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Abstract

Vehicle sharing services have become a major urban transportation mode. One-way
vehicle sharing service facilitates access to public transportation systems, thereby
addressing the first and last mile challenges and creating an integrated vehicle-sharing
and public transportation network providing origin-to-destination service. In this
thesis we provide models and methods for design one-way vehicle-sharing networks.
The location of one-way vehicle sharing stations strongly influence the level of travel
time savings achieved by the users of the system. Our goal, then, is to select station
locations so as to maximize the connectivity with the public transportation system,
increase the accessibility to the urban area, reduce travel times, reduce congestion,
and reduce emissions. We select a certain number of stations to install from a set of
candidates whose locations are predetermined.

In Chapter 2, we review existing literature in which the objective is to minimize
total user travel cost. In Chapter 3, we propose a new model with the objective
to design a network such that more users experience travel time savings that are
sufficiently large to elicit mode shifts to the integrated public transportation option.
We develop a decomposition procedure to solve our model and propose cut generation
methods to expedite the solution process. Computational results in Chapter 4 show
that our algorithm reduces solution times, while increasing the number of travelers
who can experience travel time savings of significance by using our newly designed
network. In Chapter 5, we propose a heuristic method to generate a network design
with (near-) minimal total travel cost. Our decomposition method that searches
in a neighborhood around the known best design, and changes the neighborhood
center when improved solution are identified or expands the neighborhood if no better
solution is found. Computational results show that our algorithm finds improved
solutions, compared to existing approaches, for large-scale networks with imposed
limits on computation time. In Chapter 6, we conclude the thesis and provide future
research guidance.
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Chapter 1

Introduction and Background

1.1 Motivation

Vehicle-sharing (VS) has become one of the mainstream urban transportation modes

for over one million users in the past decades. It has been deployed in about 1100 cities

of 26 nations. These services had at least 31,665 vehicles and 1,251,504 members in

2010 worldwide, bringing the world lower greenhouse gas emissions and reducing the

vehicle miles traveled, thereby benefiting both the environment and traffic congestion

(Shaheen and Cohen, 2013). Well-known car-sharing programs include Car2Go and

ZipCar. For bike-sharing, by 2011, over 236,700 bikes and 13,500 stations have been

installed in 135 bike-sharing programs worldwide, these include Hubway in Boston,

Citibike in NYC and Verlib in Paris (Shaheen et al., 2012).

Most major VS services nowadays require round-trip travel, that is, users must

return the vehicle back to the same station where it is picked up. However, one-

way sharing services, where users can drop off the rented vehicle at any station with

capacity to accept the vehicle, provide them flexibility. These services also provide

users with better access to existing public transit systems. Such an advantage is

particularly impactful in areas where travel demand is low or where adding transit

services, in terms of both frequency and new routes, is not a practical option.

Chiraphadhanakul (2013) presents an optimization model and solution approach

to minimize total user travel time by designing a network that integrates the one-way
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VS system and the existing transit system. While effective for smaller networks, this

approach encounters tractability issues when real-world, large-scale input networks

are unsolved. Meanwhile, maximum travel time savings can be achieved by small

amounts the travel time for many origin-destination (OD) pairs. Our concern is that

these travel time savings might not be sufficient to change traveler's mode choice and

hence, these savings will not be realized.

In this thesis, we address these two issues: tractability of the VS network design

for large-scale problems and use of sufficient travel time savings to induce use of the

integrated VS-public transportation networks. We first provide a new model and

its corresponding solution method for the design of one-way VS service, with the

explicit goal of integrating it with the public transportation system and achieving

travel time savings of significance to travelers. Then we provide heuristic method

aimed at expediting the solution of the model proposed by Chiraphadhanakul (2013),

particularly for large-scale, real-world sized urban networks.

1.2 Related Work

Previous researches on one-way VS systems mainly focused on vehicle re-distribution,

demand estimation, user behavior, and VS market and benefits evaluation. Jorge

and Correia (2013) provide a thorough literature review about these topics. The

literature on VS network design is very limited. To our knowledge, this work is

one of the first that takes a passenger-centric approach to framing this problem.

Lin and Yang (2011) use a nonlinear optimization model to find the best locations

for bike-sharing stations, taking into consideration service levels. Their work takes

operational issues into account, but makes strong assumptions, such as constant lead

time. Kumar and Bierlaire (2012) use a two-step model to analyze the performance

of the electric car-sharing service. They use regression methods to identifying factors

tht impact demand, then use nonlinear integer programming optimization to sclcct

station locations. Correia and Antunes (2012) propose a mixed-integer programming

(MIP) model for one-way car-sharing system design. Their model selects locations

14



to install VS stations by considering demand, temporal issues, revenue and cost.

They consider the car-sharing information system but do not take the existing transit

system into account. Correia et al. (2014) propose a MIP model to design the VS

network. Their model allows users to choose a nearby station when they find no

vehicle is available at the nearest one, with design objective to maximize profit for

the service provider. Nair and Miller-Hooks (2014) provide a bi-level MIP model with

the objective to maximize the profit of the bike-sharing system. They consider station

locations, commuter flows, bike re-distribution and major transit service. They report

that tractability issues are encountered in solving relatively large problems. Garcfa-

Palomares et al. (2012) use a GIS-based approach to design a one-way VS network.

They calculate the demand for trips and use location-allocation models to determine

station locations. In their work, they compare two objective functions: minimizing

impedance and maximizing coverage. Chiraphadhanakul (2013) propose several MIP

models aimed at minimizing total user travel cost. The author solves these models

using Benders decomposition. and also proposes a cut strengthening algorithm to

accelerate the solution process. In this thesis, we build upon this work.

1.3 Contribution and Thesis Outline

The contributions of this work are two folds. First, we provide a new formulation for

the VS network design problem that can provide a solution designed to induce changes

in travel behavior. Specifically to lead travelers to shift their modes of travel to the

newly integrated VS and public transportation networks. Specifically, we consider the

bike-sharing network design problem, and we build off the work of Chiraphadhanakul

(2013). In particular, we consider a set of candidate VS stations and optimize the

selection of a subset of them. The design goal is for travelers to combine the bike trips

and the transit trips so their travel times are reduced, compared with using the transit

system only. We assume that number of the stations to install is predetermined. We

also assume that given the selected candidate stations, all users will be wise enough

to choose their best route over the integrated VS and public transportation network.

15



The new model is a mixed-integer program (MIP) with the objective to increase

the number of travelers with enough travel time savings, that is, savings that are

sufficiently large for passengers to shift their travel patterns to use the integrated VS

and public transportation network. To expedite the solution process, we decompose

our model and develop special cut generation methods.

In Chapter 2 we review the network design model and the solution method pro-

posed in Chiraphadhanakul (2013). In Chapter 3, we present our new network design

model formulation, the model decomposition and cut generation methods. In Chapter

4, we present computational results that show the efficiency of our solution method

and its effectiveness in generating travel time savings.

In this thesis, we also contribute by providing methods to speed-up the solution

of the model presented in Chiraphadhanakul (2013). Our methods achieve improved

total travel cost results for real-world, large-scale networks. In Chapter 5, we show

that solving the Chiraphadhanakul (2013) model for large-scale networks is difficult.

We provide a decomposition heuristic to find quality solutions within limited time.

Computational results on random networks and a real-world Boston-based network

are then presented.

Finally, we conclude this thesis in Chapter 6.
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Chapter 2

Minimizing Total Travel Cost

2.1 Introduction

In this chapter, we review the vehicle-sharing (VS) network design model proposed

in Chapter 4 of Chiraphadhanakul (2013). Our philosophy of design is passenger-

centric. We consider the VS system and the existing transit system at the same time,

and find a design such that the total travel cost of all travelers, referred to as demand,

is minimized. Here cost and the travel time are synonymous. The problem we want

to solve is a facility location problem in nature: we assume that there is a set of

predefined candidate stations whose locations have been selected in advance. The

problem is formulated as a mixed-integer program (MIP). We denote the formulation

in this chapter as the min-cost model because the objective here is to minimize the

total travel cost. Two formulations, OD-based and tree-based, are presented and

discussed.

In the following sections, we first present the notation of the min-cost model and

the corresponding two formulations. Then we briefly show the decomposition and cut

generation methods to solve the model.
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2.2 Model Formulation

In this section we present the notation and formulations of the min-cost VS network

design problem. We will present both the OD-based formulation and the tree-based

formulation. The connection and difference between the two formulations will be

elaborated later.

We model the whole system as a directed graph. The candidate stations and tran-

sit stops form the set of nodes. The set of arcs includes transit /walking connections

between two bus /subway/trolley/ ferry stops, walking trips between a VS station and

a transit stop and VS trips between two VS stations. One thing to note is that for

the one-way VS sharing system, the vehicles can only travel between two existing

stations. So a VS trip arc can be considered as non-existing if at least one of its end

VS stations is not installed.

2.2.1 Notation

Parameters:

* G: a directed graph G = (K, A);

" K: set of nodes, including transit stops and candidate; stations. Locations are

predetermined;

* K: K 9 K, set of candidate stations;

" A: set of arcs, each (i,j) e A incurs a positive cost of cij;

* A: A E A, set of VS arcs. We use b-arc for short as we mainly consider bike

sharing service in the following chapters. A b-arc is available only if both of its

end stations are installed;

" N: set of all OD-pairs, N g K x K;

" h: one OD pair, h e N;

18



. C: set of all origin nodes;

* 1: one origin, 1 e L;

* wh: the travel demand from the origin o(h) to the

" Wi: the travel demand originating from the origin

destination d(h), Vh E 'H;

1, W1 = ZhI-I wh;

" 'H': all OD pairs that have 1 as their origin;

* K: the number of stations to install.

Decision variables:

" yj: binary variable indicating whether a candidate i E g is selected in a solution;

* xh : continuous variable used in the OD-based formulation and indicating flow

traveling between OD-pair h E ?J on arc (i, j) E A;

" X.: continuous variable used in the tree-based formulation and indicating flow

originated from the origin 1 E on arc (i, j) E A.

In the computational experiments of the following chapters, we will briefly discuss

the data we use and how to generate the input network. For more details, see Chapter

3 of Chiraphadhanakul (2013).

2.2.2 OD-based Formulation

In this part of the thesis, we present the OD-based formulation of the VS network

design problem with an objective to minimize total travel time. The formulation is

the following:

minimize S cigt hZ Z ij
hE7-t (2,j)E.

(2.1)

subject to

wh

j 

zi = -Wh

(j,i)EA

0

7= O(h)

i = d(h)

otherwise

VhE'7, Vie f

19
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xh. <whyi Vh E N, V(ij) E A (2.3)

< whyj Vh E N, V(i, j) E A (2.4)

yi = K (2.5)

xj 0 Vh E N, V(ij) E A (2.6)

yiE {0, 1} Vi EK. (2.7)

In the objective function Equation (2.1), we want to minimize the sum of the travel

cost for the flow from all OD pairs and on all arcs. Equation (2.2) represents the flow

conservation requirement of a network problem. For any OD pair, the flow out of the

origin node is the demand of this OD pair, the flow into the destination is also the

demand, and for other nodes in the network, the in-flow and out-flow should be the

same. Equation (2.3) and (2.4) guarantee that the flows on b-arcs can be larger than

zero only if both of the b-arc's end stations are selected to be installed. We denote

them as the b-arc availability constraints. Equation (2.5) is the restriction that the

total number of stations to install is K.

As this formulation is based on each OD pair, there will be JNI x JIA/ flow conser-

vation constraints and 2 x NI1 x 1Al b-arc availability constraints. The problem size

increases linearly with the number of OD pairs.

2.2.3 Tree-based Formulation

As in the OD-based formulation, the tree-based formulation objective is to minimize

the total travel cost of all users over the entire network. The formulation is the

following:

minimize cijxl (2.8)
lEC (ij)EA

20



subject to

x -= (I)=hE f Vi E (2.9)
(ij)EA (j,i)EA

0 otherwise

x 1  W1y, VI E, V(iJ) E,4 (2.10)

Wy1 Vi E,4 V(i,j) E A (2.11)

E Y% K (2.12)

1.>0 V1 E, V(ij) E A (2.13)

y E {0, 1} Vi E)V. (2.14)

Similar to the OD-based formulation, Equation (2.9) represents the flow conservation

constraints. Equation (2.10) and (2.11) represent the b-arc availability constraints.

In the objective function, we sum the cost of all flows originating from each of the OD

pairs. As we have flow conservation constraints, the total flow out of or into a origin

1 is W1 = 'hE70 wh. This indicates that the flows of any feasible OD-based solution

can be aggregated into the flow of a feasible tree-based solution. Thus, the objective

function Equation (2.8) minimizes total travel cost. The optimal objective values of

the two formulations are the same.

For the tree-based formulation, there will be JLJ x INI flow conservation constraints

and 2 x LCI x IAl b-arc availability constraints. As the flow between the OD pairs are

aggregated into the flow from the origins, there are fewer constraints in the tree-based

formulation than in the OD-based formulation.

It can be shown that in terms of the linear programming (LP) relaxation, the OD-

based formulation is stronger than the tree-based one. But when the input network

size and number of OD pairs are large, both formulations may be hard to solve. In

the next section, we will review the methods that can solve the tree-based formulation

in a fast way.
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2.3 Model Decomposition and Cut Generation

In this section we present the methods for model decomposition and cut generation

proposed in Chapter 4 of Chiraphadhanakul (2013). These methods aim at expediting

the solution process of the tree-based min-cost model. The decomposition procedure

is based on Benders decomposition. The cut improving methods are based on the

idea of Pareto optimal cut and the network structure of our problems.

2.3.1 Benders Decomposition of the Tree-based Model

Benders decomposition (Benders, 1962) is a method that is often applied to large-scale

MIP problems with special structure. Consider a MIP problem:

minimize cx + dy (OP)

subject to Ax+ Dy > b

Fy f

X E R"', y E Z22

where all c, d, A, D, b, F and f are in the corresponding dimensions. Denote it as

original problem (OP). We assume OP is finite optimal. Let Y = {y E Z22 I Fy f}.
For a given y E Y, OP becomes

z(q) minimize cx (PS)

subject to Ax ! b - Dy

X9 ER".

nt pma subprObIem (1 S). IS is a linear programn, anu its Uual form is

z(Y) = max{7r(b - Dq) I7rA c}, (DS)
7r>O

22



where r is the vector of dual variables associated with the constraints Ax > b - Dj.

As we assume problem (OP) is finite optimal, the dual subproblem (DS) is also finite

optimal. In such cases, the strong duality theory ensures that the optimal values of

both PS and DS are the same. Let Q be the set of extreme rays and P be the extreme

points of the polyhedron {7r I 7rA c}, respectively. It can be shown that problem

(OP) is equivalent to the master problem (MP)

minimize z + dy (MP)

subject to q(b - Dy) 0 Vq E Q

p(b - Dy) z V E P

Y E Y.

q(b - Dy) 0 is called a feasibility cut and p(b - Dy) z is called an optimality cut.

We can solve problem (OP) iteratively. In each iteration, we first solve the relaxed

master problem (RMP) and get a lower bound (LB) of the optimal value of problem

(OP) and a first-stage solution 9. Then we use 9 to solve a DS and get an upper bound

(UB) of the optimal value of problem (OP), and an extreme ray q or an extreme point

p. And finally, we add the feasibility cut or optimality cut parameterized by q or p

to (RMP) and resolve it. When the largest LB is close enough to the smallest UB,

we stop with the near optimal solution of y corresponding to the smallest UB.

For the VS network design problem, as the cut improving method we will review

later results in the tree-based formulation outperforming the OD-based approach, we

present the Benders decomposition for the tree-based formulation only. The tree-

based PS for a given VS network design y- is formulated as

minimize cijx (2.15)
1EL (ij)EA

23



i=l

(l,i) = hE N

otherwise

V1 E/, Vi E Jf

Vl EL, V(ij) EA

VlE L, V(ij)eA

VIE L, V(ij) eA.

Let pi, ul, and vl denote the negatives of the dual variables associated with

constraints (2.16), (2.17), and (2.18), respectively. The corresponding tree-based DS

is given by:

maximize z(Y) = Z
1EL

h (Pd(h) Po(h)
hEW1l

-Z
iER

(2.20)

W u!+ z V Y]
(i,j)EA (j,i)E/A

subject to

1 - c..

1 - p5 c.

y, _Z - 0
+ ++ u.. + v..

Vle L, V(i, j) EA \4

VlE12, V(ij)EA

Vl EL, V(i, j) E ,

(2.21)

(2.22)

(2.23)

where N' denotes the set of O-D pairs originating from node 1 E L. We decompose

any subproblem into ILI subproblems, each of which corresponds to an origin point

l EL. Then the Benders cut corresponding to l is

Po(h) L'
iEN k (ij,)e A (j,i)EA

where o(h) = 1.

24

/

subject to

x 1 -
(ij)EA

WI

E x i= wh
(j,i)EA

0

1'. < Wl

x1.< 0l
X2 W

0 iy

(2.16)

(2.17)

(2.18)

(2.19)

S1 > V 7 7h ( )L-di - Pdh
(9 9A)~



2.3.2 Cut Generation

Benders decomposition is guaranteed to converge to the optimal solution. However,

the solution process can be very time-consuming. Solving RMP is usually the bottle-

neck because it is an integer program whose number of cuts is increasing.

Pareto Optimal Cuts

To reduce the number of iterations, Chiraphadhanakul (2013) uses the idea of Pareto

optimal cuts from Magnanti and Wong (1981):

1. The cut 7r1 (b - Dy) z generated from a dual solution 71 E H dominates or

stronger than the cut 7r2(b - Dy) z generated from w2 E H if 7r1(b - Dy)

72 (b - Dy) for all y E Y, with a strict inequality for at least one point.

2. A cut is Pareto optimal (PO) if no cut dominates it.

Here we use the notation of the PS proposed in Section 2.3.2. To obtain a PO cut,

we need to solve an auxiliary problem (AP). Let yO be a point in the relative interior

of the convex hull of Y (core point). AP is

maximize 7(b - Dy0 )

subject to r(b - Dq) = z(g) (AP)

rA c

7r 0.

For the min-cost VS network design problem, we can decompose the AP of the tree-

based formulation into ILI different ones. Then we generate a PO cut for the sub-

problem of any origin 1 EL by solving the corresponding sub-AP.

Cut Improving

For an origin I E L, let (p',ul,ov) be an optimal solution to the subproblem of the

tree-based DS. Given a feasible network design 9, the following two propositions are

proved in Chapter 4 of Chiraphadhanakul (2013).
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Proposition 1. An optimal solution (pl, u1 , v1) is also an optimal solution to the

subproblem of the O-D-based DS associated with any O-D pair h E N.

Proposition 2. Consider the O-D-based DS associated with O-D pair h E W for a

given y E Y with an optimal cost of zh(9). Let (pl, ul, v 1) be an optimal solution and

(p2 , U 2 , v 2 ) be another feasible solution. If p2 P()(h) (h)' 2 < U1. for all

(i, j) E A, and v2 < V for all (i, j) e A, the (p 2 , U 2 , v 2 ) is also optimal.

Based on the two propositions, a procedure to improve a valid cut is proposed. For

each origin I E L, consider each h E N'. The Basic algorithm will find a sequence of all

nodes except o(h) and d(h), update p1 by letting ph = maxj:(ij)EA{pj - cij - L- 2, j}

(Vi E K, i * o(h) and d(h)), then update the value of Uh and voh by letting

h 6j , an v v Z

where 67i = max(0,pi - ph - cji). It is shown by Chiraphadhanakul (2013) that com-

putation complexity of the Basic algorithm is O ( log Al + NII(JAI + 14)).

In the Improved algorithm, Chiraphadhanakul (2013) execute the Basic algorithm

for pass times (pass is a parameter). The insight is that after executing the Basic

algorithm once there may still be possibilities to improve cut strength. But executing

the Basic algorithm may be time-consuming. So we may need to determine in advance

how many times we need to do so.

2.4 Conclusion

We do not present other details of the Basic algorithm and the Improved algorithm

here due to their complexity. The computational results in Chiraphadhanakul (2013)

show that the combination of the decomposition of the tree-based formulation, the

PO cut strategy and the cut improving method manage to reduce solution time,

compared with solving either the OD-based formulation or the tree-based formulation

by classical Benders decomposition. Generally speaking, the larger the network size

is, the more pass we need to shorten solution times.
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Chapter 3

Maximizing the Number of

Passengers with Time Savings above

a Minimal Threshold

3.1 Introduction

In this chapter, we provide an alternative model formulation for the one-way VS

system design. We still consider the VS system and the existing transit system

at the same time, and find a design such that the two systems can complement

each other. Unlike the previous model of minimizing total travel cost introduced

by Chiraphadhanakul (2013), we propose a new model focusing on increasing the

number of demands with satisfactory travel time savings. To solve it, we present a

decomposition procedure and two cut generation methods.

3.1.1 Motivation: Drawback of Minimizing Total Travel Cost

For the model proposed in the previous chapter, solution quality is evaluated by the

reduction in total travel cost over the whole network and for all OD pairs. As we ex-

amine the travel cost savings of each OD pair for solutions from the Chiraphadhanakul

(2013) model, many OD pair savings reduce travel time by very small amounts even
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though these OD pairs have the potential to produce larger travel time savings. In

other words, the objective to minimize total travel cost may not give sufficient savings

to entice people to alter their travel patterns. We illustrate this point in the following

example.

For an input network with 704 nodes(f), 3,008 arcs(A), 30 b-nodes(K), 742

b-arcs(A), 5,103 OD(7H), 30 origins(L), and total demand of 248,192, we solve the

Chiraphadhanakul (2013) model with K = 15, which means that we need to choose

15 out of 30 candidate stations to install.

Table 3.1: Time Savings Analysis for OD Pairs

Savings (mi) Demand Comparison
All-Open K = 15 Ratio Percentage Diff

> 50 1390 0.56% 968 0.39% 69.64% 0.17%
> 45 3279 1.32% 2596 1.05% 79.17% 0.28%
>40 6955 2.80% 4235 1.71% 60.89% 1.10%
> 35 13632 5.49% 8189 3.30% 60.07% 2.19%
> 30 24448 9.85% 17277 6.96% 70.67% 2.89%
> 25 37869 15.26% 24524 9.88% 64.76% 5.38%
> 20 57995 23.37% 35084 14.14% 60.49% 9.23%
> 15 92715 37.36% 67497 27.20% 72.80% 10.16%

0 < Savings < 15 86950 35.03% 73034 29.43% 84.00% 5.61%

We analyze the travel time savings of each OD pair for the best solution. The

result is summarized in Table 3.1. We consider two cases: one where all 30 candi-

date stations are open and one where the 15 candidate stations in the best solution

are open. We compute the sum of the demand of the OD pairs that have at least

50,45, ... ,15 minute savings, and present the values in columns 2 and 4 for the two

cases, respectively. Demand of OD pairs that have positive but fewer than 15 minutes

time saving is presented in the last line. For a row with the first column as savings > s

minutes, column 3 and 5 are the ratios between the demand that achieves at least

s minutes savings and the total demand. Column 6 is the ratio between values in

column 2 and values in column 4. Column 7 is the difference between column 3

and column 5. From this table, we see that the demand that realizes more than

15,20,.. . , 50 minute savings for the K = 15 solution is around 60% to 70% of the

demand that realizes the same level of savings for the all-open case ( the 45 case is

about 80%, but the demand is small even for the all open case). The demand with
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savings fewer than 15 minutes, however, is 84%. This indicates that the solution fails

to achieve the savings potential for more demands.

3.1.2 Chapter Structure

In the following sections we review literature on two-stage stochastic programs with

recourse. Then we present the notation and propose our new model formulation, an

instance of a two-stage stochastic program with recourse. In Section 3.3 we present

our decomposition procedure and the cut generation methods to solve our model.

Computational results are presented in the next chapter.

3.2 Literature Review

The main contribution of this chapter is the max-demand model for the VS network

design problem and the corresponding cut generation methods. We view the max-

demand model as an instance of two-stage stochastic programs with recourse. In this

section we will briefly review the definition of stochastic programming and some of

its solution methods.

3.2.1 Two-Stage Stochastic Program with Recourse

There are two types of stochastic programs: stochastic programs with recourse models

and stochastic programs with chance/ probability-constraints (Zhu, 2006). Our focus

is on the first type with two stages of decisions. After the first stage decisions have

been made, the decision maker will be faced with different scenarios with different

probabilities. In each scenario, a specific second-stage decision should be made. For

a stochastic program with probability-constraints, in-feasibility is allowed with some

probability.

If there are reasonable schema to divide the uncertainty of the second stage prob-

lem into a limited number of scenarios, according to Bertsimas and Tsitsiklis (1997),
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a two-stage stochastic program with recourse can be formulated as

maximize cy + oelfx1+e2fy 2 +... + aKfXK (TSSP)

subject to Ax = b

B1 y + Dx1 = d,

B 2y + Dx 2 = d2

BKY + DXK =dK

y E R';xl, X2,- -XK ER+,

where c, f, D, di and Bi (Vi E {1, 2, --- , K}) have their corresponding dimensions.

Denote it as TSSP. TSSP has K scenarios. The y is the first stage decision variables

and the x's are the second stage decision variables of different scenarios. D is called

recourse matrix, and it may be scenario specific. Each scenario i E {1, 2,. .. , K} has

a weight a, in the objective function. Because the objective function can be viewed

as to minimize the sum of the first-stage cost and the expected second-stage cost,

a typical stochastic programming problem will have cz defined as the probability of

scenario i occurring. Hence Z'K ai = 1. But this can be relaxed. If we let some of the

components of the vector xi (Vi E {1, 2,..., K}) be integer, then the problem becomes

a stochastic mixed-integer programming (SMIP) problem.

SMIP has been studied for decades. To our best knowledge, there are some general

purpose SMIP solving algorithms available now, but they are not efficient enough

to solve large-scale problems. A typical large scale problem can be an airline fleet

assignment problem with 900 flight legs and 50 scenarios (Zhu, 2006). SMIP is viewed

as one of the most challenging optimization problems (Sherali and Zhu, 2006).

3.2.2 Solving Two-Stage Stochastic Programs with Recourse

Laporte and Louveaux (1993) present an L-shape based method of generating cuts for

two-stage SMIP with recourse. If a problem has a set of optimality cuts and a set of
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feasibility cuts, the L-shape method will guarantee to find the optimal solution within

a finite number of iterations. Their problem had only binary variables in the first-

stage problem and binary and continuous variables in the second-stage problem. This

method requires the original problem to be bounded. For a minimization problem,

the authors propose the following cut as Equation (3.1) given a current first-stage

decision variable Xr (Xr E {0, 1}) at the rth iteration:

>( Z L)( Xi- Z - (0, -L)(IS - 1) + L, (3.1)
\iES, ifs,

where 0 is the upper bound for the objective value related to the second-stage decision

variables, Or is the second-stage objective value of the current iteration r, L is a lower

bound of the original minimization problem and S, = {i : xr = 1 and i = 1, 2, ... ,

The intuition of the cut is that any change of the first-stage decision variables will

allow the value of 0 to be less than Or. Thus when we minimize the objective function,

this type of cut will help us eliminate the visited feasible first-stage solutions. This

method only requires some simple assumptions and can be applied in many SMIP

problems. It is a general purpose method, but not computationally efficient.

Besides L-shape methods, the Reformulation-Linearizion Technique (RLT) (Sher-

ali and Adams, 1998) and disjunctive programming (Balas, 1979) are often used to

develop solution methods for two-stage SMIP with recourse.

Sherali and Fraticelli (2002) propose a decomposition method based on some mod-

ifications for the Benders method for two-stage SMIP with integer recourse. The pro-

posed method uses the idea of RTL and lift-and-project cuts and develops a finitely

converging decomposition algorithm. If the original problem has a dual-angular struc-

ture, this method finds the convex hull representation of the feasible region and se-

quentially finds partial descriptions of this convex hull. The Benders cuts generated

from these partial convex hulls are valid, and can be viewed as functions of first-stage

solutions. Storing these cuts can save time: changing the value of first-stage variables

can generate new cuts quickly by using a specialized algorithm.

Sen and Higle (2005) convexify the second stage problem and use a decomposition
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method to solve the two-stage SMIP with recourse. The key insight is that the

proposed Common Cut Coefficients (C 3) theorem states that valid inequalities from

one first-stage solution for one scenario can be used to derive valid cut for other first-

stage solutions for the same scenario. The proposed Disjunctive Decomposition (D 2)

algorithm uses the sequential convexification of the disjunction of the subproblem's

constrained region to approximate the subproblems objective value. For each scenario,

the algorithm updates the cut generated in the previous iterations by solving an

auxiliary LP and adds the cut to the master problem. The whole process can be

proved to be finitely converging.

Sen and Sherali (2006) develop extensions of decomposition-based cutting plane

methods and apply them to a branch-and-cut algorithm to solve two-stage SMIP

with recourse. The method combines the results of Sherali and Fraticelli (2002)

and Sen and Higle (2005). The proposed D 2-BAC methods partially solve one MIP

subproblem using branch-and-bound, derive special form constraints for all scenarios

and aggregate these constraints to generate cuts and update the approximation of

the subproblem objective value. This method reuses the disjunctive cuts. But this

method requires that all subproblems are feasible when we branch on the subproblem's

binary variables, which is not suitable for our case.

There is also extensive research about modeling practical problems as two-stage

SMIP problems. Here we present two problems related to our case; their cut gener-

ating methods inspired our expand-cut decomposition.

Penuel et al. (2010) model a facility location problem with second-stage activation

cost as a two-stage SMIP problem. Whether a station should be installed is the first-

stage binary decision variable, whether an installed station should be activated is

the second-stage binary decision variable, and the flow amount between facilities are

second-stage continuous decision variables. In the decomposition method proposed,

given a first-stage solution and a scenario's second-stage solution, the authors add

and activate another facility, and use the augmented flow on the current so-callcd

residual network generated by considering the new facility to obtain a valid cut.

Shen and Smith (2013) solve an optimization problem aimed at minimizing the
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cost of a broadcast domination network on an undirected graph. The first-stage

decision variable is selection of arcs. The authors use Benders-like decomposition

methods. They develop a cut generation method by adding an additional arc to the

given graph. This cut generation, plus cut improving methods based on covering cut

bundle, allow the authors to improve the solution time significantly.

To the best of our knowledge, no literature applies the SMIP to the VS network

design problem and no problem-specific algorithm has been developed yet.

3.3 Model Formulation

To address the problem discussed in Section 3.1.1, we propose a new objective: design

a network such that more demands will have attractive travel time savings. Here if

the difference between the travel cost with all candidate stations installed (all-open

cost) and travel cost with no station installed (all-close cost) is large, we say such

saving is attractive. For simplicity, we assume the savings threshold to be considered

attractive to be the same for all OD pairs.

3.3.1 Problem Formulation

Parameters:

* G: a directed graph G = (M, A)

" M: set of nodes, including transit stops and candidate stations. Locations are

predetermined

* K: AF 9 M, set of candidate stations

" A: set of arcs, each (i, j) E A incurs a positive cost of ci

* A: A g A, set of bike arcs (b-arc). A b-arc is available only if both end stations

are installed

* XH: set of all OD-pairs
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* h: one OD pair, h e N

" wh: the travel demand from the origin o(h) to the destination d(h), Vh E R

" K: the number of stations to install

n 
tone: the shortest travel time between OD pair h when no station is installed

o s: threshold, the criterion of time saving that we want OD pairs to meet

Decision variables:

" yj: binary variable indicating whether a candidate i E K is selected in a solution.

* xi.: continuous variable indicating flow traveling between OD-pair h E i on arc

(i, j) EA.

Auxiliary Variables:

0 zh: binary variable indicating whether an OD-pair h E ? can meet the criterion.

If the OD pair h can achieve a cost saving of at least s unit of time then zh = 1,

otherwise zh = 0.

The network design model is formulated as

maximize Z Whzh
hE'W

(3.2)

subject to

z = {wh i = o(h)

-wh i = d(h)

0 otherwise

VhEN, ViEKV

Vhe N, V(ij) E

VhEN, V(i, j) E

VhE N
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(ij)EA Z(j,i)EA

(3.3)

X'~ < whys

Xh <whys

ci hx + swhzh < W th
(ij)EA

(3.4)

(3.5)

(3.6)



E yi = K (3.7)

xj >0 Vh E W, V(i,j) E A (3.8)

yi e {0,l} Vi E (3.9)

zh E {0, 1} VhE W- (3.10)

In the objective function Equation (3.2), we assign the demand wh as the weight

for the binary indicator zh. Thus we maximize the number of demands that can meet

the criterion. Equation (3.6) allows zh to be one only if the OD pair h satisfies the

s saving criterion. Given a network design, if the travel time on shortest path for h

fails to meet the s saving criterion, adding s units of time will always make the trip

travel time longer than thone, no matter what route the travelers choose. Constraints

for flow conservation (Equation (3.3)), b-arc availability (Equation (3.4) and (3.5))

and the total number of stations to install (Equation (3.7)) are all previously defined

in Section 2.2.2. We call this formulation the max-demand model.

For the max-demand VS network design MIP formulation presented above, if we

view each OD pair h E W as a scenario, and the demand wh as the weight of this

scenario, then our formulation has the form of a two-stage stochastic program with

recourse. The first stage is to find the location to install the facilities (yi's), and

the second is to route over the network (x 's). Still we assume the users will use

the shortest path between the corresponding OD pair. Whether each OD pair meets

the s saving criterion (zh's) can be determined in the second stage simultaneously

with the xh's. Equation (3.7) corresponds to the constraint of Ax = b in (TSSP).

Equation (3.3) - (3.6) correspond to the remaining constraints in TSSP. Note for the

constraints the coefficient of the x's are the same for all scenarios (OD pairs) while

the coefficient of the z's may be different for all scenarios, as suggested by Equation

(3.6). This indicates that in our problem the recourse matrices are scenario specific.

As the weight of each scenario is the demand of the corresponding OD pair, the sum

of the weights is not 1, and we are not minimizing the expected costs.
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3.3.2 Model Decomposition

In the max-demand model we consider whether an OD pair can meet a saving cri-

terion, and thus, it is natural to formulate it in an OD-based way. Note that for

each OD pair and each node, there is a flow conservation constraint. For each OD

pair and each b-arc, there are two b-arc availability constraints. And for each OD

pair, there is a criterion satisfying constraint. Thus the total number of constraints is

JWJ x (IAI + 214 + 1) + 1. The number of constraints will be very large as the network

size or the number of OD pairs increases. Note the s saving criterion allows us to

eliminate OD pairs that cannot meet such criterion when all stations are installed.

This may reduce the problem size. Preliminary computational results show that

for even a small scale problem, the insufficient memory issues can result, requiring

decomposition methods to be used.

Once we decide which stations are to be installed, the problem can be decomposed

into JW- shortest-path problems. They can be solved by solving ILI shortest-path-tree

problems. Given a network design y = f and modifying the problem slightly, the

subproblem corresponding to OD-pair h e W can be written as:

6= maximize zh (3.11)

subject to

1 i = o(h)

SZ -Z Xj -1 i = d(h) Vi e N (3.12)
(ij)EA4 (ji)EA t0 otherwise

j - Yi V(ij) EA (3.13)

zh < q V (i, j) EA (3.14)

Z cZx + sz one (3.15)
(iJ)EA

xi>0 V(ij) E A (3.16)

z h{0, 1} VhE W. (3.17)
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Let YE be the set of all solutions of first

and Oh be the second stage objective value of

be

maximize

stage variables y in previous iterations

subproblem h. The master problem will

(3.18)Ew hoh
hEW-

subject to

E ,= K
iER

h < f(h, )

0 E i

yi E {0, 1}

Vh E W, V E YE

VhE R

Vi E P.

(3.19)

(3.20)

(3.21)

(3.22)

Equation (3.20) represents the cuts that we generate from previous iterations, with

the right-hand-side depending on the network design and the specific OD pair. Unlike

the tree-formulation in the Chiraphadhanakul (2013) problem, Benders decomposi-

tion cannot be applied here due to the fact that the zh's are second-stage binary

variables. This fact requires us to find new methods to generate valid cuts for the

master problem.

3.3.3 Cut Generation Method

Similar to the idea from Penuel et al. (2010) and Shen and Smith (2013), with given

values of the first-stage decision variable y =, we want a cut with the generic form

of

Oh <6h() + ah ()yi
iEA/\I+(y)

VhE W, (3.23)

where 6 h (9) is the objective value of the subproblem h E H for the current first-

stage decision variable -, ah(9) is the parameter we want, and I+(9) is the index set

{iE f 9i = 1}.

Even though our VS network design problem is a deterministic one, the connec-

tion with stochastic programming and the form of our problem inspires us to use
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algorithms for solving SMIP. In the following sections we propose a method to solve

the max-demand formulation of the VS network design problem.

For Satisfied Subproblem: Modified Benders Cut

For any given 9, a subproblem h E W that can meet the s saving criterion will has

zh = 1, as the subproblem has objective function as max zh. When zh = 1, the linear

programming (LP) relaxation of the subproblem h will still lead to the same result.

But if the shortest path between an OD pair h has a travel time shorter than the

all-closed travel time but cannot meet the s saving criterion, the integral subproblem

will have zh = 0 while the LP relaxation may give a fractional value for zh

For an OD pair h that has zh = 1 given the current 9, we formulate the dual

of the subproblem's LP relaxation. Let ph, uh, vh and qh be the dual variables of

the subproblem constraints Equation (3.12), (3.13), (3.14) and (3.15) respectively.

And let rh be the dual variables corresponding to the constraints zh < 1. The dual

formulation of the subproblem's LP relaxation (DSL) is

minimize (ph) d(h) + Z ( + Z v) + th,,qh + rh (3.24)
iER (ij)EA (j,i)EA /

subject to

p- pj+ cijqh 0 V(ij) EAx (3.25)

p -pI +uI +j + cijqh 0 V(ij) E (3.26)

sqh +r h >1 (3.27)

h, ij > 0 V(i, j)EA (3.28)

qh >0, rh > 0. (3.29)

For a general MIP problem, to generate Benders cut we should aggregate all the

subproblems. As indicated in Section 2.3.1, we can decompose the subproblem of the

VS network design problem into NWJ different ones and each corresponds to an OD

pair. Here we just consider OD pairs that can meet the s saving criterion with the

38



given P.

If we solve the dual LP problem directly, we will get an extreme point or an

extreme ray of the dual problem polyhedron. In our case, the problem is bounded

(the LP relaxation has the constraint 0 zh 1 and the objective function is zh), the

solution will only be an extreme point. The Benders cut of DSL can be written as

(h) yd) + eq + rh
iE( ( (i,j)EA (j,i)EA /

As the subproblem h has zh = 1, the objective of the LP relaxation's dual problem

will also be 1.

For a MIP problem solved with Benders decomposition, any dual feasible solution

for the subproblem can be used to generate a valid cut. Note in our problem we

relax the integrality requirement for the MIP subproblems. In such cases, any dual

solution can still be used to generate a valid cut for the master problem. Preliminary

computational results show that solving the DSL, for any OD pair (using the solver

ILOG CPLEX 12.5), will give a solution with all Uh 's and Vs's, for each (i, j) E A,

equal to zero and 6 (n) - (P(h) - Pd(h) + toeq + rh = 1. However, such a solution will

lead to useless cuts for the master problem. By substituting the values of the variables

into Equation (3.30), we get the cut Oh < 1. Note that in the master problem, for each

h E W, we have 0 0 h 1. Namely, the new cut is a repeat of an existing constraint.

A strong cut in our problem is one with a near zero constant part, and only a

few positive coefficients of the yi's. That is, we want a solution to the dual of the

subproblem LP relaxation with a small value of 6 h () = (Ph(h) -d(h) + + Th.

And for each i E K, we also hope the solution will have a small number of positive

coefficients ai = (E(i) ij + F(ji)E v ). To achieve this goal, we need to adjust

the dual extreme point solution.

To make 6 h(q) as close to zero as possible, we add to the DSL the constraint

(PO(h) Pd(h) + tneq + r 77, (3.31)
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where T is a parameter to control the value of 6 h (). Denote the problem as DSL2.

The most ideal case is 6 h () = 0. That is, the dual subproblem has a feasible solution

that generates a cut with no constant part. The parameter q can be set at 0 at the

beginning. If infeasible, we can increase its value gradually until it becomes feasible.

Once we get a feasible dual solution for DSL with q = r*, we can adjust the values

of the dual decision variables so as to have a fewer number of positive coefficients for

the yi's in the cut. Suppose the objective value of the DSL2 is 0. For each i E K, let

1h e {0, 1} indicate if the coefficient of yi, namely Zgij)E ut + h si)E v, is zero. We

solve the following optimization problem

maximize ih (3.32)
iER

subject to

h_ h + hE\
p j -+p cijq 0 V(ij) EA A (3.33)

A - p + + + ci q 0 V(ij) E (3.34)

sqh + rh > 1 (3.35)

Po(h) - Pd(h)) + eq + rh = 71 (3.36)

Z u + vj i = s- * (3.37)
iER \ (ij)e E. (j, i)eA /

( hu+Zv +Mlh M, ViE (3.38)
(ij) El (j, i)l /.

1h E {0, 1}, ViEg (3.39)

u, h > 0 V(ij) E (3.40)

qh h 0, rh > 0, (3.41)

where M is a large positive number. Denote this optimization problem as the DSL-

Adjust (DSLA) problem. The objective function Equation (3.32) is tomaximizc he

number of coefficients that can be zero. Equation (3.36) ensures that 6 h(q) will have

the same value as the DSL problem. Equation (3.37), together with Equation (3.36),
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serves the function that we will get the value of # if we substitute the solution of

DSLA into the objective function of DSL2. Equation (3.38) ensures that for each

i E h, 1' can be 1 only when (Zgiug + 0.

Note that DSLA is an integer program. When the input network size is large,

DSLA will have a large number of constraints. And when the problem has a large

number of OD pairs, we need to solve a large number of DSLAs. In either case, it

will be difficult to generate strong valid cuts for the master problem.

For Unsatisfied Subproblem: Expand Cut

Consider an unsatisfied subproblem whose optimal solution is zh = 0 under a given

first-stage solution 9. Subproblem h E R cannot meet the s saving criterion. We

ask the question: how many more stations do we need to open to ensure that the

subproblem h E R has the objective value zh = 1. Namely, we want to expand the

network and know how many more stations are needed to allow OD pair h to meet

the s saving criterion. We use the following optimization problem to find this value:

M = minimize Z yi - K (3.42)
iEf

subject to

1 i = o(h)

Z - Z X - i = d(h) Vi E N (3.43)
(G'ACA (j,i)EA

0 otherwise

Xij Yi V(ij) EA (3.44)

Xij Yj V(ij) EA (3.45)

Z Cijzij+s tone (3.46)
(ij)EA

yi =I Vi E 1+(Y) (3.47)

ij 0 V(ij) E A (3.48)

yi E {O, 1} Vi E Jf. (3.49)
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Denote it as expand problem (EP). Equation (3.47) enforces that any station that

is selected to be installed in the current first-stage solution 9 will be kept open. If

the EP is feasible, we have M > 1. We can guarantee this problem to be feasible

by eliminating OD pairs that cannot meet the s saving criterion even when all 1A2
candidate stations are installed. Note that this may lead to a significant reduction in

the number of OD pairs.

Another thing to note is that EP is an integer program. Solving it can be time-

consuming. Here we propose a method to find the value of M in a gradual way. Let

M' be a parameter indicating how many more stations we choose to install. Add the

constraint jg yi - K = M' to EP and change the objective to min0. Set M' = 0 at

the beginning, and we increase its value by one if we do not find a feasible solution.

The smallest M' for which the modified EP is feasible is the final value of M that

we are seeking. The intuition behind this is that by fixing the number of stations to

install, we limited the solution space. If most OD pairs just need a small value of M,

then the process to find the smallest value of M can be sped up.

Proposition 3. If a first stage solution y * 9 can allow OD pair h to meet the s

saving criterion, it must have at least M selected stations different from V.

Proof. Suppose there is a solution f that has M - k (0 < k < M) stations different

from 9 and OD-pair h satisfies the s saving criterion. Then there exists a path that

uses at most K stations, with at most M - k different from 9, that help h satisfy the

criterion. Thus if we open the K stations given by 9 plus the M - k different stations,

we can still find a path with h meeting the criterion. Then the solution of the EP will

be less than M (since the K stations in 9 plus the M - k additional stations will be

feasible, but the objective value is only M - k). Hence any first stage solution with

OD-pair h satisfying the s saving criterion must have at least M selected stations

different from 9. 0

Based on Proposition 3, we generate the cut

< yi. (3.50)
iEPkf\+(y)
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Equation (3.50) is a valid cut. As it is generated from solving the EP, we call it the

expand cut. For a subproblem h that cannot satisfy the s saving criterion under the

current network design 9, the cut indicates that a y will leave 0 h = 1 only when it

contains at least M installed stations that are different from those currently in 9.

As indicated earlier in this section, a strong cut in our VS network design problem

should have a near zero constant part and only a few positive coefficients of the yi's.

Equation (3.50) has a zero constant part (6h() = 0). Note I1+()1 = K, thus there will

be KI] - K terms with non-zero coefficients. If K is much smaller than 191, Equation

(3.50) will have a large number of non-zero coefficient. This will lead to a relatively

weak cut. And if for OD pair h and the current 9, the value of M is small, then it

is very likely for a solution y to have the right-hand-side of Equation (3.50) larger

than one. However, in the master problem oh is the second stage objective value and

Oh < 1. A right-hand-side of Equation (3.50) larger than one renders the generated

expand cut inconsequential.

Changing M will not be a good choice. The value of M is determined by the

current solution 9 and the underlying network structure. To have a stronger expand

cut, we need to limit the number of coefficients of yi's that are positive.

Proposition 4. When all candidate stations are installed, for one candidate station

i* E 9, if there is no path that can connect the OD pair h through i* and satisfy the

s saving criterion, then the expand cut Equation (3.50) will still be valid if we remove

the term y* from the right-hand-side of it.

Proof. When all candidate stations are installed, all b-arcs are available. Under this

condition, if there is no path that connects the OD pair h, passes through i* and

meets the s saving criterion for h, any path that can satisfy the s saving criterion

will not pass through i*. Then for h, whether it can satisfy the s saving criterion

is not dependent on the installation of i*. Namely, zh = 0 or zh = 1 is not related

to the value of yi.. To have zh = 1 (in the master problem it is 9h = 1), we need a

first-stage solution with at least M stations from ( I \ I+(j)) \ {i*} installed. Thus

for a Q (9 * g) with zh = 1, the constraint 0 h < Z (a-s+(9))\{i*} jyi will not eliminate
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the master problem solution (0h, y) = (1, fi). El

Proposition 4 gives us a method to remove items with non-zero coefficients from

the expand cut. Here we propose a stronger version:

oh < Z 1 yi (3.51)
iE9(h)\I+(9)

where K(h) is the set of candidate stations that may appear in a path that meets

the s saving criterion for OD pair h. By using 9(h) instead of AV for h, we only keep

those candidates that may help h to save at least s units of time. If the cardinality

of K(h) is much smaller than the cardinality of h, we can improve the quality of the

cut greatly. Note the 9(h) depends on the value of s.

To find AF(h) for each h E N, start with K(h) = 0. For each i E K (i # o(h),

i * d(h)), we perform the following steps:

1. Find the shortest path from o(h) to i, and denote it as pathil.

2. Temporarily remove nodes in pathil and all arcs coming into or out of these

nodes.

3. Find the shortest path from i to o(d), record as pathi2.

4. If the combination of pathil and pathi2 forms a path that meets the s saving

criterion, then K(h) <- <.A(h) u {i}.

5. Recover nodes in pathil and all arcs coming into or out of these nodes.

This procedure is summarized in Algorithm 1. For each h E N, we find K(h)

before executing it. We call the procedure expand-cut decomposition.

One thing to note is that the expand cut can be applied to situations where the

criterion for "attractive" is different. For instance, if an OD pair can saving more

than 30% of its travel time, we saving such saving is "attractive". For each scenario,

it considers which candidate location is helpful. And rachll I E N, 1(h) can be

found based on the problem-specific criterion before the expand-cut decomposition is

executed.
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Algorithm 1 Expand-cut Decomposition

1: Initialize BestLB <- 0
2: while remaining time > 0 do
3: Solve the master problem, get the objective value Obj and solution y =

Solve all subproblems using shortest-path-tree method. Evaluate the travel cost
for each h E ?. Get LB(g), the amount of demand satisfying the s saving criterion

4: For each h E 71 that meets the s saving criterion, generate Benders cut for the
LP relaxation of the subproblem, modify it and add them to the master problem

5: For each h E W that fails to meet the s saving criterion, use y and .A(h) to
generate cut and add it to the master problem

6: if Obj - BestLB < 10-6 then
7: Break
8: else if LB(g) > BestLB then
9: BestLB <- LB( 7)

10: y* <- p
11: end if
12: end while
13: return y*

3.4 Conclusions

In this chapter we proposed an optimization model (max-demand model) that maxi-

mizes demand that meets certain travel time savings criteria. We develop because the

existing min-cost model (Chiraphadhanakul, 2013) minimizes the total travel cost of

all demand and overemphasizes the OD pairs with small savings and large demands.

With a predetermined value of the parameter s, we can delete the OD pairs that

cannot save at least s minutes when all candidate stations are installed. This can

reduce the input size to a great extent.

We formulate the max-demand model as a two-stage stochastic program. We

develop a decomposition algorithm and the corresponding method to generate special

cuts to solve the model. Two types of cuts are used: for subproblems that meet the s

saving criterion under the current first-stage network design, a modified Benders cut

is generated; and for subproblems that fail to meet the criterion, a special expand cut

is generated. To generate a valid cut, we solve different optimization models for the

two types of subproblems. To generate an expand cut, we need to find the candidate

set that may help an OD pair meet the s saving criterion before the decomposition
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algorithm starts.
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Chapter 4

Computational Results of the

Max-Demand Model

4.1 Introduction

In this chapter, we present the computational results for solving the max-demand

model of the VS network design system. The VS system is based on Hubway, a bike

sharing system in Boston. The transit system is based on the Massachusetts Bay

Transportation Authority (MBTA). We first explain briefly how the input networks

are generated. Then we show that our decomposition algorithm can reduce the so-

lution time of the max-demand formulation. At last, we compare the solutions of

the min-cost model and the max-demand model under the same network input. The

results show that the max-demand model is able to increase the demand that meets

a certain s saving value without increasing the total travel cost significantly.

All algorithms and models are implemented in Java 1.6 under the IDE Eclipse

Kepler Service Release 1 and all optimization models are solved by the IBM ILOG

CPLEX 12.5 solver. We run all computational experiments on a MacBook Pro with

2.6 GHz Intel Core i7 CPU and 1 GB of RAM allocated to the programs.
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4.2 Input Data

The input networks are based on the MBTA General Transit Feed Specification

(GTFS) data' and the publicly accessible Hubway location data2 . We use existing

Hubway stations as our candidate stations. In our problem, we consider a situation

where Hubway decides to open fewer stations, or where a new agency wants to start a

bike sharing business from scratch with preselected station candidates. In this chapter

our goal is to maximize demand of OD pairs whose travel time savings are attractive,

that is, significant enough to affect changes in travel pattern and mode choice.

When generating the network, we use the idea of a transfer tree from Section

3.5.2 of Chiraphadhanakul (2013). The basic idea of a transfer tree is to find the

shortest paths from an origin node to all other transit stops that can be reached on

the given public transportation network and VS network. In a transfer tree, every

node other than the origin is a transfer node: a transit stop where people need to

make a transfer for the bus/ subway /trolley/ ferry service along the path of the OD

pair. The arc between two nodes on the transfer tree is the shortest path between

them. For each origin, we generate one transfer tree. The trees will share many

transfer nodes. B-arcs, i.e. arcs connecting two bike candidate stations, are also

added to the network. Together they form a network.

Bike-sharing may be used as the first or last segment of a trip in a city. Hence as in

Chiraphadhanakul (2013), we assume that two trips using the same path but having

opposite directions will have the same benefit on a given network. This assumption

simplifies the problem so we can reduce the number of OD pairs. For travel demand,

we consider the possible trips originating from a bike candidate station to a transit

node, and aggregate the demand between this OD pair based on the transit points

that can be reached if a trip goes beyond this destination transit node. We use the

open API of Mapquest 3 to find the biking time between any pair of bike candidate

stations and add the b-arcs that take less than a specified time to the network we

lhttp://www.mbta. com/rider-_tools/developers/default .asp?id=21895
2http: //hubwaydatachallenge. org
3http://open.mapquestapi.com/directions
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generate. We set the biking time threshold to 30 minutes. The current Hubway

maximum bike usage time is also 30 minutes.

4.3 The Efficiency of Decomposition

First, we run experiments to evaluate the performance of the proposed expand-cut

decomposition method. We test the algorithm on a network with JNi = 597, N]I = 19,

JAI = 2024 and JAI = 312. We set K = 9, s = 25 min, and compare the performance

of the expand-cut decomposition with the performance of solving the model directly

in ILOG CPLEX. For the decomposition method, in one experiment we use both

modified Benders cut and expand cut and in another only expand cut is used. To

study the efficiency of the decomposition algorithm, we solve the max-demand model

with different numbers of OD pairs. The OD pairs are uniformly chosen from those

with s = 25 minutes saving potential. The results are summarized in Table 4.1.

Table 4.1: Solving Power of CPLEX and Expand Decomposition

CPLEX Benders + Expand Cut Expand Cut
Time(sec) Obj Time(sec) Iterate Obj Time(sec) Iterate Obj

10 3.3 109 75.9 120 109 9.5 156 109
50 73.0 918 46.3 18 918 5.5 18 918
100 243.7 3712 186.5 48 3712 45.1 59 3712
150 788.4 4238 401.1 63 4238 65.0 68 4238
200 1066.3 5844 278.9 32 5844 44.8 36 5844
250 20 min 6702* 484.4 43 7040 59.4 43 7040

* the value of objective is not optimal.

In this table, we present the running time (Time), number of iterations (Iterate,

if applicable) and objective value (Obj). These results show that the run time of

the CPLEX solver rises dramatically as the number of OD pairs increases. As the

number of OD pairs has a linear relationship to the number of constraints, the run

time is superlinear compared to the number of constraints. This indicates that when

the number of OD pairs is large, solving the model directly becomes slow. When

I7I|= 250, the CPLEX solver cannot solve the problem within a 20 minute time limit,

while both decomposition methods successfully find the optimal solution within a

relatively short time.
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Our decomposition procedure solves all problems within the 20 minute time limit.

One thing to note is that the run time of using both modified Benders cut and expand

cut is longer than using only expand cut. Further analysis of the computation process

shows that most of the solution time is spent on cut generation in these cases. As

we pointed out in Section 3.3.3, generating a relatively strong Benders cut for the LP

relaxation of a satisfied subproblem requires solution of an integer program. It will

take a long time if a large number of subproblems meet the s saving criterion. If we

only generate expand cuts and not modified Benders cuts, only subproblems that fail

to satisfy the s saving criterion will be solved by the decomposition algorithm. When

we use both types of cuts, the two decomposition procedures have a similar number

of iterations. These results indicate that the modified Benders cuts are still not very

strong. According to this insight, we use only expand cut for the decomposition

method in the following computational experiments.

Another thing to note is that both the run time and the number of iterations of

our decomposition method are not strictly non-decreasing with the number of OD

pairs. This is because when we have fewer OD pairs, the number of expand cuts

that can be generated in each iteration is also small. Thus even though solving each

iteration becomes faster, more iterations may be needed.

4.4 The Quality of Max-Demand Solutions

In this section we compare the best solutions we have from both the min-cost and max-

demand models. We first investigate how much saving each OD pair realizes under

the two solutions respectively. Then we exam two secondary- attributes: achieved

saving potential of each OD pair and number of transfers per OD pair.

4.4.1 Demand Meeting the s Saving Criterion

In Section 3.1.1, we pointed out that the min-cost solution may overemphasizc OD

pairs that have small savings and large demand. To examine to what extent the

max-demand model can resolve the drawback of the min-cost model, we solve both
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min-cost and max-demand models on the same network, for different numbers of

open stations (K) and different saving criteria (s). For different values of K and s,

we calculate the demand that satisfy the saving criteria. The network we present here

has HjI = 704, Al = 3008, JkrJ-30, JAI = 742, IL = 30, INI = 5103 and the total demand

is 248192.

Table 4.2: Number of OD Pairs with Potential Saving of s Minute, K = 15

s (min) 0 > 0 15 20 25 30 35 40 45 50
Number of 5103 3982 2095 1431 976 637 346 212 93 35
OD Pairs
Demand 248192 179665 92715 57995 37869 24448 13632 6955 6955 1390

For the cases of K = 15, we test values for s = 15, 20, ... , 50 minutes. The number

of OD pairs with potential to save at least s minutes when all candidate stations are

installed, and the corresponding amount of demand, are presented in Table 4.2. Note

that the larger the value of s, the smaller the number of OD pairs and smaller the

demand that meets the saving criterion. As we mentioned in Section 3.3.3, we only

need to take the OD pairs that have the potential to meet the s saving criterion into

account. Thus solving a problem with a large s value is easier than with a small s

value.

Table 4.3: Number of Demands Meeting s Saving Criterion, K = 15

Savings (mi) Mi Cost Value of s (min)
50 45 40 35 30 25 20 15

50 968 1390 1388 632 1207 1217 1387 1106 968
45 2596 1645 3271 3024 2781 2871 1790 2761 3047
40 4235 5802 6311 6905 5688 5711 5627 4952 5353
35 8189 8661 9810 9878 12849 11448 9703 11755 9769
30 17277 18070 20777 19443 22100 22848 19414 21999 20721
25 24524 25036 28132 27323 30922 31711 34229 30549 28992
20 35084 30446 37777 42500 43537 44595 41494 46524 38046
15 67497 55604 63607 61827 59313 64140 61234 61777 76457

In Table 4.3, for different values of s, we calculate the demand that realizes a s

minute savings under the best min-cost solution with K = 15, and calculate the same

for the best max-demand solution with K = 15 and different values of s. For instance,

in the column with s = 20 minutes and the row with savings > 25 minutes, the 30,549

means that 30, 549 of the demand realizes at least a 25 minute savings among all 5103
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OD pairs in the network design given by the best solution of the max-demand model

of K = 15 and s = 20 minutes. The cells with red background contain the number of

demands that satisfies the target s saving criteria.

Table 4.4: Improvement of Number of Demands Satisfying s Saving Criterion, K = 15

Value of s (min)

Saving (min) 50 45 40 35 30 25 20 15
50 43 43.4% -34.7% 24.7% 25.7% 43.3% 14.3% 0.0%
45 -36.6% 0% 16.5% 7.1% 10.6% -31.1% 6.4% 17.4%
40 37.0% 49.0% 61% 34.3% 34.9% 32.9% 16.9% 26.4%
35 5.8% 19.8% 20.6% 56.9% 39.8% 18.5% 43.6% 19.3%
30 4.6% 20.3% 12.5% 27.9% 32,3% 12.4% 27.3% 19.9%
25 2.1% 14.7% 11.4% 26.1% 29.3% 39:i% 24.6% 18.2%
20 -13.2% 7.7% 21.1% 24.1% 27.1% 18.3% 3,1% 8.4%
15 -17.6% -5.8% -8.4% -12.1% -5.0% -9.3% -8.5% 133%

In Table 4.4, we calculate the improvement in the number of demands that satisfy

the s saving criterion with different s values. This comparison is between the best min-

cost model solution and the best max-demand model parameterized with different s

values. For instance, in the column with s = 20 minutes and the row with savings > 25

min, the 24.57% means that when we compare the solution of the max-demand model

with s = 25 minutes and the best min-cost model solution, the demand that meets

a 25 minute savings increased by (30549 - 24524)/24524 = 24.57%. From this table,

for reasonable values of s, we can see that there is a quite large improvement in the

number of demands that satisfy the s saving criterion. Similar to Table 4.3, the cells

with red background contain the percentage of demand improvement corresponding

to the target value of s. When the parameter s is set to be one value, we can see

that the demand that satisfies another saving criterion might increase. For example,

in Table 4.4, when s = 15 minutes, the demand that satisfied the savings criteria of

20,25, ... ,45 all increased. However, such increases may not exist when s is large.

In this case with K = 15, the demand that saves more than 15 minutes with the

max-demand solution is less than the demand that meets the same criterion with the

min-cost solution when s = 20, 25,..., 50.

For the same input network, computational results with K = 12, 18 and 21 are

presented in Appendix A. When K = 12, solving the min-cost model is very difficult,
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and the gap between the Benders lower and upper bound is still 12.1% after five

hours of solution time. Solving the max-demand model is also difficult when s is

small (namely, the number of OD pairs is large). In this case, the difference of the

numbers of demands satisfying the s saving criterion between the two models is large.

For the min-cost model with K = 21, the gap between the upper and low bound is

0.0029%. This shows that the best solution we have is very close to the optimal one.

When K is large, the saving criterion is easier to be satisfied for all OD pairs. This

explains that the difference between the numbers of demands satisfying the s saving

criterion between the two models in general is smaller than for the cases with smaller

K.

4.4.2 Total Travel Cost

The total travel time, or costs, of all demand on the network are summarized in Table

4.5 for the solutions obtained in Section 4.4.1. In the table, the row of total cost is

the sum of travel time of all demand over all OD pairs, and the row of increase is the

increase of total travel cost of a max-demand solution compared with the total travel

cost of the min-cost solution. Compared with the min-cost solution, the total travel

cost for all demand does not vary much if we use the max-demand solution when s

is not large. This indicates that using the max-demand solution does not have much

negative impact on the objective of the min-cost model.

Table 4.5: Comparison of Total Travel Cost with K = 15

Objective Min-Cost Max-Demand (for Different Value of s)
15 20 25 30 35 40 45 50

Total Cost
(x106 mi) 9.42 9.39 9.47 9.57 9.46 9.46 9.52 9.59 9.89

Increase 0.00% -0.27% 0.47% 1.63% 0.44% 0.53% 1.09% 1.81% 4.97%

4.4.3 Other Performance Metrics

In addition to the number of demands that satisfy the savings criterion, we investigate

other secondary criteria to thoroughly compare the two models. The two metrics we
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investigate here are the achieved savings ratio and the number of transfer arcs. Their

definitions are in the following sections.

Achieved Savings Ratio

For each h E 'W, let s h be the all-open time savings of OD pair h (all-closed shortest

travel time of h minus the all-open shortest travel time of h) and sh( j) be the largest

possible saving time of h given a first-stage solution y (all-closed shortest travel time

of h minus the shortest travel time given the network design 9). Define sh(q)/ls8 , the

actual time savings divided by the potential maximum time savings, as the achieved

savings ratio of h, given 9. For the same network in Section 4.4.1 and with K = 15,

we compare the two types of solutions in terms of the achieved savings ratio for each

OD pair.

The comparison results are plotted in Figure 4-la to 4-1p. The horizontal axis is

the achieved savings ratio, and the vertical axis is the demand ratio. Let D9 be the

demand that has s savings potential. Let Ds(q) be the the number of demands that

have s savings potential and also has at least a% of the achieved savings ratio under

'. Also let D+ be the total demand that has positive savings potential. Let D+(q) be

the demand that has savings potential greater than 0 and also has at least a% of the

achieved savings ratio under 9. Then in the left figures, the vertical axis is Ds(')/Ds,

and in the right figures the vertical axis is D+(g)/D+. The black solid line represents

the result from the max-demand solution parameterized with s and the gray dashed

line represents the result from the min-cost model. Here the figures on the left count

only demand with potential to save at least s minutes, and the figures on the right

count all demand that have positive all-open savings. For example, on the red line

of Figure 4-la the point (0.8,0.72) on the black line means that about 72% of the

demand that has the potential to save at least 15 minutes achieves at least 80% of

the saving ratio. And on thc gray line of Figure 4-la the point (0.8, 0.64) on the gray

line means that about 64% of the demand that has positive all-open saving potential

achieves at least 80% of the savings ratio.
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At any given achieved ratio (horizontal axis), the higher the curve is, the more

demands that satisfy the savings ratio. The max-demand solution curve is higher

than the min-cost one in all figures on the left side. This indicates that for the

targeted demands that have at least s minutes savings potential, the max-demand

solution better achieves the savings potential of the demand compared to the min-

cost solution. It also indicates that the max-demand model will give a design that

concentrates more on the benefit of that targeted demand, as we expect. Another

thing to note is that the gaps between the two lines in the left graphs tend to increase

as s becomes large. This is because the demand with large savings potential is small
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compared to the entire demand in this network. And the performance of the min-cost

model is consistent with the analysis at the beginning of this chapter: it may ignore

small demand OD pairs.

The figures on the right side compare the solutions' effects on all OD pairs that

have a positive all-open savings potential. The higher the curve at a given achieved

ratio, the more demand that achieves that savings ratio. Note that s is a parameter

of the max-demand model, so the curve for the min-cost model does not change with

the value of s. We can see that in 6 out of the 8 figures (except for s = 30 and 35),

the min-cost model curve is higher than the max-demand model curve even for large

achieved savings ratio, but the gap is not very large (at least not larger than their

counterparts on the left) except for the case where s = 50. This is understandable

because there are many demands in the network ignored by the max-demand model.

With larger s, more demand is ignored. And this explains why the gap in Figure 4-1p

(s = 50) is larger.

Figure 4-la to 4-1p compare the solutions of the two models in terms of the savings

potential of each OD pair. In general, the max-demand model is more effective in

realizing savings potential than the min-cost model. The larger the value of s, the

more obvious is this effect. The min-cost model, however, does better for demands

with positive all-open saving, but we should note that there are many large-demand

OD pairs that do not have large time savings even when all candidate stations are

installed.

Number of Transfer Arcs

Another metric of interest is the number of transfers each OD pair requires. Within

the transfer tree network, each node is a transfer node and each arc is a bike or transit

trip. Thus, the number of arcs between one OD pair, given a network design, is the

number of bike/transit trips we need on the path. We refer to call such arc as a

transfer arc. Again, we assume the shortest path on a given network will always be

used.

58



3.5 

,10

SMax-Denand, .a - 15

3 - 1Iin-Cost
3

2.5

2

1.5

1

0.5

0-
1 2 3 4 5 6 7 8 9 10 11

Number of Triansfers

(a) Demand Having s min Savings Potential

2.5

2

1.5

1

0.5

0

MMax-Demand, s =20
=Min-CoIsl

1 2 3 4 5 6 7 8 9 10 11
Numlr of Transfur

(c) Demand Having s min Savings Potential

18000
M Max-Deu s = 25

16000. Min-Coet

14000-

12000

N 10000 .

- 8000-

6000

4000

2000-

1 2 3 4 5 6 7 8 9 10 11
Number ofTnrisfers

(e) Demand Having s min Savings Potential

6 x10,

Max-Demand, = 15
Mui-Cost

5 -

4-

z3 -

2

0
1 2 3 4 5 6 7 8 9 10 11

Niu iber of Trarsfer

(b) Demand Having Positive All-Open
Savings

6104

Max-Demand, a 20
Mio-Cost

5

4

3

2

0
1 2 3 4 5 6 7 8 9 10 11

Number of'hansfer

(d) Demand Having Positive All-Open

Savings

6 104

Max-Demand. 25
Min-Caet

5

4

3-

2

1-

0
1 2 3 4 5 6 7 8 9 10 11

Numnber oflrausfo

(f) Demand Having Positive All-Open

Savings

59

10 4



12000 1 ,
Max-Denand, a - 30
Min-Cost

10000-

8000

6000

4000 -

2000

0 M1 2 3 4 5 6 7 8 9 10 11
Number of Transfers

(g) Demand Having s min Savings Potential

6000
M Max-Demand . = 35

Mini-Cost

5000

4000

3000-

2000 -

1000

0 -
1 2 3 4 5 6 7 8 9 10 11

Number of Transfers

(i) Demand Having s min Savings Potential

6 10
Max-Demand. a -30
Min-Cost

5

4

3

2

0
1 2 3 4 5 6 7 8 9 10 11

N tu~rn fTrarisf

(h) Demand Having Positive All-Open
Savings

6 10

Max-Demand, . = 35
Mrin-Crat

5

4

3-

2

0
1 2 3 4 5 6 7 8 9 10 11

Nriilbeuof Trumfer

(j) Demand Having Positive All-Open

Savings

x10i

_ Max-Deim

Max-Demknud, s =40
Minr-Ost

2500-

2000 -

1500

1000-

500

0
1 2 3 4 5 6 7 8 9 10 11

Ninber of Transfcrs

(k) Demand Having s min Savings Potential

and. a - 40

5

4

3

2-

1 2 3 4 5 6 7 8 9 10 11
Numiber of Transfer

(1) Demand Having Positive All-Open

Savings

60

6

S

3000



800
Max-Demand. - 45

600 Mir-Cost

400

200

000-

800 -

600 -

400

200 J

1 2 3 4 5 6 7 8 9 10 11
Nuimiber of IVansiv-

(m) Demand Having s min Savings Potential

SMax-Demand S

M C

1 2 3 4 5 6 7 8 9 10 11
Number of Transfers

and Having s min Savings Potential

~51

Numbo (irf Tran fer

Having Positive All-Open

Savings

Figure 4-2: Count of Demand that Uses Transfer Arcs

From the Figure 4-2a to 4-2p, we show the relationship between the number of

transfer arcs and the demand. We count the demand that uses 1, 2,... arcs on the

shortest path for each OD pair. Note no demand, or no OD pair, uses only one arc on

its shortest path. This is because in the network generating process described in the

Chapter 3 of Chiraphadhanakul (2013), only bike candidate stations serve as origins

and no OD pair has transit stops within walking distance as a destination node.

For the solutions of the two type of models, the figures on the left side only

count the demand that has s-minute savings potential. We can see the max-demand

solution helps more targeted demand use fewer arcs. This effect is more obvious when
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s is large. On the right side, the figures count the demand having positive all-open

savings. The min-cost model is not influenced by the value of s, so the demand count

for any number of arcs for the min-cost solution in all the graphs on the right are

the same. Considering all such demand, the solutions from the two types of models

seem not to make much difference in the number of arcs on the shortest path for each

OD pair. Just as the figures on the left show that the targeted demand in general

contains fewer arcs in their shortest paths, non-targeted demand generally has fewer

arcs in the min-cost solution.

In Figure 4-3, we plot the cumulative number of demands (with positive all-open

savings) that have a specified number of transfers. All the curves are close to each

other except for the one corresponding to the max-demand model with s = 50. This

indicate that the max-demand model generally does not lead to solutions with more

transfer arcs.
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Figure 4-3: Cumulative Number of Demands Having a Specified Number of Transfers

4.5 Conclusions

The computational results in this chapter show that our decomposition method is

effective in reducing the run time for the max-demand model. On one hand, using the

modified Benders cuts can help reduce the number of iterations. On the other hand,

these reductions are achieved at the expense of taking a longer time to generate them.
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Using only expand cut is effective in solving the max-demand model quickly. OD-

wise analysis of the achieved savings shows that the max-demand solution increases

the demand that meets an s savings criterion. The improvement is large when the

number of stations to install is not large. For the max-demand solution, the targeted

demands also have large relative time savings and fewer transfers. However, when

s is large, the number of targeted demands is small. The max-demand model only

considers such demands that have the potential to save at least s minutes. Thus when

we consider all demands having positive savings potential, the achieved savings ratios

are smaller under the min-cost solution that under the max-demand solution. This

occurs because we only focus on the targeted demand and ignore the rest.

For future work, other formulations may be considered. For example, each OD

pair can have its own savings criterion. For the expand cut decomposition converges,

we know the solution must be optimal for expand cuts to be valid for the original

problem. Because convergence is not known to be guaranteed, another area for future

research is to prove convergence or generate some other cuts to ensure the convergence

of the process.
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Chapter 5

Enhancing Model Scalability

5.1 Introduction and Motivation

In this chapter, we propose a heuristic-based decomposition method to solve the

min-cost model of the VS network design problem. This method is aimed at find-

ing a feasible, quality network design within a reasonable time. Experiments reveal

that tractability issues result using the decomposition methods proposed in previous

chapters when we attempt to solve large-scale network design problems.

The entire network generated from the MBTA GTFS and Hubway location data

has KNV = 1234, 1N1 = 131, JAI = 21123, IA = 14816 and 'H = 22819. The compu-

tational experiments in the previous chapter use only part of the entire network as

input. We solve the min-cost model for K = 94 over the entire network. We use

the tree-based model with the Bender-like decomposition method presented in Sec-

tion 2.3.1. We generate PO cuts and set pass = 35 when improving each cut. The

time spent in each iteration during the solution process is recorded and plotted in

Figure 5-1. The run time limit is 10 hours and only 19 iterations are executed. We

can see that the solution time increases dramatically after the first several iterations.

Detailed analysis shows that the time increase is due to solving the master problem.

This is understandable as we mentioned in Section 2.3.2: the master problem is a

MIP and the number of constraints keeps increasing. These results indicate that we

need to go through more iterations to find a good solution.
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Figure 5-1: Min-Cost Model Iteration: Solution Time for the Entire Network

In the following sections of this chapter, we present a heuristic that can find a

good network design solution in a very efficient way. Then we present a decomposition

method based on a variable neighborhood search method. Finally, we present the

computational results of these models for several randomly generated networks and

a real-world, large-scale network.

5.2 Algorithm

The heuristic to find a good feasible network design is based on an estimate of how

much savings each candidate station can bring to the entire network. We rank the

stations according to that estimate. Finally we use rank to control the installation

of each candidate station in order to limit our search space for the master problem.

Another way to limit the search space of the master problem is variable neighborhood

search. Using these two types of constraints in the decomposition procedure, we can

find additional feasible solutions in the search space around the heuristic result, thus

increasing the chance to find better solutions within specified time limits.

5.2.1 Low-High Savings Constraints

To estimate the potential savings of each candidate station, we estimate the potential

savings of each b-arc. For each b-arc (i, j) E A, let gij be the potential savings of (i, j)
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and initialize gij = 0. We first force all candidates to be installed. For each OD pair

hE W, find its all-closed shortest path. Denote the path as p' and its distance as cl.

Then we force all candidate stations to be closed, i.e. no b-arc is available. Then, for

each h E H, we find its shortest path. Let p' be the all-open shortest path of h and c2

be the distance. The generation process described in Chapter 3 of Chiraphadhanakul

(2013) ensures that for each h E W, both p' and p2 exist. Next, for each OD-pair

hE W, we compute the cost savings as sh = c2 - c , and find all b-arcs on pl. Denote

the set of such b-arcs as Ah. For each (i, j) E Ah, we calculate gij = gij + shWh/IAh-.

We repeat this calculation for all h E 7 and all (i, j) E Ah.

The following method of ranking the stations using the estimated savings poten-

tial is from communication with Dr. Virot Chiraphadhanakul. We generate another

network G' which only contains the candidate stations and the b-arcs. We have

G' = (, A), with the weight of each (i, j) E A set equal to gij. An arc can only exist

when both end b-nodes are installed. For each i E A , let yi be a binary variable indi-

cating whether candidate station i is selected to be installed. For each (i, j) E A, let

xij be a binary variable indicating whether the b-arc (i, j) exists. Our goal is to find

K candidate stations to install such that the value of E(i,j)EA Mizii is maximized. The

intuition is that we want to find b-arcs that can bring large savings to the network.

As gij is the estimated potential savings that b-arc (i,j) can bring to the network,

we want to maximize these savings given the constraints. The problem formulation

is

maximize j gijxij (5.1)
(ij)EA

subject to

xi, yi, V(i, j) E A (5.2)

Xij yj, V(i, j) E A (5.3)

Eyi = K (5.4)
iEMf

Xij E {0, 1}, V(ij) E A (5.5)

yi E {0, 1}, Vi E -, (5.6)
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where Equation (5.2) and (5.2) make sure that a b-arc can exist only when both of

its end stations exist.

The formulation above turns out to be an example of the so called densest K-

subgraph (DkS) problem. This problem also has many other names such as the max-

imum edge-weighted subgraph, p-dispersion, remote clique and so on (Marti et al.,

2013). It has been used to model facility location problems (Pisinger, 2006), poly-

merase chain reaction (PCR) primer design in biology (Fernandes and Skiena, 2007),

construction of genomic prediction (Maenhout et al., 2010), selecting codewords for

memoryless low-power bus coding (Gustafsson, 2004) and optical communication

(Sau, 2009).

DkS is an NP-hard combinatorial optimization problem, but Asahiro et al. (2000)

provides an approximation method to solve it quickly. The algorithm is the following.

1. Set X=f.

2. If JX= K, stop. Otherwise, find i E A whose weighted degree is the smallest

among all candidate stations and set X = X \ {i}. Repeat step 2.

3. Return X as the design.

This algorithm is called Greedy. The weighted degree of i is defined as ri = Z(ij)E.A gijij+

Z(ji)E. gjiX. In step 2, when a candidate station i is removed, all arcs connected to

i, namely those in {(i, j) 1j, (i, j) E 4} or {(j, i) I 3j, (j, i) E 4}, are also eliminated.

The approximation ratio R of the Greedy algorithm is defined as the ratio between

the optimal value of Equation (5.1) and the value of Equation (5.1) given by the

Greedy solution. It is proved in Asahiro et al. (2000) that the worst-case R satisfies

(1 | 
1 )2S1 itI\ )i -) 2 j -1)

-+ -o(I-/) R -+ + o (1/11) ,11/3 < Ks 11, (5.7)
2K 2 2K

and

2 -O(1/K) R 2 + O (I1/K2) , KI 191/3. (5.8)

In our case, the weight of any are in G' is estimated from the original VS and transit
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network. Denote R' as the ratio between the optimal objective value of the min-cost

model and the objective value of the min-cost model given by the Greedy solution.

Note R' is different from the R we defined earlier. Thus, Equation (5.7) and (5.8) are

not the range of R', and the range of R' is not clear now.

If we do not stop the candidate station removing process in step 2 of the Greedy

algorithm until X = 0, we will have a sequence of all the candidates. It naturally

leads to a rank, from 1 to AQT of these stations. If we predefine two parameters k,

and k2 , we can add two types of constraints:

y(i) = 1, Vi Z' {f1, 2,. . ., Ni}, (5.9)

and

y(j) = 0, Vj fl -N 2 + 1,1- N2+ 2 ...,(}. (5.10)

y(i) represents the station ranked at the ith place. Here Equation (5.9) is the high-

savings constraint and Equation (5.10) is the low-savings constraint. Together we call

them low-high savings constraints (LHSCs). It is easy to see that LHSCs fix the value

of N1 +N2 binary variables. Adding them to the master problem of the decomposition

described in Section 2.3.1 helps limit the searching space.

5.2.2 Variable Neighborhood Search

Mladenovi6 and Hansen (1997) propose a new local search method called variable

neighborhood search (VNS) for MIP problems. VNS defines a neighborhood around a

current solution, and searches a better solution in this neighborhood. VNS does not

follow any trajectory. It changes the neighborhood center if a better solution is found

and increases the neighborhood size if no better solution is found after a certain time.

To use VNS in our VS network design problem, we need to first define the distance

between the solutions. Suppose we already have the known-best solution 9, and call it

the incumbent. The Hamming distance between y and y, another solution, is defined
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as

d(y, )= (1 - yj) + Z yj, (5.11)
jES jEK\S

where S = {j e K j = 1} (Hansen et al., 2006). The Hamming distance measures

the number of binary variables having values different from the incumbent solution.

Denote this constraint d(y, p) <; k as the VNS constraint, or VNS(9, k). It limits

the number of binary variables with values different from the incumbent one to be not

larger than k. Set k = kmsi whenever we find a new incumbent, add this constraint

to the Benders master problem and remove the last local search cut . If after several

iterations no better solution is found, we increase the neighborhood size by increasing

the value of k. VNS cut is another method to limit the search space of the master

problem in the decomposition process.

5.2.3 LHSC and VNS Decomposition

We propose a decomposition procedure in this section. We combine the Benders

decomposition, the cut improving algorithm in Section 2.3.2, the LHSCs and the

VNS cut. The algorithm is summarized in Algorithm 2. We call it LHSC and VNS

Decomposition. To make it easier to understand, we also draw a flow diagram to show

the process in Figure 5-2. g, g' and g" are thresholds controlling when we stop the

search process. k, and k2 are used to control the number of LHSC constraints.

One thing to note is that in Algorithm 2, we relax the VNS cut and LHSC cuts

and let the algorithm find the best solution or prove the incumbent is optimal. But as

the limit on the search space is removed, solving it will become extremely difficult as

we add a large number of improved Benders cuts to the master problem after many

iterations. This is illustrated by our computational experiments.

5.3 Computational Results

In this section we first examine the quality of the solution from the Greedy algorithm

by using some randomly generated network. To generate the bus-bus arcs and bike-
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Figure 5-2: Algorithm: LHSC and VNS Decomposition

bus arcs, the open source software Cytoscapel and its plug-in Random Network 2 are

used to form the links. For the bike-bike arcs (b-arcs), we connect b-nodes whose

distances are within a certain limit. Then we present the case study of the entire

Boston network to see the performance of LHSC and VNS decomposition.

5.3.1 LHSC-VNS Solution vs. Greedy Solution

We compare the difference of station selection and the corresponding total cost be-

tween the Greedy solution and the LHSC- VNS solutions. In total, three groups of

random networks are used, and each group has five different networks. The network

files used are summarized in Table 5.1. Net410 - net414 have similar arc density to the

MBTA-Hubway network generated by the method in Chapter 3 of Chiraphadhanakul

(2013) with 60 bike candidates. We call them the normal density networks. Net420

- net424 are sparse networks, and net430 - net434 are dense networks.

We define two metrics. For a network and a value for K, let sK be the savings

of total travel cost achieved by the Greedy solution and s4 be the savings from the

lhttp: //www. cytoscape.org/
2https : //sites .google . com/site/randomnetworkplugin/

71



Table 5.1: Network Summary

B-Nodes(K) Nodes(A/) Arcs(A) B-Arcs(A) ODs('iL)
net410 60 760 6141 3100 9950
net411 60 760 6141 3100 9950
net412 60 760 6106 3100 9950
net413 60 760 6111 3100 9950
net414 60 760 6225 3100 9950
net420 60 760 3513 1500 9950
net421 60 760 3526 1500 9950
net422 60 760 3536 1500 9950
net423 60 760 3521 1500 9950
net424 60 760 3418 1500 9950
net430 60 760 11004 3100 9950
net431 60 760 11080 3100 9950
net432 60 760 11062 3100 9950
net433 60 760 11054 3100 9950
net434 60 760 11004 3100 9950

LHSC-VNS solution. Define IK = (sK - sK)/sK as the percentage improvement in

savings of the LHSC-VNS solution's compared to the Greedy solution's. Another

metric is the number of different selected stations. We count how many stations are

in the LHSC-VNS solution but not in the Greedy solution, and denote this value as

Nd, given that K candidate stations should be installed. Let NK =Nd/min{(1-

k1 )K, (1 - k2)(N - K))} be the ratio of the number of stations changed, where the

denominator min{(1 - k1)K, (1 - k2)(N - K))} is the largest number of stations that

can be different between a Greedy solution and a LHSC-VNS solution.

Set k, = k2 = 0.5, so about half of the candidate stations are selected to be opened

or closed. Set g = 10-6, g' = 0.0005 and g" = 0.005. Note in our case we need to

close at least one candidate and install at least one to find a solution different from

the current solution, so we set kmin = 2, and each time we increase k by 2. For each

network, we run the LHSC and VNS decomposition for 1.5 hours. The results are

summarized in Table 5.2.

For each type of network, we present both the mean and standard deviation of IK

and NK for different values of K. We can see that IK decreases as K increases. NK

indicates how different thc LHSC-VNS solution and Greedy solution can be in terms

of the selected stations. For all three network types, the mean value of NK follows a

U-shaped curve. Note that the closer K is to 0 or PJJ, the smaller is the denominator
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Table 5.2: LHSC and VNS Decomposition vs. Greedy Algorithm

Normal (410-414) Spare (420-424) Dense (430-434)
K IK NK JK NK iK NK

mean std mean std mean std mean std mean std mean std
8 9.7% 5.0% 45% 21% 31.0% 15.1% 80% 11% 11.8% 6.7% 50% 25%
16 9.9% 5.3% 33% 7% 16.8% 9.9% 60% 10% 7.6% 4.0% 45% 21%
24 5.1% 2.6% 32% 11% 8.9% 6.2% 48% 9% 4.6% 0.7% 27% 7%
32 3.8% 1.6% 39% 8% 7.0% 3.8% 46% 11% 3.1% 1.0% 30% 6%
40 2.9% 1.1% 56% 9% 6.6% 2.6% 60% 19% 1.8% 0.9% 38% 13%
48 1.3% 0.4% 87% 7% 2.9% 1.4% 97% 25% 1.2% 0.8% 73% 19%

min{(1 - k1)K, (1 - k2)(N - K))}. For most cases, the mean value of NK is larger

than 30%. Combining the two metrics, we can see that when K becomes large, the

total cost from the Greedy solution is hard to improve, but the network design may

be quite different from the LHSC-VNS solutions that provide smaller total travel cost.

Considering the network density, we see that the Greedy solution can be improved

for sparse networks in terms of both metrics. The trend is that the quality of the

Greedy solution increases with network density.

5.3.2 Case Study: Entire Boston Network

We compare the performance of LHSC and VNS Decomposition and the method

presented in Chapter 2. Both use the cut-improving strategy presented in Section

2.3.2. The input network we use here is the entire network generated by MBTA

GTFS and Hubway data. The network has INM = 1234, Afl = 131, JAI = 21123,

JAI = 14816 and 'HI = 22819. We set a time limit of 5 hours, and let pass = 15 for both

methods. Other parameter settings are k, = k2 = 0.5, g = 10-6, g' = 0.0005, g" = 0.005

and kmi = 2.

Table 5.3: LHSC and VNS Decomposition vs. Benders Decomposition

K Improved Benders LHSC and VNS
LB UB Gap Iterate LB UB Gap Iterate

20 1.344x109 1.755x109 30.55% 16 1.695x109* 1.740x109 29.45% 36
40 1.395x109 1.715x10 9  22.88% 8 1.665x10 9 * 1.687x109 20.89% 32
60 1.538x109 1.681x109 9.29% 11 1.634x109* 1.647x109 7.08% 57
80 1.567x109 1.657x109 5.72% 16 1.601x10 9 * 1.615x109 3.11% 47
100 1.572x10 9  1.609x10 9  2.26% 28 1.569x10 9  1.587x109  1.02% 44

* LB is invalid because the LHSCs and VNS have not been removed.
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The results are summarized in Table 5.3. LB and UB stands for the largest lower

bound and the smallest valid upper bound on the optimal objective value of the

min-cost model, respectively. Gap reflects the percentage difference between UB and

the largest valid LB. In our case, the largest valid LB for all K values are from the

Improved Benders method. Iterate is the number of iterations within the time limit.

We can see that for all K values, LHSC and VNS decomposition provides a smaller

UB, where UB is the total cost of the network design from the solution. The LHSC

and VNS decomposition method finds better solutions within limited running times.

However, LHSC and VNS decomposition may not provide a valid LB within the run

time limit, Gaps between the best UB and the valid LB decrease as K increases,

which indicates that the VS network design problem with the objective to minimize

total cost is hard to solve when we have fewer stations to install. When K is large,

the Gap column shows that the total cost value from the LHSC-VNS solution is closer

to the best valid LB.

5.4 Conclusions

In this chapter, we focus on the VS network design with the objective to minimize

total cost. We introduce a heuristic called Greedy algorithm to find a feasible solu-

tion quickly. We provide the Greedy solution to the LHSC and VNS decomposition

method, which forces some stations to open and some to close (LHSCs) and uses

VNS constraints to limit the search space of the master problem of the decomposi-

tion. Computational results on random networks show that the quality of the Greedy

solutions is high when the number of stations to open is large, and LHSC and VNS

decomposition can help find better solutions. For the Boston network case study, we

learned that LHSC and VNS decomposition can help find better solutions than using

the decomposition method from Chiraphadhanakul (2013). For both decomposition

methods, the VS network design problem is harder to solve when the number of sta-

tions to install is small, and when the number is large, LHSC and VNS decomposition

more clearly outperforms.
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Algorithm 2 LHSC and VNS Decomposition

1: Initialize g, g', g", k1 , k2, kmiri and A
2: Run Greedy, get sorted sequence of stations
3: Let YG be the last K stations in the sequence. Set the YG as the MIP start point,

and the incumbent solution y* +- yG. Best upper bound BestUB +- Cost(yG)
4: k +- kmin and add VNS cut VNS(y*, k)
5: N1 +- K - Ke, N2 +- N - K (Ke: number of existing stations)
6: Force the k, x N1 candidates at the end of the sequence to be open (high-saving)

and k2 x N2 candidates at the start of the sequence to be closed (low-saving).
They are LHSCs.

7: while remaining time > 0 do
8: Solve the Benders master problem, get master objective value Obj and current

solution 9. Solve all Benders subproblems, using 9 and cut improving algorithms
to generate cuts and get its corresponding cost Cost(y)

9: if BestUB - Obj < g then
10: if LHSCs have not been removed then
11: Remove VNS(y*, k)
12: k +- k + 2 and add VNS(y*, k)
13: else
14: Break
15: end if
16: end if
17: if Cost(q) < BestUB then
18: BestUB <- Cost( j)
19: y* <- p
20: Remove VNS(y*, k)
21: k <- kmin and add VNS(y*, k)
22: else
23: if (BestUB - Obj)/BestUB < g" then
24: Remove VNS(y*, k)
25: k <- k + 2 and add VNS(y*, k)
26: end if
27: end if
28: if (BestUB - Obj)/BestUB < g' then
29: Remove LHSCs and VNS(y*, k)
30: end if
31: end while
32: return y*
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Chapter 6

Conclusions and Future Work

In this thesis, we address the issue of network design for integrated vehicle-sharing

and public transportation service in order to reduce people's travel time. We focus

on the problem of selecting from a predefined set of candidate VS stations those to

be optimal.

We propose a new model with the objective to provide more travelers with sig-

nificant travel time savings. To expedite the model solution process, we develop a

decomposition procedure and special cut generation method. Computational results

shows that our efforts are effective. The expand cut we proposed can reduce the

solution time significantly. OD-wise analysis of the achieved savings shows that the

max-demand solution increases the number of demands that satisfy a savings criterion.

The targeted demands also have large relative time savings and fewer transfers with a

max-demand solution. We also propose a heuristic-based decomposition method that

can produce solutions to the Chiraphadhanakul (2013) model with reduced total cost

within specified time limit. Computational results on random networks show that

our LHSC and VNS decomposition can help find solutions better than the solutions

from the Greedy method. For the Boston network case study, we learned that LHSC

and VNS decomposition can help find better solutions than using the decomposition

method from Chiraphadhanakul (2013).

For future work, one thing we need is to prove that the decomposition and cut

generating process of the new model will converge. As the cuts we generate are valid,
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the decomposition schema will give an optimal solution if it converges. But we have

not proved that such convergence will always happen. Another thing to note is that

currently in the model, we assume all OD pairs have the same criterion for satisfactory

travel time savings. We could, in the future, take into account more complicated

situations. For instance, both absolute savings and relative savings could be taken

into account. This may require a new objective function, a new corresponding model,

and new cut generating methods. Also, larger and more realistic instances should be

used to test our new model and algorithm. The heuristic-based method may also be

modified to adapt the possible new models. Now the network data we use are from

the MBTA schedule and the biking time between points are queried from Mapquest.

In the future, we may use real-time traffic data to better calibrate arc travel times.
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Appendix A

Improvement in Total Demand

Meeting Different Savings Criterion

and Number of Open Stations

Table A.1: Number of Demands Meeting s Saving Criterion, K = 12

Value of s
Saving (mi) Mn Cost 50 45 40 35 30 25 20 15

50 199 1388 609 316 823 955 1204 819 159

45 514 1643 3194 2663 2291 2526 1346 2303 533

40 2366 5126 5631 665 3797 3897 4959 3940 1054

35 5943 7675 8615 9181 11903 8696 9186 7527 2564

30 12555 17276 15949 15969 20135 2172 18261 17192 6971

25 15293 24311 19317 22126 27398 25917 30927 25541 14299

20 24975 27189 30669 32055 34927 37824 38331 37777 21729

15 45971 51231 47211 47511 42244 53822 49410 48217 56785

Table A.2: Improvement of Number of Demands Satisfying s Saving Criterion, K = 12

Value of s
Saving (min) 50 45 40 35 30 25 20 15

50 597.5% 206.0% 58.8% 313.6% 379.9% 505.0% 311.6% -20.1%

45 219.7% 521.% 418.1% 345.7% 391.4% 161.9% 348.1% 3.7%

40 116.7% 138.00% 182.% 60.5% 64.7% 109.6% 66.5% -55.5%

35 29.1% 45.0% 54.5% 100.3% 46.3% 54.6% 26.6% -56.7%

30 37.6% 27.0% 27.2% 60.4% 68 B% 45.5% 36.9% -44.5%

25 59.0% 26.3% 44.7% 79.2% 69.5% 102.2% 67.0% -6.5%

20 8.9% 22.8% 28.4% 39.9% 51.5% 53.5% 513% -13.0%

15 11.4% 2.7% 3.5% -8.1% 17.1% 7.5% 4.9% 13.3%
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Table A.3: Number of Demands Meeting s Saving Criterion, K = 18

Saving (min) Mi Cost Value of s
50 45 40 35 30 25 20 15

50 1008 1390 1388 644 1383 1383 1389 1123 1385
45 2649 1794 3279 3120 3247 3253 1798 2857 3132
40 5163 6056 6317 6952 5881 5887 6306 4988 6187
35 9571 9520 10878 10954 13,91 12627 11516 12154 9853
30 19684 19372 21134 21244 23465 235-8 21552 23113 21041
25 31281 28973 29711 30065 33083 33296 36293 33278 30573
20 41607 37018 40497 46299 46945 47574 46086 50104 40531
15 75646 67529 66380 68639 69053 69777 71280 71587 82231

Table A.4: Improvement of Number of Demands Satisfying s Saving Criterion, K = 18

Value of s
Saving (min) 50 45 40 35 30 25 20 15

50 37.9 37.7% 58.8% -36.1% 37.2% 37.8% 11.4% 37.4%
45 -32.3% 28% 17.8% 22.6% 22.8% -32.1% 7.9% 18.2%
40 17.3% 22.6% 34.7% 13.9% 14.0% 22.1% -3.4% 19.8%
35 -0.5% 13.7% 14.5% '3.% 31.9% 20.3% 27.0% 3.0%
30 -1.6% 7.4% 7.9% 19.2% 19.5% 9.5% 17.4% 6.9%
25 -7.4% -5.0% -3.9% 5.8% 6.4% 16.0% 6.4% -2.3%
20 -11.0% -2.7% 11.3% 12.8% 14.3% 10.8% 20.4% -2.6%
15 -10.7% -12.3% -9.3% -8.7% -7.8% -5.8% -5.8% 8.7%

Table A.5: Number of Demands Meeting s Saving Criterion, K = 21

Savig (in) in ostValue of s
Saving (mn) Mi Cost 50 45 40 35 30 25 20 15

50 1230 390 1388 1388 653 1383 1390 1130 1387
45 3091 3073 37 3144 3255 3255 1851 2888 3138
40 6312 6069 6370 065 6893 5887 6529 5675 6202
35 12697 11954 10894 12018 13590 12723 12547 12332 11384
30 22539 22145 21462 23751 22808 23989 23040 23500 21614
25 36443 32763 30721 35491 33042 34919 37458 35735 32067
20 48211 46319 44504 49909 49627 51820 48629 53378 45367
15 82291 75575 76042 77103 72828 77393 77274 77959 86834

Table A.6: Improvement of Number of Demands Satisfying s Saving Criterion, K = 21

Value of s
Saving (min) 50 45 40 35 30 25 20 15

50 13.0% 12.9% 12.9% -46.9% 12.4% 13.0% -8.1% 12.8%
45 -0.6% 6.1% 1.7% 5.3% 5.3% -40.1% -6.6% 1.5%
40 -3.9% 0.9% 10% 9.2% -6.7% 3.4% -10.1% -1.7%
35 -5.85% -14.20% -5.35% 7.0% 0.2% -1.2% -2.9% -10.3%
30 -1.8% -4.8% 5.4% 1.2% 64% 2.2% 4.3% -4.1%
25 -10.1% -15.7% -2.6% -9.3% -4.2% 28% -1.9% -12.0%

20 -3.9% -7.7% 3.5% 2.9% 7.5% 0.9% 10.7% -5.9%
15 -8.2% -7.6% -6.3% -11.5% -6.0% -6.1% -5.3% 8.7%
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