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Abstract

In principle, a wide variety of sequential decision problems — ranging from dynamic
resource allocation in telecommunication networks to financial risk management —
can be formulated in terms of stochastic control and solved by the algorithms of
dynamic programming. Such algorithms compute and store a wvalue function, which
evaluates expected future reward as a function of current state. Unfortunately, exact
computation of the value function typically requires time and storage that grow pro-
portionately with the number of states, and consequently, the enormous state spaces
that arise in practical applications render the algorithms intractable.

In this thesis, we study tractable methods that approzimate the value function.
Our work builds on research in an area of artificial intelligence known as reinforcement
learning. A point of focus of this thesis is temporal-difference learning — a stochastic
algorithm inspired to some extent by phenomena observed in animal behavior. Given
a selection of basis functions, the algorithm updates weights during simulation of the
system such that the weighted combination of basis functions ultimately approximates
a value function. We provide an analysis (a proof of convergence, together with
bounds on approximation error) of temporal-difference learning in the context of
autonomous (uncontrolled) systems as applied to the approximation of (1) infinite

horizon discounted rewards and (2) average and differential rewards.

As a special case of temporal—-difference learning in a context involving control,
we propose variants of the algorithm that generate approximate solutions to optimal
stopping problems. We analyze algorithms designed for several problem classes: (1)
optimal stopping of a stationary mixing process with an infinite horizon and dis-
counted rewards; (2) optimal stopping of an independent increments process with an
infinite horizon and discounted rewards; (3) optimal stopping with a finite horizon
and discounted rewards; (4) a zero—sum two—player stopping game with an infinite
horizon and discounted rewards. We also present a computational case study involv-



ing a complex optimal stopping problem that is representative of those arising in the
financial derivatives industry.

In addition to algorithms for tuning basis function weights, we study an approach
to basis function generation. In particular, we explore the use of “scenarios” that
are representative of the range of possible events in a system. Each scenario is used
to construct a basis function that maps states to future rewards contingent on the
future realization of the scenario. We derive, in the context of autonomous systems, a
bound on the number of “representative scenarios” that suffices for uniformly accurate

- approximation of the value function. The bound exhibits a dependence on a measure

of “complexity” of the system that can often grow at a rate much slower that the
state space size.

Thesis Supervisor: John N. Tsitsiklis
- Title: Professor of Electrical Engineering
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Chapter 1

Introduction

In the study of decision—making, there is a dividing line between those who seek an
understanding of how decisions are made and those who analyze how decisions ought
to be made in the light of clear objectives. Among the former group are psychologists
and economists who examine participants of physical systems in their full complexity.
This often entails the consideration of both “rational” and “irrational” behavior. The
latter group - those concerned with rational decision-making — includes engineers and
management scientists who focus on the strategic behavior of sophisticated agents
with definite purposes. The intent is to devise strategies that optimize certain criteria
and/or meet specific demands. The problems here are well-defined and the goal is to
find a “correct” way to make decisions, if one exists.

The self-contained character of rational decision problems has provided a ground
for the development of much mathematical theory. Results of this work provide an un-
derstanding of various possible models of dynamics, uncertainties, and objectives, as
well as whether there exist optimal decision strategies in these settings. In cases where
optimal strategies do exist, the theory is complemented by computational methods
that deliver them.

In this thesis, we will focus on a particular class of rational decision problems
— those involving a single decision-maker that generates a sequence of decisions to
influence the evolution of a stochastic dynamic system. A salient characteristic that
makes these problems difficult is the need to consider long-term in addition to imme-
diate consequences of decisions. The theory and computational methods associated
with this setting are collectively termed dynamic programming, and examples of such
problems prevail in engineering, operations research, and finance.

1.1 Rational Decisions and Natural Systems

In contrast to rational decision—making, there is no clear—cut mathematical theory
about decisions made by participants of natural systems. Scientists are forced to
propose speculative theories, and to refine their ideas through experimentation. In
this context, one approach has involved the hypothesis that behavior is in some
sense rational. Ideas from the study of rational decision-making are then used to
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characterize such behavior. In financial economics, this avenue has lead to utility and
equilibrium theory. To this day, models arising from this school of economic thought —
though far from perfect — are employed as mainstream interpretations of the dynamics
of capital markets. The study of animal behavior presents another interesting case.
Here, evolutionary theory and its popular precept — “survival of the fittest” — support
the possibility that behavior to some extent concurs with that of a rational agent.

There is also room for reciprocal contributions from the study of natural systems
to the science of rational decision—making. The need arises primarily due to the com-
" putational complexity of decision problems and the lack of systematic approaches for
dealing with it. For example, practical problems addressed by the theory of dynamic
programming can rarely be solved using dynamic programming algorithms because
the computational time required for the generation of optimal strategies typically
grows exponentially in the number of variables involved — a phenomenon known as
the curse of dimensionality. This deficiency calls for an understanding of subopti-
mal decision-making in the presence of computational constraints. Unfortunately, no
satisfactory theory has been developed to this end.

It is interesting to note that similar computational complexities arise in attempts
to automate decision tasks that are naturally performed by humans or animals. The
fact that biological mechanisms facilitate the efficient synthesis of adequate strategies
motivates the possibility that understanding such mechanisms can inspire new and
computationally feasible methodologies for strategic decision—making.

1.2 Temporal-Difference Learning

A focus of this thesis is temporal-difference learning — a computational method in-
spired by phenomena observed in animal behavior that addresses complex sequential
decision problems. The primary goal of this thesis is to advance the state-of-the—art
in temporal-difference learning as a useful engmeermg methodology by developmg a

theory that guides its application. - '

Temporal-difference learning can be viewed as a model of how an animal might

conceivably learn to make strategic decisions through interaction with a dynamic envi-

‘ronment. It involves the construction of a value function, which associates expected
future rewards with states. This value function, which is also central to dynamic
programming, serves as a tool for ranking alternatives in order to guide effective
decision-making. Dynamic programming algorithms compute an optimal value func-
tion, which provides expected future rewards contingent on the fact that the agent
~will behave .optimally. A standard result from.dynamic programming theory is that
" the optimal value function can be used to generate optimal decisions. The main
thrust of temporal-difference learning is to approrimate the optimal value function,
and to view the approximation as an adequate guide.

In approximating a value function, temporal-difference learning requires prior
specification of a manageably small set of basis functions. Weights associated with
the basis functlons are iteratively tuned during an interaction with the environment..
: Idea.lly, the opt1ma1 value function w111 be e1ther Wlthln or “close to” the span of
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these basis functions, and the weighted sum of basis functions will converge to a good
approximation.! It is sometimes convenient to think about the two components of
temporal—difference learning in anthropomorphic terms:

1. Preconceived attributes (basis functions)
The basis functions can be viewed as preconceived attributes that are “hard-
wired” and customized to the decision task faced by an agent. The drastic
reduction from all possible value functions to the span of the bases may curtail
the complexity of a decision problem to the point where it becomes computa-
tionally tractable.

2. Learning (iterative computation of weights)
The iterative tuning of basis function weights may be viewed as a learning
process. In particular, as the agent interacts with the environment, it adjusts
these weights based on experience in order to improve its decision capabili-
ties. In temporal-difference learning, this phase is to a large extent problem-
independent. Hence, in this model of learning, preconceived attributes, rather
than general procedures for learning, distinguish agents from one another.

Though the decision-making problems addressed by temporal-difference learning
are fundamentally different from the statistical problems amenable to linear regres-
sion, the combination of preselected basis functions and a numerical scheme for com-
puting weights is common to both methodologies. In both contexts, a good choice
of basis functions is critical to success. Unfortunately, producing appropriate basis
functions may pose a computationally intractable problem, in which case it would
probably not be possible to implement a fully automated approach with broad appli-
cability. Instead, we must rely on the intuition or understanding of a human user to
provide a set of basis functions that will act as a key to unlock the complexity of the
underlying decision problem. The entire problem solving process therefore involves
two stages:

1. A human user provides a partial solution by selecting basis functions.
2. A coniputer complements the partial solution by generating weights.

This interaction between man and machine offers hope for capabilities beyond that
which each can supply independently. In particular, human intuition serves a pur-
pose that may be computationally unmanageable (given our current understanding
of human intuition), while a machine provides number—crunching capabilities with
speed and accuracy that can not be replicated by humans.

1 Temporal-difference learning can be extended to situations involving nonlinear parameteriza-
tions (see, e.g., [13, 76]). However, our primary focus will be on approximations comprised of linear
combinations of preselected basis functions.
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1.3 Control of Complex Systems

Our primary interest in temporal-difference learning concerns its use as a methodol-
ogy for the control of “complex systems.” It is difficult to provide a precise definition
for this term, but let us mention two characteristics that are common to such sys-
tems: an intractable state space and severe nonlinearities. Intractable state spaces
preclude the use of classical dynamic programming algorithms, which compute and
store one numerical value per state. At the same time, methods of traditional linear
control, which are applicable even when state spaces are large, are ruled out by severe
nonlinearities. To give a better feel for the types of problems we have in mind, let us
provide a few examples.

1. Call Admission and Routing

‘With rising demand in telecommunication network resources, effective manage-
ment is as important as ever. Admission (dec1d1ng which calls to accept/reject)
and routing (allocating links in the network to particular calls) are examples
of decisions that must be made at any point in time. The objective is to make
Ithe “best” use of limited network resources. In principle, such sequential de-
cision problems can be addressed by dynamic programming. Unfortunately,
the enormous state spaces involved render dynamic programming algorithms
inapplicable, and heuristic control strategies are used in lieu.

2. Strategic Asset Allocation
Strategic asset allocation is the problem of distributing an investor’s wealth
among assets in the market in order to take on a combination of risk and ex-
pected return that best suits the investor’s preferences. In general, the optimal
strategy involves dynamic rebalancing of wealth among assets over time. If each
asset offers a fixed rate of risk and return, and some additional simplifying as-
sumptions are made, the only state variable is wealth, and the problem can be

‘solved efficiently by dynamic programming algorithms. There are even closed -

form solutions in cases involving certain types of investor preferences [51]. How-
ever, in the more realistic situation involving risks and returns that fluctuate
with economic conditions (see, e.g., [17]), economic indicators must be taken
into account as state variables, and this quickly leads to an intractable state
space.

3. Supply—Chain Management -
~ With today’s tight vertical integration, increased production complexity, and
- diversification, the inventoryflow within-a corporation can be viewed as a com-
plex network — called a supply chain — consisting of storage, production, and
distribution sites. In a supply chain, raw materials and parts from external ven-
dors are processed through several stages to produce finished goods. Finished
goods are then transported to.distributors, then-to wholesalers, and finally re-
tailers, before reaching customers. The goal in supply—chain management is to
o ;achleve a partlcular level of product availability while minimizing costs. The
o solutlon is a policy that decides how much to order or produce at various sites
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given the present state of the company and the operating environment. See [45]
and references therein for further discussion of this problem.

4. Emissions Reductions
The threat of global warming that may result from accumulation of carbon
dioxide and other “greenhouse gasses” poses a serious dilemma. In particu-
lar, cuts in emission levels bear a detrimental short-term impact on economic
growth. At the same time, a depleting environment can severely hurt the econ-
omy — especially the agricultural sector — in the longer term. To complicate the
matter further, scientific evidence on the relationship between emission levels

- and global warming is inconclusive, leading to uncertainty about the benefits
of various cuts. One systematic approach to considering these conflicting goals
involves the formulation of a dynamic system model that describes our un-
derstanding of economic growth and environmental science, as is done in [54].
Given such a model, the design of environmental policy amounts to dynamic
programming. Unfortunately, classical algorithms are inapplicable due to the
size of the state space.

5. Semiconductor Wafer Fabrication

The manufacturing floor at a semiconductor wafer fabrication facility is orga-
nized into service stations, each equipped with specialized machinery. There
is a single stream of jobs arriving on a production floor. Each job follows a
deterministic Toute that revisits the same station multiple times. This leads
to a scheduling problem where, at any time, each station must select a job to
service such that (long term) production capacity is maximized (see, e.g., [44]).
Such a system can be viewed as a special class of queueing networks, which are
models suitable for a variety of applications in manufacturing, telecommunica-
tions, and computer systems. Optimal control of queueing networks is notori-
ously difficult, and this reputation is strengthened by formal characterizations
of computational complexity in [55].

When dealing with complex systems of the types we have described, it is common
to develop a simulator that can be used to test performance of particular decision
policies. We envisage the interfacing of temporal—difference learning with such sim-
ulators. In applying temporal-difference learning, a user would first select a set of
basis functions, possibly based on a combination of analysis, experience, and intu-
ition. Then, with basis function weights initialized to some arbitrary values, the
_ temporal-difference learning algorithm would be executed. During interaction with
the simulator, the algorithm would incrementally tune the basis function weights,
which should hopefully converge to values that generate a good approximation. The
resulting approximate value function can then be used to produce a policy for de-
ployment in the real world. ‘
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1.4 Approaches to Approximation

The intractability of exact solutions to important sequential decision problems such
as those described in the previous section has spawned the development of many
approximation methods. To place temporal-difference learning in perspective, it is
worth discussing the range of common approaches to approximation in terms of a few
broad categories.

- 1. Model Approximation - N o
'One approach to approx.lmatlon mvolves replacmg the problem with one that
is tractable. There are many domain specific methods that fit into this cat-
egory. To name one concrete example, in the context of queueing networks,
dynamics under heavy traffic conditions can sometimes be approximated via a

- diffusion process. There are cases where the optimal policy for controlling such
an approximate model can be efficiently computed (see, e.g., [30]). Another
example arises in the problem of strategic asset allocation that was discussed
earlier. Instead of dealing with expected rates of risk and return that fluctuate
with market conditions, it is common to consider a model in which rates are
constant. An optimal policy can then be generated for this model. This policy
is employed until economic conditions, as well as estimated rates of risk and
return, change substantially. At such a time, a model involving new constant
rates is solved, and the policy under current use is replaced.

2. Policy Approximation
Another approach involves selecting a parameterized class of policies and op- -
timizing over parameter values. As one example of a such a parametric class,
in supply—chain management, it is common to limit attention to “s-type” (or
“order—up-to”) policies, which at each site, order inventory to bring levels back
up to some fixed target. The targets constitute parameters to be optimized.
Unfortunately, the problem of optimizing these targets is:itself likely to be in-
tractable, and one must resort to gradient—based methods that search for local
optima, such as those considered in the infinitesimal perturbations analysis lit-
erature (e.g., [20]), or heuristics for assigning targets (e.g., [45]).

3. Value Function Approximation
Finally, instead of policies, one can select a parameterization of value functions
and then try to compute parameters that lead to an accurate approximation to
the optimal value function. Algorithms for computing parameters may be vari-
.-ants of exact dynamic’ programmmg algonthms -Clearly, -temporal-difference
learning fits into this category.

The approaches we have described may not be exhaustive and are certainly not ex-
‘clusive of one another. For instance, approximate models may be used to motivate
partlcular pohcy or value function parameterizations. Similarly, policy or value func-
- tion approximation methods might be apphed to an approximate model that is sim-

- pler thai the original but still 1ntractable “An éxample of this arises with “Huid
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approximations” of queueing networks, which result in deterministic continuous time
systems that are still intractable but may be easier to deal with. Finally, there are
methods that combine elements of policy and value function approximation, such as
“actor—critic” algorithms (see, e.g, [13, 76]).

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. In the next chapter, we introduce the
temporal-difference learning algorithm. We also discuss the current state of the art
with regards to both theory and practice, and we summarize the contributions of
this thesis. The level of rigor in Chapter 2 is low, as the focus is on developing a
general understanding. Chapters 3 through 8 present technical results, and in these
chapters, algorithms are formally defined and analyzed. Chapters 3 through 7 focus
on methods for tuning basis function weights. Chapter 3 develops some abstract
theory that is applied to analyze particular variants of temporal-difference learning
in Chapters 4, 5, and 7. Chapter 6 presents a case study involving the application
of an approximation algorithm developed in Chapter 5 to a problem of financial
derivatives pricing. Chapter 8 departs from the study of weight—tuning algorithms to
explore an approach for basis function generation using “representative scenarios.”
Finally, concluding remarks are made in a closing chapter.
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Chapter 2
Temporal-Difference Learning

In this chapter, we introduce temporal-difference learning. We will begin by present-
ing stochastic control as a framework for sequential decision-making and the use of
dynamic programming value functions in this context. We then discuss approxima-
tions comprised of weighted combinations of basis functions. We define in Sections
3 and 4, temporal-difference learning as applied to tuning basis function weights in
autonomous and controlled systems. Finally, we discuss the current state of the art
with regards to both theory and practice (Section 5) and summarize the contributions
of this thesis (Section 6).

The exposition in this chapter is not rigorous. Instead, emphasis is placed on
conveying basic ideas at an intuitive level. The focus is on background material that
is relevant to the work presented in the remainder of the thesis. We refer the reader to
the texts of Bertsekas and Tsitsiklis [13] and Sutton and Barto [76] for more extensive
introductions pertaining to broader classes of algorithms.

2.1 Stochastic Control

We consider a discrete-time dynamic system that, at each time ¢, takes on a state z;
and evolves according to

Tiy1 = f(-'L't; Ut, wt),

where w; is a disturbance and wu; is a control decision. Though more general (infi-
nite/continuous) state spaces will be treated later in the thesis, to keep the exposition
in this chapter simple, we restrict attention to finite state, disturbance, and control
- spaces, denoted by S, W, and U, respectively. Each dlsturba.nce wy € W is indepen-
_dently sampled from some.fixed distribution..

A function g : S x U — R associates a reward g(xt, Ut) w1th a dec151on us made at
state x;. A policy is a mapping i : S — U that generates state-contingent decisions.
For each policy u, we define a value function J# : S — R by

t—U —
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where o € [0,1) is a discount factor and the state sequence is generated according to
2o = 7 and T3 = f(z, p(z:), we). Each J#(z) can be interpreted as an assessment
of long term rewards given that we start in state z and control the system using a
policy p. The optimal value function J* is defined by

J*(z) = max JH(z).
A standard result in dynamic programming states that any policy u* given by
p*(x) = axgmax B [9(z, u) + 0" (f (@, u,w))),
uel ¥

where E[-] denotes expectation with respect to the distribution of disturbances, is
w
optimal in the sense that

J*(z) = J¥ (z),

for every state z (see, e.g., [8]). _
For illustrative purposes, let us provide one example of a stochastic control prob-
lem. ’

Example 2.1 The video arcade game of Tetris can be viewed as an in-
stance of stochastic control (we assume that the reader is familiar with
this popular game). In particular, we can view the state z; as an encod-
ing of the current “wall of bricks” and the shape of the current “falling
piece.” The decision u; identifies an orientation and horizontal position
for placement of the falling piece onto the wall. Though the arcade game
employs a more complicated scoring system, consider for simplicity a re-
ward g(z;, u;) equal to the number of rows eliminated by placing the piece
in the position described by u;. Then, a policy p that maximizes the value

7(0) = B[S a'ston o =2,

essentially optimizes a combination of present and future row elimination,
with decreasing emphasis placed on rows to be eliminated at times farther
into the future.

Classical dynamic programming algorithms compute the optimal value function
J*. The result is stored in a “look-up” table with one entry J*(z) per state z € S.
"~ When the need arises, the value function is used to generate optimal decisions. In
particular, given a current state z; € S, a decision u; is selected according to

Uy = a,rgrr[lfaxE [g(xt, u) + aJ*(f(z¢, u, w))]
u€ w

Unfortunately, in many practical situations, state spaces are intractable. For
example, in a queueing network, every possible configuration of queues corresponds
to a different state, and therefore, the number of states increases exponentially with
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the number of queues involved. For this reason, it is essentially impossible to compute
(or even store) one value per state.

2.2 Approximations

The intractability of state spaces calls for value function approximation. There are two
important preconditions for the development of an effective approximation. First, we
need to choose a parameterization J : S x R s R that yields a good approximation

J(z,r) ~ J*(z),

for some setting of the parameter vector r € RE . In this respect, the choice of a
suitable parameterization requires some practical experience or theoretical analysis
that provides rough information about the shape of the function to be approximated.
Second, we need algorithms for computing appropriate parameter values. In this
section, we introduce linear parameterizations, which are characterized by weighted
combinations of basis functions. Such approximations constitute the main class stud-
ied in this thesis. Subsequent sections of this chapter present numerical methods for
computing parameters.
We will consider parameterizations of the form

K

J(z,r) =3 r(k)di(2),

k=1

where ¢1,...,dx are “basis functions” mapping S to R, and 7 = (r(1),...,7(K))’
is a vector of scalar weights. In a spirit similar to that of statistical regression,
the basis functions ¢y, ..., ¢k are selected by a human user based on intuition or
analysis specific to the problem at hand. One interpretation that is useful for the
construction of basis functions involves viewing each function:¢; as a “feature” -
that is, a numerical value capturing a salient characteristic of the state that may be
pertinent to effective decision making. This general idea is probably best illustrated
by a concrete ‘example. ) |

Example 2.2 In our stochastic control formulation of Tetris (Example
2.1), the state is an encoding of the current wall configuration and the
current falling piece. There are clearly too many states for exact dynamic
_programming algorlthms to be apphcable However, we may believe that
__most. .information, relevant to. game—playmg -decisions can-be captured by
a few intuitive features. In partlcular one feature, say ¢;, may map states
to the height of the wall. Another, say ¢,, could map states to a measure
of “jaggedness” of the wall. A third might provide a scalar encoding of
the type of the current falling piece (there are seven different shapes in
the arcade game). Given a collection of such features, the next task is to

D T T S LI LR IR R LA IEERTETE

20



select weights 7(1),...,r(K) such that

K

> r(k)gr(z) = J*(2),

k=1

for all states . This approximation could then be used to generate a
game-playing strategy. Such an approach to Tetris has been developed
in [83] and [12]. In the latter reference, with 22 features, the authors are
able to generate a strategy that eliminates an average of 3554 rows per
game, reflecting performance comparable to that of an expert player.

2.3 Autonomous Systems

After selecting basis functions for a given stochastic control problem, we are left with
the task of computing weights. In the remainder of this chapter, we study temporal-
difference learning as an algorithm for computing such weights. We begin in this
section by presenting the algorithm in the context of autonomous systems (i.e., those
that are not influenced by decisions). In particular, we consider a process

Ti41 = f(th, wt),

and aim at approximating a value function
(o o]
7 (@) = B[S =]
t=0

where g(z) is a scalar reward associated with state z and a € [0, 1) is a discount factor.
Note that this setting is equivalent to one where we are dealing with a controlled
system and wish to approximate the value function J# corresponding to a fixed policy

L.
Let ¢1,-..,¢x be a collection of basis functions (scalar functions over the state

space S), and let J : S x RX s R be defined by

J(z,r) = ;r(k)@c(x).

Suppose that we observe a sequence of states zo,z1,Z2,... and that at time ¢ the
weight vector has been set to some value r,. We define the temporal difference d.
corresponding to the transition from z; to z;11 by

dt = g(:Lt) + aj(:nt+1,'r't) - .]-(:L‘t, Tt)-

Then, given an arbitrary initial weight vector 7o, the temporal-difference learning
algorithm generates subsequent weight vectors according to

Tep1 = Tt + Yedi2s,
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where v; is a scalar step size, and z, € R¥ is an eligibility vector defined by

t

2= (a\) " (z,),

7=0

where ¢(z) = (¢1(z),...,dx(z))’. The parameter )\ takes on values in [0,1], and to
emphasize its presence, the temporal-difference learning is often referred to as TD()).
Note that the e11g1b111ty vectors can be recurswely updated accordmg to

Zey1 = QAZ + ¢(93t+1)

In Chapter 4, we will present a formal analysis of temporal-difference learning.
For now, let us provide one (heuristic) interpretation of the algorithm. Note that the
temporal difference d; can be v1ewed asa dlfference between two predlctlons of future
rewards:

1. J(z;,7:) is a prediction of 3%, a"*g(z,) given our current approximation

J(-, ;) to the value function.

2. g(zy)+ alJ (z441, ) is an “improved prediction” that incorporates knowledge of
the reward g(z;) and the next state ;1.

Roughly speaking, the learning process tries to make predictions J(z,m) consistent
with their improved versions. Note that ¢(z:) = V,J(z:, 7). Consequently, when
A = 0, the update can be rewritten as

Tepl =Tt + ’)’tvrj(xt,’ft)(g(mt) + aj(xt+1: Tt) - j(xt, Tt))-

The gradient can be viewed as providing a direction for the adjustment of r; such
that J (z¢,7;) moves towards the improved prediction. In the more general case of
A € [0,1], the direction of the adjustment is determined by the eligibility vector
2 =Yt _o(a\) "V, J(z,,r,). Here, each gradient term in the summation corresponds
to one of the previous states, and the temporal difference can be viewed as “triggering”
“adjustments of all previous predictions. The powers of a account for discounting
_effects inherent to the problem, while the powers of A influence the “credit assignment”
— that is, the amounts by which prev1ous predlctlons are to be adjusted based on the
current temporal difference.

2.4 Controlled Systems .

The algorithm described in the previous section involves simulating a system and up-
dating weights of an approximate value function based on observed state transitions.
Unlike'an autonomous system, a controlled system cannot be passively simulated and
" ‘observed. Control decisions are required and influence the system’s dynamics. In this
- section, we discuss. extensmns of tempora.l—dlfference learning to this context. The
obJectlve is to approximate ‘the optimal value function of a controlled system.
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2.4.1 Approxiniate Policy Iteration

A well-known result in dynamic programming is that, given a value function J*
corresponding to a policy p, an improved policy 7 can be defined by

(z) = a.rgéréaxg [g(:c, u) + aJ*(f(z,u, w))]

In particular, J*(z) > J#(z) for all z € S. Furthermore, a sequence of policies
{ttm|m =0,1,2,...} initialized with some arbitrary y, and updated according to

pmi1(z) = argg;.]axg [g(x, u) + aJ ™ (f(z,u, w))],
u
converges to an optimal policy p*. This iterative method for generating an optimal
policy constitutes policy iteration, a classical dynamic programming algorithm due to
Howard [38].

As with other dynamic programming algorithms, policy iteration suffers from the
curse of dimensionality. In particular, each value function J*™ generated during the
course of the algorithm can not be efficiently computed or stored. A possible approach
to overcoming such limitations involves approximating each iterate J*™ in terms of a
weighted combination of basis functions. For instance, letting ¢;,..., ¢x be a set of
basis functions and letting J(z,7) = ©K r(k)dx(z), consider generating a sequence
of weight vectors 72,72, ... by selecting each 7™*! such that

J(z,r™ ) & Jhn(z),
where [ig is an arbitrary initial policy and for m =1,2,3,.. .,
fim(x) = argmaxE [g(c, u) + aJ(f(z, u,w), r™)].
uelU W

We will refer to such an algorithm as approzimate policy iteration.

There is one key component missing in our description of approximate policy
iteration — a method for generating each iterate r™. The possibility we have in mind
is, of course, temporal-difference learning. In particular, we can apply the temporal-
difference learning algorithm to the autonomous system resulting from simulation
of the controlled system under a fixed policy fi,. (The dynamics are described by
Tep1 = [ (¢, fim(21), wy).) Initializing with rj*t? = »™ the algorithm would generate a

sequence of vectors r** r* 1yt that converges (as will be proven in Chapter
‘ 4). The limiting vector provides the subsequent iterate r™+1.

To clarify the interplay between the two types of iterations involved in approximate

policy iteration, let us note that we have nested sequences:

e An “external” sequence is given by r%,r 72 ...

e For each m =1,2,3,..., an “internal” sequence is given by rJ", 7", 7", . ..
For each m, the internal sequence is initialized with 7"’ = 7™ and the limit of

convergence becomes the next element r™+! of the external sequence.
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2.4.2 Controlled TD

Any function J : S — R can be used to generate a policy

pw(z) = argé%axg [g(a:, u) + aJ(f(z,u, w))]

In this respect, one can view J as a guide for decision-making. The value func-
tions J#o, J# Jk2 . generated by (exact) pohcy 1terat10n can then be v1ewed as a
monotomcally improving sequence of guides. . ST R
Recall that given a policy p, the value functlon JH generates an improved policy.
It seems therefore seems reasonable to hope that the approximation J(-,7™1) to
JPm similarly generates a policy fi,,11 that improves on fi,,,. Now recall that, approx-
imate policy iteration employs temporal-difference learning to compute r™*! given
r™. This is done by simulating the. system under the control policy fi, initializing
'a. sequence with ¥t = r™ and generating r7*!, 7"t} v . according to the
temporal-difference learning iteration. Since the corresponding sequence of functions
J(-,r1), J(-,72), J(-,7), ... converges to J(-,7™*1), one might speculate that these in-
termediate functions themselves provide improving guides to decision-making, each
of which can be used to control the system. This possibility motivates an alternative
algorithm, which we refer to as controlled TD.
Controlled TD simulates a state trajectory zg, 1, T, . . . and then generates weight
vectors ro, 71, T2, . ... The initial state xq and weight vector 7y can be arbitrary. Given
a state z; and a weight vector r;, a decision u; is generated according to

Up = argnzll,axE [g(wt, u) + aj(f(ivt, u, w), Tt)]-
, u€ w ,

The next state z;,; is then given by
- T = f(zt,ut,wt)
'Analogously Wlth the autonoﬁous case, let the temporal difference d; be defined by
4 dy = g(Ts, ue) + @ (ze41,7¢) — J (21, Te)-
Then, the weight vector is up_dafed according to
Ter1 = To + Yeds2e,
o ?zheq;e,,%,is; ’g,,,fs_';cga.lag;,épep%.si;_fzvei?_.pd _t_h'.e_,eligibi.l:i,ty\.ve‘c‘t_gr z;,.,E. RK is once again defined
by

t

7= 3 (X d(a,).

=0
- In practice, controlled TD often suffers from getting “stuck” in “deadlock” situ-
va,tlons In particular, viewing the procedure in an anthropomorphlc hght the state
T constitites an animal’s: operatmg env1r0nment and Up is the action it takes. The

24



action is selected based on an approximate value function J(-,7,), and the weight vec-
tor r; is improved based on experience. If the animal always selects actions in terms
of a deterministic function of z, and J(-,r;), there is a possibility that only a small
subset of the state space will ever visited and that the animal will never “learn” the
value of states outside that region. This is related to the notion of a “self-fulfilling
prophecy,” whereby the unexplored is never explored because values learned from the
explored do not promote further exploration. A modification that has been found to
useful in practical applications involves adding “exploration noise” to the controls. In
particular, during execution of controlled TD, one might generate decisions according
to

U = argntljaXE [g(:ct, w) + aJ(f(zs, u, w), rt)] + 7,
ue w

where 7, is a random perturbation that induces exploration of the state space.

2.4.3 Approximating the Q—Function

Given the optimal value function J*, the generation of optimal control decisions

uy = argmax | [Q(-’Et, ’LL) + OCJ*(f(JIt, u, ’UJ))],
uely W

requires computing one expectation per element of the decision space U , Which re-

quires in turn repeated evaluation of the system function f. One approach to avoiding

this computation involves obtaining a “Q-function,” which maps S X U to R and is
defined by

Q* (z,u) = E [g(a:, u) + aJ*(f(z,u, w))]

Given this function, optimal decisions can be computed according to

u; = argmax Q" (z, u),
uelU

which no longer involves taking expectations or evaluating the system function.

(Q-learning is a variant of temporal-difference learning that approximates @ func-
tions, rather than value functions. The basis functions ¢, ..., ¢x now map S x U to
R, and the objective is to obtain a weight vector r = (r(1),...,7(K))’ such that

K
Q*(z,u) = Q(z,u,m) = Y (k) i(z, u).
k=1
Like in controlled TD, Q-learning simulates a state trajectory zo, Z1,Za,... and then
generates weight vectors ro,71,73,.... Given a state z; and a weight vector r, a

decision u, is generated according to

u; = argmax Q(z;, u, 7).
- uelU



The next state ;4 is then given by

Tiy1 = f(xt, Ut, wt).

The temporal difference d; is defined by
dy = (e, u) + AQ(Tea1, Usrr, o) — Qe ue, 7e),
and the weight vector. is.updated,ac_cording to
Tep1 = Tt + Vide2t,

where , is a scalar step size and the eligibility vector z; € R¥ is defined by

t — Z(a)\)t—fqb(xT, 'U,-,-).
=0
Like in the case of controlled TD, it is often desirable to add exploration noise 7;,
_which would result in decisions of the form

uy = argmax Q(x¢, u, ¢) + M.
uelU

2.5 State of the Art

There is a long history behind the algorithms discussed in the preceding sections.
We will attempt to provide a brief account of items that are particularly relevant to
understanding the current state of the art, and we refer the reader to the books of
Sutton and Barto [76] and Bertsekas and Tsitsiklis {13] for further discussions of the
historical development.

Our work builds on ideas that originated in an area of artificial intelligénce known
as reinforcement learning. A major development in this area was the temporal-
difference learning algorithm, which was proposed by Sutton [72], but draws on ear-

. lier work by Barto and Sutton [75, 6] on models for classical conditioning phenomena

observed in animal behavior and by Barto, Sutton, and Anderson on “actor—critic
 methods.” Another major development. came with the thesis of Watkins [91], in
which “Q-learning” was proposed, and the study of temporal-difference learning was
integrated with classical ideas from dynamic programming and stochastic approxi-
mation theory.!. The work of Werbos [93 94, 95] and Barto Bradtke and Singh [5]
“also contributed to' this integration. "

In addition to advancing the understanding of temporal-difference learning, the
marriage with classical engineering ideas furthered the view of the algorithm as one for
addressing complex engineering problems and lead to a number of applications. The

ISeveral variants of ()-learning have been proposed since the publication of Watkins’ thesis, and
- “the one: we have presented: bears: closest-resemblance - to that -studied experimentally by Rummery
and Niranjan [62] and Rummery [61].
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practical potential was first demonstrated by Tesauro (79, 80, 81], who used a variant
of controlled TD to produce a world-class Backgammon playing program. Several
subsequent case studies involving problems such as channel allocation in cellular com-
munication networks [68], elevator dispatching [22, 23], inventory management [87],
and job—shop scheduling [96], have also shown signs of promise.

Since the completion of Watkin’s thesis, there has been a growing literature involv-
ing the application of ideas from dynamic programming and stochastic approximation
to the analysis of temporal-difference learning and its variants. However, the existing
theory does not provide sufficient support for applications, as we will now explain.
In controlled TD, approximation accuracy is limited by the choice of a parameteri-
zation. The hope, however, is that the iterative computation of parameters should
lead to a good approximation relative to other possibilities allowed by this choice.
Unfortunately, there is a shortage of theory that ensures desirable behavior of this
kind. Most results involving temporal-difference learning apply either to cases where
the optimal value function is represented exhaustively (i.e., by as many parameters
as there are states) or the system is autonomous. Exceptions include work involving
very restrictive types of parameterizations such as those arising from state aggregation
(69, 83, 31] and results concerning the performance of approximate policy iteration
that rely on overly restrictive assumptions [13].

Due to the absence of adequate theory, there is a lack of streamlined and widely
accepted algorithms. Instead, there is a conglomeration of variants to controlled TD,
and each one is parameterized by values that must be selected by a user. It is unclear
which algorithms and parameter settings will work on a particular problem, and when
a method does work, it is still unclear which ingredients are actually necessary for
success. As a result, applications often require trial and error in a long process of
parameter tweaking and experimentation.

2.6 Contributions of the Thesis

A central theme of our work involves the advancement of theory in a way that leads to-
wards algorithms that are widely accessible and applicable to real-world problems. In
the context of autonomous systems, significant-advances are made in the understand-
ing of temporal-difference learning. As a first step in developing theory pertaining to
controlled systems, we propose streamlined algorithms for solving optimal stopping
problems and provide rigorous analyses. Finally, in addition to algorithms for tuning
parameters, we study a new approach for basis function selection that involves the use
of representative scenarios. The remainder of this section describes in greater detail
the contributions made in various chapters. Discussions of how these contributions
fit into the context of previous research are saved for the closing sections of respective
chapters.

Chapter 3

This chapter starts by reviewing some standard ideas concerning Hilbert spaces
and fixed point approximation. We then introduce algorithms that generate an ele-
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ment in a prespecified subspace that approximates the fixed point of a given contrac-
tion F'. One algorithm is deterministic, and involves iterations in which compositions
of a projection operator and the contraction F' are applied. We prove that such an
algorithm converges, and we provide an error bound on the resulting approximation.
Unfortunately, in many practical situations, this algorithm is computationally infea-
sible. To overcome this limitation, we develop a stochastic approximation algorithm.
We prove that this algorithm converges (almost surely) and that the limit is the same
as that generated by the deterministic algorithm. This result is employed in estab-
lishing convergence of temporal-difference learning and related algorlthms addressed
in the remainder of the thesis.

Chaptér 4

We provide an analysis of temporal-difference learning in autonomous systems.

-+ Though our analysis offers new results even in the context of simpler settings, our

treatment of temporal-difference learning is the first that involves infinite state spaces
or infinite horizons. The following results are established.

1. The algorithm converges almost surely for approximations comprised of weighted
combinations of (possibly unbounded) basis functions over a (possibly infinite)
state space. Earlier results [24] established convergence in the mean — a much
weaker form of convergence — in finite—state absorbing Markov chains.

2. The limit of convergence is characterized as the solution to a set of interpretable
linear equations, and a bound is placed on the resulting approximation error.
Previous works lack interpretable results of this kind.

3. Wereconcile positive and negative results in the literature concerning the sound-
ness of temporal-difference learning by proving a theorem that identifies the
importance of simulated trajectories.

4. We provide an example dem'onStrating the possibility of divergence in an exten-
sion of temporal-difference learning that is used in conjunction with nonlinear
parameterizations.

These results have appeared previously in a paper [84].
‘Chapter 5 |
We provide the first convergence results involving the use of temporal-difference

learning in conjunction with general linear parameterizations to solve a class of control
“’problems In partlcular we consider several types of optimal stopping problems:

1. Optimal stopping of a stationary mixing process with an infinite horizon and
discounted rewards.

2. Optimal stopping of an 1ndependent increments process with an infinite horlzon
and dlscounted rewards '

3. Optlmal stoppmg w1th a ﬁmte horlzon and dlscounted rewards
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4. A zero—sum two-player stopping game with an infinite horizon and discounted
rewards.

In each case, we establish that a value function exists and we use it to characterize
optimal stopping times. Though such results are standard in flavor, the nature of our
assumptions and analysis are not. The most important aspect of our line of analysis
is that it naturally leads to approximation algorithms similar to temporal-difference
learning. For each class of optimal stopping problems we consider, we propose an
algorithm that tunes basis function weights to approximate the value function, and
we prove several results.

1. The algorithm converges almost surely.
2. A bound is placed on the resulting approximation error.

3. A bound is placed on the difference between the performance of the resulting
stopping time and the optimal.

These results have appeared previously in a technical report [86].

Chapter 6

A computational case study is presented involving a complex optimal stopping
problem that is representative of those arising in the financial derivatives industry.
This application represents a contribution to the growing literature on numerical
methods for pricing high-dimensional options, and it demonstrates significant promise
for the algorithms of Chapter 5. This case study has appeared in a technical report
(86].

Chapter 7

Most existing work on temporal-difference learning involves a discounted reward
criterion, as that presented in the preceding sections. However, in practical appli-
cations, it is often actually the average reward that is the criterion of interest. The
average reward formulation has largely been avoided in the literature because such a
setting was thought to pose greater difficulties, and the discounted reward criterion
has been used as a proxy. In this chapter, we propose variant of temporal-difference
learning that approximates differential value functions, which substitute for the role
of value functions when the average reward criterion is employed. We establish re-
sults analogous to the discounted case studied in Chapter 4, and these results suggest
that there is no need to introduce discounting when the average reward criterion is
desirable.

1. The algorithm converges almost surely.

2. The limit of convergence is characterized as the solution to a set of interpretable
linear equations, and a bound is placed on the resulting approximation error.

The line of analysis used appeared previously in a technical report [85].
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In addition to proving results analogous to the discounted case, we argue that there
are actually advantages to using the average reward version of temporal-difference
learning. We show that, as the discount factor o approaches 1, the asymptotic results
delivered by the two algorithms are virtually equivalent. However, the transient
behavior can be very different, and the average reward version can be computationally

more efficient. Our analysis confirms observations made in previous empirical work
[49].

Chapter 8

We explore the use of “scenarios” that are representative of the range of possible
events in a system. Each scenario is used to construct a basis function that maps states
to future rewards contingent on the future realization of the scenario. We derive,
in the context of autonomous systems, a bound on the number of “representative

- scenarios” that suffice for accurate approximation of the value function using weighted

combinations of the basis functions. The bound exhibits a dependence on a measure
of “complexity” of system that can often grow at a rate much slower than the state
space size. Though we only provide an analysis in the context of autonomous systems,
we also discuss possible approaches for generating basis functions from representative
scenarios in controlled systems.
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Chapter 3

Hilbert Space Approximation of
Contraction Fixed Points

In this chapter, we define some notation and present a few concepts that are cen-
tral to our analysis of temporal-difference learning. The intention is to expose the
fundamental ideas in an abstract setting divorced from the details of the algorithm.
The framework involves approximation in a Hilbert space of the fixed point of a con-
traction. In the next section, we review some relevant definitions and results from
Hilbert space theory. Section 3.2 then presents the contraction mapping theorem to-
gether with the successive approximations method for fixed point computation. Sub-
sequent sections present original material pertaining to deterministic and stochastic
approaches to fixed point approximation. Our analyses of temporal-difference learn-
ing and related algorithms are to a large extent applications of results from these
sections.

3.1 Hilbert Space

Temporal-difference learning involves the approximation of future reward as a scalar
function of state. As a formalism for discussing such approximations, we will introduce
Hilbert space - a space of functions that will contain both the value function and its
approximations. In this section, we define Hilbert space and present without proof
a few mainstream results. Many standard texts (e.g., [2, 27, 47, 59]) offer proofs of
these results as well as far more extensive treatments of Hilbert space theory.

Hilbert spaces are a special class of inner—product spaces. Let us begin by defining
the latter notion.

Definition 3.1 (inner—product space) An inner-product Space s a linear vector
space J together with a real function (-,-) on J x J, which is referred to as the inner
product. The inner product is endowed with the following properties:

1. <J1, J2> = <J2, J1> fO’I" all Jl, J2 € j
2. ey + Ja, Ja) = c(Jy, J3) + (Jy, J3) for allc € R and Jy, J,€JT.
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3. ALJ)>0forall Je J.
4. (J,J) =0 if and only if J = 0.

Given an inner product (-,-), a norm || - || can be defined by letting W) = (J, J) 2.
The fact that this function constitutes a norm follows from the Cauchy—-Shwartz
inequality, which we state for future use. :

Theorem 3.2 (Cauchy-Schwartz inequality) For any inner product space (7, (-, "))
- and a'ny;,Jl., J2€ \j:; o . PR . A e
- (T, T2 < (1l (12|

We say that Jy,J, € J are orthogonal if (J1,J2) = 0. Orthogonal elements of an
inner product space obey the Pythagorean theorem.

- Theorem 3.3 (Pythagorean theorem) Let (T ,(:,-)). be an inner-product space.
IfJ,,J, € J are ‘orthogonal then ' v

1y + All* = [l72]1? + || 7217

To motivate our interest in inner product spaces, let us discuss two examples that
are relevant to our study of temporal-difference learning.

Example 3.1 Consider a finite-state Markov chain with a unique “steady-—
state” distribution 7, which assigns a probability 7(z) to each state z in
the finite state space S. (Each 7 (z) represents the relative frequency with
which state z is visited.) We define an inner product space 4,(3, ) with
the space of vectors Rl (i.e., functions of state) and an inner product

(J1, Jo)r = 3 Ji(z) Jo(z)7(z).

TES

- The associated norm is given by

11l = (z ﬂ(x)ﬂ(zﬁ v .‘

TE€S

Given an approximation_j to a value function J*, a natural measure of ap-
proximation error is given by | J=J||x. Thisis simply a weighted quadratic
norm, where states are weighted according to their relative frequencies.
. Note that the first three properties of an inner-product are easily verified
Aor (-, -¥z: The-fourth: prdbie"rty;‘f‘onf*the‘%othérﬂhaﬁd;“-“is valid if and only
(if 7 is strictly positive, which is not true when there are transient states
(for which 7(z) would be equal to zero). This limitation is circumvented,
however, by considering any two elements J1, Jy € £5(S, ) to be “equal”
idf || Jy—Js]|» = 0. Hence, the elements of 4;(S, m) are equivalence classes
~ from RISl Consequently, even if some components of 7 are equal to zero,
- the fourth property is'satisfied via considering:the’condition: J = 0 to'be”

equivalent to [|.J|, = 0.
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The inner-product space described in Example 3.1 extends naturally to the case of a
Markov process with a continuous state space. We discuss this extension as a second
example.

Example 3.2 Consider a Markov process on a state space S = R¢ with a
unique “steady-state” distribution. Letting B(R?) be the Borel o—algebra
associated with R¢, the distribution is given by a probability measure 7,
which assigns a probability m(A4) to each A € B(RY). This probability
represents the fraction of time during which the process takes on values
in aset A C S. We can define an inner product by

(J1, Jo)n /Jlx)Jz 7(dz),

and its associated norm is given by

171 = ([ Peyrta)

Together with this inner product, the space of Borel-measurable functions

~over R? with finite norm defines an inner product space that we will
denote by L,(R¢, B(R?), 7). Analogously with the finite state case, given
an approximation J to a value function J*, ||J* — J||, is a natural measure
of approximation error. Again, as in the finite state example, elements
Ji,J; € J are considered “equal” if ||J; — Jof|r = 0.

A classical framework for approximation involves the concept of “projection.”
This notion plays a central role in our analysis of temporal-difference learning, and
we will now introduce it in terms of the projection theorem. To do so, we must
first define Hilbert spaces, which are inner product spaces that possess an additional
property of completeness.

Definition 3.4 (Hilbert space) An inner product space (7, (-,-)) is a Hilbert space
if it is complete with respect to the metric d defined by d(J1,J2) = |1 — & =
(Jy — Ja, Jy — J2)Y/2. By complete, we mean that every Cauchy sequence (with respect
tod) in J has a limit in J.

It is well-known that the inner—product spaces of Examples 3.1 and 3.2 are Hilbert
spaces. In fact, for any measurable space (S,S) (which includes finite spaces and
(R4, B(R?)) as special cases) and any probability measure 7 defined over this space,
an inner product

(1, Jo)e = / Ji(2)Ja(2)7(de),

together with the set of measurable functions of finite norm defines a Hilbert space
(see, e.g., [27]). We denote such a Hilbert space by Ly(S, S, 7).
We now state a version of the projection theorem, adapted from [47].

Theorem 3.5 (projection theorem) Let (7, (:,-)) be a Hilbert space and let H be |
a closed subspace of J. Corresponding to any J € J, there is a unique element
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Jo € H such that ||J — J0|| < ||J =T for all J € H. Furthermore, a necessary and
- sufficient condition that Jo be the unique minimizing element of H is that J — Jo be
orthogonal to H (i.e., orthogonal to every element of H).

We will generally be interested in projections from high or infinite dimensional
Hilbert spaces onto finite/low dimensional subspaces. One way to characterize a finite
dimensional subspace is as the span of a collection of functions. In particular, given
a Hilbert space (J, (-,-)) and elements ¢,,...,¢x € J, the space

’H={§ R)oulr(a).. r(kjem},

k=1

is a closed stibspa.ce referred to as the span of ¢1,..., ¢x.

Example 3.3 Let us revisit the Hilbert space Ly(R% B(R?), ) associated
with a Markov processes which has a steady—state distribution 7. Suppose
that we would like to approximate a function J* € Ly(R?, B(R?), ) via a
weighted combination of a set of basis functions ¢y, .. ., dx € Ly(R?, B(R?), 1),
in the spirit of “feature—based approximation,” as motivated in Chapter
2. One approach involves selecting scalar weights 7(1),...,7(K) € R that

minimize p
Z r(k)pr — J*
k=1 T
The span of ¢,...,¢x forms a closed subspace. Hence, the function

J = YK | r(k)¢x that optimizes the error criterion is the projection of J*.

Given a Hilbert space (7, (-,-)) and a closed subspace #, it is sometimes con-
venient to define a projection operator Il : J +— H so that for any J € J, I1J is
the unique vector J € H that minimizes ||J — J||. This operator enjoys properties
presented in the followmg theorem

Theorem 3 6 Let I be a proyectzon opemtor that proyects onto a closed subspace of
a Hilbert space (J,(-,-)). The following properties hold:

1. linearity: II(J; + J,) = IIJ; + HJz for any Ji, J, € J.
2. nonexpansiveness: [[ILJ|| <||J|| for any J € J.
3. idempotence: m2J =,1;IJ fof any J € J. |
4 ,Sélfegquigpgggegs (M1, Jo) = (1, 1L), for any Jl, S e J.

3.2 Contractions and Fixed Point Computation

. Many problems in- numerical computation-can be formulated in terms of solving an
equation of the form J = FJ. A solution J* to such an equatlon is called a fixed

;,_pomt of F In thls sectlon, We. cons1der the. case where Fis.al contractlon ‘on'a Hilbert

space. Let us begm by deﬁmng the term contmctwn
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Definition 3.7 (contraction) Let (7, (-,-)) be a Hilbert space. An operator F :
J + J 1is a contraction if there ezists a scalar § € [0,1) such that

|F'Ji — FJo|| < B||J1 — 2l

for all J1, J, € J. The contraction factor of F is defined to be the smallest 8 € [0,1)
such that the above inequality is satisfied for all J,, J, € J.

When F is a contraction, the set of fixed points is particularly simple, as elucidated
by the contraction mapping theorem:

Theorem 3.8 (contraction mapping theorem) Let F be a contraction on a Hilbert
space (T, (:,-)). Then, there ezists a unique fized point J* € J.

The proof of this theorem is simple and can be found in many texts (see, e.g., [47]).
A standard method called successive approzimations computes the fixed point of
a contraction F' by starting with an approximation Jy € 7 and generating a sequence
Ji, Ja, Js, . .. according to
Jm+1 = FJ,,.

It is easy to show that this iterative algorithm converges to the fixed point J*. In
particular, for each positive integer m,

| Tmt1 = TN = [[F I — FT*|| < Bl| I — J*],
where § € [0, 1) is the contraction factor. It follows that, for each nonnegative m,
[ Jm — 7| < 8™ Jo = J*],

and therefore, limq, o0 || Jm — J*|| = 0.

3.3 Approximation of Fixed Points

When a Hilbert space contains functions over a large or infinite domain, storage of
iterates J,, generated by the successive approximations method becomes infeasible.
In this section, we consider a variant of successive approximations that operates on
a tractable subspace.

Let F be a contraction in a Hilbert space (7, (-,)), and suppose that we would
like to obtain an approximation J within some closed subspace H. We consider
 an iterative algonthm that begins with an approximation J, € H a.nd ‘generates a
sequence Ji, Jp, J,..., € H according to

i1 =HFJ,.

Note that each iterate J,, is in  because this subspace constitutes the range of the
projection. Hence, when # is finite dimensional, each iterate .J, can be represented
in terms of basis function weights. This can make storage on a computer possible
and/or tractable. o
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The algorithm we have proposed can be thought of as a variant of successive
approximations that approximates each iterate J,, € J with J,, € J. Its use is
justified by the following theorem.

Theorem 3.9 Let F be a contraction on a Hilbert space (J, (-,-)) with a contraction
factor 3, and let II be a projection operator that projects onto a closed subspace of
J. Then, the composition IIF' is a contraction with contraction factor x < 3, and its
unique fized point J satisfies

1= < LT = 7.

1
¢1—_/$’
Proof: For any J1,J; € J,

IR Jy =TOF | < "“FJ1 FJ2|| < Bl = Jall,

where the first inequality follows from the fact that projections are nonexpansive. It
follows that ITF' is a contraction with a contraction factor x < 5. Let J be the fixed
point. of ITF'. Then, by the Pythagorean Theorem,

1 = J*|I? 1 = LT + | ILT* — |2
|IOFJ — TWEJ*||? + ||TLJ* — J*|?

| I AL [ A Al [

and it follows that

|J = J < [ILJ* — J*||.

=
Q.E.D.

This theorem implies that the iterates J,, converge to some J € H. Furthermore,
~ this limit J- provides an approximation to J* ‘in’ a’ sénsé ‘that we' will:now describe: -
The term -||IIJ* — J*|| represents the error associated with the projection IIJ*. By
the projection theorem, this error is minimal (if we are constrained to selecting ap-
proximations from #). The bound given in Theorem 3.9 therefore establishes that
the error associated with J is within a constant factor of the best possible.

. Let us close this section with an example that captures the spirit of the approxi-
mation techmque we ha.ve descnbed

Example 3.4 Suppose that we wish to approximate the fixed point
CJ* €. Ly(R? B(RY), ) of a contractionF- via*aweighted combination
of a set of basis functions ¢, ..., ¢x € Ly(R? B(RY), 7). The need for an
approximation here arises in part due to the impracticality of storing one
value J*(z) per point z in the domain R¢. As in Example 3.3, we might
alm at generating an approximation by selecting a set of basis functions
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¢1,-..,¢x € J and obtaining weights r(1),...,7(K) € R that minimize

k)pp — J*

w

This would result in a projection IIJ* on the subspace

H= {ir(k)qﬁklr(l), .. r(K) € éR} .

k=1

However, let us consider a situation where J* is unavailable, but instead,
given any J € H, we can compute IIFJ. The iterative algorithm jm+1
IIFJ,, then provides a viable approach to obtaining an approximation.
Though the final approximation J may differ from the optimal ITJ*, the
bound of Theorem 3.9 assures that the resulting error is within a constant
factor of the best possible.

3.4 Stochastic Approximation of Fixed Points

The iterative algorithm of the previous section alleviates the need to store compu-
tationally unmanageable functions generated in successive approximations. In par-
ticular, instead of storing one value per point in the domain, we store basis function
weights r(1),...,7(K). Unfortunately, the computation of [IFJ,, at each iteration is
often intractable. '

In this section, we develop a stochastic algorithm that converges to the same ap-
proximation J as does the deterministic algorithm from the previous section. How-
ever, the stochastic algorithm often alleviates the prohibitive computational require-
ments associated with the deterministic algorithm. Temporal-difference learning and
related methods that we will analyze in subsequent chapters are instances of this
stochastic algorithm.

The next subsection makes a digression to present a general class of stochastic
algorithms, together with a convergence theorem from [7]. In Subsection 3.4.2, we
discuss a specialized subset of such algorithms that includes those that will be stud-
ied in later chapters. We also prove a theorem that ensures validity of certain key
assumptions made by the convergence theorem of Subsection 3.4.1.

3.4.1 Stochastic Approximation

Many stochastic approximation algorithms can be thought of as approaches to approx-
imating solutions of ordinary differential equations. We will motivate and introduce
stochastic approximation from this point of view.

Consider an ordinary differential equation of the form

'I'.'t = 3(7}) y
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- Theorem 3.10 Let. {ytlt =0,1,2,...} b
""Conszder a Second 1 process {rt|t = 0 1

where 7, € RX for all t > 0, and 5 : RX — RX satisfies

(r—r")5(r) <0,

for some 7* € RX and all 7 # r*. It is well-known that, if 5 satisfies suitable regularity
conditions, this ordinary differential equation is stable. In particular, for any r, € RX,
we have lim;_,o 7 = 7*.

The solution to the differential equation can be a.pprommated by a difference
equation of the form. o : : : :
Ter1 = T¢ + Y5(Te),

where each -, is a scalar “step size.” Under suitable regularity conditions and with an
appropriate selection of step sizes, solutions of this difference equation also converge
to r* (see, e.g., [9]).
- In certain situations of practical interest,it is difficult to'compute 3(r;), but we
instead have access to a “noisy estimate” s(y:, ;). For example, the estimate might
be given by

s(ys, me) = 3(re) + ve,

where v, is a zero-mean random variable. An iterative method of the form

Ter1 = Tt + %8(Ye, 7o),

is called a stochastic approximation algorithm, and under suitable conditions, the
iterates r; once again converge to r*.

We will present without proof a general result that provides a set of conditions
under which a stochastic approximation algorithm converges. The result is a special
case of Theorem 17 on page 239 of the book by Benveniste, Métivier, and Priouret
[7]. The theorem makes use of the term Markov, which we will define now. Let
{v:lt =0,1,2,...} be a stochastic process taking on values in a state space R defined
on a probability space. (2, F,P). Denote the c—field generated by random variables'
Yo,---,Y: by Fi, and take F to be the smallest o—field containing Fy, Fi, 7, . ..
sub-o—fields. The process is Markov if there exists a scalar function P on RV x B (?RN )

‘such that, for any A € B(RY),

Plyen € A7} = Ply, 4),

and P( A) is measurable. . .

We now present the convergence result. As mentioned earlier, it is a spec1a1 case
.- of a theorem.in {7].. We-do not state that:theorem:in: full generahty because the list
of assumptions is long and would require a lot in terms of new notation. However, we
note that in our setting, the potential function U(-) that would be required to satisfy
the assumptions of the theorem from [7] is given by U(r) = ||r — r*||2, where || - ||2 is
- used to denote the standard Euclidean norm on finite dimensional spaces:.

,,Markov process. takzng on values n §RN
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arbitrary vector rq and evolving according to

Ter1 = Tt + 1e5(ye, Tt),

for some s : RY x RE s RE. Let the following assumptions hold for some function
5: RE » RK,

1. There ezists some r* € RE such that (r — r*)'3(r) < 0, for all v # r*, and
s5(r*) = 0. .

2. For any q > 0, there exists a scalar pg such that
Eflly:ll3lyo] < #q(1+ [lyoll3),
forallt=0,1,2,... and y € RV
3. There exist scalars C' and q such that
sy, m)ll2 < C(L+ [|rll2)(X + [lyl|2),
for allr € RX and y € RV

4. There exist scalars C and q such that
S| [s(s ) = 5(7)|wo] |, < CQ@+ lIrll2) (L + lfwoll),
t=0

for all T € RE and y € RN, and

5. Let v : RY x RE s RK be defined by
V(y,’f‘) = ZE [S(ytar) - §(T‘)|y0 = y] )
t=0

for allT € R¥ and y € RN. There ezist scalars C and q such that
lv(y,r) = v(y, P2 < Clir = 7ll2(1 + [lylI9),

for all ;7 € RX and y € RV.

6. The (predetermined) step size sequence *y; is nonincreasing and satisfies Y32, 1t
00 and Y2072 < 0.

Then, ry almost surely converges to r*.

Let us comment briefly on the conditions listed in the theorem. Condition (1) was
motivated earlier by viewing the algorithm as one that approximates the solution to
a stable ordinary differential equation. Condition (2) concerns stochastic stability of
;. Combined with this assumption, Condition (3), which restricts the rate of growth
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of s, ensures a similar sort of stability for the process s(y:, ;). Condition (4) is a
“mixing” condition, ensuring that s(y;, ) approaches the “steady state” version 3(r)
at a sufficiently rapid rate. Condition (5) restricts the extent to which v(y,r) can
change as r varies. In Condition (6), the fact that the step sizes have an infinite sum
ensures that the algorithm does not converge to a point different from r*. When the
sum of the squares is finite, the step sizes diminish at a rate that causes the “noise”
5(r¢) — s(ys, 7t) to be “averaged out.”

3.4.2 Approximation of Fixed Points
Temporal-difference learning and related algorithms studied in subsequent chapters
are special cases of the stochastic approximation algorithm addressed by Theorem
3.10. However, there is additional structure common to the algorithms we will study,
~as they all aim at approximating contraction fixed points.” In particular, we will -
consider algorithms for which the function 5 that represents the “steady—state” version
of s(yt, -) is given by
| 5k(r) = (¢, FOr — or),
where F' is a contraction on a Hilbert space (7, (-,-)), é1,...,6x € J are a set of
basis functions, and ® : R¥ — 7 is defined by &r = YK, r(k)¢y for any r € RX.
Hence, the algorithm can be thought of as an approximation to the solution of an
ordinary differential equation:

#o(k) = (¢n, FOry — Bry).

To motivate the relevance of this ordinary differential equation, let us consider a
special case.

Example 3.5 Let (7, (-,-)) be a Hilbert space. It is well known that
when the basis functions ¢;...;¢x € J are orthonormal (i.e., ||¢x|| = 1.
for each k and (qb,, ¢x) = 0 for each j # k) the operator II tha,t pr0Jects
onto the1r span is given by

K
IJ = Z ¢k<¢k; ']>1

k=1

for any J € J.
Now let us consider the ordinary differential equation

Cabs (e a),

assuming that the basis functions are orthonormal. We then have

¥ = > (k)

S S SRS S N
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K

= Y & (br, FOr, — Ory)
k=1

= HF@T,{ - @rt.

Hence, given a current approximation ®r;, the dynamics of this ordinary
differential equation guides the approximation towards IIF'®r,.

We now state and prove a theorem establishing that Assumption 3.10(1), relating to
the stability of the ordinary differential equation, is satisfied by the definition of 5 that
we have in mind. In addition, we show that the limiting weight vector r* generates a
function J = &r* that is the unique fixed point of IIF.

Theorem 3.11 Let (J,(:,-)) be a Hilbert space, let F': J — J be a contraction, let
¢1,...,0K € T be a set of linearly independent functions, and let II be the projection
operator that projects from J onto the span of ¢1,...,¢x. Let 5 : RE — RE be given

by
5k(r) = {¢x, FOr — @r),

fork=1,...,K. Then,

1. There ezists a unique vector r* € RX such that ®r* = IF®r*.
(r—r*)'s(r) <0 for all v # r*.
3(r*) = 0.

e

Letting & be the contraction factor of ILF, (r — r*)'3(r) < (k — 1)||®r — &r*|)?,
for all r € RE.

Proof: From Theorem 3.9 we know that IIF is a contraction and has a unique fixed
point in the span of ¢1,...,dx. Since ¢4, ..., ¢x are linearly independent, there is a
unique vector r* that generates this fixed point. This establishes the first part of the
theorem.

For the second part,

K

(r—r*)3(r) = Z <¢k, For — <I>7">(rk —7)

k=1
= (&r—&r*, For - &r)
= <<I>r - &r*, IF®r — (I>7'>,
where the final equality follows because [I® = & (since II projects onto the range of
®) and II is self-adjoint. Since ®r* is the fixed point of ITF', which is a contraction

by Theorem 3.9,
[[TIF®r — &r*|| < k||®r — 7|,

for all r, where x is the contraction factor of IIF. Using the Cauchy—Schwartz in-
equality together with this fact, -

<€[>7" — &r* IIF®r — <I>T> = <<I>r — &r*, (IF®r — r*) + (Or* — <I>'r)>
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< ||®r — &rF|| - |TLE®r — &r*|| — ||®r* — ®r|?
< (k—1)]|®r — &r*|%
Since ¢, ..., ¢k are linearly independent, ||®r — ®r*|| > 0 for all 7 # r*. Combining

this with the fact that x < 1, we have (r — r*)'s(r) < 0 for all r # r*.
To complete the proof, we have.

- Sk(r) = (0, FErt — @r") = (¢, TIFr — &) = 0.
Q.E.D. '
Let us close with an example that illustrates one situation where the type of

algorithm studied in this section is applicable.

Example 3.6 Consider the Hilbert space Ly(RY, B(RN), n) for proba-
bility measure 7. Suppose that we would like to approximate the fixed
point of a contraction F' via a weighted combination of basis functions
é1,...,0x € J, and we have the following capabilities:

1. For any r € R% and y € RY we can efficiently compute (F&r)(y).

2. We can generate samples of a random variable distributed according
to .

Then, we could implement the iteration

rev = 1o+ 76(w) (FOre)(ve) — (8r.)(w)),

where each y; is independently sampled according to the probability distri-
bution 7. The algorithm is a special case of the stochastic approximation
algorithm from Subsection 3.4.1 with § given by

5u(r) = E[$e(y0) ((F2r)(w) — (2r)(w))]
= [ ¢(u0)((For)(wo) - (&r)(yo))(ds)
.= <¢k,F<I>T—@T>ﬂ_,

which is exactly of the form addressed by Theorem 3.11. Notice that this
iteration has the same limit as the iteration Jp,41 = IIF'J,,, but it gets
there without explicitly computing a projection.

3.5 | Closmg 'Remafks

Let us conclude this chapter by overviewing how the results we have developed will
be applied in the remainder of the thesis. Three theorems will play important roles:
Theorem 3.9 (concerning compositions of projections and contractions), Theorem 3.10
- (which is a special.case of a result from.[7]),’and Theorem 3.11 (establishing the con-
vergence of an ordinary differential equation). The methods considered in the next
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two chapters, including temporal-difference learning and approximation algorithms
for optimal stopping problems, take the form of the stochastic iteration addressed in
Theorem 3.10. In order to apply the theorem, we must establish a certain conver-
gence criterion for the related ordinary differential equation, and this is done through
use of Theorem 3.11. Finally, Theorem 3.9 provides an error bound for the final
approximation. In Chapter 7, we propose a variant of temporal-difference learning
that approximates differential reward functions, which are appropriate when dealing
with an averaged - as opposed to discounted — reward criterion. This algorithm is of
a structure similar to but different from that which would be amenable to Theorems
3.10 and 3.11. These results nevertheless play a significant role in the analysis of this
new algorithm.
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Chapter 4

An Analysis of
Temporal-Difference Learning

In this chapter, we present an analysis of temporal—difference learning for autonomous
systems, as discussed in Chapter 2. We will begin by defining some terms that char-
acterize the class of autonomous systems under consideration. We then provide in
Section 4.2 a formal definition of the algorithm, together with technical assumptions
and our main convergence result. In Section 4.3, we recast temporal-difference learn-
ing in a way that sheds light into its mathematical structure. Section 4.4 presents the
proof of our convergence result. The result is valid for finite-dimensional Euclidean
state spaces (or subsets such as countable or finite spaces) under some technical as-
sumptions. In Section 4.5, we show that these technical assumptions are automatically
valid for the case of irreducible aperiodic finite-state Markov chains. In Section 4.6,
we argue that the class of infinite—state Markov chains that satisfy our assumptions is
broad enough to encompass practical situations. The use of a simulated trajectory is
of fundamental import to the algorithm’s convergence. Section 4.7 contains a converse
convergence result that formalizes this point. Section 4.8 considers a generalization
of temporal-difference learning that accommodates the use of nonlinear parameteri-
zations. Though this algorithm has been successful in certain practical situations, we
show through one example that it can lead to divergence. We close the chapter by
“discussing how our results fit into the context of other research in the field.

4.1 Preliminary Definitions

We will focus on processes that are Markov, stationary, and mixing. In this section,
we define these three terms. Our deﬁmtlons are customized to our purposes, and
many texts provide more general definitions together with extensive treatments of
such properties of stochastic processes (see, e.g., [15, 60]). Before defining the three
“terms of interest, let us introduce the transition probability function, which will be
used in the subsequent definitions. -

: ‘Definition 4.1 (transition probability. function) A function P : R¢ x B(R%) s
[0,1] s a tmnsmon probability function if it satzsﬁes the following conditions.
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1. For any z € R, P(z, ) is a probability measure.
2. For any A € B(R?), P(-, A) is measurable with respect to B(R?).

Given a transition probability function P, for each positive integer ¢, we will denote
by P, a “¢-step transition probability function” defined recursively by P, = P and

-Pt(xrA) :/})t—l(mi dy)P(y7A);

for all z € R4 and A4 € B(RY).

We consider a stochastic process {z;|t = 0, 1,2,...} taking on values in a state
space §R‘? defined on a probability space (Q, F ,P). We denote the o—field generated by
random variables z,, . . . » Tt by F;, and we take F to be the smallest o-field containing
Fo, F1, Fs, ... as sub—o—fields. The following definition provides a condition under
which the process is considered to be Markov.

Definition 4.2 (Markov) The process {z:/t =0,1,2,.. .} is Markow if there exists
a transition probability function P such that

Plzi € AR} = P(A,z,),
for all A € B(R9).

The probability distribution P for a Markov process can be defined by an initia]
distribution 7(A) = P(zo € A) and a transition function P. In particular, finite-
dimensional distributions are given by

P{Itl € A17 T, S Am} = / / ot / W(dyO)Ph (y[)) dyl)jjtz—tl (yh dy?)
YoER™ Jy €4, Ym—-1€Am_;
T Ptm—l—-tm-2 (ym—Zr dym—l)-l:)tm—-tm_l (ym—ly Am),

for all nonnegative integers ¢;,...,t,, and sets Ay, . A, € B(RY). By Kolmogorov’s
extension theorem, infinite~dimensional distributions are implicitly defined by the
finite-dimensional ones.

We now move on to define stationarity.

Definition 4.3 (stationary) The process {z;|t = 0,1,2,...} is stationary if

'P{xtl (S Al, e Ty, € Am} = P{$t+t1 € 441, <oy Tpgy,, € Am}

- for all nonnegative integers t,ty, ..., ¢, and sets A, ... A, € B(R).

One consequence of stationarity is that
ElJ(z)] = E[J(z,)),

for all nonnegative integers t and functions J : R¢ 1 R for which the expectation is
well-defined. . ‘
Finally, we define a notion of mixing.
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Definition 4.4 (mixing) A stationary process {z,|t = 0,1,2,...} is mizing if
tl_l)I& P{l’o € A,z € Ag} = P{.’L‘o € Al}P{$0 € Az},

for all sets Ay, Ay € B(R?).

One property that is implied by mizing is that the ¢{—step transition probabilities
converge to a “steady-state.” In particular, there exists a distribution 7 such that

tll)r& Pt(x? A) = W(A);

for all A € B(R?) and almost all z € R¢. Since the process is stationary, this
distribution also satisfies

m(A) = P{z, € A},

for all A € B(R) and all nonnegatlve integers t.
Let us close with a simple example of a process that is Markov, statlonary, and
mixing.

Example 4.1 Consider an aperiodic irreducible finite-state Markov chain
with a state space {1,...,n} and a transition probability matrix @ €
R™*" Tt is well known that this transition matrix possesses a unique in-
variant distribution 7 € R", which is proportional to the left eigenvector
with the largest eigenvalue (see, e.g., [28]). Since 7 is an invariant distribu-
tion and the process is Markov, the process is stationary if we let the initial
state zy be distributed according to 7. Furthermore, it is well known that,
for any initial state z, the state probabilities P{z; = y|zo = z} converge
to m(y), and it easily follows that the process is mixing.

4.2 Deﬁnltlon and Convergence Theorem

As in the previous section, we conS1der a stochastic process {xt|t 0,1,2,...} taking
on values in a state space R¢ defined on a probability space (Q,F,P). We denote
the o-field generated by random variables zy,...,z; by F;, and we take F to be
the smallest o—field containing Fy, F1, Fa, . . . as sub—o—fields. We make the following
assumption concerning the dynamics of this process. . -
Assumption 4.5 The process {z:[t = 0,1,2,...} is Markov, stationary, and mizing.
Since the process is stationary, we can define a distribution 7 satisfying 7(A) =
“P{z; = A} for ‘all nonnegativé integers t. Central to our analysis will be the
Hilbert space Ly(R?, B(R?), 7), which is endowed with an inner product (J1, J3)r =
[ J1(z)J2(z)m(dz) and a norm || J||, = (J, J)}/2.

Let o € [0,1) be a discount factor and let g € Ly(R% B(R?), ) be a reward
function. The value function J* : R¢ — R is then defined by

)= [ staofe =]
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(we will establish later that J* is well-defined and in Ly(R%, B(R%), 7).

Let ¢1,...,¢x € Ly(R%, B(RY), 7) be a set of basis functions, and let IT denote the
projection operator that projects onto their span. We make the following assumption
concerning the basis functions.

Assumption 4.6 The basis functions ¢1,. .., ¢x € Lo(R?%, B(RY), ) are linearly in-
dependent.

It is convenient to define some additional notation. Let a vector—valued function
¢ : R? — RE be defined by ¢(z) = (¢1(z),...,dx(z)). Also, let an operator
®: Ly(R4, B(RY), ) = Ly(R?, B(RY), 7) be defined by

K
r =Y r(k)ds,
k=1

for any r = (r(1),...,r(K))".

Temporal-difference learning is initialized with a weight vector r, € RX and
recursively generates a sequence {ry|t =1,2,3,.. .}. Foreach t =0,1,2,..., given r,
a temporal difference d; is defined by

dy = g(:) + a(®re)(Tet1) — (Dre)(x).
This temporal difference is then used in generating ry,, according to
Tt41 = Tt + Yeds2t,

where {]t = 0,1,2,...} is a sequence of scalar step sizes and {z]t = 0,1,2,...} is a
sequence of “eligibility vectors” taking on values in R¥, defined by

2= (aN)""(z,).

7=0

We make the following assumption concerning the step sizes.

Assumption 4.7 The sequence {yv|t = 0,1,2,...} is prespecified (deterministic),

nonincreasing, and satisfies
o0 oo
Y %=o00 and > 7 < co.
t=0 t=0

One final assumption addresses stability requirements for application of the stochas-
tic approximation result discussed in the previous chapter. As will be shown in Section
4.5, this assumption is always satisfied when the state space is finite. It is also satis-
fied in many situations of practical interest when the state space is infinite. Further
discussion can be found in Section 4.6.

Assumption 4.8 The following conditions hold:
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1. There ezist positive scalars C and q such that, for all z € R¢,

lg@) < C(1+ (el  and ()]l < CO+ [llf2)-
2. For any q > 0, there ezists a scalar pq such that for allz € Reandt=0,1,2,...,
E[llze§lzo] < g1+ |zol})  and  E[llg(@)[Flzo] < prg(t + I $(z0)ll3).

3. There ezists scalars C and .q such that, for allz € R% and m =0,1,2,.. ,

Z |B[¢() ¢ (ze4m) |20 = 2] = E[$(z0)¢' (zm)]ll, < C(1 + [|z12),

and ’ .
> |E[¢(z)g(zesm) |20 = 2] — Eld(z0)g(zm)lll, < O+ [z13).
t=0 .
(We use || - |2 to denote the standard Euclidean norm on finite dimensional vectors

and the Euclidean-induced norm on finite matrices.)
To simplify the statement of our theorem let us define an operator T that acts

on Ly(R?, B(RY), 7) by

(TN (z) = (1= N) i-io AE L—io alg(z:) + am“J(me)‘mo = z} ,

for A € [0,1), and

TO))(a) =B [i ao(elm =] = (@)

t=0

for A =1, s0 that O 7 converges to TWJ as A approaches 1 (under some technical
condltlons) The fact that 7™ maps Ly(R?, B(R?),7) to La(R4, B(ERd) m) will be
“established in a later section.

Theorem 4.9 Under Assumptions 4.5-4.8, for any A €[0,1],
1. The value function J* is in Ly(R?, B(R?), 7).

2. The sé'q'uén:c’é {re|t =0, 1, 2,. .A.:}i':c’onv‘erjeéw qumoét_ surely.
3. The limit of con'ue'rgence r* s the unique solution of the equation

ITWer = 31,
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4. The limit of convergence r* satisfies

II‘I)T*—J*II,,S _']*“m

1 .
Ve

where & is the contraction factor of IIT™ and satisfies

a(l - X)
< —7 .
- 1-Aa =@

4.3 Understanding Temporal-Difference Learning

One interpretation of temporal-difference learning is as an algorithm that “looks
back in time and corrects previous predictions.” In this context, the eligibility vector
keeps track of how the parameter vector should be adjusted in order to appropriately
modify prior predictions when a temporal difference is observed. In this section,
we take a different perspective that involves viewing the algorithm as a stochastic
approximation method and examining its asymptotic behavior. In the remainder of
this section, we introduce this view of TD()\) and provide an overview of the analysis
that it leads to. Our goal is to convey some intuition about how the algorithm works,
and in this spirit, we maintain the discussion at an informal level, omitting technical
assumptions and other details required to formally prove the statements we make. A
formal analysis will be provided in Section 4.4.

4.3.1 The TD()\) Operator
Recall that the TD()) operator is defined by

(TVJ)(z) = (1) 3 A™E [i‘ 0'g(x1) + 0™ T (@) = x] ,

m=0 t=0

for A € [0,1), and

(TO 1) (z) = B Lf; a'g(z:)|mo = x} = J(@),

for A = 1. To interpret this operator in a meaningful manner, note that, for each m,
the term

E [Z alg(z;) + am“J(:cmH)‘:ro = :r]
t=0

is the expected reward over m transitions plus an approximation to the remaining
reward, based on J. This sum is sometimes called the “m-stage truncated value.”
Intuitively, if J is an approximation to the value function, the m~stage truncated value
can be viewed as an improved approximation. Since 7™ J is a weighted average over
the m-stage truncated values, T») J can also be viewed as an improved approximation
to J*. In fact, we will prove later that T™ is a contraction on Ly(R?, B(R?), 7), whose
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fixed point is J*. Hence, T J is Aalways closer to J* than J is, in the sense of the
norm || - ||

4.3.2 Dynamics of the Algorithm

To clarify the fundamental structure of TD()), we construct a process y, = (T4, Te1, 2t).-
It is easy to see that y; is a Markov process. In particular, z;1; and z,; are deter-
ministic functions of Y: and the distribution of z;,, only depends on z,,;. Note that
- at each time ¢, the random vector z;, together with the current parameter vector 7y,
provides all necessary information for computing ry,,. By defining a function s with

s(ry) = (9(z) + a(2r)(z) — (Tr)(2))z,
where y = (z,7,2), we can rewrite the TD()) algorithm as. |
Tey1 = Tt + 7e3(7, Yo).

As we will show later, for any r, s(r,y;) has a well-defined “steady-state” expec- -
tation, given by

() = Jim Els(r, )]

Intuitively, TD(X) is a stochastic approximation algorithm with dynamics related to
the ordinary differential equation

T.'t = §(Tt) .

It turns out that _ '
Sk(r) = <¢k,T()‘)<I>r — <Dr>7r,

and T™ is a contraction on Ly(R%, B(R?), 7). Consequently, results from Chapter 3

can be used to show that this ordinary differential equation is stable and that, under - -~

some technical conditions, TD()) converges.

4.4 Proof of Thedrem 4.5

This section offers a formal analysis of TD()\) in the form of a proof of Theorem 4.9.
We first review a couple standard results that will be used at several points in our
- analysis. In Section 4.4.2, we prove a few lemmas that characterize the value function,
. the TD()) operator, and the “steady-state” behavior of the- ‘updates. Finally, Section

4.4.3 integrates these lemmas with the results of Chapter 3 in order to prove Theorem
4.9.

4.4.1 Some Mathematical Background

_In this subsection, ‘we review -some- standa,rd results from _probability theory. The
stated theorems are adapted from [27]." ‘
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One result that we will use is Jensen’s inequality, which states that the expectation
of a convex function of a random variable is greater than or equal to the convex
function of the expectation of the random variable.

Theorem 4.10 (Jensen’s Inequality) Letn be a probability measure on (R¢, B(R?)),
let w be a random variable defined on this space with E[|w|] < oo, and let f be a convez
function on R* such that f(w) is a random variable. Then, E[f(w)] > f(E[w]).

In our applications of Jensen’s inequality, the function of interest will usually be

f(w) = w?. In this case, Jensen’s inequality reduces to a statement that the second

moment of a random variable is greater than or equal to the square of its expectation.
Another result that we will occasionally use is the Tonelli-Fubini Theorem.

Theorem 4.11 (Tonelli-Fubini) Let (X, X,P;) and (Y, Y, P;) be probability spaces.
Let J : X x Y +— R be measurable with respect to X x ). Then,

/(/ J(m,y)Pl(da:)) Pa(dy) = / (/ J(:c,y)’Pz(dy)> P1(dz),

if (1) J is nonnegative or (2) J is absolutely integrable; i.e.,

/ ( / |J($ay)|7’1(dcc)) Py(dy) < 0.

This theorem will be used when we wish to switch the ordering of integrals, summa-
tions, or expectations.

4.4.2 Preliminary Lemmas

By the Markov property, there exists a transition probability function P on ¢ x B(R¢)

such that, for any A € B(R?),
P{z141 € A|F} = P(z, A),

and P(-, A) is measurable. We will also use P to denote an operator given by

(PN)(@) = [ J(v)P(z,dy).
Note that, for any nonnegative integers m and ¢,
(P™J)(z) = E[J(Tt4m)|z: = .
We begin by proving a fundamental lemma pertaining to the operator P.

Lemma 4.12 Under Assumption 4.5, for any J € Ly(R?, B(R?), 7), we have |[PJ||, <
(||
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Proof: The proof involves Jensen’s inequality and stationarity. In particular, for any
J € Ly(R%, B(RY), 7),
IPJI; = B[(PJ)(z0)]
B [(BlJ(z)[=o])’]
< E[E[(z1)|zal]
E [J*(20)]
17117

Q.E.D. |
Our first use of Lemma 4.12 will be in showing that J* is in Ly(R?, B(R?), 7).

Lemma 4.13 Under Assumption 4.5, J* is in Ly(R%, B(R?), 7), and

oo

J" =2 (aP)yg

t=0
Proof: To establish that J* is well-defined (for almost all z),

B |3 ols(a] = 2= Bls(an)] <

1/2

(Bl o))" = =gl

—

where the Tonelli-Fubini theorem, stationarity, and Jensen’s inequality have been
used. We can apply the Tonelli-Fubini theorem again to obtain

J*(z) = [Za g(z: I:co = a:} = ZatE [9(ze)|zo = 2] =) (o' Pg)
t=0
It then follows from Lemma 4.12 that '
* < —
1771 < gl

and therefore, J* is in L,(R4, B(R?), 7). Q.E.D.

The next lemma provides an alternative characterization of the TD(A) operator
and states that it is a contraction whose fixed point is the value function J*.

Lemma 4.14 Let Assumption 4.5 hold. Theh,l- ) |
1. For any A € [0,1) and any Je Lg(%d,B(%d),w),
T = (1=X2)3 ™ (Z(aP)tg + (aP)m+1J> :

m=0 t=0

which is in Ly(R4, B(RY); 7).
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2. For any X € [0,1] and any J1, J, € Ly(R%, B(RY), 1),

a(l — A
ITN = TV g, < 1(_“0&)”‘11 — Dllx < allhy = Bl

3. For any X € [0, 1], the value function J* is the unique fized point of T,

Proof: For any J € Ly(R?, B(RY), 7),

TON(E) = (1- A) iﬂ ATE [mo atg(z:) + m+1J(xm+1)‘zo = x]

o0

= (1- ZO AT (Z o'Bg(z:) | 2o = ] + @™ E[J (T my1)|z0 = :r])

= (1-)) ZO AT (Z% o'(P'g)(z) + am“(Pm“J)(m)) .

and the first proposition of the lemma follows. The fact that this operator maps
Ly(R%, B(R?), ) onto Ly(R¢, B(RY), ) follows easily from Lemma 4.12.

For the case of \ = 1, establishing that the operator is a contraction is trivial,
and the contraction factor is 0. For A € [0,1), the result follows from Lemma 4.12.
In particular, for any .Ji, J; € Ly (R, B(R?), 7),

(e}

ITOH =Tl = 1= 3) 3 Am(@Py (s - 1)
m=0
S (1= X A" — g
m=0

_oa(l=-X)
= T 1= Dl

For the case of A = 1, J* is the unique fixed point by definition. For ) € [0,1),
the fact that J* is a ﬁxed point follows from Lemma 4.13 and some simple algebra

TV = (1-2) fj /\m(tf;(aP)tg-k (@P)™+1J%)
= (1-21) éo /\m(g(aP)tg + (aP)™H t;io(aP)tg)
= (-0 2 an((aP)o)
= 1= ;‘0 A

= J.

The contraction property implies that the fixed point is unique. Q.E.D.

93



Recall that, for y, = (x4, Ze41, 2¢), the TD()) iteration takes the form

Ter1 = T + %8(7e, ),

where the update direction s is defined by

s(r,y) = (9(2) + a(2r)(z) — (27)(2))2,

for y = (2,7, 2). The following lemma characterizes the “steady—state” behavior of
the updates. We will employ the notation B [] as shorthand for lim,_,.. E[-].

Lemma 4.15 Under Assumption 4.5, for anyr € R¥, k=1,... K, and X € [0, 1],
B [su(ru)] = (6, TV®r — &r)
Tt S ™

Proof: For any J € L,(R¢, B(R?),7) and k= 1,..., K,

t_gloo[zt(k),](mt)]\ = limE [Z(a)\)t_Tgbk(a:T)J(xt)]

t—o0 —0

_— E[Z R )J(xt)]

t

= Jim 3 (02)"B bu(zeer) (z1)

o0

= > (2N)"E[$k(z0)J (Tm)]

m=0

where m =t — 7 and the final expression follows from stationarity. Observe that for
any Ji,Jy € Ly(R?, B(R?), ), '

E[J:(20) 2 @m)] = B[ (30) (P™T2) (@)] = (J2, P™ o), < EANEA

by Lemma 4.12 and the Cauchy-Schwartz inequality. It follows that for any J €
Ly(R7, B(R?), m),

) [o¢]

E (2B (@) = 3 (@N)™(ge, P™J)s,

m=0
and the magnitude of this expression is ﬁmte By specializing to the case of J =
‘ g+ozP<I>r—¢‘r for anyr€§RK and ¥ =1,. K,"“” T o

B [su(rw)] = t_@m [ztUc)(g(xt) + a(@r)(@s) = (@1)(1)
(g zs) + a(POr)(z;) — (@r)(zt))]

t—)oo [

= Z (aA)'“< k,P’” (g + aP®r — <I>r)>
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In the case of A\ = 1, it follows that

LB [se(r g = <¢k, fj o™ P™(g + aP®r — <I>'r)> = (g, J* — ®7),.

m=0 ™

Note that for any A € [0,1) and J € Ly(R¢, B(RY), 7),

S ()PP T = (1-2) 3 Am S atPt
m=0 m=0 t=0

We therefore have, for any A € [0,1),r e R¥ and k=1,... K

bl

B [se(ru)] = <¢k,(1—/\>f:xmiatPt(g+aP<br—(¢>r))>

m=0 t=0

= <¢k, TMér — @r>w.

Q.E.D.

4.4.3 Proof of the Theorem

As discussed earlier, the process y; is Markov, and the TD()) iteration is given by

Ter1 = Tt + 7eS(Ye, 1),

which is of the form of the stochastic approximation algorithm studied in Chapter 3.
Under certain technical conditions, convergence of such an iteration is established by
Theorem 3.10. We will show that these conditions are valid in the case of TD()). We
let the function 3 required by the conditions be given by

s(r) = <¢k, TMNer — <I>T>1r.

Also, though we have considered until this point a process y; = (zy, 111, z;), for the
purposes of validating conditions of Theorem 3.10, we let y, = (x4, 2,41, 2, é(z141))
(the process takes on values in RV with N = 2d + 2K ). Note that there is a one-
to-one mapping between the two versions of y;, so the update direction s is still a
function of r; and y;. We now address the six conditions of Theorem 3.10.

1. Given that the basis functions are independent (Assumption 4.6) and 7™ is
a contraction (Lemma 4.14), Theorem 3.11 establishes validity of condition
(1). Note that Theorem 3.11 states, in addition, that the limit of convergence
7* € RX is the unique solution to &r* = ITM&r*, and that

|&r* = Iz < = |,

L :
i
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where & is the contraction factor of T, which by Theorem 4.9, satisfies

P )
— 1-Jda ~

- Using Assumption 4.8(2), for any t = 1,2, ... and any scalar ¢ > 0, it is easy to
show that there exists a scalar C such that

<7

Blllflnd < B | (D@0 1otk |

7=0

— 1+ ).

Making further use of Assumption 4.8(2), for any ¢ > 1, there exist scalars Cy
and C, such that

Elllyelisloe] < E[Clzellz + lerallz + lzella + [16(zera)l2)?)uo]
< CE [llelld + loesallf + llzellf + l16(zer)I1Fuo]
< Ca(L+ llaoll§ + llz13 + ll2ol1§ + [l $(z1)I12)
< Ca(1 + lvollf)-

For the case of g € (0,1), by Jensen’s inequality,

aq
Elllgell3lyo = v1 < (Ellwel i Jwol)” < (1 + lyoll9),

for some scalars C and ¢. Hence, the condition is valid for all g > 0.

- For any r and y = (z,7, 2, -), by the Cauchy-Schwartz Inequality (on RX ).
Is(r )z < (la(@) + Il ¢(@llz + 16@)lf2)) lzllz-
Then; by Assumption 4.8(1), there exist positive scalars C and ¢ such that,
Is(r9)ll: < C(1 + llellf + [Irlla(L + 1§ + IZ19) I2]l2-
Validity of the condition easily follows.

. By Lemma 4.15,3(r) = t‘E [s(r,y:)]. We therefore study differences between
—00
E[s(r, v+)|vo] and E [s(r, y:)]. Let us concentrate on a term

E{z( ‘I>r “zvm)lxg = :v] —b E [zt(tﬁ'r)(a:t)]

for some fixed z. By the triangle inequality,

C A 1_—<— i i O‘)‘)m T

" m=0r=0: -

)

¢<x1><¢r><xm)1zo = a] = Bl (w,)(2r)(zn)]
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, 2\ 1/2
( > a)\)T<¢k,,PT¢T)7r)) i

m=0 \ k=1

Let
8= 3 3@ L6l (B @l = ] - Big(an) @) )],
and

m=0 \ k

K 00 2\ /2
Dp= 3 (; ( 2 l(a/\)’(sbk,P"I’?")w) ) :

Letting n =m — 7,

Ay = Jim 3 2 z (an)™ )(@r)(@m)lwo = o] = Elg(z,)(@r) (@)

= ggg,zzz (@)™ [Elg(zr) (@) () 20 = 2] - Elé(z.)(@r)(z)]]

t t—7

= i 3 5 (@ [Ble) @r)(arnlan = 2] Blo(a)(@r)(a-sn)

——0

< 3 3 (A BB @) sl = o] - Blg(an) @) )|

T7=0n=0

_ 2 )" Z [Elé(z) (@) (@rsn)lzo = 2] - Blp(a) (@r)(z1)]],
1

T 1_an fg% ZO ”E (2:)(®7)(Tr4n) |70 = 2] — E[¢( x,)(@r)(zTJrn)]

From Assumption 4.8(3), it then follows that there exist scalars C' and g such
that

o
Ars T a)\(l + llzllDlIr{l2-

By Lemma 4.12 and the Cauchy—Schwartz inequality, for any £ =1,..., K,
[k, PTOr)x| < [|Gkllx]|®rlx < C(1+ Irfl2),
for some scalar C, and therefore, there exists a scalar C' such that
Do < O(L+Irll2).
It follows that there exist scalars C and ¢ such that

A <O+ l2]I3)( + lirll)-
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Using roughly the same line of reasoning, similar bounds can be established for
other terms involved in

5[5 st~ 5ol

and these bounds can be combined to validate the condition. We omit these
tedious details.

5. Note that both s and 5 are affine functions of 7. Combining this fact with
reasoning similar to that employed in verifying condition (4), it is not difficult
to show that that there exists scalars C' and ¢ such that

vy, ) = v(y,T)ll2 < Clir —Fll2(1 + [lyl3)-
Once again, we omit the details.
6. This condition is the same as Assumption 4.7.

Given that all the conditions of Theorem 3.10 are valid, the algorithm converges
to a unique vector r* (statement (2) of the theorem). The properties of this vector
(statements (3)—(4)), are established in the comments pertaining to Condition (1)
(see above item (1) above). The fact that J* is in Ly (R?, B(R?), ) (statement (1)) is
established by Lemma 4.13.

4.5 The Case of a Finite State Space

In this section, we show that Assumptions 4.5 and 4.8 are automatically true when-
ever we are dealing with an irreducible aperiodic finite-state Markov chain. This
tremendously simplifies the conditions required to apply Theorem 4.9, reducing them
~ to a requirement that the basis functions be linearly independent (Assumption 4.6).
Actually, even this assumption can be relaxed if Theorem 4.9 is stated in a more
general way. This assumption was adopted for the sake of simplicity in the proof.
~ Let us now assume that {z;|t = 0,1, 2,...} is generated by an irreducible aperiodic
finite-state Markov chain taking on values in a state space S = {1,...,n} (this is just
a subset of R, so our results apply). It is well-known that Assumptions 4.5 is satisfied
in this case (see, e.g., [28]). Also, Assumption 4.8(1) is trivially satisfied because the
functions g and ¢4, ..., ¢k are bounded over the finite state space. We will therefore
. focus.on showing that.Assumptions.4.8(2)=(3) are-valid. .-+ -
It is well known that for any irreducible aperiodic finite-state Markov chain, there
exist scalars p < 1 and C such that

|P{z; =T|zp = 2} ~ 7(T)| < Cp', Vz € S.
: AF;or‘éva,ch» z € §, we define a K x K diagonal matrix D with diagonal elements equal

© to the ‘steady-state: pfb'b-gb'ﬂiti‘eéé‘#(i);‘;f."-'.*‘,"’m""(h)’ and’a sequence of K x K diagonal
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matrices D, ; with the fth diagonal element equal to P{z; = Z|z; = x}. Note that
1Dzt = Dll2 < Cpf,
for all z € S. It is easy to show that
E[¢(z:)¢'(11m)|z0 = 7] = &' D,,P™®.

(Note that the operators P and & are matrices when the state space is finite.) We
then have

 E[8(20)8' (2i1m) |20 = 2] — Eol¢(20)¢ (Tr4m)] = ®'(D, .~ D)P™®.

Note that all entries of P™ are bounded by 1 and therefore there exists a constant GG
such that ||P™||; < G for all m. We then have

2 1#(Dse = D)P"@ll2 < 3 K* max |64(D, — D)P™g|
t=0 . ' =0 i

< K*max||¢xll:G max [|¢[l2 3 || Dz — Dl
t=0

C
1—-p

< GK?max |4/}

The first part of Assumption 4.8(3) is therefore satisfied by a constant bound (i.e.,
let ¢ = 0). An analogous argument, which we omit, can be used to establish that the
same is true for the second part of Assumption 4.8(3). Assumption 4.8(2) is trivially
satisfied.

4.6 Infinite State Spaces

The purpose of this section is to shed some light on the nature of Assumption 4.8
and to suggest that our results apply to infinite—state Markov processes of practical
interest. '

Let us first assume that the state space is a bounded subset S$ C R¢ and that the
reward function g and basis functions ¢y, ...,dx are continuous on R¢. Then, the
functions g and ¢, ..., ¢x are bounded over the state space, and Assumption 4.8(1)
is satisfied. Assumption 4.8(3) basically refers to the speed with which the process
reaches steady-state. Let m,; be a probability measure defined by

’R'z,t(A) = P{.’IJt S AIIIJO = IL'}

Then, Assumption 4.8(3) is satisfied if we require that there exists a scalar C such
that

[e o]

S mae(4) — n(A4)| < C,

t=0
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forall A C S and z € S. In other words, we want the t-step transition probabilities to
converge fast enough to the steady-state probabilities (for example, |m, ;(A) — 7(A)|
could decay at a rate of 1/t*). In addition, we require that this convergence be
uniform in the initial state.
As a special case, suppose that there is a distinguished state, say state Z, and that
for some § > 0,
P{$t+1 = T[:rt = l‘} >4 Vz.

Then, 7, 4(z) converges to 7 exponentially fast, and uniformly in z, and Assumption
4.8(3) is satisfied with a constant bound. Assumptlon 4.8(2) is again trivially satisfied,
since the state space is bounded.

Let us now consider the case where the state space is an unbounded set S C R¢.
For many stochastic processes of practical interest (e.g., those that satisfy a large
deviations principle), the tails of the probability dlstnbutlon 7 exhibit exponential
decay; let us assume that this is the case.

Assumption 4.8(2) is essentially a stability condition; it states that ||| and

||¢(z4)]|3 are not expected to grow too rapidly, and this is satisfied by most stable
Markov processes of practical interest. Note that by taking the expectation with
respect to the stationary distribution we obtain E[l|zoll§] < oo and E[||¢(x0)]|3] < oo
for all ¢ > 0, which in essence says that the tails of the steady-state distribution =
decay faster than certain polynomials (e.g., exponentially).

Assumption 4.8(3) is the most complex one. Recall that it deals with the speed of
convergence of certain functions of the Markov process to steady-state. Whether it
is satisfied has to do with the interplay between the speed of convergence of Tzt tO T
and the growth rate of the functions ¢, and g. Note that the assumption allows the
rate of convergence to get worse as ||z||, increases; this is captured by the fact that
the bounds are polynomial in ||z||,.

We close with a concrete illustration, related to queueing theory. Let {z4]t =
0,1,2,...} be a Markov process that takes values in the nonnegatlve integers, and let
its dynamlcs be

Tyy1 = max {0, z; + w; — 1},

where the w; are independent identically distributed nonnegative. integer random
~variables with a “nice” distribution; e.g., assume that the tail of the distribution of
- wy asymptotically decays at an exponential rate. (This Markov chain corresponds to
an M/G/1 queue which is observed at service completion times, with w; being the
number of new arrivals while serving a customer.) Assuming that E[w,] < 1, this
chain has a “downward drift,” is “stable,” and has a unique invariant dlstnbutlon
[90]. Furthermore, there exists some 6 > 0 such that m(z) < e, for r sufficiently
large. Let g(z) = z, so that the reward function basically counts the number of
customers in queue. Let us introduce the basis functions ¢x(z) = z*, k = 0, 1,2, 3.
Then, Assumptions 4.8(1) is satisfied. Assumption 4.8(2) can be shown to be true by
explmtmg the downward drift property.

Let us now discuss Assumption 4.8(3). The key is again the speed of convergence
-of gy to . Starting from a large state z, the Markov chain has a negative drift, and
~ requires O(z;) steps to enter (with hlgh probablhty) the v1c1n1ty of state 0 [71, 43].
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Once the vicinity of state 0 is reached, it quickly reaches steady-state. Thus, if we
concentrate on ¢3(z) = z*, the difference E[@s(z:) ¢} (211m)|z0 = ] — E{ps3(z0) dy(7rm))]
is of the order of z° for O(z) time steps and afterwards decays at a fast rate, This
suggests that Assumption 4.8(3) is satisfied.

Our discussion in the preceding example was far from rigorous. Our objective
was not so much to prove that our assumptions are satisfied by specific examples,
but rather to demonstrate that their content is plausible. Furthermore, while the
M/G/1 queue is too simple an example, we expect that stable queueing networks
that have downward drifting Lyapunov functions, should also generically satisfy our
assumptions. In fact, it has been pointed out by Meyn [52] that Assumption 4.8 is
weaker than certain standard notions of stochastic stability (see, e.g., [53]), such as
that involving (deterministic) stability of a fluid model corresponding to a queueing
system.

4.7 The Importance of Simulated Trajectories

In Section 3.3, we studied an iterative algorithm of the form Jir1 = IIFJ,. The
convergence proof relied on the fact that IT was a projection in the same Hilbert space
upon which F' was a contraction, the consequence being that the composition ILF was
also a contraction. One possible variant of this algorithm involves a projection II with
respect to a different Hilbert space norm. In particular, the algorithm would take on
the form Jy;; = IIFJ,, where F is a contraction on Ly(R, B(R),n) whereas II is a
projection defined with respect to the norm of a Hilbert space Ly(R, B(R), ), where
the probability measure 7 is different from 7. It turns out that, unlike ITF', which is
guaranteed to be a contraction on Ly(R, B(R), ), IIF need not be a contraction on
any Hilbert space, and the algorithm Jiy1 = IIFJ, may even diverge. To visualize
the possibility of divergence, consider the two situations illustrated in Figure 4-1. In
both cases, the line represents the subspace spanned by the basis functions, and it is
assumed that J* is within the span. The ellipse centered at J* represents all points as
far away from J* as J; (distance is measured in terms of I - lx). The reason we have
drawn an ellipse is that we are dealing with a weighted Euclidean norm. Since F' is
a contraction with respect-to this norm, F'J, is closer to J* than Jt, and is therefore
inside the ellipse. Now when we project according to IT, we draw the smallest ellipse
that is centered at F.J; and touches the span of the basis functions, and the point of
contact gives us Jyy; = IIFJ;. The shape of the ellipse is determined by the norm
with respect to which we project, and since II is a projection with respect to || - ||,
the ellipse is similar to the first. On the other hand, since II is a projection with
respect to a different norm, the ellipse in the second diagram is of a different shape.
Consequently, it may take us further away from J* (i.e., outside the big ellipse).

It should be evident in our analysis that the convergence of the TD()) is intimately
tied to the fact that IIT™) is a contraction. In this section, we consider a variant of
TD(0) that has been proposed and implemented in the literature. This variant does
not simulate an entire trajectory, and instead, it involves a sampling distribution
T selected by a user. This algorithm turns out to be related .to the composition
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Jis

Figure 4-1: Convergence of .J;;1 = IIF'J; versus divergence of J,,, = [IFJ,.



of a projection operator II with the operator 7). The latter is a contraction on
Ly(R, B(R), ), whereas the projection is defined with respect to || - |lz. We will
provide a result establishing that, like the deterministic algorithm .J, ., = IITW J,,
this stochastic algorithm can diverge.

Consider a variant of TD(0) where states a; are sampled independently from
a distribution 7 and successor states b, are generated by sampling according to
Prob{b; = bla; = a} = Prob{zi1; = b|z; = a}. Each iteration of the algorithm
takes the form

Ter1 = T + Ved(ar) (g(at) + ad’(by)ry — (b'(at)Tt)-

Let us refer to this algorithm as 7-sampled TD(0). Note that this algorithm is closely
related to the original TD(0) algorithm. In particular, if a; = z; and b, = z;,.4,
we are back to the original algorithm. It is easy to show, using a subset of the
arguments required to prove Theorem 4.9, that this algorithm converges when 7 = 7
and Assumptions 4.5-4.8 are satisfied. However, results can be very different when 7
is arbitrary. This is captured by the following theorem, which for simplicity, addresses
only finite state spaces.

Theorem 4.16 Let 7 be a probability distribution over a finite state space S with at
least two elements. Let the discount factor o be within the open interval (2,1). Let the
sequence {y|t = 0,1,2,...} satisfy Assumption 4.7. Then, there ezists o stochastic
matriz P, a reward functzon g(), and a matriz ®, such that Assumptions 4.5 and 4.6
are satisfied and execution of the T—sampled TD(O) algorithm leads to

- - - *
tllglo ||E[r:ro = 7]|l2 = oo, Yr #r*,
for some unique vector r*.

Proof: Without loss of generality, let S = {1,...,n} and assume throughout this
proof that (1) > 0 and 7(1) > 7(2). We define a probability distribution 7 satisfying
1> 7(2) > & and 7(z) > 0 for all z € S. The fact that o« > ¥ ensures that such
a probability distribution exists. We define the transition probability matrix P with
each row equal to (7(1),...,7(n)). Finally, we define the reward function to be
g(z) =0, for all z. Assumption 4.5 is trivially satisfied by our choice of P and g, and
the invariant distribution of the Markov chain is m. Note that J* = 0, since rewards
are zero.
Consider a single basis function given by

1, ifz=1,
d(z)=¢ 2, ifz=2
0, = otherwise.

Hence, r; is scalar, and ® can be thought of as an n x 1 matrix. Also, Assumptlon
4 6 is tr1v1ally satlsﬁed We let r* = 0, so that J* = &r*.
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In general, we can express E[r;|ro = r] in terms of a recurrence of the form

Elreiilro =71] = E[rfro =r] +7E [d)(at)(g(at) + ad(b)re — ¢lag)ry)|ro = T]
= Eri|ro =7+ 1®'Q(aP® — ®)E[r;|ro = 7],

where @ is the diagonal matrix with diagonal elements 7(1),...7(n).
Specializing to our choice of parameters, the recurrence becomes

Elrulro=7] = E[r|ro =1 o
+7: (1) 27(2)] (a [ ;EB i ;Zg; J = [ ; D Elrsro = ]
= Elrilro = r] + %((a(r(1) + 2n(2)) — 1)7(1)
+2(a(r (1) +27(2)) — 2)7(2))Blryfro].
For shorthand notation, let A be defined by
A = (am(1) + 2am(2) — )7(1) + 2(en(1) + 2a7(2) — 2)7(2).
Since am(1) + 207 (2) < 2 and (1) > 7(2), we have

A > (ar(1) +2o7(2) — 1)7(1)
+2(am(1) + 2ar(2) ~ 2)7(1)
= (3am(1) + 6an(2) — 5)7(1)
> (6am(2) - S)T(1),

and since 7(2) > =, there exists some € > 0 such that

A2 (Btre-5)m(l)
= em(1).

It follows that

|E[rea|ro = rlll2 > (1 + ’th( DE[rs|ro = 71”2;
and since > 32, v = oo,‘ we have |
_ Hm [Blresalro = rlll = o0,

Cif r #£ % Q.E.D.

Let us close this section by reflecting on the implications of this result. It demon-

strates that, if the sampling distribution 7 is chosen independently of the dynamics of
* the Markov process, there is no convergence guarantee Clearly, this does not imply
‘ »_that d1vergence will always occur when such a random- sampling scheme is employed

- in practlce In fact, for any problem, there'is a Set ‘of sampling distributions that lead
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to convergence. Our current understanding indicates that 7 is an element of this set,
so it seems sensible to take advantage of this knowledge by setting ¥ = 7. However,
since it is often difficult to model the steady-state distribution, one generally must
resort to simulation in order to generate the desired samples.

4.8 Divergence with Nonlinear Parameterizations

We have focused on approximations J (z,7) that are linear in the parameter vector
r. It is sometimes natural to consider nonlinear parameterizations, such as neural
networks. In this case, we consider an extension of TD()) that has been applied in
the literature. It involves an iteration of the form

T4l = T + ’}’tdtzt,
with the temporal-difference defined by
dt = g(xt) + Olj(.TH.l, T't) - J.(.Tt, 'I't),

and the eligibility vector defined by

t

2= ()7, Iz, ).

7=0

Note that, when the parameterization is linear (i.e., J(z,7) = oK r(k)¢i(z)), the
gradient is given by V,J(z,7) = ¢(z), and we obtain the original TD()) iteration.

One might hope that our analysis generalizes to the case of nonlinear parameteri-
zations, perhaps under some regularity conditions. Unfortunately, this does not seem
to be the case. To illustrate potential difficulties, we present an example for which
TD(0) diverges. (By divergence here, we mean divergence of both the approximate
value function and the parameters.) For the sake of brevity, we limit our study to
a characterization of steady-state dynamics, rather than presenting a rigorous proof,
which would require arguments formally relating the steady-state dynamlcs to the
actual stochastic algorithm.

We consider a Markov chain with three states (S = {1,2,3}), all rewards equal
to zero, and a discount factor @ € (0,1). The reward function J* € R? is therefore
given by J* = (0,0,0)". Let the approximation

J(r) = (J(,r), J(2,7), J(3,7))

be parameterized by a single scalar r. Let the form of J be defined by letting J (0)
be some nonzero vector satisfying ¢'J(0) = 0, where e = (1,1,1)’, and requiring that
J(r) be the unique solution to the linear d1fferent1a1 equation

jf() @+, (4.1)
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where I is the 3 x 3 identity ma,trix, ¢ is a small positive constant, and Q is given by

1 1/2 3/2
=13/2 1 1/2
1/2 3/2 1
We let the transition probability matrix of the Markov chain be
| - 1/2 0 1/2
o 1/2 1/2 0
0 1/2 1/2

Since all rewards are 0, the TD(0) operator is given by T®J = oPJ, for all J € %3,
The TD(0) algonthm apphes the upda.te equation

| dJ . _
Ti41 =Tt + %—(T) (aJ($t+1, Tt) — J (i, 7”)) )

where z; is the state visited by the trajectory at time ¢. Since the steady-state
distribution resulting from P is uniform, the steady-state expectation of the update
direction, within a factor of 3, is given by

This is the inner product of the vector d.J/dr, which is (Q + eI).J /(r), with the vector
aPJ(r) = J(r).

Given the average direction of motion of the parameter r, the stochastic algorithm
approximates an ordinary differential equation of the form

g”lk..

2,) (a(PI(N)(@) - J(z,7)).

L = (@+eDim) (P - D)
= J(r)(Q +el)(aP - nJr).
For ¢ = 0, we have
& = J)@P - D)

= QP
sméa_fUXQP+P,%HM

where the first equahty follows from the fact that J'(r)Q'J(r) = 0, for any r. Note

that
2 o 25 1.75 1.75J

@T+P@) 1.75 25 1.75
- 175 1.75 25
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which is easily verified to be positive definite. Hence, there exists a positive constant
¢ such that

dr T

= 2 clly ()l (4.2)
By a continuity argument, this inequality remains true (possibly with a smaller pos-
itive constant c) if € is positive but sufficiently small. The combination of this in-
- equality and the fact that

%IIJ(T)H% = J'()(@+@)J(r) + 26| J(r)IIf > 2¢]| T (r)]I13,

implies that both r and || J(r)||, diverge to infinity.

4.9 Closing Remarks

In order to place our results in perspective, let us discuss their relation to other avail-
able work. Several papers have presented positive results about TD()). These include
[72, 92, 82, 39, 25, 33], all of which only deal with cases where the number of weights
is the same as the cardinality of the state space. Such cases are not practical when
state spaces are large or infinite. The more general case, involving the use of linear
parameterizations, is addressed by results in [24, 64, 83, 31, 69]. The latter three
establish almost sure convergence. However, their results only apply to a very limited
class of linear parameterizations (slightly broader than the case where basis functions
are indicator functions) and only involve variants of TD(0). Dayan [24] establishes
convergence in the mean for the general class of linear parameterizations. However,
this form of convergence is rather weak, and the analysis used in the paper does
not directly lead to approximation error bounds or interpretable characterizations of
the limit of convergence. Schapire and Warmuth [64] carry out a (nonprobabilistic)
worst-case analysis of an algorithm similar to temporal-difference learning. Fewer
assumptions are required by their analysis, but the end results do not imply conver-
gence and establish error bounds that are weak relative to those that can be deduced
in the standard probabilistic framework.

In addition to the positive results, counterexamples to the convergence of sev-
eral variants of the algorithm have been provided in several papers. These include
3, 16, 31, 83]. As suggested by Sutton [73], the key feature that distinguishes these
negative results from their positive counterparts is that the variants of temporal-
difference learning used do not employ on-line state sampling. In particular, as in
the variant discussed in Section 4.7, sampling is done by a mechanism that samples
states with frequencies independent from the dynamics of the underlying system. Our
results shed light on these counterexamples by showing that, for linear parameteriza-
tions, convergence is guaranteed if states are sampled according to the steady-state
probabilities, while divergence is possible when states are sampled from distributions
independent of the dynamics of the Markov process of interest. ,
. The results of this chapter have appeared previously in a journal article [84].
Around the same time as the original submission of that article, Gurvits [32] inde-
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pendently established almost sure convergence in the context of absorbing Markov
chains. Also, Pineda [57] derived a stable differential equation for the “mean field”
of temporal-difference learning, in the case of finite state absorbing Markov chains,
and suggested a convergence proof based on a weighted maximum norm contraction
property, which, however, is not satisfied in the presence of function approximation.
(The proof was corrected after the paper [84] became available.) '

The sensitivity of the error bound to A raises the question of whether or not it ever
makes sense to set A to values less than 1. Experimental results [72, 70, 74] suggest
that setting A to values less than one can often lead to significant gains in the rate of
convergence. A full understanding of how A influences the rate of convergence is yet
to be found. Furthermore, it might be desirable to tune A as the algorithm progresses,
possibly initially starting with A = 0 and approaching A = 1 (although the opposite
has also been advocated). These are interesting directions for future research.

In applications of controlled TD (as presented in Chapter 2), one deals with a
controlled Markov process and at each stage a decision is “greedily” chosen, by mini-
mizing the right-hand side of Bellman’s equation, and using the available approxima-
tion J in place of J*. Our analysis does not apply to such cases involving changing
policies. Of course, if the policy eventually settles into a limiting policy, we-are back
to the autonomous case and convergence is obtained. However, there exist examples
for which the policy does not converge [13]. It remains an open problem to analyze
the limiting behavior of the weights r, and the resulting approximations ®r; for the
case where the policy does not converge.

On the technical side, we mention a few straightforward extensions of our results.
First, the linear independence of the basis functions is not essential. In the linearly
dependent case, some components of z; and 7, become linear combinations of the
other components and can be simply eliminated, which takes us back to the linearly
independent case. A second extension is to allow the reward per stage g(z;) to be
noisy and dependent on z:1, as opposed to being a deterministic function of z;. Our
line of analysis easily extends to this case. Finally, the mixing requirement can be
weakened. In particular, it is sufficient to have an ergodic Markov process.

Our results in Section 4.7 have elucidated the importance of sampling states ac-

- cording to the steady-state distribution of the process under consideration. In par-

ticular, variants of TD()) that sample states differently can lead to divergence. It
is interesting to note that a related issue arises when one “plays” with the evolution
equation for the eligibility vector z;. (For example Singh and Sutton [70] have sug-
gested an alternative evolution equation for z; known as the “replace trace.”) A very
general class of such mechanisms can be shown to lead to convergent algorithms for
the case of lookup table representations [13]. However, different mechanisms for ad-
justing the coefficients z; lead to a change in the steady-state average value of z,¢'(z.),
and stability of the related ordinary differential equation can be lost.

The example. of Section 4.8 identifies the possibility of divergence when TD())
is used in conjunction with nonlinear parameterizations. However, the example is
- somewhat contrived, and it is unclear whether divergence can occur with special
“classes "bf'non»linear, par_agnieteriz:a.ti‘ons’,y such as.neural networks. This presents an
interesting question for future research.
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Chapter 5

Approximations for Optimal
Stopping

The problem of optimal stopping is that of determining an appropriate time at which
to terminate a process in order to maximize expected rewards. Examples arise in
sequential analysis, the timing of a purchase or sale of an asset, and the analysis of
financial derivatives.

In this chapter, we introduce a few classes of optimal stopping problems. In
principle, these problems can be solved by classical dynamic programming algorithms.
However, the curse of dimensionality prohibits the viability of such exact methods.
To address this limitation, we introduce variants of temporal-difference learning that
approximate value functions in order to solve optimal stopping problems.

One section is dedicated to each class of problems that we address. The problem
classes involve optimal stopping in a few different contexts:

1. stationary mixing processes;

2. independent increments processes;
3. finite horizons;

4. two-player zero—sum games.

In each case, we establish that for any problem in the class, the associated optimal
value function exists and is unique. Shiryaev [66] provides a far more comprehensive
treatment of optimal stopping problems where, under each of a sequence of increas-
ingly general assumptions, he characterizes optimal value functions and stopping
times. We consider a rather restrictive classes of problems relative to those captured
by Shiryaev’s analysis, but we employ a new line of analysis that relies on different
sorts of assumptions and leads to simple characterizations of optimal value functions
and stopping times.

The most important aspect of our line of analysis is that it accommodates the
development of approximation methods along the lines of temporal-difference learn-
ing. For each class of problems, we introduce an approximation algorithm and study
its converges properties. We also supply bounds on both the error in approximating
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the optimal value function and the difference between performance of the optimal
stopping time and that generated by the approximation.

Our first class of problems deals with the optimal stopping of a process that is
Markov, stationary, and mixing. We will provide a detailed analysis of this class of
problems and the associated approximation algorithm. In subsequent sections, we
introduce additional classes of optimal stopping problems. For the sake of brevity,
instead of presenting rigorous analyses, we only overview how the analysis provided
for the first class of problems can be adapted to suit each situation.

5.1 Stationary Mixing Processes

Our first class of problems involves processes that are Markov, stationary, and mixing,
like those studied in Chapter 4, in the context of temporal-difference learning. We
begin by defining the problem and characterizing its solution in terms of an optimal
value function and stopping time. The approximation algorithm is then presented
and analyzed in Section 5.1.2.

5.1.1 Problem Formulation and Solution

Consider a stochastic process {z;|t = 0,1,2,...} taking on values in a state space
R? defined on a probability space (2, F,P). We denote the o—field generated by
random variables zy, . .., 7; by F;, and we take F to be the smallest o—field containing
Fo, F1, Fa, ... as sub-o—fields. We make the following assumption concerning the
dynamics of this process.

Assumption 5.1 The process {z;|[t = 0,1,2,...} is Markov, stationary, and mizing.

Because the process is stationary, there is a distribution 7 such that m(A) = P{z; €
A} for any set A € B(R%) and any nonnegative integer t. This distribution is also
the limiting distribution that is guaranteed to exist by the mixing property. In
particular, lim; o P{z; € Alzy = z} = 7(A) for any z € R? and 4 € B(R9).
Like in the context of temporal-difference learning, a central object in our analy-
sis is the Hilbert space Ly(R?, B(R%), ), which is endowed with an inner product
(J1, J2)x = [ J1(z)Jo(z)7(dz) and a norm ||J||, = (J, J)L/2,

We define a stopping time to be a random variable 7 that takes on values in
{0,1,2,...,00} and satisfies {w € Q|7(w) < t} € F, for all finite t. The set of
all such random variables is denoted by 7. Since we have defined F; to be the o—
algebra generated by {zo,z1,...,7:}, the stopping time is determined solely by the
~ already available samples of the stochastic process. In particular, we do not consider
stopping times that may be influenced by random events other than the stochastic
process itself. This preclusion is not necessary for our analysis, but it is introduced
to simplify the exposition. ‘ :

Let g € Ly(R4, B(R?), ) and G € Ly(R?, B(R?), 7) be reward functions associated
‘with “continuation” and “termination,” and let a € [0,1) be a discount factor. The
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expected reward associated with a stopping time 7 is defined by
T—1
E [Z a’g(z:) + a’G(xf)] :
t=0

where G(z.) is taken to be 0 if 7 = co. An optimal stopping time 7* is one that
satisfies

E [g olg(ze) + o™ Gz, )] — supE [g otg(z:) + "Gz, )] .

We will provide a theorem that characterizes value functions and optimal stopping
times for the class of problems under consideration. Before doing so, let us introduce
some useful notation. By the Markov property, there exists a transition probability
function P on R? x B(RY) such that, for any A € B(R?),

P{.’Et+1 € A,]:t} = P(xt,A),

and P(-, A) is measurable. We will also use P to denote an operator given by

(PN)@) = [ J()P(z,dy).
We define an operator T by
TJ =max{G, g+ aPJ},

where the max denotes pointwise maximization. This is the so-called “dynamic pro-
gramming operator,” specialized to the case of an optimal stopping problem. To each
stopping time 7, we associate a value function J” defined by

T—1

J(z) =E [z otg(z:) + o"G(z,)

t=0

$0=£L':l.

The fact that g and G are in L,(R¢, B(R?), ) implies that J™ is also an element of

Ly(R%, B(RY), ) for any 7 € T. Hence, a stopping time 7* is optimal if and only if

E[J7 ()] = sup B[J" (z))-

It is not hard to show that optimality in this sense corresponds to pointwise optimality
for all elements z of some set A with 7(A4) = 1. However, this fact will not be used
in our analysis. ;

The main results of this section are captured by the following theorem:

Theorem 5.2 Under Assumptions 5.1,
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1. There ezists a function J* € Ly(R4, B(RY), 1) uniquely satisfying

Jr=TJ".

2. The stopping time 7, defined by
™ = min{‘th(a:t) > J*(z1)},
- is an optimal stopping time. (The minimum of an empty set is taken to be co.)
3. Jf* = J*.r

As in previous chapters, the equality of functions is in the sense of L,(R¢, B(R?), 7).
In the remainder of this section, we provide a proof of the theorem. We begin by
proving a few lemmas.

Preliminary Lemmas

Recall that, under Assumption 5.1, Lemma 4.12 states that |[PJ||, < ||J||, for all
J € Ly(R?% B(RY), 7). The following lemma uses this fact to establish that T is a
contraction.

Lemma 5.3 Under Assumptions 4.5,
ITJ1 = Thsllx < al|lJy = Jalx,
for all Ji, Jy € Ly(Re, B(RY), 7).
Proof: For any scalars ¢;, ¢y, and c;,
|max{cl,03} —max{cy, 3} < |y — cal.
It follows that for any z € R and Jy, J; € Ly(R?, B(R?), 7),
(T)(z) = (T12)(2)] < al(PJ)(z) — (PJ)(2)].

Given this fact, the result easily follows from Lemma 4.12. Q.E.D.

The fact that T is a contraction implies that it has a unique fixed point. Let J*
denote the fixed point of 7. Let us define a second operator 7™ by

oy ) G(z), i G(z) > J*(m),
7= { g9(z) + (aPJ)(z),  otherwise.

(Note that 7™ is the dynamic programming operator corresponding to the case of a
fixed policy, namely, the policy corresponding to the stopping time 7 defined in the
statement of the above theorem.) The following lemma establishes that 7* is also a
contraction, and furthermore, the fixed point of this contraction is equal to J*.
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Lemma 5.4 Under Assumptions 4.5,
|T*Jy = T Dolx < el ~ ol

for all Jy, J, € Ly(R?, B(RY), 7). Furthermore, J* € Ly(R?, B(RY), ) is the unique
fized point of T*.

Proof: For any Jy, J; € Ly(R¢, B(RY), 1),

”T*J]_ - T*J2”7r HO[PJl — aPJ2”7|-

all i = Tl

IN A

where the final inequality follows from Lemma 4.12.
Recall that J* uniquely satisfies J* = T'J*, or written differently,

J* =max{G, g+ aPJ*}.
This equation can also be rewritten as

s - | 6@ it Gla) > g(s) + (aPJ")(a)
9(z) + (PJ)(z), otherwise.

Note that for almost all z, G(z) > g(z) + (aPJ*)(z) if and only if G(z) = J*(z).
Hence, J* satisfies

[ G if G(z) > J*(a),
T(z) = { g(z) + (aPJ)(z),  otherwise.

or more concisely, J* = T*J*. Since T* is a contraction, it has a unique fixed point,
and this fixed point is J*. Q.E.D.

Proof of Theorem 1
Part (1) of the result follows from Lemma 5.3. As for Part (3),

- | G(z), if G(z) > J*(z),
T (=) = { 9(z) + (aPJ7")(z),  otherwise,
= (T"J7)(=),

and since 7™ is a contraction with fixed point J* (Lemma 5.4), it follows that
J" = J
We are left with the task of proving Part (2). For any nonnegative integer n,
‘ oo

supB[J"(mo)] < sup BT (z0)] + B |3 a*(lg(20)] + G (z.))

TET t=n
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= sup B[/ (ao)
TET

< supE[J”‘"(wo)Ha
TET

(z0)] + |G (o) ]

for some scalar C that is independent of n, where the equality follows from the
Tonelli-Fubini theorem and stationarity. By arguments standard to the theory of
finite-horizon dynamic programming,

sup J"(z) = (T"G)(z),  Vz € Re
TET

(This equality is simply saying that the optimal reward for an n—horizon problem is
obtained by applying 7 iterations of the dynamic programming recursion.) It is easy
to see that TG, and therefore also sup, .7 J7""(-), is measurable. It follows that

sup E[J™""(z0)] < E
TeT

sup JTA"(:CO)] = E[(T"G)(x0)]-
TET

Combining this with the bound on sup,c; E[J7(zo)], we have

EEEE[JT(:EO)] < E[(T"G)(z0)] + a"C.

Since T is a contraction on L,(R?, B(R?), ) (Lemma 5.3), TG converges to J*
in the sense of Ly(R?, B(R?), 7). It follows that

lim E[(T"G)(zo)] = E[J*(z0)],

n—00

and we therefore have

sup E[J"(20)] < lim B((T"G)(ao)] = BLT*(30)] = EIJ" (ao)].

Hence, the stopping time 7* is optimal. Q.E.D.

5.1.2 Approximation Algorithm

As shown in the previous section, the value function J* can be used to generate an
optimal stopping time. However, computation and storage of J* becomes intractable
when state spaces are large or infinite. In this section we develop an approximation
algorithm that is amenable to such situations. Instead of the value function J*,
our algorithm approximates the ()—function, as discussed in Chapter 2. Recall that
the ()—function has as its domain the product of the state and decision spaces. In
- optimal stopping, there are two possible decisions: “stop” or “continue.” The Q-
function for an optimal stopping problem would map a state z and the stopping
decision to the reward contingent on stopping, which is G(z). On the other hand, a
- ‘state z and the continuation decision would map to the optimal reward starting at z
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contingent on continuing for one time step. Since G(z) is readily available, we need
only concern ourselves with approximating the Q-function over the portion of the
domain corresponding to continuation decisions. Accordingly, we define a function
Q*:R¢— R by ‘

Q* =g+ aPJ" (5.1)

~ An optimal stopping time can then be generated according to
7 = min{t|G(z:) > @ (z:)}-

We will consider approximations comprised of linear combinations of basis func-
tions by, . . ., $x € La(R%, B(R%), ). Asin previous chapters, let @ : R v Ly(R?, B(RY), m)
be defined by ®r = S r(k)¢r, and let ¢ : B¢ — RE be defined by o(z) =
($1(z),.. ., bx(x)). Also, let II be the operator that projects in L,(R4, B(RY), )
onto the span of the basis functions. .

The algorithm is initialized with a weight vector ro € RX . During the simulation
of a trajectory {z:{t = 0, 1,2,...} of the Markov chain, the algorithm generates a
sequence {7t =1,2,...} according to

Fey1 =T¢ + V() (g(ﬂft) + aniax{({[)rt) ($t+1)v G($t+1)} - (@n)(zt)), (5.2)

where each ; is a positive scalar step size. We will prove that, under certain condi-
tions, the sequence 7 CONVEIges to a vector r*, and ®r* approximates Q*. Further-
more, the stopping time 7, given by

# = min{t|G(z:) > () (@)},

approximates the performance of 7*.

Let us now introduce our assumptions so that we can formally state results con-
cerning the approximation algorithm. Our first assumption pertains to the basis
functions.

Assumption 5.5 The basis functions @1, .-, Pk € Ly(R4, B(RY), ) are linearly in-
dependent.

Our next assumption requires that the Markov chain exhibits a certain “degree of
stability” and that certain functions do not grow to quickly. (We use || - Il to denote
the Buclidean norm on finite-dimensional spaces.)

Assumption 5.6 The following conditions hold:

1. For any positive scalar q, there exists a scalar pg such that for all z and t,
E[1 + [|z:l3]z0 = 7] < pg(1 + llli2)-

9. There ezist scalars Ci, g such that, for any function J satisfying |J(z)|] <
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Co(1+ ||z|2), for some scalars Cy and gs,

S B @)oo = 7] - EU@)l| < 1O + 2g), Vo € R

i=
3. There ezist scalars C and q such that for all z € R?, |g(z)| < C(1 + ||z||3),
1G(z)] < C(1+ [[2]3), and [|$(z)ll2 < C(L + [I])-
Our final assumption places constraints on the sequence of step sizes.

Assumption 5.7 The sequence {v,|t = 0,1,2,...} is prespecified (deterministic),
nonincreasing, and satisfies

M8

o0
V¢ = 00 and Z7f<oo.
t=0

o~
Il
=

We define an additional operator F' by
FQ=g+aPmax{G,Q}, (5.3)

for all @ € Ly(RY, B(RY), 7).

The main result of this section follows:
Theorem 5.8 Under Assumptions 5.1-5.7,

1. The sequence {r|t =0,1,2,...} almost surely converges.

2. The limit of convergence T is the unique solution of the equation

NF(®r*) = &r*.
3. The limit of convergence r* satisfies

* * 1 * *
|®r* — Q|| < \/T—EZ.”HQ - Q|

where K 1s the contraction factor of IIF and satisfies k < .

4. Let 7 be defined by
7 = min{t|G(z:) > (®r*)(z¢)}.

Then,

* . 7 2 * *
BIT (w0)] ~ B (a0)) < = 1@ = @'l
Note that the bounds provided by statements (3) and (4) involve a term ||TIQ* — Q*|| .
This term represents the smallest approximation error (in terms of || - ||,) that can be
achieved given the choice of basis functions. Hence, as the subspace spanned by the
basis functions comes closer to Q*, the error generated by the algorithm diminishes
to zero and the performance of the resulting stopping time approaches optimality.

76



The remainder of this section focuses on proving Theorem 5.8. We begin by
proving some preliminary lemmas, which are later integrated with the machinery
from Chapter 3 to prove the theorem.

Preliminary Lemmas

We begin with a lemma establishing that F' is a contraction in Ly(R?, B(R?), m) and
that Q* is its fixed point.

Lemma 5.9 Under Assumptions 5.1, the operator F satisfies

‘ 1FQ1 — FQsllx < a||Q1 — Q2ll, VQ1, Q2 € Ly(RY, B(SRd)J)-
Furthermore, Q* is the unique fized point of F in Ly(R¢, B(R), 7).
Proof: For any Q1,Q; € Ly(R?%, B(R?), 1), we have

1FQ1 = FQzl|x

al|[Pmax{G, Q:} — Pmax{G, Qs }||.
< of|max{G, @1} — max{G, Q:}|
S a”Ql - Q2”1r7

where the first inequality follows from Lemma 4.12 and the second makes use of the
fact that

| max{cy, c3} — max{cy, cs}| < ler — cal,

for any scalars ¢y, ¢;, and cs. Hence, F is a contraction on Ly(R%, B(R?), ). It follows
that /' has a unique fixed point. By Theorem 5.2, we have '

J* = TJ,

g+aPJ* g+ aPmax{G, g+ aPJ*},
Q" = g+ aPmax{G,Q*},
Q" = FQ, -

and thereforé, (" is the fixed point. Q.E.D.

Since F' is a contraction, by Theorem 3.9, the composition IIF is a contraction
with contraction factor £ < @, and it has a unique fixed point. Since the basis
functions are linearly independent, there is a unique vector r* € R¥X such that the

fixed point is given by ®r*. Furthermore, by Theorem 3.9, r* satisfies

’ * * 1 * *
|7 — Q*||x < ﬁ”HQ - Q|-

Let the stopping time 7 € 7 be defined by 7 = min{t|G(z;) > (®r*)(x;)}. Let us
define operators H and F' by '

’ G(z), if G(z) > (2r*)(z),
, (HQ)(z) = { ngg, othe(rstise,( o
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and 3

FQ = g+ aPHQ. (5.4)
The next lemma establishes that /' is a contraction on Ly (R, B(R?), 7) with a fixed
point Q = g + aPJ*.
- Lemma 5.10 Under Assumptions 5.1, and 4.6, for any Q1, Q2 € Ly(R%, B(R?); ),

||FQ1 - FQ2|I7r < al|@Q1 — Q2|

Furthermore, Q = g + aPJ7 is the unique fized point of F.
Proof: For any @1, @, € L,(R?, B(R?), ), we have

1FQ1 — FQ2llr = |/(9+aPHQy) — (9+ aPHQ,)|x
al|HQy — HQy ||~
o max{G, Q1 — Q2}||~

o|Q1 — Qzllx,

where the first inequality follows from Lemma 4.12.
To prove that @ = g + aPJ7 is the fixed point, observe that

(HQ)(z) = (H(g+aPJ))()
_ {(S(w), if G(z) = (2r*)(z),

Q(z),  otherwise,

IA N IA

_ { G(z), ) if G(z) > (®r*)(x),
g9(z) + (@PJ7)(z),  otherwise,
= J'(z).

Therefore, L _ ) o
FQ=g+aPHQ=g+aPJ =Q,
as desired. Q.E.D.

The next lemma places a bound on the loss in performance incurred when using
the stopping time 7 instead of an optimal stopping time.

‘Lemma 5.11 Under Assumptions 5.1 and 5.5, the stopping time 7 satisfies

* T 2 * *
B o) = B (a0)] < (g0 = @7l

where k is the contraction factor of ILF and satisfies k < a.

Proof: By stationarity and Jensen’s inequality, we have

E[J*(20)] — E[J7(z0)] = E[(PJ*)(x0)] - B(PT7)(z,)]
< [BIPT)(20)] - BI(PI7)(w0)]|
< |pJ = PJ..
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Recall that Q* = g + aPJ* and Q = g + aPJ’. We therefore have

B (@) - B (@] < =ll(g+aPJ) = (g+aPT )

1, . =

Hence, it is sufficient to place a bound on ||@Q* — Q||

It is easy to show that F(®r*) = F(®r*) (compare definitions (5.3) and (5.4)).
Using this fact, the triangle inequality, the equality FQ* = @* (Lemma 3.9), and the
equality FQ = Q (Lemma 5.10), we have

Q" = Qll= < 11Q" = F(&r")|lx + 1Q — F(2r")|l

< all@ — &r'll; +llG - @,
< ZQHQ* - @T*”w + a”Q* - Q”m
and it follows that
~ 2o
* . < *_ Pt .
19" = Qlle < i@ - o]

Za ¥ *
(1 _a)m”Q _HQ ”m

where the final inequality follows from Theorem 3.9. Finally, we obtain

* 7 2 * *
E[J (IO)] - E[J ($0)] < (1 _ a)m”HQ - Q “7r

Q.E.D.

Proof of the Theorem

‘We now continue by casting our algorithm as one amenable to Theorem 3.10. Let
us define a stochastic process {y:|t = 0,1,2,...} taking on values in R?¢ where y;, =
(@4, x141). It is easy to see that this process is Markov. Furthermore, the iteration
given by Equation (5.2) can be rewritten as

Tee1 = Tt + YeS(Ye, Tt),
for a function
s(1,7) = #(z) (9(z) + a max{(#r)(), G(@)} - (1)),
for any 7 € R¥ and y = (z,7). We define a function 3 : R — R¥X by

5(r) = E[s(yo,7)].
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(Note that this is an expectation over Yo for a fixed r. It is easy to show that
the random variable s(yo,r) is absolutely integrable and 3(r) is well-defined as a
consequence of Assumption 5.6.) Note that each component 5 (r) can be represented
in terms of an inner product according to

e(r) = B[dumn) (9(z) + amax {(@r)(a1), G(s)) - (@)(w0))]
50(20) (9(z0) + aB{max {(r)(21), Glm1)Hoo] ~ (2r)(a)

:¢k(wo)(g(m0) + aP max{®r, G}(z,) — (@r)(xo))}
= (6, For —ar) ,

I
= =" o

where the definition of the operator P is used. _ ‘
We will prove convergence by establishing that each conditions of Theorem 3.10
is valid.

1.

Since F' is a contraction (Lemma 5.9) and the basis functions are linearly in-

dependent (Assumption 5.5), this condition follows from Theorem 3.11 for the

function 3 defined above.
This condition follows immediately from Assumption 5.6.

To establish validity of this condition, for any r and y = (z,T), we have

[6(2)(9(2) + amax{(@r)(@), G(@)} - (2r)(@))],
llg(@)ll2(lo()] + (6@ llalirll2 + IG@))) + llé(2)]l2llrll>)
I6(@))l2(l9(2)] + 2lG@)]) + |6()l2(]|$@)2 + 16()]12) 175

Il

[Is(y: )2

IN A

‘The condition then easily follows from the polynomial bounds of Assumption

5.6(3).

Given that the previous condition is valid, this condition follows from Assump-
tions 5.6(1) and 5.6(2) in a straightforward manner. (Using these assumptions,
it is easy to show that a condition analogous to Assumption 5.6(2) holds for
functions of y; = (@, T411) that are bounded by polynomials in z; and z4,.)

. We first note that for any r, 7, and y, we have

s, r) = s, )l = [¢(z)(cmax{(2r)(y),G(y)} - @ max{(7)(y), G(y)}
—(@n)(@) + (@P)(=)|,

< ofl¢(@)l2| max{'(y)r, G(y)} — max{¢'(y)7, G}
Hid (@)l (2)r — ¢'(2)7|

< allé(@)llolé' (W) ~ ¢' ()7l + llo@)2Nr ~ 72

<

allé@)lalle@)llzllr — 7z + Ig()[3]1r — 7.
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It then follows from the polynomial bounds of Assumption 5.6(3) that there
exist scalars C, and go such that for any r, 7, and v,

I5Cy,7) = s(v: P2 < Collr = 7ll2(1 + [ly]I3*).

Finally, it follows from Assumptions 5.6(1) and 5.6(2) that there exist scalars
C; and ¢; such that

t;iO”E[S(yt;’r)_S(yt;F)IyO = ?/]*E[S(yo, T)—S(yo,T)]”2 < 0102||r—F||2(1+||y||glq2)_

Validity of this condition follows.
6. This condition is the same as Assumption 5.7.

The validity of these conditions ensure convergence (statement (1) of the Theorem
5.8). To wrap up the proof, statements (2) and (3) of the theorem follow from
Theorem 3.9, while statement (4) is established by Lemma 5.11. Q.E.D.

5.2 Independent Increments Processes

In the previous section, we assumed that the Markov process of interest is mixing.
This assumption ensures a certain sense of “stability” in the underlying system. In
this section, we examine a class of “unstable” Markov processes in which the distri-
bution over states becomes increasingly diffuse over time. Specifically, we will study
stopping problems involving Markov processes with independent increments.

5.2.1 Problem Formulation and Solution

We will assume that the underlying process is Markov and that the transition prob-
ability kernel satisfies

P(z,A)=P(0,{y—zly € A})  Vze R Ac BRY).

Hence, each increment z;,; — z; is independent of z;.

Let the reward functions g and G be elements of Ly(R?, B(R4),) - the Hilbert
space with inner product (J, J) = [ J(z)J(z)dz and norm ||J|| = (f J2(z)dz)"/2. Let
a € [0,1) be a discount factor. Given a stopping time 7 € T, we define the value
function J” by

J(z) =E E__O otg(z;) + a"G(z,)

.’L‘g=$].

It turns out that,for any 7 € 7, J7 is also an element of Ly(R?, B(RY), 7). We will
consider a stopping time 7* € 7 optimal if

/J"*(:c)dxzsup J7(z)dz,
A TeT JA
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for every bounded set A.

The keystone of our analysis in Section 5.1.1 was Lemma 4.12, which stated that
P is a nonexpansion in Ly (R4, B(RY), 7) (ie., |PJ]l, < | 7]l=). Since processes with
independent increments do not possess steady—state distributions, a new notion is
required. It turns out that the appropriate object is a new lemma, stating that for
such processes, P is a nonexpansion in L,(R¢, B(R4), I). This fact can be established
by an argument analogous to that used in proving Lemma 4.12. In particular, by
Jensen’s inequality, for any J € Ly(R?, B(RY), 1), we have

IPI = [ (P1()ds

- / (E[J(z1)|zo = 2])? d
< / E[J%(21) |20 = a]dz,

and noting that the increment A = %1 —~ %o 1s independent of Zo, it follows that

JIPJPP < E [/ J2(x+A)de

= E[J)]
1712,

selecting a set of linearly independent basig functions ¢,,... ¢, € Ly (R?, B(R4), ).
However, we impose an additiona] requirement that the basis functions have compact
Support. In particular, there existg a bounded set 4 ¢ B(R?) such that ¢r(z) = 0 for
allk=1,... K and allz ¢ 4.

Since the Markoy process is “unstable,” it is no longer viable to generate weight

where the z,.’s are independent identically distributed random variables drawn from
a uniform distribution over the bounded set A that supports the basis functions,

and each A,, is drawn independently, from all other random variables according to
Prob{A,, € B} = P(0,B) for all B € B(R).
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Once more, we define the operator F by FQ = 9+aPmax{G, Q}. This operator
can be shown to be a contraction on Ly(R¢, B(RY),1) via arguments analogous to
those in the proof of Lemma 5.9. Defining IT to be the operator that projects in
Ly(R?, B(R%),1) onto the span of the basis functions, Theorem 3.9 states that the
composition IIF is a contraction and that its unique fixed point ®r* satisfies an error
bound analogous to that of Theorem 5.8(3). A bound on the quality of the resulting
stopping time can also be generated using arguments from the proof of Lemma 5.11.

Following the line of reasoning from Section 5.1.2, we rewrite the above update
equation as

Tm+1 = Tm + '7m3(ym; "'m):

this time with s defined by

s(y,r) = ¢(x) (g(x) + amax {(@7‘)(3: +A),G(z + A)} - (@T)(a:)),
for any 7 and y = (2, A). Furthermore, defining 5(r) = E (s(yo,7)], we now have
5i(r) = (¢x, For — or).

Hence, by Theorem 3.11, condition (1) of Theorem 3.10, which addresses convergence
of stochastic approximation algorithms, is valid. The fact that each Tm 18 drawn
independently alleviates the need for a counterpart to Assumption 5.6 and makes it
particularly easy to show that the technical “stability conditions” of Theorem 3.10
hold. This leads to the conclusion that {r,|m = 0, 1,2,...} converges to r* (almost
surely).

To summarize, under our new assumptions concerning the Markov chain and
basis functions together with linear independence of the basis functions (Assumption
5.5 and a technical step size condition (Assumption 5.7), we can establish results
analogous to those of Theorem 5.8 for our new algorithm. The only differences are
that the norm |||| is replaced by ||-|| and equalities are in the sense of Ly(R?, B(R?), 1).

5.3 Finite Horizon Problems

In certain practical situations, one may be interested in optimizing rewards over
only a finite time horizon. Such problems are generally simpler to analyze than their
infinite horizon counterparts, but at the same time, involve an additional complication
because expected rewards will generally depend on the remaining time. In this section,
we develop an approximation algorithm that is suitable for such problems.

5.3.1 Problem Formulation and Solution

We assume that the underlying process is initialized with Zo = T and that its evolution
is Markov. For each nonnegative integer ¢, we define a distribution

m(A) = Prob{z, € A}.
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We assume that the discount factor « is in [0,1) and that the reward functions g and
G satisfy

/gz(m)m(dx) <o and /G’z(:r)m(dx) < 00

for all ¢.
» The horizon of the problem is defined by a nonnegative integer A, which we take
to be fixed. An optimal stopping time 7* € T is one that satisfies

- E[J7 M (z0)] = ElelgE[J”\h(zo)].

Standard results from the finite-horizon dynamic programming literature apply. In
particular,

sup J™(z) = (T"G)(z) = J™(z), vz € R4,
TET .

where

TJ = max{G,aPJ},,
and 7, € 7 is defined by

Tr, = min {t < h|G(zy) > (T tG)(CL‘t)}

(We let 7, = oo if the set is empty.) Hence, 7* = 7, is an optimal stopping time.

5.3.2 Approximation Algorithm

As in Section 5.1.2, let the operator F' be defined by FQ =g+ aPmax{G,Q}. It
is easy to verify that the optimal stopping time 7* can alternatlvely be generated
according to

7" = min {t < h|G(zy) > (F"'G)(zy )}

Note that this construction relies on knowledge of FG, F?G,..., F"G. A suitable
approximation algorithm should be designed to accommodate such needs.
Let the measure y over the product space (B(R?))" be defined by

p(A) = mo(Ag) + -+ + mh1 (A1), VA=Agx Ay X --- X Ap_1,

and let Lh(éRd' B(R%), 1) be the Hilbert space defined with respect to this measure.
Note that the domain of functions in this Hilbert space is R¢ x {1,...,h}, and the
norm on the Hilbert space is given by

@1 QeI = [ @3 o) + -+ / Q3o (@)1 (d).

Our approximation algorithm here employs a set of basis functions ¢,. .., ¢x €
LA(R4, B(RY), ). - The algorithm we propose for finite horizon problems simulates
a sequence of finite length trajectories rather than a single infinite trajectory. In
- particular, for each ¢« = 1,2,3,..., let z,...,z% be a simulated trajectory (with
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zh = Z). The weight vector is initialized to some arbitrary rp € R¥, and is updated

according to
h—1

Tiv1 =T+ % Y, ¢z, t)d,
t=0
where

J— 9(zt) + amax{(@ri)(xiﬂ,t +1), G(a:ﬁﬂ)} — (®ry)(a%,t), ift+1<h,
' aG(zi ) — (Bry)(zi, 1), otherwise.

As usual, we assume that the step sizes satisfy YingYi =00 and Y2072 < oo.

We now discuss how ideas analogous to those of Section 5.1.2 can be used to
establish convergence and an error bound.

Define an operator H by

H(Qo,...,Qn-1) = (FQ1,FQ,. .. s FQr-1, FG), V(Qo,Q1,...,Qn1) € Ly(p).

Using an argument similar to that of Lemma 5.9, it is easy to show that H is a
contraction on L% (R¢, B(R?), ). Furthermore, the unique fixed point is given by

(@, Q1,---,@Q4_y) = (F'G,F"1G, ... F?G, FG),

which can be used to generate an optimal stopping time.

~ We assume that the basis functions are linearly independent. Let II be the opera-
tor that projects in L} (R?, B(R?), 1) onto the subspace spanned by the basis functions.
By Theorem 3.9, the composition I1H is a contraction on L(R?, B(R?), u). Hence, it
has a unique fixed point of the form ®r* for some r* € RX. Furthermore, 7* satisfies

' 1
27" = (@6, @il € = ITHQG, - @) = (@3-, Qi)

where 5 < « is the contraction factor of [IH. A bound on fhe performance of a
stopping time ¥ = min {t < hlG(zy) > (Br*) (2, t)} can also be established:

Jin®) = @) € s e @61 Q) = (@ Qi)

(Both bounds can be strengthened, if we allow coefficients on the right-hand-sides
to depend on A, but we will not pursue this issue further here.)

Once again, Theorem 3.10 can be used to prove convergence. As usual, we rewrite
the update equation in the form

Tl =Ty + %5 (Yi, 12),
except that we now define y; = (:vf,,». .., z%). Some algebra gives us

§k('l") = E[Sk(yOvT)] = <¢k7 H®r — @7‘)”. .
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By Theorem 3.11, this satisfies condition (1) of Theorem 3.10. Since the y;’s are inde-
pendent and identically distributed, it is easy to show that the various technical con-
ditions of Theorem 3.10 are also satisfied, which would imply that {r;|¢ =0,1,2,...}
converges to r*.

5.4 A Two—Player Zero—Sum Game

- Many interesting phenomena arise when multiple participants make decisions within a
single system. Variants of temporal-difference learning amenable to two-player zero—
sum games were used to produce the Backgammon player of Tesauro [79, 80, 81] and
have been studied by Littman [46] (for the case involving an exhaustive representation
of the value function). In this section, we consider a simple two—player zero—sum game
in which a reward-maximizing player (“player 1”) is allowed to stop a process at any
even time step and a reward-minimizing player (“player 2”) can opt to terminate
during odd time steps.

5.4.1 Problem Formulation and Solution

We consider a stationary mixing Markov process with a steady-state distribution 7
together with reward functions g, Gy, Gy € Ly(R%, B(R?), ) and a discount factor
o € [0,1). Prior to termination, a reward of g(z;) is obtained during each time step,
and upon termination, a reward of either Gi1(x;) or Ga(z;) is generated depending
on which player opted to terminate. We define sets 71 = {r € T|r even} and
T: = {7 € T|r odd} corresponding to admissible strategies for players 1 and 2,

respectively. For each pair of stopping times 77 € 71 and 7, € T3, we define a value
function

TiAT2—1
J () =E > ofg(zs) + ™ Gr(zo) + 0™ Ga(zr,) |70 = 93] ;

t=0

where 1 and 1, are indicators of the events {r; < 75,71 < 00} and {r, < 7,7 < 00},

-respectively. Hence, if players 1 and 2 take 71 € 7; and 7, € T; as their strategies,
the expected reward for the game is E[J™™(zy)]. We consider sup-inf and inf-sup
expected rewards

sup inf E[J™"7(z )] and  inf sup E [J™7(zo)] .

m €T €T n2€T2 reTy
which correspond to different orders in which the players select their strategies. When
both of these expressions take on the same value, this is considered to be the equilib-
rium value of the game. A pair of stopping times 77 € 7; and 75 € 7; are optimal
if .
E [JTI*"’?'* (mo)] = sup 1nf E[J™™(2)] = inf sup E[J™7"(zy)].

m€T €72 €2 reTy

‘The problem of interest is that of ﬁnding such stopping times. -
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We define operators 73J = max{Gy,g + aPJ} and T5J = min{Gy, g + aPJ}.
By the same argument as that used to prove Lemma 5.3, both these operators are
contractions on Ly (R?, B(R?), 7). It follows that the compositions 737, and T,T, are
also contractions. We will denote the fixed points of TyT, and 7,7} by J; and J3,
respectively.

We define stopping times 77 = min{even t|G(z;) > J}(z;)} and 7 = min{odd ¢|G(z,) <
J;(z4)}. Using the fact that 717, and 75T} are contractions, the arguments of Section
5.1.1 can be generalized to prove that

* __ 7T, T
Jr=Jrim,

and

sup inf E[J™™(zo)] = inf sup E[J™V™(z,)] = E[J7T" (z)].
€T T2€T2 12€T2 1 €Ty

In other words, the pair of stopping times 71 and 75 is optimal.

5.4.2 Approximation Algorithm

We now present an algorithm for approximating a pair of optimal stopping times and
the equilibrium value of the game. Given a set of linearly independent basis functions
¢1,..., 0k € Ly(R%, B(RY), ), we begin with initial weight vectors T1,0, 72,0 € RE and
generate two sequences according to

T+l = Tt + Yed(2t) (g(xt) + amin{(®rz)(T:41), Ga(@141)} — (‘I’Tl,t)(l‘t)),

and

raee1 = rap+ 0d(2e) (9(2:) + amax{(@rie) (@), Gi(zea)} — (Brae)(z1)),

where the step sizes satisfy Assumption 5.7.

To generalize the analysis of Section 5.1.2, we define operators F;Q = g+aP min{G», @}
and F3Q) = g + aP max{G1, @}. It is easy to show that these operators are contrac-
tions on L,(R?, B(R?),7), and so are their compositions FyFy and FyF;. It is also
easy to verify that the fixed points of F1 F; and F3F; are given by Q} = g+ aPJ; and
Q3 = g+aPJy, respectively. Furthermore, Q} = F,Q3, Q5 = F»Q7, and the stopping
times 77" and 75 can alternatively be generated according to 77 = min{even t|G(z;) >
@i (zt)} and 75 = min{odd |G(z;) < Q3(z:)}.

Let us define a measure u over the product space (B(R?))? by u(4,, 4;) = n(A;)+
m(Az) and an operator H : L(R?, B(R?), u) — L2(R, B(R?), 1), given by

H(Qh Q2) = (FIQZJ F2Q1)-

It is easy to show that H is a contraction on L3(R%, B(R?), 1) with fixed point (Q?, Q%).
Let II be the operator that projects in L(R¢, B(R?), 1) onto the subspace {(®r, ®7)|r,T €
R¥}. By Theorem 3.9, the composition IIH is a contraction in Ly(R?, B(R9), 1) with
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e O R

a unique fixed point (®r;, ®r}). Furthermore, this fixed point satisfies

(@i, @) - (@1 @l < Z==IN(Q1, Q) — (@1, @l

where k < « is the contraction factor of IIH. Finally, the value of the game under
stopping times 7; = min{even t|G(z;) > (®r{)(2:)} and 7 = min{odd #|G(z,) <
(®r3)(z1)} deviates by a bounded amount from the equilibrium value. In particular,

: * | 'F'l,‘i"é ‘ 2 * ¥\ * *
|E[‘]1 (:L‘o)] - E[J (370)” < (1 _ Ot)m”H(Qh Qz) (le Q2)“u

To establish convergence, we rewrite the update equation in the form

(T1,t+1, T2,t+1) = (Tl,t, Tz,t) + 'Yts(yt: (Tl,t, Tz,t)),

where y; = (74, T411), and note that 3(r1, ) = E[s(yo, (r1,72))] is given by

(¢r, F®ry — ry) if k < K,

Sk(r1,Te) =" K .
(i, m2) { <¢k_K,F2‘I>'r1—<IJ7"2> , otherwise,

iy
for any ri,7, € R, Validity of condition (1) of Theorem 3.10 is then valid by
Theorem 3.11. Combining this fact with an analog of Assumption 5.6, the technical
requirements of Theorem 3.10 can be verified. This would imply that T, and 7q,
almost surely converge to 7} and 73, respectively.

5.5 Closing Remarks

The analysis we have presented is the first that proves convergence of a variant of
temporal-difference learning in a context involving a sequential decision problem (not
just a fixed policy) and general linear parameterizations. An open question is whether
this line of reasoning can somehow be extended to broader classes of problems of

‘practical interest.

Aside from its relation to temporal-difference learning, our work constitutes a new

‘development in the theory of optimal stopping. In particular, though the characteri-

zation of optimal value functions and optimal stopping times are of a standard flavor,
the assumptions and line of reasoning that arrive at these results are not. Most im-
portant, however, are the results pertaining to approximations. Our approximation
algorithms may offer a sound approach to solving ‘optimal’stopping problems with
high—-dimensional state spaces that would otherwise be dismissed as intractable to
systematic methodologies. In the next chapter, we explore the utility of one algo-
rithm through a case study relevant to the derivatives industry.
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Chapter 6

Pricing High—Dimensional
Derivatives

In this chapter, we present a case study involving the application of an algorithm
from the previous chapter to approximate the solution to a high—dimensional optimal
stopping problem. The problem is representative of high—dimensional derivatives
pricing problems arising in the rapidly growing structured products (a.k.a. “exotics”)
industry [56]. Our approach involving the approximation of a value function is similar
in spirit to the earlier experimental work of Barraquand and Martineau [4]. However,
the algorithm employed in that study is different from ours, and the approximations
were comprised of piecewise constant functions.

Another notable approach to approximating solutions of high—dimensional optimal
stopping problems that arise in derivatives pricing is the “stochastic mesh” methods
of Broadie and Glasserman [19, 18]. These methods can be thought of as variants
of Rust’s algorithm [63], specialized to the context of optimal stopping. Values are
approximated at points in a finite mesh over the state space in a spirit similar to grid
techniques. The difference is that the mesh includes a tractable collection of randomly
sampled states, rather than the intractable grid that would arise in standard state
space discretization. When the state space is high-dimensional, except for cases that
satisfy unrealistically restrictive assumptions as those presented in [63], the randomly
sampled states may not generally be sufficiently representative for effective value
function approximation.

We will begin by providing some background on financial derivative securities.
Section 6.2 then introduces the particular security we consider and a related opti-
mal stopping problem. Section 6.3 presents the performance of some simple stopping
strategies. Finally, the selection of basis functions and computational results gener-
ated by our approximation algorithm are discussed in Section 6.4.

6.1 Background

Financial derivative securities (or derivatives, for short) are contracts that promise
payoffs contingent on the future prices of basic assets such as stocks, bonds, and
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commodities. Certain types of derivatives, such as put and call options, are in popular
demand and traded alongside stocks in large exchanges. Other more exotic derivatives
are tailored by banks and other financial intermediaries in order to suit specialized
needs of various institutions and are sold in “over-the-counter” markets.

Exotic derivatives tend to be illiquid relative to securities that are traded in main-
stream markets. Consequently, it may be difficult for an institution to “cash in” on
the worth of the contract when the need arises unless such a situation is explicitly
accommodated by the terms of the contract. Because institutions desire flexibility,
derivatives typically allow the possibility of “early exercise.” In particular, an institu-
tion may “exercise” the security at various points during the lifetime of the contract,
thereby settling with the issuer according to certain prespecified terms.

Several important considerations come into play when a bank designs a derivative
security. First, the product should well suit the needs of clients, incurring low costs
for large gains in customer satisfaction. Second, it is necessary to devise a hedging
strategy, which is a plan whereby the bank can be sure to fulfill the terms of the
contract without assuming significant risks. Finally, the costs of implementing the
hedging strategy must be computed in order to determine an appropriate price to
charge clients.

Under certain technical assumptions, it is possible to devise a hedging strategy
that perfectly replicates the payoffs of a derivative security. Hence, the initial in-
vestment required to operate this hedging strategy must be equal to the value of the
security. This approach to replication and valuation, introduced by Black and Scholes
(14] and Merton [50] and presented in its definitive form by Harrison and Kreps [34]
and Harrison and Pliska [35], has met wide application and is the subject of much
subsequent research.

When there is a possibility of early exercise, the value of the derivative security
depends on how the client chooses a time to exercise. Given that the bank can not
control the client’s behavior, it must prepare for the worst by assuming that the client
will employ an exercising strategy that maximizes the value of the security. Pricing
the derivative security in this context generally requires solving an optimal stopping
problem.

In the next few sections, we present one fictitious derivative security that leads to

" a high—dimensional optimal stopping problem, and we employ the algorithm we have
developed in order to approximate its price. Our focus here is to demonstrate the use
of the algorithm, rather than to solve a real-world problem. Hence, we employ very
simple models and ignore details that may be required in order to make the problem
realistic.

6.2 Problem Formulation

The financial derivative instrument we will consider generates payoffs that are con-
tingent on prices of a single stock. At the end of any given day, the holder may opt to
exercise. At the time of exercise, the contract is terminated, and a payoff is received
in an amount equal to the current price of the stock divided by the price prevailing
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of stocks and bonds. Thijs portfolio needs only an initja] investrnent, and is self—
financing thereafter. Hence, to preclude arbitrage, the price of the derivative security
must be equal to the initial investment required by such 5 portfolio. Karatzas [42]

provides a comprehensive treatment of thig pricing methodology in the case where

formally conpect the two.

We model time ag & continuous variable # € [-100, ©0) and assume that the
derivative Security is issued at time ¢ = 0. Each unit of time is taken to be a day,
and the security cap be exercised at times ¢ € {0, L,2,...}. We mode] the stock price
process {p,|t = —100,-99, —98 Jasa geometric Browniap motion

t

hundred days prior to the date of issye may influence the payoff of the security. We
assume that there jg 5 constant continuously compounded short-tery interest rate 0.
In other words, Dy Dollars Invested in the money market at time 0 8rows to a valye

14
Dt = Doe" s

at time ¢. .
We will now characterize the price of the derivative security in g way that gives
rise to a related optimal stopping problem. [ et {Beft = =100, ~99, —98 .} be a
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stochastic process that evolves according to
dﬁt = pﬁtdt + Uﬁtdwt.

Define a discrete-time process {z:|t = 0,1,2, ...} taking values in R'%, with

N Di—99 Di—o8 Dt !
Iy = — s = yerey T .
Dt—100 Pi—100 Dit—100

Intuitively, the ith component z4+(1) of z; represents the amount a one Dollar invest-
ment made in the stock at time ¢ — 100 would grow to at time ¢ — 100 + 7 if the stock
price followed {p;}. It is easy to see that this process {z;|t = 0,1,2,...} is Markov.
Furthermore, it is stationary and mixing since, for any ¢ € {0,1,2,...}, the random
variables z; and z;,100 are independent and identically distributed. Consequently,
the algorithm of Section 5.1.2 is applicable. Letting oo = e, G(z) = 2(100), and

_ (P—Qg DP—98 Dt )'
T = ) P 3
P—100 DP-100 D-100

the value of the derivative security is given by

sup Ela"G(z,)|zo = z].
TET

If 7* is an optimal stopping time, we have

E[aT*G(:L‘T*)l:ED = :I:] = sup E[aTG(mT)lxo = 3;],
. TET

for almost every z,. Hence, given an optimal stopping time, we can price the secu-
rity by evaluating an expectation, possibly through use of Monte—Carlo simulation.
However, because the state space is so large, it is unlikely that we will be able to com-
pute an optimal stopping time. Instead, we must resort to generating a suboptimal
stopping time 7 and computing

E[o"G(z#)|zo = ],

as an approximation to the security price. Note that this approximation is a lower
bound for the true price. The approximation generally improves with the performance
of the optimal stopping strategy. In the next two sections, we present computational
results involving the selection of stopping times for this problem and the assessment
of their performance. In the particular example we will consider, we use the settings
o = 0.02 and p = 0.0004 (the value of the drift 4 is inconsequential). Intuitively, these
choices correspond to a stock with a daily volatility of 2% and an annual interest rate
of about 10%. (Interest accrues and stock prices fluctuate only on days during which
the market is open.) : o
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Figure 6-1: Expected reward as a function of threshold. The values plotted are
estimates generated by averaging rewards obtained over ten thousand simulated tra-
Jectories, each initialized according to the steady-state distribution and terminated
according to the stopping time dictated by the thresholding strategy. The dashed
lines represent confidence bounds generated by estimating the standard deviation of
each sample mean, and adding/subtracting twice this estimate to/from the sample
mean.

6.3 A Thresholding Strategy

In order to provide a baseline against which we can compare the performance of our
approximation algorithm, let us first discuss the performance of a simple heuristic
stopping strategy. In particular, consider the stopping time 75 = min{t|G(z;) > B}
for a scalar threshold B € R. We define the performance of such a stopping time
in terms of the expected reward E[J™8(z,)]. In the context of our pricing problem,
this quantity represents the average price of the derivative security (averaged over
possible initial states). Expected rewards generated by various threshold values are
presented in Figure 6-1. The optimal expected reward over the thresholds tried was
1.238.

It is clear that a thresholding strategy is not optimal. For instance, if we know
that there was a large slump and recovery in the process {f;} within the past hundred
days, we should probably wait until we are about a hundred days past the low point
in order to reap potential benefits. However, the thresholding strategy, which relies
exclusively on the ratio between p; and p;_109, cannot exploit such information.

What is not clear is the degree to which the thresholding strategy can be improved.
In particular, it may seem that events in which such a strategy makes significantly
inadequate decisions are rare, and it therefore might be sufficient, for practical pur-
poses, to limit attention to thresholding strategies. In the next section, we rebut this
hypothesis by generating a substantially superior stopping time using our approxi-
mation methodology. '
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6.4 Using the Approximation Algorithm

Perhaps the most important step prior to applying the approximation algorithm from
Section 5.1.2 is selecting an appropriate set of basis functions. Though analysis can
sometimes help, this task is largely an art form, and the process of basis function
selection typically entails repetitive trial and error.

We were fortunate in that our first choice of basis functions for the problem at
hand delivered promising results relative to thresholding strategies. To generate some
- perspective, along with describing the basis functions, we will provide brief discussions
concerning our (heuristic) rationale for selecting them. The first two basis functions
were simply a constant function ¢;(z) = 1 and the reward function ¢;(z) = G(z).
Next, thinking that it might be important to know the maximal and minimal returns
over the past hundred days, and how long ago they occurred, we constructed the
following four basis functions

b3(z) = i={?.l.ﬁoox(l) -1
Cda(z) = max 2(i) -1,

1

¢s(z) = argmm z(i) — 1,
50 j— 1,...,100
1

de(zr) = —argmaxz(i)— 1.
50 i=r1,...,100

Note that that the basis functions involve constant scaling factors and/or offsets.
The purpose of these transformation is to maintain the ranges of basis function values
within the same regime. Though this is not required for convergence of our algorithm,
it can speed up the process significantly.

As mentioned previously, if we invested one dollar in the stock at time ¢ — 100
and the stock price followed the process {f;}, then the sequence z;(1),...,z,(100)
represents the daily values of the investment over the following hundred day period.
Conjecturing that the general shape of this hundred—day sample path is of importance,
we generated four basis functions aimed at summarizing its characteristics. These

“basis functions represent inner products of the sample path with Legendre polynomials
of degrees one through four. In particular, letting j = i/50 — 1, we defined

1 ®z(i) -1

br(z) = 100.2 N

100

) = g ey
bol@) = 3 a) §(ﬁ—1),

100 & 2\ 2 2
1 0 7 (55% 35
Pol@) = o5 2,70 5(7‘7
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Figure 6-2: The evolution of weights during execution of the algorithm. The value of
the security under the resulting strategy was 1.282.

So far, we have constructed basis functions in accordance to “features” of the state
that might be pertinent to effective decision-making. Since our approximation of the
value function will be composed of a weighted sum of the basis functions, the nature
of the relationship between these features and approximated values is restricted to
linear. To capture more complex trade-offs between features, it is useful to consider
nonlinear combinations of certain basis functions. For our problem, we constructed
six additional basis functions using products of the original features. These basis
functions are given by

¢11($) = ¢2($)¢3(-’L’),
$12(z) = ¢2(z)da(2),
$13(z) = ¢2(z)dr(2),
b1a(z) = ¢a(x)ds(z),
$15(z) = B2(z)do(z),
¢16(l‘) = ¢2($)¢10($)-

Using our sixteen basis functions, we generated a sequence of parameters ro, 71, . . ., 7105

by initializing each component of ry to 0 and iterating the update equation one mil-
lion times with a step size of 7, = 0.001. The evolution of the iterates is illustrated
in Figure 6-2.

The weight vector r1¢s resulting from our numerical procedure was used to gen-
erate a stopping time 7 = min{t|G(z;) > (®r1¢6)(z:)}. The corresponding expected
reward E[J7(zq)], estimated by averaging the results of ten thousand trajectories each
initialized according to the steady-state distribution and terminated according to the
stopping time 7, was 1.282 (the estimated standard deviation for this sample mean
was 0.0022). This value is significantly greater than the expected reward generated
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by the optimized threshold strategy of the previous section. In particular, we have
E[J7(z0) — J™ (z4)] ~ 0.044.

As a parting note, we mention that each stopping time 7 corresponds to an exer-
cising strategy that the holder of the security may follow, and J"(z,) represents the
value of the security under this exercising strategy. Hence, the difference between
E[J"(z9)] and E[J™®(z,)] implies that, on average (with respect to the steady-state
distribution of z;), the fair price of the security is about four percent higher when
exercised according to 7 instead of 7. In the event that a bank assumes that 75
is optimal and charges a price of J™8(z,), an arbitrage opportunity may become
available.

6.5 Closing Remarks

In addition to pricing a derivative security contract, issuers must hedge their positions.
In the Black-Scholes-Merton model, this hedging can be achieved via managing a
portfolio of underlying assets and bonds. The idea is to maintain a portfolio such that
changes in the value of the contract are offset by changes in value of the portfolio.
The portfolio weights vary continuously with time, and they can be generated by
taking gradients of the value function with respect to underlying asset prices and
time. When the exact value function is unavailable, as is the case in the example
of this chapter, we could consider using an approximate value function in its place.
In particular, hedging decisions can be made based on gradients of ®r*. Let us also
mention an alternative, which may sometimes deliver superior results. This approach
employs the gradient of the value function J7 corresponding to the policy 7 and uses
this quantity to make hedging decisions. Note that, since this policy is available to
us, the associated value function can be estimated via Monte Carlo simulation, in the
same spirit as “rollout methods” (see, e.g., [13]).

The problem of this chapter was chosen as a simple illustration. In reality, almost
all derivative securities have a prespecified expiration date, upon which the contract
~ terminates if it has not been exercised. Such contracts lead to finite horizon problems,
rather than one of the infinite horizon variety considered in this chapter. Further-
more, the payoff function employed in our case study does not correspond to that
of any particularly popular contract. The following list provides a few more popular
examples that lead to similar high—-dimensional optimal stopping problems.

o Min/Max options: Payoff is a function of the minimum (or maximum) among
prices of a set of securities (see, e.g., [40]).

e Asian options: Payoff is contingent on an arithmetic moving average of a
security price.

e Lookback options: Payoff is contlngent on the current secunty price as well
as certain past prices. :
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e Fixed income derivatives: Payoff is contingent on the term structure of inter-
est rates at the time of exercise. It is common to view the term structure as an
infinite-dimensional process driven by a finite number of factors (see, e.g., [37]).
The pricing of fixed income derivatives, in this context, often entails solving op-
timal stopping problems with state spaces of dimension equal to the number of
factors. An interesting issue here concerns the trade—offs between approximate
solution via methods of the type we have proposed for models involving many
factors and exact solution by dynamic programming for approximate models
involving fewer factors.

As a parting note, let us speculate that the ideas of Hilbert space approximation
may be useful in designing efficient numerical techniques for pricing “vanilla options,”
which involve low—dimensional stopping problems. Though these problems are com-
putationally tractable, because of the enormous number of such problems that must
be solved daily on a trading floor, there is significant interest in designing methods
that are as fast as possible. Current state-of-the-art approaches exploit the struc-
ture of “stopping regions” for very specialized classes of problems (see, e.g., [41]). An
alternative might be to select a set of basis functions that can closely approximate
value functions corresponding to an-important class of problems, and when presented
with a problem instance, to quickly generate weights via solving a fixed point equa-
tion J* = IITJ*. Though stochastic methods would probably be inappropriate for
this context, one might design deterministic algorithms that make use of ideas from
Chapter 3.
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Chapter 7

‘Temporal-Difference Learning
with Averaged Rewards

Until now, we have considered expected discounted rewards and the generation of
policies that optimize such a criterion. In that context, the value function provided a
natural guide for decision making. An alternative criterion that is more appropriate
in certain practical situations involves averaged rewards. In this case, the object of
interest is the differential value function. Given that the average reward of a process
is p*, the differential value function is defined by

o0
J(z)=E [Z(g(l‘t) — p)|zo = SC] .
t=0

Such functions are used in classical dynamic programming algorithms that optimize
averaged rewards (see, e.g., [8]).

In this chapter, we propose and analyze a variant of temporal—difference learning
that approximates differential value functions in autonomous processes. For this
algorithm, which we will refer to as average reward temporal-difference learning, we
establish results that parallel those of Chapter 4. We begin by defining the algorithm
and presenting the associated convergence results and analysis. Relationships between
‘the algorithm of this chapter and that studied in Chapter 4 (for discounted rewards)
are discussed in Section 7.3. It turns out that, when the discount factor ¢ is close
to 1, discounted reward temporal-difference learning and average reward temporal-
difference learning converge to approximations that are, in some sense, very close.
However, the transient behavior of the two algorithms can be different, and there
can be computational benefits to the average reward version. In a closing section,
we comment on extensions and other available work with regards to average reward
temporal-difference learning.

7.1 Definition and Convergence Theorem

Consider a stochastic process {z:|t = 0,1,2,...} taking on values in a state space
R deﬁned on a probability space (2, .7-' 'P) We denote the o-field generated by
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random variables z, ..., z; by F;, and we take F to be the smallest c—field containing
Fo, F1, Fa,... as sub-o—flelds. We make the following assumption concerning the
dynamics of this process.

Assumption 7.1 The process {z;|t = 0,1,2,...} is Markov, stationary, and mizing.

Because the process is stationary, there is a distribution 7 such that 7(A) = P{z; €
A} for any set A € B(R?) and any nonnegative integer t. This distribution is also
the limiting distribution that is guaranteed to exist by the mixing property. In par-
ticular, limy ,oo P{z; € Alzg = z} = m(A4) for any ¢ € R¢ and A € B(R?). As
in the context of temporal-difference learning with discounted rewards, we define a
Hilbert space Ly(R?, B(R?), ), which is endowed with an inner product (J;, J;), =
[ Ji(z)J2(z)7(dz) and a norm ||J||, = (J, J)}/2.

By the Markov property, there exists a transition probability function P on R¢ x
B(R?) such that, for any A € B(R?),

’P{.’L'H.l € A|ft} = P(th)s

and P(-, A) is measurable. We will also use P to denote an operator given by

(PN)&) = [ TP, dy).

We make an additional assumption that was not present in our analysis of temporal—-
difference learning with discounted rewards.

Assumption 7.2 There ezists a scalar § € [0,1) such that ||PJ||x < B||J]||+ for all
J € Ly(R4, B(RY), 7) that are orthogonal to e (i.e., {J,e), = 0).

Recall that Lemma 4.12 states that, under Assumption 7.1, ||PJ||, < ||J||+ for all
J € Ly(R¢, B(RY), 7). Assumption 7.2 presents a slightly more restrictive condition.
Intuitively, 5 is related to the “mixing rate” of the Markov process. Observe, for
instance, that this assumption is equivalent to having ||P*J — (J, e)e||, decay at a
uniform geometric rate for all J € Ly(R¢, B(R?), 7). The assumption is satisfied in
many situations of interest, and we provide one example as an illustration.

Example 7.1 Consider an irreducible aperiodic finite state Markov chain
with a transition matrix P. It is well known that the largest eigenvalue of
this matrix is equal to one, and every other eigenvalue is strictly less than
one [28]. Furthermore, the right eigenvector corresponding to the largest
eigenvalue is e = (1,1,...,1,1). It is straightforward to show that the
validity of Assumption 7.2 follows as a consequence.

Let g € Ly(R4, B(R%), ) be a reward function, and let the average reward be
denoted by * = E[g(z;)]. The differential value function J* : R? s R is then defined
by

7(6) =B [Sota) — oo = 5],
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(we will establish later that J* is in Ly (R4, B(RY), 7).

Let ¢r,. .., dx € La(R%, B(R?), 7) be a set of basis functions, and let II denote the
projection operator that projects onto their span. The following assumption applies
to the basis functions.

Assumption 7.3 The functions e, ¢1,...,0x € Ly(R4, B(R?), m) are linearly inde-
pendent.

Note that this assumption is different from Assumption 4.6, pertaining to basis func-
tions used in the context of discounted rewards. In particular, we now tequire that
the function e is not contained within the span of the basis functions.

As in previous chapters, let a vector—valued function ¢ : R? — RX, be de-
fined by ¢(z) = (¢1(z), ..., ¢x(z)). Also, let an operator & : Ly(Re, B(RY), m)
Ly(R4, B(R?), ) be defined by

K
&r = Z (k) P,

k=1

for any r = (r(1),...,7(K))"

The algorithm we propose is initialized with a weight vector 7o € RE and a scalar
1o and recursively generates sequences {r¢t = 1,2,3,.. J} and {mlt = 1,2,3,.. .}
The latter sequence is generated according to

perr = (1= o) s + g ().
For each t = 0,1,2,..., given 7, a temporal difference d; is defined by
dy = g(ze) — pe+ (1) (@) — (re)(me).
This temporal difference is then used in gene;ating ri41 according to
Tl - 'rt.-l— Yd: 2t

where {v:[t = 0,1,2,...} is a sequence of scalar step sizes and {z]t =0,1,2,.. .} isa
“sequence of eligibility vectors taking on values in R, defined by

2z = zt: N d(zr).
7=0

Unlike the discounted case, we will only. consider .values of X in [0,1), because the
eligibility vector becomes unstable when A = 1.
We make the following assumption concerning the step sizes.

Assumption 7.4 The sequence {v:|t = 0,1,2,...} is prespecified (deterministic),
nonincreasing, and satisfies

oQ . oo .
S y=0c0 and S < oo,
t=0 t=0
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Furthermore, there exists a positive scalar C such that n, = Cy; for all t.

Our final assumption imposes stability requirements and is exactly the same as
Assumption 4.8.

Assumption 7.5 The following conditions hold:
1. There exists scalars C and q such that, for all z € R¢,

l9(@) < CA+lzl})  and  |lg(z)]l2 < C(1+ [|z]l9).
2. For any g > 0, there exists a scalar iy such that for allz € R* andt =0, 1, 2,...

E[llzl$lz0] < ptg(1+ [lzoll§)  and E[llg(ze)ll§lze] < pg(1 + [l 6(0)[19)-
3. There ezists scalars C and q such that, for allz € R% and m = 0,1,2, .. Y
Z |El#(2:)' (wism) |20 = 7] - lim Bp(2)'(@rsm N, < e+ i)
and
i [Elé(z0)g(@tm)lzo = o] ~ lim Blé(s)g(zrem)]], < C1 + [2]I9).

(We use || - ||z to denote the standard Euclidean norm on finite dimensional vectors
and the Euclidean-induced norm on finite matrices.)

We define a variant of the TD()) operator that is analogous to that employed in
the analysis of discounted reward temporal-difference learning. In particular, for any
J € Ly(R¢, B(RY), 1) that is orthogonal to e, let

(TO(@) = (1-3) 32 378 | Slo(a0) ~ )+ Semin)foo = 2]

We will establish later that 7(*) maps the space orthogonal to e into itself.

~ In assessing the approximation error, we will employ a different metric from that
used in previous chapters. We will be concerned _only with the relative values of a
function. In particular, given an approximation J to the differential value function
J*, error will be interpreted as

IT(T = T,

where T denotes the projection operator that projects onto the space orthogonal to
e. Note that this operator satisfies

TJ=J-{Je)re,
for all J € Ly(R4, B(R), 7).

101



We define a set of functions ¢, = Yy for £k = 1,...,K. Also, let II be the
projection operator that projects onto the span of ¢,, ... ¢K.
We now state the main result of this chapter.

Theorem 7.6 Under Assumptions 7.1-7.5, for any X € [0, 1),

1. The value function J* is in Lo(R?, B(R%), ) and is orthogonal to e.

2. The sequences {u:|t = 0,1,2,. } and {r|t = 0,1,2,...} converge to the aver-
age reward u* and some vector r* € RK almost surely.
9. The limit of convergence r* is the unique solution of the equation

TTWEr* = or*.
4. The limit of convergence r* satisfies

1
T(@r* — J)||y < ———
IT(@r" = 1)l € Z=

where k is the contraction factor of IT™ and satisfies

Al —2)
"SI

IILJ* — J* ||,

<p.

Except for the fact that we use a new error metric, statements (1)-(3) are entirely

analogous to statements (1)—(3) of Theorem 4.9, pertaining to the case of discounted

rewards. Statement (4) implies that if each basis function ¢, is decomposed into a

multiple of e plus an orthogonal component ¢, only the latter influences the limit

of convergence r*. Finally, statement (5) looks like the error bound of Theorem 4.9,

except that the scalar §#, which represents a “mixing factor,” substitutes for the role
~of a discount factor.

7.2 Proof of Theorem 7.6

We now provide a proof of the result. We begin with some preliminary lemmas that
. characterize the value function, the TD()) operator, and the “steady—state” behavior
of the updates. We then state a corollary to Theorem 3.10. Section 7.2.2 integrates
these items with results from Chapter 3 in order to prove Theorem 4.9.

7.2.1 Preliminary Lemmas

Let J be the subset of Ly(R?, B(R?), 7) that is orthogonal to e. It is easy to verify
that (7, (-, )«) is a Hilbert space. Our first lemma establishes that J* is in 7.
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Lemma 7.7 Under Assumptions 7.1 and 7.2, J* is well-defined and in J. Further-

more,
oo

J" =3 P'g—u).

t=0
Proof: To establish that J* is well defined (for almost all z),

[es]

E{glg(m—m} = SEl(P - ) (an)

< 3 (BIP g - wrel?(ao)])
- illPtlg-u*ele

t

IN

=59 - well

where the Tonelli-Fubini theorem, the definition of P, Jensen’s inequality, and As-
sumption 7.2, have been used. Note that Assumption 7.2 could be used because
(9= n"e, e)r = Elg(zo) — p*] = 0,

as a consequence of the definition of y*.
By another application of the Tonell-Fubini theorem,

(e} . (e o] oo
7o) =B |3(ole) ~ )fon = o] = 5 Blote) - wlaw = 51 = $5(Pg - oo
=0 t=0 t=0
It then follows from Assumption 7.2 that
170 < 2 flg = el
- ™ = 1 _ IB g )u € ™
and therefore, J* is in L, (R?, B(R4), 7). Furthermore, since for any J e Ly (R4, B(RY), )

-and any nonnegative integer ¢,

(e, P*J)n = E[(P'J)(20)] = B[J(z)] = (e, J).,

it follows from the fact that g —p'eisin J that J* is also in 7. Q.E.D.

The next lemma characterizes relevant properties of the TD()) operator. Unlike
in the discounted case, the operator corresponding to the average reward setting is
not a contraction on Ly(R¢, B(R?), 7). However, it is a contraction on (T, ()

Lemma 7.8 Let Assumptions 7.1 and 7.2 and hold. Then,
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1. For any A € [0,1) and any J € Ly(R¢, B(RY), 7),
[o.0]

TN = Z ™ (Z Pi(g— u'e) Pm+1J) ,

=0
which is in Ly(R4, B(RY), 7).
2. For any A € [0,1) and any J1,J2 € J,

700 = 70l < B2, = il < 81 = e

8. For any X\ € [0,1), J* is the unique solution (in (J, (-, )x)) to TN J* = J*.
Proof: For any J € Ly(R¢, B(RY), 7),

EONE) = (1= 5 3B [$a(a) - 1) + Hamelan = 1]
| _ 1) io xm (t_ioE[g(xt) ~ il = 7] + E[J (@mea) |70 = x])
= io A™ (i (P'(g — u*e))(z) + (Pm+1J)(z)> .

The fact that TMJ is in Ly(R¢, B(RY), 1) follows easily from Assumption 7.2 and
Lemma 4.12, and Statement (1) follows.
Statement (2) follows from Assumption 7.2. In particular, for any Ji, J; € J,

1TV — TG, = ”(1 —A) Y AP () - Jz)”
. m=0 "
< (A=) D AmEH L = Tl
m=0
1-
51( )“J1 Ja |-

Statement (3) follows from Lemma 7.7 and some simple algebra:

T = (1-21) io /\m(iPt(g — pre) +»P"‘+1J*)

| = (1-2) ";i_io A"‘(t_in:ol’t(g — w'e) + P :i:o P'(g — p*e))
SCEDD IR LTI
- aen s
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= JN

The fact that T is a contraction on (7, (-, -),) implies that the fixed point is unique
(in the sense of (7, (-, )x)). Q.E.D.

Let a process {y;|t = 0,1,2,...} be defined by y, = (@¢, Te41, 2;), and let a function
s be defined by
B 5¢(0,9) = (9(z) — p+ (r)(z) ~ (2r)(2)) 2,

for 0 = (r,p) and y = (z,7,2) and k=1,... K. Furthermore, let

3K+1(‘97y) =C(g(z) - 1),

for § = (r, ) and y = (z, 7, z), where C = n, /7 (this constant is independent of time
by Assumption 7.4). The average reward temporal-difference learning algorithm can
then be rewritten in the form

Oii1 = 0p + 156y, 11),

where we let 0, = (14, ).

Ouf next Lemma establishes that the “steady—state” update direction is of the
form related to but different from that studied in Section 3.4.2. We will employ the
notation t_@m[-] as shorthand for lim,_,, E[].

Lemma 7.9 Under Assumptions 7.1 and 7.2,

1

E [sx(6,9:)] = <$k7T(/\)$T - $T>7r Tz

t—o0

5 (ks (17 = p)e)n,
forallk=1,... . K,rcRK, neR, and X € |0, 1), where 0 = (r, 1). Furthermore,
E [sk+1(9, W) =Cu - 1),
t—oo

forallr € R¥, pe R, and X € 0,1), where 6 = (r, ).

Proof: By arguments from the proof of Lemma 4.15, for any r € RX, 4 € R,
k=1,...,K,and A € [0,1), letting 0 = (r, ),

t E [se(0,v0)] = f: )‘m<¢k’ P™(g — pe+ P®r — <I>r)>
e m=0 L
= > )‘m<¢k: P™g— p*e + Pdr — <I:r)>7r + i e (1" = e

m=0

Note that g — u*e and P®r — ®r are both orthogonal to e (the latter follows from
the fact that (e, PJ), = (e, J)x for all J € Ly(R%, B(RY), 7). It follows that

B [5¢(0,3)] = > N"(d, P™(g — e + PBr = B)), + 1 (66, (" — o).

t—o0 m=0
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Note that for any A € [0,1) and J € J,

co (e o] m
SATPTI = (1-A) S AmS P
m=0 m=0 t=0

‘We therefore have

E [s1(6,0)] = <¢k, (1-2A i)\miPt(g ue+P<I>r—(<I>r))>

m=0 t=0

—/\(¢k7 (k" — n)e)s
= <$k,T(’\)$r — 5’1’>7T + 1—i—)\(¢k, (1" = e
The remaining part of the lemma, stating that
t_@oo[SKH(g; ye)] = C(p" — n),

sitnply follows from the fact that p* = t_E}}oo[g(xt)]. Q.E.D.

The expectation B [3(0 ;)] characterized by Lemma 7.9 does not take on the

form studied in Chapter 3, and consequently, Theorem 3.10 may not apply directly
to our algorithm. However, a simple corollary of that theorem suits our purposes.

Corollary 7.10 The conclusions of Theorem 3.10 remain valid if condition (1) is
replaced by

o There ezists some r* € RX and a diagonal matriz D with positive diagonal
entries such that (r — r*)D3(r) < 0, for all v # r*, and 3(r*) = 0.

It is not difficult to show that this corollary follows from Theorem 3.10. However,
like Theorem 3.10, it is also a special case of Theorem 17 of [7]. We therefore omit
the proof.

'7.2.2 Proof of the Theorem

We will establish convergence using Corollary 7.2.1. Let the function 5 : RX+! sy
R+ required by the conditions be defined by 3(8) = B [s(0,y:)]. (Note that the
—00

variables 7 and K from the corollary corresponds to § and K + 1 for our cur-
rent setting.) Also, though we have considered until this point a process y; =
(%4, Tt4+1, 2¢), for the purposes of validating conditions of Corollary 7.2.1, we let
Y+ = (Z¢, Te1, 2, ¢(2441)). Note that there is a one-to-one mapping between the
two versions of y;, so the update direction s is still a function of 8; and y;.

Validity of conditions (2)-(6) can be verified using arguments analogous to those
" employed in the proof of Theorem 4.9. To avoid repetition, we will omit proofs that
‘these conditions are valid. We are left, however, with condition (1), which we now
- address. '
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Since T is a contraction on (7, (-, -),) and II is a projection whose range is in 7,
it follows from Theorem 3.9 that IIT™ is a contraction on (7, (-,-)). Furthermore,
since e, ¢1,...,¢x € Ly(R% B(R?),n) are linearly independent (Assumption 7.3),
¢, -,k € J are linearly independent, and it follows that there exists a unique
vector 7* € R¥ such that ®r* is the unique fixed point of TTT™ (in (7, (-, -)x)).

Let 6" = (r*,p*). It is easy to see that 3(8*) = 0. Let D € RE+Dx(K+1) e 4
diagonal matrix with the (K + 1)th entry (i.e., that corresponding to the average
reward estimate) equal to a positive scalar £ and every other diagonal entry equal to
one. Then, given a vector 6 = (r, u),

K

6-6YD50) = LO0) 6 (8) (G TOBr ~Fr) — 256, (0" - el
O -

— - = 1
= <<I>(7~ —r*), TWEr — <I>7">7r - 1—_—)\(d), (b" = p)e)s — C(u* — p)?.
Note that

1 - % * . ,u’*_lj’ = * * *
@ =) = ekl < BB ) < Gt = - =

for some constant C; > 0. Furthermore, by Theorem 3.11(4),

K
<6(r -7%), TN, — $r>7r = Z(Tk — 15 ){ By, TNy — &),
k=1
< =Gyllr —r*l3,

for some constant Cy > 0. It follows that |
(6 —0"YDs(9) < —0(u" ~ ) + Culu — i - Ir = vl = Gallr — 712,
and by setting £ to a value satisfying ¢? < 44CC,,
(6 —6*)D3() < 0,

for all § # 6*. Condition (1) is therefore valid.

Corollary 7.2.1 implies that 6; converges to 8* (almost surely). Therefore, u;
and 7; both converge, as stated in Theorem 7.6(2). Statement (1) of the theorem is
established by Lemma 7.7.

We have already established Statement (3) earlier (r* is the unique solution to
IITM®r* = $r*). Statement (4) follows from Theorem 3.9, since ®r* is the unique
fixed point in (7, (-, -)) of a composition between a projection II and a contraction
T®™ (the bound of B(1 — A\)/(1 — B)) on the contraction factor is from Lemma 7.8).
Q.E.D.
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7.3 Discounted Versus Averaged Rewards

Let J(®) denote the value function corresponding to a discount factor o € [0,1). In
particular,

o9}

J¥(z) =E [Z atg(mt)’:ro = z] :
: t=0

Then, as « approaches 1, the projection YTJ(®) converges to the differential value

function J* (in the sense of Ly(R%, B(R%), 7). To see this, note that YPlg = P*(g—pe)

for all ¢, and therefore,

TJ(“):T(Zat ) > afP'(g — pe).
t=0 t=0

Under Assumption 7.2, it follows that

1@ = Pl < 331 = 68| PHg — e IIW<Z (1-ah)g,

t=0

which approaches 0 as « approaches 1.
Another interesting fact is that (e, J®), = p*/(1 — a). To see this, note that
(e, Ptg), = p* for all t, and therefore

*

(e, J©) ___< Za >Wv=gat(e,g),=1‘i

Based on the observations we have made, it is natural to think of the value function
J(® as providing the average reward and an approximation to the differential value
function in the following sense:

a.

JaYJ®  and  pf=(1-a)le, JY),.

Average and discounted temporal-difference learning exhibit some related relation-
ships, which we explore in this section. ,
‘ Recall that, in average reward temporal-difference learning, e is not within the
span of the basis functions. In some sense, the average reward estimate p plays a
role that, in the case of discounted reward temporal-difference learning, would be
played by a basis function that is aligned with e. Hence, when we compare average
and discounted temporal—-difference learning, we include an extra basis function in
the latter case. In particular we study the two following situations.

1. Executing average reward temporal-difference learning with basis functions
@1, ..., ¢k that satisfy Assumption 7.3.

2. Executing discounted reward temporal-difference learning with basis functions
¢1,-. ., 0k, e (a total of K + 1 basis functions). Note that, by Assumption 7.3,
these basis functions are linearly independent, as required by Assumption 4.6.
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The next subsection compares the ultimate approximations generated by these two
approaches, while Section 7.3.2 discusses differences in the incremental updates that
occur during execution of the algorithms. It turns out that the ultimate approxima-
tions are very similar (if « is close to 1), but the transient behavior of the algorithms
can be significantly different, and in fact, there may be computational advantages to
the average reward version of temporal-difference learning.

To keep the exposition simple, we will focus on the case of A = 0. Entirely
analogous arguments apply in the more general setting of A € [0,1).

7.3.1 Limits of Convergence

Let us denote the parameterizations employed in average and discounted temporal—
difference learning by J* and J9, respectively. In particular, given weight vectors
r € RE and 7 € REHL et

Jz, ) = Z r(k) oy, and  JYz,7) = 2_: T(k)or +T(K + 1)e.

Let r* € R and r(® € RX+! denote the limits of convergence given these param-
eterizations (with A = 0). For shorthand, let J = J°(-,7*) and J©® = Jo(-, (@),
Then, it turns out that lim,y TJ® = TJ and (e, J@Y, = /(1 - «). Hence, we
can think of discounted temporal-difference learning as approximating the results of
average reward temporal difference learning in the following sense:

TJ~ TJ@ and  p* = (1-a)le, JV),.

Let us now establish that our claims are indeed true. We denote the TD(0)
operators for the average and discounted cases by 7" and T(), respectively. Note that
for any J € Ly(R%, B(R?), ) and « € [0,1),

XTI =TT ||z = (1 - o) [YPJ], = (1 - a) |7,

which approaches 0 as « approaches 1. Hence, lim,4 TT@J=7TJ.

Let TT be a projection onto the span of @, . .. , @y (recall that ¢, = T¢;). Hence
the projection of a function J onto the span of ¢y, ..., ¢, e is given by ITJ +e(e, J).
By Theorem 4.9(3), J® is the unique fixed point of OT@() + ele, T ()),. It
follows that TJ(® is the unique fixed point of TIT() and (e, J(®), = (e, T(®) jlo)y
Furthermore, it follows from Theorem 7.6(3)—(4), that YJ is the unique fixed point
of TIT. ‘

By the triangle inequality,

1T - TJ@|, < 1T~ AT@T ||, + [TT@TT - T J@),
= |TITYJ - IT®Y ]|, + |TT@TT - T J@)||,
< |YTYT = YT@Y ||, + BT = 1T,
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where the final inequality relies on two facts: (1) the range of the projection II is
a subspace of the range of the projection T and (2) IIT() is a contractions with
contraction factor less than 8 and fixed point TJ(®. It follows that

|TT =TI, < 1—i—ﬂ|[TTTj —YTET ]|,

Since limagy YT J = YT J for all J € Ly (R4, B(R?), ), it follows that limgy TJ®) =
- TJ. _ g o : '
To complete the arguments validating our earlier claims, we have

. <€, j(a)>7r == (e,T(Ol)j(a)>ﬂ_ — <€,g + apj(a))ﬂ_ — ’u* + a<e’ j(a)>7|—,

and it follows that

ey, =~

7.3.2 Transient Behavior

As shown in the previous subsection, if « is close to 1, the limit of convergence of dis-
counted temporal-difference learning approximates that of average reward temporal-
difference learning. It turns out that the same is not true of the iterates generated
during the course of computation. In this subsection, discuss the similarities between
the iterations as well as the cause of significant differences in transient behavior.

Let the sequences generated by average reward temporal-difference learning be
denoted by {rt = 0,1,2,...} and {m|t = 0,1,2,...}, and let the sequence gener-
ated by discounted temporal-difference learning be denoted by {rga)lt =0,1,2,...}.

Hence, lim; oo ¢ = 7%, limy 00 t: = p*, and limy;_, oo r§“) = (0. We assume that the
~ sequences are initialized such that ro(k) = r{® (k) for k=1,...,K and

bo=(1-0a) (i POk (B ) + (K + 1)) |

Let J; = Jo(-,r,) and J&® = J4(-,r{*)). Then, the constraints on initial weights
imply that TJo = TJ® and po = (1 — a)le, jéa)),,. In the previous subsection,
we showed that, when o is close to 1, lim o0 TJ; & limy yoo T/ and lim,_,o, Ly =
(1 — @) lime oo (e, J& )= The question we will address in this subsection is whether
TJ, ~ TJ and p; &~ (1 — a)(e, .ft(a)),r for all ¢, when « is close to 1.

Recall that ¢, = T¢y for k = 1,..., K. The average reward temporal-difference
learning update (for A = 0) is given by

rera(k) = (k) + ’Yt¢(xt)(9(?t) — t+ (@1, 70) - ja(wt,ﬂ))

= T't(k) + ’Yt¢($t) (9(%) — pt + i ¢j($t+1)7't(j) - §¢j($t)rt(j))

=1
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=1 =1

= ri(k) + né(ze) (9( t) — ut+2¢ (ze41)re(d Z (@ Tt(J)

since the component of each ¢, that is aligned with e evaluates to the same value for
both z; and z;;.

Suppose that p; = (1 — a){e, jt(a)),r. The update in the discounted case is then
given by

k) = rt(”(k)mm(a:t)(g(xt)+aid<xt+1,r£“))—ﬂ<w n‘”))

= ik )+%¢k(xt)(( 1) = ut+a2¢ Zor )i () = 2 45 )

7j=1 7j=1

for k=1,..., K. Note that this update becomes identical to that of average reward
temporal—dlﬁ'erence learning as « approaches 1.

The difference in the dynamics of the two algorithms comes with the update
equations relating to the average reward estimates. In average reward temporal-
difference learning, we have

pir1 = pg + Cye(g(ze) — /J't)

for some positive constant C. In the discounted case, the change in the average reward
estimate (e, Jt( @) )= takes on a a significantly dlﬁ'erent form. In particular, supposing
that g = (1 — a)(e, J® )),,, we have

(el - = (1—a)< > ¢k+rt“’(K+1)>

™

= (1-a) Zrﬁi’l n+ (11— o) (K +1)

- (-a) z (120 + wn(a (o620 -

K

+a 3 , aur z¢ @r0)) )18

+(1-a) (n“’)(K +1) + % (g(xt) — e

K

«3 570 - LA )

= (1-a) < i k)¢k> +(1— a)rt(a)(K +1)

k=1 T

K
+(1 — a)y, (Ze(bk Yo bk (T4 +1>
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| - .
(g(l‘t) — Ut Z ¢j ($t+1)T£a) () Z (a) )
= (1-0) < Zn(“)(k)qﬁ > +(1— a)r®(K +1)
+(1 — Ot (Z e, ¢k )

(9 | Z $t+1)7" () =

or

6 (z)r® (j))

1

<
Il

K

+(1 =)y Z(e, ¢k>w5k($t)

k=1

K K
(9(% ut+aZ $t+1)T§a)(J Z (a) )

7j=1

= pe+ Cvnl(g(zs) — /J't)

K K
+C; (a S 6 (z)ri0G) = 3 6 (z)rt® (j))

_1K j=1
+(1-a)m ;(e, O )n i (24)
X K
(Q(fﬂt) —p T Z_:laj (%H)Tga) () - 2_315, (xt)rwga)(j)> )

for a constant

C=(1-a) (fj(e,m)ﬁH).

k=1

Let us discuss the three terms involved in updating (1 — a)(e, jt(a))ﬁ. The first term

Cye(g(ws) — ),

is the same as that involved in the update equation for ut in average reward temporal—
difference learning. The second term

A (aqu (Zeg1)T j)—z¢ Te)T ),

is absent in average reward temporal-difference learning. Its expectation (in steady—
state) is zero, but it generally takes on nonzero values that add “noise” to the updates.
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Finally, the third term

(=ap i_{: Yn e () ((xt t+aZ¢(wt+1)r§ () - Z¢ (@™ )>’

adds additional interference which is not necessarily even zero-mean. It is interesting
to note that this term is equal to zero in the event that the basis functions ¢y, ..., ¢x
are orthogonal to e, which unfortunately, is not generally the case.

In summary, the update equation for discounted temporal-difference learning in-
volves “noise” that is not present in the average reward case. This interferes not only
with the evolution of the average reward estimate (1 — a)(e, J),, but also with
TJ; jle ), since the average reward estimate enters into the computation of the latter.
Consequently, there may be computational advantages to average reward temporal—
difference learning, as observed in previous empirical work [49]. Similar observations
have also been made in experiments involving related algorithms [77].

7.4 Closing Remarks

In order to place our results in perspective, let us discuss their relation to previous re-
search. We are not the first to consider variants of temporal-difference learning that
approximate differential value functions. However, the algorithms that have been
studied in this context generally make use of look—up table representations, which
involve storing and updating one value per state in the state space. We refer the
reader to [65, 67, 48, 1] for work along these lines. The computational experiments
of Tadepalli and Ok [77] and Marbach, Mihatsch, and Tsitsiklis [49] do employ pa-
rameterized approximations to the differential value function, but the authors do not
provide convergence analyses.

It is known that the differential value function of a finite-state infinite~horizon
Markov chain is the same as the value function of an auxiliary absorbing Markov chain
8, 13]. This relationship motivates one way of using temporal-difference learning to
approximate a differential value function, namely, deriving the auxiliary absorbing
Markov chain and then employing an existing version of temporal-difference learning.
However, this reduction can affect approximations in undesirable ways, as we discuss
next.

In temporal-difference learning, each weight update is dependent on a history of
visited states. When temporal-difference learning is applied to an absorbing Markov
chain, multiple finite trajectories (each terminating at an absorbing state) are sim-
ulated. Weight updates occur during these simulations, and the history of visited
states is erased upon the termination of each trajectory. Even though restarting the
record of visited states is appropriate for an absorbing Markov chain, it is unnatural
for the original infinite horizon Markov chain. Due to this peculiarity introduced
by the reduction, it is preferable to.use a variant of temporal-difference learning de-
signed specifically for approximating differential value functions, as the one we have
introduced. v
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The error bound we have derived (Theorem 7.6(5)) is very similar in appearance to
that pertaining to discounted reward temporal-difference learning (Theorem 4.9(4)).
The only difference is the presence of a parameter § that substitutes for the role of
the discount factor a. This parameter represents a “mixing factor,” related to the
mixing time of the Markov process. It is interesting to note that even if a given
Markov chain takes a long time to reach steady state, which would imply that g is
close to 1, the contraction factor x of IIT™ may be small due to the choice of basis

functions. This may partially explain why small values of A seem to lead to good:
approximations even with Markov chains that converge to steady state rather slowly. -

Our comparison of average reward and discounted reward temporal-difference
learning algorithms has lead to an interesting conclusion — the asymptotic results are
close (if the discount factor is close to 1), but the evolution of iterates during the
course of the algorithms can be very different. In particular, the weight updates in
average reward temporal-difference learning avoid some “noise” that influences the
discounted reward counterpart.

On the technical side, we mention a few straightforward extensions to our results.

1. If we allow the reward per stage g(z;) to be dependent on the next state (i.e.,
employ a function g(z;,z:+1)) or even to be noisy, as opposed to being a de-
terministic function of z; and z;y;, our line of analysis still goes through. In
particular, we can replace the Markov process y; = (x4, Tr41, 2:) that was con-
structed for the purposes of our analysis with a process y; = (zy, Ti41, 2t, 9t),
where g; is the reward associated with the transition from z; to z;;. Then,
as long as the distribution of the noise only depends on the current state, our
proof can easily be modified to accommodate this situation.

2. The assumption that the step sizes 7; are equal to Cy; was adopted for conve-
nience, and weaker assumptions that allow greater flexibility in choosing step
sizes n; will certainly suffice, although this might require a substantially more
sophisticated proof. -

3. If the basis functions ¢ ..., ¢k were allowed to contain e within their span, then
our line of analysis can be used to show that ®r, still converges, but &r; — &r;
is aligned to e and need not converge.

4. The algorithm we analyzed simultaneously adapts approximations of average
reward and the differential value function. In [85], the same line of analysis is
used to establish convergence and error bounds for a related algorithm in which
the average reward estimate u is held fixed while the weights r(1),...,r(K) are
updated as usual. The error bound in that case includes an extra term that
is proportional to ||Ile||, times the the error |u — p*| in the average reward
estimate. It is interesting to note that ||IIe||, is influenced by the orientation of
the basis functions.
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Chapter 8

Approximations Based on
Representative Scenarios

There are two preconditions to effective value function approximation: an appropriate
parameterization and an algorithm for computing parameters. In previous chapters,
we have focused on algorithms that adjust basis function weights in a linear param-
eterization. Our discussion on approaches to -selecting basis functions, however, has
been limited to the context of a case study (Chapter 6), where the selection was based
on intuition concerning the nature of the decision problem.

An interesting question concerns whether or not there are systematic and broadly
applicable methods and/or guidelines for basis function selection. In this chapter, we
explore one approach to generating basis functions that involves the use of “repre-
sentative scenarios.” In particular, rewards generated under policies and disturbance
sequences from a select set are employed as basis functions. This notion is introduced
in the context of a controlled system. Certain relevant analytical results pertaining
to the autonomous case are then presented in Section 8.2. As an illustration, Section
8.3 provides a concrete application of the main result. Future research directions and
related ideas in the literature are discussed in a closing section.

8.1 (Generation of Basis Functions from Scenarios

As in Section 2.1, we consider a discrete-time dynamic system that, at each time ¢,
takes on a state z; and evolves according to

Tt41 = f(xt, Ut, 'wt)1

where w; is a disturbance and wu; is a control decision. Though more general state
spaces will be treated in the next section, we restrict attention for now to finite state,
disturbance, and control spaces, denoted by S, W, and U, respectively. For each
policy u, a value function J# : S — R is defined by

J(z) = E [g; o g(ae, u(:))|z0 = :c] ,
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where g : Sx U — R is a reward function, a € [0, 1) is a discount factor and the state
sequence is generated according to zp = z and z;41 = f(z1, u(z:), w:). The optimal
value function J* is defined by

J*(z) = max JH(z).

Let the process {wst = 0,1,2,...} be defined on a probability space (2, F,P),
so that each random variable w; is implicitly a function of a sample point w taking
on values in . We will refer to eéach w € Q as a “scenario.” Intuitively, a scenario
captures all relevant information about future events. For each policy x4 and scenario
w, we define a value function J** : S +— R by

Jh(z) = gatm, u(z)),

where 2o = z and zy41 = f(x4, u(zt), we). This function provides the future reward
starting at state x given that the policy i is deployed and the scenario w determines
future disturbances. Note that

JH(z) = E[J*¥(z)].

Suppose we believe that a set (u1,w1),..., (LK, wk) of policy—scenario pairs is
“sufficiently representative” of the range of possibilities. One approach proposed by
Bertsekas [10] for approximating the optimal value function J* involves the use of basis
functions ¢, = J#*** for k = 1,...,K. Temporal-difference learning can then be
applied to compute corresponding weights r(1),...,r(K). This approach essentially
reduces the problem of basis function selection to one of scenario selection.

8.2 The Case of an Autonomous System

As a first step in further understanding issues involved in the use of scenarios, in this
section, we develop some theory pertaining to the context of autonomous systems.
The intention is to gain an understanding of how many scenarios it takes to constitute
a “sufficiently representative” set and how difficult it is to find such scenarios.

We consider a stochastic dynamic system defined with respect to a probability
space (Q, F,P) that evolves in a state space R¢ according to

Ti+1 :f(l't, wt),

where each disturbance w; is implicitly a function of a random scenario w and takes on
values in a measurable space (W, W). (As in previous chapters, we implicitly assume
that relevant functions such as f are measurable.)

Let g : R? — R be a reward function, and let o € [0, 1) be a discount factor. For
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each scenario w € 2, we define a function
oo
_ t
- Z 84 g("rt):
t=0

where 2o = z and z4,; = f(z, w;). Note that the value function for this autonomous
system is given by

J*(z) = E[J*(z)].

We consider approximations of the form
K
SPILCEE

where wy, . ..,wxg make up a set of representative scenarios and r € R¥ is a weight
vector. The hope is that, for many problems of practical interest, a relatively small
set of scenarios is representative enough to generate an accurate approximation to
the value function. In this spirit, we will derive bounds on the number K of scenarios
that would be sufficient for an approximation of some desired level of accuracy. We
will consider two mechanisms for scenario selection:

1. Random sampling according to the distribution P.
2. “Best—case” sampling.
The bounds will be contingent on properties of the system function f and the reward

function g.

8.2.1 Bounds on Numbers of Scenarios

Before providing bounds, let us state assumptions and define relevant terms. Let d
be a pseudo-metric on R¢ (i.e., a nonnegative scalar function on R¢ x R¢ such that

d(z,z) =0, d(z,y) = d(y,z), and d(z, z) < d(z,y)+d(y, 2) for all z,y, z). We make
the followmg assumption concerning the system and reward functions.

‘Assumption 8.1 The function g and each component function f; take on values in
[-M/2,M/2]. Let the following conditions hold for the pseudo-metric d.

1. There ezists a scalar 8 € [0, 1) such that
d(f(z,w), f(y,w)) < fd(z,y),
for allw € W and any z,y € R

-~ 2. There exists a scalar L € R such that

lg(z) — g(v)| < Ld(z,y),

for all z,y € Re.
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3. There ezists a positive scalar x and a vector 0 in the d—dimensional unit simplez
such that .
d(wﬂy) S Xzall‘rl - yi';

=1
for all z,y € R4.

Condition (1) can be viewed as a “stability requirement.” Among other things, it
implies that, given a particular disturbance sequence, state trajectories with different
initial states do not diverge from one another at a rate greater than 1/af. The second
condition is a Lipschitz bound that requires a degree of “smoothness” from the reward
function. The final condition relates the pseudo-metric d to a weighted Manhattan
norm.

Our bounds on numbers of scenarios will be based on the “complexity” of the
system function. We now define the notion of complexity that will be employed.

Definition 8.2 Let (Q, F) be a measurable space, and let H be a set of measurable
functions mapping Q to R. A set {w,...,wk} is said to be shattered by H if there
ezists a vector a € R¥ such that, for every binary vector b € {0,1}% there exists a
function h € ‘H such that

> Qg, if bk = ]-a
h(wk) { < Qg, if b, = 0.

The pseudo—dimension of H, denoted by dim(H), is defined as the largest integer
d such that there exists a set of cardinality d that is shattered by H.

This notion is due to Pollard [58]. It is a generalization of the Vapnik—Chervonenkis
dimension [88], and both notions of complexity have been applied extensively in the
machine learning literature (see, e.g., [36] or [89]).

We are now ready to state the main result of this chapter. This result provides a
sufficient condition for the approximation of the value function within a “tolerance”
€ with “confidence” 1 — ¢ in the event that the samples are drawn as 1ndependent
~random variables each distributed according to P.

Theorem 8.3 Let Assumption 8.1 hold. Let 8, L, x, and 8 be variables satisfying
_the conditions of the assumption. For each i € {1,...,d} let H; = {fi(z,")|z € S}.
Let € be in (0, M/2], let & be a positive scalar, and let K be an integer satisfying

22 (b () B2 (222

Then, given a set of independent samples w1, . ..,wxg € Q each drawn according to P,
we have
K
Prob {sup J*(z) — Z J9( :1:) < e} >1-4.
z€S k=1
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Note that, as presented in the theorem, each function J“* receives an equal weighting
of (k) = 1/K. If the weights were allowed to be optimized in some way, the sample
complexity requirements might decrease.

Let us mention two qualitative observations regarding Theorem 8.3:

1. Given a system, the sample complexity grows at most as a polynomial in 1/¢
and In(1/4).

2. Given a class of systems and a particular €, > 0, the sample complexity grows
at most as a polynomial in the pseudo-dimensions dim(#;), the constants x
and L, the range M, and an “effective horizon” 1/(1 — af).

The first observation simply states that the sample complexity does not grow at an
unreasonable rate as greater accuracy is desired. The second observation provides a
new perspective on the “complexity” of systems. In particular, one may naturally be
inclined to associate the complexity of a system with the size of its state space. This
- might lead to a premonition that the number of scenarios required to summarize future
possibilities for all states is a function of state space size, which is typically intractable.
However, the result points out that it is instead the pseudo—dimensions associated
with components of the system function that influence sample requirements. This is
an important observation because, for many relevant classes of systems, the pseudo-
dimension may grow at a tractable rate relative to the state space size.

A second case we consider involves a “best—case” choice of scenarios. In particular,
we assume that the scenarios are chosen in a way that minimizes approximation error.
The corresponding result is a corollary of Theorem 8.3.

Corollary 8.4 Let Assumption 8.1 hold. Let 8, L, x, and 6 be variables satisfying
the conditions of the assumption. For each i € {1,...,d} let H; = {fi(z,")|z € S}.
Let € be in (0, M /2], let & be positive scalars, and let K be an integer satisfying

K> 32£42 (1n4 + (f: dim(Hi)) In (t‘io‘_"i‘]ﬂv‘)’: In (t?_"i%:))) .

=1

We then have,
. 1 K
T(@) -2 Y I )

k=1

inf sup

<e
W1y W EN €S

In practice, the sample complexity associated with this case may be substantially
lower than in the case of randomly sampled scenarios. This possibility is reflected
in the bound by the elimination of the 1/6 term. However, the bound does not
reflect any dramatic change in the rate of growth of sample complexity with system
parameters (pseudo—dimensions etc.). This may be because the ability to select key
scenarios indeed does not grant such benefits, or it may simply be due to the fact
that the bound is not sharp.
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8.2.2 Preliminaries

In this section, we introduce some results from the literature on uniform laws of large
numbers that will be used in our analysis. These results are based on the work of
Pollard [58], but as an accessible source for the particular bounds we present, we
refer the reader to Theorem 5.7 and Corollary 4.2 of the book by Vidyasagar [89].
We begin by defining some terms and notation.

Definition 8.5 Let (Y, p) be a pseudo-metric space. Given a set Z C'Y and some
€>0, aset{y1,...,Ym} C Y is said to be an e—cover of Z if, for each z € Z, there

~ exists and index i such that p(z,y;) < €. The e-covering number of Z (with respect

to p) is defined as the smallest integer m such that Z has an e—cover of cardinality
m, and is denoted by N(Z, ¢, p).

One pseudo—metric that we will be working with is defined, for a given probability
space (9, F,P), by

po(tn, ha) = [ In(w) = ha(w)P(dw),

for any measurable scalar functions h; and hy. The following theorem presents a
uniform law of large numbers.

Theorem 8.6 Let (2, F,P) be a probability space and let h : R™ x Q — [0,1] be
a measurable function (with respect to the product of the Borel sets and F). Let

wi,...,wg be a sequence of K independent samples drawn according to P. Then,
1 < —€e2K /32
Prob{ sup |= > h{z,wy) — /h(a:,w)P(dw) >ep <2supN (”H,e/S,pg) e :
eewn | K 1 Q

where the supremum is over all probability measures on (Q, F).

Covering numbers are somewhat unwieldy because they are contingent on a level
of tolerance ¢ and a probability distribution P. It is often more convenient to deal

~with the pseudo—dimension, which is a single number that can be used to bound

covering numbers as illustrated by the next theorem.

Theorem 8.7 For any probability space (Q, F,P), any set H of measurable functions
mapping 2 to [0,1], and any € € (0,1/2], we have

2 2 dim(H)
N(H, ¢ p,) < 2 (—e In —e) .
€ €

Equipped with the tools of this section, we are ready to prove Theorem 8.3.
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8.2.3 Proof of Theorem 8.3

We generalize to vector-valued functions the pseudo-metric from the previous sub-
section by letting

s (1) = /Zelh () - Fa(@)IP(dw),

for any probability space (€2, F,P), vector 6 in the unit simplex, and measurable
vector-valued functions h and A.

Let H = {f(z,-)|z € S}. We will place a bound on the covering number of this
set with respect to p,,. Fix an € > 0. For each set #;, let the m; = N(H,, ¢, p,,).
Then, for each i, there exists a set of functions 7, consisting of m; functions such that
for any h € H;, there exists a function A € H; with o5 (h, h) <e Let H = e, H.
Then, for each h € H there exists some h € H with component functions satlsfymg
p,,(hl, h;) < e. Since  is in the unit simplex, it follows that ppo(h,h) < e. Hence, H
is an e—cover of H, and therefore

N (7‘[,6, pp,a) < ﬁ"N(Hhe: p’P)'

=1

A Dbound can also be placed on the covering number of H with respect to the
pseudo-metric d. In particular, it follows from Assumption 8.1(3) that H is a (xe)-
cover of H, and therefore

N (H,xe,d) <N (H,e, Pm) < H N (Hi €, p,)-
=1

Let J = {JO(z) — g(z)|z € S}. We will now place a bound on the covering
numbers of this set with respect to p,. Using the same ¢ > 0 and # as above, let us
define a set ¥ of scalar functions that contains, for each function A € H, a function

of the form -
PY(w) =)o
t=1

where the sequence y1, 7, . .. is defined by y; = A(w) and yip1 = f(ys, w;). Let n be a
function in 7 and let z, € S be a state for which n(w) = J¥(z,) — g(z,). Let & be a
function in H satisfying d(f (z4,), h) < xe¢, and let 1 be the corresponding element
of ¥. We then have

)= [ 1) = wP@) < [ (35 afloe) - o) Pl

For each tth term of the summation, by Assumption 8.1(1)-(2),

l9(ze) — 9(ve)| < Ld(ze, ye) < LB d(21, 1) = LB A(f (20, wo), h(w)).
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It follows that
P ) < LYo [ Af(z, wo), Alw))P(dw)
t=1

oQ
< LY offTxe

_ alLxe
(1-aB)
Since |¥| = [H|,
| N (7, oixe <N (H,€,p,,) < ﬁ N (Hi ¢, )
7(1_0/,@)7 pe | = 1S Fpe ] %) P

By Theorem 8.7, for € € (0, M/2]

In

2Me . 2eMHmh)
N(Hie,0,) < 2 (510 225 .
(The tolerance € is divided by M because the range of the functions of interest is
now [—M/2, M/?2] instead of [0,1].) Combining this with the bound on the covering

number of J, we obtain

20xLMe . { 2axLMe 2= 400
N(jafap'p)52<(1_aﬁ)61 ((l—aﬁ)e>) .

Since this expression is valid for any probability measure P, by Theorem 8.6, we have
I@) = 2 2 I )

> of
k=1

4 16axLMe l6ayxLMe 2.iz dim(F) o= K/32M?
(1—af)e (1 - ap)e '

Some simple algebra then leads to the fact that

1 XK
Prob {sup
z€S

1 K

F@) = 2 3 T >

Prob {sup
k=1

€S

Jes
for any number of samples
32M? 4 16axLMe 16axLMe
> .
K2 T (g (S (225550 (52557 )

Q.E.D.
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8.2.4 Proof of Corollary 8.4

This corollary follows almost immediately from the theorem. In particular, note that,
for each § < 1, there is positive probability that the random sampling of K scenarios

with
32M? 4 16axLMe 16axLMe
0z 255 (i ¢ (Zd‘m”)) (625 (6 2e))

will result in positive probability for the event that

J(z) — = Z J*(z

k 1

sup
€S

Hence, for each § < 1 there exists at least one set of K scenarios that generates

the above event. By taking the limit as 0 approaches 1, we arrive at the corollary.
Q.E.D.

- 8.3 An Example

To enhance our understanding of Theorem 8.3, let us discuss a concrete example.
Consider a stable linear system evolving in R¢ according to

Tiy1 = Bz + wy,

where (8 is a scalar in [0,1) and each disturbance w; takes on values in R¢ with
Euclidean norm ||wy||; < 1. Note that, if ||zo|ls < 1/(1— ) then ||zlls < 1/(1—p) for
all t. Hence, we can effectively think of the bounded set S = {z € R|||z|]: < 1/(1-0)}
as the state space.

The system function is given by f(z,w) = fz+w, so each set H; = {fi(z, )|z € S}
is a subset of a one-dimensional linear space. It is well known that the pseudo-
dimension of a linear space of functions is equal to the linear dimension [26], and
therefore, dim(#;) =1 for each i = 1,...,d.

Letting d be the metric defined by the Euchdean norm on R4, it is easy to see that
parts (1) and (3) of Assumption 8.1 are satisfied with the value of 8 from the definition
of the system function, M = 2/(1 =), 6; = 1/dfori = 1,...,d, and x = v/d. Let
us assume that the reward function g is also bounded by M and satisfies Assumption
. 8.1(2) for some scalar L. Then, the Bound of Theorem 8.3 applies, and we have

} S1-6
for a set of scenarios of size

KZ@/@(IHLL dln( 160vLe 1(( 160/dLe )))

1 K

F@) - 3 @) <

Prob {sup
k=1

€S

€2 (1—aﬁ)(1— Ble \(1—af)(1—pB)e
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Note that, for this class of systems, the sample complexity is bounded by a polynomial
in the state space dimension, which unlike the state space size, is tractable.

8.4 Closing Remarks

" Our analysis has focused on the case of autonomous systems, where we have derived a
bound on the number of scenarios that leads to accurate approximation. This bound
bears a dependence on pseudo-dimensions of components of the system function,
which are measures of complexity that can grow at a rate much slower than the size
of the state space.

The use of representative scenarios in the context of controlled systems presents _

an interesting and challenging direction for future research. In particular, an open
question concerns the possibility of developing a measure of complexity for controlled
systems that both grows slower than state space size and provides a bound on suffi-
cient numbers of scenarios.

It is worth noting that Theorem 8.3 is also relevant to the study of “rollout al-
gorithms” [78, 13, 11]. Such algorithms aim at approximating values J*(z) under a
given policy u by averaging results from simulations. In particular, when the value
J#(z) associated with a state z is desired, the rollout algorithm generates an ap-
proximation (1/K) YK, J#“*(z), where wi,...,wx are a set of scenarios produced
via simulation. One may consider the possibility of fixing the set of scenarios, stor-
ing them in memory, and reusing them to compute J#(z) whenever the value at a
particular state z is desired. In this event, Theorem 8.3 provides a bound on the
number of such scenarios needed to obtain uniformly low error with a certain degree
of confidence.

One advantage to reusing scenarios in rollout algorithms rather than generating
new ones for each state might be computational efficiency. There is another potential
advantage, however, if uniformly low error is desired. In particular, if new scenarios
are used at each state in a large state space, it is very likely that the error associated
with approximations at some of the states will be very large. On the other hand, if

the same scenarios are reused, there is a probability 1 — ¢ that the approximation is
-accurate at every single state. This issue is related to the use of “common random
numbers” for variance reduction in simulation, as studied, for example, in [29].
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Chapter 9

Perspectives and Prospects

There is a lack of systematic approaches for dealing with the myriad of complex
stochastic control problems arising in practical applications. Theoretical results (e.g.,
[21, 55]) suggest that such problems are fundamentally intractable. In particular,
we believe that there is no general, fully-automated, and computationally efficient
method that can address the range of stochastic control problems we have in mind.
The thrust of our effort has been in developing a methodology that, though not
fully automated, may offer a vehicle for tackling many problems of interest. To bring
the thesis to a close, let us attempt to place in perspective our philosophy pertaining to
the nature of this methodology and to discuss what we envisage as potential prospects.
As discussed early in the thesis, the “curse of dimensionality” can be viewed
as the primary obstacle prohibiting effective solution methods for stochastic control
problems. It is interesting to note that an analogous impediment arises in statistical
regression. In particular, given an ability to collect data pairs of the form (x, J(z)),
the problem of producing an accurate approximation J to the underlying function
J becomes computationally intractable as the dimension of the domain increases.
Similarly with the context of stochastic control, difficulties arise due to the curse of
dimensionality. In the setting of statistical regression, a common approach to dealing

with this limitation involves selecting a set of basis functions ¢y, ..., ¢x, collecting a
set of input-output pairs {(z1, J(z1)), ..., (Tm, J(¥m))}, and using the least-squares
algorithm to compute weights 7(1),...,r(K) that minimize

m K 2

5 () - 2 rwae))

i=1 k=1

The result is an approximation of the form
_ K
J(z) =D r(k)de(z).

k=1

Though there is no systematic and generally applicable method for choosing basis
functions, a combination of intuition, analysis, guesswork, and experimentation often
leads to a useful selection. In fact, the combination of basis function selection and
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least—squares is a valuable tool that has met prevalent application.

The utility of least—squares statistical regression provides inspiration for the flavor
of methods we study. In particular, temporal-difference learning can be viewed as an
analog to the least—squares algorithm that is applicable to stochastic control rather
than statistical regression — given a stochastic control problem and a selection of basis
functions ¢1, ..., ¢k, the intent is to compute weights r(1),...,7(K) such that the
function

J(z) = kX_: r(k)¢x(z)

approximates the value function. In special cases involving autonomous systems and
optimal stopping problems, we have provided analyses that ensure desirable qual-
ities for resulting approximations. In these settings, the streamlined character of
the algorithms and results makes them accessible and useful as demonstrated in the
computational study of Chapter 6.

Though our work provides a starting point, the development of streamlined meth-
ods and analyses for general classes of stochastic control problems remains largely
open. Our hope, however, is that the range of problems we can address in such a
manner will broaden with future research. A goal might be to eventually produce an
algorithm that is as useful and widely accessible in the context of stochastic control
as is least—squares in the context of statistical regression.

An additional area of research pursued in this thesis involves an indirect approach
to basis function selection via use of “representative scenarios.” There are many open
problems in the context of this approach, and the study of basis function selection for
stochastic control problems in general poses a broad and interesting topic for future
research.
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