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Abstract

This thesis presents the design of a context-aware stated preference survey that
will be used to estimate the demand for new transportation modes and services. It
builds on the Future Mobility Survey, a smartphone-based prompted-recall survey
that accurately gathers revealed preference information on respondents' travel
patterns. By using this GPS data as the context for a hypothetical stated preference
survey, we can present realistic travel scenarios to respondents that pivot off their
actual behavior. The approach is the first of its kind to combine GPS and external
data to generate hypothetical scenarios for a large number of modes. It does this
by making use of freely available web services to gather information on travel
times and distances on many modes, which then informs the presentation of
these modes in the hypothetical scenario. The travel scenario is presented using a
web interface that mimics trip-planning software, and the software can be readily
applied across different cities and countries.
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Chapter 1

Introduction

In this thesis, we present a way to estimate the demand for new transportation

modes and services using a context-aware stated preference survey.

Information technology continues to reshape transportation and spawn new

modes that would be unimaginable without the use of web technologies and

smart phones. Flexible transit services, once the realm of the mobility-impaired

and the outer suburban, are being revisited and repurposed as mainstream urban

transportation options. Bike sharing has been made viable by docking stations

that communicate with operators and users. And one-way car sharing is begin-

ning to be offered in more and more cities, enabled by an ability to easily reserve

a space at the destination via smartphone.

At the same time, resurgent interest and population growth in cities, especially

in the developing world, has put pressure on the transport system to accommo-

date this growth. And in many developed countries, fiscal restraint and liveability

concerns constrain the ability to accommodate more cars.

Many of the current new modes of transportation aim to address the signifi-

cant loss in mobility that results from giving up car ownership. In many cities,
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people are often forced to choose between two extremes: car ownership, which

is expensive but very convenient, and relying on public transportation, which is

much cheaper but less convenient, particularly in much of North America. If the

mobility gap of car ownership can be filled by other new services that are both

reasonably priced and flexible, then the barriers to not owning a car will fall, with

positive consequences for urban mobility and liveability.

Knowing how much new modes will change demand and mobility patterns

is of great concern to policymakers and transport operators alike. Estimating

demand for new modes is typically done using stated preference surveys, which

present hypothetical scenarios to respondents. These hypothetical scenarios ask

respondents to weigh up the travel times and costs of existing and new modes

of transportation, and select the one they would use to travel. Stated preference

methods have been in use since the 1980s, and have been used to estimate demand

for a wide variety of new products and services, both in transportation and other

areas of market research.

Technology has changed the way transportation works in our cities, and it

has also influenced the way transportation surveys are conducted. In the 1990s

and 2000s, GPS technology began to be used to conduct transportation surveys,

providing a highly accurate record of where respondents had been (Greaves

et al. 2010). Until very recently, however, the use of GPS has mostly been lim-

ited to revealed preference surveys, which provide a record of how respondents

used existing modes of transportation under existing conditions.

Now, GPS technology is beginning to be used to inform stated preference

surveys, by providing hypothetical scenarios that appear more realistic given the

context of a respondent's decision (see, for example, Fifer et al. (2014)). The

survey in this thesis is another step in this direction. It builds on an existing

GPS-based revealed preference survey, picking out trips that form a baseline for a

stated preference survey. It takes the trip origin and destination and inputs them

18



into web services, fetching information on distances and travel times for various

modes. That information is then used as a baseline to design scenarios that are

realistic for the respondent.

This survey makes three primary contributions over existing stated preference

surveys that use tables to present static information. First, it is context-aware,

meaning it presents scenarios that respondents can engage with. Second, the use

of readily available web services means it can be very easily applied simultane-

ously across multiple cities, regions and even countries. Third, the user interface

is able to provide information on a very large number of modes in a way that

reduces the cognitive burden on the respondent.

1.1 Thesis Organization

The remainder of this thesis is organized into eight chapters. Chapter 2 discusses

the use of models and surveys to estimate the demand for transportation. Chap-

ter 3 discusses how GPS technology has been used to improve travel surveys by

increasing the realism of the data collected. Chapter 4 details some newly emerg-

ing transportation modes and services that surveys can be used to test demand

for. In Chapter 5, we describe the Future Mobility Survey, a smartphone-based

prompted-recall survey that collects accurate information on respondents' travel

behavior. Chapter 6 presents a stated preference survey that uses the Future

Mobility Survey to provide context and enhance realism. The design for a pilot

survey is outlined in Chapter 7, and Chapter 8 discusses possible future enhance-

ments that could be added to the pilot. Chapter 9 concludes.
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Chapter 2

Estimating Transportation Demand

Using Surveys

There are two ways transportation researchers can get information on consumers'

preferences for modes: revealed preference (RP) or stated preference (SP) surveys.

There is one fundamental difference between the two: an RP survey asks a trav-

eller what they actually did, while an SP survey asks them what they would do

in a hypothetical situation. This chapter discusses mode choice models and the

two types of survey, with a particular emphasis on SP surveys.

2.1 Mode Choice Models

Before moving to survey methods, it is useful to set out precisely what these meth-

ods are trying to achieve, and what we mean when we say we want to understand

demand and consumer preferences.

In the standard consumer utility maximization problem (as represented, for

example, in Nicholson and Snyder (2007)), there is some collection of available
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goods, say {1,.. , N}. Letting the quantities consumed be x1, .. ., XN, a con-

sumer's preferences are represented by a utility function U(xI,..., XN). This util-

ity function is ordinal, meaning that its absolute values do not matter, but that the

consumer prefers higher values. In other words, if there is a consumption bundle

X = {x',...,x} and X2 = X22.. N .,} and the consumer prefers X1 to X2

(X I X2), then the utility is higher: U(Xl) > U(X 2).

The consumer is limited by a fixed amount of income, I, and faces a fixed

set of prices, {pi,..., PN}. Their goal is to maximize their utility, subject to not

exceeding their budget constraint. Algebraically, the problem becomes:

max U(x1,. .. ,XN)
{X 1 ,. ,XN }

N

s.t. P Pixi < I

The solution to this problem, X* = {x 1,..., xn}, becomes the consumer's de-

mand for goods 1 through n. If we had a market of many consumers, and knew

every consumer's utility function and income, then solved the problem for each

consumer, we can add these quantities to find the total market demand.

For transportation mode choice, and indeed many other common consumer

situations, the context is very different. Under the classical model in Nicholson

and Snyder (2007), only the quantity of goods is what matters. But if a consumer

is traveling and chooses different modes, they are ultimately only consuming one

trip. Clearly, though, there are differences in utility that lead certain modes to be

chosen over others. This led to the idea that, in these cases, it is attributes that

determine utility, and these attributes come from goods (Ben-Akiva and Lerman

1985).

In transportation, many different attributes can influence the utility of certain

modes. The two most prominent of these are the travel time and cost of the mode,
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but many more exist. In public transportation, for example, the total travel time

can be split into walking, waiting and in-vehicle time components, each with

its own separate effect on utility. Many more attributes can be used to explain

transportation choices, including those that are not easily quantifiable, such as

travel time uncertainty and the level of crowding in a transit vehicle.

In a discrete choice framework, a consumer (n) is faced with a choice set

Cn = {1,... , Jn }, where Jn is the number of alternatives, and must select a single

alternative from this choice set. Their utility function, U, is now defined over

Cn, and depends not only on the attributes of each mode, but also on their own

personal socio-economic characteristics - for example, higher-income people might

have a greater preference for cars over other modes, all else equal. Defining con-

sumer n's utility of alternative i as Ui, the consumer chooses the alternative that

has the highest utility value, i.e. the problem is maxi Uin.

More formally, we can model utility as having a systematic component (Vin)

and random component (Ein): Uin = Vin + Ein. The systematic part represents

the effects of mode attributes and personal characteristics (k); calling these values

Xink, we can use a simple linear specification such as Vin = Zk fkXink. The random

component, Fin, represents the effect on utility of any missing attributes we do

not explicitly account for in V.

For example, with a simple choice set of {Car, Bus} and variables Time and

Cost, we can write:

UCar,n = 3Car + tCost X COstCar,n + ITime x TimeCar,n + ECar,n

UBus,n = 3Cost X COstBus,n + lTime x TimeBus,n + EBus,n

In this case, the consumer would choose Car if UCar,n > UBus,n, and Bus other-

wise. Because the Eins are random, however, in the model the choices only happen
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with a certain probability.

Assuming a distribution on the random components, in combination with data

on the characteristics, attributes and actual choices, allows us to use maximum

likelihood estimation to estimate the values of the / parameters in the model.

The most commonly assumed distribution is the extreme value distribution (with

location parameter zero and scale parameter y). This produces the logit model,

where

Pr(i I C,) = ec . -

The logit model is part of a family of discrete choice models that are too nu-

merous to describe here. Interested readers should consult Ben-Akiva and Ler-

man (1985) for further details.

The estimates of P represent the shape of the utility function: these are con-

sumers' preferences. These values can be used to forecast demand through vari-

ous methods, including aggregate forecasting, sample enumeration and microsim-

ulation (Ben-Akiva and Lerman 1985). To do this requires having some popula-

tion p with Np members, where we know every member's individual characteris-

tics and the attributes of the modes they can choose from.

There are two ways travel data can be collected; the difference between them is

the context the respondent makes their decision in. Revealed preference surveys

collect travel data in 'the world as it is', while stated preference surveys present

'the world as it could be' to elicit choice behavior (Louviere et al. 2000). The

next sections discuss the two types of survey, along with their advantages and

disadvantages.
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2.2 Revealed Preference Surveys

Revealed preference surveys capture the actual travel behavior of a person or

household in a fixed time period. By collecting information on the times and costs

of every trip alternative and what the respondent actually chose, we can estimate

a behavioral model that indicates the underlying preferences of the consumer.

One way of collecting this information is through a diary, where the respon-

dent enters in all their trip information at the end of each day. Alternatively,

participants can be interviewed by telephone on a regular basis, which can be

helpful in ensuring the responses collected are sensible.

Revealed preference surveys are commonly used to estimate regional travel de-

mand models. One example is the Sydney Household Travel Survey, which covers

the metropolitan area of Sydney, Newcastle and Wollongong, Australia (Transport

for New South Wales 2015). This survey has been running continuously since 1998

and currently covers around 3,000 households per year. Telephone interviewers

collect socio-economic information and collect information on the trips taken in

the household over a day. Along with other inputs, such as Journey to Work

data from the Australian Census, it is used to estimate and update the Sydney

Strategic Travel Model (Bureau of Transport Statistics 2013). Part of this involves

estimating a mode choice model, which has seven modes: car driver, car passen-

ger, train/light rail/ferry, bus, bike, walk and taxi.

Morikawa (1989) summarizes the characteristics of revealed preference data.

The main advantage of using revealed preference data is that it is based on ac-

tual choices made by respondents in real-life situations. However, in a revealed

preference survey we typically only observe what the choice was: this means we

cannot be sure what the choice set was. Further, attributes (such as travel cost

and time) can be strongly correlated, which makes estimating their independent

effects on utility less precise. The range of the attributes is also limited to what the
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range is in reality and may be subject to measurement error, potentially reducing

the efficiency of estimation. Finally, intangible attributes (such as reliability and

comfort) are difficult to incorporate into the model, because they cannot be easily

measured by the researcher.

The biggest disadvantage of revealed preference data for estimating the de-

mand for new modes is respondents make decisions in 'the world as it is' (Louviere

et al. 2000): accordingly, it cannot provide information on modes that don't yet

exist. We therefore cannot use revealed preference surveys to estimate the de-

mand for new modes, and instead must use stated preference surveys to present

the new mode to respondents and observe their behavior.

2.3 Stated Preference Surveys

A stated preference survey asks the respondent what they would do in a hypo-

thetical scenario, as opposed to what they actually did in a real-world scenario. A

revealed preference survey is typically one of observation, but a stated preference

is more of an experiment: the entire process is controlled by the researcher.

Morikawa (1989) details how this control can be useful to researchers. First, we

know the choice set, because the choices available to survey respondents are the

choices the researcher presents. Second, we can specify the variable ranges to be

wider than might be found in reality. Third, because the combinations of levels

shown are chosen by the researcher, we can reduce multicollinearity between

variables (say, between travel time and cost). Fourth, we can explicitly include

'soft' variables like comfort and reliability by presenting these to respondents.

Finally, we choose what to present to respondents, so all variables are free from

measurement error.

The most common shortcoming of stated preference data, however, is that it
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only records choices made in hypothetical scenarios (Fifer et al. 2014). This can

result in biases in the data - for example, Murphy et al. (2005) analyzed 28 valu-

ation studies that use stated preference methods to find willingness to pay. They

compared the hypothetical willingness-to-pay values with actual values, finding

the median of hypothetical-to-actual ratios to be around 1.35.

Fifer et al. (2014) report on similar biases in a transportation context, examin-

ing studies that compare estimates of the monetary value of time using stated and

revealed preference data. They find that actual values of time tend to be higher in

reality than in hypothetical experiments, but do not find this to be as conclusive

as in valuation experiments.

Theis (2011) used a stated preference survey to study the effect of connection

times on the utility of flights. The survey asked respondents various statements

to gauge their preferences for short connections. It then asked them to choose

an airline itinerary, modeling the effects of fares, frequent flyer status, preferred

airline, number of connections, total travel time and 'buffer time' (connection time

in excess of the minimum required by the airport). They found that connection

times do not have a monotonic effect on utility, with longer connection times al-

ways being less preferred. Instead, flights with some buffer time were preferred to

connections with no buffer time, though long buffer times are still less preferred.

Further, the latent variables of risk aversion, rush aversion and lack of trust of the

airline's scheduling (generated from the responses) increase this effect.

Many stated preference studies investigate the demand for new modes, since

revealed preference surveys cannot be used before a new mode is introduced.

One such study was for Swissmetro, a proposed high-speed maglev railway con-

necting the major cities of Switzerland (Bierlaire et al. 2001). They surveyed rail

users and drivers who had taken an intercity trip in the corridor Swissmetro was

proposed to run through. They presented three alternatives, driving, current rail

and Swissmetro, with various times and costs, and asked respondents to choose
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one of the three. The final data set consisted of 770 surveys. They used several dif-

ferent model specifications to test the stability of their results, such as multinomial

logit, nested logit and cross-nested logit. The value of travel time was estimated

at SFR 1.15-1.21 per minute (SFR 69 - 73 per hour). Bierlaire et al. (2001) note this

is high, but suggest it is because longer-distance travellers in Switzerland tend to

be wealthier than average.

More recently, pivot-style stated preference experiments have become more

popular (Hess and Rose 2009). These experiments take into account the survey

respondent's knowledge and circumstances. This is typically done in one of three

ways. These are: showing a status quo alternative with no attributes or other

information; showing alternatives with levels based on the respondent's own ex-

perience, but not the exact levels; or including the status quo alternative with all

the information. Hess and Rose (2009) note this approach is supported by theories

in psychology and economic theory, which support relating experiments to reality

as much as possible. Fifer et al. (2010) note that many transportation studies ask

respondents to choose a 'typical' trip they make and this is used as a reference

to inform the survey design, but this is problematic because people recall their

trip details very poorly. However, Train and Wilson (2008) warn that using re-

vealed preference data to construct stated choice experiments creates dependence

between the stated preference attributed and unobserved factors. They caution

that models estimated using data collected using pivoted designs should account

for this dependence, though standard estimation procedures are consistent under

certain conditions.

One such pivot-style approach is that of Fifer et al. (2010), which represents

one of the first attempts to combine GPS data with a stated preference survey.

Their study investigates how motorists would react if a distance-based charging

system were introduced that incorporates the risk of driving. This risk of driving

is assumed to depend on distance travelled, night-time travel and speeding. The

study first monitored participants' driving behavior in Sydney, Australia, through
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GPS for five weeks, then introduced the risk-based charging regime. They then

answered a stated preference survey once, continued observation for five weeks,

and finally filled out the stated preference survey a second time, with different

attribute values.

The stated preference surveys in Fifer et al. (2010) show the participant's travel

behavior in one column, which includes: the number of travel days; the distance

travelled; the percentage of driving time done at night; the percentage of time

spent speeding; and the charges that would result for this driving pattern (fixed

at $100). They then showed two alternatives, each with its own distance, driv-

ing time of day, speeding percentage and charge, as well as the average travel

time increase (per trip) if speeding were reduced to the amount shown. All these

amounts (except for the travel time increase) were pivoted off the respondent's

actual behavior: their values were calculated using percentages of the user's ob-

served behavior. Their results show that drivers are willing to pay some amount

not to change their current behavior, in terms of distance travelled, night travel

and travel time. Further, they find this willingness to pay depends on the trip

type: people are more willing to change their behavior for non-work trips. How-

ever, participants were willing to pay $1.68 on average to reduce speeding, though

the authors put this down to the sample having negative perceptions of speeding.

2.4 Experimental Design

Once we have selected the variables to include in a stated preference survey, a

related question is what combinations of levels should be presented. This section

provides a brief overview of the main types of design, drawing on material in

Louviere et al. (2000), which provides further details and examples.

Each variable in a stated preference survey has levels, which are the values

it can take. When all variables are presented together to the respondent, the
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information presented is called a profile.

Suppose our stated choice experiment has factors (variables) {X1,... , Xk} to

be presented to survey respondents. Each of these factors has an associated set

of levels. For each factor i E {1,...,k}, call this set Li = {l1,... , li }, where ni

is the total number of levels for factor i. A profile is some combination of the

levels in {X1,... , Xk}. Let there be m profiles, and denote profile j C {1,... 1m}

as P = {x 1,..., Xkj, where for each i E {1,... ,k}, xi E Li. The experimental design

is simply the set of all profiles: {P1,... , Pm}.

For example, if we had two factors, X1 and X2, with level sets L 1 = {O,1} and

L2 = {2, 3}, one possible profile is P = {0, 2} and another is P2 = {1, 3}. The

experimental design is {{0,2}, {1, 3}}.

Our task is to present profiles for the experiment that enable us to elicit the

sample's underlying preferences towards the alternatives. Sections 2.4.1 through

2.4.4 detail ways of doing this.

2.4.1 Random Design

One of the simplest approaches to generating profiles is to pick the xis from each

set of levels Li randomly. Typically, a uniform distribution is used, so that each

level has an equal probability of being selected for inclusion in a profile. However,

this need not be the case - any distribution can be used to generate profiles,

though using a uniform distribution helps to provide a fairly even spread of level

values through the design.
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2.4.2 Full Factorial Design

Another approach is simply to use every possible combination of levels, which

then becomes the set of profiles to use in the experiment. For example, consider

a design where there are K factors, each with two levels. Then the full factorial

design has 2 K profiles, each representing a unique combination of the levels of

the K factors. 1

Consider, for example, an experiment with three variables: car travel time, bus

travel time and bus fare. Each variable can take the values 'high' or 'low'. Then

the corresponding full factorial design (called a 23 design) is shown in Table 2.1.

Attributes

Profile Car Travel Time Bus Travel Time Bus Fare

1 Low Low Low

2 Low Low High

3 Low High Low

4 Low High High

5 High Low Low

6 High Low High

7 High High Low

8 High High High

Table 2.1: A 23 experimental design.

Full factorial designs have two desirable properties: they are balanced, in the

sense that all possible levels are equally represented across the design. They

are also orthogonal, in that the sample correlation between any two variables (as

presented in the experiment) is zero.

1More generally, when the number of levels varies across factors, the total number of possible
profiles is H> ni.
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Levels per Factor
Factors 2 3 4 5

1 2 3 4 5
2 4 9 16 25
3 8 27 64 125
4 16 81 256 625
5 32 243 1024 3125
6 64 729 4096 15625
7 128 2187 16384 78125
8 256 6561 65536 390625
9 512 19683 262144 1953125
10 1024 59049 1048576 9765625
11 2048 177147 4194304 48828125
12 4096 531441 16777216 244140625

Table 2.2: Number of profiles in
number of levels per factor.

a full factorial design, by number of factors and

2.4.3 Fractional Factorial Design

A fractional factorial design is any subset of a full factorial design. By carefully

selecting Properly selected fractional factorial designs can dramatically reduce

sample size requirements while still allowing parameters of interest to be esti-

mated.

One problem with full factorial designs is that the number of profiles to

present becomes infeasibly large very quickly. Table 2.2 illustrates this, show-

ing the required number of profiles for a full factorial design as a function of the

number of factors (rows) and the number of levels per factor (columns).

There are two types of effects we can estimate: main effects (the effect of vari-

ables independently of other variables' values) or interactions (where the effect of

a variable is a function of other variables' values). For example, Sun (2013) mod-

eled intercity truck drivers' route choices using the following utility function for

route i, driver n and choice experiment t:
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Uint ~ 3Downtown + 1Free + (Time x Timeint + fToll,n X Tollint+

PTollD,n x TollDummyint(1 + Tolcompany x TollCompanyint )+

fDelay x Delayint(1 + fDelayHourly x DelayHourlyint+

PDelayTemp X DelayTempint) - cien - Cint

The full description of the model and its variables can be found in pages 90 and

91 of Sun (2013). The specification includes several main effects of variables on the

utility of a route - these show the effect of the variable considered independently

of other variables. The terms indicating main effects are:

* pTime x Timeint: the effect of travel time on utility

0 #Toll,n x Tollint: the effect of the toll amount on utility

* PTollD,n x TollDummyint: the effect of there being any (non-zero) toll on util-

ity

* pDelay x Delayint: the effect of the probability of delay on utility.

The terms measuring two-way interaction effects (involving two variables) are:

* /Delay x Delayint X fDelayHourly x DelayHourlyint: the additional effect of de-

lay on utility, if the driver is paid hourly

* /Delay x DelaYint X fDelayTemp x DelayTempint: the additional effect of delay

on utility, if the shipment is temperature controlled.

Typically, the way a fractional factorial design is selected is by ignoring certain

higher-order interactions. Consider, for example, an experiment with factors X1,

X2 and X3, each of which has possible levels 1 or -1. A full factorial (23) design

is shown in Table 2.4.3. The yellow highlighted rows and the blue highlighted

rows each represent one possible fractional factorial design (called a 23-1 design
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in this case). Each ignores three-way interactions by having the same values of

X1 x X2 x X3, but halves the minimum sample size and still allows main effects

and two-way interactions to be estimated. Sometimes, experiments are divided

into blocks - groups of profiles to show to a single participant. This is sometimes

done based on higher-order interactions, such as three-way interactions.

Interactions
Main Effects

Profile Two-Way Three-Way

X1  X2  X3  X 1 x X2  X1 x X3  X 2 x X3  X1 x X 2 x X 3

1 1 1 -1 1 -1 -1 -1

2 1 1 1 1 1 1 1

3 1 -1 -1 -1 -1 1 1

4 1 -1 1 -1 1 -1 -1

5 -1 1 -1 -1 1 -1 1

6 -1 1 1 -1 -1 1 -1

7 -1 -1 -1 1 1 1 -1

8 -1 -1 1 1 -1 -1 1

Table 2.3: A 23 full factorial design, showing main effects (columns 2-4) and inter-

action effects (columns 5-9).

2.4.4 Efficient Design

The efficiency of a design refers to the efficiency of an estimator applied when

that experimental data is collected using that design, and used in the estimation

process.

In the simple case of a linear model (y = XP+ e), the variance of the ordinary

least squares estimator (conditional on X) is Var(# I X) = o2 (X'X)- 1, where o2 is

the variance of the error term in the model. More efficient designs will therefore

have a 'small' (X'X)-1 - the most popular measure of this is D-optimality, which
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measures IX'X1, the inverse of the determinant of (X'X)- 1. For a linear model,

maximizing this measure by changing the composition of X will lead to more

efficient parameter estimates.

For a non-linear model, however, this is not so straightforward, because the

variance-covariance matrix of P depends not just on X, but also P. The most

common way to address this issue is to assume a prior on P, which can either be

a fixed value or a prior distribution with known parameters. Rose and Bliemer

(2009) shows that these designs can, under certain circumstances, lead to greater

estimation efficiency than orthogonal designs, and therefore reduce sample size

requirements.

However, recent research suggests that efficient designs can be risky to use

if the researcher does not have good priors for the parameters to be estimated.

Walker et al. (2015) performed an experiment that generated different designs for

travel time and travel cost. They then assumed a true value of time and a prior

for the efficient design, using these and the designs to simulate a real experiment

and estimate the value of time. They found that so-called 'efficient' designs do

yield parameter estimates with less standard error when the true value of time

is close to the assumed prior. But when it is not, these designs perform worse

than random and orthogonal designs. Further, assuming priors for only some

parameters and not others led to the worse possible design. They argue that a

simple random design performs as well as any other design, particularly when it

is 'cleaned': that is, profiles where one alternative strictly dominates another in

time and cost terms are deleted.
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Chapter 3

GPS-Based Travel Surveys

This chapter covers recent developments in GPS-based travel surveys. It begins

with an overview of how GPS data can be collected and used in transportation,

following up with recent examples of applications in travel surveys, both in an

urban passenger context and an intercity freight context. It then describes the Fu-

ture Mobility Survey, the smartphone-based application that forms the foundation

for the stated-preference survey in this thesis.

3.1 Collection and Analysis of GPS Data in Trans-

portation

Once the domain of the armed forces and surveyors, GPS has emerged in the last

few decades as an inexpensive and reliable way of capturing location data. The

collected information is typically very accurate, forming large data sets showing

where the GPS device was in closely spaced intervals (Greaves et al. 2010).

In few industries has GPS data collection become as widespread as it has in

transportation. Airplanes and ships use it to locate where they are and where
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they have been recently. Transit vehicles can be located precisely so that agencies

know where they are and can inform customers of delays. Cars with navigation

systems can combine the data with a map of the road network to find the quickest

route to their destinations. And anyone with a smartphone can locate themselves

on a map to see where they are, and use that location to get directions to where

they need to go.

As the collection of GPS data grew, so too did interest in using that data to im-

prove transportation systems. Many in-car navigation systems send anonymized

location data back to their manufacturers, who can use it to calculate travel speeds

and detect congestion. This information is then sent back to individual naviga-

tion systems, allowing them to direct drivers away from congested areas. Transit

agencies can use GPS location in buses to detect when the bus is about to arrive at

a stop, and provide an audible announcement for hearing-impaired passengers.

Uber users can summon a ride using their smartphones and see how far away

their driver is; they are charged according to a distance calculated by the driver's

GPS trace. And GPS data collected by cyclists can be visualized to show what

routes are preferred by commuters. 1

3.2 Previous GPS-Based Travel Surveys

GPS technology has also allowed significant improvements in travel surveys. Tra-

ditionally, surveyors have relied on paper-based methods, in which users keep a

diary of the locations they visited through the day. Typically, they also record how

they got from place to place, who they travelled with and when they departed and

arrived. In many cases, this places a significant burden on the respondent, who is

not necessarily keeping track of every travel detail. This is especially true of short

'For one example, see the Rideable project (www.rideable.org.au), which periodically collects
data uploaded by cyclists in Sydney, Australia, and illustrates the routes they chose for their
morning commutes.
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trips, which might be left out of the diary altogether. Some of this burden can be

reduced by allowing survey respondents to fill out their diaries online, but this

still requires them to remember everything they did through the day.

One of the first examples of using GPS for trip reporting is documented by

Murakami and Wagner (1999). They used GPS-enabled handheld computers to

collect and report travel information for the car trips of 100 households in Lexing-

ton, Kentucky. These households were then telephoned and asked to recall the

trips they had made without the help of the GPS device. They found evidence

of underreporting of trips in the telephone survey for around 35% of households,

suggesting these households were not able to recall every trip they made. Around

30% households overreported trips, but this was attributed to issues with the

equipment. The GPS-reported trips recorded more accurate start and end times

than the telephone-reported trips, which tended to be rounded to the nearest half

hour. And the self-reported travel distances respondents gave were significantly

lower than those calculated using the GPS traces.

Zmud and Wolf (2003) delved into this issue further, identifying factors corre-

lated with trip underreporting using a sample of around 300 households. They

compared GPS-matched trips to user-reported trips, finding that 71% of all un-

reported trips had a duration of under 10 minutes. Underreporting is also cor-

related with a household's demographics: higher levels were observed in house-

holds with more vehicles, low incomes, young people or more workers. They

attribute many of these differences to how much the households travel: if fewer

trips are made, it is easier to recall all of them accurately.

Ohmori et al. (2005) extended this approach to an activity diary survey using

flip phones with GPS functionality. Unlike in Murakami and Wagner (1999), the

survey could be used for any type of trip, not just walking, and was activity

based, meaning the sequence of trips could be tracked throughout the day. Like

Murakami and Wagner (1999), they still maintained a paper survey for some
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participants to compare the two data sets. They found the GPS data was much

easier to process versus a paper diary, and respondents filled out the phone survey

both more frequently and sooner after their activities took place. They attribute

the greater frequency and lower time lag to respondents being able to fill out

the survey while traveling. However, some participants found the phone survey

more difficult to use, and battery consumption proved to be problematic, with the

survey software shutting off after about 5-6 hours due to low battery.

Stopher et al. (2007) used GPS technology and a stated-recall web survey to

identify underreporting in the Sydney Household Travel Survey. Households

were given GPS devices for every car they owned, as well as wearable GPS log-

gers. Once data were collected, households were telephoned and verified their

trips verbally. After this, they logged into a web survey, where they were shown

their GPS-detected trips for the day and asked to verify them. They found that the

overall level of underreporting was about 7%, lower than in other studies. Fur-

ther, households tended to understate travel distances and overstate travel times

compared to the GPS data.

As GPS technology continued to improve and become cheaper to buy, larger-

scale surveys became possible. Greaves et al. (2010) conducted a prompted-recall

survey similar to that in Stopher et al. (2007), where 29 of the 30 recruits provided

8 weeks of validated trip data with relatively little time burden. In 2009, Giaimo

et al. (2010) piloted the use of GPS in the Greater Cincinnati Household Travel

Survey, again reporting adequate completion rates. This was followed up by a

2,000-household multi-day survey (in Stopher et al. (2012)), which proved the

concept was scalable to large samples. Like other studies, they too found GPS-

based trip rates to be significantly higher than in diary surveys. Their study also

trialled using the GPS data to impute mode choices and stop purposes. This

proved to be quite accurate - the imputed mode was correct 96 per cent of the

time, and the imputed activity was correct 90 per cent of the time.
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Simas Oliveira et al. (2011) took a similar approach in Jerusalem, Israel, col-

lecting GPS data for around 3,000 households and supplementing this with a

prompted recall, computer-based interview. They found that GPS is particularly

useful for developing activity-based travel demand models, which analyze an in-

dividual's demand for patterns of activity as opposed to viewing individual trips

in isolation. By collecting uninterrupted data throughout the day, GPS data cap-

tures these activity patterns without gaps or inconsistencies. As in other studies,

they found the accuracy of the data and the survey response rates to be high.

3.3 The Future Mobility Survey

The Future Mobility Survey represents the next generation of GPS-based travel

surveys. It relies on smartphones instead of dedicated GPS loggers, and forms

the basis for the stated preference survey of this thesis.

The initial experience in implementing the Future Mobility Survey is docu-

mented in Cottrill et al. (2013). They put forward the case for smartphones as

GPS loggers: GPS loggers are now relatively cheap, but giving them to partici-

pants and receiving them back is costly. Further, because most people own smart-

phones and carry them around most places they go, the burden of carrying a

separate device just for the survey is eliminated.

The logging of GPS data happens using an application installed on the user's

phone; there is no need to open or close the app through the day, as it runs in

the background. At certain points in the day, the GPS data is sent back to the

Future Mobility Survey server for processing. The server uses machine learning

algorithms to infer the user's modes and stops. As in Stopher et al. (2012), the

survey is a prompted recall survey, where the user validates their GPS movements

and inferred stops at the end of each day. Users can add or delete stops they made.
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Cottrill et al. (2013) focussed on the user interface in a small pilot study, with

great attention being paid to an intuitive user interface that reflected the chain

of trips and stops users made throughout the day. They found that the unobtru-

sive nature of the smartphone application means users need to be reminded to

validate their data, since the application runs in the background and requires no

interaction. Battery life tended to be poorer with the application running, due to

the need to collect location data, and this varied greatly depending on the type

of smartphone the user has. Overall, however, users tended to find the survey

relatively simple to use.

Zhao et al. (2015) reports on the findings of the pilot, which has 793 completed

users, who collected 22,170 days' worth of data, 7,856 of which were validated.

Analyzing the sources of error, they found that while the application accurately

reported locations, there were data gaps when smartphones run out of power and

users do not properly validate any missing segments. Further, because users are

not interviewed but instead fill out a web-based survey, validation errors can arise

because the process is controlled by the user.

One potential issue with using smartphones to collect travel information is

that only people who own smartphones can participate. This was recognized in

Zhao et al. (2015), who found the age distribution of respondents was skewed

towards young people. They suggest this can be rectified by sending GPS loggers

to users who don't own smartphones and providing help for users who might

have difficulty validating their data on a web browser.

Analyzing the validated data, Zhao et al. (2015) found that activity patterns

vary greatly from user to user, and from day to day, implying users should be

sampled across many days. The Future Mobility Survey provides a very conve-

nient platform to do this: users are not interviewed by a person, so the cost of

collecting additional days is minimal. Further, the burden of data validation re-

duces over time as the system learns travel patterns and users find they need only
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confirm the inferred information rather than choose from many options.

The Future Mobility Survey is described in greater detail in Chapter 5. This

thesis will use the Future Mobility Survey as the basis for a context-dependent

stated preference survey that can be used to estimate the demand for new modes.

3.4 Truckers@ MIT: A GPS-Based Route Choice Study

for Intercity Trucking

Truckers@MIT is a deployment of GPS technology and a web-based survey for

intercity trucking. It is based on a very similar platform to the Future Mobility

Survey, with the exception that the data were captured using traditional GPS log-

gers instead of smartphones. These loggers remained in the participants' trucks

for approximately one month, and 20 working days of data needed to be reported

to successfully complete the experiment. As with the Future Mobility Survey, the

drivers logged in to a web survey periodically to validate their travel behavior.

Stops were detected, and drivers verified what they did there - for example, they

could be loading or unloading goods, staying overnight (for multi-day trips) or

taking a meal break.

The primary motivation behind this survey was to gather revealed preference

data for intercity truck behavior in the United States and Canada. The predeces-

sor to this study, documented in Sun (2013), intercepted truck drivers at various

truck stops in Texas, Toronto and Indiana. There they conducted a stated prefer-

ence survey that gave them alternative route options and asked them to choose

between them. Sun (2013) found that truckers' route choice behavior was influ-

enced by many more factors than time and cost. Further, they found that their

values of time (and willingness to pay tolls) also varied widely: drivers pay-

ing the toll out of their own pockets were more sensitive to tolls, but those with
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temperature-controlled shipments were willing to pay more for time savings. And

in some cases, drivers who were paid hourly actually had a negative value of time

because they preferred to sit in congestion and be paid more.

In Truckers@MIT, which is documented in Ben-Akiva et al. (2015, forthcom-

ing), we found significant variability in driver tour patterns and driver route

choice behavior, information that is made much clearer when collected using GPS

and plotted on a map.

For example, Figures 3-1 and 3-2 show a round trip made by a truck driver

that originated north of Austin. In Figure 3-1, the driver is driving south towards

Austin during the morning rush hour, and uses a circumferential toll road (Texas

State Highway 130) to avoid traffic. In Figure 3-2, the driver returns north on a

weekend morning, but instead chooses to avoid the toll and take the free route

back through Austin: Interstate 35.
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Figure 3-1: GPS trace of truck trip, moving south through Austin in morning rush
hour. The driver chooses a tolled circumferential route, Texas State Highway 130.
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Figure 3-2: GPS trace of return truck trip, moving north through Austin in a

weekend. This time, the same driver chooses to avoid the toll due to the lack of
traffic congestion on the free route.

In other cases, different decisions can be made by the same driver on the same

day. Figure 3-3 shows this for a trip in the Chicago area: different tolled routes

are used for the incoming and outgoing trips. These two examples ilustrate the

richness of the information that can be collected using GPS technology. By being

able to visualize the actual routes taken, we can gain insights into the complexity

of routing behavior that would not be possible in a standard survey.
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Figure 3-3: GPS trace of a truck trip originating from Gary, Indiana, round trip to

Milwaukee, Wisconsin. Different routes are used for the outgoing and incoming
legs of the tour.

On a longer-term scale, we observed very different patterns in driver behav-

ior. Figure 3-4, for example, represents a pattern of a 'long tour' driver who

makes regular, long tours, each lasting multiple days and traveling distances in

the thousands of miles. This driver returns to their home location for a break,

then continues on a similar pattern as before. There are relatively few loading

and unloading stops on these long tours.

In contrast, Figure 3-5 shows a pattern of a 'short tour' driver who makes

short, regular tours and typically returns home at the end of each day. Most of

the tours these drivers make are very similar, with the same unloading points.

Finally, there is the 'gypsy trucker', illustrated in Figure 3-6. This driver has no

predictable tour pattern and no apparent home location, simply driving around

looking for work from city to city.
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Figure 3-5: Short-tour driver
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Figure 3-6: 'Gypsy' driver

There was also a stated preference survey component of Truckers@MIT, which

was completed at the very end of the experiment, after the 20 days of data had

been validated. This survey picked out eight trips in total that consisted of the

journey from a loading stop to an unloading stop. It then offered them a new

alternative that was potentially longer, faster and/or had an additional toll. An

attempt at being context-specific was made by specifying the levels in terms of

miles longer, minutes faster and additional toll compared to the existing route

they took. The choice task was to select the original route or the alternative

presented. The wording of the question is presented below:

On <day of the week, date and time> you departed from <name of origin>

with a <truck configuration + special services> carrying <cargo type>. You were

scheduled to transport this load to <name of destination> at <schedule>.
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The map shows the route for this trip. Compared to it, the alternative route is:

" <distance> miles longer

" <travel time> minutes faster

" Has an additional toll of <toll> USD

" <Toll bearing method and terms based on real conditions for the trip>

Which route will you take?

E Original route

D Alternative route

Table 3.1 shows the levels presented for the experiment. The design was a

random design - the value of each attribute was chosen randomly (with equal

probability) from the sets of levels. The toll bearing method and terms were

based on the real conditions for the driver and for the trip. Table 3.2 shows the

possible values - for example, if we noticed the driver was paying cash and they

said elsewhere that another company does not pay their toll costs, they would be

shown the statement: 'You will pay cash at the booth, and you are responsible for

the toll cost'.

Attribute Levels

Distance (additional for alternative, miles) [5, 10, 15, 20]

Travel time (saving for alternative, minutes) [0, 10, 20, 30]

Toll (additional for alternative, $) [0, 5, 10, 15]

Table 3.1: Truckers@MIT Stated Preference Survey: Levels for Experiment
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You have an electronic toll tag, and the cost will be paid directly by

the company or shipper

You have an electronic toll tag, and the cost will be reimbursed by the

company or shipper

You have an electronic toll tag, and you are responsible for the toll

cost

You will pay cash at the booth, and the cost will be reimbursed by the

company or shipper

You will pay cash at the booth, and you are responsible for the toll

cost

Table 3.2: Truckers@MIT Stated Preference Survey: Toll Payment Method and Toll

Bearing Terms

The stated preference survey was filled out by 95 drivers overall. Unfortu-

nately, however, even after the data were cleaned to remove irrational observa-

tions, we were not able to use them to estimate a meaningful discrete choice

model. One possibility is that drivers did not care much about filling out the

survey given it was their last task before receiving their compensation. Another

is that reliability was not included as a variable, so routes with no travel time

savings, but with a toll and a longer distance might have been preferred because

they were perceived to be more reliable. Alternatively, the setup of the attributes

may not have been appropriate for longer-distance trips: a 30-minute saving is

unlikely to mean much in the context of a trip spanning thousands of miles.

In this thesis, we plan to use a similar prompted-recall methodology to esti-

mate the demand for new modes. This will be achieved by selecting a trip the

user made, and carefully selecting the levels to present for all modes, in a way

that respondents perceive as realistic given the context. Chapter 4 outlines some

examples of new transportation modes we might like to model the demand for,

and Chapters 5 onwards present our survey strategy.
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Chapter 4

New Modes of Transportation and

Mobility Services

This chapter describes several emerging modes of urban transportation, all of

which have the common theme of providing alternatives to car ownership in

cities. One way this can be achieved is through bicycle and car sharing pro-

grams, which allow travelers to use these modes without having to own them.

Another trend is of new paratransit modes that fill the gap between inflexible

fixed-route public transportation and more expensive taxis. Finally, services are

emerging that package together these new modes of transportation with existing

modes, providing a subscription that can be used flexibly. If car ownership is to

be reduced in cities, with the subsequent benefits to traffic congestion and park-

ing availability, consumers need to be given alternatives that efficiently fill the

gaps in their mobility that not having a car would create. These new modes and

packages are all ways of filling those gaps. Stated preference surveys can be used

to estimate the demand for these modes and packages, which in turn can help to

build the case for their introduction.
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4.1 Bike Sharing

Bicycle sharing is an old concept that has very recently been revitalized by in-

formation technology. Shaheen et al. (2012) characterizes bike sharing into three

generations. In the first generation, bike sharing was simply a system where

bicycles were painted one color and left unlocked around cities. The first, in Am-

sterdam in 1965, released fifty 'white bikes' into the streets. Similar programs

were implemented elsewhere in Europe and North America, but were thwarted

by bicycle theft. Later, second-generation systems used fixed docking stations

where bicycles could be picked up and returned. Theft was less of a problem be-

cause these systems used a coin deposit, but the anonymity of the system meant

it continued as an issue.

The third generation of bike sharing is what would be familiar to today's users.

Third-generation systems maintain the fixed docking stations of their predeces-

sors, but rely on information technology systems to dispense and collect bicycles.

Users need a credit card to sign up and are charged fees if they steal the bicycles

or do not return them within a set time period.

As of 2012, there were 136 bike share programs operating in 30 countries

around the world, with over 200,000 shared bicycles and 13,000 stations. The

largest was in Hangzhou, China, which had 60,600 bicycles connecting over 2,400

stations (Shaheen et al. 2012). Further expansion is planned for many cities: by

2018, the Citi Bike system in New York City will be expanded from 6,000 bikes

and 330 stations to 12,000 and over 700 stations. The system will extend further

up Manhattan and into Brooklyn, and will make a debut in Queens (New York

City Department of Transportation 2014). And in the San Francisco Bay Area, the

operators of Bay Area Bike Share have proposed to increase the size of the system

from 700 to 7,000 bicycles, with a greatly expanded reach across more parts of the

Bay Area (City and County of San Francisco: Office of the Mayor 2015).
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With the recent growth in bike share systems, bike share's impact on urban

travel behavior is now beginning to be studied in detail. In London, for exam-

ple, a survey found 60% of bike share users only began cycling for transportation

purposes in the last six months, and 50% never use a bicycle of their own to get

around London. Another study from China found that 80% of respondents re-

placed walking, own bicycle and public transport with a bike share trip (Fishman

et al. 2013). Another study, Martin and Shaheen (2014), looks at whether bike

share is complementary to or competing with public transport: on one hand,

shared bicycles can expand the reach of public transport, but could also be used

instead of public transport. They find that this depends on the user's location:

bike share increased public transport trips in outer areas because it can be used to

access bus and rail stations. But in the urban center, it was being used to replace

public transport trips.

4.2 Car Sharing

Similarly to bike sharing, car sharing began to be implemented in the 1970s in Eu-

rope, and by the late 1980s it became a commercially viable operation (Steininger

et al. 1996). Under a car sharing system, a user signs up to the system and makes

a reservation to rent a car on a short-term basis, typically less than one day. Tra-

ditionally, most car-sharing services have been round-trip, meaning users had to

drop off the car at the same place as they picked it up in. The largest of these is

Zipcar, which has over 900,000 members and 10,000 cars in North America and

Europe. An annual membership costs $70, and rental rates start at $8.25 per hour,

which includes fuel, insurance and a guaranteed parking spot at the pick-up loca-

tion (Zipcar 2015). More recently, one-way car sharing has been made possible by

services like Car2Go, where a car is found by a smartphone application, driven

to the destination and dropped off (Car2Go 2015). The growing popularity of

these services has attracted the attention of larger rental car companies: Zipcar
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was acquired by Avis and Hertz offers Hertz 24/7, which operates on a similar

basis to Zipcar (Avis Budget Group (2015), Hertz (2015)).

Much of the research on car sharing focusses on its impact on vehicle miles

traveled (VMT) and car ownership. Lane (2005), for example, studied the first

year of operation of car sharing in Philadelphia, Pennsylvania. They found that

each car share vehicle replaced 23 privately owned vehicles on average. The ac-

tual switch that was made away from driving depended heavily on whether car

sharing members reduced their vehicle ownership. Those who did tended to re-

place car trips with transit, walking and taxis, while those who kept their cars

tended to use car sharing to substitute for other car-based trips, such as tradi-

tional car rentals, borrowing friends' cars or taxis. Martin et al. (2010) conducted

a larger-scale survey of over 6,000 car sharing users across North America, and

found that the average number of vehicles per household dropped once car shar-

ing was used, from 0.47 to 0.24. Further, the largest shift in ownership was from

one to zero cars. They suggest car sharing has reduced overall vehicle ownership

by 90,000 to 130,000 vehicles.

4.3 Flexible Mobility on Demand (FMOD)

Flexible Mobility on Demand (FMOD) is a paratransit concept that aims to fill

the gap that currently exists between flexible, but expensive, taxi services and

inflexible, but cheap, transit services.

The FMOD system, which is documented in Atasoy et al. (2015, forthcoming),

comprises a fleet of minibuses with a passenger capacity of about eight. The

system uses these minibuses flexibly to offer three types of services to users:

" Taxi: door-to-door private ride

" Shared Taxi: door-to-door ride, shared with other passengers
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* Minibus: pick up and drop off at pre-designated bus stops, with fixed route

and flexible schedule.

These three services offer a spectrum of services, allowing the user to choose

between different degrees of flexibility and costliness, with taxi being the most

convenient and expensive and minibus being the cheapest but least flexible.

The FMOD system is accessed using a smartphone application. The user gives

the application their trip origin and destination, a preferred arrival or departure

time window, and the number of passengers. The system then determines a

feasible set of transport options with various schedules. This feasible set includes

options that are in the passenger's preferred time window, as well as ones slightly

outside of it. A choice model is then used to select the best options for passengers,

which need not include all three of the service types above. The aims of this choice

model can differ: the assortments can be chosen to maximize the operator's profit,

maximize consumer surplus or a combination of the two.

Atasoy et al. (2015, forthcoming) show the benefits of this system for both users

and operators. For users, the service is attractive because it provides an alternative

to public transport that is less inflexible, and the variety of different options allows

users to efficiently trade off price and convenience. For operators, the dynamic

allocation of vehicles to different services allows them to use a limited number of

vehicles more efficiently and target different transport sub-markets. Atasoy et al.

(2015, forthcoming) show this through a simulation in Hino City, Tokyo, which

has an area of about 9 x 8 kilometers. With 60 vehicles serving 5,000 requests a

day, they showed that allocating vehicles flexibly delivers higher operator profit

and higher consumer surplus, compared to having vehicles fixed as taxis, shared

taxis or minibuses.

The FMOD concept is an umbrella transport concept that covers various ser-

vices already operating. Uber, for example, operates similarly to the FMOD taxi
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service. UberPOOL offers an option to share a ride with another person going

the same way, for a discount of 10-50% (Uber 2015). Via is a similar service in

New York City that offers shared rides in Manhattan between 14th and 110th

Streets for a flat fare of $5. The vehicles it uses are SUVs, which are a similar

size to the minivans in FMOD. But it only picks up and drops off passengers at

the ends of blocks to avoid making diversions (Via 2015). Services similar to the

FMOD minibus are less widespread. One is Bridj, which offers express rides in

Boston on a set schedule for a cost a little more than a regular public transport trip

(Bridj 2015). Another is Leap, which provides service in San Francisco between

Lombard Street and the downtown area, for a flat fee of $6 per ride. The buses

are billed as being more comfortable than regular buses, with WiFi, power outlets

and food available for purchase on board (Leap Transit 2015).

4.4 Mobility as a Service

Another emerging trend is that of Mobility as a Service (MaaS), a concept that

allows households to purchase packages of mobility that provide an alternative

to car ownership. These packages bundle the use of multiple different modes,

such as car sharing, public transportation and bike sharing, into one package,

similarly to how text messages, data and voice calls are bundled into cell phone

plans (Hietanen 2014).

One example of this is UbiGo, a MaaS 'transport broker' in Gothenburg, Swe-

den (Sochor et al. 2014). In a trial involving about 100 households, UbiGo offered

a monthly subscription for five services: public transport, car sharing, car rental,

bike sharing and taxis. Each month, participants bought credit for each of the five

services, and could access them via a smartphone application and a smartcard.

The system also offered guaranteed rides if public transport was delayed by 20

minutes, cheaper public transportation to outlying areas and a rewards system
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for sustainable travel.

Sochor et al. (2014) surveyed the trial households about their use of transporta-

tion modes before and after using UbiGo. They found a modal shift away from

private cars and towards public transportation, walking and cycling. Participants

also held more negative perceptions about driving than before they used the ser-

vice. Overall, UbiGo proved to be popular with the trial group, with over 80%

saying they would be interested in continuing to use the service.

The trial of UbiGo was conducted with the support of local industry and gov-

ernment organizations (UbiGo 2015). Another, SwissPass, is operated by SBB, the

Swiss national railway (SBB 2015). This new version of an SBB season pass now

enables the use of complementary mobility services all across Switzerland. The

card can access Mobility Carsharing at 1,400 locations, PubliBike, which is a bike

sharing provider that also allows electric bicycle rental, and ski passes. It also

provides a trip planner for walking, cycling and other outdoor activities.

SHIFT, a startup in Las Vegas, takes a different approach again, offering a

combination of shared bicycles, small cars (the Smart Fortwo) and large cars (the

Tesla Model S). The system is currently in beta testing, but a variety of plans are

likely to be offered, with monthly bike-only access at $25, 20-30 trips at $250 and

unlimited trips for $500 (Ferenstein 2014). Unlike in other systems, all the vehicles

are owned by SHIFT. Within downtown Las Vegas, the system guarantees that

users will be using a car or bike within five minutes of making a request via the

SHIFT mobile application. And users do not make a choice about which mode

to choose from a menu of options: instead, the system pairs them with an option

that will be most convenient for the trip (SHIFT 2015). For example, short trips

in the downtown area are more likely to be paired with a bicycle, while longer

round trips to outlying suburbs would be paired with a larger car.
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Chapter 5

The Future Mobility Survey

This chapter will present the structure of the Future Mobility Survey's GPS data

collection and validation. As explained in Section 3.3, the Future Mobility Survey

collects data using a smartphone application called FM-Sensing. This application

is available on the iPhone and Android platforms.1

SMARTPHONE
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Figure 5-1: Future Mobility Survey System

1These applications can be found at https://play.google.com/store/apps/detais?id=edu.mit.smart.
fmsurvey.android&hl=en and https://itunes.apple.com/sg/app/fm-survey/id604011160.
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5.1 Registration

The URL of the FMS web site is www.happymobility.org. The home page, illustrated

in Figure 5-2, gives a brief description of the survey.
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pffoceds.

Thankya for your intemat

Figure 5-2: Future Mobility Survey Homepage

5.1.1 Registration

Upon registering, users are asked for their home address, work address and

school address (if applicable). They are also asked to enter the address of any

second homes they use as residences.

These addresses are used to automatically infer information at stops. When a

stop is close enough to the address of the user's home, work or school, the system

automatically selects this option during validation. This allows the user to simply

confirm the inferred information instead of having to choose from all possible

stop options.
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5.1.2 Pre-Survey

Upon registering for FMS, the user answers a pre-survey with questions about

themselves, their household and their mobility options. These questions are listed

in Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 below:

Information Question Possible Responses

Age What is your age? (Whole number)

* Female

Gender What is your gender? 9 Male

* Prefer not to answer

e Single, never married

* Married/living with partner
Marital Sta- What is your marital

* Divorced/separated
tus status?

9 Widowed

* Prefer not to answer

* Employed full-time

* Employed part-time

9 Self-employed

Which of the following * Temporarily on leave from a

Employment best describes your full or part-time job

Status current employment * Retired

situation? e Unemployed and seeking

work

* Not employed and not

seeking employment

Table 5.1: Individual Questions: FMS Pre-Survey (Part 1)
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Information Question Possible Responses

* African American/Black

* Asian

* American Indian, Alaskan Native,

Native Hawaiian/Other Pacific Islander
How would you

Ethnicity describe your racial * Hispanic/Latino

* White/Caucasian
background?

e Multiracial

* Other

* Prefer not to answer

e Don't know

Table 5.2: Individual Questions: FMS Pre-Survey (Part 2)

Information Question Possible Responses

Years at Residence For how many years (to (Whole number)

the nearest year) have you

lived at your current

address?

e Single-family detached house

* Single-family attached house

Which of the following e A building with 2 or more

Dwelling best describes the apartments or condos
* A mobile home or trailer

Type building in which you
currently live? 9 College dormitory, fraternity

or sorority house

* Other

9 Don't know

Table 5.3: Household Questions: FMS Pre-Survey (Part 1)
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Information Question Possible Responses

e Own

What is the e Rent

Ownership ownership status of * Occupy without owning or paying rent

Status your current * Other

residence? e Don't know

* Prefer not to answer

Last year, what was
* (Whole number)

Household your total household
* Prefer not to answer

Income income from all
* Don't know

sources before tax?

Table 5.4: Household Questions: FMS Pre-Survey (Part 2)

Information Question Possible Responses

How many vehicles are owned, leased

or regularly available to the members
Access to Car 0, 1, 2, 3, 4, 5+

of your household? Include cars,

motorcycles, mopeds, trucks, RVs, etc.

How many bicycles do you have at
Access to Bicycle 0, 1, 2, 3, 4, 5+

your home?

* Yes
Do you currently use or are you a

Bike Sharing * No
member of a bicycle sharing service?

9 Don't know

Driver's License Do you currently hold a driver's li- * Yes

cense? e No

[Only asked if participant has license] 9 Yes

Car Sharing Do you currently use or are you a mem- * No

ber of a car sharing service? 9 Don't know

Table 5.5: Mobility Questions: FMS Pre-Survey (Part 1)
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Information Question Possible Responses

e Yes

Do you currently have * No
Transit Pass

any type of transit pass? 9 Don't know

* Prefer not to answer

Do you have any mobility

issues that make it * Yes

difficult for you to go o No
Mobility Issues

outside your home o Don't know

unassisted or . Prefer not to answer

unaccompanied?

o I do not use any aids

o Walking stick/crutches for

Which, if any, of the body support
0 Walker

following aids do you use
* Non-Motorized wheelchair

Mobility Aids for moving outside your

home? Please select all

that apply. prevent obstacles to

movement

o Others

o Prefer not to answer

Table 5.6: Mobility Questions: FMS Pre-Survey (Part 2)
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5.2 Collection and Validation of GPS Data

Once a user finishes the pre-survey, they are directed to install the application

on their smartphone. Screenshots from the smartphone application, FM Sensing,

are shown in Figure 5-3. The left-hand image shows the start-up screen, and the

right-hand image shows what the user sees once the application is open. The

mobile application is very minimal, only showing a trace of where the user has

been that day, with no indication of inferred stops or travel modes. The trace is

stored on the phone, and is then uploaded to the Future Mobility Survey server,

where stop and trip inference is made using machine learning algorithms.

FM~~~~ 0es gF esn

Status

collecting data

Today's Trace~UTURE

Figure 5-3: FM Sensing Application, Android Version

Periodically (ideally, at the end of each day), users log onto the Future Mobility

Survey web site to validate their data. Upon logging on, they are shown the screen

in Figure 5-4. From there, they can access support in validating their data and the

Future Mobility Survey privacy policy.

Figure 5-5 shows a typical activity diary a user might see for one day. The GPS
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trace is shown for stops, as are stops the system inferred for that day. The activity

performed at each stop might be inferred based on the user's past responses. To

the right is the user's sequence of activities and trips, which they in turn validate

for every stop and trip. Users may delete or add stops into their activity schedule.
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Figure 5-4: Future Mobility Survey: Welcome Screen
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Figure 5-5: Future Mobility Survey: Validation Screen
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Figure 5-6 shows the process of validating a stop. Users can choose from the

16 stop types listed in Table 5.7, or enter a text description if none of these is

suitable. More than one activity type can be selected, which prompts another

question asking what the main activity type was. The start of the activity can also

be changed; the end time can be as well, but this can only be done by changing

the start time of the next trip, which by definition is the end of the preceding

activity.

0 10 Z mii dy 914 IIII24 ml U e

20 U: 10 * O oPm~vawdft a
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Figure 5-6: Future Mobility Survey - Validating a Stop

Stop Type Symbol Stop Type Symbol

Home Education

Other Home fl Work-Related Business fl

Work Meal/Eating Break U
Shopping E Social l

Personal Errand/Taskfl To Accompany Someone U
Medical/Dental (Self) = Entertainment

Sports/Exercise U Pick Up/Drop Off

Change Mode/Transfer U Other (Please specify) +

Recreation U
Table 5.7: Future Mobility Survey - Stop Types
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Between every pair of stops is a period of travel: a trip. The interface for

validating trips is shown in Figure 5-7. Users select one mode of transportation

from the symbols given in the interface; a full list is shown in Tables 5.8, 5.9 and

5.10. They also specify how many other people travelled with them (with options

0, 1, 2, 3, 4 and 5+), and if this is more than one, they are asked if these are

household members, non-household members, or a combination or both. Some

modes also come with supplemental questions asking how the mode was used.

For the car mode, for example, there are supplementary questions about the type

of car, who was driving it and how it was parked. A full list of these supplemental

questions is given in Tables 5.8, 5.9 and 5.10.
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Figure 5-7: Future Mobility Survey: Validating a Trip

Mode Symbol Supplemental Questions Possible Answers

Foot None

e Car

Car/Van Vehicle Type e Lorry
9 Van

Were you the driver? e Yes
* No

Table 5.8: Future Mobility Survey - Supplemental Mode Questions (Part 1)
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Mode Symbol Supplemental Questions Possible Answers

* Street

Parking Place * Personal Garage
Car/Van P Driveway

9 Parking Lot

9 One-off Payment
Parking Payment Type * Monthly/Season

* No Charge

* Public bus

Bus Type * School bus
Bus * Company bus

* Shuttle bus

(User-entered route
Bus Number number)

Table 5.9: Future Mobility Survey - Supplemental Mode Questions (Part 2)

Mode Symbol Supplemental Possible AnswersQuestions

LRT/MRT None

Bicycle 0 None

Taxi Taxi Fare (Dollar amount)

Was your fare reim- * Yes
bursable? 9 No

Motorcycle/Scooter f Were you the driver? * Yes
* No

Air None
Other Please specify (User-entered text)

Table 5.10: Future Mobility Survey - Supplemental Mode Questions (Part 3)
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Chapter 6

The Stated Preference Survey

The stated preference survey component is the primary contribution of this thesis.

Its goals are threefold. First, it aims to be context-dependent, in the sense that any

travel options presented seem realistic to the user, given where and when they

are traveling. Second, it aims to present large amounts of information for many

modes, but in a way that is easy to navigate and understand. Third, it should be

able to be applied anywhere in the world without the use of skims specific to a

certain region. 1

These three goals are achieved by the survey described in this thesis. To satisfy

the first goal, the survey design relies on web directions services, such as Google

and Bing Maps. These services take in origin and destination points (and, in

some cases, departure or arrival times) and deliver a set of directions with an

estimated distance and travel time. These services provide a rough guide as to

what a reasonable travel time to present is. Similarly, they can also be a useful

source of mode availability - if a user makes a trip in a rural area with no transit

service, no directions will be picked up by Google Maps, and a transit option will

'In travel demand modeling, skims are matrices that represent values of travel-specific variables
between all possible origin and destination zones. Typically these are travel times, say by car, from
the center of one zone to another. But skims can also represent times on other modes, such as
transit and bicycling, or costs, such as a transit fare.
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not be presented, because it is most likely not realistic for the user.

The second goal is achieved by constructing a user interface that is able to

present a large amount of information. Instead of a traditional, table-based ap-

proach, we use a menu-based approach that allows users to view only the infor-

mation they want to view.

We achieve the third goal of an interface that can be applied anywhere by

using mapping services to find travel times and distances. We can find driving,

walking and bicycling times for almost anywhere in the world using Google or

Bing Maps. For public transportation, we can find route information in most

major urban areas using Google Transit, which is available in over 70 countries

(Google 2015).

This chapter illustrates the overall structure of the presentation of the stated

preference survey, with information on the user interface and attributes presented.

Chapter 7 details the experimental design that determines the values shown to the

user, and Chapter 8 discusses how the survey could be extended and adapted to

more new modes and new scenarios.

6.1 Traditional Stated Preference Surveys

Traditionally, stated preference surveys have relied on large tables of information

to convey the attributes of the alternatives. An example is given in Table 6.1 for a

hypothetical scenario, where the respondent chooses between car and bus for the

commute trip.

This approach is very straightforward, but is not suitable for analyzing a large

number of modes with a potentially large number of variables. If the survey had

ten modes and perhaps many more variables, it is likely to be very difficult for

users to take in and interpret realistically.
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Table 6.1: Example Stated Preference Survey Profile

Lang (2013) adopts the table approach for a large number of modes in Lisbon.

There, the survey is sequential: the respondent is asked to select their preferred

option from three groups (car-based, public transport and multimodal). Each of

these three groups has its own screen. Then, a summary screen is displayed,

which shows the three preferred modes from each group, and the user selects

one of these to make their final decision. If a car-based mode is selected, a fourth

screen appears, giving the user the option to change their departure time to avoid

congestion and a proposed congestion charging regime.

One way to avoid the potential perception issues of using a table is to use

pictorial representation, which reduces information overload, makes users' per-

ceptions of modes more homoegeneous, makes the task more interesting and

increases realism (Morikawa 1989).

Another approach adopted in the market research literature is information

acceleration. Marketers of new products use information acceleration by placing

consumers in a virtual environment similar to that a consumer might experience

when actually purchasing the good. For example, Urban et al. (1997) describe

this process for an electric vehicle, where a virtual showroom was created that

allowed consumers to walk around and view cars, sit in them and talk about them

with a sales representative. They find this greatly increases realism compared to

traditional marketing surveys, potentially leading to better sales forecasts.
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Total travel time (min) 28 45

Fuel cost ($) 5 -
Parking cost ($) 15 -

Bus fare ($) - 2.75
Number of transfers - 0



6.2 A Menu-Based Approach

Figure 6-1 shows the mode choice structure for the pilot version of this survey.

There are ten modes in total, a number too large to represent in a table. Our

alternative approach is menu-based: it relies heavily on pictorial representation

to reduce the task burden, as suggested by Morikawa (1989). It also uses the

process of information acceleration in Urban et al. (1997), by mimicking common

trip planning applications. This increases the realism of the survey, as users feel

like they are planning an actual trip.

We start by selecting the trip from home to the respondent's primary destination

for that day, which is the main place the respondent visited in their day's travels.

For simplicity, the primary destination is defined as the longest stop the user

made that day, though there are other ways to define this (see, e.g., Bowman

(1998)).2

We then present the hypothetical scenario to the user, which is to consider

a trip made from the home to the primary destination without stops. We show

the trip without stops to simplify the choice setting. If respondents had to plan

a trip that had stops (say, the same stops that they actually made), they would

need to select a mode for each leg of the half-tour, which could become very

complex. Users would need to think about how their use of one mode impacts

on their potential to use other modes. For example, if the first trip of a three-

trip half tour was made by car and then another mode was used in the second

leg, users would need to think about how they would eventually collect the car.

From a survey design perspective, to present a parking charge we would need

to know how long the user would have parked at the first stop, which further

increases the complexity of the survey. And even if this was possible, it is not

obvious that all stops would even be made under certain circumstances. For

2 It is possible that the user does not have a primary destination, because they never left home

that day. In these cases, the survey would not be shown for that day's data validation.
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C Car
D Car Driver
P Car Passenger

W Walk
BK Bicycle

FMOD Flexible Mobility on Demand (from Chapter 4)
T FMOD Taxi

ST FMOD Shared Taxi
M FMOD Minibus

PT Public Transport

Figure 6-1: Mode Choice Structure: Pilot Survey

example, if driving were presented as being prohibitively expensive and the user's

revealed preference data shows they drove, users might use public transportation

instead, forgoing stops that are easy to reach by car but difficult to access via

public transportation. Instead, when the trip is one with no stops from home to

the primary destination, these issues can be avoided.

6.3 Pilot Version: User Interface

The steps in the survey are:

1. Collect and validate GPS data using the FM Sensing smartphone application
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(see Section 5.2 for details)

2. Enter the stated preference part of the survey

3. If this is the first time the user has seen the stated preference survey, present

information on new modes

4. Present information on the trip (from home to primary destination, without

intermediate stops)

5. Show information for review only

6. Allow selection of preferred travel mode.

Once the user has completed Step 1, they will be directed to start the stated

preference survey via a hyperlink. This immediate redirection is a very important

part of the survey process: the longer the time lag between data collection and the

stated preference survey, the less the user is likely to remember about the trip. In

Truckers@MIT, this proved to be an issue, because the stated preference part of the

survey occurred at the very end of data validation, which in many cases took over

four weeks. We suspect this was one of the factors that prevented us from getting

meaningful results, because the truckers may have had difficulty remembering

the trips and the conditions they encountered when they were on them. We only

present the survey once per validation, which should not be any longer than

once per day. Because the survey is reasonably complex, we would like to avoid

presenting too many profiles to reduce the cognitive burden on respondents, as

argued in Louviere et al. (2000).

In Step 3, we present the new modes, which in this case is FMOD. This screen,

shown in Figure 6-2, describes the mode and shows its pictorial representation,

which will be carried through to the rest of the survey to jog the user's mem-

ory. However, to minimize the burden on respondents, the new modes will not

be shown again once the survey has been completed the first time. Users will,

however, be able to access this information at a later time if they choose - see

the representation in Figure 6-11. If, as we anticipate, other new modes, such as

car and bicycle sharing, are presented, they will be shown here as well, and their
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order of presentation will be randomized.

SP -FMOD

Flexible Mobility on Demand (FMOD)
Smait phone application based on demand service similai to Uber, Lyft and Sidecor
but offers an optimized menu of options inclnding taxi, shared-taxi and rmrri-bus

This new tiavel option may be avaiable to you

FMOD - Taxi FMOD - Shared Taxi FMOD - Mini Bus

Door -to-door pnvate ride Door-to-door ride, Pick up and drop off at pre-designated
shared with other passengers. bus stops, with fixed route

arid flexible schedule.

Figure 6-2: Stated Preference Survey: Initial Presentation of FMOD

Figure 6-3 shows Step 4: the presentation of the trip from home to the primary

destination. To refresh the user's memory about the trip they will be considering,

a map of the trip is shown, along with markers showing the home and primary

activity locations. The activity at the primary destination is also shown so the

user is aware of what they did at the primary destination, which might impact on

their travel preferences.

The description of the task has been kept relatively short to minimize the

respondent burden. It has been broken up into three steps to make sure the user

understands all three points. The six icons at the top represent the six groups of

modes the user will eventually choose from; they are the symbols from Figure

6-1. Their locations will also be randomized, so that car is not always presented
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\- Step I
Z osde MI 00ey YOU~ feCenltIl adt

Step 2
Now suppose YOu iepeat ths iourey n the tuturea
wiOu stapping on the way.

Step 3
HOW WOUld you get thee?

Figure 6-3: Stated Preference Survey: Presentation of Trip

first and FMOD is not

relate to which modes.

always presented last. Table 6.2 illustrates which symbols

Icon

Mode Car Transit Walking Bicycle Taxi FMOD

Table 6.2: Stated Preference Survey: Mode Group Icons

6.3.1 Mode Review and Selection

Once the user has been reminded of the trip they made, they proceed to Steps 5

and 6, where they review the information for all the mode groups and proceed

to a selection screen. There are separate stages of the process for review and
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selection; this is to encourage the user to explore the different options instead of

just clicking on any mode and selecting that to avoid having to put in more effort.

The next parts show the user interface for each of the options. The interface is

very similar between the review and selection stages - the only difference is that

the option to select a mode is greyed out in the review process. However, during

the selection process, the user will have the freedom to view (or not view) any

mode group they choose. They can click on any of the mode group icons in Table

6.2 and make their selection from there.

The six mode groups are shown to the respondent in a random order, and the

user can move between them by clicking on the 'previous' and 'next' buttons. Not

all mode groups will be presented to the user - if a mode is not available, it will

not appear. For example, if the user does not own a car, this will not be presented

as a travel option. The availability criteria for modes are described in more detail

in Chapter 7.

Car

The review and selection screens are shown in Figures 6-4 and 6-5. Where possi-

ble, two routes will be shown: one that has a (hypothetical) toll and one without a

toll. These two routes are presented on a map, and the total trip time is displayed,

along with the departure and arrival times. The travel time is displayed, and is

broken down into four components: access time (walking time from trip origin to

car); drive time; parking time; and egress time (walking time from parking place

to destination). Toll, parking and fuel costs are displayed separately.
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Please, explore the travel options below, and click "Next"...

Car

15:00 -15:27

3 mi + 20 inf + 3 min + 1 in

Fuel Parking
21 SGD 2 SGD

27 min

15:00 -15:17 17 min

5mm 10min+ 1min+1min

Fuel Parking Toll

12SGD 2SGD 3 SG

Figure 6-4: Stated Preference Survey: Car Mode - Review Screen
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Please choose a mode of transport from the options below:

Car

15:00 - 15:27

3 min + 20 min + 3 min + I min

Fuel Parking
21 SGD 2 SGD

27 min

15:00- 15:17 17 min

5 min+ 10min+min + min

Fuel Parking Toll
12SGD 2SGD 3SGD

Figure 6-5: Stated Preference Survey: Car Mode - Selection Screen

Transit

The review screen for the transit mode group is shown in Figure 6-6; the selection

screen is not shown here, but is identical to the review screen, except for the select

buttons not being greyed out.

The transit mode group presents two mode groups: bus and train. As with

the car mode, relevant travel times and costs (in this case, the fare) are displayed.

The sequence of the trip is slightly different from the car, however. It is broken

into:
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" Access time: walking time from trip origin to the first bus stop or railway

station

* Waiting time

* In-vehicle time

" Egress time: walking time from the last bus stop or rail station to the trip

destination.

Transit trips may well involve more than one transfer, and this is built into the

experimental design in Chapter 7. For each leg of the journey, then, there is an

associated waiting time and in-vehicle time. This is accommodated in the survey

by showing two different waiting times and in-vehicle times in sequence. 3

Please, explore the travel options below, and click "Next'.

Transit

Train

15:00-15:50 0 nI

* > $') > Q>

5 min + 15 min + 20 mn + 10 min

Ticket

2,5 SG

15:00-15:50 Mm

*> $ +> + >

5 mwn + '15 mini + 25 mmi + 10 mi

Ticket
3.5 SGD

Figure 6-6: Stated Preference Survey: Transit Mode Group - Review Screen

3To simplify the interface, we did not consider cases where transfers require walking a non-

trivial distance from one transit stop to another.
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Walking

The review screen for walking is shown in Figure 6-7. As before, the relevant

times are shown, and there is no segmentation of different types of travel time.

The walk distance is shown, as is the type of terrain. We hope to be able to

retrieve the type of terrain from Google Maps, which can display this information

for some queries. As with the car option, two routes are shown if possible, with

maps that will enable users to identify them.

Please, explore the travel options below, and click "Next".

Walking

15:00- 16:15 Ih If min

S 9Distance 10 km

mostly flat

15:00 -16:35 lh 35 min

Fur -7Die re tance r 15km

mnostly flat

Figure 6-7: Stated Preference Survey: Walking Mode - Review Screen

83

..... ... .... ..... . - ------------- .......

------- . ......



Bicycle

Figure 6-8 shows the review screen for bicycles. The information shown is very

similar to walking, with travel times, distances, terrain and route maps. The only

addition is the percentage bicycle lane: where possible, the interface will show

two routes. One is a safe route (shown in Figure 6-8 as the second option), with

more bicycle lane but a longer travel time. The direct route (the first option shown

in Figure 6-8) is quicker, but has less bicycle lane.

Please, explore the travel options below, and click "Next"..

y

15:00 - 15:32

9 Distance: 10 km

50% bicycle lane mostly flat

15:00 - 15:52

9 Distance: 15 km

80% bicycle lane mostly flat

32 min

52 min

Figure 6-8: Stated Preference Survey: Bicycle Mode - Review Screen
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Taxi

The review screen for the taxi mode is shown in Figure 6-9. Similarly to the

car mode, there are two routes, and the relevant times and costs are illustrated.

The total travel time is broken down into waiting time and in-vehicle time com-

ponents; we assume there is no access or egress component, because taxis are a

door-to-door service.

Please, explore the travel options below, and click "Next"...

J~)

Taxi

15:00-15:35

15 min + 20 min

Toll
10 SGD

15:00 - 15:45

1!) > +in

15min + 30min

35 min

Fare
20 SGD

4 min

Fare
14 SC'D

Figure 6-9: Stated Preference Survey: Taxi Mode - Review Screen
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FMOD

Figure 6-10 shows the FMOD review screen. This shows the three separate FMOD

alternatives, which will be presented in a random order and may not all be avail-

able (for more details, see Chapter 7). The presentation of the FMOD taxi and

shared taxi options are the same as for a regular taxi. The fixed route bus alter-

native, FMOD minibus, is presented in a similar way to a regular bus, but we

assume no transfers will be made. Figure 6-11 shows the pop-ups that are pre-

sented if the user hovers over the information icons. These descriptions are the

same as those presented to the user the first time they take the stated preference

survey.

Please, explore the travel options below, and click "Next'..

FMOD

flexible Mobility on Demand System

FMOD -Taxi

FMOO - ShWd Tax

FMOD- MW BSe

15:00-18:30

16 00 - 15:36

15:00 - 15:40

* > + . +

cvIt -4 m's. - O nr10 ( ""

30 mi

36 mItt
SGI)

46 mA

SO

Figure 6-10: Stated Preference Survey: FMOD Mode - Review Screen
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Please, explore the travel options below. and click "Next'

Flexible Nobility on Demand System

15:00- 15:30

15:00 -15;35

15:00- 15:40

> >

Figure 6-11: Stated Preference Survey: FMOD Mode

planatory captions

- Review Screen, with ex-

6.3.2 Concluding Screens

Once the user has completed the survey, they are asked to confirm their selection

and are presented with a completion page, as shown in Figure 6-12.

This chapter has presented the user interface of the survey, showing the steps

the user will take to select a travel mode. Chapter 7 describes in detail how

we determine which modes to show and how the values shown to the user are

generated. Chapter 8 discusses ways the survey can potentially be extended, with

more new modes and other applications.
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*

Thank you!
You've selected bicycle.

Figure 6-12: Stated Preference Survey: Confirmation Screens
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Chapter 7

Experimental Design

Chapter 5 described the general structure of the survey. It showed the different

modes and the user interface, but not how we generate the values for travel times

and costs for different trips, or whether these modes should even be available to

users. This chapter provides those answers.

7.1 Fetching Context-Aware Travel Information

As described in chapter 6, the trip shown is a trip from the user's home to their

primary destination for the day, made without stops. The trip origin is the re-

spondent's home location, and the trip destination is the location of the primary

destination, which is the stop where the user spent the longest period of time.

Once we have the origin and destination of the trip, as well as the arrival time,

we can use this information to gather information on travel times and distances

from web services, such as Google and Bing Maps. This includes:

* Driving information: the travel time and distance, without traffic.

" Walking information: walking time, walking distance and terrain type.
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" Bike: bicycling time, bicycling distance and terrain type.

" Transit: There are two queries to make to the Google Directions API - one

for bus and another for train.

- Bus: this query is made by selecting 'bus' as the preferred option in

Google Maps, with the desired arrival time as the time the user actually

arrived at the primary destination. We use these values:

* Walking time from trip origin to first transit stop

* Walking time from last transit stop to destination

* Total time spent in a transit vehicle (either bus or train)

* The arrival time for the suggested transit trip

For short trips (such as walking two blocks to a store), it is likely that

Google Directions won't show a transit trip - it will instead show walk-

ing. In these cases, we will not show buses or trains as options. We also

do not use transfer information Google Directions; instead, the number

of transfers will come from the experimental design.

- Train: We make and store the same information as in the query for the

bus, but with 'train' selected as the mode option.

In many cases, the results from the bus and the train queries could be the

same - in an area where there are no trains, selecting train as the preferred

option will still give a bus. We keep these results (and expect them in many

cases) - when we present a rail option, for example, this will be purely

hypothetical, but the travel time will pivot from the existing bus travel times.

7.2 Mode Availability

The mockups in Chapter 6 assume that all modes are available; however, this is

not likely to be the case for all respondents. Some, for example, might not own

cars, while others may live in areas with limited or no public transport service.
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We therefore apply the following criteria to determine whether to offer modes

to respondents in the survey. In some cases, this information comes from the

Future Mobility Survey pre-survey (in Chapter 5), but in other cases it relies on

trip information we fetch from web services.

* Car Driver: only available if the respondent's household owns at least one

car and has a valid driving license.

" Car Passenger: always available.

" Walk: always available.

" Bicycle: available if the respondent's household owns at least one bicycle.

" Transit - Bus: only available if a Google Maps search for the trip (from origin

and destination, with 'bus' selected as the preferred mode) returns a trip

with an arrival time within two hours of the actual arrival time.

" Transit - Train: only available if a Google Maps search for the trip (from

origin and destination, with 'train' selected as the preferred mode) returns

a trip with an arrival time within two hours of the actual arrival time.

" Taxi: always available.

" FMOD Taxi: always available.

" FMOD Shared Taxi: always available.

" FMOD Minibus: only available if the minimum driving distance from origin

to destination is less than 2 kilometers.

7.3 Survey Design

The design approach we use for this experiment is a cleaned random design.

According to Walker et al. (2015), 'the random design (which is the easiest to gen-

erate) performs as well as any design, and it (as well as any design) will perform

even better if data cleaning is done to remove choice tasks where one alternative
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dominates the other'. Because the pilot survey includes new modes of transporta-

tion, we do not have good priors on the parameter values, so efficient design is

not likely to be the most efficient choice. Further, of the standard fractional fac-

torial designs, it is difficult to generate an orthogonal design with such a large

number of variables. And even if we managed to generate such an orthogonal

design, the large number of pairwise comparisons that would have to be made to

clean profiles (see Section 7.4) would make the design far from orthogonal. The

random design performs similarly to the orthogonal design in Walker et al. (2015)

and it is much more straightforward to generate, which is why we employ it here.

The design for this experiment is a pivot-style design, which was described

in Section 2.3. We combine four sources of information to generate the profiles

shown to users:

" Demographics: to determine mode availability (Section 7.2)

" Revealed preference (GPS): to find trip information (origin, destination, arrival

time; Section 7.1)

" Web services inputs: to find trip times and distances (Section 7.1)

" The experimental design: to vary travel times and costs for presentation to the

user, based on the rough guide given to us by web services.

The next sections describe how profiles are generated for each of the modes in

the stated preference survey.

7.3.1 Attributes and Levels: Common to All Modes

There are certain attributes and relationships presented to the user that are com-

mon across all modes. We list them here so they are not repeated for every mode:

* Arrival time: the user's actual arrival time at the primary destination, from
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the GPS data. The only exception is for public transportation, where the

arrival time is the arrival time from Google Directions.

" Total travel time: the sum of all travel time sub-components, which may in-

clude:

- Access time

- Egress time

- In-vehicle time

- Parking time

- Waiting time

" Departure time: the arrival time, less the total travel time.

7.3.2 Attributes and Levels: Car

The experimental design for the car mode is shown in Table 7.1.

Variable Code Design Variable Levels
C-1 Travel time ratio: route 1, peak 1.2, 1.3, 1.35, 1.55, 1.7, 2, 2.5
C-2 Travel time ratio: route 1, off-peak 1, 1.05, 1.15, 1.2, 1.5
C-3 Travel time ratio: route 2, peak 1.2, 1.3, 1.35, 1.55, 1.7, 2, 2.5
C-4 Travel time ratio: route 2, off-peak 1, 1.05, 1.15, 1.2, 1.5
C-5 Fuel cost (per kilometer) 0.1, 0.25, 0.3, 0.5, 0.8, 1.0, 1.2, 1.5
C-6 Free parking True, False
C-7 Parking cost (Hourly rate, $/hr) 0.5, 1, 1.5, 3, 4, 8
C-8 Parking cost (Daily rate, $/day) 2, 3, 5, 10, 15, 30
C-9 Toll (if only one route available) True, False
C-10 Toll cost ($) 0.5, 1, 3, 4, 7, 15
C-11 Parking time (min) 1, 2, 3, 4, 5, 8, 10
C-12 Access time (min) 1, 2, 3
C-13 Egress time (min) 1, 2, 3, 4, 5, 8, 10, 15

Table 7.1: Design Variables: Car Mode

The attributes shown to users for the car mode are:

* Access time (min): comes directly from design (variable C-12). Same time

shown for both routes. The access time levels are generally shorter than the
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egress time levels, because the trip starts from home, where a car is likely to

be parked very close by.

* Travel time (Route 1, min): If the trip ends during 7-9am or 4-7pm on a week-

day, show the driving time from the mapping service for route 1, multiplied

by the peak travel time ratio for route 1 (variable C-1). Otherwise, multiply

the driving time by the off-peak ratio for route 1 (variable C-2). There are

different sets of peak and off-peak levels to reflect the greater possibility of

traffic congestion during peak times.

" Travel time (Route 2, min): Only shown if the mapping service returns multi-

ple routes. If the trip ends during 7-9am or 4-7pm on a weekday, show the

driving time from the mapping service for route 2, multiplied by the peak

travel time ratio for route 2 (variable C-3). Otherwise, multiply the driving

time by the off-peak ratio for route 2 (variable C-4).

" Parking time (min): comes directly from the design (variable C-11). Same

time for both routes.

" Egress time (min): comes directly from the design (variable C-13).

" Fuel cost (Route 1, $): multiply the distance travelled in route 1 by the per-

kilometer fuel cost rate (variable C-5).

* Fuel cost (Route 2, $): multiply the distance travelled in route 2 by the fuel

cost rate (variable C-5).

" Parking cost ($): different parking costs are shown for short and long trips.

For trips of under three hours, a per-hour rate is used, and the parking

cost is the primary activity duration (in hours), multiplied by the per-hour

rate (variable C-7). Otherwise, a flat daily rate is shown (variable C-8). The

parking cost shown is the same for both routes, since the trip destination is

still the same regardless of the route.

" Toll ($): what is shown depends on how many driving routes are returned

by the web service.

- If only one driving route is returned by the mapping software, the toll

for this route will be zero (and the word 'toll' will not be shown at all)

94



if the toll dummy variable (variable C-9) is false. If it is not, then the

toll will be a nominal dollar amount (variable C-10).

- If two driving routes are returned, then the route with the longest driv-

ing time is given a toll of zero, and the word 'toll' is not shown. The

shorter route will have a toll given by variable C-10.

7.3.3 Attributes and Levels: Bus

The experimental design for the bus mode is shown in Table 7.2.

Variable Code Design Variable Levels
B-1 Access time ratio 0.75, 0.9, 1, 1.05, 1.25
B-2 Egress time ratio 0.75, 0.9, 1, 1.05, 1.25
B-3 Number of transfers (if total trip 0, 1

time is between 10-20 minutes)
B-4 Number of transfers (if total trip 0, 1, 2

time exceeds 20 minutes)
B-5 Headway, Leg 1 (min) 3, 5, 8, 10, 15, 30
B-6 Headway, Leg 2 (min) 3, 5, 8, 10, 15, 30
B-7 Headway, Leg 3 (min) 3, 5, 8, 10, 15, 30
B-8 Waiting time ratio, Leg 1 0.1, 0.35, 0.5, 0.65, 0.85, 1
B-9 Nominal waiting time, Leg 1 (min) 1, 2, 3, 4, 5

B-10 Waiting time ratio, Leg 2 0.1, 0.35, 0.5, 0.65, 0.85, 1
B-11 Waiting time ratio, Leg 3 0.1, 0.35, 0.5, 0.65, 0.85, 1
B-12 In-vehicle travel time ratio 0.75, 0.9, 1, 1.05, 1.25, 1.5,

2
B-13 Proportion of in-vehicle time on leg 20, 40, 60, 80

1, if one transfer (%)
B-14 Proportion of in-vehicle time on leg 15, 25, 35, 40

1, if two transfers (%)
B-15 Proportion of in-vehicle time on leg 15, 25, 35, 40

2, if two transfers (%)
B-16 Fare ($) 0.5, 1, 1.5, 2.5, 3, 5, 7, 8, 10

Table 7.2: Design Variables: Bus Mode

The attributes shown to users for the bus mode are:

. Access time (min): this is the walk from the trip origin to the first transit stop.
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Multiply the access time from the web service by the ratio from the design

(variable B-1). The variability in access and egress times reflects possibilities

where the closest bus stop is either closer to or further away from the user's

home location.

* Egress time (min): this is the walk from the final transit stop to the trip

destination. Multiply the egress time from the web service by the ratio from

the design (variable B-2).

* Number of transfers: this depends on the total in-vehicle time, which is the

total in-vehicle time from the web service, multiplied by a ratio (variable B-

12). The rationale here is that very short trips are unlikely to involve much

transferring.

- If the total in-vehicle time is under 10 minutes, we will not show any

transfers because the trip is very short.

- If the total in-vehicle time is between 10 and 20 minutes, we can either

have zero or one transfers; this is given by variable B-3.

- Otherwise, if the total in-vehicle time is over 20 minutes, we can show

either zero, one or two transfers; this value is given by variable B-4.

* In-vehicle times (min): to get these, we first find the total in-vehicle time (by

multiplying the web service value by variable B-12), and then divide it up

depending on how many legs of the transit trip there are. The number of

legs in the transit trip is equal to the number of transfers, plus one.

- Leg 1: if there are no transfers, this is just the total in-vehicle time. If

there is one transfer, this is the total in-vehicle time, multiplied by the

proportion of in-vehicle time spent on leg 1 (variable B-13). If there

are two transfers, this is the total in-vehicle time, multiplied by the

proportion of in-vehicle time spent on leg 2 (variable B-14).

- Leg 2: if there are no transfers, there is no leg 2 and this value is not

shown. Otherwise, if there is one transfer, this is equal to the total

in-vehicle time, less the in-vehicle time in leg 1. If there are two trans-
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fers, this is the total in-vehicle time multiplied by the proportion of

in-vehicle time spent on leg 2 (variable B-15).

- Leg 3: only shown if there are two transfers, because if there are less

than two transfers, leg 3 does not exist. This is the total in-vehicle time,

less the in-vehicle times for the first two legs.

" Waiting times (min): the calculation of waiting times differs for the first and

subsequent legs.

- Leg 1: if the headway of service is more than 10 minutes, we use a

nominal value, because people are more likely to rely on the schedule

and control when they get to the bus stop. The 10-minute threshold

is suggested by Frumin (2010), who examined Oyster card data from

London to calculate waiting times as a function of headway. In this case,

the waiting time is just the variable B-9. Otherwise, the service is a turn-

up-and-go service where the waiting time is the headway multiplied by

a factor. The idea here is that if a bus runs every 5 minutes (and every

bus is on time), you could be waiting anywhere from zero up to 5

minutes. The waiting time then becomes the headway of leg 1 (variable

B-5) multiplied by the waiting time ratio for leg 1 (variable B-8).

- Leg 2: in subsequent legs, we cannot control our arrival time at the

transit stop, because it is determined by the first leg. Therefore, regard-

less of headway, the waiting time is the headway of leg 2 (variable B-6)

multiplied by the waiting time ratio for leg 2 (variable B-10).

- Leg 3: similarly to leg 2, this is the headway of leg 3 (variable B-7)

multiplied by the waiting time ratio (variable B-11).

" Fare ($): comes directly from the design (variable B-16).
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7.3.4 Attributes and Levels: Train

The design for the train is exactly the same as for the bus mode - the only differ-

ence is in the inputs from the mapping services. Whereas the bus design relies

on the inputs of bus in-vehicle time, access and egress times, the train design re-

lies on these same inputs, but for a web service query where train is preferred.

Further, different values will come out of the design (say, for example, the fare)

compared to the bus design values.

7.3.5 Attributes and Levels: Walk

The only design variable for walking is a walk-time ratio, which is applied equally

for both routes. The levels for this ratio are [0.75, 0.9, 1, 1.05, 1.25]. This reflects

variability in walking speeds, and means the walking times shown are the walk

time from the web service muliplied the walk time ratio. The walking distances

for both routes come directly from the web service, as does the terrain.

7.3.6 Attributes and Levels: Bicycle

The experimental design for the bicycle mode is shown in Table 7.3.

Variable Code Design Variable Levels
BK-1 Bicycling time ratio 0.75, 0.9, 1, 1.05, 1.25
BK-2 Bike lane, route 1 (%) 0, 20, 50, 80, 100
BK-3 Bike lane, route 2 (%) 0, 20, 50, 80, 100

Table 7.3: Design Variables: Bicycle Mode

The attributes shown for the bicycle mode are:

* Bicycling time (Route 1, min): the bicycling time from the web service for

route 1, multiplied by the bicycling time ratio (variable BK-1). The bicycling
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time ratio represents the different speeds people ride bicycles at.

" Bicycling time, (Route 2, min): the bicycling time from the web service for

route 2, multiplied by the bicycling time ratio (variable BK-1).

" Terrain type (Route 1): as returned by the web service, for route 1.

" Terrain type, (Route 2): as returned by the web service, for route 2.

* Distance, (Route 1): as returned by the web service, for route 1.

" Distance, (Route 2): as returned by the web service, for route 2.

" Per cent bike lane (Route 1): comes directly from the design (variable BK-2).

" Per cent bike lane (Route 2): comes directly from the design (variable BK-3).

7.3.7 Attributes and Levels: Taxi

The experimental design for the taxi mode is shown in Table 7.4.

Variable Code Design Variable Levels
T-1 Waiting time (min) 1, 2, 3, 5, 8, 10, 15
T-2 Travel time ratio, Route 1 0.6, 0.75, 0.85, 1, 1.1
T-3 Travel time ratio, Route 2 0.6, 0.75, 0.85, 1, 1.1
T-4 Fare ratio 0.5, 0.7, 1, 1.4, 2

Table 7.4: Design Variables: Taxi Mode

The attributes shown for the taxi mode are:

" Waiting time (min): comes directly from the design (variable T-1).

" In-vehicle time (Route 1, min): first multiply the travel time from car route 1

from the car mode (including the ratio from the car design) with the travel

time ratio for car route 1 (variable T-2). Then we take the maximum of this

time and the time from the web service for route 1. We do this because,

in congested conditions, a taxi might be able to travel more quickly than

a car by taking advantage of carpool lanes. But by taking the maximum,

we ensure the taxi does not travel faster than the without-traffic travel time

returned by the web service.
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" In-vehicle time (Route 2, min): as for the in-vehicle time for route 1, but using

the associated values for route 2.

" Fare ($): multiply the Singapore taxi fare that would apply for this trip (about

$3, plus 55 cents per kilometer) by the fare ratio (variable T-4). The distance

taken here comes from the distance of the quickest route, as returned by the

web service.

" Toll ($): this value is the same as the car toll. It is applied to the route with

the shortest in-vehicle time. The longer route is assumed to have no toll.

7.3.8 Attributes and Levels: FMOD Taxi

The experimental design for the FMOD taxi mode is shown in Table 7.5.

Variable Code Design Variable Levels
FMOD-T-1 Waiting time (min) 1, 2, 3, 5, 8, 10, 15
FMOD-T-2 Travel time ratio 0.6, 0.75, 0.85, 1, 1.1
FMOD-T-3 Fare ratio 0.5, 0.7, 1, 1.4, 2

Table 7.5: Design Variables: FMOD Taxi Mode

The attributes shown for the FMOD taxi mode are:

" Waiting time (min): comes directly from the design (variable FMOD-T-1).

" In-vehicle time (min): first multiply the quickest car travel time from the car

mode (one of the two routes, and including the ratio from the design) with

the travel time ratio (variable FMOD-T-2). Then we take the maximum of

this time and the time from the web service, similarly to in the taxi case.

" Fare ($): multiply the taxi fare from Section 7.3.7 by the fare ratio (variable

FMOD-T-3).
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7.3.9 Attributes and Levels: FMOD Shared Taxi

The experimental design for the FMOD taxi mode is shown in Table 7.5.

Variable Code Design Variable Levels
FMOD-ST-1 Waiting time (min) 1, 2, 3, 5, 8, 10, 15
FMOD-ST-2 Travel time ratio 1, 1.2, 1.5, 1.7, 2
FMOD-ST-3 Fare ratio 0.4, 0.5, 0.65, 0.85, 0.9

Table 7.6: Design Variables: FMOD Shared Taxi Mode

* Waiting time (min): comes directly from the design (variable FMOD-T-1).

" In-vehicle time (min): multiply the FMOD taxi in-vehicle time by the travel

time ratio (variable FMOD-ST-2). This ratio is always more than one, be-

cause a shared ride should never be quicker than a taxi.1

" Fare ($): multiply the FMOD taxi fare from Section 7.3.8 by the fare ratio

(variable FMOD-ST-3).

7.3.10 Attributes and Levels: FMOD Minibus

The experimental design for the FMOD minibus mode is shown in Table 7.7.

Variable Code Design Variable Levels
FMOD-M-1 Access time (min) 2, 4, 5, 7, 8, 10, 15
FMOD-M-2 Waiting time (min) 2, 4, 5, 7, 8, 10, 15
FMOD-M-3 Travel time ratio 1, 1.2, 1.5, 1.7, 2
FMOD-M-4 Egress time (min) 2, 4, 5, 7, 8, 10, 15
FMOD-M-5 Fare ratio 0.4, 0.5, 0.65, 0.85, 0.9

Table 7.7: Design Variables: FMOD Minibus Mode

* Access time (min): comes directly from the design (variable FMOD-M-1).

1It can, however, be the same: if the passenger is the last to be picked up and the first to be
dropped off, then the travel time will be very similar to a taxi because there are no intermediate
stops.
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" Waiting time (min): comes directly from the design (variable FMOD-M-2).

* In-vehicle time (min): multiply the FMOD shared taxi in-vehicle time in Sec-

tion 7.3.9 by the travel time ratio (variable FMOD-M-3).

" Egress time (min): comes directly from the design (variable FMOD-M-4).

" Fare ($): multiply the FMOD shared taxi fare from Section 7.3.9 by the fare

ratio (variable FMOD-M-5).

7.4 Profile Cleaning

In a random design such as ours, some profiles convey much less useful informa-

tion about users' preferences than others, because they don't involve any trade-

offs in time, cost or other attributes. Take, for example, a profile that presents a car

as being both quicker and cheaper than public transportation. In a large majority

of cases, the car would be chosen. Compared to a second profile where a car was

quicker but more expensive, we do not learn as much, because the second profile

requires respondents to trade off time and cost between the two modes. Keep-

ing these profiles in an experimental design reduces the efficiency of estimation,

because it does not require 'hard choices' on the part of the respondent.

This gain in efficiency is shown in Walker et al. (2015), who test experimental

designs with and without the presence of these profiles. They simulate a choice

experiment with two alternatives, with a model specified as:

Uin = PTime X Timein + 1Cost x COstin + Ein

They generate designs for the time and cost variables, and compare designs that

have been 'cleaned' of profiles with strictly dominated alternatives (higher time

and cost) to designs that retain these profiles. They find that cleaning the design

improves estimation efficiency, as measured by D-error.
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Mode ASC
Bus -2.08

MRT (Subway) -2.19
Drive alone 0
Motorcycle -8.51

Walk -2.23
Taxi -5.57

Table 7.8: Alternative-Specific Constants for Usual Work Tour (Li 2013)

One caveat to their work, however, is that they assume there is no alternative-

specific constant in either alternative. This means that, excluding the error term,

any alternative that has both a higher time and cost is strictly dominated in util-

ity terms. In reality, however, alternative-specific constants do vary significantly.

If we have a strong belief that one mode has a significantly higher alternative-

specific constant, then it may be chosen even if it takes longer and is more expen-

sive. This may well happen in many urban situations: in rush hour, it is possible

that bicycling is quicker and cheaper than driving. But many would still choose

to drive anyway, and this comes down to the alternative-specific constant likely

being higher for car than bicycle.

Li (2013), in estimating a tour mode choice model for home-to-work trips us-

ing data from Singapore's Household Interview Travel Survey (HITS), found the

alternative-specific constants in Table 7.8. There is clear variation between modes:

all else equal, car is the most preferred, then walking and public transportation,

then taxi, then motorcycle.

We use these values to inform our strategy of eliminating profiles with strictly

dominated alternatives. Under this strategy, one mode is strictly preferred to

another if it has a higher alternative-specific constant, and it has a lower total

cost and lower total travel time. We do not have motorcycle as a mode in the

survey (though Chapter 8 discusses its eventual inclusion), but we assume the

alternative-specific constant for bicycle is similar to for motorcycle. The two pub-

lic transportation modes have similar alternative-specific constants, as does walk-
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ing. Therefore, public transportation should not be slower than walking, because

walking would likely be preferred in utility terms. Further, between the two pub-

lic transportation modes (bus and train), there should not be one that has a lower

time, cost and number of transfers, because the alternative-specific constants are

very similar.

These rules are summarized in Table 7.9, which is a series of pairwise compar-

isons between modes. Any profile that does not pass all these tests is considered

to have strict domination, and would not be included in the survey. The tests are

only applied if both the modes in the test are available (as determined using the

rules in Section 7.2). Within the three FMOD products, there is no need to test

strict domintion, as it is built into the design: FMOD taxi is always quicker than

FMOD shared taxi, which is in turn cheaper than FMOD minibus. The costs work

in the reverse way, such that none of the three products is cheapest and quickest.

For different types of bicycle routes, a valid profile should not have a bike route

that is both shorter and has more bike lanes.

We also remove profiles that have excessive differences in time and cost. If

these differences are very large, then even though certain modes (say, those with

an extremely high cost compared to others) might not be strictly dominated for

any possible combination of time and cost parameters, they are likely to be strictly

dominated for most plausible values of time.2 Therefore, a passing profile must

satisfy these two tests:

" The longest travel time (excluding walking and bicycling) cannot exceed 5

times the shortest travel time. 3

* The costliest mode that isn't free cannot exceed 15 times the cheapest mode

2The actual values of time that would cause a profile to be excluded depend on the total
travel times and costs, which in turn depend on the parameters from Google Maps. If we let the
minimum and maximum times be tmin and tmax and the costs be Cmin and Cmax, and assuming the

costliest mode is also the fastest, then the value of time that would lead to the costliest mode to
be chosen over the cheapest mode is (Cmax - Cmin) / (tmax - tmin).

3Walking and bicycling are excluded from this comparison because significant differences in
walking and bicycling times are likely to occur for longer trips, and are realistic.
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a Within each test involving the car mode, each
test will pass only if both routes pass.

route is tested separately, and the

b We do not need to compare travel costs in this case, because the cost of walking
and bicycling is assumed to be zero.
c By definition, the direct route always has a shorter travel time, so we need only
test the percentage of bike lane.

Table 7.9: Tests for Strict Domination of Profiles
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Test Mode 1 Mode 2 Test fails if:

1 Car Bus Car is cheaper and quickera

2 Car Train Car is cheaper and quickera

3 Car Taxi Car is quicker and cheapera

4 Car FMOD Taxi Car is quicker and cheapera
5 Car FMOD Shared Taxi Car is cheaper and quickera
6 Car FMOD Minibus Car is cheaper and quickera

7 Taxi FMOD Taxi Taxi is either cheaper and
quicker, or slower and more
expensive

8 Walk Bus Walking is quicker than busb
9 Walk Train Walking is quicker than trainb

10 Walk Taxi Walking is quicker than taxib

11 Walk FMOD Taxi Walking is quicker than FMOD
Taxib

12 Walk FMOD Shared Taxi Walking is quicker than FMOD
Shared Taxi

13 Walk FMOD Minibus Walking is quicker than FMOD
Minibusb

14 Bike (direct route) Bike (safe route) Direct route has more % bike
lane than safe routec



that has a monetary cost. Walking and bicycling are assumed to be free, and

are not used in this comparison.

7.5 Monte Carlo Simulation of Design

One test of the usefulness of an experimental design is its ability to replicate as-

sumed parameters of a model. We do this by using Monte Carlo simulation. This

process involves assuming certain values for the parameters of the model, using

those parameters to generate hypothetical choices, and then using the synthetic

data to estimate the original model. A good design is one that is able to reproduce

reasonably well the parameters that were originally assumed.

Unlike a typical experimental design, the actual variables a survey respondent

sees are a product of more than just a pre-determined design matrix. They are de-

rived from the pre-survey (to determine mode availability) and the characteristics

of the trip that they fill out later (which provides the context for the experiment),

as well as the pivot-style experimental design.

Therefore, we took a random sample of trips from several users who had val-

idated data from the Future Mobility Survey. We used those trips, along with the

users' demographic information, to simulate the choice experiment and estimate

a mode choice model.

Due to difficulties in obtaining public transportation data from Google Di-

rections, the Monte Carlo experiment does not include the public transportation

mode. Further, for simplicity, only one route is shown for car, bicycle and walking,

and the choice of car driver and car passenger is removed. Figure 7-1 shows the

mode choice structure for the Monte Carlo simulation; for simplicity, the nesting

structure for the FMOD modes has been removed.

For each observation, 2,000 experimental design rows were prepared, drawing
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Car Wa Bike xI FMOD-T FMOD-ST I FMOD-M

Figure 7-1: Mode Choice Structure: Monte Carlo Simulation

randomly from each design input variable. Similar tests for strict dominance and

excessive differences (presented in Section 7.4) are used. The tests accounted for

mode availability, in the sense that they did not reject profiles with problems

based on unavailable modes. If a profile failed any one of the tests, the next

design row was tried. Each trip was therefore given a profile that passes these

tests, and the row of the design is removed so that subsequent profiles do not

share the same experimental design levels.

Once the profiles are generated for each trip, we then calculate the systematic

part of the utility, which involves assuming certain values on the model parame-

ters. The assumed systematic utility functions are loosely based on Li (2013) and

are shown below:

VCar = -0.5 x TotalTimecar - 0.07 x TotalCostcar

Vwalk = -2.5 - 2 x TotalTimewalk

VBike = -3 - 2 x TotalTimeBike

VTaxi = -3 - 0.45 x TotalTimeTaxi - 0.03 x FareTaxi

VFMODTaxi = -3 - 0.45 x TotalTimeFMODTaxi - 0.03 x FareFMODTaxi

VFMODSharedTaxi = -3.5 - 0.45 x TotalTimeFMODSharedTaxi - 0.03 x FareFMODSharedTaxi

VFMODMinibus = -4 - 0.45 x TotalTimeFMODSharedTaxi - 0.03 x FareMinibus
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The estimation results of the Monte-Carlo simulation are presented in Tables

7.10 and 7.11. We first use a sample of 1,124 trips from the Future Mobility Survey

to find profiles and simulate the experiment. The results are shown in Table 7.10;

the t-statistics and p-values are reported as against the true value, not against

zero. The estimated parameters are reasonably close to the true values with this

relatively small sample size. We then expand the sample size to 11,240 observa-

tions to test whether the estimated parameters converge on the true parameters

for a sufficiently large sample size.4 The estimation results, presented in Table

7.11, suggest that they do. The parameters are generally closer to the true values

and are estimated with a lower standard error.

Parameter True Value Est. Value Std. Error t-statistica p-valuea

ASC - Walk -2.5 -2.26 0.365 0.65 0.51

ASC - Bicycle -3.0 -3.33 0.307 -1.07 0.28

ASC - Taxi -3.0 -3.24 0.220 -1.09 0.28

ASC - FMOD Taxi -3.0 -3.15 0.214 -0.70 0.48

ASC - FMOD Shared Taxi -3.5 -3.24 0.219 1.18 0.24

ASC - FMOD Minibus -4.0 -4.01 0.253 -0.03 0.97

PTime - Car -0.5 -0.404 0.373 0.25 0.80

PTime - Walk -2.0 -1.98 0.353 0.06 0.95

PTime - Bike -2.0 -1.55 0.594 0.76 0.45

PTime - Taxi and FMOD -0.45 -0.255 0.232 0.84 0.40

Pcost - Car -0.07 -0.0631 0.00662 1.04 0.30

Pcost - Taxi -0.03 -0.0274 0.00841 0.29 0.77

a Measured with a null hypothesis that the parameter is equal to the true value, not

zero.

Table 7.10: Estimation Results: Monte-Carlo Simulation (1124 observations)

4This consists of the original 1,124 trips replicated 10 times each; the profiles were re-generated
for each replication.
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a Measured with a null hypothesis that

zero.

the parameter is equal to the true value, not

Table 7.11: Estimation Results: Monte-Carlo Simulation (11240 observations)

Chapter 8 discusses improvements that can be made to the stated preference

survey in the future. These primarily focus on the addition of modes, both ex-

isting and new. We also discuss ways to extend the survey to estimate demand

for Mobility as a Service packages, and how driving times could be made more

realistic through the use of time-dependent travel times from Google Directions.
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Parameter True Value Est. Value Std. Error t-statistica p-valuea

ASC - Walk -2.5 -2.37 0.144 0.90 0.37

ASC - Bicycle -3.0 -3.08 0.087 -0.92 0.36

ASC - Taxi -3.0 -3.16 0.068 -2.34 0.02

ASC - FMOD Taxi -3.0 -3.06 0.068 -0.88 0.38

ASC - FMOD Shared Taxi -3.5 -3.52 0.077 -0.26 0.80

ASC - FMOD Minibus -4.0 -4.16 0.084 -1.90 0.06

PTime - Car -0.5 -0.573 0.115 -0.63 0.53

PTime - Walk -2.0 -2.02 0.152 -0.13 0.90

PTime - Bike -2.0 -1.70 0.167 1.80 0.07

PTime - Taxi and FMOD -0.45 -0.283 0.077 2.16 0.03

Pcost - Car -0.07 -0.0676 0.0021 1.14 0.26

Pcost - Taxi -0.03 -0.0297 0.0025 0.12 0.90
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Chapter 8

Extensions

This chapter presents several ways the stated preference survey could be en-

hanced to include a greater variety of modes, model the demand for subscription

services and present more realistic car travel times. The pilot survey in Chapters

6 and 7 has been kept relatively simple to enable us to test it with a small group

of users and estimate a mode choice model with relatively few parameters. If,

however, the Future Mobility Survey is deployed on a very large scale, such as for

a metropolitan area, the functions of the stated preference component could be

expanded.

8.1 Adding Modes

8.1.1 Motorcycle

Figure 8-1 shows how the motorcycle mode can be implemented in the survey.

The presentation is similar to that of the car mode, in Figure 6-4, in that the four

steps in a trip are: access, riding, parking and egress. As with the car design,

there are potential fuel, parking and toll costs. In the design, these costs would
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be offered as percentage discounts from the car version, since motorcycles do not

consume as much fuel, are typically cheaper to park and usually pay lower tolls

than cars. Similarly, motorcycles may be able to use transit lanes, so a design that

provides some time saving from the car travel time (similarly to the taxi design in

Table 7.4) may also be appropriate. Even if we choose to lower both time and cost

compared to a car, the car is unlikely to be strictly dominated by the motorcycle,

because the alternative-specific constant for motorcycle is much lower than for car

(see Table 7.8).

* c~b y

Motocyci.

Figure 8-1: Mockup for motorcycle mode in extended survey.

8.1.2 Car Sharing

Figure 8-2 shows a possible way car sharing could be presented in the survey. In

this case, the user first walks to where the car sharing vehicle is located, drives it

to a car sharing space close to their destination, and then walks from there. The

in-vehicle time presented here should be similar to the car in-vehicle time, with

perhaps a small variation to account for the car being driven to and from slightly
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different locations. To be able to use car sharing, the user pays a per-hour cost,

which includes fuel costs. A free, reserved parking space is available at the end

of the trip, so there is no parking time (unlike the car mode), and no separate

parking cost.

Cw sheng

15:00 - 15:45 46 min

5 min~ + 35 inin 5 in

$ 123 SGD per hour

Figure 8-2: Mockup for car sharing mode in extended survey.

8.1.3 Bicycle Sharing

In Figure 8-3, bike share is presented under the bicycle mode group. Similarly

to car share, the user walks to their closest bike share station, rides to the station

nearest to their destination, and then walks the rest of the way. There is also a

nominal fee for use of the bicycle.

8.1.4 Access and Egress Modes for Public Transportation

The presentation of transit in the pilot (Figure 6-6) assumes that walking is the

only access and egress option for all forms of transit. However, many other modes

can also be used to access bus stops and railway stations, such as car, taxi or bicy-
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Ej)
Bicycle

15:00 - 15:32 32 min

9 D stance. 10 km

50% bicycle lane mostly flat

15:00 -15:40 40 mn

10 min + 25 min + 5 min

50% bicycle lane mostly flat $ 4 SGD

Figure 8-3: Mockup for bicycle sharing mode in extended survey.

cle. Alternative access options are particularly important in suburban locations,

where there are relatively few public transportation options, and services to the

city center (such as commuter rail) make relatively widely spaced stops.

Access options are also especially relevant for modes that perform a 'last mile'

option, such as bike sharing and taxis. Figure 8-4 shows how access options

can be selected by the user, with a drop-down menu. Selecting different options

changes the sequence of times and costs. For example, the lower image illustrates

a park-and-ride option at a railway station. The driving time is included, as is a

parking time and an access time to the railway station. And fuel, toll and parking

costs have also been included. Egress options can also be included by providing

a second drop-down menu. These drop-down menus can include any number of

modes we reasonably think could be used to access transit, such as taxis, bicycle

sharing and FMOD.
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Transit

-1

Bus

Park at rhin staii

Train

15:00 -15:50 50 min

5 min + 15 min + 20 min + 10 min

Ticket
2,5 SGD

15:00 -16:05 Ih 05 min

20 m/1 + 5 min + 5 min + 10 min + 20 mi + 5 mO

Fuel costs Toll costs Parking fees Ticket
21 SGD 10 SGD 2 SGD 2.5 SGD

Figure 8-4: Mockup for transit access modes in extended survey.

8.2 Long-Term Decision Survey for Subscriptions

In its current form, the survey presents the marginal cost of using different travel

options. That is, even if the user has a travel pass that gives them free transit for

a month, the values shown do not reflect this. This is also true for other modes,

such as FMOD, which could feasibly be subscribed to, providing a certain number

of free rides for a month. Bicycle sharing often operates on a similar principle -

frequent users typically buy annual memberships to the system, which allow

unlimited rides of up to 30 minutes for one year.

There are a number of ways subscription services could be represented in the

survey. We could ask users in the pre-survey about whether they own any such

passes, and how much they cost. If they owned a pass, the cost would be shown
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as zero, which is more realistic for the user. But a new approach is needed for

new transportation services that don't yet exist, such as a subscription to FMOD.

Decisions about subscriptions are likely to be made on a longer-term basis,

and not for a single trip. Including the option to buy them as an option within a

trip-based stated preference survey is not a sensible approach, because the context

the decision is being made in is a long-term one, not a short-term one.

What is needed, therefore, is a longer-term decision survey, where the user

makes decisions about packages prior to making decisions about trips. The pack-

ages presented could be:

" Transit passes

" Bike share memberships

" Car sharing memberships

" Monthly parking at the usual work or school location

" A subscription to FMOD, allowing a certain number of trips per month.

A separate design would be needed for these subscriptions, and if the user

chooses any of them, the corresponding marginal cost should be zero for that

mode. Importantly, we can also include Mobility as a Service subscriptions that

combine multiple modes. Different packages could be offered, with different

amounts of free trips on taxi, transit, FMOD, bicycle sharing and so on.

Another approach would be to first monitor the user's travel behavior over an

initial period, and then use this information to present a longer-term survey to

inform the rest of the data collection. For example, we could monitor a user's

use of transit, taxis and bicycle sharing for a week, present this information to

them and then use it to inform their decision about whether to buy a subscription

service at a discount from the pay-as-you-go rate. Conducting the longer-term

decision survey in the middle of the data collection period would also allow us to

see how different people change their mobility once they purchase a subscription.
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8.3 Time-Dependent Travel Times

One new feature recently introduced into Google Maps is the ability to set arrival

or departure times, and obtain back a travel time range. This is shown in Figure

8-5, which illustrates directions from suburban Boston to MIT, which is located

close to the city center. The departure time has been set to 8 a.m. on a Monday;

as a result, there is high variability in the travel time range shown, from 18 to 35

minutes. In Figure 8-6, the departure time was changed to 9 p.m., and the range

given narrows significantly, because this is an off-peak period.

Currently, the experimental design in Chapter 7 handles this in a fairly simple

way, applying different sets of travel time ratios for peak and off-peak periods.

This has undesirable side-effects for its application across different parts of cities

and different regions. For example, even in the peak time, a reverse commute

would likely have significantly less variability, but this is not reflected in the levels

presented. Further, for smaller regions and towns, in many cases there may well

be almost zero variability, even in peak commuting times. Take, for example,

a commute in Cape Cod, Massachusetts, at Monday at 8 a.m. - as shown in

Figure 8-7, no travel time variability is shown at all. In these situations, showing

variability beyond a few minutes is not likely to be perceived by the respondents

as realistic.

If we can find a way to obtain these travel time ranges for trips users make,

we could use the range provided by Google Directions as the basis for the travel

times we present. This allows the survey to be highly adaptive to different driving

environments in space and time.
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Figure 8-5: A commute from Newton, MA, to Cambridge, MA, shown by Google
Maps, with a departure time of 8 a.m. on Monday. Source: Google Maps (maps.
google.com).
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Figure 8-6: A commute from Newton, MA, to Cambridge, MA, shown by Google
Maps, with a departure time of 9 p.m. on Monday. Source: Google Maps (maps.
google.com).
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Figure 8-7: A commute from Dennis, MA, to Hyannis, MA, shown by Google
Maps, with a departure time of 8 a.m. on Monday. Source: Google Maps (maps.
google.com).
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Chapter 9

Conclusion

There are two main ways behavioral data can be collected for transportation:

through a revealed preference survey, which collects information on choices in

the world of today, or a stated preference survey, which collects information on

choices in a hypothetical world. While revealed preference data suffers from less

potential bias, stated preference data is necessary to estimate demand for new

modes that do not yet exist. It also allows a wider variety of policy scenarios to

be tested, because we can control the levels of the experiment and widen their

ranges from outside what they currently are.

GPS technology has greatly improved the quality of revealed preference data.

Survey respondents typically underreport trips when they are asked to fill out

diaries, especially for short trips that are easier to forget. GPS has resolved this

issue, but until the introduction of the Future Mobility Survey data was collected

using dedicated loggers, which either lived in cars or were forgotten by respon-

dents when they took trips. The Future Mobility Survey solves this problem by

making the smartphone the GPS logger; respondents have an incentive (beyond

the incentive of completing the survey) to being the logger along with them.

This main contribution of this thesis is a context-aware stated preference sur-
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vey that uses revealed preference data from the Future Mobility Survey as a ref-

erence point to construct hypothetical scenarios. It does this by getting the origin

and destination of the trip from home to the primary destination for the day, fetch-

ing information from web services to get travel times and distances for various

modes, and then altering that information to present to the users.

The survey includes a wide variety of modes, and with this comes the chal-

lenge of presenting this information in a way that is intuitive to respondents. We

achieved this through the use of an interface that mimics a trip planner, with ex-

tensive use of symbols to represent a large number of modes and, within those

modes, the different stages of a trip a user can experience. This is particularly

important given the survey occurs straight after another survey: the validation of

GPS-inferred trips and stops.

The stated preference component of the Future Mobility Survey represents the

beginning of a new generation of stated preference survey that is realistic and

intuitive to respondents. It can be efficiently deployed using smartphones and

web-based validation, potentially to many thousands of users, in any city in the

world. In an environment where information technology is rapidly spawning

new types of transportation services, the need for surveys that can accurately and

efficiently estimate their potential demand is becoming more critical. Just as tech-

nology has transformed existing transportation services and created new ones, so

too can it create surveys that help us to better understand mobility patterns and

behavior.
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