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Abstract

In recent years, an increasing number of electric vehicles (EVs) have become available
for purchase to nieet personally operated vehicle (POV) travel needs for a certain sub-
set of drivers. Many in the climate change mitigation research community envision
EVs as a major potential tool in reducing carbon emissions from the transportation
sector, as EVs do not produce direct emissions during their use. Limitations of current
EV technology, specifically limited range and high production costs, are recognized
as constraints on the market share of EVs, but estimates vary as to the true adop-
tion potential of current technologies. Many suggest that EVs should be targeted to
drivers in cities, where the shorter driving distances and slower speeds allow EVs to
meet more existing demand, but that conclusion remains relatively untested. It is also
unclear whether focus on designing EVs for city use will allow for the greatest possible
emissions reduction as vehicle batteries improve. This thesis presents a detailed POV
energy use model that both accurately considers driving behavior and vehicle perfor-
mance on a second-by-second level and on a macroscopic regional and national level,
using over 100,000 GPS velocity histories, over 1,000,000 travel survey trip records,
and a national database of hourly temperature readings to inform the results. We find
that existing EV technology, based on the example of the relatively affordable Nissan
Leaf, is able to replace 87% of all vehicles in the US on a given day without mid-day
recharging. Our results support the conclusion that current EVs are most suited for
urban use, finding higher EV adoption potential and greater prospects for EV-related
reductions in gasoline consumption in all of 12 cities studied than the national av-
erage, with especially good performance in sunbelt cities such as Los Angeles and
Phoenix. However, we find that-under a scenario of improved batteries-reductions
in gasoline consumption would be increased by focusing on rural areas rather than
urban ones.

Thesis Supervisor: Jessika E. Trancik
Title: Atlantic Richfield Career Development Assistant Professor in Energy Studies
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Chapter 1

Introduction

1.1 Context: Driving and Emissions Targets

The transportation sector accounts for 28% of United States energy use and 34%

of US carbon emissions, and the majority of those emissions come from personal

vehicle trips-people commuting to work, driving to social events, and performing

everyday errands in their cars and light trucks [1]. There were an estimated 131

million personally operated vehicles (POVs) registered in the United States in 2010,

and they are estimated to have driven 2.6 million miles in that year [2]. The number

of vehicle miles traveled (VMT) in the United States is expected to increase from 2.6

million today to 3.1 million in 2030, but despite this expected growth, the United

States has committed to reducing overall carbon emissions by 30 % from 2000 levels

by 2030 [3]. To reduce emissions in keeping with these and other targets, there will

have to be dramatic changes in the the way personal vehicle travel needs are met.

Improving vehicle efficiency has historically been the main policy lever for reduc-

ing energy use and emissions. Beginning in the 1970s, the US imposed the Corporate

Average Fuel Economy (CAFE) standards, requiring new vehicles to meet progres-

sively higher fuel consumption standards. In 2012, the Obama administration signed

stricter guidelines requiring that the fleet-wide fuel economy increase from approx-

imately 33.4 miles per gallon (MPG) for new cars in 2012 to 54.5 in 2025 [4]. Of

the model year 2012 vehicle types tested by the EPA, only 1.8% of them met this
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standard, and that portion has only reached 2.8% in 2014 [5].

Reaching these goals will likely require additional technological innovation, and

furthermore meeting these standards alone may not reduce carbon emissions to levels

that meet climate policy targets. For instance, the U.S. Energy Information Admin-

istration predicts that, even when efficiency improvements due to CAFE standards

are factored in, reference case US transportation-related greenhouse gas emissions

in 2025 will reach 1.68 billion metric tons, far greater than the 1.31 billion metric

tons representing a decrease of 30% from 2000 levels [1]. Even in the case of greater

than expected reductions in other sectors, then, it is likely that sufficient reductions

in transportation-related GHG emissions will require fundamental demand or sup-

ply side changes to the US transportation system, the comparable in scale to the

beginning of the interstate highway program in the 1950s.

It is difficult to overstate how disruptive transportation system changes might

need to be. Mobility has profound effects on society, and the shape those effects

take is in part directly traceable to technological properties inherent in the available

transportation technologies. Walking and sailing shaped old downtown areas such as

Boston's, streetcars and subways allowed for the development of dense downtowns

and skyscrapers, freight rail and canals allowed for vast industrial development, and

cars and the interstate system have shaped the emerging sprawling and decentralized

development patterns and economic growth of the past half century [6]. During

this past century, the availability of POVs has had great effects on society at large,

impacting land use [7], public health [8], the economy [9], and the environment [10].

While many of these changes are due to the proliferation of personal vehicles in

the abstract, the effects off the car boom that began after World War II have been

moderated and shaped by the specific strengths and weaknesses of available POV

technology options.

Right now, the major POV technology in the United States remains the internal

combustion engine, which was first invented in the late 19th century. In 2009, the

majority of all person-miles and person-trips in the US were covered in personally

operated vehicles, and the vast majority of those vehicles were powered by internal
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combustion engines burning fossil fuels [11]. Internal Combustion Engine Vehicles

(ICEVs) are powered by the combustion of a fossil fuel, converting chemical potential

energy into rotational kinetic energy, which is then converted by gears and a trans-

mission into forward movement. The combustion of the fuel produces carbon dioxide,

particulate matter, noise, and heat as byproducts, and the overall efficiency of the

process is often below 30% [12]. The high energy density and relatively widespread

availability of fossil fuels, mostly gasoline, means that this relatively low efficiency

has not been an impediment to the ICEV's adoption and use. By and large, energy

constraints have not had significant effects on POV mobility since the advent of the

modern automobile.

The technological details described above are particular to the internal combustion

engine-not fundamentals of POV travel-and these peculiarities have had non-trivial

impacts on the way the transportation sector has shaped society over the past century.

Had the first popular POVs been powered by batteries or by steam engines, for

example, energy use and travel behavior in the United States would look very different.

The specific impacts of the technological properties of the internal combustion

engine show up across daily life in the US. On average, people tend to devote similar

proportions of their time and money budgets on travel, and so the spatial extent of

cities is implicitly limited by the typical speed and cost of ICEVs [13]. Relatively

cheap and efficient energy storage, in terms of gasoline stored in tanks, and relatively

prevalent gas stations means that drivers rarely plan their travel behavior around

energy storage constraints. Users do not need to own any dedicated infrastructure in

order to fuel their vehicles, allowing for drivers to live in apartment buildings, farms,

and suburban subdivisions. Indeed, the comparatively low cost of gasoline has led

to a set of vehicle design standards and infrastructure systems that prioritize driving

comfort and speed over energy efficiency'. However, while relatively low, per-mile

costs of ICEV driving are closely tied to the commodity price of oil, meaning that

'In most of Europe, fuel taxes and fuel prices are much higher than in the US. Although the
relationship with fuel costs is not purely causal, Europeans tend to drive smaller vehicles and more
of them drive diesel vehicles which are more efficient than gasoline ones. Further, Europeans (even
in wealthy countries) tend to drive much less than Americans do.
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international politics can have outsized impacts on the American economy and on the

ability of people to afford to take trips by car.

Additionally, ICEVs produce many types of emissions with health impacts. The

localized emissions, such as asthma-causing particulate matter and smog-causing sul-

fur dioxide, have historically produced and continue to produce negative health effects

in areas with high densities of car travel, producing inequitable and unfair outcomes

[8]. The greenhouse gasses (GHGs), primarily carbon dioxide, produced by the con-

sumption of fossil fuels have been and will continue to be a major cause of climate

change.

Engineering properties of the internal combustion engine have also shaped trans-

portation policy. The majority of federal and state highway funding comes from

excise taxes on gasoline. Receipts from these taxes have not risen as fast as inflation

or maintenance costs, straining the existing funding mechanism and promising fur-

ther challenges if vehicles continue to become more efficient or switch to other energy

sources besides gasoline. Many existing regulations on vehicle use have arisen due to

features specific to the internal combustion engine. Rising worry about air pollution

and smog due to driving led to Clean Air Act regulations on vehicle emissions, and

worry about the resiliency of US economy under oil price shocks led to the CAFE

fuel economy standards. Had vehicle technology developed differently, personal travel

behavior and national transportation policy would have evolved differently as well.

But while the ICEV has done a great deal to shape American society over the past

century, consumer preferences and government regulation have long influenced ICEV

technology and design as well. Different sub-types of vehicles have emerged to cater

to different markets-small efficient cars for those who value affordability, SUVs and

minivans for those who value space, and sports cars for those who value performance

and aesthetics. Quieter, more efficient, more powerful engine technology has made

driving more fun and less expensive, and advances such as regenerative braking have

reduced spending on gasoline. Technologies have evolved to make in-vehicle time

more pleasant, from entertainment systems to heated seats to navigation systems.

Additionally, regulation has historically affected ICEV technological development.
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The technological dimensions most important to policy makers and regulators have

been the gasoline supply chain, the impact of particulate emissions on public health,

and the effect of vehicle design on public safety, leading to regulations that have

produced catalytic converters, mandatory airbags and seat belts, flex-fuel vehicles,

and overall efficiencies improving to meet CAFE standards.

An understanding of this history is important for an understanding of the future

of POV transportation in the United States. While the ICEV has shaped society as

much as the demands of society have shaped the ICEV, its dominance as a technology

may not continue indefinitely. With improvements in vehicle propulsion and energy

storage technologies, along with rising prices for fossil fuels and increased awareness

of the dangers of climate change, alternative vehicle technologies such as plug in

electric vehicles and fuel cell electric vehicles are poised to enter the market as viable

choices for personal vehicle transportation and as viable competitors to the internal

combustion engine [14]. This may represent the first time in generations when a

viable alternative to the ICEV is widely available to consumers. However, alternative

vehicle technologies will not be competing with ICEVs on a blank slate-instead they

will compete in a society and economy that has in large part been shaped according

to the strengths and weaknesses of ICEV technology. This market competition, and

the direction of future transportation energy requirements, will in part be determined

by individual choices based on the ability of POV technologies to meet this existing

demand.

1.2 The Importance of Technological Choice

Since the beginning of the automobile era, motorized personal transportation has

been characterized by a lack of drivetrain technology choice. The Ford Model T

was introduced in 1908 and quickly became widespread, and since then consumers in

the United States have largely only been able to purchase personal vehicles powered

by internal combustion engines. The differences customers perceive between vehicles

have been largely limited to price, safety, comfort, and aesthetics, and these areas
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have been among the primary directions of innovation in ICEV technology. Greater

availability of alternative vehicle technologies will increase the degree of choice avail-

able to customers and add to the degrees of performance along which it is possible to

evaluate and differentiate vehicles.

When compared to the range of currently available ICEV options, electric vehicles

offer an entirely new set of strengths and weaknesses. Unlike conventional vehicles,

EVs draw energy as electricity from the grid and store it in batteries within the vehi-

cle. Even though battery technology is improving, batteries still tend to be relatively

expensive and heavy, especially when compared to gas tanks that serve a comparable

function in ICEVs. Cost and weight constraints limit the amount of energy storage

available in EVs-and therefore the distance that can be driven in between recharging

events-to a degree that is rarely an important consideration for ICEVs. Batteries

also tend to be degrade in performance over time, are produced with a number of

potentially dangerous chemicals, present a potential fire hazard, and perform poorly

in particularly cold or hot weather. However, the electric motor that converts en-

ergy stored in the battery into movement does so at much higher efficiencies, often

exceeding 90%, all without requiring expensive and difficult to maintain transmission

and gearing mechanisms. This high efficiency, coupled with relatively inexpensive

electricity available from the grid and lower maintenance costs, make EVs typically

cheaper to operate than ICEVs [15].

Further, coupled with decarbonization of the electric grid, EVs have the potential

to decrease the greenhouse gas emissions associated with personal transportation

towards zero. Unsurprisingly, therefore, EVs have been proposed as a large component

of the needed decarbonization of the transportation sector [14, 16, 17, 18, 19]. EVs also

can reduce many other negative externalities common to ICEVs-they are quieter and

produce none of the localized emissions produced by the combustion of gasoline that

can cause respiratory problems and smog, giving them potential to mitigate many

other of the negative externalities we associate with automobile travel. However,

many of the predicted benefits of EVs-grid stabilization, lower carbon footprint, less

dependence on foreign energy-are not directly perceived as benefits by consumers.
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In the absence of either direct or indirect subsidy, including tax credits, carbon taxes,

or free access to HOV lanes, many of the most important benefits of EV technology

are divorced from the utility felt by users.

Along with this problem of externalities, electric vehicles also face challenges that

are not felt by ICEVs, providing significant barriers towards widespread adoption.Two

of the largest impediments to wide-ranging popular adoption of EVs are range anxiety

and price [20], both of which are fundamentally related to EV, and especially battery,

technology performance. Drivers are reluctant to invest in a vehicle with limited range

and limited possible recharging locations, even if their typical daily commute falls well

within the vehicle's expected range. Additionally, even though lower maintenance and

fuel costs bring the life-cycle costs of some EVs to levels comparable to affordable small

cars, the higher purchase cost of EVs likely turns away customers as well. Many of

these barriers to adoption would be alleviated by the advent of cheap, light, small, high

capacity batteries. Batteries do have the potential to both improve energy density

and become cheaper, but the timeline is uncertain [21]. The speed at which EVs can

penetrate the market depends both on the rate of progress in battery technology and

in the degree to which battery improvements are perceived by consumers.

Further, the choice between ICEVs and EVs is not a binary one-there exists

significant differentiation within each group that complicates the choice. EVs such

as the Nissan Leaf are sold as affordable alternatives to typical internal combustion

engine vehicles (ICEVs) with similar life-cycle costs [15], but the Leaf and its com-

petitors have limited range-the Leaf has an EPA rated range of 73 miles in battery

preserving mode-limiting its pool of potential users. The Tesla Model S, on the

other hand, is marketed as a luxury high performance vehicle and has an advertised

range of up to to 265 miles, but its most affordable configuration retails for over

$80,000, more than twice as much as the Leaf. Electric vehicle manufacturers face a

tradeoff between physical constraints on one hand, as batteries are bulky and heavy,

and economic constraints on the other, as batteries are expensive. Manufacturers

will continue to balance these tradeoffs as battery technology improves and as EVs

become more widespread. Whether EVs of the future take over the POV market
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quickly and decisively as the Model T did a century ago, whether they infuse more

slowly as gradually expanding niche market, or whether they will only catch on with

directed and costly government subsidy depends on technological progress, real-world

POV use, and intermediate engineering decisions.

An understanding of the potential long-term benefits of a full or partial switch to

EV technology requires an understanding of how EVs compare with other POV tech-

nologies. Properly assessing the potential costs and benefits of the adoption of new

technologies requires studying both their expected performance and on the degree of

disruption required to integrate them into existing systems [22]. Even though many

policymakers and scientists expect that EVs will produce many systemwide benefits,

especially in terms of carbon emissions, the extent of their societal benefits depends

on both the performance of EV technology in the real-world and the outcome of the

market competition between different vehicle technologies. The degree of eventual

carbon mitigation required and the future development of alternative vehicle tech-

nologies depends closely on how consumers react to these new options, and how these

new technologies perform under existing behavior that will not immediately adapt to

the new technology's strengths and weaknesses.

As such, the position of the policy-maker is a difficult one, especially when funding

constraints limit the amount of money that can be applied to research and develop-

ment into technology improvement, subsidy towards purchase of existing technologies,

and incremental improvements towards better-established technologies. The leverage

of different policy options, in terms of social welfare, is a difficult question to un-

derstand and one that must be framed as a question of technology choice. The new

technological option that EVs represent will be introduced into a market whose under-

lying paradigms have been driven by the limitations and advantages of the internal

combustion engine. Our travel behavior, land use, and personal preferences have

grown up around internal combustion engines and thus it is extremely important to

understand how these new technological options will perform under these existing

usage patterns. The performance of technologies under existing use will directly de-

termine which technologies are widely adopted, which engineering decisions are made
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as these technologies continue to mature, and which decisions are made to regulate

the new challenges that these technologies have the potential to introduce.

Evaluating the tradeoffs between ICEVs and EVs is important both as a predictive

measure and as a proscriptive one. For EVs to cross over from a niche market to a

core one, they must continue to adapt in order to better meet the day to day needs

of a typical driver at a reasonable price. The usefulness of EVs as carbon mitigation

options depend on the ability of current and future technologies to meet market

needs, the degree and speed to which the technology must improve in order to meet

those needs, and the energy and climate impact of these vehicles and the remaining

conventionally-powered ones once the transition is further along. It remains an open

question how far away current EV technology is from meeting these needs and what

fleetwide performance and energy use will look like as current or future technology

achieves market penetration.

1.3 Research Overview

At some point in the not-too-distant future, the United States and the world will

almost certainly begin to dramatically decrease their emissions of greenhouse gasses,

including those from the transportation sector. Electric vehicles, combined with a

less carbon intensive electric grid, present a potential mitigation option for emissions

from the transportation sector. A large-scale transition from ICEVs to EVs in the

POV fleet, whether accomplished entirely though market mechanisms or as a results

of government regulation and incentives, would be one of the largest fundamental

changes to aggregate transportation behavior in generations.

Despite great technological progress in recent years, it is unclear what changes to

vehicle technology are necessary and how disruptive the changes will have to be in

order to allow for this level of widespread EV adoption. It also remains unclear exactly

what levels of EV adoption are consistent with proposed climate targets. Assessing the

plausibility of various pathways towards transportation decarbonization, and coming

up with related technology targets, requires an understanding of both the performance
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of various vehicle technologies and a detailed understanding of the energy demand of

personal vehicle transportation.

The research presented in this thesis is intended to elucidate some of the key

factors that influence the choice between ICEV and EV technology. It examines in

detail the energy needs of existing travel behavior and evaluates the performance of

both kinds of technologies under this real-world use. Such a detailed understanding

of both travel energy demand and POV technology performance allows for an under-

standing of existing and future technology trade-offs with a degree of detail that is

currently nonexistent. This type of understanding is extremely important for a real-

istic understanding of the potential long-lasting effects of contemporary engineering

and policy decisions. After laying out the details of the POV transportation energy

use model, this thesis presents some conclusions relating to variations in EV range,

potential market size of current EVs, and the rate at which additional battery im-

provements will increase the potential share of transportation that can be electrified.

This research lays a methodological framework for more in-depth evaluation of the

energy use and emissions effects of policy change, technology change, and behavioral

change.

The Background section will frame the relevant literature and research with

regard to three related but separate questions. How do we better understand personal

travel behavior and relate it to energy use and technological needs? How does this

travel demand relate to the technological demands placed on electric vehicles, and

what engineering decisions and further technological advancements will be necessary

for electric vehicles to appropriately serve existing personal vehicle travel behavior?

And, to what degree will electric vehicles serve the decarbonization of the United

States energy system in keeping with proposed climate targets? An understanding of

these three areas is important in order to evaluate the potential of electric vehicles in

a context and usage specific way.

The Methods section will describe the trip energy distribution model. The anal-

ysis presented here relies on a bottom-up energineering model that converts distance

and duration data from a National Household Travel Survey (NHTS) POV trip into
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a probability distribution of energy requirements. This model has three largely inde-

pendent components. The tractive energy component estimates the amount of kinetic

energy dissipated by the vehicle over the course of the trip, using a set of GPS drive

cycles and an engineering model of tractive force to estimate energy requirements.

The drive efficiency component estimates the total efficiency-the ratio between the

tractive energy delivered to the vehicle and the amount of energy withdrawn from

the energy storage device-for the trip. The auxiliary energy component uses tem-

perature data to estimate the amount of energy required to maintain a comfortable

temperature within the vehicle and to power other electric devices such as the dash-

board and the lights.

The Results section will use the method described above to answer some ques-

tions about the strengths and weaknesses of ICEV and EV technology, the tradeoffs

between the two, and the underlying structure of transportation-related energy use in

the United States. It begins by examining the specific sub-question of vehicle range,

both its inherent variability and from trip to trip and its dependence on local cli-

mate and local travel patterns. It then evaluates existing EV technology by looking

at the suitability of one specific EV configuration for use in a large set of American

cities, factoring in both differing vehicle performance and differing levels of demand

to ask what portion of vehicles and what portion of gasoline use would EVs be able

to displace. We then examine the surprising similarity between cities in terms of EV

suitability, tracing much of the similarity to fundamental aspects of personal travel

behavior. Finally we evaluate the effects of expected improvements in battery spe-

cific energy on EV performance, noting the increasing differences in expected EV use

between urban and rural areas as storage technology improves.

The Conclusion section will re-frame the results within climate policy and trans-

portation policy and identify directions where this model could be used to better

inform public and private sector decision making.
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Chapter 2

Background

2.1 Personal Travel Behavior and Energy Use

Yearly energy use due to personal vehicle transportation is estimated at 28 exajoules

per year for the US and 111 exajoules per year globally [1], the majority of this energy

currently coming from gasoline and diesel fuels. This energy consumption has been

disaggregated many ways for many ends. Particularly relevant to this study has been

research on the effects of location and technology choice on aggregate transportation-

related energy consumption. This literature informs the research presented in this

thesis by beginning to answer the question: what properties do we know about the

distribution of personal transportation energy use besides simply its total, and how

can we use this more detailed information in order to inform paths towards reducing

this energy demand and its climate impact?

At the most abstract level, there has been a great deal of research on the nature

of human mobility, drawing many parallels between human behavior and statistical

phenomena observed in other natural systems. With large enough samples, individual

human trajectories can begin to resemble paths drawn from simple statistical rela-

tionships. Brownian motion, during which every time step a particle takes a fixed

distance step in a random direction, is a natural analogy for human motion, but

Brockmann et al. [23] showed that the trajectories individually tagged dollar bills

follow is much better approximated by a L6vy flight. A L6vy flight is similar to
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Brownian motion, except that both the duration between steps and the distance of

a step are randomly drawn from a heavy tailed distribution, such as lognormal or

Weibull. Rhee et al. [24] show that this scaling behavior is consistent with human

travel behavior on many distance scales over short time periods, and Gonzalez et al.

[25] show that over long time periods human trajectories tend to follow similar scaling

patterns. While the potential usefulness of this understanding is great, especially in

fields such as epidemiology and traffic flow modeling, but they have yet to be widely

applied to more macroscopic problems such as energy use and climate change.

Instead, a great deal of research from the transportation and energy communities

has gone into the determinants of total citywide energy use. Newman and Kenworthy

[26] published a groundbreaking study linking city-wide transportation energy con-

sumption to average population density. These conclusions have been challenged [27]
and complicated [28] in the years since, but the general conclusions remain relatively

strong-that denser, transit- and walking-oriented cities tend to have lower per-capita

levels of gasoline consumption. The bulk of research on this topic attempts to under-

stand behavior at greater detail or provide explanations for this observed behavior.

The research touching on the determinants of city-wide transportation energy

consumption has been somewhat divided between studies that focus on gasoline use

directly and ones that study aggregate VMT as a proxy. Of those focusing on VMT,

Ewing and Cervero [29] present a thorough review of many studies on how the built

environment affects travel behavior. They find that consistently increased density

is found as a measure that tends to decrease VMT, but that it is a weak effect

when other design variables are controlled for. Other infrastructure properties that

have downward effects on VMT are job density, mixed land use, intersection density,

and transit service. Zegras [30] examines data from Santiago de Chile and shows

that household income has the greatest impact on household VMT-showing that it

increases both the likelihood of a household owning one or multiple POVs, and that

it also increases the distance driven of those vehicles. Infrastructure variables such as

higher population density and proximity to mass-transit do decrease expected VMT,

but the effect is secondary. While it is likely that these results hold some sort of
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universality, the degree to which these conclusions hold across different countries is

unknown.

A problem that is difficult to tackle empirically in these studies is self selection-

the possibility that people who dislike driving will tend to locate in denser, better

served areas, and therefore that these infrastructure changes as a policy instrument

might not provide the significant reductions in VMT that simple elasticities or regres-

sion coefficients would suggest. Although there are many clever ways to adjust for the

possibility of self selection (e.g. structured equation models such as [31]), it is diffi-

cult to show that policy solutions focusing on the supply side of transportation energy

demand such as urban density and transit performance have direct, immediate, and

measurable impacts on carbon emissions [32, 33], suggesting that focus on the supply

side-particularly vehicle efficiency-might produce more easily measurable impacts.

Studies of aggregate gasoline demand as a measure of transportation energy use

includes the additional factor of vehicle efficiency, but the research in this area has

its share of complications as well. Much research in the community has been focused

on the elasticity of total gasoline consumption with certain variables, often fuel price

and household income. Berkowitz et al. [34], in one of the first widely-cited studies

on this topic, show that aggregate demand for gasoline-a very close proxy for energy

demand due to personal vehicle travel-is deeply related to demographic, economic,

and environmental factors. They model citywide gasoline consumption as having two

determinants at the household level-the number and type of vehicles that a house-

hold chooses to purchase, and levels of vehicle use. They find that increased costs

do decrease energy use (both by incentivizing purchase of more efficient vehicles and

decreasing driving distance), but that this effect is much smaller than the effect of

improved vehicle efficiency on energy use, even when increased driving due to the "re-

bound effect" is factored in. Basso and Oum [35] provide a review of similar studies

published in the years following. One finding of this sector of the literature that is

cruical for our project is that demographic, infrastructure, and economic considera-

tions impact transport energy use directly by influencing travel behavior, but they

also impact it indirectly by impacting household purchasing decisions.
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Dujardin et al. [36] complement much of the preceding research by showing that

localized transportation energy use is an example of a Modifiable Areal Unit Problem,

in which the results of a geographic analysis can change dramatically based on the

scale of the geographic aggregation that is used to do the analysis. In essence, in

a Belgian case study they find that while highly aggregated data shows that urban

areas have less per capita energy use than ex-urban areas, there exist neighborhoods

within urban boundaries that have high energy use, and there exist rural towns with

low energy use.

Similarly, Gately et al. [37] present a thorough study of disaggregate roadway-

level carbon emissions, looking at their results down to 1-km scales. They show that

urban areas, not rural ones, are responsible for the vast majority of the growth in

transportation-related carbon emissions in the past few decades. Further, they show

that per capita emissions grow sub-linearly with population density, but that the

relationship is not fit by a simple scaling relationship. Unlike many other studies,

there results are produced by looking at traffic on each roadway link, not by person

or household. This methodology elucidates the fact that even though residents of

dense cities might have low levels of transportation energy use, the cities in which

they live draw in many commuters from surrounding suburban areas, which tend to

have disproportionately high per capita energy use. These results suggest that city-

level emissions data should be aggregated at the metropolitan area, not municipality,

level.

When considering the literature, it becomes apparent that personal or household

vehicle energy use is a very complicated problem, and that while there are certainly

regularities that can predict how a certain household's gasoline consumption might

differ from another's, this is not a solved or necessarily solvable research problem.

While on a project- or city- or nation-wide level, policies relating to infrastructure,

built environment, and travel behavior might have the ability to significantly reduce

greenhouse gas emissions and certainly to provide many other societal benefits, right

now the only type of policy lever for which we have the ability to measure and

quantify expected greenhouse gas reductions is with regards to technology choice and
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technology switching. Hopefully, such efficiency-driven policies can be improved by a

better understanding of all of the other determinants of POV energy use.

2.2 Electric Vehicle Performance

While efficiency improvements and technology change might be the most straightfor-

ward path to reductions in greenhouse gas emissions, the effect of these changes is

certainly not easy to measure. The impacts produced by a technology are discussed

here in terms of performance intensity-the relative efficiency of electricity generation

system can be measured in terms of grams per kilowatt-hour, for example. These mea-

sure involve averaging over different operating conditions, and therefore they never

produce perfect predictions, but for POV transportation useful performance metrics

are especially difficult to produce. The two largest complexities related to produc-

ing meaningful emissions intensity metrics for POVs relate to the inherent variability

in trip-to-trip energy use, and in the wide-ranging daily travel needs that different

customers place on their vehicles. Information on ICEV performance is important

for many types of technology development and policymaking, both to provide better

scenarios with which to test and compare different technologies during development

and to evaluate a technology's usefulness as a means of carbon mitigation.

The easiest to interpret measure of vehicle performance intensity is energy use

per unit distance driven. In a study focused on ICEVs but relevant to all technology

options, Berry [12] presents a detailed examination of how differences in moment to

moment driving behavior can have large impacts on per mile energy consumption. She

finds that interventions such as lowering top highway speeds or reducing maximum

accelerations are capable of reducing aggregate energy consumption by approximately

5%, a non-trivial amount for a change that requires no new infrastructure or tech-

nology. The trip to trip variation of even an individual vehicle's per mile emissions

'For example, for an electricity provider with a certain emissions intensity, an additional electric
load plugged into the grid during the middle of the day and one plugged in overnight will likely
produce different amounts of excess carbon emission, depending on which power plant is on the
margin and would pick up the extra demand
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intensity can be much greater, often varying by a factor of two or more. In a separate

study, Ericsson [38] found similar results-that different driving behavior can lead two

trips of the same distance to have dramatically different energy needs. Interestingly,

a very complex model that measured sixteen different variables relating to vehicle

performance, including vehicle speed, acceleration, gear ratio, and engine RPM was

only able to capture 76% of the trip to trip variation in energy use, underscoring how

difficult of a problem this one is to solve with limited data.

In order to produce an aggregate measure of emissions and energy intensity for

new vehicles, the US Environmental Protection Agency (EPA) publishes an estimated

fuel economy value for each vehicle, giving the expected amount of gasoline (or gaso-

line equivalent energy, for EVs) used per mile of driving in city conditions, highway

conditions, or aggregate mixed driving [5]. These estimates, different than the CAFE

ratings also measured by the EPA2 , are the result of a detailed testing procedure

that has become increasingly complex since the beginning of the labeling program

[39]. The program works by testing vehicles on a dynamometer in the laboratory,

intended to mimic the demands of driving on the road but in a more controlled and

reproducible setting [40]. Each vehicle is tested over a pre-determined set of "drive

cycles," or second-by-second velocity histories, over which the vehicle's fuel consump-

tion is measured. The results of these dynamometer tests are then adjusted upwards

to account for auxiliary use (such as radios or climate control), more extreme driv-

ing behavior, and other factors such as under-inflated tires that can increase energy

use. Currently, the program is in transition from a two-cycle model based on a city

(USDDS) and highway (HWFET) drive cycle to a five-cycle one that is intended

to capture more of the possible variation in vehicle performance and distill all the

different factors that might affect energy use into city, highway, and combined fuel

economy. Even if these numbers are perfectly accurate at an average level, it is impos-

sible for them to capture differences in energy consumption between trips, climates,

and cities.

2 As the CAFE standards are meant to produce and measure improvements in fleetwide fuel
economy over time, the CAFE rating procedure has not changed dramatically since the program's
inception in order to allow comparison between years.
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For electric vehicles, because range limitations are often important considerations,

trip-to-trip variations in vehicle energy consumption can be especially important. The

source of this variation tends to be different for these two vehicle types. In ICEVs,

a great deal of the variation in trip-to-trip energy comes from differing conversion

efficiency within the powertrain. Electric motors, unlike ICEs, have roughly constant

efficiency over a wide space of different torques and speeds, reducing this source of

variability. However, because of their already high degree of powertrain efficiency,

climate control auxiliaries contribute a much greater portion of total energy require-

ments for EVs. Especially in cold weather, EVs must devote a great deal of energy

from the battery to maintain a comfortable internal temperature, along with overcom-

ing higher internal resistance within the battery. This stands in contrast to ICEVs

which, because they have such low thermal efficiencies, produce enough waste heat

to keep the cabin warm without expending any more energy than that needed to run

a radiator fan.

A number of groups have studied how temperature variations in particular effect

EV performance. Bush et al. at the Argonne National Laboratory [41] present a

series of studies in which actual hybrid-electric vehicles (vehicles with both ICE and

electric motors) were driven through identical drive cycles in real-world conditions

under different temperatures. This allowed the group to measure the cold-weather

efficiency losses due to decreased battery performance and increased climate-control

energy consumption. They show that in very cold weather fuel consumption can

double over the same drive cycle, and they suggest that these effects can be even

more dramatic in pure EVs that only rely on battery power.

Yuksel and Michalek [42] use energy consumption data from electric vehicles cap-

tured by board diagnostic devices to measure the effect of ambient temperature on

energy consumption. They run a simulation model that combines this data with

hourly temperature data to estimate the distribution of EV range over the course of

a year across the US, finding that daily range can vary as much as 50% in one location

over the course of a year, and that range on the worst day of the year can vary by

more than 50% between cities with different climates. While useful, these numbers
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do not take into account variations in average driving speed and driving distance

between these locations, both of which could also affect the relative performance of

EVs as well. They also do not take into account typical daily driving distances, which

determine whether range constraints matter to users at all.

A number of studies have sought to characterize how differences in driving behavior

effect EV performance. This has included testing individual electric vehicles in the

field with the intention of characterizing what a "realistic" set of behaviors might look

like. Devie et al. [43] directly follow the charging and discharging behavior of a single

electric vehicle over time. They find that the day to day demands on the battery

can vary greatly, but that they tend to cluster into a set of similar usage scenarios,

which they suggest could be used by battery developers to ensure that their products

perform well under their expected real-world use patterns.

Other groups have used GPS data from other vehicles (largely ICEVs) and simula-

tion to estimate the energy requirements of different EV technologies under real-world

driving behavior. Gonder et al. [44] used multi-day GPS traces from 227 vehicles

around the St. Louis area to estimate the performance and energy use of PHEVs un-

der real-world driving. Among their many conclusions was that the standard city and

highway certification drive cycles do not fully capture the range of accelerations and

speeds present in actual driving. Their analysis finds that existing PHEV technol-

ogy would be able to reduce gasoline use by approximately half compared to similar

ICEVs, although it is unclear to what extent their results hold universally, rather

than just in the St. Louis area from which their sample was taken with its specific

distribution of trip lengths, trip speeds, and daily driving patterns.

Seeking to estimate the impact of different individual driving patterns on EV

performance, Raykin et al. use a traffic simulation program to generate typical daily

driving patterns for users in different locations in the Toronto metropolitan area.

They find that per mile energy use of PHEVs is best in city driving, both because the

shorter distances allow for energy from the battery to cover a higher portion of the

total energy, and because the powertrain configuration is more efficient with low-speed

driving [45]. These results contrast with typical performance for ICEVs, which tend
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to operate most efficiently per mile at highway speeds. Amirjamshidi and Roorda

[46] take the analysis a step further, using a fully detailed microscopic traffic network

model to generate synthetic drive-cycles for vehicles in the Toronto area, showing that

per-mile carbon emissions were almost 20% greater under their drive cycles than the

EPA highway test cycle. In their paper, they propose a general method for generating

synthetic drive cycles from traffic-count data for city-wide emissions inventories, but

the realism of their synthetic drive cycles, vehicle model, and behavioral model remain

unvalidated.

While these results on EV emissions intensity build high-level understanding of

technological performance, some researchers attempt to use a better understanding of

EV performance to inform engineering decisions made by manufacturers. A common

question asked by researchers relates to battery size-many researchers wonder how

many users will be able to adopt existing vehicles given their travel needs, and what

battery sizes will be required for this level of possible market penetration to reach

a given target. Khan and Kockelman [47] consider the first question, asking what

portion of households would be able to adopt current EVs with minimal disruptions

to their typical driving behavior. To do so, they use a powerful dataset that gives daily

mileage over the course of an entire year for 445 vehicles in the Seattle metropolitan

area. Because they have longitudinal data, they are able to show that an EV with

100 mile range would be able to replace the vehicle of 50% of one-vehicle households

while requiring they modify their behavior four or fewer days over the course of a

year. They are also able to give results for multi-vehicle households and for plug-in

hybrids, suggesting that current battery technology is able to electrify a large portion

of existing miles and save fuel costs with minimal change of behavior. Two limitations

of their method are that it treats EV fuel economy as a constant and that it only

considers users from one metropolitan area, thus not showing whether their results

are representative for different locations or for different sub-classes of drivers. Pearre

[48] perform a similar analysis with one year of GPS data from drivers in Atlanta,

producing roughly similar results.

Battery size can also be linked with other design variables, such as engine size,
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to allow for an optimiziation of design components. Patil et al. [49] do so, using

synthetic drive cycles based on observations of real-world driving to test different

powertrain configurations and to find the configuration in terms of battery size and

engine size that allows for the desired performance at the minumum cost.

The general conclusions of previous work in this field are threefold. The two typi-

cal EPA drive cycles, HWFET and USDDS, do not fully capture the range of driving

behavior that drivers follow in the real world. Newer EPA labeling standards are at-

tempting to address this issue, but differences in driving behavior mean that any one

"fuel economy" number is never going to entirely capture the variety of energy con-

sumption patterns electric vehicles. Further, this variation in energy use is increased

for EVs because variations in temperature have an outsized effect on on vehicle range

and performance. Finally, many studies have shown that current EV technology is

capable of meeting a large amount of existing driving demand, although few have

disaggregated their results among regions or types of drivers, limiting potential infer-

ence that some markets might be more suitable for EVs than others. Such analysis

can be used to better inform the design of EVs and to predict their market potential,

but this analysis has yet to be done at a representative national level, capturing both

detailed driving behavior and differences in travel patterns and vehicle performance

between different locations and different drivers.

2.3 Electric Vehicles and Climate Change

For the purpose of this thesis, one of the major goals of evaluating EV technology

is to better understand its potential to reduce greenhouse gas emissions, especially

when compared to marginal improvements in ICEV technology. There exist many

useful theoretical frameworks for the comparison of technologies. Trancik et al. com-

pare electricity generation technologies on a cost-carbon curve, clarifying the choice

between possible alternative energy technologies by comparing performance intensity

and cost intensity metrics of different technologies with values needed in order to

meet climate goals under different demand scenarios [50]. In order for a technology
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(or a combination of technologies) to be a plausible candidate to meet emissions goals

without massive subsidy, it must fall below the required level on the emissions axis

without being dramatically dominated on the cost axis by higher-emission technolo-

gies. The locations of various technologies on this curve shows the magnitude and

direction of technological improvement necessary for them to be able to meet this

target.

Similarly, the final mix between ICEV and low-emissions vehicles must both have

low-enough life-cycle carbon emissions to meet targets and be low enough cost to

compare to the base case of all ICEVs. Miotti et al. produce a similar cost carbon

curve for existing vehicle technology, including ICEVs, plug in hybrid electric vehicles,

and prototype hydrogen fuel cell vehicles, finding that there is no tradeoff within

vehicle types-that the cheapest to own and operate tend to be the least carbon

intensive as well, and that EVs with low enough lifetime emissions to fall within

intermediate climate targets are only barely more expensive than even most affordable

ICEVs [15]. As discussed previously, however, both the emissions intensity and the

cost intensity of vehicle technologies are difficult quantities to calculate-with the

true life-cycle costs and life-cycle emissions varying greatly with type of use and type

of user. Additionally, because of range and cost constraints, it is very unlikely that

EVs will ever fully replace ICEVs in the marketplace-thus, the best solution will

likely be a mix between technology types, and it is unclear what the optimal mix

will look like. As such, many different groups have tried to analyze the the cost and

emissions intensities of EVs in more detailed, less universal ways.

As the climate impacts of different vehicle technologies go beyond the impacts

of fuel consumption, especially including emissions due to vehicle construction and

decommissioning, there has been much work in the life-cycle analysis literature ana-

lyzing different vehicle technologies. Silva et al propose a new method for assessing

the life-cycle costs and emissions of different PHEV technologies [51], finding, un-

surprisingly, that the overall emissions of a PHEV depend very strongly on daily

commuting distance, where users whose typical daily travel falls within the limited

all-electric range of the vehicle use almost no gasoline and those with longer com-
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mutes use much higher amounts. Campbell et al. [17] suggest that, with regards to

transportation, EVs fed by electricity produced by bio-generation plants have more

potential to reduce GHG emissions than ICEVs powered by biofuels.

Donateo et al. [52] focus on direct emissions, rather than construction and decom-

missioning ones. Their study uses energy use data collected directly from an electric

vehicle over six months of use, capturing driving under many different traffic con-

ditions, speeds, and external temperatures. They find that variations in conditions

can affect energy use by approximately 20% over the course of different trips. They

find that this variability, combined with the existing electricity generation grid mix

in Europe, mean that existing EV technology can meet 2021 carbon intensity targets

for most days, but not for all. Their data, while thorough, is however limited by small

size, making it difficult to measure the different effects of temperature, driving style,

and personal commuting habits on effectiveness of EVs.

Yuksel and Michalek, in addition to studying the effect of temperature on vehicle

range, also look at the effects of temperature and local grid mix on carbon emissions

[42]. They combine their vehicle range results with data on the average emissions

intensity of the electricity grid in the United States and find that these two sources

of variation can cause the per-mile emissions intensity of EVs to range from approx-

imately 100 grams of carbon dioxide per mile on the west coast to over 300 in the

midwest, compared to an average value of 111 grams per mile for the Toyota Prius

hybrid. These results make it clear that even if EVs might be a better choice on

average, there are likely some customers for whom EVs are especially good choices

and some for whom ICEVs might make more sense. An optimal level of technology

switching might not be complete-for some users ICEVs might make more sense fi-

nancially and in terms of emissions, perhaps with very long commutes or living in

very cold climates. This is a question that has been explored to some degree in the

literature, but some holes remain.

To capture the possiblity that EVs might have different life-cycle carbon emissions

and costs for different types of users, Karabasoglu and Michalek [53] evaluate EV and

ICEV vehicles over different drive cycles representing different users' typical driving
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behavior. They show that life-cycle emissions and life-cycle costs do vary greatly

with driving style, with costs and emissions much lower for EVs when compared to

ICEVs when they are limited to city driving. However, for primarily highway driving,

ICEV and EV costs and emissions are roughly similar, with ICEVs cheaper and only

having very slightly higher emissions. These results suggest that, at a policy level, the

best solution might be one that favors electrification of POV travel in certain cases

but prioritizes marginal improvements in ICEV emissions intensity for cases where

electrification is unlikely to bring significant benefits. Karabasoglu and Michalek and

others (e.g. Tran et al. [54]) suggest that a natural starting point for EV adoption

would be urban users with short commutes, as they require less range and typically

drive at lower speeds, behavior for which EVs tend to perform better. However, from

a policy level, even if EVs do perform better for these city drivers, if city drivers drive

much less than their suburban and rural counterparts, the total emissions savings

from electrifying their fleet might remain small, because they represent a relatively

small portion of current gasoline use. There also is a body of literature studying these

questions from a macroscopic level.

Creutzig et al. [55] look at a global sample of cities and propose different pathways

towards decarbonization for different types of cities. They find that EVs can represent

a very important tool for decarbonization, especially with a particular sub-class of

cities where driving distances are comparatively high, densities are comparatively low,

and the electric grid has the potential to be relatively clean, with cities such as Los

Angeles and Toronto given as examples. They suggest that for different typologies

of cities, especially denser megacities such as New York City, London, and Shanghai,

greater benefits can be gained by investment in high capacity public transit powered

by new or imported renewable energy capacity. These results hint an underlying

conflict within the literature-from a high level, EVs are a better instrument for

emissions reduction in situations where they will be heavily used (or, more specifically,

where they will be replacing ICEVs that would otherwise be heavily used), but from

an engineering perspective EVs can best replace ICEVs that are not as heavily used.

Battery improvement will likely lessen the importance of this distinction, but the
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trade-off between volume of use and vehicle performance is one that has not been

fully explored in the literature.

In addition to these considerations, studies have shown the importance of under-

standing that the interaction between vehicle emissions and the electric grid go both

ways-the emissions of a vehicle depend on the vehicle's use and the local grid elec-

tric mix, but the carbon intensity and the reliability of an electricity generation and

distribution system can be effected by electric vehicles as well. Some argue that, as

EVs become more popular, the impact of interaction with the electric network will

become comparable in importance to their mobility and emissions impact (see [56]

for a review). The electric grid is already sensitive to sudden demand shocks, and it

will become more sensitive if greater amounts of intermittent renewables are brought

online. Electric vehicles, if plugged in to high voltage outlets during high-demand

periods of the day, have the potential to seriously destabilize the electric network,

demanding more electricity than the grid is able to deliver. However, electric vehi-

cles as mobile energy storage devices, also have the ability to supply electricity back

into the grid during both short term demand spikes or longer term windows of lower

production from intermittent sources.

The marginal impact of EVs on emissions, as well as the stability of the electric

grid as a whole, depends greatly on the timing and type of charging used by EVs.

Electricity in the grid is produced by a large number of different plants using different

methods to generate electricity. Plants differ both in the per-unit energy cost of

generation when running at full capacity, the ramp up time needed to operate at full

capacity, and efficiency penalties due to operating at partial capacity. Different fuel

sources and different degrees of conversion efficiency also mean that rates of carbon

emission per unit energy generated can vary greatly between plans. Different types

of plants fulfill different needs of the grid. Plants that have low marginal costs but

slow ramp up times, often nuclear and coal plants, tend to operate at full capacity

as much as possible, whereas plants with higher marginal costs (often powered by

natural gas or petroleum) tend to be dispatched only during demand peaks. As a

result, the emissions impacts of an EV depend greatly on charging decisions that are
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influenced by personal travel patterns.

Many have attempted to estimate the impacts of different sorts of charging pat-

terns on the electric grid. Kelly et al. [57] use the 2009 NHTS to model the adoption

potential for PHEVs across the US. They look at individual vehicle-days and model

the vehicle's battery state of charge, assuming a steady discharge rate of 0.246 kWh

per mile while driving, and then they aggregated these measures across the US. They

find that a PHEV with a small battery with 10.4 kWh of useable energy would be able

to electrify two thirds of nationwide driving distance. They used this model to evalu-

ate total stress on the grid as well as total gasoline consumption for various charging

scenarios. They find that under uncontrolled charging, where users plug in a vehicle

as soon as it reaches home at the end of the day, EV charging will significantly add to

the peak electric demand in the late afternoon, especially if high voltage charging is

used. Modifications such as more work charging and last-minute overnight charging,

on the other hand, are capable of significantly smoothing the demand curve.

Others take the modeling further and examine the effect of charging behavior on

the carbon intensity of the electricity used to power EVs. Sioshansi et al [58] present

perhaps the most thorough study of the carbon intensity of EV electricity, use a

sample of 227 GPS drive cycles to study the time-dependent charging behavior of a

group of electric vehicles. They also track vehicle battery state of charge by treatin

power consumption per mile as constant, combining that with information on the time

dependence of which power plants in Ohio are "on the margin" and would therefore

generate the extra electricity necessary to re-charge an EV when it is plugged in. This

unique setup allows them to show that EVs in Ohio will be most carbon intensive

when charged overnight, as their extra electricity would be generated by base-load

coal power plants. Even in this worst case, however, they find that PHEVs would

represent an improvement in carbon intensity over ICEVs, and that incentives or

regulations governing charge timing could reduce these emissions further.

Many also seek to model the possible positive effects that EVs, as energy storage

devices, can have on the grid. In the past 10 years, a somewhat distinct subfield

has emerged in the transportation energy community focusing on the potential for
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vehicle to grid (V2G) interaction. A foundational paper in the field was published

by Tomic and Willett in 2007 [59]. They suggest that owners of EVs could make

significant annual profits, possibly over $20,000 per year, by charging the market rate

for frequency regulating services that are within the technical capacity of current EV

'batteries. Lund and Willett [60] expand on the idea, in which they argue that vehicle

batteries would be capable of not only producing a revenue stream for owners but

also for making intermittent renewable energy generation more profitable by better

matching generation with demand. These models, while very useful as a vision for a

more beneficial EV use case, have yet to be matched with a realistic travel demand

and vehicle performance model, making it difficult to predict how EVs status as grid

backup and frequency regulation would complement or conflict with their status as

mobility providers.

Finally, there has been some work evaluating direct emissions impact of national

EV policy and technology change, although this area of the literature needs further

research. Peterson and Michalek [61] ask the simple but very important question:

what vehicle technologies are the most cost effective tools for reducing aggregate

carbon emissions? They find that PHEVs with relatively small batteries, rather than

long-range EVs, are able to mitigate carbon emissions at the least cost. They also

find that, in terms of additional investment, money would be better spent on charging

stations that can increase the all-electric range of small battery PHEVs rather than

spent on vehicles with larger batteries. As the model they present is fairly simple,

some details related to these findings remain open to further research, especially the

impact of location and regional travel behavior on these findings and how technological

improvement might change these results.

This thesis intends to expand on the important question-how to quantify the

emissions costs and benefits of different vehicle technologies-by bringing in literature

and research from other fields mentioned above. By bringing in understanding about

aggregate travel behavior, EV performance, and the emissions impact of EV charging,

this research is intended to fill a hole in the existing literature and begin providing

concrete answers to remaining questions about EV policy and technology design.
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Chapter 3

Methods

3.1 Data

Throughout the analysis presented in this thesis, care was given to ensuring that

the model and results presented were based as closely as possible on simple physical

laws and empirically collected data. Unlike a black-box vehicle simulation model,

the vehicle performance and travel demand models described below are intended to

be as transparent as possible, prioritizing interpretability and empirical grounding

over detail when limitations warrant it. As such, a wide variety of publicly available

data was used to inform these results. This is the first time that all of these diverse

sources have been combined in order to create a uniquely detailed model of POV

transportation energy use across the United States [62].

3.1.1 GPS Velocity Histories

The results presented in this thesis require an evaluation of various POV technologies

under "real world" use. While there are many possible ways of defining a vehicle's

use, we choose a simple one-we assume that for any given POV trip, that trip's

velocity history depends on trip and user characteristics such as the trip's origin and

destination, route choice, traffic conditions, and driver habit, but we assume that

the velocity history is independent of vehicle choice. This simplification allows us to
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GPS Data Source
Unique Vehicles Number of Trips

Californiaa 2,899 64,358
Atlantab 1,649 38,407
Texas: Houstonc 575 3,232
Texas: Laredo 176 760
Texas: Rio Grande 357 2,515
Texas: San Antonio 526 2,853
Texas: Tyler 244 845
Texas: Wichita Falls 349 4,618

Total 6,775 117,588

Table 3.1: GPS data sets used in the energy model and the number of vehicles
and trips included in each. This combined dataset is implicitly assumed to cover
representative variation in driving aggressiveness and driving style across the US.
Note that these numbers do not include trips that were filtered out as containing
data-logger errors.

a From [63] b From [64] C All Texas data from [65]

use the same set of velocity histories to evaluate different vehicles, facilitating the

comparison. Realistically, this use is not quite absolute, as the velocity history for

a trip likely also depends on properties of the vehicle, particularly engine power and

idling speed, but those corrections are assumed to be negligible for everyday driving.

POV velocity histories, often referred to as "drive cycles," can be captured by

GPS data loggers at resolutions of 1 hz or greater. For analysis, we used a large

dataset of GPS tracks that were collected as parts of travel surveys in California [63],

Atlanta [64], and Texas [65]. This data was anonymized before release, so the only

data available was a set of files containing vehicle speed at a series of time-steps,

a vehicle identification number, and in some cases some very limited demographic

information about the household-no location data or detailed household information

was available.

To process the data, we broke up full-day velocity histories into distinct trips for

pauses of greater than two minutes, trimming off leading and trailing zeros. In some

of the GPS data, particularly from the Texas datasets, there were some problems

of the GPS logger recording spurious readings of zero velocity while the vehicle was
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Figure 3-1: Histograms for the trip distance (top) and average speed (bottom) in
units of miles and miles per hour, respectively. We expect GPS velocity histories
in our dataset to span the entire plausible range of possible driving behaviors. It
does not need to have a representative distribution of trip lengths, trip durations,
or trip velocities in order for the model presented below to be accurate.

driving, leading to unphysical sudden stops and starts in the drive cycle. To account

for this, all drive cycles with instantaneous acceleration greater in magnitude than

10 m/s 2 were removed from the sample. The resulting GPS trip distance and time

distributions are shown in Figure 3-1, showing that the dataset spans a wide variety

of different types of trips.

The trip energy model described below uses this dataset as a pool intended to

contain all of the expected variation in driving behavior across different kinds of trips.

Because the travel surveys with which these data were collected were not intended to

be representative of travel behavior across the United States, we cannot assume that

this sample of GPS trips can be treated as a random sample of trips from across the

US. However, we do assume that locally these distributions are identical-that for

trips of a certain fixed distance and duration, the distribution of possible drive cycles

represented in the GPS dataset is representative of driving behaviors anywhere in

43



the US. While this is a difficult assertion to prove categorically, the GPS dataset has

drive cycles drawn from a wide variety of environments, and no comparisons within

the dataset have shown significant differences between the drive cycles from these

various locations, suggesting a degree of universality.

3.1.2 National Household Travel Survey

NHTS Respondents US Total

Persons 308,901 283,053,872
Households 150,147 113,101,330
Vehicles 309,163 211,501,318

Trips 1,167,321 392,022,844,961
POV Trips 1,015,749 327,117,654,775
POV Days 176,186 61,219,432,171

Table 3.2: Summary statistics for the NHTS, giving the number of each cate-
gory counted in the NHTS and the number of each category that each category
represents in the US when aggregated according to the NHTS weights. Note that
the weighted totals for Persons, Households, and Vehicles represent the number
of each present in the US in 2009, and for Trips, POV Trips, and POV Days the
weighted totals represent the number of each over the course of a year.

While GPS loggers are becoming an increasingly important component in travel

surveys, they are certainly not universal. To this date, there has not been a nation-

wide, representative GPS survey with a large enough sample size to study commu-

nities at a sub-national level. To account for this, we combine our high-resolution

but less-representative GPS dataset with the 2009 National Household Transporta-

tion Survey (NHTS) [11], a lower-resolution but nationally representative traditional

travel survey.

The NHTS is produced by the US Federal Highway Administration, with a new

survey every five to ten years. The NHTS picks a representative sample of households

from across the US and then randomly assigns each household a travel day picked from

a one year period. On that travel day, each household member keeps a detailed record

of each trip he or she takes, including trip mode of transportation, distance, duration,
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and purpose. The NHTS also collects data on each car owned by a household, whether

or not that vehicle was driven on the travel day.

In our analysis, we limited our sample to personally operated vehicle trips, which

we defined as cars, vans, sport utility vehicles, pickup trucks, and other trucks. Note

that we did not include recreational vehicles (RVs) or motorcycles in our analysis, as

the goal was to focus on trips that could be plausibly replaced by electric vehicles.

This left a total of 1,015,749 trips in our study. Avoiding double counting by limiting

the trips to ones where the survey respondent was the driver reduced the sample

to 744,788. Finally, because we focused on vehicle requirements, we only analyzed

trips for which the vehicle used was in the Vehicles datafile, giving a final sample

size of 729,563 POV driver trips over a total of 176,186 vehicle days. This method of

counting does not count trips in a vehicle that were driven on the travel day but not

by a member of the household, so the results for vehicle usage are likely very small

underestimates.

3.1.3 EPA Dynamometer Tests

Evaluating vehicle technologies also requires a detailed model of vehicle performance.

Every year, the EPA certifies the fuel economy and levels of emissions for all vehicles

sold in the United States. As part of this process, the vehicle manufacturer is required

to report the results of a series of dynamometer emissions tests to the EPA, and the

EPA checks the results of a portion of those tests on its own dynamometers. Dy-

namometer testing is intended to estimate a vehicle's fuel consumption and emissions

over a pre-specified drive cycle in a controlled and replicable environment. It involves

placing a vehicle with its drive wheels on a set of variable-resistance rollers, running

the vehicle through a specific drive cycle, and measuring either the emissions (for an

ICEV) or change in battery charge (for a BEV) to estimate fuel consumption. During

the test, a driver in the vehicle uses the gas and brake pedals as a normal driver would

to continuously match the vehicle's wheel speed to the drive-cycle's proscribed speed

throughout the drive cycle.

The dynamometer force provided to the wheels by the rollers over the course of the
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Measured Values 2013 Nissan Leaf 2014 Ford Focus

a (N) 133.8 115.3
b (Ns/m) 0.7095 1.933
c (Ns 2 /m 2 ) 0.4910 0.3998
m (kg) 1,780 1,610

MPG Highway (Unadjusted) 146.4 50.4
MPG City (Unadjusted) 184.2 33.5

Table 3.3: Dynamometer parameters and test results for the Nissan Leaf and
the Ford Focus, as published by the EPA. The coefficients a, b, and c, and m are
settings used during dynamometer testing to estimate tractive force and also used
by the method presented here. The unadjusted MPG ratings are based on EPA
calculated emissions over the course of the Highway (HWFET) and City (UDDS)
drive cycle, which are used below to calibrate vehicle efficiency parameters.

test is adjusted to match the expected tractive force-a combination of drag, rolling

resistance, inertial effects, and higher order terms-that the vehicle would experience

were it actually traveling at that speed on the road:

dv
-Fdvn = a + by + cv 2 + (1 + E)m , (3.1)

dt

where a, b, and c relate moments of the vehicle's instantaneous velocity to the resistive

force it experiences, E is a parameter accounting for the rotational inertia of the

vehicle's wheels and enginel and the dynamometer force Fy, is taken to be negative

because it opposes the (positive) direction of the vehicle's movement. The coefficients

a, b, and c, known as the coastdown coefficients, are typically measured on a track

by bringing a vehicle to a high speed and measuring its velocity as it coasts to a

stop, fitting the observed deceleration to a three parameter function of instantaneous

velocity [66]. A database of these coefficients is published by the EPA [40], containing

information for all widely available models in the United States.

Our analysis also requires a measure of vehicle energy consumption over a set of

known drive cycles. The EPA currently measures vehicle emissions and fuel economy

through a detailed five-cycle procedure, but, for continuity relating to the CAFE

'In practice, this value can vary depending on what gear the car is in, but it has little effect on
the final results. Value from 0.05 to 0.1 are common in the literature-we take c = 0.05 here.
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standards and the gas-guzzler tax, manufacturers continue to test and report results

for the two highway and city tests. The results of these two tests are published as

"unadjusted" city and highway fuel economy values [39]. These values for most widely

available vehicles are available in a database from the EPA as well [5]. The parameter

values and test results for the 2013 Nissan Leaf and the 2014 Ford Focus2, the two

vehicles studied in this thesis, are shown in Table 3.3.

3.1.4 Typical Meteorological Year Database

Since climate-control auxiliary energy use can be a large component of EV energy

consumption, and since ambient temperatures vary greatly across the United States,

it was important to accurately model the external temperatures experienced by drivers

over the course of a year. As an estimate of typical temperatures across the US, we

obtained hourly temperatures from the NREL "Typical Meteorological Year" database

[67]3. This dataset provides hour by hour temperatures for 1,021 weather stations

located across the United States. This detailed temperature data allowed us a detailed

model of the thermal load on a vehicle in any of the states or metropolitan areas given

in the NHTS.

2We chose the Ford Focus because it is similar to the Leaf in terms of passenger volume (90.6
cubic feet vs 93 cubic feet, and because its lifetime cost per mile is roughly similar [15]), and with a
window sticker gas mileage of 30 MPG combined, it is roughly equal to the 2016 CAFE standards.

3 This idea comes from Yuksel and Michalek [42], who use the TMY database and a different
energy use model to estimate EV range for different locations.
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Figure 3-2: Box plot summaries of temperature data from a set of US cities ob-

tained from the Typical Meteorological Year database[67]. The boxes represent

the middle 50% of all hourly temperature readings, the red line in the middle

being the median. The dashed lines extend to the maximum and minimum read-

ing not defined as an outlier, and the red crosses identify particularly extreme

temperature readings, defined as being more extreme than 1.5 times the inter-

quartile range. These temperature readings show that the external temperatures,
and therefore auxiliary energy demands, vary greatly between cities studied in

this thesis. The matching procedure designed to pair weather stations with cities

is described in Section 3.2.3.
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3.2 Vehicle Model

The analysis presented in this thesis makes the simplifying assumption that, for any

POV trip, its energy requirements depend only on that trip's velocity history and

the external temperature at the time of the trip. This is certainly a simplification,

as elevation changes, cargo weight, tire air pressure, time since the previous trip,

when the transmission changes gears, and weather factors beyond temperature can all

influence energy use as well. However, compared to the bulk of national-scale energy

use models that have been used by others-most of which take energy consumption

only as a factor of vehicle choice and distance traveled-this is an unusually detailed

model.

The vehicle model consists of a tractive energy component Etr, representing the

total amount of energy applied by the engine towards forward progress, the drive effi-

ciency component U'charge, relating tractive energy to the total energy drawn from the

vehicle's energy storage system going to forward motion, the auxiliary energy com-

ponent Eaux/7laux, representing the amount of energy devoted towards tasks besides

movement and its associated conversion efficiency, and the charging efficiency Tcharge,

accounting for charging losses. The final equation for energy use is

Etot = Icharge Etr+ aux (3.2)
r7drive 77aux

= ?chargeEuse. (3.3)

A schematic of these energy flows is shown in Figure 3-3, and each component is

explained in more detail below.

3.2.1 Tractive Energy: Etr

Our model of vehicle energy use begins with an idealized application of Newton's

second law. At any point, we can identify the forces acting on a car as tractive force,

resistive forces, and gravity. As before, we have defined tractive force as force actively
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applied by the vehicle's control system-namely its engine or its brakes. Resistive

forces always act to lessen the vehicle's speed and are largely attributable to drag and

rolling resistance. The goal of the tractive energy component of the vehicle model

is to produce a time-resolved estimate for this tractive force supplied by the vehicle.

Defining the positive direction as the direction of travel of the vehicle and summing

these forces gives:

Fot = Fres + Ftr - mg sin(0) = (1 + 0 ,dv (3.4)
dt'

where 0 is the incline of the road and g is the acceleration of gravity. Constants

a, b, and c are the coastdown coefficients described earlier, and m is the vehicle's

mass, here increased from the curb weight by 136 kg to represent typical load [39].

Rearranging to solve for tractive force gives:

dv
Ftr = -Fres + (1 + )m + mg sin(6) (3.5)dd

= a + bv + cv 2 + (1 + E)m- + mg sin(6). (3.6)
dt

Because Ftr is the force expended by the vehicle, the instantaneous tractive power

expended by the vehicle is Pt, = FtrV. Vehicle design means that when tractive force

is positive, that tractive force is being applied by the vehicle's engine, and when

tractive force is negative, the force is being applied by the brakes or regenerative

braking system.

Thus, solving for the total work done by the vehicle's engine requires integrating

the instantaneous tractive power with respect to time, but only over times where the
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tractive force is positive. We define this quantity as a trip's tractive energy:

Etr = I Fr (t) v (t) dt (3.7)
Ftr(t)>0

av+bv2+cv3+(1+6)m +mg sin(O) dt. (3.8)

Ftr(t)>0

For the work in this paper, the contributions to tractive energy use from elevation

change are assumed to be negligible when compared to other sources4 . Thus, given

vehicle parameters a, b, c, m, and c along with a drive cycle v(t), we are able to

approximate ! by finite differences, and we are able to approximate and the integral

by the trapezoidal method to give an estimate for the trip's Etr.

When evaluating these expressions on GPS driving histories, we often found that

the net change in kinetic energy of the vehicle:

AKE = JFr (t) v(t) dt, (3.9)

did not integrate to zero. This is an unphysical result, as for every trip in the GPS

dataset the vehicle starts and stops at rest. To remove this numerical error, which

would reach up to 4% of the total tractive energy over some trips, we integrated the

velocity signal to get x(t), interpolated the distance function from 1 hz to 100 hz via

cubic splines, and then differentiated this function to get a new estimate for velocity

and acceleration5 . Velocity and acceleration signals were then smoothed to remove

noise at frequencies greater than one hz. This interpolation reduced errors due to

numerical integration by a factor of ten while still giving a signal that matched the

original one when down-sampled back to 1 hz.

We used this method to calculate Et, for all 117,588 GPS drive cycles in our

dataset, for both the 2013 Nissan Leaf and the 2014 Ford Focus.

'In terms of total energy consumption, this is a very minor simplification, as most cars will likely
return to the same place where they started over the course of any vehicle day and thus the net
change in elevation is zero.

5 This process, rather than just interpolating the velocity signal, was used in order to ensure that
the total distance traveled over the course of the drive cycle remained constant.
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3.2.2 Drive Efficiency: TIdrive

Especially for vehicles with regenerative braking, the relationship between drive ef-

ficiency T7drive and more commonly discussed efficiency parameters such as the pow-

ertrain efficiency is complicated and not always intuitive. The energy pathways are

shown in schematic form in Figure 3-3 and described below.

It is helpful to begin by looking at the instantaneous load on the energy storage

device (called the battery for the rest of this section, but a gas tank is equivalent).

The instantaneous ratio of the power entering the engine Pdrive to the kinetic energy

produced by the engine Ptr is the instantaneous powertrain efficiency, '%. Of this

energy, some is dissipated in the brakes, and the rest is dissipated elsewhere-largely

via air resistance and rolling resistance between the tires and the road surface. Of

the portion of energy dissipated in the brakes, Pbrake, a smaller portion is returned

back to the battery via regenerative braking with efficiency ,, at which point it can

be cycled through the loop again. Finally, the ratio of energy drawn from the battery

for auxiliary use to the energy used by the auxiliaries is the auxiliary efficiency q(x.

The instantaneous load on the battery, then, is a the sum of the energy leaving to

the auxiliaries, the energy leaving to the engine, and the engine returning from the

brakes:

Estorage = r Pbrake - Pgas _ Paux (3.10)
%t 77aux

As suggested by the notation, if we focus on the average rather than instantaneous

efficiencies, we can simplify this equation further, defining the portion of all of the

kinetic energy that is dissipated in the brakes as fbrake:

AEstorage - 27rEbraKe - Egas Faux (3.11)
7lpt 7laux

- Etr frakept - 1) Faux (3.12)
pt 7aux
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Figure 3-3: Schematic representation of evergy flows within an electric vehicle.
In panel a, the full set of energy flows is shown: starting with the charger, en-
ergy drawn by the vehicle experiences charging losses and then enters the vehicle
battery. Energy from the battery can either be devoted towards auxiliaries or
towards driving, in both cases experiencing losses exiting the battery. Energy
devoted towards driving gets converted, with additional losses, towards vehicle
kinetic energy, which is either dissipated through resistive (mainly drag) forces
or passes through the regenerative braking system. Some portion of the energy
passing through the braking system is returned to the battery and can be used
again. In panel b, the above flows are re-formulated as they are calculated in the
energy model, where the drive efficiency ridrive captures both powertrain losses
and energy returned to the battery through braking. For ICEVs without regen-
erative braking, the energy flow diagram looks like panel b with rldrive = 27pt-
Credit-James McNerney for the figure
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Rearranging, we can define:

T/drive 1 pt . (3.13)
1 - pt frake r'

This drive efficiency T/drive is defined as Etr , where Etr is the tractive energy as

defined above and Edrive is the total energy devoted to motion that is removed from

the battery. For vehicles without regenerative braking, such as non-hybrid ICEVs,

this formulation simplifies to 1
7drive = npt. With this new parameter, we can simply

write:

-AEstorage = + r . (3.14)
T7drive Tlaux

Given this formulation, our model attempts to estimate a trip's T/drive as accurately

as possible given available data. The method used here is an extension of one first

proposed by Lutsey [68] to estimate the conversion efficiency of a vehicle based on its

EPA test results.

This method takes the EPA's unadjusted city and highway miles per gallon (MPG)

ratings for a vehicle as ground truth measures of energy consumption. Lutsey has

the insight to recognize that this MPG rating gives the energy consumption per unit

distance over a known driving cycle -AEstorage = MPG x d, and that for the given

drive cycle it is possible to calculate tractive energy requirements. Thus it should

be possible to estimate a vehicle's drive efficiency over the course of an EPA drive

cycle. We update his method to include auxiliary energy use and use a more precise

definition of drive efficiency, giving a new equation for derived drive efficiency:

6Note that this drive efficiency can be greater than 1, as energy that passes through the regen-
erative brakes and is returned to the battery can be put towards tractive energy again, allowing for
it in effect to be double counted.
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17drive- d x . (3.15)
d x MPG _ Ea-x

r/aux

Additionally, we have assumed constant values for auxiliary power (100 Watts, see

section 3.2.3) and auxiliary efficiency (0.81 for EVs and 0.185 for ICEVs, factoring in

both a DC-DC conversion efficiency of 0.9 and typical powertrain efficiency) in the

EPA tests, allowing for a derivation of drive efficiency that only depends on EPA test

result and calculated tractive energy.

The estimated drive efficiency value is not a constant for a given vehicle-initial

examination showed that it can vary greatly between the EPA highway and city

tests. Therefore, the goal of the method described below is to estimate the function

7Tdrive = f(Vehicle, Drive Cycle). To train this function, we only have the two data

points coming from the EPA unadjusted fuel economy numbers, thus it is extremely

important that the functional form include as much physical intuition and engineer-

ing knowledge as possible. To aid with this process, we used the software package

ADVISOR [691 to simulate the drive efficiency of a set of GPS drive cycles and then

used those values as validation data in training the model. This allowed us to both

assess the plausibility of various functional relationships and derive an estimate for

the precision of our estimates. While ADVISOR is used in model selection, however,

it is not used in the actual fitting of the final model-that only depends on EPA test

results.

Because of the fundamental technological differences between EVs and ICEVs, the

underlying drive efficiency model chosen is different between the two cases:

Electric Vehicles

One of the many benefits of an electric powertrain is that, unlike an ICE, the en-

gine maintains a relatively constant level of efficiency over a wide range of operating

conditions (removing the need for a transmission, for example). Others have found

that the average regenerative efficiency is also relatively constant between trips [70].
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With that as guidance, it was found that the best performing functional form was one

that treated powertrain and regenerative efficiency as constants and allowed them to

be the fitting parameters. These parameters were chosen as the values for qpt and

9, that correctly reproduced the measured energy consumption of the two EPA trips

when combined with calculated values of Et, and Eau. Thus, the estimate for drive

efficiency of a new trip, assigned subscript i, is only a function of the portion of that

trip's tractive energy cycling through the brakes, fbrake,i:

U7drive,i ipt (3.16)
1 - Pt77fbrake,i

,pt and qr being already-determined fit parameters. Solving for qpt and r based

on the two EPA drive cycles gives values flpt = 0.908 and 71r = 0.849 for the 2013

Nissan Leaf, both of which are comparable to average values found by researchers

and manufacturers [71, 66].

We tested this method with the ADVISOR model as a proxy for the real world,

using it both to simulate the results of the EPA tests and to simulate the drive

efficiency of a sample of 2,000 GPS trips, which is used as validation data for the

method. The drive efficiency model was trained on the results of the two simulated

EPA drive cycles, and that trained model was used to estimate the drive efficiency

of the 2,000 trips in the training set. The results, shown in Figure 3-4, suggest that

this simplified method does an acceptable job of reproducing the general behavior of

drive efficiency as estimated by a much more complicated simulation model, and it

does a very good job of reproducing total trip energy, which factors in both drive

efficiency and tractive energy calculations. The mean square error for this estimate

was 0.86% of the ADVISOR estimate 7, and this method overestimated the total

energy consumption of the validation set by only approximately 1% when compared

to the ADVISOR results.

7 This statistic was calculated ignoring the 25 out of 2000 drive cycles with tractive energy con-
sumption of less than 10 kJ. Estimated efficiencies for these trips were much farther off the true
values. However, the total energy consumption of these trips is so small compared to the rest of the
sample (whose mean tractive energy consumption was 6 MJ) to render them negligible.

56



1.5

. .! 9 Actual 108
e* , e Predicted

S EPA trips7
10

21

0 20 40 60 80 10 106 108

Trip Average Velocity Estimated Energy (J)

Figure 3-4: Model validation results for estimation of rldrive of an By, tested
against drive efficiencies calculated by ADVISOR. Left: drive cycle average speed
versus drive cycle drive efficiency, showing that the simplified model reproduces
expected behavior as a function of average speed, peaking at speeds around 20
mi/hr, decreasing sharply for lower speeds, and decreasing slowly for higher ones.
Right: Predicted versus actual drive energy values (incorporating drive efficiency
and tractive energy), taking the ADVISOR results as ground truth, showing good
agreement between the two methods.
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Internal Combustion Engine Vehicles

The ICEV modeled in this thesis is the Ford Focus, which does not have regenerative

braking-thus the drive efficiency is equal to the powertrain efficiency. This simplifi-

cation is necessary because, unlike EVs, the instantaneous powertrain efficiency of an

ICEV depends very strongly on the exact operating conditions of the engine at any

point in time, ranging from as high as close to 40% at high torque and moderate RPM

to less than 10% for extremely high and low torque or RPM [12]. As such extremely

high RPM and torque values are rarely reached during everyday driving, we had the

greatest success by modeling average ICE powertrain efficiency as an increasing func-

tion of average vehicle speed and average vehicle acceleration. The best performing

model for drive efficiency was:

Cv 2 Ca
77drive = 7imax - (- ) a ) (3.17)

Vv + -/qmax aav + V'jmax

where Vav is the drive-cycle average velocity, aav is the time averaged instantaneous

acceleration over times when acceleration was positive, Cv and Ca are fitting pa-

rameters representing the characteristic of speeds and accelerations, and 77max is the

maximum cycle-averaged powertrain efficiency asymptotically approached at high av-

erage speed and acceleration. There are three unknown constants in this equation,

SO 17max is chosen to be 0.35 based on physical intuition of the maximum average

powertrain efficiency of an ICE [12].

The validation test results of this method are shown in Figure 3-5, producing

a mean squared error of 0.3% of the actual drive efficiency, but an overestimate of

the total energy by 6%. This good trip-by-trip performance but less good average

performance is likely due to this method underestimating the efficiency for a small

8Note that it is impossible to directly calculate engine RPM or torque from a drive cycle because
gear ratio is unknown-some transmission control system must be assumed in order to do so. With
no gear changes and over short time scales, RPM is roughly linearly related to velocity and torque
is roughly linearly related to acceleration. However, the model presented here should be considered
an entirely phenomenological model for powertrain efficiency that appears to accurately reproduce
observed trends-a more accurate mechanistic model would require many more fitting parameters
and thus much more data.
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Figure 3-5: Model validation results for estimation of rldrive of an ICEV, tested
against drive efficiencies calculated by ADVISOR. Left: drive cycle average speed
versus drive cycle drive efficiency, showing that the simplified model reproduces
expected behavior as a function of average speed, gradually increasing at higher
speeds, without being overfit through the EPA highway drive cycle (right black
dot), which has uncharacteristically low accelerations. Right: Predicted versus
actual drive energy values (incorporating drive efficiency and tractive energy),
taking the ADVISOR results as ground truth, showing good agreement between
the two methods.
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number of extremely high energy trips. For these long trips, a very small number

of errors can have a large impact on the total energy. Further, these very long trips

tend to capture effects, such as the engine operating more efficiently as it warms up,

that are not captured in the unadjusted EPA tests and hence do not influence our

predictions. Producing a better efficiency model for ICEVs should be a direction of

further work, but we continue with the knowledge that our method might overestimate

the energy of very long ICEV trips9 .

Trained on the EPA tests, this method produces values of C, = 9.89 and Ca,

0.0218. We then used these best-fit constants to estimate the drive efficiency of all

GPS trips in our dataset.

3.2.3 Auxiliary Energy and Efficiency: Eaux and rjaux

Auxiliary energy is energy used by a vehicle for purposes other than movement-these

uses can include dashboard lights, power steering, entertainment systems, and climate

control. For most vehicles, this auxiliary energy comes in the form of electricity at 12

Volts. For EVs, the electricity coming out of the battery is at a much higher voltage,

so it must pass through a transformer after exiting the battery, an additional source

of losses beyond simple resistive losses within the battery. For ICEVs, where stored

energy is released through combustion, electricity must first be generated from the

mechanical energy of the engine via an alternator before being converted to 12V and

fed to the auxiliary system. These pathways lead us to estimated values for laux,

which we take to be 0.81 for EVs and 0.185 for ICEVs, values that represent the

much higher cost of converting mechanical energy to electricity than of drawing it

from a battery.

We divide the auxiliary power into power devoted to climate control, which we

assume is a function of external temperature, and power devoted to other components,

which we assume is independent of all other trip properties. Geringer and Tober [72]

and Del-Duce et al. [73] provide some estimates for typical auxiliary electrical loads

and usage rates for various components, including the cabin air blower, lighting,
9 The direction of this error tends to reinforce many of the conclusions made below.
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defogger, and heated seats. Based on their results, we assume a typical non-climate

auxiliary load of 250 Watts, 100 Watts of which we assume to be always on and hence

present in the EPA tests, the rest of which we assume to be at the discretion of the

driver and hence not on in the EPA tests (see Section 3.2.2 for the importance of this

quantity in estimating drive efficiency).

To estimate climate control auxiliary energy needs, we assume a simple heat bal-

ance equation for temperature inside the vehicle:

Pthermal = k|To - T| (3.18)

where k is the thermal conductivity of the vehicle, measured in units of Watts per

degree Celsius, and ITo-T I is the magnitude of the difference in temperatures between

the inside of the vehicle and the outside of the vehicle, and Pthermal is the magnitude

of the thermal power demand on the climate control system. A value for k = 350

Watts per degree celsius is chosen based on various studies of air conditioning energy

consumption and external temperature [74, 75, 72]. We use a simple model for internal

temperature choice-we assume that the internal temperature is kept between 20

and 24 degrees celsius, with any additional difference between internal and external

temperature maintained by the climate control system (this range is slightly lower

than those cited in [76] because this model does not account for solar radiation or body

heat, which we can expect to raise internal temperatures by a few degrees celsius).

Thus, the power provided by the heating and cooling systems is:

Pheat k(20 - To) if To < 20
0 if To ;> 20

= {k(To - 25) if To > 24 (3.20)
0 i f To < 24.
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The contribution of the climate control accessories to the total auxiliary power is a

function of the thermal load on the climate control system and the various coefficients

of performance (COP) of the climate control mechanisms. The COP is the ratio

between the thermal power created by a device and the amount of power that the

device dissipates. A radiative heater, for example, will have COP = 1 because its

thermal load is equivalent to the energy it dissipates. Air conditioners and heat

pumps can have COP > 1 by exploiting thermodynamics. Thus, the equation for the

total auxiliary power needs of a vehicle is:

_______ Pheat
Paux = PC + + Pother. (3.21)

COPAC COPheat

For ICEVs, the climate control heating is done with waste heat from the radiator,

giving it an effectively infinite value for COPheat (in other words, heating for an ICEV

is 'free'). Because EVs produce so much less waste heat than ICEVs, they need other

sources of heating. The 2013 Nissan Leaf has a heat pump installed, which has much

better performance than the radiator that was installed on earlier versions. Both the

Leaf and the Ford Focus have industry standard air conditioners installed. We take

constant values of COPAC = 2.5 for both vehicles and COPheat = 3 for the Leaf

[77, 78, 75].

As a means of illustration, the effect of this additional auxiliary energy on the

range of the 2013 Nissan Leaf is shown in Figure 3-6. In our model, low temperatures

can reduce the range of the Leaf almost in half.

3.2.4 Charge Efficiency: richarge

Finally, we consider the energy losses due to charging the battery. It is important

to make clear the distinction between energy from the battery or gas tank, which we

define as Euse, and energy from the electric grid or gas station, which we define as Etat.

We define the ratio Euse/Ese as the charging efficiency lcharge. For ICEVs, gasoline

losses due to filling the tank are practically zero, so we can simply set charge = 1. For
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Figure 3-6: Average EV range as a function of temperature. This range is
calculated by taking average values of drive energy consumption per unit distance,
average values of non-climate auxiliaries, and average vehicle speeds. This simple
model captures the dramatic negative effect of low temperatures on EV range
observed in Yuksel and Michalek [42] and elsewhere.

EVs, there are greater losses in charging, largely due to resistive heating in the cable

and battery. Typical charging efficiencies are found to be 85% - 95% (e.g. [791), so

we take a middle value of r7charge = 0.9 for electric vehicles.

The distinction between Euse and Etat is very important to keep clear. Because

this thesis focuses on fleetwide impacts of EV adoption, many of the results relating

to EV energy use presented below are presented in terms of Ett, because that is the

measure of the impacts of the technology, on the electric grid, on the climate, and in

terms of costs to the user. Many of the intermediate results, however, have to do with

questions of vehicle range. Once a vehicle is charged, charging losses have already

taken place. Therefore in questions of vehicle range, the meaningful comparison is

between the battery's energy capacity and Euse, not Etet.

The entire energy model, as defined by Equation 3.2, produces some insights about

EV and ICEV performance when applied to the GPS dataset. Figure 3-7 shows how

the various components of the vehicle energy model-tractive energy per distance,

auxiliary energy per distance, drive efficiency, and total energy consumption per unit

distance-vary at different trip distances and average speeds.
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Figure 3-7: Plots of mean energy consumption for trips with different average

speeds (left column) and distances (right column) for ICEVs (top row) and EVs

(bottom row). Energy consumption is divided into tractive energy (green), aux-

iliary energy (red), drive energy (blue), and total energy (black). The horizontal

lines show mean per mile energy consumption based on the EPA combined fuel

economy rating for the Leaf. These results confirm many arguments about the

ideal use-cases for ICEV and EV technologies. ICEVs are most efficient at high

average speeds and for long distances. EVs, on the other hand, tend to be most

efficient on trips whose average speed is approximately 20 mi/hr. EVs also tend

to perform better for short trips when compared to longer ones.
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3.3 Demand Model

The previous section describes a method to estimate a trip's total energy require-

ments based on a set of vehicle parameters, an external temperature, and a velocity

history for the trip. Unfortunately, the best source available for nationwide driving

behavior-the National Household Travel Survey [111-does not have a GPS compo-

nent or a temperature component. Indeed, the most relevant data included in the

NHTS are trip distance, trip duration, trip start time, and household location. Below

is described a statistical method that, by combining the NHTS with a GPS dataset

and a weather dataset, is able to produce a probability distribution for the anticipated

energy consumption of every trip in the NHTS. Because each trip in the NHTS in

effect represents thousands of trips across the country, to the extent that the under-

lying datasets and methods are unbiased these probability distributions represent all

of the trip-by-trip variation in POV energy use in the US.

3.3.1 De-rounding Procedure

Before proceeding further, the NHTS requires some processing to make it more suit-

able for analysis. Examination of the NHTS trip distances and trip durations shows

dramatic evidence of rounding (Figure 3-8). Assuming that a roughly equal number

of respondents round up as round down, this rounding should have little effect on

derived energy use totals and averages, and hence it is rarely corrected for in studies

using NHTS data. However, this research is intended to study range constraints and

the effects of marginal increases in battery capacity. In studying these quantities, the

"spikiness" of the raw NHTS data is liable to produce artifacts in our results. Thus,

before proceeding further in the analysis, we used a simple de-rounding procedure to

remove these artifacts from the distance and time distributions.

The underlying assumption behind our de-rounding method is that, when record-

ing a trip distance or duration, a respondent can take three possible actions. The

respondent can:

e Record the exact value.
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Figure 3-8: Evidence of rounding in the NTS reported values. Top: Probability

Distribution Function for reported trip distance, showing peaks at multiples of

five. Middle: PDF of reported trip duration, showing strong peaks at multiples of

5 and higher ones at multiples of 15. Bottom: PDF of average velocity, showing

artifacts of rounding in distance and duration. Credit to James McNerney for

this figure.
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* Round to value the nearest 1

" Round the value to the nearest 5

" Round the value to the nearest 15.

We began by using the recorded distance and time distributions to estimate the

probabilities of a respondent taking each of these actions. For responses that are not

a whole number, we assume that the value was recorded exactly. Limiting our data to

all responses of a whole number, we define the probability of a respondent rounding

to the nearest 1, 5, and 15 as P1, P5 , and Pi5 , respectively.

We define the true value of some quantity x-in our case either a duration or a

distance-and we define the recorded value z. From the data we know the probability

mass function of z, PQt). For every trip, our goal is to estimate p(xjz), the probability

density of the actual quantity given the rounded quantity.

Bayes' rule says that

P( jx ) p(x )
P(X = , (3.22)

P(.r)

and each of these components can be approximated by looking at the distribution of

the responses. P(Jjx) is the probability that a true value x gets rounded to a new

value -i. As defined before, there is a probability that x gets rounded either by 1, 5,

or 15, so we can rewrite the above equation as a sum:

P1 r(, x, 1) p(x) P r(5, x, 5) p(x) P15 r(4, x, 15) p(x)
Pp(X() OC + +( ) (3.23)

P (,c-) P(z;) P~z

where r(, x, n) is a function that is 1/n when x could be rounded to 5 and 0 elsewhere.

The three parameters P1 , P5 , and P15 can be estimated by looking at the relative

heights of the peaks at multiples of 5 and 15. We can define the height of a peak at

x = N as the mean difference between the observed probability at i, P(z), and the
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Distance Time

P 0.82 0.27
P5  0.11 0.55
P15  0.07 0.18

Table 3.4: Rounding probabilities for trip distance (in miles) and trip duration
(in minutes) estimated from the NHTS data.

observed probability at its neighbors above and below. The ratio of the heights at

multiples of 15 to the heights at multiples of five (but not 15), the typical height of

a peak at multiples of 5, and the constraints that the probabilities PI + P5 + P15 = 1

are the three constraints required to estimate the three rounding probabilities from

the survey data. The constants estimated from the NHTS data for trip distance and

trip duration are shown in Table 3.4.

From here, we make the further simplifying assumption that the rounding dis-

tances are small in comparison to the values being rounded, allowing us to approxi-

mate p(x) = P(z). This assumption could easily be relaxed by estimating the function

p(x) by an appropriate smoothing of the observed probability mass function P(z),

but we have not found reason to do so. In effect, this method produces a distribution

for p(xjz) that is rectangular if zr is an integer non-multiple of 5; of width 5 with a

peak of width 1 in the center if zr is a multiple of 5 but not 15; and of width 15 with

two nested inner peaks if J is a multiple of 15. This suggests that a survey response

giving a multiple of 15 provides much less information about the true value of that

quantity than one that is only a multiple of 5, and even less than if the response is

not a multiple of 5.

3.3.2 Removal of Implausible Trips

Of the POV trips recorded in the NHTS, a number of them had invalid distances or

durations, showing up as negative numbers in the datafile. For trips missing one of

either trip distance or trip duration, the missing quantity was calculated from the

existing quantity via an average velocity drawn randomly from the distribution of

velocities of valid trips. The remaining 204 trips without valid distances or times
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were treated as missing data.

Further, trips were defined as implausible if they implied an average velocity of

greater than 80 miles per hour, or less than two miles per hour. For trips that were

too fast, the recorded distance was treated as missing data. For trips that were too

slow, the recorded duration was treated as missing data. Both of these quantities

were then filled in the same manner as above. This method was chosen so as to be

less likely to artificially inflate the estimated mileage, but the number of affected trips

was small enough that other methods did not significantly alter the results.

3.3.3 Conditional Bootstrap

Once the NHTS has been appropriately processed, the goal becomes the estimation

of a trip's tractive energy requirements based on the reported D and T values in the

survey data. Because trip energy requirements are overwhelmingly dependent on trip

distance, the problem becomes more tractable when it is reformulated as estimating a

trip's average energy consumption per unit distance, which is equivalent to the mean

positive tractive force Ptr. Thus, the goal becomes to estimate the probability density

function of Pt, as a function of the reported (presumably rounded) distance and time

values D, and T,:

p(PtIDr, Tr). (3.24)

evaluated at the specific location defined by the survey trip's distance and time.

Above, we have defined a method for estimating the probability distribution for the

true value D given a rounded value Dr, which we can write as p(DI Dr), and similarly

for T. Assuming that rounding of distances and times happens independently, and

that rounding is independent of energy use, we can rewrite the above probability

distribution as an integral over all possible true distance and time values:
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p(Ftr IDr, Tr) = J (Pt |Do, To)p(Do Dr)p(TO|Tr)dDodTO. (3.25)
DO,TO

We are able to estimate this probability distribution by a series of bootstraps.

The bootstrap is a statistical method for approximating a probability distribution

by resampling with replacement from a finite sample of values chosen from that

distribution. The procedure to estimate the distribution of Ftr given a pair of survey

distances and times (D,, Tr) can be best described as a series of steps:

1. Generate a possible de-rounded value the true trip distance Do by drawing

randomly from the distribution p(DoIDr) described in the previous section.

2. Generate a possible de-rounded value for the true trip time To by drawing

randomly from p(TOITr).

3. Use these two values to generate a possible average tractive force Ft, by drawing

from the distribution at that de-rounded distance and time p(Pr IDo, TO).

This process, repeated a large number of times, will reproduce a synthetic distri-

bution that will eventually approximate the true underlying probability distribution,

allowing us to estimate not only the most likely tractive energy requirements of a

NHTS trip, but also the spread of the possible values we could have expected its en-

ergy requirements to take. This exact same process is used to capture drive efficiency

,qdrive as well, which is associated one-to-one with a GPS drive cycle as described

above.

The hardest part of this algorithm is producing a reasonable estimate for the

average tractive force of a trip whose true distance and time are known. In order to

approximate this distribution, we make the assumption that our set of GPS trips is

drawn from a distribution that is locally similar to the underlying distribution sampled

by the NHTS. This does not assume that the underlying distributions of D and T

between the GPS dataset and the NHTS are identical, only that given a certain pair of
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Do and To the mean tractive force distributions are similar. Additionally, we assume

that the probability distribution p(PtrIDo, TO) is relatively constant with respect to

small changes in Do and To. These two small assumptions allow us to approximate

p(PFIDo, To) by randomly sampling GPS trips from a small window of trips that are

"near" Do and To.

Results for similar applications [80] suggest that the exact shape of the window

is unimportant, but that the size of it is. Choosing the size of this window is an

example of the bias-variance tradeoff-a very small window runs the risk of matching

too few GPS trips and hence increasing the variance of the estimate giving results

that are heavily influenced by a small number of GPS trips. A large window picks up

a large number of GPS trips and runs the risk of increasing the bias of the estimator

by smoothing out the real shape of the underlying distribution. Because both dis-

tance and time distributions have heavy tails, the best results were found by using a

logarithmic transform of the data before taking the window, and a square window of

side length 0.25 in log-space was chosen as one that typically matches enough GPS

trips but does not smooth out the heavy tail of the energy per distance distribution.

This bootstrapping algorithm was implemented as follows. For each NHTS trip

with rounded distance and time values D, and T,:

1. Generate 5 possible de-rounded value the true trip distance Di by drawing

randomly from the distribution p(DoID,) described in the previous section.

2. Generate 5 possible de-rounded value the true trip duration T by drawing

randomly from the distribution p(T T).

3. For each of the five pairs (Di, T), generate 10 possible values for the average

tractive force Ptr,ij by drawing from the distribution at that de-rounded distance

and time p(PtrIDi, T).

This produces, for each NHTS trip, a population of 50 possible values Ftr,ij that

represent the uncertainty in that trip's true energy per distance value based on both

rounding of survey data and uncertainty in drive cycle. A schematic representation of
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Figure 3-9: Schematic for the GPS bootstrap procedure in the tractive energy

component of the vehicle model, for the Nissan Leaf. Top: Tractive energy

per mile distribution for trips similar in distance and duration to the HWFET

(highway) drive cycle, which has a duration of 12.8 minutes and covers a distance

of 10.3 miles. In our GPS dataset there were 649 drive histories within the

appropriate time (11.3 to 14.4 minutes) and distance (9.0 to 11.6 miles) windows.

Marked are the positions of the fifth percentile trip (red) and the ninety-fifth

percentile trip (blue) in terms of tractive energy per meter. Also marked is the

position of the HWFET drive cycle (green dashed line), which falls below the

middle 90% range of this sample of real-world trips. Bottom: Velocity histories

of the three trips marked on the above plot.
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the final distribution generated by this process is shown in Figure 3-9. This energy per

distance distribution can be turned into a tractive energy distribution by multiplying

each value by its respective de-rounded trip distance.

Unfortunately, the GPS data is relatively sparse among the very high distance

trips, along with trips with very high or low average velocities. Thus, we found the

need to define an algorithm for what to do with a NHTS trips if there were not enough

"nearby" GPS trips in step 3 to form a distribution. The version of this algorithm

implemented in this thesis sets the minimum number of matched GPS trips at 5. If

the window in log-D,T space around a de-rounded NHTS trip does not find at least

5 GPS trips, the side length of window is doubled. For trips of distance less than

one mile, the window expands to cover trips with the same average speed but greater

distance. For trips of greater than 50 miles, the window shifts to cover trips with

the same average speed but shorted distance. For trips with distances in between,

the window stays centered in the same place but simply expands in size. If after five

window expansions the NHTS trip is still not matched with at least 5 GPS trips, the

NHTS trip is assumed to be physically implausible and is treated as missing data.

Thus, for each physically plausible NHTS trip, this algorithm produces a set of 50

values representing the expected variation of that trip's tractive energy requirements

and drive efficiency.

3.3.4 Ambient Temperature

As shown in Section 3.2, a vehicle's total energy consumption over a trip depends on

both the drive energy devoted towards movement and the auxiliary energy devoted

primarily towards climate control. A simple model is described there to estimate

a vehicle's average rate of auxiliary energy consumption as a function of external

temperature. Unfortunately, external temperature is not a quantity measured by

the NHTS, so estimating this auxiliary power function requires an estimate for the

external temperature when each NHTS trip was taken. Section 3.3.3 describes a prob-

abilistic method for matching NHTS trips with GPS drive cycles-below is described

a similar method for matching NHTS trips with local temperatures from the Typical
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City Weather Station

New York, NY JFK
Riverside, CA Riverside Municipal Airport
Los Angeles, CA LAX
Miami, FL Miami/Kendall Tamia
Phoenix, AZ Deer Valley/Phoenix
Washington, DC DCA
Houston, TX Ellington Air Force Base
San Antonio, TX Kelly Field Air Force Base
Tampa, FL TPA
San Francisco, CA SFO
San Diego, CA San Diego Miramar NAS
Dallas, TX Dallas/Redbird Airport

Table 3.5: TMY weather stations matched with CBSA definitions found in the
NHTS, for 12 of the NHTS cities with the greatest number of survey respondents.
This matching, performed for each location in the NHTS, allows for ambient
temperatures to be associated with NHTS trips.

Meteorological Year dataset [67].

To begin, the location of each NHTS household must be matched with a nearby

weather station represented in the TMY database. To do so, we used two household

location variables given in the NHTS-state and Core Based Statistical Area (CBSA)

identifierO. First, each CBSA was matched with a weather station by name (a sam-

ple containing the cities with the most respondents is shown in Table 3.5). Trips

corresponding to households within a CBSA were then matched with that CBSA's

temperature profile. However, some households were not located in CBSAs. For

those households, matching was based on the state-each household was randomly

assigned to one of the weather stations located in its state. This procedure allowed

every NHTS trip to be associated with one year's worth of hourly temperature data.

Once a NHTS trip is matched with a weather station, it is matched with an

ambient temperature by taking into account the month during which the trip was

'0The CBSA is a geographical entity defined by the Census Bureau as the measure of a city's
geographic area of influence, by their definition a CBSA consists of "one or more counties and
includes the counties containing the core urban area, as well as any adjacent counties that have a
high degree of social and economic integration (as measured by commuting to work) with the urban
core."
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taken and the trip's start time. The combination of month and time leaves, for each

NHTS trip, a set of 28 to 31 possible external temperatures in the TMY dataset,

depending on the number of days in the month. The bootstrap method defined in

Section 3.3.3 produces a set of 50 possible trip tractive energy and drive efficiency

values. Thus, for each NHTS trip, 50 temperatures are sampled with replacement for

the set of possible temperatures and each is paired with a boostrap tractive energy

and drive efficiency, producing an estimate for all of the components in the trip's total

energy consumption defined in Equation 3.2.

3.3.5 Validation

The expected accuracy of our calculated energy totals was estimated using 10-fold

cross validation. To do so, the GPS dataset was divided into 10 roughly equally sized

groups. One group was chosen as the test set-a fake survey dataset was created

by rounding the trip distance and time values using the same process estimated in

the de-rounding procedure. The tractive energy for the trips in this test dataset was

then estimated through the energy method described above, using the remaining 9

groups of GPS trips as the validation set used in the bootstrap. The comparison

between these predicted energy values and their true values gives an estimate of the

accuracy of the energy method. This cross validation showed that the mean square

error for a trip's tractive energy was 6% of the square of the sample mean. The total

energy estimate for the test set was always within 2% of the true value, typically an

overestimate of 1.5%.

The bootstrap method can be compared to a method that estimates a trip's energy

by taking the average energy consumption per unit distance of the validation set and

multiplying that by the distance of each trip in the test set. This can be thought

of as the best possible method of estimating energy consumption based on a single

"Miles per gallon" equivalent value. This MPG method understandably performs

slightly better at estimating the total energy consumption of the test set, with the

average error being an overestimate by 0.8%, compared to 1.5% for the bootstrap

method. However, the mean square error for estimating trip energy with the MPG
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method is 12% of the square of the sample mean, compared to 6% for the bootstrap

method. This suggests that the method proposed above sacrifices a small amount of

accuracy with regard to estimating energy totals in order to gain additional accuracy

in approximating variations in energy consumption between trips of the same distance.

3.4 Vehicle Trip and Vehicle Day Energy Distribu-

tions

Finally, given a probability distribution of the energy requirements of each POV trip

in the NHTS, it is useful to combine those individual trip energy distributions into

distributions over various combinations of trips, which allows for a better understand-

ing of the typical energy requirements of POVs under different use conditions. The

analysis presented in the remainder of this thesis often deals with one of two possible

energy distributions-one over vehicle trips or one over vehicle days.

Vehicle Trip. A vehicle trip is every NHTS trip for which the survey respondent

was the driver of the vehicle. This added qualification avoids double counting, as trips

where multiple family members were in the vehicle show up in the NHTS once for

each family member. The total energy consumption for the US or some geographical

subset of it, for example, is the expected value of the weighted sum of the various

vehicle trip energy distributions.

Vehicle Day. A vehicle day is the set of all vehicle trips taken by an individual

vehicle over the course of its household's travel day, and thus the distribution of

vehicle day energy consumption is the distribution of the sum of the energies of all of

a vehicle's trips. Not every vehicle trip in the NHTS belongs to a vehicle day- about

2% of all vehicle trips in the NHTS are not assigned a unique vehicle number, either

in error or because it was taken in a vehicle not associated with that household.

In an effort to correct for sampling bias, the NHTS provides a set of weights

for each person and household in the survey, with the intention that all sums and
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distributions calculated from the NHTS data include these weights. These weights

are calculated in order to account for the fact that some populations are sampled

heavier than others and to ensure that population-level demographic information,

such as age, income, and location distribution, all match observed quantities. Thus,

in order to come up with a vehicle trip or vehicle day energy distribution for some

sub-population of the NHTS data, we let each trip or day count for a number of trips

or days defined by its NHTS weight and then divide by the total NHTS weight of all

of the population studied.

3.5 Performance Metrics

While the vehicle trip and vehicle day energy distributions are often interesting in

their own right, here we propose three metrics based on these distributions that allow

for a better understanding of a vehicle's performance under real-world use. These

three metrics can be evaluated over all US driving behavior as well as any subset of

it. In the next section, we often divide up travel behavior into residents of different

cities, examining how EVs compare to ICEVs for locations that differ in both climate

and travel behavior. Similar comparisons are possible for many other classifications

of drivers-by income, by typical commute, by distance from work. These metrics

are chosen in order to illustrate the most important current constraints facing EV

adoption and how successfully different technologies would be able to overcome these

barriers.

Because these are fundamentally questions of technology choice, it is helpful to

define that choice precisely. To that end, in producing these metrics, we consider

only two vehicles-the 2013 Nissan Leaf and the 2014 Ford Focus-and we model

the technological choice between EVs and ICEVs as a choice between those two ve-

hicles. While this simplification is certainly an unrealistic one, it helps distill all of

the variables defining POV choice, many of which have nothing do to do with the

underlying technologies, into a simplified framework where the costs and benefits

of EV and ICEV technology can be compared independent of other factors such as
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aesthetics, design, and price. These two vehicles are chosen because they both are

designed in order to meet a mass-market audience, of relatively affordable relatively

small everyday vehicles.

All of these metrics are calculated based on vehicle day energy distributions, as,

with limited charging infrastructure, a vehicle day is the closest possible measurement

for the amount of energy consumption between charging events. The vehicle day

energy distribution, then, is more closely tied to range requirements that still are

a barrier to EV adoption. In the limiting case where fast charging infrastructure

was available everywhere, metrics based on vehicle trip energy distributions would be

more appropriate.

In defining these metrics below, we look at the predicted EV and ICEV energy

requirements for a set of N vehicle days (subscript i) and a set of k bootstrap 'worlds'

(subscript j). We define the EV use energy requirements of a certain bootstrap vehicle

day as E!V, and the ICEV use energy requirements of that same bootstrap vehicle

day as E! CEV

Adoption Fraction. We define the Adoption Fraction as the portion of vehicle

days that an EV could replace on one charge:

I N k

AF = k E E (E-v < Echarge)Wi (3.26)
k zo =1 j=1 Z

where Echarge is the usable energy in the EV's battery and the delta function 6(E v <

Echarge is one when the trip's energy requirements are less than the usable battery

capacity and zero otherwise. The usable energy is typically less than the total ca-

pacity of the battery, as fully charging and discharging a battery tends to degrade

its performance over time. Thus, many vehicles, including the Nissan Leaf, include a

state of charge (SOC) window with the vehicle software, limiting the possible depth

of discharge to 80% to 90% of the total battery capacity. We choose a SOC window

of 80% of the battery capacity, as that is the value used in the EPA range estimates.
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This estimate is not intended to be a direct measurement of the number of EVs

that could be sold-because we do not have longitudinal data, it is impossible to say

that just because a vehicle did not exceed the battery capacity on its NHTS travel day

does not mean that it never would. However, this measure is still a valid measure of

the possible technological market size for EVs, especially in a world where car-sharing

and ride-sharing make it easier to base vehicle choice on the needs of its daily use.

Expected Energy Use. Another useful measure of the expected impact of increas-

ing adoption of EVs is how much energy they can be expected on a day to day basis.

This measure can be useful in understanding the impacts of EVs on the electric grid

and on power plant emissions, for example. Understanding expected EV energy use

is not a trivial question-range-limited EVs can be expected to be preferentially used

on shorter distance vehicle days, and EVs tend to perform differently on shorter trips

than longer trips. Thus, a complete understanding of expected EV energy consump-

tion requires a detailed coupled vehicle and demand model as presented above. We

define an EV's expected energy use as:

N k

Z Z EVW6(EPv < Echarge)
i=l j=1

E = 'icharge N k (3.27)

Z Z Wis(Ejv < Echarge)
i=1 j=1

which is the average value of the vehicle day energy consumption over all vehicle

days where the vehicle is driven. This is different than the average daily energy

consumption of a vehicle over the course of a year, because vehicles are driven on

average approximately 300 days a year.

Potential Gasoline Displacement. Finally, one of the major proposed benefits

of a switch to EV technology is that they will decrease gasoline consumption, which

is not only associated with greenhouse gas emissions but also many other localized

pollutants. This motivates a metric that measures the potential reduction in gasoline
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consumption if all vehicle days that could be covered with an EV were covered with

an EV:

N k

Z Z ELfEVWi Egv < Echarge)

GDP= i=j=1 N k (3.28)

Z Z E!CEVW.
i=lj=1

Again, this is not intended to be a simulation, or a plausible scenario of the eventual

adoption of electric vehicles. Instead, it is intended to outline a contingency scenario

capturing both the effects of EV market size potential and of ICEV performance. For

instance, increasing EV battery capacity will increase the potential gasoline displace-

ment by allowing a larger portion of vehicle days to be covered by EVs. However,

if those newly-covered trips tend to be mostly high-speed highway trips, trips over

which EVs operate inefficiently and ICEVs operate efficiently, improvements to the

GDP will be less dramatic than if the newly-covered trips were stop and go city trips

with better EV performance. This metric is intended to both capture the potential

of EVs as mitigators for gasoline consumption, but also the potential for diminishing

returns of increased battery capacity.

The combination of these three metrics paints a uniquely complete picture of the

adoption potential, energy impacts, and gasoline mitigation potential of EV technolo-

gies in a way that is usage-specific but agnostic of technological inertia. By presenting

the real-world performance of POV technologies in this way, we intend to clarify the

fundamental technological choice between EV and ICEV technology.
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Chapter 4

Results

The POV trip energy model presented above turns a set of travel survey trip records

into a probability distribution of vehicle trip and vehicle day energy requirements,

calibrated to match data independently collected on vehicle performance, GPS ve-

locity history, and historical weather. In the following section, this model is applied

to the National Household Travel Survey-a large scale and nationally representa-

tive dataset on US travel behavior. We seek to answer fundamental questions about

the ability of electric vehicle technology to meet existing POV travel needs and how

EVs should fit within larger pathways to decarbonization of the transport sector. A

selection of these results are also presented in [62].

The questions raised below fall into four major categories-EV performance, EV

adoption potential, the variations in technological requirements between cities, and

the benefits of continued improvement in vehicle battery capacity. In looking at

EV performance, we combine a detailed vehicle model with detailed climate data

and nationally-representative trip histories to examine how and to what extent ve-

hicle range and energy consumption are effected by weather, driving behavior, and

commuting patterns. Nation-wide estimates of EV adoption potential suggest that

current EV technology, embodied in the 2013 Nissan Leaf, is already able to replace

approximately 87% of ICEVs on a given day-reducing gasoline consumption by ap-

proximately 61% compared to a similarly sized and priced ICEV. Examination of EV

performance across a large sample of US cities shows that, even though local climate
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and travel behavior can vary greatly, EV adoption potential remains remarkably con-

stant and remarkably high across cities. For EVs to offset a much greater portion

of gasoline consumption, however, we find that both dramatic increases to battery

storage capacity and a shift from short urban trips to longer suburban and rural ones

are required.

4.1 Real World Vehicle Performance

Range anxiety-the worry of unexpectedly running out of battery charge-has often

been cited as a barrier to widespread EV adoption [20]. To better inform potential

customers of these limitations, the US EPA publishes an expected range for each

tested EV based on the results of their dynamometer testing. For example, given a

battery size of 24 kWh (86.4 MJ), and an allowed depth of discharge of 80%, the EPA

predicts 2013 Nissan Leaf to have an all electric range of 73 miles in keeping with its

rated equivalent fuel economy of 115 MPGe. The EPA warns that this range is only

an average value, however, and indeed a vehicle's true range-the distance driven on

one charge-can vary significantly based on factors such as driving aggressiveness,

use of auxiliary electronics, and amount of regenerative braking. There have been a

great number of studies of EV and PHEV all-electric range [81, 45, 42, 76], studying

the effects of driving style and weather on range experienced during realistic driving.

These studies typically focus exclusively on one particular issue-looking at variations

in auxiliary energy use while keeping drive energy use constant or vice-versa-and

none look at sources for regional variations in range beyond temperature.

The trip energy model presented in this paper is able to add to this understanding

by of vehicle range incorporating more detailed data on national commuting patterns.

Most studies estimating EV range calculate range based on the vehicle's mean energy

consumption per unit distance, with that average taken over all trips. This method

can lead to biased results if that metric is used to calculate whether a given vehicle

day will exceed a battery's energy capacity. For instance, simple differences in trip

characteristics can have dramatic impacts on vehicle auxiliary energy use-increasing
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Figure 4-1: Relationship between mean vehicle day speed (mi/hr) and vehicle
day distance (mi), showing that longer vehicle days tend to involve higher speed
driving. In terms of auxiliary use, this means that all else equal the per mile
auxiliary energy consumption of longer trips will be less than for shorter trips.

a car's average velocity over the course be 50% of a trip will decrease its auxiliary

energy consumption by one third if auxiliary power remains constant, because those

climate auxiliaries are using energy for less time during the trip. This phenomenon

can have significant effects on vehicle range that are not captured in common models.

More than half of vehicles driven over the course of a day in the United States

travel less than 25 miles in that day. For a vehicle with typical range of over 70

miles, that vehicle's performance over these much shorter vehicle days should have

little to no bearing on the vehicle's estimated one-day range. The NHTS shows that

trips of 73 miles average approximately 38 miles per hour, while trips of the median

vehicle day distance of 24 miles average approximately 26 miles per hour. Thus, we

would expect vehicle days for which the range constraint becomes relevant to devote

comparatively less energy to auxiliary use per mile traveled than the typical vehicle

day.

If the goal of publishing a vehicle range is to estimate the vehicle day distance

around which a user should expect a range constraint to become binding, then, taking

average per mile energy consumption over all vehicle days biases range estimates for

vehicle days near the cutoff range value. This phenomenon of decreasing auxiliary
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Figure 4-2: Probability that a vehicle day of a given distance exceeds a battery

energy threshold, given the 2013 Nissan Leaf power train. The results are shown

for the Leaf with two battery sizes, corresponding to current battery capacity of 24

kW (blue) and a 60 kW battery and current battery mass (red). The background is

the vehicle day length distribution. The results show that increasing the capacity

of the battery by 150% in the Leaf would increase its median range from 74 miles

to 173 miles. This median range of 173 is less than 2.5 times the current median

range of 74 miles because longer vehicle days, where the improved maximum range

becomes relevant, have a higher portion of high speed highway driving, over which

the Leaf performs less well than on stop and go driving.

energy consumption with increasing vehicle day distance, however, must be tempered

with the fact that EVs tend to perform less efficiently during highway driving, which

likely accounts for a greater proportion of driving on long vehicle days. Our energy

model is the only way of accurately weighing these competing effects.

Figure 4-2 shows a more nuanced picture of EV range based on outputs of our

vehicle energy model. To create it, all trips were combined into bins of similar dis-

tance, and the likelihood of a vehicle day's energy consumption exceeding the Leaf's

battery capacity was calculated separately for each bin. These results show that an

EV's "range" can only be expressed with very limited precision. Our model predicts

74 miles as the distance for which half of all vehicle days could be covered on one

charge and half could not. However, given the variation in actual driving behavior,

our model as shown in Figure 4-2 predicts that 5% vehicle days of 58 miles could

not be covered by existing batteries, and 5% of vehicle days of 90 miles could. The
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predicted median range of 74 miles roughly matches the EPA's range estimate of 73

miles, suggesting agreement between the two methods for vehicle performance under

average use. Interestingly, the electric equivalent miles per gallon rating for the Leaf

averaged over all vehicle days in our study was 109.7, lower than the Leaf's EPA-rated

MPGe of 115. A MPGe rating of 109.7 would suggest a range of approximately 71

miles, which implies that the vehicle days falling near the current range constraint

tend to be less energy intensive per mile than vehicle days on average.

Our model also allows an understanding of the tradeoffs inherent in the engineering

decisions behind battery size. The Tesla Model S offers a version with a battery

capacity of 60 kWh, 150% greater than that of the 2013 Leaf. If the Leaf's battery

capacity were increased to 60 kWh, keeping the overall specific energy of the battery

system constant (and thus increasing the initial battery mass of 275 kg to 687.5

kg [82]), we would expect a median range of 166 miles, with 90% of range values

falling between 135 to 200 miles. If battery specific energy were improved and the

battery capacity could be increased to 60 kW while keeping total mass the same,

we would expect the median range to increase again to 173 miles. This relatively

small negative impact on range owing to the added battery mass is an indication that

battery specific energy is likely not the most important constraint limiting electric

vehicle range-instead, manufacturers are limited by the desire to keep costs low and

volume constraints limiting battery size, suggesting that increases in specific energy

and decreases in cost must come with increases in battery energy density for them to

be truly impactful.

We also see that increasing the battery's energy capacity by 150% without increas-

ing its mass would only increase median range by approximately 130%, highlighting

the nonlinear relation between vehicle range and energy capacity. Longer vehicle days

tend to include greater proportions of high-speed highway driving, trips over which

EVs tend to be less efficient. Our finding illustrates the value of having a model based

in real drive cycles and on using observed trip-chaining to combine vehicle trips into

vehicle days. A purely MPG based energy method will not capture the expected vari-

ation in range, nor will it capture the decrease in vehicle performance on long distance
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days. When considering vehicle range, our results highlight the general conclusion

that increasing a vehicle's battery capacity will allow it to perform a wider range of

functions, including functions, such as highway driving, over which it performs com-

paratively poorly. Assessments of the impact of technology change should not only

account for the functions that the technology is currently serving, but also for the

functions that the improvements will allow the technology to serve.

4.2 Energy Use Across the US

The three performance metrics defined in the Section 3.5 are helpful in understand-

ing the expected adoption potential, energy consumption, and gasoline displacement

potential of existing EV technology. Despite all of its current drawbacks and barri-

ers to adoption, we find that the current market for the Nissan Leaf is surprisingly

large. The Adoption Fraction calculated from the national EV vehicle day energy

distributions suggest that, on any given day, 87% of vehicles that are driven could be

replaced by a Leaf without needing mid-day charging. Of those vehicles, we would

expect them to draw an average of 7 kWh of energy from the electric grid over the

course of the day. If all vehicles that could be replaced with EVs on one charge were,

we would expect typical additional electricity demand of approximately one billion

kilowatt hours per day, approximately 10% of current US electricity demand for all

sectors [1], although that demand would likely not be spread evenly over the course of

the day. Further, we would expect this level of EV adoption to reduce daily gasoline

consumption by 60%, amounting to a savings of 220 million gallons of gasoline per

day.

While these adoption levels are an entirely unrealistic short term policy goal,

they do provide an order of magnitude estimate of the adoption limits of current

technology and the effects of widespread adoption might look like. Examining these

scenarios in detail can help inform how to craft policies and develop technologies

that are able to replace the largest number of ICEVs and the largest portion of

existing gasoline consumption with the smallest possible additional energy impact.
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To do so, it is helpful to look at EV performance and adoption potential in different

sub-regions of the United States. By looking at variations in performance, it will be

helpful to identify what potentially reproducible aspects of certain metropolitan areas

make them particularly ripe for EV technology adoption, and it will also be helpful

to identify what are the main root causes of the additional barriers to adoption in

locations where EVs do not perform well. Further, as urban populations continue to

grow and as contemporary technology and policy choices will likely shape the direction

of this future growth, these comparisons are useful not only in understanding static

technology performance, but also the potential impacts of long-term policies that

prioritize certain types of or locations for urban growth.

EV energy consumption related to climate auxiliaries is a natural place to start

this analysis. As the US contains many different climates, and as temperature can

greatly effect EV energy consumption, it is plausible that differences in climate can be

a large driver in differences in EV adoption potential and hence an important target

for technological improvement. Others have studied the effect of location on EV range

and energy consumption [42, 76]. However, these models have treated per mile drive

energy consumption and trip average velocities as constants across regions, neither

of which is necessarily the case, and both of which could have competing effects on

energy consumption. The model presented here allows the weighing of climate effects

on regional variations in EV range with effects arising from differing travel behavior.

In looking at variations in EV range between US cities, we end up with results

that are roughly similar to Yuksel and Michalek [42] but differ from those presented

by Kambly and Bradley [76]. The results in the work of Kambly and Bradley tend

to penalize areas with hot weather, finding the highest range values in Alaska and

Michigan, two very cold states. These results are in conflict with results presented

here and elsewhere, which find that cold climates are less suitable for EV adoption.

In looking at differences in mean range between cities, we tend to find lower ranges

in cities such as New York, Buffalo, and Chicago that experience colder winters,

compared to cities such as Miami and Tampa, which are temperate for most of the

year. Yuksel and Michalek present a model based on mean energy consumption
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Figure 4-3: Average range within study metro areas, showing the negative effects
of hot or, especially, cold climates on EV range. Here range is estimated by taking

average per mile energy consumption for trips with energy needs within 25% of the

cutoff value. The cities Chicago and Buffalo were added to the sample despite

having comparatively lower representation in the NHTS in order to include a

larger number of cities that experience a significant amount of cold weather.

These cities, along with cities such as New York and Washington, DC, that also

experience some cold weather during the year, tended to have lower typical vehicle

ranges.
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per unit distance as a function of external temperature captured by onboard data

loggers in the Nissan Leaf and find qualitatively similar patterns and quantitatively

similar ranges for the medians and the 25 to 75 percentile range of their data. While

their findings support the general findings presented here, their results show much

less variability captured in the trips with the highest and lowest 25% of the range

values. This difference is likely because our model captures differences in trip-to-

trip energy consumption due to factors other than temperature as well as purely

temperature-based ones. Comparison of results suggest that these variations do not

have a dramatic effect on typical vehicle performance, marked by the medians of

the range distributions, but it can have significant effects on behavior at the tails of

the distributions. While the medians might be more relevant to measuring aggregate

performance, the outliers might be more important to individual consumers interested

in vehicle range on atypically inefficient days.

While EV range can vary significantly between cities, however, that is only one

component in understanding the suitability of current EV technology to meet travel

needs. Independent of vehicle performance, travel behavior and the resultant demand

it places on POVs varies greatly between cities as well. Even in a city where climate

provides significant limitations to EV range, if typical driving distances in that city

tend to be shorter than average, EVs could potentially replace a greater than average

portion of vehicle days, even though they perform comparatively poorly on them. To

better understand this tradeoff, and to better understand how the demand placed on a

vehicle can vary-or not vary-from city to city, we consider in detail the comparison

between New York City, NY, and Houston, TX, as a case study. In doing so, and

for the rest of the analysis presented here, we define a city's metropolitan area as

the Core Based Statistical Area (CBSA) surrounding the city proper. Because these

CBSAs are generous definitions of the city's boundaries, often extending far into the

suburbs, we limit the following analysis to areas with population density of over 1,000

persons per square mile-a limitation that keeps approximately all inhabited areas

within a city's boundaries but removes many low density far off suburbs whose travel
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Figure 4-4: Left: Population density maps of New York (top) and Houston
(bottom). Both maps are to the same scale and have the same color scheme, with

the units of population density persons per square mile. Right, top: Temperature
histories in New York and Houston, with the shaded range 7 day averages for
daily high and low temperatures and the middle line a moving average of daily

mean temperature. Right top middle: mode split for cities POV miles per capita,
showing the portion of total trips taken by each mode of transportation. Right

middle bottom: POV miles per capita across cities. Right bottom: Vehicles per

capita across cities, as contained in the NHTS vehicles data file. Population

density data from [831.

90



behavior likely has little to do with that of residents in the center cityl.

By most conceivable metrics, travel behavior and technological demand is as dif-

ferent between New York and Houston as it can be for any pair of major cities in the

United States. The comparison is illustrated in Figure 4-4. Houston is a fast growing

city in the sunbelt region of the US. With its surrounding metropolitan area, Hous-

ton had a population of just under six million during the 2010 census. Its population

drew dramatically in the middle of the 20th century, coinciding with the growth of

the Interstate Highway system and the rise of the POV as the primary mode of trans-

portation in the United States. As a result, Houston is a very sprawling city, with

vast areas of land built up at a moderate population density but few clusters of dense

urban development. Approximately 80% of all trips taken in the Houston area are by

car, and the average person in Houston drives approximately 18 miles a day. Both of

these totals are among the highest of the NHTS metropolitan areas studied here.

In almost every way, New York City is a very different sort of city from Houston.

Its surrounding metropolitan area housed almost twenty million people in 2010, over

eight million of whom lived in New York City proper. Unlike Houston, New York's

population boomed in the 19th and early 20th centuries, a time before POVs were

widespread as a means of transportation. As such, its development patterns are

much denser, focused around walking, horse cars, and, eventually, the most widely

used subway system in the United States as primary means of transportation. Still, in

the New York metropolitan area, approximately 60% of trips are taken by car. This

is in part due to the inclusion of suburbs in New Jersey, Connecitcut, and Long Island

within the CBSA boundaries, but it belies the fact that even in New York, cars play

a very important role in daily travel behavior. Still, when compared to other cities in

the United States, New York is among the least car reliant metropolitan areas, with

the lowest value of daily POV miles per capita and vehicles owned per capita of all the

major metro areas studied. Like the rest of the coastal eastern United States, New

York experiences strong seasonal weather, with hot and humid conditions during the

'These low population density regions are shown as the cross-hatched areas in the maps in Figure
4-4.

91



0.07 . . . . . . . . . . . .

0.06 - New York
Houston

0.05 -

( 0.04 -
0

0.03 -
0

O 0.02

0.01

0
10~1 10 0 10 110 2

Vehicle Day Energy (kWh)

Figure 4-5: Vehicle day energy distributions for the metropolitan areas of New

York, NY, and Houston, TX. Despite great differences in climate and travel de-

mand between the two cities, the energy requirements placed on EVs are remark-

ably similar.

summer and stretches of weather at or below freezing during the winter, providing

plenty of opportunity for both air conditioner and heater use. When compared to a

set of other major US cities, as is done in the right portion of Figure 4-4, Houston

and New York fall towards the extremes of most measures of car dependence.

Despite all of these dramatic differences in city form, travel behavior, and weather,

the actual vehicle day energy distributions of New York and Houston are remarkably

similar. Histograms of these distributions are shown in Figure 4-5. At first glance, one

might expect residents of Houston, a much more auto-oriented city, with much more

driving per capita, to place much more demand per day on a POV. Indeed, Newman

and Kenworthy [26] and many others have shown that per capita dense cities such as

New York have much lower rates of energy consumption than sprawling low density

cities such as Houston, a fact that is supported (if complicated) by a wide body of

research [26, 28, 34, 55, 29, 13]. Our results do not contradict previous because our

results are not per-capita but instead per vehicle day. This behavior is likely in part

because, as in [30], vehicle use and vehicle ownership is a choice that households

make based on their transportation needs and the options available to them. In a

city such as New York, where much of the population has easy access to very good
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Figure 4-6: Left Main: Histogram of EV vehicle day energy consumption for

the entire US. Center: Adoption potential (purple) and Gasoline Displacement

Potential (Red) across the US. Right: Values of these three quantities in different

cities across the US. All twelve cities shown here perform equally well or better

than the US average by these three metrics of EV performance.

public transit and where owning a car can be both inconvenient and expensive, a

family will typically only own a car if its circumstances demand that the car will be

used relatively heavily. Further, New York, with its immense areas of dense, walkable

neighborhoods, is surrounded by similarly immense sprawling suburbs. In general,

we see that the differences in per-capita energy use between Houston and New York

arise from differences in vehicle ownership, vehicle occupancy, and travel mode split,

rather than in differences in the energy consumption of individual vehicles.

Looking at a larger set of cities, we continue to see similarities in per vehicle energy

consumption. But, while the differences between cities are small, comparing a larger

sample of cities draws out some patterns in the variations in EV performance and

adoption potential. For instance, we see that for all three metrics discussed-adoption

potential, expected energy use, and gasoline displacement potential-all cities in our

sample perform equivalently or better than the US on average, suggesting that there

is some truth to the arguments that current EVs will be most effective in cities for

early adopters. Further, among the cities studied, different measures of EV suitability
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tend to align with each other. We predict that electric vehicles in Richmond, VA,

for example will be able to replace the lowest portion of ICEVs, will do so with the

highest electricity expenditures per vehicle, and will be the least effective at displacing

gasoline consumption. On the other hand, EVs in Phoenix, AZ, would be able to

replace the highest portion of ICEV days, with the third lowest per vehicle electricity

use, and with the third highest reduction in gasoline consumption.

Indeed, the fact that some of these measures appear to be related should not come

as much of a surprise. Vehicles with a fixed range will tend to be able to cover fewer

vehicle days and replace less gasoline in cities with longer typical travel distances, and

cities with longer typical travel distances likely have more miles driven in a typical

day beyond the range of an EV that therefore most be covered by ICEVs.

Perhaps conveniently for EV adoption, many of the best performing cities are

among the fast-growing, sprawling, car oriented cities located in the sun belt region

of the southern and western United States, including cities such as Phoenix, Miami,

and Los Angeles. This corresponds with the findings of Creutzig [55], who suggested

for focus on EVs in warmer cities with already large amounts of driving. The direct

causes for these phenomena, in terms of travel patterns and expected EV performance,

appear to rooted as much or more in EV performance than in travel behavior. Table

4.1 show various measures of both POV performance and demand for the 13 cities with

the greatest number of NHTS respondents. Some patterns of travel demand appear

to make cities less suitable for EV adoption, as Dallas, TX, and Richmond, VA-

the cities with two of the three highest average POV distances per vehicle day-also

measured the lowest in terms of potential EV adoption fraction. Vehicle performance

also appeared to play a role, as the two cities with the highest fuel economy MPGe

rating, Miami, FL, and Los Angeles, CA, also scored among the highest in terms of

adoption potential and gasoline displacement potential.

It is not directly obvious, however, whether these variations are due to underlying

differences in travel patterns or due to specifics of EV technological performance.

Figure 4-7 shows mean EV vehicle day energy consumption plotted against mean

ICEV energy consumption for the 12 cities with the most NHTS respondents. This
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Figure 4-7: Mean per vehicle day energy consumption by vehicle technology
under different assumptions of EV adoption. The y-axis shows average gasoline

consumption per vehicle day in various cities, assuming an equivalent vehicle

(a 2014 Ford Focus) is used for all trips. The x-axis shows the expected EV
energy consumption per vehicle day of different cities, assuming only vehicle days
where the 2013 Leaf would not require recharging (green circles), where a Leaf
with improved battery capacity would not require recharging (blue triangles), and
where the Leaf replaced all POV driving (red squares).
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Metro Area Sample D (mi) V (-) MPGe AP EEU PGD Veh/Cap

San Diego 6,339 33.7 28.7 120.4 91.5% 6.65 72.4% .701
Dallas 5,681 37.3 29.5 114.4 89.5% 7.24 67.2% .717
Los Angeles 5,200 32.0 24.8 126.3 92.2% 6.07 75.0% .615
Phoenix 4,746 30.2 26.7 118.3 94.0% 6.78 80.4% .640
Miami 4,185 32.4 24.2 128.5 93.7% 6.35 78.8% .620
New York 4,143 33.4 25.3 104.8 88.5% 6.70 63.9% .459
Houston 3,872 38.4 36.2 118.8 89.0% 6.95 69.7% .664
Virginia Beach 3,051 31.8 26.6 117.7 92.7% 6.79 76.0% .764
San Francisco 2,375 32.3 26.7 117.8 89.9% 6.29 69.4% .689
Tampa 1,931 30.3 25.5 127.1 93.7% 5.85 77.2% .685
Richmond 1,771 37.9 30.4 108.5 87.8% 7.10 61.7% .772
San Antonio 1,718 36.7 28.9 117.2 90.6% 7.29 70.3% .684
Washington 1,679 34.3 25.3 109.0 88.9% 7.22 69.9% .644

Urban 123,202 35.0 28.1 110.6 89.1% 6.67 64.5% .700
Rural 52,985 46.5 35.3 107.8 80.8% 8.27 52.2% .900

All US 176,186 37.9 30.0 109.7 87.0% 7.04 60.9% .747

Table 4.1:
States.
average

Vehicle day statistics for eight metropolitan
Sample is the number
vehicle day distance, V

of vehicle days observed in
is average velocity, MPGe is

egions in the
the NHTS, D
the electricity

Jnited
is the
equiv-

alent gas mileage (including charging losses). AP, EEU, and GDP are the metrics
described in the previous section: AP is the adoption potential-the portion of
vehicle days that could be covered by the vehicle on one charge, EEU is the ex-
pected energy use, the mean energy consumption (in kWh) of all vehicle days
that could be covered by the Leaf, and GDP is gasoline displacement potential,
the portion of gasoline consumption that could be replaced by the Leaf, assuming
a Ford Focus as the comparable ICEV. Veh/Cap is the number of vehicles per
resident of the metropolitan area.

relationship is shown under three EV energy use assumptions-that EVs only cover

vehicle days that could be taken on one charge with current battery capacity (green

circles), that they only cover vehicle days requiring less than 55 kWh of energy2, and

that EVs cover all vehicle days. The plots show that, for current battery capacities,

there does exist a weak relationship between ICEV energy consumption and EV

energy consumption, showing that some of the differences in EV energy use are due to

underlying technology-agnostic aspects of local travel behavior. The deviations from

the trend can be attributed to differences in technology-specific vehicle performance

between cities, either due to range constraints masking the effects of longer vehicle

2This number corresponds to the leaf having a battery with the ARPA-E target specific energy
of 200 W/kg and its current mass [84, 82].
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days on average energy consumption or differing efficiency between ICEVs and EVs

driving up or down energy consumption across the same set of days.

As battery capacity increases, both the relationship between EV and ICEV energy

consumption and the deviations from the trend become stronger. For the case where

EVs are able to cover all vehicle days, deviations from the trend are due only to

differences in EV and ICEV performance within cities, because the underlying travel

demand met between the two technologies is identical. Thus, cities to the far left of

the trend line-notably Miami, Houston, and San Antonio, are cities where ICEVs

can meet existing travel demand using comparatively less energy when compared

to ICEVs. Cities to the far right of the trend line, such as San Francisco, Virginia

Beach, and New York. These results suggest that, as EVs become able to cover higher

portions of travel needs, variations in EV energy consumption relating both to vehicle

performance and underlying travel demand will become more important. The reasons

for this behavior can be found by examining in greater detail the underlying vehicle

day energy distributions.

4.3 Importance of Scaling Behavior

The heavy-tailed nature of the vehicle day energy distribution is both precedented in

the literature and has in itself implications for EV adoption and energy use, especially

as EVs with greater storage capacities become available. It has been shown that

individual travel patterns tend to follow heavy-tailed distributions [23]. Particularly,

it has been found that the distribution of trip lengths tends to decrease as a power

law for large distances [25, 24]. We see in Figure 4-8 that vehicle day energy use also

tends to follow a heavy tailed distribution. The left panel of Figure 4-8 shows the

probability density functions for vehicle day energy for fifteen US cities on a log-log

scale. Towards the right side of the plot, the tails of the PDF become linear, a result

of a power law tail of high-energy vehicle days.

However, the right panel of Figure 4-8 shows that at current battery sizes (depicted

by the left dashed line), the PDF of vehicle day energies is still decreasing roughly
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Figure 4-8: Left: Probability Distribution Function for vehicle day energies
on a log-linear scale, with the straight line representing an exponential decrease
of p(E) oc e-E/ 2.5 (with E in GJ). Right: Same plot on a log-log scale, with

a straight line representing power law decrease p(E) cx E-2.8. The dotted lines

on the plot show current Leaf available battery energy (left) and target battery
energy (right). These plots show a crossover to power law scaling behavior, where
the heavy tail has strong influence on the mean of the distribution, from an

exponential tail, where the tail has less of an influence on the mean. This crossover

happens within the range of expected battery capacities.
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exponentially, showing linear behavior on a plot with a logarithmic y axis. This

linear regime ends around the right dashed line, depicting battery storage capacity

ARPA-E target specific energy and current mass [84, 82]. This behavior suggests that

the "plausible" vehicle days are much more homogeneous than the sample as a whole

and that a large portion of the variation in energy use per vehicle day between cities

comes from vehicle days that are too energy intensive to be covered on one charge

with current technology.

These functional forms help explain why the EV energy demand between cities

is so similar. In the Figure 4-7, we see that ignoring these high energy vehicle days

further decreases in the variation in mean vehicle day energies between cities. The

relative similarity of mean expected EV energy consumption between cities is also to

be expected, as introducing an energy cutoff truncates the positive tail of the energy

distribution, removing high energy vehicle days with outsized influence on the mean

energy consumption of the set of trips. Indeed, when compared to potential EV usage

in rural areas outside of cities, the variation in these metrics appears much smaller.

For instance, our model predicts that current EVs would be able to replace 87% to

94% of vehicle days in our sample of cities, but in rural areas we would expect this

value to be as low as 80%. We would expect EVs to be able to reduce gasoline con-

sumption by between 60% and 75% for the cities studied, but in rural areas this value

is approximately 50%, pointing to a fundamental difference in aggregate personal ve-

hicle energy demands between cities and rural areas that is significantly greater in

degree than variations due to driving behavior, infrastructure, and climate.

To some degree, the remarkable consistency between cities is due to the battery

capacity constraint turning the plausible vehicle day energy distribution from a heavy

tailed one into a weak tailed one. The means of heavy tailed distributions tend to

be influenced heavily by a small number of observations coming from the tail, and

thus a small number of very energy intensive vehicle days drive a disproportionate

amount of the variation in between city energy consumption. The crossover between

the exponential and power law regime, while different between cities, tends to happen

within the range of plausible battery sizes given expected technological improvement,
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suggesting that improved battery capacity will increase the differentiation and vari-

ability in expected use between cities, and it will allow variations in EV performance

and total EV energy consumption to be driven much more heavily by very high energy

vehicle days in the tail of the distribution.

4.4 Technological Evaluation

The vehicle energy model presented above allows for direct quantification of the

marginal benefits of improvements in EV battery specific energy, using metrics that

incorporate realistic user behavior and choices. To do so, we set up a simple tech-

nological choice between the Nissan Leaf and the Ford Focus, two vehicles that are

relatively comparable in size and lifetime price. The scenarios presented assume that

all vehicle days that can be covered in one charge are driven by the Leaf, and that

the remaining ones are driven by the Focus. This is compared to a baseline where

all trips are taken in the Focus. This is not intended to be a predictive adoption

scenario but rather a contingency scenario to understand the technical potential and

limitations of EV technology.

This exercise allows for a quantitative comparison of the tradeoffs between EV and

ICEV technology, and how technological change will alter that tradeoff. In Figure

4-9, we show the effects of increases in usable battery capacity on various measures

of technology performance. These calculations can clarify the effects of technological

change, both for the US as a whole and for different types of household location.

Doing so allows for quantitative answers to simple questions about what technological

improvements are needed in order to meet adoption goals. For example, a nationwide

adoption potential of 99% would require usable battery capacity of approximately

70 kWh. Increases to that degree would allow for the replacement of almost 90% of

gasoline consumption with EV technology, amounting to slightly over one gallon of

gasoline per vehicle day.

This model also allows for a more detailed understanding of the benefits of tech-

nological progress. In Figure 4-9, we disaggregate expected EV performance between
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Figure 4-9: Marginal benefits to the electrification potential of EVs due to
increasing battery specific energy, disaggregated by household location. Red lines
represent values for vehicles belonging to households defined by the census as
"rural," blue lines represent values for "urban" households, and black dotted lines
represent values for the US as a whole. Top Left: Effect of increased battery
capacity on the "tail fraction," or the portion of vehicle days whose energy use
exceeds that of one full charge. Vertical grey dotted line is the position of the
ARPA-E target specific energy of 200 Wh per kg, showing diminishing returns
in terms of adoption potential with greater energies. Bottom Left: Effect of
changes in battery capacity on PGD, the portion of gasoline use displaced by EVs
over a typical vehicle day. Top Right: Effects on per vehicle day EV energy use.
Bottom Right: Amount of gasoline displaced per vehicle if all possible vehicle
days are switched to EVs. Note that the amount of electricity used increases
faster than the amount of gasoline displaced, especially for rural drivers.
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rural locations and urban ones, as that appears to be the single distinction that has

the most effect on the measures shown. In terms of adoption potential, expected EV

energy use, and in potential to displace gasoline consumption, there exist fundamen-

tal differences as to the impacts of technological improvement for vehicles used in

urban versus rural areas.

Results above have shown that the option to switch to a 2013 Nissan Leaf could

reduce gasoline consumption in the United States by over 60% compared to a base

case of the 2014 Ford Focus. This value shows strong differentiation between urban

and rural regions, with that number being 65% in urban areas and approximately

50% in rural ones, suggesting that current EV technology is much more effective as

a mitigator of gasoline consumption in urban rather than rural environments. With

battery specific energy increased to ARPA-E targets, however, we would predict that

the Nissan Leaf could displace over 85% of the Focus's gasoline consumption, and we

would expect that result to be roughly similar between urban and rural areas. Thus,

at some point between usable battery sizes of 20 kWh and 55 kWh, EVs transition

over from being an emissions reduction tool primarily for cities to one that is equally

suited for use in rural areas.

However, just because EVs with greater storage capacity would be able to displace

similar portions of gasoline consumption in urban and rural areas does not mean that

either EV energy use or the resultant emissions reductions would be similar in these

two areas. With current battery capacity, we would expect EVs and ICEVs to be

able to displace similar amounts of gasoline consumption in urban and rural areas,

with the lower adoption potential in rural areas cancelled out by the increased energy

consumption in rural areas coming from what days can be covered by EVs (indeed, a

lower capacity EV would be able to replace more absolute gasoline emissions in cities

than in rural areas because it would be able to cover such a small portion of rural

driving). Increasing battery capacity to the ARPA-E target would increase the total

amount of gasoline reduction potential by less than a third in urban areas while almost

doubling it in rural areas. While current EV performance is best in urban areas, the

greatest vehicle for vehicle potential for large scale reductions in gasoline usage comes
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from rural areas. The potential reduction from rural areas is so high because typical

driving distances are so far, the exact reason why adoption potentials there are lower

with current technology, a constraint that will become less with battery improvement.

However, gasoline consumption is not the only useful metric for evaluating EV

technology improvements. Mean energy consumption of an EV for the Nissan Leaf is

expected to be slightly higher in a rural environment than an urban one. However,

this difference increases greatly at higher battery capacities, when EVs in rural areas

are able to cover a greater portion of days and the days that they do cover tend to be

longer. At these higher battery capacities, the difference in average EV energy con-

sumption between rural and urban areas is greater proportionally than the difference

in gasoline savings between these two areas. In effect, increasing battery capacity will

allow for decreases in gasoline consumption in rural areas but create proportionally

larger increases in EV electricity consumption. This phenomenon is likely largely due

to the fact that these high energy rural vehicle days involve long, high speed, high-

way trips, trips over which EVs tend to operate inefficiently. Depending on the price

and carbon intensity of electricity, this may or may not pose a problem to potential

consumers and climate-change policy makers.

By all metrics, increasing EV battery capacity will allow for EVs to transition from

a more niche, urban market to one that encompasses all regions and climates across

the United States. While battery capacity currently limits the portion of vehicle days

that could be covered by EVs, affordable EVs with battery capacities in the range of

55 kWh will be able to serve rural drivers even better than EVs currently serve urban

drivers. This rural market offers, per vehicle, a significantly larger opportunity to

displace gasoline emissions, and increases in battery capacity will allow for EVs to be

more effective in terms of reducing gasoline consumption in rural areas rather than

in urban ones. Electric vehicle configurations designed to operate more efficiently at

highway speeds would likely be a fruitful avenue for research, even if current battery

technology limits their potential immediate use. Additionally, in terms of emissions,

as EVs begin to displace longer distance ICEV days it becomes especially important

that these EVs draw their electricity from a relatively low carbon grid, as the miles
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driven by high-capacity EVs will tend to be more energy-intensive than those driven

by the current fleet. This potential new market could also serve as a new use-case

for which prototype vehicles could be optimized, as potential EV vehicle days will be

much more different between different locations when their battery capacities are 55

kWh versus differences with current capacities.
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Chapter 5

Conclusion

Over the past century ICEV technology has had dramatic effects on US travel be-

havior, the built environment, and society as a whole. As climate change becomes

a more pressing policy issue and as alternative technologies improve, basic changes

in personal vehicle technology may alter future the travel choices people make, espe-

cially with regard to technological choice. The US expends massive amounts of energy

towards personal transportation, and new choices and new technologies threaten to

greatly disrupt the personal transportation energy system.

Decreasing prices and increasing availability will likely allow for EVs to become

more competitive with ICEVs in the marketplace, but the degree to which EVs can

penetrate the market, and their performance under widespread use once they do,

remains unknown. With a new model that considers both vehicle mechanics and rep-

resentative driving behavior, we show that the prospects for EV technology to replace

a significant percentage of POV energy consumption are good. Range constraints do

still significantly limit the number of vehicles that can be replaced with current bat-

tery capacity, but even still on a given day 87% of vehicles could be replaced by an EV

on only one charge. With full adoption, current technology would be able to reduce

US gasoline consumption by 61% without requiring alterations to travel behavior or

mid-day charging, but in certain areas this potential is even greater.

As many have suggested elsewhere, we find that current EVs perform especially

well in cities, allowing for greater adoption potential and reduction of gasoline use

105



than in the US on average. We find that the suitability of EVs to different metropoli-

tan areas varies slightly both in terms of performance and demand, but that these

variations are too small to differentiate technological targets between cities. Perfor-

mance variations are driven largely by climatic differences and their associated effects

on HVAC auxiliary use, and demand side differences are driven largely by differences

in daily driving distances and vehicle ownership. These differences can have signif-

icant effects on vehicle range-we show the range can differ by over twenty miles

depending on climate and driving style-suggesting that average range is not the

best measure of a vehicle's capability to meet daily driving demands. Of the urban

areas studied, many of the best performing markets in terms of adoption potential

and EV energy efficiency come from cities in the southern and western United States

such as Miami, Phoenix, and Los Angeles.

Despite these differences between trips and locations, the effects of continuing

increases in battery specific energy promise to have similar effects across cities-

increasing the number of ICEV days that could be replaced by EVs and increasing

the typical energy use of EVs once they are on the roads. Our study of the effects

of increasing battery specific energy provides concrete numbers to evaluate battery

specific energy targets. For the test case technology of the 2013 Nissan Leaf, we show

that the ARPA-E target battery specific energy will allow for the portion of vehicle

days that can be covered on one charge to increase from 87 % to 97.9%, and it will

allow for an additional 20% increase in the amount of gasoline consumption that can

be electrified, from 61 % to 81% of current demand.

We find that the effects of technological improvement are especially distinct be-

tween urban and rural areas. Vehicles in rural areas tend to be driven farther and

faster on a day to day basis than vehicles in cities. Current EV technology, with lim-

ited range and poor performance on highway trips, is especially growth-constrained

in rural areas because of these limitations. Increases in battery capacity will weaken

the range constraint and mitigate the effects of poor highway efficiency on vehicle

adoption potential in rural areas, however. With current battery capacities, EV us-

age potential in rural areas is especially constrained by limited range, but as batteries
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gain capacity the greater per-vehicle-day energy use in rural areas will mean that EVs

are used more-and displace more gasoline consumption-in rural areas rather than

urban ones, even if they continue to perform less efficiently over the types of driving

most common there.

These results suggest that this urban/rural distinction is the primary differentia-

tion that should drive vehicle technology development, and that especially the rural

component should be considered for improvement if the overall goal is maximizing

emissions savings. For example, current EVs might benefit more from slight improve-

ments in regenerative braking efficiency than decreases in drag at highway speeds,

as their primary current use is expected to be during stop and go driving at lower

speeds. However, with larger batteries, performance at highway speeds will become

more important, and greater overall energy savings are to be had from technology

improvements targeted to reducing energy consumption for rural drivers.

Because current battery capacity constraints limit the type of driving behavior to

short and moderate distance vehicle days, which tend to have similarly distributed

energy requirements across the US, there is not much of a pressing need to develop

specific types of EVs for specific types of driving behavior. However, improved battery

technology will expand the EV market from a common niche one to a broader one,

where different EVs will benefit from catering to different markets. EV adoption

has the most to gain by improving performance in rural areas with longer driving

distances, currently types of use for which EVs perform worse when compared to

ICEVs. This finding makes intuitive sense, as the use-cases in which ICEVs are used

most heavily are the ones that most heavily shaped ICEV technology's evolution over

time.

These results also raise many interesting questions about EV policy going for-

ward. If the policy goal is emissions reduction, it is logical to target policies towards

increasing EV adoption in use cases where they will supplant the greatest amount

of gasoline consumption. But, these policies should also consider the additional elec-

tric energy consumption of EVs, as heavily used EVs will likely use more energy per

mile than lightly used ones, as we have found. The trade-off between these two ef-
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fects is complex and should be examined further, particularly in light of variations

in the carbon intensity of the electric grid across the US. Our analysis shows that

the final answers to many important questions about EV policy will involve complex

tradeoffs. For example, deciding whether subsidy should be allocated to decreasing

battery costs over time-allowing for longer-range vehicles to be cost competitive with

ICEVs,or to more targeted direct purchase subsidy-potentially increasing adoption

level of existing vehicles, requires an understanding of how current vehicles perform

across typical use and of how increased battery capacity will alter typical EV use.

Our analysis suggest that EV adoption and EV subsidy, while likely a net benefit

to the energy and emissions landscape of the US, should still be explored critically in

order to maximize the effectiveness of policy interventions. The results presented in

this thesis argue that such analysis requires a detailed model of both vehicle perfor-

mance and travel demand, such as the one presented here, in order to appropriately

capture the complexities of the problem of technology comparison and technology

choice.
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