes no delays when forecasting vehicle trajectories and determin-
ing if they are feasible. Since trips between terminals may not be short-turned
once started, lateness cannot always be prevented when a vehicle is delayed
in its last cycle. For example, the vehicle that exits 4.1 minutes late enters
the system at 2:54 and is supposed to exit by 5:09. Figure [4-15] shows this
vehicle’s schedule-based, schedule-free, and scheduled space-time trajectories.
When the vehicle reaches the exit terminal at 4:04, it has already experienced
delays, but the planner assumes no additional delays and, therefore, enough
time for the vehicle to serve a full cycle before being taken out of service.
However, the vehicle is delayed further in its return trip, causing a late exit.
The decision not to short-turn in the last cycle is final because short-turning
has been restricted in order to prevent the strategy from forcing passengers to
alight before completing their vehicle trip. The vehicle is held more than the
required minimum time at the opposite terminal, for the sake of regulating
headways, again assuming no further delays in the last trip. (The plan opti-
mizer would specify less holding time if it was aware of future delays. Also,
if ¥’ had been set earlier than u” and there were a lateness cost involved, the
planner would trade off lateness and passenger costs.) The (unexpected) delay
incurred in the last trip leads to a late exit.

Headway regulation appears to make late exits more likely under the sched-
ule-free paradigm. In schedule-based operations, the 15 minutes of grace at
the end of each vehicle’s run cannot be used earlier. Therefore, when a vehi-
cle is delayed, it holds only the required minimum, even when holding would
improve service. The 15 minute period at the end of the run serves as a buffer
for accumulated delays. Under the schedule-free paradigm, holding is used
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to improve service, not to adhere to a schedule or prescribed headway. The
real-time planning algorithm attempts to optimally allocate any time not used
to serve trips in order to adjust the timing of trips. This can lead to improved
service (e.g. lower waiting times), but if too much of the floating buffer time is
used early, there may not be enough left to respond to unexpected future de-
lays. Longer holding times at terminals and the increasing separation between
the schedule-based and the schedule-free space-time trajectories over time in
Figure [4-15| show this happens for at least some vehicles.

Figure shows the schedule-based, schedule-free, and scheduled space-
time trajectories for the vehicle exiting latest under schedule-free operations
with severe delays. In this case, the 15 minute buffer is not enough to prevent
a late exit under schedule-based operations. The vehicle also exits late when
operating without a schedule, for the same reason as before. We can assume
that if the planning algorithm had been aware of future delays when dispatch-
ing the vehicle for its last cycle at 3:43, it would have the vehicle short-turn
to prevent a late exit.

Figures and show how much later trips are dispatched under
schedule-free operations than under schedule-based operations, in the cases
of moderate and severe delays, respectively. Dispatch times under schedule-
based operations are shown on the horizontal axis, and the difference between
schedule-free and schedule-based dispatch times for each vehicle trip is shown
on the vertical axis. Trips are compared in sequence, e.g. the third trip under
each paradigm for the same vehicle. More trips begin later under the schedule-
free paradigm, and the difference increases over time, reinforcing the previous
observation that the buffer time between the last scheduled stop time and
the latest allowed exit time, which under schedule-based operations is fixed
at the end of each vehicle’s run, is used gradually under the schedule-free
paradigm, which increases the risk of late exits when vehicles are later delayed
unexpectedly.

Systematic differences in running time predictions between the performance
model and the simulation may be responsible for a few minutes of exit late-
ness. For example, in the performance model passengers are represented with
continuous variables and it is assumed that vehicles stop at all stops, lead-
ing to errors in the predictions of dwell times at stops, and thus trip running
times. This could be part of the reason some vehicles exit a few minutes
late under the schedule-free paradigm, in cases of both moderate and severe
delays. Stochasticity is not a contributing factor because the simulation is de-
terministic. The performance model, which forecasts vehicle trajectories and
costs given candidate plans, could be calibrated so that estimated running
times match real running times more closely. Alternatively, constraints could
be modeled tighter to compensate for systematic differences; for example, the
target exit times given to the plan optimizer could be 10 minutes (rather than
15 minutes) after the latest scheduled stop visit.

The difference in performance between paradigms widens under severe de-
lays. With short-turning allowed, the mean waiting time decreases by 2.2 min-
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Figure 4-15: Trajectory of Vehicle with Latest Exit, Moderate Delay
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Figure 4-16: Trajectory of Vehicle with Latest Exit, Severe Delay
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utes (35%) going from schedule-based to schedule-free operations, while mean
in-vehicle times differ by only 0.1 minutes. Excess waiting time decreases by
59%. In this case, many vehicles are delayed under the schedule-based pa-
radigm, which leads to no holding beyond the required minimum, and thus
significant bunching. Vehicles are held to improve service quality under the
schedule-free paradigm. The 15 minute grace period is insufficient to recover
from severe delays under schedule-based operations, in spite of 16 short-turns,
making 7 vehicles exit late, 6 of which exit between 4 and 10 minutes late.
There are 5 more vehicles exiting late under schedule-free operations than un-
der schedule-based operations, and the maximum exit lateness is also greater;
6 vehicles exit between 2 and 12 minutes late. Schedule-free operations lead
to 4 fewer trips than scheduled, and 5 more short-turns.

It could appear paradoxical that the operations strategy serving fewer and
shorter trips provides better service to passengers but leads to more late exits.
The greater number of late exits happens for the reasons discussed earlier:
planning unaware of future delays, combined with using buffer time much
earlier to regulate headways, resulting in gradual cumulative delays with re-
spect to the (from the real-time planning algorithm’s perspective, non-existent)
schedule, in addition to a smaller contribution from systematic errors in the
forecasts of the performance model. Vehicles are held earlier and longer, re-
sulting in further delays. Some vehicles encounter significant delays in their
last cycle, when stop-skipping is no longer an option. Others encounter de-
lays earlier, giving the planning algorithm the choice of either short-turning or
planning fewer trips (taking the vehicle out of service earlier than originally
planned). Three vehicles exit earlier than the last scheduled stop time under
the schedule-free paradigm, one of which exits over 23 minutes earlier, i.e. over
38 minutes earlier than the latest allowed exit time.

In spite of serving fewer trips with more short-turning, the schedule-free
paradigm achieves better headway regularity during and after the peak. Fig-
ures [4-19] and [4-20] show space-time trajectories of all vehicles between 3:00
and 8:00 for schedule-based and schedule-free operations, respectively, with
short-turning allowed. Unlike the previous space-time plots, these have the
first direction in the bottom half and the second (return) direction in the top
half. Operating according to the schedule leads to several bunches of vehi-
cles around 4:00, followed by many short-turns, skipping the first stops of the
second direction, which has strong demand. Vehicles also short-turn under
schedule-free operations, but departures from the terminal are more evenly
spaced. Between 4:30 and 5:30 only 2 complete trips are offered in the peak
direction under schedule-based operations, while 7 are offered under schedule-
free operations.

The above tests were repeated without short-turning. Disabling short-turns
simplifies the trip sequence optimization process considerably by reducing the
dimensions of the trip sequence optimization problem; the only decision left to
make is the number of cycles to run. Departure times must still be optimized,
but the subproblem is solved far fewer times.
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Figure 4-19: Schedule-Based Vehicle Trajectories, Severe Delay

Figure 4-20: Schedule-Free Vehicle Trajectories, Severe Delay
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As before, the two paradigms perform similarly without delays. In the
case of the moderate delay, waiting time decreases by 0.7 minutes (20%) when
operating schedule-free, and the difference in in-vehicle time is small. The
waiting time savings are equivalent to an 82% drop in excess waiting time.
There are 1 and 5 late exits observed with schedule-based and schedule-free
operations, respectively, but the maximum exit lateness is small in both cases.
Schedule-free operations result in 4 fewer trips served.

In the case of severe delays, schedule-free operations lead to fewer late
exits and similar maximum exit latenesses, mean passenger waiting times,
mean excess waiting times, and mean in-vehicle times. The schedule-based
paradigm, as defined in this application, always serves all scheduled trips,
so when short-turning is not an option, it can only absorb lateness through
recovery time between trips, which in the case of severe delays is insufficient.
As a result, vehicles are not held beyond the required minimum times, and
bunching ensues. The schedule-free paradigm can serve fewer trips to avoid
exit lateness but, as before, it plans trips assuming no additional delays, which
causes exit lateness. Although 28 fewer trips are served under the schedule-
free paradigm, a similar passenger cost and fewer late exits are achieved, which
demonstrates how effectively headway regulation benefits passengers relative
to an (in effect) uncontrolled transit line or, seen from the opposite angle, how
harmful bunching can be.

Comparing mean passenger waiting times under schedule-based operations
with and without short-turning, it is evident that, although short-turning does
reduce late exits, applying it with a myopic strategy can significantly increase
waiting times. While the myopic strategy will short-turn consecutive vehicles
if they are all delayed, the schedule-free optimization approach can find less
detrimental combinations of trip sequences.

Comparing the performance of the schedule-free paradigm with and with-
out short-turning, the removal of the option to short-turn results in similar
performance in the case of moderate delays, and improved performance in the
case of severe delays. Schedule-free operations without short-turning result
in decreased waiting time and fewer late exits than those where short-turning
is allowed. This is another apparently paradoxical result, because having the
option of short-turning gives the real-time planning algorithm more options,
suggesting that it should always perform better. This result is probably a
consequence of the simplified optimization method used for the present ap-
plication. Since the full planning problem has high dimensionality, in this
research we adopted a simplified decomposition method, in which trip plan-
ning problems are solved sequentially for each vehicle, based on assumed (or
previously optimized) trip sequences for the rest of the vehicles. This ap-
proach prunes a large portion of the search space. It can happen that, based
on initial assumptions about the trip sequences of other vehicles, a particular
sequence with short-turning minimizes cost in a local univariate subspace, but
that a different sequence (without short-turning) could lead to lower cost over
the course of the all the individual vehicle subproblems. In other words, the
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optimal solution of a vehicle’s subproblem, given assumed trip sequences for
other vehicles, may not be the optimal choice for the general (all vehicles)
problem. Since the problem without short-turning has far fewer dimensions,
finding a good solution is more likely. On the other hand, the problem with
short-turning may have better solutions available, though more difficult to
find.

This result suggests that global optimization parallel metaheuristics could
be of value, in particular at the level of decomposition of the global planning
problem into sequential planning problems for each vehicle, as described in
Section [4.5.1] For example, the all-vehicles trip planning problem could be
solved with and without short-turning, in parallel, and the best of the two
results would be selected. In addition, the individual vehicle subproblems
could be solved in different orders (again, in parallel) and the best of all results
would be selected.

Another possible reason why the removal of the option to short-turn leads
to better performance is that plans without short-turns may be better across
multiple plan updates. Plans with short-turning may lead to lower predicted
cost in a particular optimization event, but perhaps plans without short-
turning are more robust to unexpected future delays. Future work is needed
to know if this is the case.

4.7.3 Evaluation of Feasible Sequence Set Cardinality
Reduction Heuristics

Section discusses the complexity of the real-time optimization problem
and proposes heuristics that can be used to make the problem tractable and
practical for real-time applications. This section explores the computational
cost and feasibility of real-time operations planning using various heuristics.
The objective is to select an approach that enables evaluating the feasibility
and potential of the schedule-free paradigm. What is presented here is merely
a first look; a more exhaustive analysis should lead to improved optimization
methods.

The methodology introduces heuristics at several levels. First, the problem
is decomposed into subproblems for each vehicle, separate but sequentially
dependent. A ranking function determines the vehicle order. Making the
problem non-combinatorial is regarded as a necessary dimensionality reduc-
tion step. Second, heuristics can be used to reduce the number of candidate
trip sequences to evaluate. Third, the even headway algorithm can be used to
approximate the policy of the departure time optimization problem, instead
of employing a general minimization algorithm. Fourth, a combination of ap-
proximation and evaluation can be used to optimize departure times efficiently.

The following analysis focuses on sequence set cardinality reduction heuris-
tics that play a role in the trip sequence optimization stage. These are listed
in Section [4.6.3] Schedule-free operations, in the case of moderate delays with
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short-turning allowed, were simulated with different sets of heuristics resulting
in the computation times shown in Table[£.4] Simulations were run on a com-
puter having an Intel Core i7-3930K processor running at 3.20GHz. Departure
times were optimized with the even headway algorithm in all cases. The base
case, shown in the first row, skips optimization for vehicles with a feasible basic
sequence (FBS), removes feasible sequences (FS) with excessive stop-skipping,
and removes parent feasible sequences. (The reader is referred to Section
for a discussion of these heuristics. As discussed in Section [4.5] basic sequences
are those composed of only end-to-end trips, i.e. without stop-skipping, and
feasible sequences are those that end at a vehicle’s exit location on or before
the latest allowed exit time.)

In 51% of base case optimizations (one every 5 minutes), all vehicles had
feasible basic sequences, so trip sequences were selected without solving the
departure time subproblem. Departure times are optimized only once when
this happens. At most 6 vehicles required trip sequence optimization. A
maximum of 802 sequences were evaluated with the departure time subproblem
for a vehicle with an infeasible basic sequence. With a mean optimization time
under 10 seconds (18.7 seconds excluding instances in which all vehicles had
feasible basic sequences) and a maximum of 221.2 seconds, it is feasible to plan
operations in real-time with these heuristics.

The second row of Table [4.4] shows what happens when feasible trip se-
quences having excessive stop-skipping are not removed. For example, if a
vehicle is only 5 minutes short of exiting on time with its basic sequence, the
optimizer will nevertheless consider trip sequences short-turning additional
times after more than 5 minutes have been saved through short-turning. The
simulation was stopped before completion, when the operations plan had been
updated only 14 times. In 2 of these, all vehicles had feasible basic sequences,
and the optimization completed in less than 1 second. In the other 12, one to
three vehicles required evaluating sequences with the departure time subprob-
lem, and 874-6864 sequences were evaluated. Plans optimized with initial con-
ditions that are over 20 minutes old are likely suboptimal. This demonstrates
the utility of removing feasible trip sequences with excessive stop-skipping.

The third row of Table [£.4] shows what happens when feasible sequences

Table 4.4: Effect of Cardinality Reduction Heuristics on Computation Time

Cardinality Reduction Heuristics Computation Time (s)
Remove FS with
Skip Vehicles Excessive Remove
with FBS Stop-Skipping Parent FS | Mean Max
° ° 9.3 221.2
— o 1374.7 3040.6
— o — 40.6 234.2
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are evaluated even for vehicles having feasible basic sequences. Vehicles with
feasible basic sequences have no exit lateness, so the removal of sequences
with excessive stop-skipping only retains sequences without short-turning, i.e.
any stop-skipping is regarded as excessive in this case. Although removing
parent sequences (i.e. not taking vehicles out of service when they could serve
additional trips) generally makes sense, it was disabled for this case; otherwise
the basic sequence is the only sequence left, and the case is equivalent to the
base case. The mean computation time is 4.4 times greater than in the base
case, although the maximum computation time is not much greater.

Although a case in which departure times are optimized with a general al-
gorithm after even headway policy approximation was not tested, results from
Chapter[2|can be used to estimate computation times because the holding con-
trol problem is analogous to the departure time planning problem. Departure
time approximation took 0.14 seconds per sequence in the base case. Assum-
ing that refining the approximate solution takes 1 second, it would take an
estimated 1.14 seconds per sequence evaluated to optimize departure times,
which is 8.2 times longer. Assuming that 96% of the computation time is
spent optimizing departure times to evaluate sequences, as in the base case,
updating plans would take an average of 73.4 seconds, and a maximum of 29
minutes.

Since candidate trip sequences of a single vehicle are mutually independent,
they can be evaluated in parallel. In an optimistic case where there are as
many processor cores as feasible trip sequences, it would be feasible to disable
elimination heuristics and fine-tune departure times with a general purpose
optimizer, and still update plans quickly enough. Nevertheless, all evaluations
of the schedule-free paradigm presented in Section use the heuristics
enabled for the base case.

4.8 Concluding Remarks

High-frequency transit systems face stochastic running times and demand. Op-
erating conditions are affected by external factors such as traffic and weather,
that cannot be predicted far in advance. Operations planning typically in-
volves scheduling, which produces a rigid plan that can be suboptimal when
conditions differ from those assumed to build the schedule. This research de-
velops a schedule-free operations planning paradigm in which operations are
driven by real-time optimization. Under the new paradigm, transit systems
adapt to current and expected future conditions to maintain service quality
while satisfying resource constraints. The only part of operations planning
that takes place before service delivery is entry and exit planning, which de-
fines when vehicles and drivers enter and exit the system. Real-time plans
are updated at short intervals (e.g. every 5 minutes). Stop-skipping strategies
such as short-turning can be employed to increase fleet and driver utilization
and manage overcrowding.
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Adopting the schedule-free paradigm has implications on the way tran-
sit lines are operated. The new paradigm requires real-time communications
between vehicles and a central computer to collect data on vehicle locations
and passenger activity, and to send updated plans to vehicles. The computer
used for planning models current and future states in the course of optimizing
plans, keeping an estimate of waiting times, trip times, loads, headways, and
other performance measures that can be shared with managers, controllers,
and passengers. Routine disruptions could be handled seamlessly. Passengers
do not need to change their approach to using the transit service because they
do not plan to take specific scheduled trips. Drivers may experience more un-
certainty in the sequence of trips run each day. Their exit times could become
more certain when facing expected delays, but more uncertain when facing
unexpected delays. Beyond conventional transit systems, the schedule-free
paradigm could be applied to centrally plan operations in an informal setting
where vehicles are independently owned and vehicle availability is only known
in the short-term, as well as to transit services with autonomous fleets, which
would otherwise be unduly constrained by scheduled operations.

Plan optimization is driven by a cost minimization approach capturing
passenger waiting times and in-vehicle times, driver exit lateness, and solution
complexity, which can be used to prevent overly complex plans that give only
a marginal improvement in performance. Since the cost function is nonlinear
and non-differentiable, it difficult to find globally optimal solutions. The op-
erations planning problem is combinatorially complex, making it particularly
challenging to solve in real-time. In the interest of tractability, the problem
is decomposed into sequential planning problems, one per vehicle, which are
solved reflecting plans for other vehicles. This subproblem is further decom-
posed into a trip sequence problem and a departure time subproblem. Feasible
trip sequences are evaluated by solving the departure time subproblem, and
the minimum cost sequence is selected. Heuristics can be used to eliminate
sequences that are unlikely to be optimal, reducing the cardinality of the set of
feasible sequences requiring evaluation. A discrete event performance model
is used to evaluate candidate plans. A constrained even headway algorithm is
used to obtain an initial point for the departure time subproblem, or it can be
used without further optimization in a policy approximation approach. Dy-
namically modeled running times and demand are used, along with real-time
vehicle locations, to estimate the current system state, and the operations
plan, specifying target departure times and trip sequences which may involve
stop-skipping, is updated at regular intervals.

The schedule-free paradigm is applied to a simulated transit line, in a
case without delays as well as with moderate and severe delays, both with and
without short-turning. Performance outcomes are compared with the schedule-
based paradigm. While the two paradigms result in similar performance in
the absence of delays, the schedule-free paradigm generally leads to lower
passenger waiting times, but more late exits. Differences in passenger cost,
number of vehicles late, magnitude of exit lateness, and amount of short-
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turning increase with delay magnitude. The observation of short-turning in
the case without delays suggests that short-turning is sometimes planned to
decrease passenger cost, perhaps by increasing frequency on a busy portion of
the transit route.

Vehicles can exit late when they incur unexpected delays in their last cycle.
Three factors combined lead to late exits: the unawareness of future delays
when updating plans, the tendency of the real-time planning algorithm to dis-
tribute slack time throughout a vehicle’s run in order to regulate headways,
and the restriction on short-turning (allowing short-turning decisions to be
made only between trips). The passenger cost minimization objective encour-
ages more holding than what would be applied under scheduled operations
when the line experiences delays. Holding can decrease waiting times, on the
one hand, but increase the risk of exit lateness, if there are further delays, on
the other. The current methodology captures the former but not the latter.
Unexpected delays are probably worse than anticipated ones because they can
lead to situations that are either difficult to recover from or costly to passen-
gers. However, further research is needed to understand the benefit of knowing
or predicting delay, and the potential drawbacks of complicating the strategy
and making it susceptible to erroneous information. Different results can be
expected if conditions changed. If the running times given to the planning al-
gorithm reflected future delays, stop-skipping would be employed anticipating
delays. Aggressive stop-skipping strategies could help prevent late exits due
to unexpected delays, although passengers would at times be forced to alight
before reaching their intended destination stop. This inconvenience could be
modeled as an additional cost to passengers.

When short-turning is disabled, the optimizer can only prevent exit late-
ness by planning fewer round trips. In spite of limiting the options available
to the real-time planning algorithm, the resulting plans perform similarly to
those formed with short-turning available in the cases of no delay and mod-
erate delays, while outperforming them in the case of severe delays. This is
an indication that the methodology could be improved to find better combi-
nations of trip sequences and departure times. Global optimization parallel
metaheuristics, in particular at the level of decomposition of the global plan-
ning problem into sequential planning problems for each vehicle, could improve
the performance of schedule-free operations further. Multiple instances of the
same planning problem could be solved, in parallel, using different variations
of the methodology, to then select the best outcome.

The approximation of the departure time optimization policy by the con-
strained even headway algorithm could be driving longer headways and waiting
times, and greater number of short-turns. Combined with running time delays,
high demand in the second direction makes the line reach capacity and causes
passengers to be left behind at stops. Chapter [2[shows that the even headway
policy is suboptimal in this case. Instead of holding to regulate headways,
the optimal policy might be to maintain line capacity by running vehicles
as frequently as possible while crowding persists. Headway regulation delays
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vehicles further, potentially making trip sequences infeasible, which triggers
short-turning or planning fewer round trips in order to avoid exit lateness,
which in turn further decreases capacity. Thus, higher performance could be
achieved with actual optimization of departure times.

Given the complexity of the problem, a full stochastic optimization is not
yet within reach. However, simple approaches can help make the planning
strategy robust to uncertainty about future delays. For example, the target
and maximum allowed exit times given to the planning algorithm could be
changed over time. Earlier times could be given at the beginning of the day,
to start with tighter constraints, and slack could be added by gradually de-
laying exit constraints. Alternatively, lateness cost could be specific to each
vehicle, starting high to discourage early use of too much slack, and decreasing
over time. The motivation behind such strategies is making plans robust by
reserving some buffer time for unexpected delays, decreasing the need to re-
visit plans and have only bad (feasible) trip sequences to choose from. A more
direct alternative is making exit time constraints a function of running times.
In this case, more exit time would be made available when exogenous factors,
such as traffic in a shared right of way, slow vehicles. This might reflect an
operator’s adaptable tolerance for lateness.

Besides proposing the schedule-free paradigm and developing its frame-
work, this research takes what should be regarded as a first step in develop-
ing optimization methods for real-time operations planning. Results of the
simple application demonstrate the feasibility and potential of schedule-free
operations for high-frequency transit, but further methodological refinement
and evaluation are required to ascertain the performance benefits of schedule-
free operations for high-frequency transit. Future work should develop the
methodology to optimize entry and exit plans, perhaps based on simulated
schedule-free service under different operating conditions. It is worth explor-
ing the modeling of driver constraints in more detail, e.g. constraints on the
minimum duration of breaks between spells of work of a single driver, which
introduces dependency between what is modeled as separate vehicles in this
research. The potential value of strategies such as deadheading, expressing,
unrestricted short-turning, and injection of spare vehicles should be investi-
gated. The schedule-free paradigm should be evaluated in a wide range of
transit services and cases in order to better understand its robustness. Apply-
ing it to a real service could lead to a better understanding of its implications
on human factors.
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Chapter 5

Conclusion

This research advances the state-of-the-art in operations planning and con-
trol for high-frequency transit. The widespread use of automated data col-
lection systems and communication technologies enables real-time capture of
events recorded by vehicles, fare gates, etc. These streams of data can be
centrally processed and combined with historical data to model current and
future performance. The information obtained from data fusion and modeling
can enhance the effectiveness of control strategies and planning.

This research focuses on enhancements brought by modeling future states
with dynamic running times and demand, which capture both typical daily
patterns of exogenous changes in operations and changes due to particular
events, such as traffic accidents or demand surges characteristic of large social
gatherings such as concerts and sport contests. Since it is not possible to
utilize real-time information to shape operations plans prepared before service
delivery, a schedule-free paradigm for operations planning is developed, in
which trip and stop level vehicle activities are planned in real-time, taking
advantage of the latest available information. The feasibility and effectiveness
of operating high-frequency transit with the proposed models is demonstrated
through applications to simulated transit services.

5.1 Summary

Operations control is an important means of improving service quality in high-
frequency public transport systems. It is based on continuous monitoring of
the system and supply-side interventions with the aim of improving service
quality. Holding, the most commonly employed intervention, consists of in-
tentionally delaying a vehicle, possibly at the expense of extending trip times
for passengers on board, in order to reduce the waiting time of passengers
who will board downstream. Past research has evaluated the effectiveness of
different control strategies, including ones not requiring real-time information,
others based on local information and myopic heuristics, and yet others based
on optimization models involving future system state predictions, assuming
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static running times and demand.

Chapter [2| presents an optimization-based holding control model that cap-
tures dynamic running times and demand. This enables control that reacts
not only to what is already known from observing the current state, but also to
what can be anticipated based on historical experience and knowledge of future
conditions. For instance, information about a demand increase expected 20
minutes into the future due to rush hour operations can affect which strategies
are optimal. Awareness of upcoming maintenance work enables anticipating
unusually long running times in part of a line, creating the opportunity to
preemptively control in a manner that minimizes delays to passengers. This
form of anticipatory control can lead to improved performance with respect to
strategies that react only after disruptions materialize.

Optimization is based on a deterministic rolling-horizon performance model
that takes as inputs general (e.g. nonlinear or piecewise) running time and
demand functions, in addition to vehicle locations, load estimates, and the
number of passengers currently waiting at stops. The model estimates fu-
ture system states, including departure times and loads, from which passenger
waiting and in-vehicle times are derived. Passenger demand is modeled contin-
uously, and it is assumed that vehicles stop at every stop and do not overtake.
The model can nevertheless be applied to control stochastic systems in which
vehicles do not stop at every stop and can overtake. The optimization model
minimizes mean passenger cost, which combines waiting time and in-vehicle
time, normalized by the total number of boarding passengers, subject to con-
straints on maximum allowable holding times at each stop as well as constraints
describing vehicle movement and passenger activity. If necessary to obtain so-
lutions quickly, the dimensionality of the problem can be reduced through a
lower number of control points and exclusive optimization of holding times for
a control subset of vehicles.

The new control strategy is evaluated by comparing the performance of
a simulated high-frequency bus service controlled with four different holding
strategies: target headway, even headway, optimization-based with static in-
puts, and the new optimization-based with dynamic inputs. Six cases are con-
sidered, including ones with static and dynamic running times and demand,
with low and high crowding. Performance is measured in terms of mean pas-
senger cost, mean headway and headway variability, and crowding at stops.
Optimization-based control strategies lead to similar or better performance
than the target headway and even headway strategies. The dynamic opti-
mization strategy outperforms the static optimization strategy in cases where,
due to running time or demand dynamics, the line becomes overcrowded and
passengers are left behind by (full) vehicles. In the cases involving dynamic
demand and high crowding, decreases of 6.4% and 7.2% in mean passenger cost
(twice the waiting time plus in-vehicle time) and 15.8% and 25.0% in excess
waiting time were observed with respect to the optimization strategy using
static inputs. In cases having dynamic running times but not significant over-
crowding, the dynamic strategy modestly outperforms its static equivalent.
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Headway regulation is the principal mechanism by which the new strategy im-
proves performance. The optimal control policy of an overcrowded transit line
may be different from minimizing headway regularity. A large part of the per-
formance improvement is due to more accurate estimates of the current state,
while the remainder comes from estimating future states with dynamic run-
ning times and demand. Computation times of the new strategies are suitable
for real-time application.

Chapter [3] builds upon the model developed in Chapter [2| by presenting a
framework for real-time holding control with information about events. Events
such as road congestion caused by traffic accidents, rail signal failures, and
medical emergencies in vehicles or stations are unpredictable. Other events
such as concerts and sport contests cause predictable surges in demand, re-
sulting in short-term local congestion. Regardless, information about events
can be considered in the generation of a control response. Although events
such as traffic accidents cannot be predicted, the detection of the event along
with an estimate of its duration based on experience and real-time updates on
the progress towards resolution can be used to predict congestion and how it
might affect transit service. The end of a concert or sports event is followed
by an increase in traffic and demand for transit service. The time at which the
event ends, associated traffic delays, and number of people from the event who
will take transit can be estimated with information about event attendance,
real-time updates on the progress of the event, and observations of operations
during similar events in the past. These predictions can be used to apply
control preemptively instead of waiting until service is disrupted enough that
a problem can be detected. Since events generate transients in running times
and demand, the control model developed in Chapter [2is a key enabler.

Controlling transit operations capturing event-driven dynamics can poten-
tially improve the effectiveness of control, reducing waiting times and trip
times for passengers during an event. The performance benefit of a strategy
that captures event-driven dynamics, i.e. an informed strategy, is derived from
its information advantage over a strategy that neglects event-driven dynam-
ics, i.e. a naive strategy. Having more realistic predictions of running times
and demand can lead to better predictions of future system states (and their
cost to passengers) under different control scenarios, ultimately leading to
more effective control policies. In order to control a transit line considering
the effects of events, it is necessary to become aware of events, gather relevant
data, model future operating conditions, and optimize holding times capturing
event-driven dynamics.

The naive and informed strategies, both based on the optimization model
of Chapter [2| are compared through simulated transit service. Two cases are
considered: an unforeseen event (e.g. a traffic accident) causing a link between
stops to be blocked for a short period during rush hour, and a foreseen demand
surge (e.g. due to a concert ending). Since the advantage of the informed
model grows as information about the event is known farther in advance, the
performance improves more with foreseen events than with unforeseen events.
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Preemptive holding suggested by the informed model increases passenger cost
shortly before a foreseen event affects service, but decreases passenger cost
thereafter, for an overall net benefit. In the specific case presented, an 18%
cost reduction was observed for passengers arriving at the two surge stops
during the demand surge, and the peak number of passengers waiting at the
affected stops decreased by 22%. While the results are fairly robust to errors
in the estimated surge magnitude, controlling with errors in event timing can
be counterproductive. Greater benefits might be possible with stop-skipping
strategies such as short-turning, but this was not investigated.

One characteristic of advanced real-time control strategies, including the
ones presented in Chapters 2| and [3], is that they function independently of the
operations plan. On the one hand, this provides them with the flexibility re-
quired to regulate service. On the other, it can put control policies that benefit
passengers at odds with operator constraints, such as those related to driver
exit times. Operations planning for high-frequency transit remains heavily
focused on schedules, which are deterministic and constrain the availability of
vehicles and crew.

Chapter [4] proposes and develops the framework for a schedule-free pa-
radigm for high-frequency transit, in which operations planning is driven by
real-time optimization, allowing transit systems to adapt to current and ex-
pected future conditions to maintain service quality while satisfying resource
constraints. An operator following the new paradigm would allocate vehicles
and drivers to a service (or set of services) by time of day. Only entry and
exit times and locations would be specified a-priori. Trip and stop level plan-
ning would take place while service is being delivered, reflecting current and
expected future conditions, as well as changes in the available number of ve-
hicles and drivers. The plan optimization model can be given flexibility by
allowing it to plan short trips, with strategies such as short-turning and dead-
heading. Short trips can be offered when there is not enough time remaining
in a driver’s shift for a full trip, and to improve service by increasing frequency
in a targeted manner.

Schedule-free operations planning relies on automated data collection sys-
tems and communications and information technologies to collect and process
data, to optimize plans, and to send updated plans to vehicles. A combina-
tion of historical and real-time data is used to model the current and future
system states under potential plans. Since schedules are deeply entrenched in
transit organizations, the schedule-free paradigm has implications on methods
and practices followed for incident management, performance measurement,
and passenger information provision. Although passengers would not have to
change their approach to taking transit (or even be aware of the new para-
digm) the experience of drivers and managers can change significantly when
plans are updated continuously. The schedule-free paradigm could be useful
for operations with an uncertain number of vehicles and drivers, as well as for
operations with autonomous (driverless) fleets.

The real-time planning problem formulated in Chapter 4| seeks to minimize
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a function of passenger cost, driver exit lateness cost, and plan complexity cost,
subject to constraints on the usage of vehicles and drivers. Complexity cost
can be added as a disincentive for plans involving stop-skipping in exchange
for only marginal passenger and exit lateness benefits. The lateness policy can
be modeled combining hard constraints and lateness costs. For example, there
might be a target exit time through which a vehicle and driver serve without
cost, and a maximum allowable exit time, which prevents plans with excessive
exit lateness. A nonlinear cost function can be used to model lateness cost
between these two parameters.

The full planning problem has combinatorial complexity and is intractable
for problems of realistic size. Particularly for real-time application, a fast so-
lution is required. The simplified approach adopted in this dissertation is to
decompose the general problem into sequential subproblems for each vehicle.
This separation does not imply independence, as the trip sequences planned
for the entire active fleet are taken into account when optimizing the trip se-
quences of individual vehicles. Initially assumed trip sequences do not allow
any stop-skipping, with the exception of previously planned stop-skipping re-
quired to complete the current trip. A ranking function is used to guide the
order in which vehicle plans are optimized. Each vehicle’s optimization prob-
lem is further decomposed into a trip sequence problem and a departure time
problem analogous to the holding control problem discussed in Chapters [2|and
Bl It is difficult to establish mathematical relationships between feasible se-
quences, so they are enumerated and evaluated by optimizing departure times
for each. Heuristics can be used to reduce the number of feasible sequences
to evaluate. For instance, trip sequences with excessive short-turning or need-
lessly early exits can be removed. A constrained even headway algorithm is
used to optimize departure times. The problem itself and the approach fol-
lowed make it difficult to find globally optimal solutions.

An application of the schedule-free paradigm to a simulated transit line is
used to evaluate its feasibility and potential. The performance of the transit
line under the schedule-free paradigm is compared to that under the schedule-
based paradigm, in a case without delays as well as with moderate and severe
delays. Short-turning is allowed in both directions, but there are no dead-
heading or expressing options. Running times without delays are assumed
both by the schedule in schedule-based operations and the real-time plan-
ning model in schedule-free operations. Hence, delays are disruptive under
both paradigms. The two paradigms result in similar performance in the ab-
sence of delays. Except in the case of severe delays without short-turning, the
schedule-free paradigm reduces mean passenger waiting times but increases
vehicle exit lateness, particularly for vehicles delayed in their last round trip.
Due to restrictions placed on short-turning in order to prevent forced alight-
ings, in addition to increased holding for headway regulation in response to
delays, vehicles become more vulnerable to unexpected delays, which can be
difficult to recover from (e.g. when a vehicle is delayed in its last trip and the
original plan was already tight with respect to satisfying the exit time con-
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straint) or harmful to passengers (e.g. when a vehicle must be short-turned
or taken out of service early because there is no other way to satisfy the exit
constraint). However, headway regulation improves service quality, even when
it results in fewer trips or a greater number of short-turns. Since there is a
trade-off between improving service quality for passengers and satisfying exit
constraints, it is not possible with the present results to establish which of the
two paradigms is generally better.

Removing the option of short-turning significantly restricts the flexibility
of the schedule-free planning model, particularly because the dimensionality of
the trip sequence problem reduces drastically. This has the benefit of making
optimization much more tractable and easier to find good solutions, but has
the drawback of removing potentially better plans. For example, short-turning
could help prevent a late exit without the more drastic alternative of taking a
vehicle out of service much earlier than its latest allowed exit time. It could
also help manage crowding by increasing capacity locally. Results show the
new paradigm performing better without the short-turning option, but this
could be due to the limitations of the simplified methodology.

5.2 Contributions

This research has advanced, through new frameworks and methods, the utiliza-
tion of historical and real-time information to improve high-frequency public
transit operations planning and control. The major contributions of this re-
search are:

1. The formulation of a holding control model capturing dynamic run-
ning times and demand, allowing holding policies that reflect anticipated
changes in running times and demand.

2. Knowledge that information about dynamics, when applied to the hold-
ing control problem, can significantly improve the performance of highly
crowded high-frequency transit services, particularly when crowding is
more accurately modeled using information about dynamics, but that it
does not result in significant performance improvements in less crowded
systems.

3. A framework for controlling a high-frequency transit service with infor-
mation about foreseen and unforeseen events.

4. Evidence that information about events, particularly anticipated events,
can lead to significant performance benefits, but that erroneous infor-
mation, particularly about event timing, can significantly diminish this
benefit, potentially to the point of counterproductivity.

5. A schedule-free paradigm for high-frequency transit operations planning,
in which most operations planning decisions are made in real-time with
the latest available information.
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6. A discussion of potential methodological approaches to real-time schedule-
free planning, and a specific simplified methodology with holding and
stop-skipping strategies, which lays the groundwork for future improve-
ments.

7. Evidence from simulation experiments that the schedule-free paradigm
is feasible, and that, when the real-time planning model is unaware of
delays, it generally leads to lower mean passenger waiting times but a
greater number of late exits. Results suggest that the methodology could
be improved.

5.3 Future Work

In exploring holding control with dynamics, holding control with informa-
tion about events, and developing a schedule-free paradigm for high-frequency
transit operations planning, many new questions and opportunities for future
research have arisen.

Stochasticity While this research has shed light on the value of informa-
tion about dynamics to improve performance, the potential value of modeling
stochasticity has yet to be explored. Recognizing stochasticity of running
times and demand, both within-day and across days, as well as uncertainty in
the timing, duration, and magnitude of events, should make control strategies
and real-time plans more robust. While it may be difficult to model both
dynamics and stochasticity in rich detail, simple approaches could be used to
bring elements of stochasticity into the optimization models for holding and
schedule-free operations planning. For example, inputs on lower and upper
bounds of running times and passenger arrival rates could be used to forecast
worst-case and best-case scenarios in addition to expected future states. Under
schedule-free operations planning, the exit time constraints could be modeled
as functions of uncertainty or its proxies, such as time remaining in service.
For example, exit times might be modeled more tightly at the beginning of
the day in order to buffer potential unexpected delays later in the day.

Information Modeling Once research shows the value of some types of
information, it becomes worthwhile to investigate methods for information
modeling, i.e. ways of generating information from data. Information modeling
involves combining data from multiple uncertain sources, analyzing the data
to learn about a transit system, and applying that knowledge to improve
performance. Analysis should focus not only on understanding system states
at different points in time, but also on identifying patterns and trends, such
as differences due to days of the week, weather, and seasons. The role of
errors and delays in receiving data and of modeling errors that produce false
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information from good data is not well understood, particularly in the realm
of transit operations.

Control Strategies Performance improvements achievable with better in-
formation are limited by the types of strategies available. This research fo-
cused on holding for control, and holding combined with a benign form of
short-turning for schedule-free operations planning. Allowing short-turning
decisions only between trips means that passengers are never forced to alight
before reaching their destination. The methodology allows modeling dead-
heading and benign forms of expressing and other stop-skipping strategies,
but these were not tested. Unrestricted short-turning and expressing might
unleash greater performance improvements, but they would require modeling
their inconvenience to passengers. In the context of schedule-free operations,
real-time interlining and limited stop service decisions could be explored. Fu-
ture research could shed light on additional benefits brought by multi-line or
network level optimization, as well as combining supply side interventions with
real-time demand management. The latter would involve models not only for
estimating current and future states given some demand, but also real-time
demand models that predict how transit riders would react to information
provided to them, including service alerts and personalized suggestions.

The schedule-free paradigm introduced in this research provides several av-
enues for further research. Much more methodological work is needed, followed
by extensive experimentation to assess the true potential of the new paradigm
under a wide range of operating and demand conditions.

Entry and Exit Plan Optimization Entry and exit times of vehicles and
drivers, decided before service delivery, are an important part of schedule-free
operation, but this research focused only on the real-time planning part. En-
try and exit times can be obtained from a schedule when a transit service
transitions from schedule-based to schedule-free operations, as assumed in the
application presented in Chapter [4] but this is unlikely to be optimal. Perfor-
mance should improve if entry and exit times are optimized based on simulated
schedule-free operations under varying conditions, i.e. capturing stochasticity
within and across days. This optimization might be driven by a cost function
reflecting minimum performance requirements as well as passenger and oper-
ator costs. Minimum performance standards could include maximum allowed
waiting times and loads by time of day. Passenger costs could reflect waiting
and in-vehicle time, as well as reliability. Operator costs would capture num-
ber of drivers and vehicles, effort (e.g. measured in driver hours, vehicle-hours,
and vehicle-miles), and include factors such as labor agreements and overtime
compensation requirements.
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Real-Time Planning Methodology More work is also needed to improve
the optimization methodology used for real-time operations planning. Sec-
tion considers potential approaches not yet implemented or tested. Results
suggest that departure time optimization (rather than even headway policy
approximation) might improve the performance of schedule-free operations by
not holding to regulate headways when the line is (or is predicted to be) over-
crowded. The full problem is intractable, so it must be simplified and its
dimensionality reduced for real-time applications, but there is opportunity to
test more sophisticated approaches, such as metaheuristics for solving several
variations of each problem in parallel and selecting the best of all optimization
outcomes. This would allow trying different initial assumptions, vehicle opti-
mization orders, and allowed stop-skipping strategies. Several passes through
all vehicles (rather than a single pass) could improve the optimization outcome
by increasing the probability of finding a locally optimal plan.

Driver Constraints Driver constraints could be modeled in greater detail.
For simplicity, this research lumps vehicles and drivers as units of resource.
For example, two pieces of work by the same driver would be modeled as two
vehicles with planned entry and exit times. This approach does not capture
the relationship between pieces of work by the same driver. For example, there
may be constraints on the minimum duration of breaks, maximum length of
time on duty, etc.. Some of this can be modeled by updating, in real time,
the entry and exit times of second pieces of work. For example, a driver’s
second piece of work might be delayed by the exit lateness from his first piece
of work. Another potential enhancement is modeling multiple drivers using a
single vehicle (at different times) and the utilization of spare drivers to prevent
exit lateness without relying on stop-skipping. This might require real-time
assignment of drivers to vehicles, which would complicate the optimization.

Autonomous Fleets The application of the schedule-free paradigm to tran-
sit services served by autonomous driverless fleets is another potentially fruit-
ful area of research. Scheduled operations inadequately constrain the potential
flexibility of autonomous vehicles. Since exit constraints are not as important
with autonomous fleets, real-time optimization can focus on passenger service
quality. In addition, vehicle entries and exits could be determined in real-time
rather than before service delivery, an opportunity to base real-time decisions
directly on the service plan and minimum performance requirements. Vehicles
could be brought into and out of service in response to overcrowding and other
events.

Organizing Informal Systems It would also be interesting to study the
potential application of the schedule-free paradigm to informal systems in
which vehicles are owned by individual drivers. In such systems, the avail-
ability of vehicles is uncertain. Rather than preparing an a-priori plan of
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vehicle entries and exits, drivers could use Internet-enabled mobile devices to
announce their availability (and commitment to operate for some period) on
short notice. The schedule-free paradigm could be applied to centrally plan op-
erations with these freelance drivers, potentially improving performance with
respect to a system where drivers choose what trips to serve using myopic
strategies, perhaps aiming to maximize fare revenue. Research might shed
light on ways of aligning personal and societal goals based on contract struc-
ture and economic incentives.

Different Operating Environments The schedule-free paradigm should
be tested on transit systems with different running time and demand assump-
tions, to learn how its behavior and achieved performance change in response
to these characteristics. The transit system used for the application in Chap-
ter [4| has a high rate of passenger arrivals at the first stops in each direction,
but short-turning may be more favorable in systems having stronger demand
for travel within the central portion of the route rather than to or from the
ends. Some systems have a few stops with much higher demand than the rest,
e.g. at interchange points.

Real Transit Services New lessons can probably be learned from applying
the new control strategies and operations planning paradigm to real transit
services. Although simulation modeling has the benefit of evaluating new
strategies and concepts in a controlled environment, which is advantageous to
scientifically quantify performance benefits, complex elements can be left out,
such as correlations in running time across drivers and segments of a route.
Operating real transit service under the schedule-free paradigm would require
calibrating the performance and optimization models used to generate plans.

Pathway to Schedule-Free Operations More research is needed to im-
prove the methodological aspects of the schedule-free paradigm before it can
be put into practice, but in parallel with that effort it is also necessary to study
other barriers, such as institutional resistance, contractual structure, and hu-
man factors. For example, what incentives and penalties should be included
in a contract for high-frequency bus service operated without schedules by a
private operator on behalf of a public agency in charge of service planning and
contract management? How should performance be measured? Concepts from
behavioral economics could be applied to study human factors. For example,
what is the difference between a driver following a fixed schedule and one fol-
lowing frequently updated real-time instructions? Does a fixed schedule offer
some comfort to drivers, supervisors, and planners? How do different com-
munications technologies affect driver compliance? Questions of this nature
should be asked for all stakeholders in transit operations, including drivers,
dispatchers, controllers, supervisors, planners, and contract designers.
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